BQ24079QW-Q1 [TI]

通过汽车级认证的独立型单节电池 1.5A 线性充电器,具有电源路径和 4.1V VBAT;
BQ24079QW-Q1
型号: BQ24079QW-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

通过汽车级认证的独立型单节电池 1.5A 线性充电器,具有电源路径和 4.1V VBAT

电池
文件: 总47页 (文件大小:2755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
具有 NTC 监控和电源路径且符合汽车标准的 bq24079QW-Q1 4.1V 电池电  
压锂离子电池充电器  
1 特性  
3 说明  
1
符合汽车类应用的 应用  
具有符合 AEC-Q100 标准的下列特性:  
bq24079QW-Q1 是一款集成型锂离子线性充电器和系  
统电源路径管理器件,适用于空间受限的汽车 应用,  
例如远程信息处理/eCall。此器件可通过 4.35V 到  
6.4V 电压的运行,最高支持 1.5A 的充电电流。它们  
在输入电压范围内具有输入电压保护功能,因此支持非  
稳压适配器。bq24079QW-Q1 USB 输入电流限制  
精度和启动序列使得这款器件能够符合 USB-IF 涌入电  
流规范。此外,输入动态电源管理 (VIN-DPM) 可防止  
系统负载损毁错误配置的 USB 源。  
器件温度 1 级:-40℃ 至 +125℃ 的环境工作温  
度范围  
器件 HBM ESD 分类等级 2  
器件 CDM ESD 分类等级 C4A  
完全符合 USB 充电器标准  
最大输入电流可选 100mA 500mA  
100mA 最大电流限制可确保充电符合 USB-IF  
标准  
bq24079QW-Q1 具有 动态电源路径管理 (DPPM) 功  
能,可在为系统供电的同时独立为电池充电。当输入电  
流限制引起系统输出降至 DPPM 阈值时,DPPM 电路  
将减少充电电流;因此,可在为系统负载供电的同时单  
独监测充电电流。此特性以及 4.1V 电池稳压电压有助  
于减少电池的充放电次数,实现正常充电终止,并让系  
统能够在电池组故障或缺失的情况下运行,从而延长电  
池寿命。  
基于输入的动态电源管理 (VIN-DPM),用于保护  
免受不良 USB 电源损害  
28V 输入额定值,具有过压保护  
4.1V 电池稳压电压  
集成动态电源路径管理 (DPPM) 功能可同时独立进  
行系统供电和对电池充电  
具有用于进行电流监控的输出 (ISET),可支持高达  
1.5A 的充电电流  
针对墙式充电器的高达 1.5A 的可编程输入电流限  
器件信息(1)  
器件编号  
封装  
VQFN (16)  
封装尺寸(标称值)  
带有 SYSOFF 输入的电池断开功能。  
可编程预充电和快速充电安全计时器  
反向电流、短路和热保护  
bq24079QW-Q1  
3.00mm x 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
负温度系数 (NTC) 热敏电阻输入  
私有启动序列限制涌入电流  
典型应用电路  
1kW  
状态指示 - 充电中/已完成、电源正常  
1kW  
具有可湿性的小型 3mm × 3mm 16 引线 VQFN 封  
2 应用  
IN  
SYSTEM  
IN  
OUT  
10  
11  
13  
汽车远程信息处理  
1mF  
4.7mF  
车队管理  
5
8
EN2  
BAT  
VSS  
显示密钥/智能密钥  
bq24079QW-Q1  
2
3
System  
ON/OFF  
Control  
15  
SYSOFF  
4.7mF  
PACK+  
TEMP  
1
TS  
PACK-  
1.18kW  
1.13kW  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSCM2  
 
 
 
 
 
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 27  
10 Application and Implementation........................ 28  
10.1 Application Information.......................................... 28  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
(说明 (续))....................................................... 3  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings .................................... 5  
8.2 ESD Ratings.............................................................. 5  
8.3 Recommended Operating Conditions...................... 5  
8.4 Thermal Information.................................................. 6  
8.5 Electrical Characteristics.......................................... 6  
8.6 Typical Characteristics............................................ 11  
Detailed Description ............................................ 14  
9.1 Overview ................................................................. 14  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 16  
10.2 Typical Application – bq24079QW-Q1 Charger  
Design Example....................................................... 28  
11 Power Supply Recommendations ..................... 34  
12 Layout................................................................... 35  
12.1 Layout Guidelines ................................................. 35  
12.2 Layout Example .................................................... 36  
12.3 Thermal Package.................................................. 37  
13 器件和文档支持 ..................................................... 38  
13.1 器件支持 ............................................................... 38  
13.2 文档支持 ............................................................... 38  
13.3 接收文档更新通知 ................................................. 38  
13.4 社区资源................................................................ 38  
13.5 ....................................................................... 38  
13.6 静电放电警告......................................................... 38  
13.7 术语表 ................................................................... 38  
14 机械、封装和可订购信息....................................... 38  
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2017) to Revision B  
Page  
已更改 将特性中的 HBM ESD 分类等级从 H1C 更改为 2 ...................................................................................................... 1  
Changed ESD Ratings HBM to All pins value ±2000 V ........................................................................................................ 5  
Changes from Original (October 2017) to Revision A  
Page  
已更改 标题............................................................................................................................................................................. 1  
Changed Standby current into IN pin MAX from 50 to 55 µA ............................................................................................... 6  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
5 (说明 (续))  
此外,该系列充电器可提供经稳压的系统输入,即使在电池完全放电的情况下,也可使系统在连接电源后实现瞬间  
开启。此电源路径管理架构还允许在适配器不能够发送峰值系统电流时补偿系统电流需求,从而使得能够使用较小  
的适配器。  
电池充电发生于以下三个阶段:调节、恒定电流和恒定电压。在所有的充电阶段,一个内部控制环路监测 IC 结温  
并且如果超过此内部温度阈值则减少充电电流。充电器功率级和充电电流感应功能完全集成在了一起。该充电器具  
高精度电流和电压调节环路、充电状态显示和充电终止功能。输入电流限制和充电电流可使用外部电阻编程设定。  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
6 Device Comparison Table  
OPTIONAL  
FUNCTION  
DEVICE  
VOVP  
VBAT(REG)  
VOUT(REG)  
VDPPM  
bq24079QW-Q1  
6.6 V  
4.1 V  
5.5 V  
4.3 V  
SYSOFF  
7 Pin Configuration and Functions  
RGT Package  
16 Pin VQFN  
Top View  
TS  
BAT  
BAT  
CE  
1
12  
11  
10  
9
ILIM  
OUT  
OUT  
CHG  
2
3
4
Thermal  
Pad  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
External NTC Thermistor Input. Connect the TS input to the NTC thermistor in the battery pack. TS monitors a 10-  
kNTC thermistor. For applications that do not utilize the TS function, connect a 10-kfixed resistor from TS to  
VSS to maintain a valid voltage level on TS. Do not leave TS pin floating.  
TS  
1
I
I/O  
I
Charger Power Stage Output and Battery Voltage Sense Input. Connect BAT to the positive terminal of the  
battery. Bypass BAT to VSS with a 4.7-μF to 47-μF ceramic capacitor.  
BAT  
CE  
2, 3  
4
Charge Enable Active-Low Input. Connect CE to a high logic level to suspend charging. When CE is high, OUT is  
active and battery supplement mode is still available. Connect CE to a low logic level to enable the battery  
charger. CE is internally pulled down with ~285 k. Do not leave CE unconnected to ensure proper operation.  
EN2  
EN1  
5
6
I
I
Input Current Limit Configuration Inputs. Use EN1 and EN2 control the maximum input current and enable USB  
compliance. See EN1/EN2 Settings table for the description of the operation states. EN1 and EN2 are internally  
pulled down with 285 k. Do not leave EN1 or EN2 unconnected to ensure proper operation.  
Open-drain Power Good Status Indication Output. PGOOD pulls to VSS when a valid input source is detected.  
PGOOD is high-impedance when the input power is not within specified limits. Connect PGOOD to the desired  
logic voltage rail using a 1-kto 100-kresistor, or use with an LED for visual indication.  
PGOOD  
VSS  
7
8
9
O
Ground. Connect to the thermal pad and to the ground rail of the circuit.  
Open-Drain Charging Status Indication Output. CHG pulls to VSS when the battery is charging. CHG is high  
impedance when charging is complete and when charger is disabled. Connect CHG to the desired logic voltage  
rail using a 1-kto 100-kresistor, or use with an LED for visual indication.  
CHG  
O
System Supply Output. OUT provides a regulated output when the input is below the OVP threshold and above  
the regulation voltage. When the input is out of the operation range, OUT is connected to VBAT except when  
SYSOFF is high. Connect OUT to the system load. Bypass OUT to VSS with a 4.7-μF to 47-μF ceramic capacitor.  
OUT  
ILIM  
IN  
10, 11  
12  
O
I
Adjustable Current Limit Programming Input. Connect a 1100-to 8-kresistor from ILIM to VSS to program the  
maximum input current (EN2 = 1, EN1 = 0). The input current includes the system load and the battery charge  
current. Leaving ILIM unconnected disables all charging.  
Input Power Connection. Connect IN to the external DC supply (AC adapter or USB port). The input operating  
range is 4.35 V to 6.6 V. The input can accept voltages up to 26 V without damage but operation is suspended.  
Connect bypass capacitor 1 μF to 10 μF to VSS.  
13  
I
4
Copyright © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Timer Programming Input. TMR controls the pre-charge and fast-charge safety timers. Connect TMR to VSS to  
disable all safety timers. Connect a 18-kto 72-kresistor between TMR and VSS to program the timers a  
desired length. Leave TMR unconnected to set the timers to the default values.  
TMR  
14  
I
System Enable Input. Connect SYSOFF high to turn off the FET connecting the battery to the system output.  
When an adapter is connected, charging is also disabled. Connect SYSOFF low for normal operation. SYSOFF is  
internally pulled up to VBAT through a large resistor (~5 M). Do not leave SYSOFF unconnected to ensure proper  
operation.  
SYSOFF  
ISET  
15  
I
Fast Charge Current Programming Input. Connect a 590-to 8.9-kresistor from ISET to VSS to program the  
fast charge current level. Charging is disabled if ISET is left unconnected. While charging, the voltage at ISET  
reflects the actual charging current and can be used to monitor charge current. See the Charge Current Translator  
section for more details.  
16  
I/O  
There is an internal electrical connection between the exposed thermal pad and the VSS pin of the device. The  
thermal pad must be connected to the same potential as the VSS pin on the printed circuit board. Do not use the  
thermal pad as the primary ground input for the device. VSS pin must be connected to ground at all times.  
Thermal  
Pad  
8 Specifications  
8.1 Absolute Maximum Ratings(1)  
over the -40°C to 125°C operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
MAX  
28  
UNIT  
V
IN (with respect to VSS)  
BAT (with respect to VSS)  
5
V
Input voltage, VI  
OUT, EN1, EN2, CE, TS, ISET, PGOOD, CHG, ILIM, TMR,  
SYSOFF  
–0.3  
7
V
Input current, II  
IN  
1.6  
5
A
A
OUT  
Output current (Continuous), IO BAT (Discharge mode)  
BAT (Charging mode)  
5
A
1.5(2)  
A
Output sink current  
CHG, PGOOD  
15  
mA  
°C  
°C  
Junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage  
values are with respect to the network ground terminal unless otherwise noted.  
(2) The IC operational charging life is reduced to 20,000 hours, when charging at 1.5A and 125°C. The thermal regulation feature reduces  
charge current if the IC’s junction temperature reaches 125°C; thus without a good thermal design the maximum programmed charge  
current may not be reached.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC  
Q100-002(2)  
All pins  
V(ESD)  
Electrostatic discharge(1)  
V
Charged-device model (CDM), per AEC Q100-011  
(1) Electrostatic discharge (ESD) measures device sensitivity and immunity to damage caused by assembly line electrostatic discharges.  
(2) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
MIN  
4.35  
4.35  
MAX  
26  
UNIT  
IN voltage range  
V
V
A
A
A
VI  
IN operating voltage range  
Input current, IN pin  
6.4  
1.5  
4.5  
4.5  
IIN  
IOUT  
IBAT  
Current, OUT pin  
Current, BAT pin (Discharging)  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Recommended Operating Conditions (continued)  
MIN  
MAX  
UNIT  
A
ICHG  
Current, BAT pin (Charging)  
1.5(1)  
8000  
8900  
15  
RILIM  
RISET  
RITERM  
RTMR  
Maximum input current programming resistor  
1100  
590  
0
(2)  
Fast-charge current programming resistor  
Termination current programming resistor  
Timer programming resistor  
k  
kΩ  
18  
72  
(1) The IC operational charging life is reduced to 20,000 hours, when charging at 1.5A and 125°C. The thermal regulation feature reduces  
charge current if the IC’s junction temperature reaches 125°C; thus without a good thermal design the maximum programmed charge  
current may not be reached.  
(2) Use a 1% tolerance resistor for RISET to avoid issues with the RISET short test when using the maximum charge current setting.  
8.4 Thermal Information  
bq24079QW-Q1  
THERMAL METRIC(1)  
RGT (VQFN)  
16 PIN  
43.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
46.3  
17.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
17.7  
RθJC(bot)  
3.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
Over ambient temperature range (–40°C TA 125°C) and the recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT  
UVLO  
Vhys  
Undervoltage lock-out  
Hysteresis on UVLO  
VIN: 0 V 4 V  
VIN: 4 V 0 V  
3.2  
3.3  
3.4  
V
200  
300  
mV  
Input power detected when VIN > VBAT + VIN(DT)  
VBAT = 3.6 V, VIN: 3.5 V 4 V  
VIN(DT)  
Vhys  
Input power detection threshold  
Hysteresis on VIN(DT)  
50  
20  
80  
135  
mV  
mV  
ms  
VBAT = 3.6 V, VIN: 4 V 3.5 V  
Time measured from VIN: 0 V 5 V with 1-μs  
rise time to PGOOD = LO  
tDGL(PGOOD) Deglitch time, input power detected status  
1.2  
VOVP  
Vhys  
Input overvoltage protection threshold  
Hysteresis on OVP  
VIN: 5 V 7 V  
VIN: 7 V 5V  
6.4  
6.6  
6.8  
V
110  
mV  
Input overvoltage blanking time (OVP fault  
deglitch)  
tDGL(OVP)  
tREC  
50  
μs  
Time measured from VIN: 11 V 5 V with 1-μs  
fall time to PGOOD = LO  
Input overvoltage recovery time  
1.2  
ms  
ILIM, ISET SHORT CIRCUIT DETECTION (CHECKED DURING STARTUP)  
ISC  
Current source  
VIN > UVLO and VIN > VBAT + VIN(DT)  
VIN > UVLO and VIN > VBAT + VIN(DT)  
1.3  
mA  
mV  
VSC  
520  
QUIESCENT CURRENT  
CE = LO or HI, Input power not detected,  
No load on OUT pin, TA 125°C  
IBAT(PDWN) Sleep current into BAT pin  
4.4  
13  
μA  
μA  
EN1 = HI, EN2 = HI, VIN = 6 V, TA 125°C  
EN1 = HI, EN2 = HI, VIN = 10 V, TA 125°C  
38.8  
90.2  
55  
IIN  
Standby current into IN pin  
Active supply current, IN pin  
200  
CE = LO, VIN = 6 V, No load on OUT pin,  
VBAT > VBAT(REG), (EN1, EN2) (HI, HI)  
ICC  
1.5  
mA  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
Over ambient temperature range (–40°C TA 125°C) and the recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER PATH  
VDO(IN-OUT) VIN – VOUT  
VIN = 4.3 V, IIN = 1 A, VBAT = 4.1 V  
IOUT = 1 A, VIN = 0 V, VBAT > 3 V  
300  
50  
475  
100  
mV  
mV  
V
VDO(BAT-  
VBAT – VOUT  
OUT)  
VO(REG)  
IINmax  
OUT pin voltage regulation  
VIN > VOUT + VDO(IN-OUT)  
EN1 = LO, EN2 = LO  
5.4  
90  
5.5  
95  
5.65  
101  
500  
mA  
A
Maximum input current  
EN1 = HI, EN2 = LO  
440  
475  
EN2 = HI, EN1 = LO  
KILIM/RILIM  
1610  
ILIM = 500 mA to 1.5 A  
1500  
1300  
200  
1720  
1770  
1500  
KILIM  
Maximum input current factor  
AΩ  
ILIM = 200 mA to 500 mA  
EN2 = HI, EN1 = LO, RILIM = 8 kto 1.1 kΩ  
1525  
IINmax  
Programmable input current limit range  
mA  
V
Input voltage threshold when input current is  
reduced  
VIN-DPM  
EN2 = LO, EN1 = X  
4.35  
4.2  
4.5  
4.3  
4.63  
4.4  
Output voltage threshold when charging  
current is reduced  
VDPPM  
V
V
VOUT  
VBSUP1  
Enter battery supplement mode  
Exit battery supplement mode  
VBAT = 3.6 V, RILIM = 1.5 k, RLOAD = 10 Ω → 2 Ω  
VBAT  
–40mV  
VOUT  
VBSUP2  
VO(SC1)  
VO(SC2)  
VBAT = 3.6 V, RILIM = 1.5 k, RLOAD = 2 Ω → 10 Ω  
VIN > VUVLO and VIN > VBAT + VIN(DT)  
VBAT–20m  
V
V
V
Output short-circuit detection threshold,  
power-on  
0.8  
0.9  
1
Output short-circuit detection threshold,  
supplement mode VBAT – VOUT > VO(SC2)  
indicates short-circuit  
VIN > VUVLO and VIN > VBAT + VIN(DT)  
200  
250  
300  
mV  
tDGL(SC2)  
tREC(SC2)  
Deglitch time, supplement mode short circuit  
250  
60  
μs  
Recovery time, supplement mode short  
circuit  
ms  
BATTERY CHARGER  
Source current for BAT pin short-circuit  
detection  
VBAT = 1.5 V  
VBAT rising  
IBAT  
4
7.5  
11  
mA  
VBAT(SC)  
VBAT(REG)  
VLOWV  
BAT pin short-circuit detection threshold  
Battery charge voltage  
1.6  
4.059  
2.9  
1.8  
4.100  
3
2
4.141  
3.1  
V
V
V
Pre-charge to fast-charge transition threshold VIN > VUVLO and VIN > VBAT + VIN(DT)  
Deglitch time on pre-charge to fast-charge  
transition  
tDGL1(LOWV)  
tDGL2(LOWV)  
25  
25  
ms  
ms  
mA  
Deglitch time on fast-charge to pre-charge  
transition  
VBAT(REG) > VBAT > VLOWV, VIN = 5 V, CE = LO,  
Battery fast charge current range  
EN1 = LO, EN2 = HI  
100  
1500  
ICHG  
CE = LO, EN1= LO, EN2 = HI,  
Battery fast charge current  
VBAT > VLOWV, VIN = 5 V, IINmax > ICHG, No load on  
OUT pin, Thermal loop and DPPM loop not active  
KISET/RISET  
A
KISET  
Fast charge current factor  
Pre-charge current  
797  
55  
890  
KPRECHG/RISET  
88  
975  
118  
AΩ  
A
IPRECHG  
KPRECHG  
Pre-charge current factor  
AΩ  
CE = LO, (EN1, EN2) (LO, LO),  
VBAT > VRCH, t < tMAXCH, VIN = 5 V, DPPM loop and  
thermal loop not active  
0.09×ICH  
0.11×ICH  
0.1×ICHG  
G
G
Termination comparator detection threshold  
(internally set)  
ITERM  
A
CE = LO, (EN1, EN2) = (LO, LO),  
VBAT > VRCH, t < tMAXCH, VIN = 5 V, DPPM loop and  
thermal loop not active  
0.027×IC  
0.040×IC  
0.033×ICHG  
HG  
HG  
tDGL(TERM)  
VRCH  
Deglitch time, termination detected  
Recharge detection threshold  
25  
100  
ms  
mV  
ms  
VIN > VUVLO and VIN > VBAT + VIN(DT)  
50  
145  
tDGL(RCH)  
Deglitch time, recharge threshold detected  
62.5  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over ambient temperature range (–40°C TA 125°C) and the recommended supply voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 3.6 V. Time measured from  
VIN: 5 V 3 V, 1-μs fall time  
Delay time, input power loss to OUT LDO  
turn-off  
tDGL(NO-IN)  
20  
ms  
IBAT(DET)  
tDET  
Sink current for battery detection  
Battery detection timer  
VBAT = 2.5 V  
5
7.5  
10  
mA  
ms  
BAT high or low  
250  
BATTERY CHARGING TIMERS  
tPRECHG  
tMAXCHG  
tPRECHG  
tMAXCHG  
KTMR  
Pre-charge safety timer value  
TMR = floating  
1440  
1800  
18000  
2160  
s
s
Charge safety timer value  
Pre-charge safety timer value  
Charge safety timer value  
Timer factor  
TMR = floating  
14400  
21600  
18 k< RTMR < 72 kΩ  
18 k< RTMR < 72 kΩ  
RTMR × KTMR  
s
10×R TMR ×KTMR  
s
36  
48  
60  
s/kΩ  
BATTERY-PACK NTC MONITOR(1)  
INTC  
NTC bias current  
VIN > UVLO and VIN > VBAT + VIN(DT)  
Battery charging, VTS Falling  
71  
75  
300  
30  
80  
μA  
mV  
mV  
mV  
mV  
VHOT  
High temperature trip point  
Hysteresis on high trip point  
Low temperature trip point  
270  
330  
VHYS(HOT)  
VCOLD  
Battery charging, VTS Rising from VHOT  
Battery charging, VTS Rising  
2000  
2100  
300  
2200  
VHYS(COLD) Hysteresis on low trip point  
Battery charging, VTS Falling from VCOLD  
Deglitch time, pack temperature fault  
tDGL(TS)  
TS fault detected to charger disable  
50  
ms  
detection  
THERMAL REGULATION  
TJ(REG) Temperature regulation limit  
TJ(OFF) Thermal shutdown temperature  
125  
155  
20  
°C  
°C  
°C  
TJ Rising  
TJ(OFF-HYS) Thermal shutdown hysteresis  
LOGIC LEVELS ON EN1, EN2, CE, SYSOFF  
VIL  
VIH  
IIL  
Logic LOW input voltage  
Logic HIGH input voltage  
Input sink current  
0
0.4  
6
V
V
1.4  
VIL= 0 V  
1
μA  
μA  
IIH  
Input source current  
VIH= 1.4 V  
10  
LOGIC LEVELS ON PGOOD, CHG  
VOL Output LOW voltage  
ISINK = 5 mA  
0.4  
V
(1) These numbers set trip points of 0°C and 50°C while charging, with 3°C hysteresis on the trip points, with a Vishay Type 2 curve NTC  
with an R25 of 10 k.  
8
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
V
OVP  
- V  
hys(OVP)  
V
OVP  
V
IN  
Typical Input Voltage  
Operating Range  
t < t  
DGL(OVP)  
V
+ V  
IN(DT)  
BAT  
V
+ V  
- V  
IN(DT) hys(INDT)  
BAT  
UVLO  
UVLO - V  
hys(UVLO)  
PGOOD  
t
DGL(PGOOD)  
t
t
DGL(OVP)  
DGL(NO-IN)  
t
DGL(PGOOD)  
1. Power-Up, Power-Down, Power Good Indication  
t
V
DGL1(LOWV)  
BAT  
V
LOWV  
t < t  
t
t
t < t  
DGL1(LOWV)  
DGL2(LOWV)  
DGL1(LOWV)  
DGL2(LOWV)  
I
CHG  
Fast-Charge  
Fast-Charge  
Pre-Charge  
I
PRE-CHG  
Pre-Charge  
2. Pre- to Fast-Charge, Fast- to Pre-Charge Transition – tDGL1(LOWV), tDGL2(LOWV)  
V
BAT  
V
RCH  
Re-Charge  
t < t  
t
DGL(RCH)  
DGL(RCH)  
3. Recharge – tDGL(RCH)  
版权 © 2017–2018, Texas Instruments Incorporated  
9
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Turn  
Q2 OFF  
Force  
Q2 ON  
Force  
Q2 ON  
Turn  
Q2 OFF  
t
t
REC(SC2)  
REC(SC2)  
V
- V  
OUT  
BAT  
Recover  
V
O(SC2)  
t
t
t < t  
t < t  
DGL(SC2)  
DGL(SC2)  
DGL(SC2)  
DGL(SC2)  
4. OUT Short-Circuit – Supplement Mode  
V
COLD  
- V  
hys(COLD)  
V
COLD  
Suspend  
Charging  
Resume  
Charging  
t < t  
t
DGL(TS)  
DGL(TS)  
V
TS  
V
- V  
hys(HOT)  
HOT  
V
HOT  
5. Battery Pack Temperature Sensing – TS Pin. Battery Temperature Increasing  
10  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
8.6 Typical Characteristics  
VIN = 6 V, EN1 = 1, EN2 = 0, TA = 25°C, unless otherwise noted.  
600  
500  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
400  
300  
200  
100  
0
0.1  
0
125  
120  
125  
130  
135  
140  
145  
0
25  
100  
50  
75  
Temperature (oC)  
Junction Temperature (°C)  
IL = 1 A  
7. Dropout Voltage vs Temperature  
6. Thermal Regulation  
120  
100  
80  
5.75  
5.70  
5.65  
5.60  
5.55  
5.50  
5.45  
5.40  
5.35  
VBAT = 3 V  
60  
40  
VBAT = 3.9 V  
20  
0
5.30  
5.25  
125  
0
50  
75  
100  
25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
IL = 1 A, No Input Supply  
VIN = 6 V, IL = 1 A  
8. Dropout Voltage vs Temperature  
9. Output Regulation Voltage vs Temperature -  
bq24079QW-Q1  
6.70  
1.05  
1.03  
6.65  
6.60  
VI Rising  
1.01  
0.99  
6.55  
VI Falling  
6.50  
6.45  
0.97  
0.95  
0
25  
50  
75  
100  
125  
3.6  
3
3.8  
3.4  
4
4.2  
3.2  
Junction Temperature (°C)  
Battery Voltage (V)  
6.6 V  
10. Overvoltage Protection Threshold vs Temperature  
RISET = 900 Ω  
11. Fastcharge Current vs Battery Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 6 V, EN1 = 1, EN2 = 0, TA = 25°C, unless otherwise noted.  
310  
31.5  
305  
300  
295  
290  
31  
30.5  
30  
29.5  
285  
280  
29  
28.5  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
2
2.2  
2.4  
2.6  
2.8  
3
Battery Voltage (V)  
Battery Voltage (V)  
RISET = 3 kΩ  
12. Fastcharge Current vs Battery Voltage  
RISET = 3 kΩ  
13. Precharge Current vs Battery Voltage  
4.14  
0.7  
0.65  
0.6  
4.13  
4.12  
4.11  
4.1  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
4.09  
4.08  
4.07  
4.06  
4.05  
0.25  
0.2  
0.15  
0.1  
0.05  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D001  
D002  
14. BAT Regulation Voltage vs Temperature  
15. Dropout Voltage vs Temperature  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.75  
5.7  
5.65  
5.6  
5.55  
5.5  
5.45  
5.4  
5.35  
5.3  
5.25  
-40  
-20  
IL = 1 A  
16. Dropout Voltage vs Temperature  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
TJ - Junction Temperature (èC)  
TJ - Junction Temperature (èC)  
D003  
D004  
17. Output Regulation Voltage vs Temperature  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
VIN = 6 V, EN1 = 1, EN2 = 0, TA = 25°C, unless otherwise noted.  
6.7  
VI Rising  
VI Falling  
6.65  
6.6  
6.55  
6.5  
6.45  
6.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TJ - Junction Temperature (èC)  
D005  
18. Input Voltage vs Temperature  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The bq24079QW-Q1 device is an integrated Li-Ion linear charger and system power path management device  
targeted at space-limited portable applications. The device powers the system while simultaneously and  
independently charging the battery. This feature reduces the number of charge and discharge cycles on the  
battery, allows for proper charge termination and enables the system to run with a defective or absent battery  
pack. It also allows instant system turn-on even with a totally discharged battery. The input power source for  
charging the battery and running the system can be an AC adapter or a USB port. The device features Dynamic  
Power Path Management (DPPM), which shares the source current between the system and battery charging,  
and automatically reduces the charging current if the system load increases. When charging from a USB port,  
the input dynamic power management (VIN-DPM) circuit reduces the input current if the input voltage falls below  
a threshold, preventing the USB port from crashing. The power-path architecture also permits the battery to  
supplement the system current requirements when the adapter cannot deliver the peak system currents.  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
9.2 Functional Block Diagram  
250mV  
VBAT  
VO(SC1)  
OUT-SC1  
OUT-SC2  
tDGL(SC2)  
Q1  
IN  
OUT  
EN2  
Short Detect  
225mV  
Precharge  
ISET  
VIN-LOW  
2.25V  
Fastcharge  
USB100  
USB500  
TJ  
ILIM  
VREF- ILIM  
TJ(REG)  
USB-susp  
Short Detect  
VDPPM  
VO(REG)  
VOUT  
Q2  
EN2  
EN1  
VBAT(REG)  
BAT  
VBAT  
VOUT  
CHARGEPUMP  
SYSOFF  
IBIAS- ITERM  
40mV  
Supplement  
VLOWV  
225mV  
VRCH  
VBAT(SC)  
~3V  
I TERM-floating  
VIN  
INTC  
VHOT  
VCOLD  
BAT-SC  
VBAT + V  
IN-DT  
tDGL(NO-IN)  
TS  
tDGL(TS)  
tDGL(PGOOD)  
Charge Control  
VUVLO  
VOVP  
tBLK(OVP)  
VDIS(TS)  
EN1  
EN2  
USB Suspend  
CE  
CHG  
Halt timers  
Reset timers  
VIPRECHG  
VICHG  
Dynamically  
Controlled  
Oscillator  
PGOOD  
VISET  
Fast-Charge  
Timer  
Timer fault  
TMR  
Pre-Charge  
Timer  
~100mV  
Timers disabled  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Undervoltage Lockout (UVLO)  
The bq24079QW-Q1 remains in power down mode when the input voltage at the IN pin is below the  
undervoltage threshold (UVLO).  
During the power down mode, the host commands at the control inputs (CE, EN1 and EN2) are ignored. The Q1  
FET connected between IN and OUT pins is off, and the status outputs CHG and PGOOD are high impedance.  
The Q2 FET that connects BAT to OUT is ON. (If SYSOFF is high, Q2 is off). During power down mode, the  
VOUT(SC2) circuitry is active and monitors for overload conditions on OUT.  
9.3.2 Power On  
When VIN exceeds the UVLO threshold, the bq24079QW-Q1 powers up. While VIN is below VBAT + VIN(DT), the  
host commands at the control inputs (CE, EN1 and EN2) are ignored. The Q1 FET connected between IN and  
OUT pins is off, and the status outputs CHG and PGOOD are high impedance. The Q2 FET that connects BAT  
to OUT is ON. (If SYSOFF is high, Q2 is off). During this mode, the VOUT(SC2) circuitry is active and monitors for  
overload conditions on OUT.  
Once VIN rises above VBAT + VIN(DT), PGOOD is driven low to indicate the valid power status and the CE, EN1,  
and EN2 inputs are read. The device enters standby mode if (EN1 = EN2 = HI) or if an input overvoltage  
condition occurs. In standby mode, Q1 is OFF and Q2 is ON so OUT is connected to the battery input. (If  
SYSOFF is high, FET Q2 is off). During this mode, the VOUT(SC2) circuitry is active and monitors for overload  
conditions on OUT.  
When the input voltage at IN is within the valid range: VIN > UVLO AND VIN > VBAT + VIN(DT) AND VIN < VOVP, and  
the EN1 and EN2 pins indicate that the USB suspend mode is not enabled [(EN1, EN2) (HI, HI)], all internal  
timers and other circuit blocks are activated. The device then checks for short-circuits at the ISET and ILIM pins.  
If no short conditions exists, the device switches on the input FET Q1 with a 100mA current limit to checks for a  
short circuit at OUT. When VOUT is above VO(SC1), the FET Q1 switches to the current limit threshold set by EN1,  
EN2 and RILIM and the device enters into the normal operation. During normal operation, the system is powered  
by the input source (Q1 is regulating), and the device continuously monitors the status of CE, EN1 and EN2 as  
well as the input voltage conditions.  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Feature Description (接下页)  
PGOOD = Hi-Z  
CHG = Hi-Z  
BATTFET ON  
UVLO<VIN<VOVP  
and  
No  
VIN>VBAT+VIN(DT)  
Yes  
PGOOD = Low  
Yes  
Yes  
EN1=EN2=1  
No  
ILIM or ISET short?  
No  
Begin Startup  
IIN(MAX) 100mA  
Yes  
VOUT short?  
No  
Input Current  
Limit set by EN1  
and EN2  
No  
CE = Low  
Yes  
Begin Charging  
19. Startup Flow Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
9.3.3 Overvoltage Protection (OVP)  
The bq24079QW-Q1 accepts inputs up to 28 V without damage. Additionally, an overvoltage protection (OVP)  
circuit is implemented that shuts off the internal LDO and discontinues charging when VIN > VOVP for a period  
long than tDGL(OVP). When in OVP, the system output (OUT) is connected to the battery and PGOOD is high  
impedance. Once the OVP condition is removed, a new power on sequence starts (See the Power On section).  
The safety timers are reset and a new charge cycle will be indicated by the CHG output.  
9.3.4 Dynamic Power-path Management  
The bq24079QW-Q1 features an OUT output that powers the external load connected to the battery. This output  
is active whenever a source is connected to IN or BAT when SYSOFF is low. The following sections discuss the  
behavior of OUT with a source connected to IN to charge the battery and a battery source only.  
9.3.4.1 Input Source Connected (Adapter or USB)  
With a source connected, the dynamic power-path management (DPPM) circuitry of the bq24079QW-Q1  
monitors the input current continuously. The OUT output for the bq24079QW-Q1 is regulated to a fixed voltage  
(VO(REG)). The current into IN is shared between charging the battery and powering the system load at OUT. The  
bq24079QW-Q1 has internal selectable current limits of 100 mA (USB100) and 500 mA (USB500) for charging  
from USB ports, as well as a resistor-programmable input current limit.  
The bq24079QW-Q1 is USB IF compliant for the inrush current testing. The USB spec allows up to 10 μF to be  
hard started, which establishes 50 μC as the maximum inrush charge value when exceeding 100 mA. The input  
current limit for the bq24079QW-Q1 prevents the input current from exceeding this limit, even with system  
capacitances greater than 10 μF. Note that the input capacitance to the device must be selected small enough to  
prevent a violation (<10 μF), as this current is not limited. 20 demonstrates the startup of the bq24079QW-Q1  
and compares it to the USB-IF specification.  
10μC  
50μC  
100 μs/div  
20. USB-IF Inrush Current Test  
The input current limit selection is controlled by the state of the EN1 and EN2 pins. When using the resistor-  
programmable current limit, the input current limit is set by the value of the resistor connected from the ILIM pin  
to VSS, and is given by the equation:  
IIN-MAX = KILIM/RILIM  
(1)  
The input current limit is adjustable up to 1.5 A. The valid resistor range is 1.1 kto 8 k.  
When the IN source is connected, priority is given to the system load. The DPPM and Battery Supplement  
modes are used to maintain the system load. These modes are explained in detail in the following sections.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Feature Description (接下页)  
9.3.4.1.1 Input DPM Mode (VIN-DPM)  
The bq24079QW-Q1 uses the VIN-DPM mode for operation from current-limited USB ports. When EN1 and EN2  
are configured for USB100 (EN2 = 0, EN1 = 0) or USB500 (EN2 = 0, EN2 = 1) modes, the input voltage is  
monitored. If VIN falls to VIN-DPM, the input current limit is reduced to prevent the input voltage from falling further.  
This prevents the bq24079QW-Q1 from crashing poorly designed or incorrectly configured USB sources. 21  
shows the VIN-DPM behavior to a current limited source. In this figure, the input source has a 400-mA current  
limit and the device is in USB500 mode (EN1 = 1, EN2 = 0).  
I
OUT  
200mA/div  
Input collapses  
V
IN  
(5V)  
500mV/div  
Input regulated to V  
IN_DPM  
USB500 Current Limit  
200mA/div  
200mA/div  
I
Input current limit is  
reduced to prevent  
crashing the supply  
IN  
I
BAT  
4 ms/div  
21. VIN-DPM Waveform  
9.3.4.1.2 DPPM Mode  
When the sum of the charging and system load currents exceeds the maximum input current (programmed with  
EN1, EN2, and ILIM pins), the voltage at OUT decreases. Once the voltage on the OUT pin falls to VDPPM, the  
bq24079QW-Q1 enters DPPM mode. In this mode, the charging current is reduced as the OUT current increases  
in order to maintain the system output. Battery termination is disabled while in DPPM mode.  
9.3.4.1.3 Battery Supplement Mode  
While in DPPM mode, if the charging current falls to zero and the system load current increases beyond the  
programmed input current limit, the voltage at OUT reduces further. When the OUT voltage drops below the  
VBSUP1 threshold, the battery supplements the system load. The battery stops supplementing the system load  
when the voltage at OUT rises above the VBSUP2 threshold.  
During supplement mode, the battery supplement current is not regulated (BAT-FET is fully on). However, there  
is a short circuit protection circuit built in. If the voltage at OUT drops VO(SC2) below the BAT voltage during  
battery supplement mode, the OUT output is turned off if the overload exists after tDGL(SC2). The short circuit  
recovery timer then starts counting. After tREC(SC2), OUT turns on and attempts to restart. If the short circuit  
remains, OUT is turned off and the counter restarts. Battery termination is disabled while in supplement mode.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
9.3.4.2 Input Source Not Connected  
When no source is connected to the IN input, OUT is powered strictly from the battery. During this mode, the  
current into OUT is not regulated, similar to Battery Supplement Mode. However, the short circuit circuitry is  
active. If the OUT voltage falls below the BAT voltage by 250 mV for longer than tDGL(SC2), OUT is turned off. The  
short circuit recovery timer then starts counting. After tREC(SC2), OUT turns on and attempts to restart. If the short  
circuit remains, OUT is turned off and the counter restarts. This ON/OFF cycle continues until the overload  
condition is removed.  
9.3.5 Battery Charging  
Set CE low to initiate battery charging. First, the device checks for a short-circuit on the BAT pin by sourcing  
IBAT(SC) to the battery and monitoring the voltage. When the BAT voltage exceeds VBAT(SC), the battery charging  
continues. The battery is charged in three phases: conditioning pre-charge, constant current fast charge (current  
regulation) and a constant voltage tapering (voltage regulation). In all charge phases, an internal control loop  
monitors the IC junction temperature and reduces the charge current if an internal temperature threshold is  
exceeded.  
22 illustrates a normal Li-Ion charge cycle using the bq24079QW-Q1:  
PRECHARGE  
CC FAST CHARGE  
CV TAPER  
DONE  
V
BAT(REG)  
I
O(CHG)  
Battery Current  
Battery Voltage  
V
LOWV  
CHG = Hi-z  
I
(PRECHG)  
I
(TERM)  
22. Typical Charge Cycle  
In the pre-charge phase, the battery is charged with the pre-charge current (IPRECHG). Once the battery voltage  
crosses the VLOWV threshold, the battery is charged with the fast-charge current (ICHG). As the battery voltage  
reaches VBAT(REG), the battery is held at a constant voltage of VBAT(REG) and the charge current tapers off as the  
battery approaches full charge. When the battery current reaches ITERM, the CHG pin indicates charging done by  
going high-impedance.  
Note that termination detection is disabled whenever the charge rate is reduced because of the actions of the  
thermal loop, the DPPM loop or the VIN(LOW) loop.  
The value of the fast-charge current is set by the resistor connected from the ISET pin to VSS, and is given by  
the equation:  
ICHG = KISET/RISET  
(2)  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Feature Description (接下页)  
The charge current limit is adjustable up to 1.5 A. The recommended valid resistor range is 590 to 8.9 k.  
Note that if ICHG is programmed as greater than the input current limit, the battery will not charge at the rate of  
ICHG, but at the slower rate of IIN(MAX) (minus the load current on the OUT pin, if any). In this case, the charger  
timers will be proportionately slowed down.  
9.3.5.1 Charge Current Translator  
When the charger is enabled, internal circuits generate a current proportional to the charge current at the ISET  
input. The current out of ISET is 1/400 (±10%) of the charge current. This current, when applied to the external  
charge current programming resistor, RISET, generates an analog voltage that can be monitored by an external  
host to calculate the current sourced from BAT.  
VISET = ICHARGE / 400 × RISET  
(3)  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
Begin Charging  
Yes  
Battery short detected?  
No  
Start Precharge  
CHG = Low  
No  
tPRECHARGE  
Elapsed?  
No  
VBAT > VLOWV  
Yes  
End Charge  
Flash CHG  
Start Fastcharge  
ICHARGE set by ISET  
No  
No  
tFASTCHARGE  
Elapsed?  
IBAT < ITERM  
Yes  
End Charge  
Flash CHG  
Charge Done  
CHG = Hi-Z  
TD = Low  
(72, ’73 Only)  
(’74, ’75 = YES)  
(’79QW-Q1 = YES)  
No  
Yes  
Termination Reached  
BATTFET Off  
Wait for VBAT < VRCH  
No  
VBAT < VRCH  
Yes  
Run Battery Detection  
No  
Battery Detected?  
Yes  
23. Battery Charging Flow Diagram  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Feature Description (接下页)  
9.3.5.2 Battery Detection And Recharge  
The bq24079QW-Q1 automatically detects if a battery is connected or removed. Once a charge cycle is  
complete, the battery voltage is monitored. When the battery voltage falls below VRCH, the battery detection  
routine is run. During battery detection, current (IBAT(DET)) is pulled from the battery for a duration tDET to see if the  
voltage on BAT falls below VLOWV. If not, charging begins. If it does, then it indicates that the battery is missing or  
the protector is open. Next, the precharge current is applied for tDET to close the protector if possible. If VBAT  
<
VRCH, then the protector closed and charging is initiated. If VBAT > VRCH, then the battery is determined to be  
missing and the detection routine continues.  
9.3.5.3 Battery Disconnect (SYSOFF Input)  
The bq24079QW-Q1 features a SYSOFF input that allows the user to turn the FET Q2 off and disconnect the  
battery from the OUT pin. This is useful for disconnecting the system load from the battery, factory programming  
where the battery is not installed or for host side impedance track fuel gauging, such as bq27500, where the  
battery open circuit voltage level must be detected before the battery charges or discharges. The CHG output  
remains low when SYSOFF is high. Connect SYSOFF to VSS, to turn Q2 on for normal operation. SYSOFF is  
internally pulled to VBAT through ~5 Mresistor.  
9.3.5.4 Dynamic Charge Timers (TMR Input)  
The bq24079QW-Q1 device contains internal safety timers for the pre-charge and fast-charge phases to prevent  
potential damage to the battery and the system. The timers begin at the start of the respective charge cycles.  
The timer values are programmed by connecting a resistor from TMR to VSS. The resistor value is calculated  
using the following equation:  
tPRECHG = KTMR × RTMR  
(4)  
(5)  
tMAXCHG = 10 × KTMR × RTMR  
Leave TMR unconnected to select the internal default timers. Disable the timers by connecting TMR to VSS.  
Note that timers are suspended when the device is in thermal shutdown, and the timers are slowed proportionally  
to the charge current when the device enters thermal regulation.  
During the fast charge phase, several events increase the timer durations.  
A. The system load current activates the DPPM loop which reduces the available charging current  
B. The input current is reduced because the input voltage has fallen to VIN(LOW)  
C. The device has entered thermal regulation because the IC junction temperature has exceeded TJ(REG)  
During each of these events, the internal timers are slowed down proportionately to the reduction in charging  
current. For example, if the charging current is reduced by half, the timer clock is reduced to half the frequency,  
and the counter counts half as fast.  
If the pre charge timer expires before the battery voltage reaches VLOWV, the bq24079QW-Q1 indicates a fault  
condition. Additionally, if the battery current does not fall to ITERM before the fast charge timer expires, a fault is  
indicated. The CHG output flashes at approximately 2 Hz to indicate a fault condition. The fault condition is  
cleared by toggling CE or the input power, entering/ exiting USB suspend mode, or an OVP event.  
9.3.5.5 Status Indicators (PGOOD, CHG)  
The bq24079QW-Q1 contains two open-drain outputs that signal its status. The PGOOD output signals when a  
valid input source is connected. PGOOD is low when (VBAT + VIN(DT)) < VIN < VOVP. When the input voltage is  
outside of this range, PGOOD is high impedance.  
The charge cycle after power-up, CE going low or exiting OVP is indicated with the CHG pin on (low - LED on),  
whereas all refresh (subsequent) charges will result in the CHG pin off (open - LED off). In addition, the CHG  
signals timer faults by flashing at approximately 2 Hz.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
1. PGOOD Status Indicator  
INPUT STATE  
VIN < VUVLO  
PGOOD OUTPUT  
Hi impedance  
Hi impedance  
Low  
VUVLO < VIN < VBAT + VIN(DT)  
VBAT + VIN(DT) < VIN < VOVP  
VIN > VOVP  
Hi impedance  
2. CHG Status Indicator  
CHARGE STATE  
Charging  
CHG OUTPUT  
Low (for first charge cycle)  
Flashing at 2Hz  
Charging suspended by thermal loop  
Safety timers expired  
Charging done  
Recharging after termination  
IC disabled or no valid input power  
Battery absent  
Hi impedance  
9.3.5.6 Thermal Regulation And Thermal Shutdown  
The bq24079QW-Q1 contain a thermal regulation loop that monitors the die temperature. If the temperature  
exceeds TJ(REG), the device automatically reduces the charging current to prevent the die temperature from  
increasing further. In some cases, the die temperature continues to rise despite the operation of the thermal loop,  
particularly under high VIN and heavy OUT system load conditions. Under these conditions, if the die  
temperature increases to TJ(OFF), the input FET Q1 is turned OFF. FET Q2 is turned ON to ensure that the  
battery still powers the load on OUT. Once the device die temperature cools by TJ(OFF-HYS), the input FET Q1 is  
turned on and the device returns to thermal regulation. Continuous overtemperature conditions result in a  
"hiccup" mode. During thermal regulation, the safety timers are slowed down proportionately to the reduction in  
current limit.  
Note that this feature monitors the die temperature of the bq24079QW-Q1. This is not synonymous with ambient  
temperature. Self heating exists due to the power dissipated in the IC because of the linear nature of the battery  
charging algorithm and the LDO associated with OUT. A modified charge cycle with the thermal loop active is  
shown in 24. Battery termination is disabled during thermal regulation.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
PRECHARGE  
THERMAL  
CC FAST  
CHARGE  
CV TAPER  
DONE  
REGULATION  
V
O(REG)  
I
O(CHG)  
Battery Voltage  
Battery Current  
V
(LOWV)  
HI-z  
I
(PRECHG)  
I
(TERM)  
T
J(REG)  
IC Junction Temperature, T  
J
24. Charge Cycle Modified by Thermal Loop  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
9.3.6 Battery Pack Temperature Monitoring  
The bq24079QW-Q1 features an external battery pack temperature monitoring input. The TS input connects to  
the NTC thermistor in the battery pack to monitor battery temperature and prevent dangerous over-temperature  
conditions. During charging, INTC is sourced to TS and the voltage at TS is continuously monitored. If, at any  
time, the voltage at TS is outside of the operating range (VCOLD to VHOT), charging is suspended. The timers  
maintain their values but suspend counting. When the voltage measured at TS returns to within the operation  
window, charging is resumed and the timers continue counting. When charging is suspended due to a battery  
pack temperature fault, the CHG pin remains low and continues to indicate charging.  
For applications that do not require the TS monitoring function, connect a 10 kresistor from TS to VSS to set  
the TS voltage at a valid level and maintain charging.  
The allowed temperature range for 103AT-2 type thermistor is 0°C to 50°C. However, the user may increase the  
range by adding two external resistors. See 25 for the circuit details. The values for Rs and Rp are calculated  
using the following equations:  
æ
ö
ì
ü
ý
þ
VH ´ VC  
-(RTH + RTC ) ±  
(RTH+RTC )2 - 4 R  
´ RTC  
+
´(RTC - RTH )  
ç
÷
í
TH  
ç
÷
(VH - VC ) ´ ITS  
î
è
ø
Rs =  
2
(6)  
(7)  
V ´ R + RS  
(
)
ITS ´ R + RS - V  
H
TH  
Rp =  
(
)
TH  
H
Where:  
RTH: Thermistor Hot Trip Value found in thermistor data sheet  
RTC: Thermistor Cold Trip Value found in thermistor data sheet  
VH: IC's Hot Trip Threshold = 0.3 V nominal  
VC: IC's Cold Trip Threshold = 2.1 V nominal  
ITS: IC's Output Current Bias = 75 µA nominal  
NTC Thermsitor Semitec 103AT-4  
Rs and Rp 1% values were chosen closest to calculated values  
COLD TEMP RESISTANCE  
HOT TEMP RESISTANCE AND  
EXTERNAL BIAS RESISTOR,  
EXTERNAL BIAS RESISTOR,  
AND TRIP THRESHOLD, Ω (°C)  
TRIP THRESHOLD, Ω (°C)  
Rs (Ω)  
Rp (Ω)  
28000 (–0.6)  
28480 (–1)  
28480 (–1)  
33890 (–5)  
33890 (–5)  
33890 (–5)  
4000 (51)  
3536 (55)  
3021 (60)  
4026 (51)  
3536 (55)  
3021 (60)  
0
487  
845000  
549000  
158000  
150000  
140000  
1000  
76.8  
576  
1100  
RHOT and RCOLD are the thermistor resistance at the desired hot and cold temperatures, respectively.  
Note that the temperature window cannot be tightened more than using only the thermistor  
connected to TS, it can only be extended.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
INTC  
bq24079QW-Q1  
RS  
PACK+  
TS  
TEMP  
+
VCOLD  
RP  
PACK-  
+
VHOT  
Copyright © 2017, Texas Instruments Incorporated  
25. Extended TS Pin Thresholds  
9.3.7 Half-Wave Adaptors  
Some adapters implement a half rectifier topology, which causes the adapter output voltage to fall below the  
battery voltage during part of the cycle. To enable operation with adapters under those conditions, the  
bq24079QW-Q1 keeps the charger on for at least 20 msec (typical) after the input power puts the part in sleep  
mode. This feature enables use of external adapters using 50-Hz networks. The input must not drop below the  
UVLO voltage for the charger to work properly. Thus, the battery voltage should be above the UVLO to help  
prevent the input from dropping out. Additional input capacitance may be needed.  
9.4 Device Functional Modes  
9.4.1 Sleep Mode  
When the input is between UVLO and VIN(DT), the device enters sleep mode. After entering sleep mode for >20  
ms, the internal FET connection between the IN and OUT pin is disabled, and pulling the input to ground will not  
discharge the battery other than the leakage on the BAT pin. If one has a full 1000-mAHr battery and the leakage  
is 10 μA, then it would take 1000 mAHr/10 μA = 100000 hours (11.4 years) to discharge the battery. The  
battery’s self discharge is typically 5 times higher than this.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The bq24079QW-Q1 devices power the system while simultaneously and independently charging the battery.  
The input power source for charging the battery and running the system can be an AC adapter or a USB port.  
The devices feature dynamic power-path management (DPPM), which shares the source current between the  
system and battery charging and automatically reduces the charging current if the system load increases. When  
charging from a USB port, the input dynamic power management (VIN-DPM) circuit reduces the input current  
limit if the input voltage falls below a threshold, preventing the USB port from crashing. The power-path  
architecture also permits the battery to supplement the system current requirements when the adapter cannot  
deliver the peak system currents. The bq24079QW-Q1 is configurable to be host controlled for selecting different  
input current limits based on the input source connected, or a fully stand alone device for applications that do not  
support multiple types of input sources.  
10.2 Typical Application – bq24079QW-Q1 Charger Design Example  
See 26 for Schematics of the Design Example.  
VIN = UVLO to VOVP, IFASTCHG = 800 mA, IIN(MAX) = 1.3 A, Battery Temperature Charge Range = 0°C to 50°C,  
6.25 hour Fastcharge Safety Timer  
VIN = UVLO to VOVP, IFASTCHG = 800 mA, IIN(MAX) = 1.3 A, ITERM = 110 mA, Battery Temperature Charge  
Range = 0°C to 50°C, Safety Timers disabled  
VIN = UVLO to VOVP, IFASTCHG = 800 mA, IIN(MAX) = 1.3 A, Battery Temperature Charge Range = 0°C to 50°C,  
6.25 hour Fastcharge Safety Timer  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Typical Application – bq24079QW-Q1 Charger Design Example (接下页)  
R4  
1.5 kW  
R5  
1.5 kW  
SYSTEM  
Adaptor  
DC+  
IN  
OUT  
C2  
4.7 mF  
C1  
1 mF  
GND  
VSS  
bq24079QW-Q1  
HOST  
EN2  
EN1  
TS  
SYSOFF  
CE  
BAT  
C3  
4.7 mF  
PACK+  
TEMP  
R1  
46.4 kW  
R2  
1.18 kW  
R3  
1.13 kW  
PACK-  
Copyright © 2017, Texas Instruments Incorporated  
26. Using bq24079QW-Q1 to Disconnect the Battery from the System  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application – bq24079QW-Q1 Charger Design Example (接下页)  
10.2.1 Design Requirements  
Supply voltage = 5 V  
Fast charge current of approximately 800 mA; ISET - pin 16  
Input Current Limit =1.3 A; ILIM - pin 12  
Termination Current Threshold = 110 mA  
Safety timer duration, Fast-Charge = 6.25 hours; TMR – pin 14  
TS – Battery Temperature Sense = 10-kNTC (103AT-2)  
10.2.2 Detailed Design Procedure  
10.2.2.1 Calculations  
10.2.2.1.1 Program the Fast Charge Current (ISET):  
RISET = KISET / ICHG  
KISET = 890 Afrom the electrical characteristics table.  
RISET = 890 A/0.8 A = 1.1125 kΩ  
Select the closest standard value, which for this case is 1.13 k. Connect this resistor between ISET (pin 16)  
and VSS  
.
10.2.2.1.2 Program the Input Current Limit (ILIM)  
RILIM = KILIM / II_MAX  
KILIM = 1550 Afrom the electrical characteristics table.  
RISET = 1550 A/ 1.3 A = 1.192 kΩ  
Select the closest standard value, which for this case is 1.18 k. Connect this resistor between ILIM (pin 12) and  
VSS  
.
10.2.2.1.3 Program 6.25-hour Fast-Charge Safety Timer (TMR)  
RTMR = tMAXCHG / (10 × KTMR  
)
KTMR = 48 s/kfrom the electrical characteristics table.  
RTMR = (6.25 hr × 3600 s/hr) / (10 × 48 s/k) = 46.8 kΩ  
Select the closest standard value, which for this case is 46.4 k. Connect this resistor between TMR (pin 2) and  
VSS  
.
10.2.2.2 TS Function  
Use a 10-kNTC thermistor in the battery pack (103AT-2). For applications that do not require the TS  
monitoring function, connect a 10-kresistor from TS to VSS to set the TS voltage at a valid level and maintain  
charging.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Typical Application – bq24079QW-Q1 Charger Design Example (接下页)  
10.2.2.3 CHG and PGOOD  
LED Status: connect a 1.5-kresistor in series with a LED between OUT and CHG to indicate charging status.  
Connect a 1.5-kresistor in series with a LED between OUT and PGOOD to indicate when a valid input source  
is connected.  
Processor Monitoring Status: connect a pullup resistor (on the order of 100 k) between the processor’s power  
rail and CHG and PGOOD  
10.2.2.4 System ON/OFF (SYSOFF)  
Connect SYSOFF high to disconnect the battery from the system load. Connect SYSOFF low for normal  
operation  
10.2.2.5 Selecting In, Out And Bat Pin Capacitors  
In most applications, all that is needed is a high-frequency decoupling capacitor (ceramic) on the power pin,  
input, output and battery pins. Using the values shown on the application diagram, is recommended. After  
evaluation of these voltage signals with real system operational conditions, one can determine if capacitance  
values can be adjusted toward the minimum recommended values (DC load application) or higher values for fast  
high amplitude pulsed load applications. Note if designed high input voltage sources (bad adaptors or wrong  
adaptors), the capacitor needs to be rated appropriately. Ceramic capacitors are tested to 2x their rated values  
so a 16-V capacitor may be adequate for a 30-V transient (verify tested rating with capacitor manufacturer).  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Application – bq24079QW-Q1 Charger Design Example (接下页)  
10.2.3 Application Curves  
VIN = 6 V, EN1 = 1, EN2 = 0, TA = 25°C, unless otherwise noted.  
VIN  
5 V/div  
VCHG  
5 V/div  
1 A/div  
Charging Initiated  
VOUT  
4.4 V  
500 mV/div  
5 V/div  
VBAT  
IBAT  
3.6 V  
VPGOOD  
2 V/div  
VBAT  
Battery Inserted  
500 mA/div  
IBAT  
Battery Detection Mode  
400 ms/div  
4 ms/div  
RLOAD = 10 Ω  
27. Adapter Plug-in Battery Connected  
28. Battery Detection Battery Inserted  
VCHG  
5 V/div  
IOUT  
500 mA/div  
1 A/div  
IBAT  
IBAT  
500 mA/div  
200 mV/div  
VOUT  
4.4 V  
2 V/div  
Battery  
Removed  
VBAT  
Battery Detection Mode  
400 ms/div  
400 ms/div  
RLOAD = 20 to 9 Ω  
29. Battery Detection Battery Removed  
30. Entering And Exiting DPPM Mode  
VCE  
5 V/div  
10 V/div  
VIN  
VCHG  
5 V/div  
1 V/div  
VOUT  
4.4 V  
VBAT  
VBAT  
500 mV/div  
4.1 V  
3.6 V  
Mandatory Precharge  
IBAT  
500 mA/div  
IBAT  
1 A/div  
10 ms/div  
40 ms/div  
RLOAD = 10 Ω  
VIN = 6 V to 15 V  
31. Charger ON/OF Using CE  
32. OVP Fault  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
Typical Application – bq24079QW-Q1 Charger Design Example (接下页)  
VIN = 6 V, EN1 = 1, EN2 = 0, TA = 25°C, unless otherwise noted.  
VSYSOFF  
5 V/div  
5 V/div  
VSYSOFF  
VBAT  
VOUT  
4 V  
5.5 V  
2 V/div  
VBAT  
2 V/div  
VOUT  
4 V  
Battery Powering  
System  
500 mA/div  
System Power Off  
IBAT  
IBAT  
500 mA/div  
4 ms/div  
400 ms/div  
VIN = 0 V  
VIN = 6 V  
34. System On/off With Input Not Connected -  
33. System On/off With Input Connected - bq24079QW-  
bq24079QW-Q1  
Q1  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
11 Power Supply Recommendations  
Some adapters implement a half rectifier topology, which causes the adapter output voltage to fall below the  
battery voltage during part of the cycle. To enable operation with adapters under those conditions, the  
bq24079QW-Q1 keeps the charger on for at least 20 msec (typical) after the input power puts the part in sleep  
mode. This feature enables use of external adapters using 50-Hz networks. The input must not drop below the  
UVLO voltage for the charger to work properly. Thus, the battery voltage should be above the UVLO to help  
prevent the input from dropping out. Additional input capacitance may be needed.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
12 Layout  
12.1 Layout Guidelines  
To obtain optimal performance, the decoupling capacitor from IN to GND (thermal pad) and the output filter  
capacitors from OUT to GND (thermal pad) should be placed as close as possible to the bq24079QW-Q1,  
with short trace runs to both IN, OUT and GND (thermal pad).  
All low-current GND connections should be kept separate from the high-current charge or discharge paths  
from the battery. Use a single-point ground technique incorporating both the small signal ground path and the  
power ground path.  
The high current charge paths into IN pin and from the OUT pin must be sized appropriately for the maximum  
charge current in order to avoid voltage drops in these traces  
The bq24079QW-Q1 is packaged in a thermally enhanced MLP package. The package includes a thermal  
pad to provide an effective thermal contact between the IC and the printed circuit board (PCB); this thermal  
pad is also the main ground connection for the device. Connect the thermal pad to the PCB ground  
connection. Full PCB design guidelines for this package are provided in the application note entitled:  
QFN/SON PCB Attachment Application Note (SLUA271).  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
12.2 Layout Example  
35.  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
bq24079QW-Q1  
www.ti.com.cn  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
12.3 Thermal Package  
The bq24079QW-Q1 is packaged in a thermally enhanced MLP package. The package includes a thermal pad to  
provide an effective thermal contact between the IC and the printed circuit board (PCB). The power pad should  
be directly connected to the VSS pin. Full PCB design guidelines for this package are provided in the application  
note entitled: QFN/SON PCB Attachment Application Note (SLUA271). The most common measure of package  
thermal performance is thermal impedance (θJA ) measured (or modeled) from the chip junction to the air  
surrounding the package surface (ambient). The mathematical expression for θJA is:  
θJA = (TJ - T) / P  
Where:  
TJ = chip junction temperature  
T = ambient temperature  
P = device power dissipation  
Factors that can influence the measurement and calculation of θJA include:  
1. Whether or not the device is board mounted  
2. Trace size, composition, thickness, and geometry  
3. Orientation of the device (horizontal or vertical)  
4. Volume of the ambient air surrounding the device under test and airflow  
5. Whether other surfaces are in close proximity to the device being tested  
Due to the charge profile of Li-Ion batteries the maximum power dissipation is typically seen at the beginning of  
the charge cycle when the battery voltage is at its lowest. Typically after fast charge begins the pack voltage  
increases to 3.4 V within the first 2 minutes. The thermal time constant of the assembly typically takes a few  
minutes to heat up so when doing maximum power dissipation calculations, 3.4 V is a good minimum voltage to  
use. This is verified, with the system and a fully discharged battery, by plotting temperature on the bottom of the  
PCB under the IC (pad should have multiple vias), the charge current and the battery voltage as a function of  
time. The fast charge current will start to taper off if the part goes into thermal regulation.  
The device power dissipation, P, is a function of the charge rate and the voltage drop across the internal  
PowerFET. It can be calculated from the following equation when a battery pack is being charged :  
P = [V(IN) – V(OUT)] × I(OUT) + [V(OUT) – V(BAT)] × I(BAT)  
(7)  
The thermal loop feature reduces the charge current to limit excessive IC junction temperature. It is  
recommended that the design not run in thermal regulation for typical operating conditions (nominal input voltage  
and nominal ambient temperatures) and use the feature for non typical situations such as hot environments or  
higher than normal input source voltage. With that said, the IC will still perform as described, if the thermal loop  
is always active.  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
bq24079QW-Q1  
ZHCSH01B OCTOBER 2017REVISED NOVEMBER 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
QFN/SON PCB 连接应用手册》(SLUA271)  
13.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com.cn 上您的器件的产品文件夹。请在右上角单击通知我 按钮进行注册,即可收  
到产品信息更改每周摘要(如有)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ24079QWRGTRQ1  
BQ24079QWRGTTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1COC  
1COC  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ24079QWRGTRQ1  
BQ24079QWRGTTQ1  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ24079QWRGTRQ1  
BQ24079QWRGTTQ1  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016J  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
A
-
A
4
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.66 0.1  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
A
A
17  
1.5  
1
12  
0.3  
16X  
0.2  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4224573/B 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016J  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.66)  
SYMM  
13  
16  
16X (0.6)  
12  
1
16X (0.25)  
SYMM  
17  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224573/B 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016J  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.25)  
17  
SYMM  
(2.8)  
METAL  
ALL AROUND  
12X (0.5)  
9
4
5
8
(R0.05) TYP  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
THERMAL PAD 17:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4224573/B 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ24079QWRGTRQ1

通过汽车级认证的独立型单节电池 1.5A 线性充电器,具有电源路径和 4.1V VBAT | RGT | 16 | -40 to 125
TI

BQ24079QWRGTTQ1

通过汽车级认证的独立型单节电池 1.5A 线性充电器,具有电源路径和 4.1V VBAT | RGT | 16 | -40 to 125
TI

BQ24079RGTR

1.5A USB-FRIENDLY Li-Ion BATTERY CHARGER AND POWER-PATH MANAGEMENT IC
TI

BQ24079RGTT

1.5A USB-FRIENDLY Li-Ion BATTERY CHARGER AND POWER-PATH MANAGEMENT IC
TI

BQ24079T

1.5A USB-Friendly Li-Ion Battery Charger and Power-Path Management IC
TI

BQ24079TRGTR

1.5A USB-Friendly Li-Ion Battery Charger and Power-Path Management IC
TI

BQ24079TRGTT

1.5A USB-Friendly Li-Ion Battery Charger and Power-Path Management IC
TI

BQ24080

SINGLE-CHIP, LI-ION AND LI-POL CHARGER IC
TI

BQ24080DRCR

SINGLE-CHIP, LI-ION AND LI-POL CHARGER IC
TI

BQ24080DRCT

SINGLE-CHIP, LI-ION AND LI-POL CHARGER IC
TI

BQ24080DRCTG4

1-cell Li-Ion Charger w/ 1-A FET, AC Present and Charge Enable 10-VSON -40 to 85
TI

BQ24081

bq24081EVM 1-A Single-Chip Li-Ion and Li-Pol Charge Management IC Evaluation Module
TI