BQ2057DGKG4 [TI]

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER; 高级线性充电管理IC,适用于单节和两节锂离子和锂聚合物
BQ2057DGKG4
型号: BQ2057DGKG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
高级线性充电管理IC,适用于单节和两节锂离子和锂聚合物

电源电路 电源管理电路 光电二极管
文件: 总30页 (文件大小:1041K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
ꢑꢓ ꢎ ꢔ ꢊꢍꢊꢓ ꢎꢔ ꢎꢍꢈ ꢐꢇ  
ꢐ ꢙꢔꢘꢐ ꢖ ꢍ ꢊꢍꢋ ꢏ ꢐꢈ ꢒꢐ ꢙꢔꢘꢚ ꢖ ꢏꢛꢔ ꢎꢑ  
FEATURES  
DESCRIPTION  
D
D
D
D
D
Ideal for Single (4.1 V or 4.2 V) and Dual-Cell  
(8.2 V or 8.4 V) Li-Ion or Li-Pol Packs  
The BENCHMARQ bq2057 series advanced  
Lithium-Ion (Li-Ion) and Lithium-Polymer (Li-Pol) linear  
charge-management ICs are designed for cost-  
sensitive and compact portable electronics. They  
combine high-accuracy current and voltage regulation,  
battery conditioning, temperature monitoring, charge  
termination, charge-status indication, and AutoComp  
charge-rate compensation in a single 8-pin IC. MSOP,  
TSSOP, and SOIC package options are offered to fit a  
wide range of end applications.  
Requires Small Number of External  
Components  
0.3 V Dropout Voltage for Minimizing Heat  
Dissipation  
Better Than 1% Voltage Regulation Accuracy  
With Preset Voltages  
AutoCompt Dynamic Compensation of  
Battery Pack’s Internal Impedance to Reduce  
Charge Time  
The bq2057 continuously measures battery  
temperature using an external thermistor. For safety,  
the bq2057 inhibits charge until the battery temperature  
is within user-defined thresholds. The bq2057 then  
charges the battery in three phases: conditioning,  
constant current, and constant voltage. If the battery  
D
D
Optional Cell-Temperature Monitoring Before  
and During Charge  
Integrated Voltage and Current Regulation  
With Programmable Charge-Current and High-  
or Low-Side Current Sensing  
voltage is below the low-voltage threshold, V  
, the  
(min)  
D
D
Integrated Cell Conditioning for Reviving  
Deeply Discharged Cells and Minimizing Heat  
Dissipation During Initial Stage Of Charge  
bq2057 precharges using a low current to condition the  
battery. The conditioning charge rate is approximately  
10% of the regulation current. The conditioning current  
also minimizes heat dissipation in the external pass-  
element during the initial stage of the charge. After  
conditioning, the bq2057 applies a constant current to  
the battery. An external sense-resistor sets the current.  
The sense-resistor can be on either the high or low side  
of the battery without additional components. The  
constant-current phase continues until the battery  
reaches the charge-regulation voltage.  
Charge Status Output for Single or Dual Led  
or Host Processor Interface  
D
D
D
Automatic Battery-Recharge Feature  
Charge Termination by Minimum Current  
Automatic Low-Power Sleep Mode When V  
CC  
Is Removed  
D
EVMs Available for Quick Evaluation  
D
Packaging: 8-Pin SOIC, 8-Pin TSSOP, 8-Pin  
MSOP  
bq2057xSN or bq2057xTS  
SOIC (SN) or TSSOP (TS) PACKAGE  
(TOP VIEW)  
bq2057xDGK  
MSOP (DGK) PACKAGE  
(TOP VIEW)  
COMP  
CC  
BAT  
SNS  
BAT  
VCC  
TS  
8
7
6
5
VCC  
TS  
8
7
6
5
1
2
3
4
1
2
3
4
SNS  
COMP  
CC  
VSS  
STAT  
VSS  
STAT  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
AutoComp is a trademark of Texas Instruments.  
ꢈꢧ  
Copyright 2002, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢰ ꢟꢞ ꢢ ꢩꢩ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢫ  
1
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
DESCRIPTION (continued)  
The bq2057 then begins the constant-voltage phase. The accuracy of the voltage regulation is better than 1%  
over the operating-temperature and supply-voltage ranges. For single and dual cells, the bq2057 is offered in  
four fixed-voltage versions: 4.1 V, 4.2 V, 8.2 V, and 8.4 V. Charge stops when the current tapers to the charge  
termination threshold, I  
. The bq2057 automatically restarts the charge if the battery voltage falls below  
(TERM)  
the V  
threshold.  
(RCH)  
The designer also may use the AutoComp feature to reduce charging time. This proprietary technique allows  
safe and dynamic compensation for the internal impedance of the battery pack during charge.  
AVAILABLE OPTIONS  
PACKAGE  
MSOP  
T
CHARGE REGULATION  
VOLTAGE  
SOIC  
(SN)  
TSSOP  
(TS)  
A
(DGK)  
bq2057DGK  
bq2057CDGK  
4.1 V  
4.2 V  
8.2 V  
8.4 V  
Not available  
bq2057CSN  
Not available  
bq2057WSN  
bq2057TS  
bq2057CTS  
bq2057TTS  
bq2057WTS  
20°C to 70°C  
Not available  
Note the difference in pinout for this package.  
2
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
function block diagram  
VCC  
V
Internal Reference  
CC  
_
+
DONE  
Sleep Mode  
_
+
V-Control  
I-Control  
BAT  
CC  
Voltage Regulation  
COMP  
G
(comp)  
+
_
Battery  
Recharge  
V
CC  
+
_
V
CC  
Battery  
Conditioning  
Control  
Block  
STAT  
_
+
TS  
TS2 Trip  
_
+
TS1 Trip  
I-Control  
_
0.5 V  
High/Low SNS Set  
CC  
+
SNS  
+
_
V
−V  
CC (SNS)  
Current Regulation  
Charge Termination  
V
−V  
SS (SNS)  
+
_
VSS  
3
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
Terminal Functions  
TERMINAL  
NO.  
I/O  
DESCRIPTION  
NAME  
SOIC (SN) and  
TSSOP (TS)  
MSOP  
(DGK)  
BAT  
2
7
8
1
5
4
3
6
8
5
6
7
3
2
1
4
I
O
I
Voltage sense input  
Charge control output  
CC  
COMP  
SNS  
STAT  
TS  
Charge-rate compensation input (AutoComp)  
Current sense input  
I
O
I
Charge status output  
Temperature sense input  
Supply voltage  
VCC  
VSS  
I
Ground  
detailed description  
current-sense input  
Battery current is sensed via the voltage developed on this pin by an external sense resistor. The external  
resistor can be placed on either the high or low side of the battery. (See schematics for details.)  
battery-voltage input  
Voltage sense-input tied directly to the positive side of the battery.  
temperature sense input  
Input for an external battery-temperature monitoring circuit. Connecting this input to VCC/2 disables this feature.  
charge-status output  
3-state indication of charge in progress, charge complete, and temperature fault or sleep mode.  
charge-control output  
Source-follower output that drives an external pass-transistor (PNP or P-channel MOSFET) for current and  
voltage regulation.  
charge-rate compensation input  
Sets the charge-rate compensation level. The voltage-regulation output may be programmed to vary as a  
function of the charge current delivered to the battery.  
supply voltage input  
Power supply input and current reference for high-side sensing configuration.  
4
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage (V  
with respect to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 to +18 V  
CC  
Input voltage, SNS, BAT, TS, COMP (all with respect to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V +0.3 V  
Sink current (STAT pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Source current (STAT pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Output current (CC pin) not to exceed P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
CC  
D
D
D
Total power dissipation, P (at 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW  
D
Operating free-air temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20°C to 70°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
stg  
Lead temperature (soldering, 10 s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
T
25°C  
T = 70°C  
A
POWER RATING  
A
PACKAGE  
ABOVE T = 25°C  
POWER RATING  
A
DGK  
3.4 mW/°C  
424 mW  
271 mW  
recommended operating conditions  
MIN  
MAX  
15  
UNIT  
V
Supply voltage, V  
CC  
4.5  
Operating free-air temperature range, T  
−20  
70  
°C  
A
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
V
V
Current  
V > V  
CC CC(min)  
, Excluding external loads  
2
4
mA  
(VCC)  
CC  
For bq2057 and bq2957C,  
V  
3
6
V
(BAT)  
,
V
(BAT)  
– V  
0.8 V  
0.8 V  
(min)  
CC  
I
Sleep current  
µA  
(VCCS)  
CC  
For bq2057T and bq2957W,  
10  
V
(BAT)  
V  
,
V
(BAT)  
– V  
(min)  
CC  
I
I
I
I
Input bias current on BAT pin  
Input bias current on SNS pin  
Input bias current on TS pin  
Input bias current on COMP pin  
V
= V  
1
5
5
5
µA  
µA  
µA  
µA  
IB(BAT)  
IB(SNS)  
IB(TS)  
(BAT)  
(REG)  
V(  
= 5 V  
= 5 V  
SNS)  
V
V
(TS)  
= 5 V  
IB(COMP)  
(COMP)  
BATTERY VOLTAGE REGULATION  
bq2057, See Notes 1, 2, 3  
4.059  
4.158  
8.119  
8.317  
4.10 4.141  
4.20 4.242  
8.20 8.282  
8.40 8.484  
bq2057C, See Notes 1, 2, 3  
bq2057T, See Notes 1, 2, 3  
bq2057W, See Notes 1, 2, 3  
V
Output voltage  
V
O(REG)  
NOTES: 1. For high-side current sensing configuration  
2. For low-side current sensing configuration, the tolerance is 1% for T = 25°C and 1.2% for −20°C T 70°C  
A
A
3.  
V +0.3 V V  
(BAT) CC  
V  
CC(max)  
5
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT REGULATION  
bq2057 and bq2057C,  
High-side current sensing configuration  
95.4  
113.6  
100  
105  
125  
110  
130  
115.5  
137.5  
121  
bq2057T and bq2057W,  
High-side current sensing configuration  
Current regulation  
threshold  
V
mV  
(SNS)  
bq2057 and bq2057C,  
Low-side current sensing configuration  
bq2057T and bq2057W,  
Low-side current sensing configuration  
118.1  
143  
CHARGE TERMINATION DETECTION  
Charge termination Voltage at pin SNS, relative to V  
for high-side  
CC  
sensing, and to Vss for low-side sensing,  
I
current detect  
threshold  
−24  
−14  
−4  
mV  
(TERM)  
0°C T 50°C  
A
TEMPERATURE COMPARATOR  
Lower temperature  
threshold  
V
29.1  
58.3  
30  
60  
30.9  
61.8  
(TS1)  
(TS2)  
TS pin voltage  
%V  
CC  
Upper temperature  
threshold  
V
PRECHARGE COMPARATOR  
bq2057  
2.94  
3.04  
5.98  
6.18  
3
3.1  
6.1  
6.3  
3.06  
3.16  
6.22  
6.43  
bq2057C  
bq2057T  
bq2057W  
Precharge  
threshold  
V
(min)  
V
PRECHARGE CURRENT REGULATION  
Voltage at pin SNS, relative to V  
for high-side  
CC  
for low-side sensing,  
sensing, and to V  
SS  
13  
13  
mV  
mV  
Precharge current  
regulation  
0°C T 50°C  
A
I
(PRECHG)  
Voltage at pin SNS, relative to V  
for high-side  
= 5 V  
CC  
3
22  
sensing, 0°C T 50°C, V  
CC  
A
V
RCH  
COMPARATOR (Battery Recharge Threshold)  
V
V
V
V
V
V
O(REG)  
98 mV  
O(REG)  
100 mV  
O(REG)  
102 mV  
bq2057 and bq2057C  
Recharge  
V
V
V/V  
V
(RCH)  
threshold  
O(REG)  
204 mV  
O(REG)  
O(REG)  
bq2057T and bq2057W  
196 mV  
200 mV  
CHARGE-RATE COMPENSATION (AutoComp)  
V
+0.3 VV V  
, bq2057, bq2057C,  
(BAT) CC CC(max)  
1.87  
2.09  
2.2  
2.4  
2.53  
2.76  
bq2057T, bq2057W  
G
AutoComp gain  
(COMP)  
V
+0.3 V V  
V  
, bq2057T and  
CC(max)  
(BAT) CC  
bq2057W in low-side sensing configuration  
STAT PIN  
Output (low)  
voltage  
V
I
I
= 10 mA  
= 5 mA  
0.7  
OL(STAT)  
OH(STAT)  
OL  
Output (high)  
voltage  
V
V
CC  
-0.5  
5
OH  
CC PIN  
V
Output low voltage  
Sink current  
I
= 5 mA (sink)  
1.5  
40  
V
OL(CC)  
O(CC)  
I
Not to exceed power rating specification (P )  
D
mA  
O(CC)  
6
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Q1  
FZT788B  
R
0.2 Ω  
SNS  
PACK+  
DC+  
C1  
0.1 µF  
V
CC  
R1  
PACK−  
1 kΩ  
NTC  
V
CC  
bq2057  
CC  
COMP  
R
T1  
SNS  
VCC  
VSS  
BAT  
TS  
TEMP  
C2  
STAT  
0.1 µF  
Battery  
Pack  
D1  
GND  
R
T2  
R2  
2 kΩ  
Figure 1. Low Dropout Single- or Two-Cell Li-Ion/Li-Pol Charger  
functional description  
The bq2057 is an advanced linear charge controller for single or two-cell Li-Ion or Li-Pol applications. Figure 1  
shows the schematic of charger using a PNP pass transistor. Figure 2 is an operational state diagram, and  
Figure 3 is a typical charge profile. Figure 4 shows the schematic of a charger using P-channel MOSFET.  
7
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
POR  
Sleep Mode  
V
> V  
)
CC  
(BAT  
Indicate SLEEP  
MODE  
(STAT = Hi-Z)  
No  
Checked at All  
Times  
Yes  
Suspend Charge  
TS Pin  
in TS1 to TS2  
Range  
Indicate CHARGE  
SUSPEND  
(STAT = Hi-Z)  
No  
Yes  
Regulate  
(PRECHG)  
I
V
<V  
(BAT) (min)  
Yes  
Indicate  
Charge In-Progress  
(STAT = High)  
Suspend Charge  
No  
Indicate CHARGE  
SUSPEND  
(STAT = Hi-Z)  
TS Pin  
in TS1 to TS2  
Range  
No  
Regulate  
Current or Voltage  
Indicate  
Charge In-Progress  
(STAT = High)  
Yes  
TS Pin  
in TS1 to TS2  
Range  
V
< V  
(min)  
No  
Suspend Charge  
(BAT)  
No  
TS Pin  
in TS1 to TS2  
Range  
Indicate CHARGE  
SUSPEND  
No  
(STAT = Hi-Z)  
Yes  
TS Pin  
in TS1 to TS2  
Range  
Yes  
Yes  
No  
V
< V  
(min)  
Yes  
(BAT)  
No  
Terminate Charge  
I
Indicate CHARGE  
Done  
(TERM)  
Detected  
Yes  
No  
Yes  
V
< V  
(RCH)  
(BAT)  
(STAT = Low)  
Yes  
Figure 2. Operation Flowchart  
8
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Preconditioning  
Phase  
Current Regulation  
Phase  
Voltage Regulation and Charge  
Termination Phase  
Regulation Voltage  
Regulation Current  
Minimum Charge  
Voltage  
Preconditioning  
and Taper Detect  
Figure 3. Typical Charge Profile  
qualification and precharge  
When power is applied, the bq2057 starts a charge-cycle if a battery is already present or when a battery is  
inserted. Charge qualification is based on battery temperature and voltage. The bq2057 suspends charge if the  
battery temperature is outside the V  
to V  
range and suspends charge until the battery temperature is  
(TS1)  
(TS2)  
within the allowed range. The bq2057 also checks the battery voltage. If the battery voltage is below the  
precharge threshold V , the bq2057 uses precharge to condition the battery. The conditioning charge rate  
(min)  
I
is set at approximately 10% of the regulation current. The conditioning current also minimizes heat  
(PRECHG)  
dissipation in the external pass-element during the initial stage of charge. See Figure 3 for a typical  
charge-profile.  
9
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
Q1  
SI6475DQ  
R
0.2 Ω  
SNS  
D1  
PACK+  
PACK−  
Battery  
Pack  
DC+  
C2  
0.1 µF  
R2  
1 kΩ  
NTC  
U1  
bq2057  
R
T1  
CC  
COMP  
SNS  
VCC  
VSS  
BAT  
TS  
TEMP  
STAT  
R4  
R
T2  
511 Ω  
U2  
C1  
0.1 µF  
R5  
1 kΩ  
CMD67−  
22SRUC  
R3  
1 kΩ  
GND  
Figure 4. 0.5-A Charger Using P-Channel MOSFET  
current regulation phase  
The bq2057 regulates current while the battery-pack voltage is less than the regulation voltage, V  
. The  
, in series  
O(REG)  
bq2057 monitors charge current at the SNS input by the voltage drop across a sense-resistor, R  
SNS  
with the battery pack. In high-side current sensing configuration (Figure 5), R  
is between the VCC and SNS  
SNS  
pins, and in low-side sensing (Figure 6) the R  
is between VSS (battery negative) and SNS (charger ground)  
SNS  
pins. Charge-current feedback, applied through pin SNS, maintains a voltage of V  
resistor. The following formula calculates the value of the sense resistor:  
across the current sense  
(SNS)  
(1)  
V
(SNS)  
R
+
SNS  
I
O(REG)  
is the desired charging current.  
Where I  
O(REG)  
10  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
DC+  
DC+  
R
SNS  
BAT+  
BAT+  
bq2057  
bq2057  
SNS  
COMP  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
BAT  
VCC  
TS  
CC  
VSS  
STAT  
STAT  
DC−  
BAT−  
DC−  
R
SNS  
BAT−  
Figure 5. High-Side Current Sensing  
Figure 6. Low-Side Current Sensing  
voltage regulation phase  
The voltage regulation feedback is through the BAT pin. This input is tied directly to the positive side of the  
battery pack. The bq2057 monitors the battery-pack voltage between the BAT and VSS pins. The bq2057 is  
offered in four fixed-voltage versions: 4.1 V, 4.2 V, 8.2 V and 8.4 V.  
Other regulation voltages can be achieved by adding a voltage divider between the positive and negative  
terminals of the battery pack and using bq2057T or bq2057W. The voltage divider presents scaled battery-pack  
voltage to BAT input. (See Figure 7 and Figure 8.) The resistor values RB1 and RB2 for the voltage divider are  
calculated by the following equation:  
(2)  
V
R
R
(CELL)  
B1  
B2  
+
N   
–1  
ǒ Ǔ  
V
O(REG)  
Where:  
N = Number of cells in series  
V
= Desired regulation voltage per cell  
(CELL)  
11  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
DC+  
DC+  
BAT+  
BAT−  
R
SNS  
BAT+  
R
R
B1  
B2  
bq2057  
R
R
B1  
SNS  
bq2057  
COMP  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
B2  
BAT  
VCC  
TS  
CC  
VSS  
BAT−  
STAT  
R
SNS  
STAT  
DC−  
DC−  
Figure 7. Optional Voltage Divider for  
Nonstandard Regulation Voltage,  
(High-Side Current Sensing)  
Figure 8. Optional Voltage Divider for  
Nonstandard Regulation Voltage,  
(Low-Side Current Sensing)  
charge termination and recharge  
The bq2057 monitors the charging current during the voltage-regulation phase. The bq2057 declares a done  
condition and terminates charge when the current tapers off to the charge termination threshold, I . A new  
(TERM)  
charge cycle begins when the battery voltage falls below the V  
threshold.  
(RCH)  
battery temperature monitoring  
The bq2057 continuously monitors temperature by measuring the voltage between the TS and VSS pins. A  
negative- or a positive-temperature coefficient thermistor (NTC, PTC) and an external voltage divider typically  
develop this voltage. (See Figure 9.) The bq2057 compares this voltage against its internal V  
thresholds to determine if charging is allowed. (See Figure 10.) The temperature sensing circuit is immune to  
and V  
(TS1)  
(TS2)  
any fluctuation in V , since both the external voltage divider and the internal thresholds (V  
are referenced to VCC.  
and V  
)
CC  
(TS1)  
(TS2)  
The resistor values of R  
and R  
are calculated by the following equations:  
(T1)  
(T2)  
For NTC Thermistors  
(3)  
(4)  
5   R  
  R  
* R  
TH  
TC  
TC  
TH  
R
R
+
+
T1  
T2  
ǒ
Ǔ
3   R  
5   R  
  R  
TH  
TC  
ǒ
Ǔǒ7   R  
Ǔ
ƫ
ƪ 2   R  
TC  
TH  
12  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
battery temperature monitoring (continued)  
For PTC Thermistors  
(5)  
(6)  
5   R  
  R  
* R  
TH  
TH  
TC  
TC  
R
R
+
+
T1  
T2  
ǒ
Ǔ
3   R  
5   R  
  R  
TH  
TC  
ǒ
Ǔǒ7   R  
Ǔ
ƫ
ƪ 2   R  
TH  
TC  
Where R  
is the cold temperature resistance and R  
is the hot temperature resistance of thermistor, as  
(TC)  
(TH)  
specified by the thermistor manufacturer.  
R
the V  
or R can be omitted If only one temperature (hot or cold) setting is required. Applying a voltage between  
T1  
T2  
and V  
thresholds to pin TS disables the temperature-sensing feature.  
(TS1)  
(TS2)  
DC+  
DC+  
R
SNS  
BAT+  
BAT+  
bq2057  
bq2057  
R
T1  
SNS  
SNS  
COMP  
COMP  
BAT  
VCC  
TS  
BAT  
VCC  
TS  
CC  
VSS  
CC  
VSS  
DC−  
STAT  
STAT  
R
R
T1  
T2  
DC−  
R
Thermistor  
BAT−  
T2  
BAT−  
Thermistor  
R
SNS  
High-Side Current Sensing  
Low-Side Current Sensing  
Figure 9. Temperature Sensing Circuits  
V
CC  
Temperature Fault  
V
V
(TS2)  
Normal Temperature Range  
(TS1)  
Temperature Fault  
V
SS  
Figure 10. bq2057 TS Input Thresholds  
13  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
charge inhibit function  
The TS pin can be used as charge-inhibit input. The user can inhibit charge by connecting the TS pin to VCC  
or VSS (or any level outside the V to V thresholds). Applying a voltage between the V and V  
(TS2)  
(TS1)  
(TS2)  
(TS1)  
thresholds to pin TS returns the charger to normal operation.  
charge status indication  
The bq2057 reports the status of the charger on the 3-state STAT pin. The following table summarized the  
operation of the STAT pin.  
CONDITION  
STAT PIN  
High  
Battery conditioning and charging  
Charge complete (Done)  
Low  
Temperature fault or sleep mode  
Hi-Z  
The STAT pin can be used to drive a single LED (Figure 1), dual-chip LEDs (Figure 4) or for interface to a host  
or system processor (Figure 11). When interfacing the bq2057 to a processor, the user can use an output port,  
as shown in Figure 11, to recognize the high-Z state of the STAT pin. In this configuration, the user needs to  
read the input pin, toggle the output port and read the STAT pin again. In a high-Z condition, the input port always  
matches the signal level on the output port.  
Host  
Processor  
bq2057CTS  
SNS  
COMP  
BAT  
VCC  
TS  
OUT  
CC  
VSS  
IN  
STAT  
Figure 11. Interfacing the bq2057 to a Host Processor  
low-power sleep mode  
The bq2057 enters the sleep mode if the VCC falls below the voltage at the BAT input. This feature prevents  
draining the battery pack during the absence of VCC.  
14  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting an external pass-transistor  
The bq2057 is designed to work with both PNP transistor and P-channel MOSFET. The device should be chosen  
to handle the required power dissipation, given the circuit parameters, PCB layout and heat sink configuration.  
The following examples illustrate the design process for either device:  
PNP transistor:  
Selection steps for a PNP bipolar transistor: Example: V = 4.5 V, I  
= 1 A, 4.2-V single-cell Li-Ion (bq2057C).  
I
(REG)  
V is the input voltage to the charger and I  
is the desired charge current (see Figure 1).  
I
(REG)  
1. Determine the maximum power dissipation, P , in the transistor.  
D
The worst case power dissipation happens when the cell voltage, V  
, is at its lowest (typically 3 V at the  
(BAT)  
beginning of current regulation phase) and V is at its maximum.  
I
Where V  
is the voltage drop across the current sense resistor.  
CS  
P = (V − V  
– V ) × IREG  
(BAT)  
(7)  
D
I
CS  
P = (4.5 – 0.1 − 3) × 1 A  
D
P = 1.4 W  
D
2. Determine the package size needed in order to keep the junction temperature below the manufacturer’s  
recommended value, T  
. Calculate the total theta, θ(°C/W), needed.  
(J)max  
(8)  
ǒT(J)max  
150–40  
1.4  
Ǔ
* T  
A(max)  
θ
+
+
JC  
P
D
(
)
θ
θ
JC  
JC  
+ 78°CńW  
Now choose a device package with a theta at least 10% below this value to account for additional thetas  
other than the device. A SOT223 package, for instance, has typically a theta of 60°C/W.  
3. Select a collector-emitter voltage, V  
be adequate in this example.  
, rating greater than the maximum input voltage. A 15-V device will  
(CE)  
4. Select a device that has at least 50% higher drain current I rating than the desired charge current I  
.
C
(REG)  
5. Using the following equation, calculate the minimum beta (β or h ) needed:  
FE  
(9)  
I
CMAX  
b
+
+
min  
I
B
1
b
min  
min  
0.035  
b
+ 28  
where I  
is the maximum collector current (in this case same as I  
), and I is the base current  
max(C))  
(REG) B  
(chosen to be 35 mA in this example).  
NOTE:  
The beta of a transistor drops off by a factor of 3 over temperature and also drops off with load.  
Therefore, note the beta of device at I and the minimum ambient temperature when choosing  
(REG)  
the device. This beta should be larger than the minimum required beta.  
Now choose a PNP transistor that is rated for V  
SOT223 package.  
15 V, θ ≤ 78°C/W, I 1.5 A, β ≥ 28 and that is in a  
min  
(CE)  
JC  
C
15  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting an external pass-transistor (continued)  
P-channel MOSFET:  
Selection steps for a P-channel MOSFET: Example: V = 5.5 V, I  
= 500 mA, 4.2-V single-cell Li−Ion  
I
(REG)  
(bq2057C). V is the input voltage to the charger and I  
is the desired charge current. (See Figure 4.)  
I
(REG)  
1. Determine the maximum power dissipation, P , in the transistor.  
D
The worst case power dissipation happens when the cell voltage, V  
, is at its lowest (typically 3 V at  
(BAT)  
the beginning of current regulation phase) and V is at its maximum.  
I
Where V is the forward voltage drop across the reverse-blocking diode (if one is used), and V  
D
voltage drop across the current sense resistor.  
is the  
(10)  
CS  
P = (V – V − V  
– V  
) × I  
D
I
D
(CS)  
(BAT) (REG)  
P = (5.5 – 0.4 – 0.1 −3) × 0.5 A  
D
P = 1 W  
D
2. Determine the package size needed in order to keep the junction temperature below the manufacturer’s  
recommended value, T . Calculate the total theta, θ(°C/W), needed.  
JMAX  
(11)  
ǒTmax(J) A(max)  
150–40  
1
Ǔ
–T  
θ
+
+
JC  
P
D
(
)
θ
θ
JC  
JC  
+ 110°CńW  
Now choose a device package with a theta at least 10% below this value to account for additional thetas  
other than the device. A TSSOP-8 package, for instance, has typically a theta of 70°C/W.  
3. Select a drain-source voltage, V  
adequate in this example.  
, rating greater than the maximum input voltage. A 12 V device will be  
(DS)  
4. Select a device that has at least 50% higher drain current (I ) rating than the desired charge current I  
D
.
(REG)  
5. Verify that the available drive is large enough to supply the desired charge current.  
V
V
V
= (V +V  
+ V  
) − V  
I
(12)  
(GS)  
(GS)  
(GS)  
D
(CS)  
OL(CC)  
= (0.4 + 0.1 + 1.5) – 5.5  
= −3.5  
Where V  
(if one is used), and V  
output low voltage specification for the bq2057.  
is the gate-to-source voltage, V is the forward voltage drop across the reverse-blocking diode  
D
(GS)  
is the voltage drop across the current sense resistor, and V  
is the CC pin  
CS  
OL(CC)  
Select a MOSFET with gate threshold voltage, V  
, rating less than the calculated V  
.
(GSth)  
(GS)  
Now choose a P-channel MOSFET transistor that is rated for VDS −15 V, θ  
(GSth)  
110°C/W, I 1 A,  
D
JC  
V
−3.5 V and in a TSSOP package.  
16  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
selecting input capacitor  
In most applications, all that is needed is a high-frequency decoupling capacitor. A 0.1 µF ceramic, placed in  
proximity to VCC and VSS pins, works well. The bq2057 works with both regulated and unregulated external  
dc supplies. If a non-regulated supply is chosen, the supply unit should have enough capacitance to hold up  
the supply voltage to the minimum required input voltage at maximum load. If not, more capacitance must be  
added to the input of the charger.  
selecting output capacitor  
The bq2057 does not require any output capacitor for loop stability. The user can add output capacitance in order  
to control the output voltage when a battery is not present. The charger quickly charges the output capacitor  
to the regulation voltage, but the output voltage decays slowly, because of the low leakage current on the BAT  
pin, down to the recharge threshold. Addition of a 0.1µF ceramic capacitor, for instance, results in a 100 mV(pp)  
ripple waveform, with an approximate frequency of 25Hz. Higher capacitor values can be used if a lower  
frequency is desired.  
automatic charge-rate compensation  
To reduce charging time, the bq2057 uses the proprietary AutoComp technique to compensate safely for  
internal impedance of the battery pack. The AutoComp feature is disabled by connecting the COMP pin to VCC  
in high-side current-sensing configuration, and to VSS in low-side current-sensing configuration. The COMP  
pin must not be left floating.  
Figure 12 outlines the major components of a single-cell Li-Ion battery pack. The Li-Ion battery pack consists  
of a cell, protection circuit, fuse, connector, current sense-resistors, and some wiring. Each of these components  
contains some resistance. Total impedance of the battery pack is the sum of the minimum resistances of all  
battery-pack components. Using the minimum resistance values reduces the odds for overcompensating.  
Overcompensating may activate the safety circuit of the battery pack.  
BAT+  
Wire  
Fuse  
Terminal  
Cell  
Protection  
Controller  
BAT−  
Wire  
Wire  
Wire  
Terminal  
Discharge  
Charge  
Figure 12. Typical Components of a Single-Cell Li-Ion Pack  
Compensation is achieved through input pin COMP (Figure 13). A portion of the current-sense voltage,  
presented through this pin, is scaled by a factor of G  
and summed with the regulation threshold, V  
.
(COMP)  
O(REG)  
This process increases the output voltage to compensate for the battery pack’s internal impedance and for  
undesired voltage drops in the circuit.  
17  
www.ti.com  
ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢇ  
ꢀ ꢁ ꢂꢃ ꢄꢅ ꢈꢆ ꢀ ꢁ ꢂ ꢃꢄ ꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
automatic charge-rate compensation (continued)  
AutoComp setup requires the following information:  
D
D
Total impedance of battery pack (Z  
)
(PACK)  
Maximum charging current (I  
(REG)  
)
The voltage drop across the internal impedance of battery pack, V , can then be calculated using the following  
(Z)  
equation:  
V
= Z  
× I  
(PACK) (REG)  
(13)  
(14)  
(Z)  
The required compensation is then calculated using the following equations:  
V
(Z)  
V
+
(COMP)  
G
(COMP)  
O(REG)  
) ǒG(COMP)  
Ǔ
V
+ V  
  V  
(PACK)  
(COMP  
Where V  
is the voltage on COMP pin. This voltage is referenced to VCC in high-side current sensing  
(COMP)  
configuration and to VSS for low-side sensing. V  
is the voltage across the battery pack.  
(PACK)  
The values of R  
and R can be calculated using the following equation:  
(COMP2)  
(COMP1)  
(15)  
V
R
(COMP)  
COMP2  
+
V
R
) R  
(SNS)  
COMP1  
COMP2  
DC+  
BAT+  
DC+  
R
COMP2  
BAT+  
R
COMP1  
bq2057  
bq2057  
SNS  
COMP  
R
SNS  
SNS  
COMP  
BAT  
VCC  
TS  
CC  
VSS  
BAT  
VCC  
TS  
CC  
VSS  
DC−  
STAT  
STAT  
DC−  
R
COMP2  
R
R
SNS  
COMP1  
BAT−  
High-Side Current Sensing  
Low-Side Current Sensing  
Figure 13. AutoComp Circuits  
18  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
APPLICATION INFORMATION  
automatic charge-rate compensation (continued)  
The following example illustrates these calculations:  
Assume Z  
V
= 100 m, I  
= 500 mA, high-side current sensing bq2057C  
(REG)  
(PACK)  
(16)  
(17)  
+ Z  
  I  
(Z)  
(PACK)  
(REG)  
V
+ 0.1   0.5  
= 50 mV  
(Z)  
V
(Z)  
V
(Z)  
V
+
(COMP)  
(COMP)  
G
(COMP)  
0.05  
2.2  
V
+
V
= 22.7 mV  
(COMP)  
Let R  
= 10 kΩ  
COMP2  
(18)  
  ǒV(SNS)  
Ǔ
R
* V  
COMP2  
(COMP)  
)
R
+
COMP1  
V
(COMP)  
(
105 mV * 22.7 mV  
R
+ 10k   
COMP1  
22.7 mV  
R
+ 36.25 kW  
COMP1  
Use the closest standard value (36.0 k) for R  
COMP1  
19  
www.ti.com  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀ ꢁꢂ ꢃ ꢄ ꢅ ꢈꢆ ꢀꢁ ꢂꢃ ꢄꢅ ꢉ  
SLUS025F − MAY 2001 − REVISED JULY 2002  
MECHANICAL DATA  
8−Pin SOIC Narrow (SN)  
(
)
8−Pin SN 0.150” SOIC  
Inches  
Millimeters  
Min.  
Max.  
Min.  
Max.  
Dimension  
A
A1  
B
0.060  
0.004  
0.013  
0.007  
0.185  
0.150  
0.045  
0.225  
0.015  
0.070  
0.010  
0.020  
0.010  
0.200  
0.160  
0.055  
0.245  
0.035  
1.52  
0.10  
0.33  
0.18  
4.70  
3.81  
1.14  
5.72  
0.38  
1.78  
0.25  
0.51  
0.25  
5.08  
4.06  
1.40  
6.22  
0.89  
C
D
E
e
H
L
TS: 8−Pin TSSOP  
Inches  
Millimeters  
Dimension  
Min.  
Max.  
Min.  
Max.  
A
A1  
B
-
0.043  
0.006  
0.012  
0.007  
0.122  
0.176  
-
1.10  
0.15  
0.30  
0.18  
3.10  
4.48  
0.002  
0.007  
0.004  
0.114  
0.169  
0.05  
0.18  
0.09  
2.90  
4.30  
C
D
E
e
0.0256BSC  
0.65BSC  
H
0.246  
0.256  
6.25  
6.50  
Notes:  
1.  
Controlling dimension: millimeters. Inches shown for reference only.  
2
3
’D’ and ’E’ do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0,15 mm per side  
Each lead centerline shall be located within 0,10 mm of its exact true position.  
4
5
Leads shall be coplanar within 0,08 mm at the seating plane.  
Dimension ’B’ does not include dambar protrusion. The dambar protrusion(s) shall not cause the lead width  
to exceed ’B’ maximum by more than 0,08 mm.  
6
7
Dimension applies to the flat section of the lead between 0,10 mm and 0,25 mm from the lead tip.  
’A1’ is defined as the distance from the seating plane to the lowest point of the package body (base plane).  
20  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
BQ2057CDGK  
BQ2057CDGKG4  
BQ2057CDGKR  
BQ2057CDGKRG4  
BQ2057CSN  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAUAG  
CU NIPDAUAG  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
2057C  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGK  
DGK  
DGK  
D
80  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057C  
2057  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BQ2057CSNG4  
BQ2057CSNTR  
BQ2057CSNTRG4  
BQ2057CTS  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
150  
150  
2000  
2000  
80  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
VSSOP  
VSSOP  
SOIC  
PW  
PW  
PW  
PW  
DGK  
DGK  
D
Green (RoHS  
& no Sb/Br)  
BQ2057CTSG4  
BQ2057CTSTR  
BQ2057CTSTRG4  
BQ2057DGK  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BQ2057DGKG4  
BQ2057SN  
80  
Green (RoHS  
& no Sb/Br)  
2057  
75  
Green (RoHS  
& no Sb/Br)  
2057  
BQ2057SNG4  
BQ2057TS  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
2057  
TSSOP  
PW  
150  
Green (RoHS  
& no Sb/Br)  
2057  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
-20 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
BQ2057TSG4  
BQ2057TSN  
ACTIVE  
TSSOP  
SOIC  
PW  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
150  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
2057  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
75  
Green (RoHS  
& no Sb/Br)  
2057T  
2057T  
2057T  
2057T  
2057T  
2057T  
2057W  
2057W  
2057W  
2057W  
2057W  
2057W  
2057W  
2057W  
BQ2057TSNG4  
BQ2057TTS  
SOIC  
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
150  
150  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
BQ2057TTSG4  
BQ2057TTSTR  
BQ2057TTSTRG4  
BQ2057WSN  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
BQ2057WSNG4  
BQ2057WSNTR  
BQ2057WSNTRG4  
BQ2057WTS  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
150  
150  
2000  
2000  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
Green (RoHS  
& no Sb/Br)  
BQ2057WTSG4  
BQ2057WTSTR  
BQ2057WTSTRG4  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2013  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ2057CDGKR  
BQ2057CSNTR  
BQ2057CTSTR  
BQ2057TTSTR  
BQ2057WSNTR  
BQ2057WTSTR  
VSSOP  
SOIC  
DGK  
D
8
8
8
8
8
8
2500  
2500  
2000  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
6.4  
7.0  
7.0  
6.4  
7.0  
3.4  
5.2  
3.6  
3.6  
5.2  
3.6  
1.4  
2.1  
1.6  
1.6  
2.1  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
TSSOP  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ2057CDGKR  
BQ2057CSNTR  
BQ2057CTSTR  
BQ2057TTSTR  
BQ2057WSNTR  
BQ2057WTSTR  
VSSOP  
SOIC  
DGK  
D
8
8
8
8
8
8
2500  
2500  
2000  
2000  
2500  
2000  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
TSSOP  
PW  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

BQ2057DGKR

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057DGKRG4

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, GREEN, PLASTIC, MSOP-8
TI

BQ2057PDGK

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057PDGKG4

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, GREEN, PLASTIC, MSOP-8, Power Management Circuit
TI

BQ2057PDGKR

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057PDGKRG4

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, GREEN, PLASTIC, MSOP-8
TI

BQ2057PN

Industrial Control IC
ETC

BQ2057SN

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057SNG4

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE-AND TWO-CELL LITHIUM-ION AND LITHIUM-POLYMER
TI

BQ2057SNTR

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057T

ADVANCED LINEAR CHARGE MANAGEMENT IC FOR SINGLE AND TWO CELL LITHIUM-POLYMER
TI

BQ2057TPN

Industrial Control IC
ETC