AMC1305M05QDWQ1 [TI]

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器 | DW | 16 | -40 to 125;
AMC1305M05QDWQ1
型号: AMC1305M05QDWQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器 | DW | 16 | -40 to 125

光电二极管 转换器
文件: 总43页 (文件大小:2086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
AMC1305x-Q1  
高精度、增强隔离式 Δ-Σ 调制器  
1 特性  
2 应用  
1
汽车电子 应用认证  
具有符合 AEC-Q100 的下列结果:  
基于分流的电流感测或基于电阻分压器的电压感测  
输入:  
牵引逆变器  
温度等级 1-40°C +125°C  
板载充电器 (OBC)  
直流-直流转换器  
人体放电模式 (HBM) 静电放电 (ESD) 分类等级  
2
组件充电模式 (CDM) ESD 分类等级 C6  
电池管理系统 (BMS)  
与以下器件引脚兼容的系列:  
3 说明  
输入电压范围为 ±50mV ±250mV  
AMC1305-Q1 器件是一款高精度 Δ-Σ (ΔΣ) 调制器,通  
过磁场抗扰度较高的电容式双隔离栅隔离输出与输入电  
路。根据 DIN V VDE V 0884-10UL1577 CSA 标  
准,该隔离栅经认证可提供高达 7000 V峰值 的增强型  
隔离。当与隔离电源配合使用时,该器件可防止共模高  
电压线路上的噪声电流进入本地系统接地,从而干扰或  
损害低电压电路。  
互补金属氧化物半导体 (CMOS) 或低压差分信  
(LVDS) 数字接口选项  
出色的直流性能:  
偏移误差:±50µV ±150µV(最大值)  
偏移漂移:1.3µV/°C(最大值)  
增益误差:±0.3%(最大值)  
增益漂移:±40ppm/°C(最大值)  
安全相关认证:  
AMC1305-Q1 针对直接连接分流电阻器或其它低电压  
等级信号源进行了优化,同时具有出色的直流和交流性  
能。分流电阻通常用于感测牵引逆变器、车载充电器或  
类似汽车应用 中的电流。通过使用适当的数字滤波器  
(即,集成于 TMS320F2837x)来抽取位流,该器件  
可在 78kSPS 数据速率下实现 85dB (13.8 ENOB) 动  
态范围的 16 位分辨率。  
7000 VPK 增强型隔离,符合 DIN V VDE V  
0884-10 (VDE V 0884-10): 2006-12 标准  
符合 UL 1577 标准且长达 1 分钟的 5000 VRMS  
隔离  
CAN/CSA No. 5A 组件验收服务通知  
瞬态抗扰度:15kV/µs(最小值)  
高电磁场抗扰度  
(请参见应用手册 SLLA181A)  
在高侧,调制器由 5V (AVDD) 标称电压供电,而隔离  
数字接口则由 3.3V 5V 电源 (DVDD) 供电。  
5MHz 20MHz 外部时钟输入  
AMC1305-Q1 采用宽体小外形尺寸集成电路 (SOIC)-  
16 (DW) 封装。  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
AMC1305x-Q1  
SOIC (16)  
10.30mm x 7.50mm  
(1) 如需了解所有可用封装,请参见数据表末尾的可订购产品附  
录。  
简化电路原理图  
Floating  
Power Supply  
HV+  
AMC1305-Q1  
Gate Driver  
5.0 V  
DVDD  
AVDD  
3.3 V, or 5.0 V  
AGND  
DGND  
RSHUNT  
To Load  
AINN  
AINP  
DOUT  
CLKIN  
SD-Dx  
SD-Cx  
PWMx  
Gate Driver  
TMS320F2837x  
Copyright © 2016, Texas Instruments Incorporated  
HV-  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS797  
 
 
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 24  
9.1 Application Information............................................ 24  
9.2 Typical Applications ................................................ 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Power Ratings........................................................... 4  
7.6 Insulation Specifications............................................ 5  
7.7 Safety-Related Certifications..................................... 6  
7.8 Safety Limiting Values .............................................. 6  
7.9 Electrical Characteristics: AMC1305M05-Q1............ 7  
7.10 Electrical Characteristics: AMC1305x25-Q1........... 9  
7.11 Switching Characteristics...................................... 11  
7.12 Insulation Characteristics Curves ......................... 12  
7.13 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 20  
9
10 Power-Supply Recommendations ..................... 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Examples................................................... 30  
12 器件和文档支持 ..................................................... 32  
12.1 文档支持................................................................ 32  
12.2 相关链接................................................................ 32  
12.3 接收文档更新通知 ................................................. 32  
12.4 社区资源................................................................ 32  
12.5 ....................................................................... 32  
12.6 静电放电警告......................................................... 32  
12.7 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 33  
8
4 修订历史记录  
日期  
修订版本  
注释  
2017 2 月  
*
首次发布。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
5 Device Comparison Table  
INPUT VOLTAGE  
RANGE  
DIFFERENTIAL INPUT  
SNR (sinc3 Filter,  
78 kSPS)  
PART NUMBER  
AMC1305L25-Q1  
AMC1305M05-Q1  
AMC1305M25-Q1  
RESISTANCE  
OUTPUT INTERFACE  
±250 mV  
±50 mV  
25 kΩ  
82 dB  
76 dB  
82 dB  
LVDS  
CMOS  
CMOS  
5 kΩ  
±250 mV  
25 kΩ  
6 Pin Configuration and Functions  
DW Package  
16-Pin SOIC  
Top View  
DW Package  
16-Pin SOIC  
Top View  
NC  
AINP  
AINN  
AGND  
NC  
1
2
3
4
5
6
7
8
16 DGND  
NC  
AINP  
AINN  
AGND  
NC  
1
2
3
4
5
6
7
8
16 DGND  
NC  
NC  
15  
14  
13  
12  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
DVDD  
CLKIN  
CLKIN_N  
DOUT  
DOUT_N  
DGND  
DVDD  
CLKIN  
NC  
NC  
NC  
DOUT  
NC  
AVDD  
AGND  
AVDD  
AGND  
DGND  
LVDS Versions (AMC1305L25-Q1)  
CMOS Versions (AMC1305Mx-Q1)  
Pin Functions  
PIN  
I/O  
NAME  
NO.  
DESCRIPTION  
This pin is internally connected to pin 8 and can be left unconnected or tied to high-side  
ground  
4
AGND  
8
3
2
High-side ground reference  
Inverting analog input  
AINN  
AINP  
I
I
Noninverting analog input  
High-side power supply, 4.5 V to 5.5 V.  
See the Power-Supply Recommendations section for decoupling recommendations.  
AVDD  
7
CLKIN  
CLKIN_N  
DGND  
13  
I
Modulator clock input, 5 MHz to 20.1 MHz  
12  
I
AMC1305L25-Q1 only: inverted modulator clock input  
Controller-side ground reference  
9, 16  
O
O
DOUT  
11  
Modulator data output  
DOUT_N  
DVDD  
10  
AMC1305L25-Q1 only: inverted modulator data output  
Controller-side power supply, 3.0 to 5.5 V  
14  
1
This pin can be connected to AVDD or can be left unconnected  
This pin can be left unconnected or tied to AGND only  
These pins have no internal connection (pins 10 and 12 on the AMC1305Mx-Q1 only).  
This pin can be left unconnected or tied to DVDD only  
5
6, 10, 12  
15  
NC  
Copyright © 2017, Texas Instruments Incorporated  
3
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
V
Supply voltage, AVDD to AGND or DVDD to DGND  
Analog input voltage at AINP, AINN  
AGND – 6  
DGND – 0.3  
–10  
AVDD + 0.5  
DVDD + 0.3  
10  
V
Digital input voltage at CLKIN, CLKIN_N  
Input current to any pin except supply pins  
Maximum virtual junction temperature, TJ  
Storage temperature, Tstg  
V
mA  
°C  
°C  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
5.0  
MAX  
UNIT  
AVDD  
DVDD  
TA  
High-side (analog) supply voltage  
Controller-side (digital) supply voltage  
Operating ambient temperature range  
5.5  
5.5  
V
V
3.0  
3.3  
–40  
125  
°C  
7.4 Thermal Information  
AMC1305x-Q1  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
80.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40.5  
45.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.9  
ψJB  
44.5  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
Maximum power dissipation  
(both sides)  
PD  
AVDD = 5.5 V, DVDD = 5.5 V, LVDS, RLOAD = 100 Ω  
89.1  
mW  
Maximum power dissipation  
(high-side supply)  
PD1  
PD2  
AVDD = 5.5 V  
45.1  
44  
mW  
mW  
Maximum power dissipation  
(low-side supply)  
DVDD = 5.5 V, LVDS, RLOAD = 100 Ω  
4
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
Minimum air gap (clearance)(1)  
Shortest pin-to-pin distance through air  
8  
8  
mm  
mm  
Shortest pin-to-pin distance across the package  
surface  
CPG  
Minimum external tracking (creepage)(1)  
Minimum internal gap (internal clearance) of the  
double insulation (2 × 0.0135 mm)  
DTI  
CTI  
Distance through insulation  
0.027  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
600  
I
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-IV  
I-III  
I-II  
Overvoltage category per IEC 60664-1  
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
At ac voltage (bipolar or unipolar)  
1414  
VPK  
At ac voltage (sine wave)  
At dc voltage  
1000  
1500  
7000  
VRMS  
VDC  
Maximum-rated isolation working  
voltage  
VIOWM  
VTEST = VIOTM, t = 60 s (qualification test)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
VTEST = 1.2 x VIOTM, t = 1 s (100% production  
test)  
8400  
Test method per IEC 60065, 1.2/50-μs  
waveform, VTEST = 1.6 x VIOSM = 10000 VPK  
(qualification)  
VIOSM  
6250  
VPK  
pC  
pC  
pC  
Method a, after input/output safety test subgroup  
2 / 3, Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 x VIORM  
= 1697 VPK, tm = 10 s  
5  
5  
5  
Method a, after environmental tests subgroup 1,  
qpd  
Apparent charge(4)  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 x VIORM  
2263 VPK, tm = 10 s  
=
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s,  
Vpd(m) = 1.875 x VIORM = 2652 VPK, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
Pollution degree  
VIO = 0.5 VPP at 1 MHz  
1.2  
> 109  
2
pF  
VIO = 500 V at TS = 150°C  
Climatic category  
40/125/21  
UL1577  
VTEST = VISO = 5000 VRMS or 7000 VDC, t = 60 s  
(qualification test), VTEST = 1.2 x VISO = 6000  
VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed  
circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as  
inserting grooves or ribs on the PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2017, Texas Instruments Incorporated  
5
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
7.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):  
2006-12, DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and DIN EN  
60095 (VDE 0860): 2005-11  
Recognized under UL1577 component recognition and CSA  
component acceptance NO 5 programs  
Reinforced insulation  
Single protection  
File number: 40040142  
File number: E181974  
7.8 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output (I/O) circuitry. A  
failure of the I/O circuitry may allow low resistance to ground or the supply and, without current limiting, dissipate sufficient  
power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
θJA = 80.2°C/W, AVDD = DVDD = 5.5 V, TJ = 150°C,  
TA = 25°C, see Figure 3  
283  
mA  
mA  
IS  
Safety input, output, or supply current  
θJA = 80.2°C/W, AVDD = DVDD = 3.6 V, TJ = 150°C,  
TA = 25°C, see Figure 3  
432  
PS Safety input, output, or total power  
TS Maximum safety temperature  
θJA = 80.2°C/W, TJ = 150°C, TA = 25°C, see Figure 4  
1558(1)  
150  
mW  
°C  
(1) Input, output, or the sum of input and output power must not exceed this value.  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that  
of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended  
maximum input voltage times the current. The junction temperature is then the ambient temperature plus the  
power times the junction-to-air thermal resistance.  
6
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
7.9 Electrical Characteristics: AMC1305M05-Q1  
All minimum and maximum specifications at TA = –40°C to +125°C, AVDD = 4.5 V to 5.5 V, DVDD = 3.0 V to 5.5 V, AINP =  
–50 mV to 50 mV, AINN = 0 V, and sinc3 filter with OSR = 256, unless otherwise noted. Typical values are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5.0 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Maximum differential voltage input range  
(AINP-AINN)  
VClipping  
FSR  
±62.5  
mV  
mV  
Specified linear full-scale range  
(AINP-AINN)  
–50  
50  
VCM  
CID  
IIB  
Operating common-mode input range  
Differential input capacitance  
Input current  
–0.032  
AVDD – 2  
V
pF  
2
–72  
5
Inputs shorted to AGND  
–97  
15  
-57  
μA  
RID  
IOS  
Differential input resistance  
Input offset current  
kΩ  
±5  
nA  
CMTI  
Common-mode transient immunity  
kV/μs  
fIN = 0 Hz,  
CM min VIN VCM max  
–104  
V
CMRR  
BW  
Common-mode rejection ratio  
Input bandwidth  
dB  
fIN from 0.1 Hz to 50 kHz,  
CM min VIN VCM max  
–75  
800  
V
kHz  
DC ACCURACY  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity(1)  
Resolution: 16 bits  
Resolution: 16 bits  
Initial, at 25°C  
–0.99  
–5  
0.99  
5
LSB  
LSB  
µV  
±1.5  
±2.5  
EO  
Offset error  
–50  
50  
TCEO  
EG  
Offset error thermal drift(2)  
Gain error  
Gain error thermal drift(3)  
–1.3  
–0.3%  
–40  
1.3  
0.3%  
40  
μV/°C  
Initial, at 25°C  
–0.02%  
±20  
TCEG  
PSRR  
ppm/°C  
dB  
Power-supply rejection ratio  
VAVDD from 4.5 to 5.5V, at dc  
105  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
76  
76  
81  
81  
dB  
dB  
dB  
dB  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious-free dynamic range  
–90  
92  
–83  
SFDR  
83  
DIGITAL INPUTS/OUTPUTS  
External Clock  
fCLKIN  
Input clock frequency  
Duty cycle  
5
20  
20.1  
60%  
MHz  
DutyCLKIN  
5 MHz fCLKIN 20.1 MHz  
DGND VIN DVDD  
40%  
50%  
CMOS Logic Family, CMOS with Schmitt-Trigger  
IIN  
Input current  
–1  
1
μA  
pF  
V
CIN  
VIH  
Input capacitance  
5
High-level input voltage  
Low-level input voltage  
Output load capacitance  
0.7 × DVDD  
–0.3  
DVDD + 0.3  
0.3 × DVDD  
VIL  
V
CLOAD  
fCLKIN = 20 MHz  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
30  
pF  
DVDD – 0.1  
DVDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.1  
0.4  
VOL  
IOL = 4 mA  
(1) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as number of LSBs or as a percent of the specified linear full-scale range FSR.  
valueMAX - valueMIN  
TCEO  
=
TempRange  
(2) Offset error drift is calculated using the box method as described by the following equation:  
value MAX - value MIN  
6
÷
÷
TCEG ( ppm) =  
ì10  
value ìTempRange  
«
(3) Gain error drift is calculated using the box method as described by the following equation:  
Copyright © 2017, Texas Instruments Incorporated  
7
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics: AMC1305M05-Q1 (continued)  
All minimum and maximum specifications at TA = –40°C to +125°C, AVDD = 4.5 V to 5.5 V, DVDD = 3.0 V to 5.5 V, AINP =  
–50 mV to 50 mV, AINN = 0 V, and sinc3 filter with OSR = 256, unless otherwise noted. Typical values are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5.0 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
AVDD  
IAVDD  
High-side supply voltage  
High-side supply current  
High-side power dissipation  
Controller-side supply voltage  
4.5  
5.0  
6.5  
5.5  
8.2  
V
mA  
mW  
V
PAVDD  
DVDD  
32.5  
3.3  
45.1  
5.5  
3.0  
3.0 V DVDD 3.6 V  
2.7  
4.0  
IDVDD  
Controller-side supply current  
mA  
4.5 V DVDD 5.5 V  
3.0 V DVDD 3.6 V  
4.5 V DVDD 5.5 V  
3.2  
5.5  
8.9  
14.4  
30.3  
PDVDD  
Controller-side power dissipation  
mW  
16.0  
8
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
7.10 Electrical Characteristics: AMC1305x25-Q1  
All minimum and maximum specifications at TA = –40°C to 125°C, AVDD = 4.5 V to 5.5 V, DVDD = 3.0 V to 5.5 V, AINP =  
–250 mV to 250 mV, AINN = 0 V, and sinc3 filter with OSR = 256, unless otherwise noted. Typical values are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5.0 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Maximum differential voltage input range  
(AINP-AINN)  
VClipping  
FSR  
±312.5  
mV  
mV  
Specified linear full-scale range  
(AINP-AINN)  
–250  
250  
VCM  
CID  
IIB  
Operating common-mode input range  
Differential input capacitance  
Input current  
–0.16  
AVDD – 2  
V
pF  
1
–60  
25  
Inputs shorted to AGND  
–82  
15  
–48  
μA  
RID  
IOS  
Differential input resistance  
Input offset current  
kΩ  
±5  
nA  
CMTI  
Common-mode transient immunity  
kV/μs  
fIN = 0 Hz,  
CM min VIN VCM max  
–95  
V
CMRR  
BW  
Common-mode rejection ratio  
Input bandwidth  
dB  
fIN from 0.1 Hz to 50 kHz,  
CM min VIN VCM max  
–76  
V
1000  
kHz  
DC ACCURACY  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity(1)  
Resolution: 16 bits  
Resolution: 16 bits  
Initial, at 25°C  
–0.99  
–4  
0.99  
4
LSB  
LSB  
±1.5  
±40  
EO  
Offset error  
–150  
–1.3  
–0.3  
–40  
150  
1.3  
0.3  
40  
µV  
TCEO  
EG  
Offset error thermal drift(2)  
Gain error  
Gain error thermal drift(3)  
μV/°C  
%FS  
ppm/°C  
dB  
Initial, at 25°C  
–0.02  
±20  
90  
TCEG  
PSRR  
Power-supply rejection ratio  
VAVDD from 4.5 V to 5.5 V, at dc  
AC ACCURACY  
SNR  
Signal-to-noise ratio  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
fIN = 1 kHz  
82  
80  
85  
84  
dB  
dB  
dB  
dB  
SINAD  
THD  
Signal-to-noise + distortion  
Total harmonic distortion  
Spurious-free dynamic range  
–90  
92  
–83  
SFDR  
83  
DIGITAL INPUTS/OUTPUTS  
External Clock  
fCLKIN  
Input clock frequency  
Duty cycle  
5
20  
20.1  
60%  
MHz  
DutyCLKIN  
5 MHz fCLKIN 20.1 MHz  
40%  
50%  
CMOS Logic Family (AMC1305M25-Q1), CMOS with Schmitt-Trigger  
IIN  
Input current  
DGND VIN DVDD  
–1  
1
μA  
pF  
V
CIN  
VIH  
Input capacitance  
5
High-level input voltage  
Low-level input voltage  
Output load capacitance  
0.7 × DVDD  
–0.3  
DVDD + 0.3  
0.3 × DVDD  
VIL  
V
CLOAD  
fCLKIN = 20 MHz  
IOH = –20 µA  
IOH = –4 mA  
IOL = 20 µA  
30  
pF  
DVDD – 0.1  
DVDD – 0.4  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.1  
0.4  
VOL  
IOL = 4 mA  
(1) Integral nonlinearity is defined as the maximum deviation from a straight line passing through the end-points of the ideal ADC transfer  
function expressed as the number of LSBs or as a percent of the specified linear full-scale range FSR.  
valueMAX - valueMIN  
TCEO  
=
TempRange  
(2) Offset error drift is calculated using the box method as described by the following equation:  
value MAX - value MIN  
6
÷
÷
TCEG ( ppm) =  
ì10  
value ìTempRange  
«
(3) Gain error drift is calculated using the box method as described by the following equation:  
Copyright © 2017, Texas Instruments Incorporated  
9
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Electrical Characteristics: AMC1305x25-Q1 (continued)  
All minimum and maximum specifications at TA = –40°C to 125°C, AVDD = 4.5 V to 5.5 V, DVDD = 3.0 V to 5.5 V, AINP =  
–250 mV to 250 mV, AINN = 0 V, and sinc3 filter with OSR = 256, unless otherwise noted. Typical values are at TA = 25°C,  
CLKIN = 20 MHz, AVDD = 5.0 V, and DVDD = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVDS Logic Family (AMC1305L25-Q1)  
VOD  
VOCM  
IS  
Differential output voltage  
Output common-mode voltage  
Output short-circuit current  
Input common-mode voltage  
Differential input voltage  
Input current  
RLOAD = 100 Ω  
250  
350  
450  
1.375  
24  
mV  
V
1.125  
1.23  
mA  
V
VICM  
VID  
VID = 100 mV  
0.05  
100  
–24  
1.25  
350  
0
3.25  
600  
20  
mV  
µA  
IIN  
DGND VIN 3.3 V  
POWER SUPPLY  
AVDD  
IAVDD  
High-side supply voltage  
4.5  
3.0  
5.0  
6.5  
5.5  
8.2  
V
mA  
mW  
V
High-side supply current  
PAVDD  
DVDD  
High-side power dissipation  
Controller-side supply voltage  
32.5  
3.3  
45.1  
5.5  
AMC1305L25-Q1, RLOAD = 100 Ω  
6.1  
8.0  
AMC1305M25-Q1, 3.0 DVDD 3.6 V,  
CLOAD = 5 pF  
2.7  
4.0  
IDVDD  
Controller-side supply current  
mA  
AMC1305M25-Q1, 4.5 DVDD 5.5 V,  
CLOAD = 5 pF  
3.2  
20.1  
8.9  
5.5  
44.0  
14.4  
AMC1305L25-Q1, RLOAD = 100 Ω  
AMC1305M25-Q1, 3.0 DVDD 3.6 V,  
CLOAD = 5 pF  
PDVDD  
Controller-side power dissipation  
mW  
AMC1305M25-Q1, 4.5 DVDD 5.5 V,  
CLOAD = 5 pF  
16.0  
30.3  
10  
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
7.11 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
49.75  
19.9  
TYP  
50  
MAX  
200  
120  
120  
UNIT  
ns  
tCLK  
tHIGH  
tLOW  
tD  
CLKIN, CLKIN_N clock period  
CLKIN, CLKIN_N clock high time  
CLKIN, CLKIN_N clock low time  
25  
ns  
19.9  
25  
ns  
Falling edge of CLKIN, CLKIN_N to DOUT, DOUT_N valid delay,  
CLOAD = 5 pF  
0
15  
32  
ns  
Interface startup time  
(DVDD at 3.0 V min to DOUT, DOUT_N valid with AVDD 4.5 V)  
CLKIN  
cycles  
tISTART  
tASTART  
32  
Analog startup time (AVDD step up to 4.5 V with DVDD 3.0 V)  
1
ms  
tCLK  
tHIGH  
/[YLb  
/[YLb_b  
tLOW  
tD  
5hÜÇ  
5hÜÇ_b  
Figure 1. Digital Interface Timing  
5ë55  
/[YLb  
5hÜÇ  
...  
5ata not valid  
ëalid data  
tISTART = 32 CLKIN cycles  
Figure 2. Digital Interface Startup Timing  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
7.12 Insulation Characteristics Curves  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
400  
300  
200  
100  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
TA (°C)  
TA (°C)  
D043  
D044  
Figure 3. Thermal Derating Curve for Safety Limiting  
Current per VDE  
Figure 4. Thermal Derating Curve for Safety Limiting Power  
per VDE  
TA up to 150°C, stress voltage frequency = 60 Hz  
Figure 5. Reinforced Isolation Capacitor Lifetime Projection  
12  
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
7.13 Typical Characteristics  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
AMC1305x25-Q1  
AMC1305M05-Q1  
AMC1305x25-Q1  
AMC1305M05-Q1  
Figure 6. Input Current vs Input Common-Mode Voltage  
Figure 7. Common-Mode Rejection Ratio vs  
Input Signal Frequency  
4
3
4
3.5  
3
2
1
2.5  
2
0
-1  
-2  
-3  
1.5  
1
0.5  
0
-4  
-0.25 -0.2 -0.15 -0.1 -0.05  
0
0.05 0.1 0.15 0.2 0.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VIN (mV)  
D003  
D004  
Figure 8. Integral Nonlinearity vs Input Signal Amplitude  
Figure 9. Integral Nonlinearity vs Temperature  
150  
125  
100  
75  
50  
40  
30  
20  
50  
10  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
-10  
-20  
-30  
-40  
-50  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
AVDD (V)  
AVDD (V)  
D005  
D006  
AMC1305x25-Q1  
AMC1305M05-Q1  
Figure 11. Offset Error vs High-Side Supply Voltage  
Figure 10. Offset Error vs High-Side Supply Voltage  
Copyright © 2017, Texas Instruments Incorporated  
13  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
150  
125  
100  
75  
50  
40  
30  
20  
50  
10  
25  
0
0
-25  
-50  
-75  
-100  
-125  
-150  
-10  
-20  
-30  
-40  
-50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
AMC1305x25-Q1  
AMC1305M05-Q1  
Figure 12. Offset Error vs Temperature  
Figure 13. Offset Error vs Temperature  
0.3  
0.2  
0.1  
0
AMC1305x25-Q1  
AMC1305M05-Q1  
-0.1  
-0.2  
-0.3  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
AVDD (V)  
D010  
Figure 15. Gain Error vs High-Side Supply Voltage  
Figure 14. Offset Error vs Clock Frequency  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
5
10  
15  
20  
Temperature (èC)  
fCLKIN (MHz)  
D011  
D012  
Figure 16. Gain Error vs Temperature  
Figure 17. Gain Error vs Clock Frequency  
14  
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
SNR (AMC1305x25-Q1)  
SINAD (AMC1305x25-Q1)  
SNR (AMC1305M05-Q1)  
SINAD (AMC1305M05-Q1)  
AMC1305x25-Q1  
AMC1503M05-Q1  
Figure 18. Power-Supply Rejection Ratio vs  
Ripple Frequency  
Figure 19. SNR and SINAD vs High-Side Supply Voltage  
SNR (AMC1305x25-Q1)  
SINAD (AMC1305x25-Q1)  
SNR (AMC1305M05-Q1)  
SINAD (AMC1305M05-Q1)  
SNR (AMC1305x25-Q1)  
SINAD (AMC1305x25-Q1)  
SNR (AMC1305M05-Q1)  
SINAD (AMC1305M05-Q1)  
Figure 20. SNR and SINAD vs Temperature  
Figure 21. SNR and SINAD vs Clock Frequency  
100  
SNR (AMC1305x25-Q1)  
SINAD (AMC1305x25-Q1)  
SNR (AMC1305M05-Q1)  
SINAD (AMC1305M05-Q1)  
SNR  
SINAD  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
D018  
AMC1305x25-Q1  
Figure 23. SNR and SINAD vs Input Signal Amplitude  
Figure 22. SNR and SINAD vs Input Signal Frequency  
Copyright © 2017, Texas Instruments Incorporated  
15  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
-60  
SNR  
SINAD  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VIN (mVpp)  
AVDD (V)  
D019  
D020  
AMC1305M05-Q1  
Figure 24. SNR and SINAD vs Input Signal Amplitude  
Figure 25. Total Harmonic Distortion vs  
High-Side Supply Voltage  
-60  
-60  
-65  
-65  
-70  
-70  
-75  
-75  
-80  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
10  
15  
20  
fCLKIN (MHz)  
D021  
D022  
Figure 26. Total Harmonic Distortion vs Temperature  
Figure 27. Total Harmonic Distortion vs Clock Frequency  
-60  
-60  
-65  
-70  
-65  
-70  
-75  
-75  
-80  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
0.1  
1
10  
100  
0
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
fIN (kHz)  
D023  
D024  
AMC1305x25-Q1  
Figure 28. Total Harmonic Distortion vs  
Input Signal Frequency  
Figure 29. Total Harmonic Distortion vs  
Input Signal Amplitude  
16  
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
-60  
110  
105  
100  
95  
-65  
-70  
-75  
-80  
90  
-85  
85  
-90  
80  
-95  
75  
-100  
-105  
-110  
70  
65  
60  
0
50  
100  
150  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
VIN (mVpp)  
AVDD (V)  
D025  
D026  
AMC1305M05-Q1  
Figure 30. Total Harmonic Distortion vs  
Input Signal Amplitude  
Figure 31. Spurious-Free Dynamic Range vs  
High-Side Supply Voltage  
110  
105  
100  
95  
110  
105  
100  
95  
90  
90  
85  
85  
80  
80  
75  
75  
70  
70  
65  
65  
60  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
10  
15  
20  
fCLKIN (MHz)  
D027  
D028  
Figure 32. Spurious-Free Dynamic Range vs Temperature  
Figure 33. Spurious-Free Dynamic Range vs  
Clock Frequency  
110  
105  
100  
95  
110  
105  
100  
95  
90  
90  
85  
85  
80  
80  
75  
75  
70  
70  
65  
65  
60  
60  
0.1  
1
10  
100  
0
50 100 150 200 250 300 350 400 450 500  
VIN (mVpp)  
fIN (kHz)  
D029  
D030  
AMC1305x25-Q1  
Figure 34. Spurious-Free Dynamic Range vs  
Input Signal Frequency  
Figure 35. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
Copyright © 2017, Texas Instruments Incorporated  
17  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
110  
105  
100  
95  
0
-20  
-40  
90  
-60  
85  
-80  
80  
75  
-100  
-120  
-140  
70  
65  
60  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
VIN (mVpp)  
Frequency (kHz)  
D031  
D032  
AMC1305M05-Q1  
AMC1305x25-Q1, 4096-point FFT, VIN = 500 mVPP  
Figure 36. Spurious-Free Dynamic Range vs  
Input Signal Amplitude  
Figure 37. Frequency Spectrum with 1-kHz Input Signal  
0
-20  
0
-20  
-40  
-60  
-80  
-40  
-60  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (kHz)  
Frequency (kHz)  
D033  
D034  
AMC1305x25-Q1, 4096-point FFT, VIN = 500 mVPP  
AMC1305M05-Q1, 4096-point FFT, VIN = 500 mVPP  
Figure 38. Frequency Spectrum with 5-kHz Input Signal  
Figure 39. Frequency Spectrum with 1-kHz Input Signal  
0
10  
-20  
-40  
-60  
-80  
9
8
7
6
5
4
3
-100  
-120  
-140  
0
5
10  
15  
20  
25  
30  
35  
40  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
Frequency (kHz)  
AVDD (V)  
D035  
D036  
AMC1305M05-Q1, 4096-point FFT, VIN = 500 mVPP  
Figure 40. Frequency Spectrum with 5-kHz Input Signal  
Figure 41. High-Side Supply Current vs  
High-Side Supply Voltage  
18  
Copyright © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 5.0 V, DVDD = 3.3 V, AINP = –250 mV to 250 mV, AINN = 0 V, fCLKIN = 20 MHz, and sinc3 filter with  
OSR = 256, unless otherwise noted.  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
10  
15  
20  
fCLKIN (MHz)  
D037  
D038  
Figure 42. High-Side Supply Current vs Temperature  
Figure 43. High-Side Supply Current vs Clock Frequency  
12  
11  
10  
9
12  
LVDS  
CMOS  
LVDS  
CMOS  
11  
10  
9
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
4.5 4.6 4.7 4.8 4.9  
5
5.1 5.2 5.3 5.4 5.5  
DVDD (V)  
DVDD (V)  
D039  
D040  
Figure 44. Controller-Side Supply Current vs  
Controller-Side Supply Voltage (3.3 V, nom)  
Figure 45. Controller-Side Supply Current vs  
Controller-Side Supply Voltage (5 V, nom)  
12  
11  
10  
9
12  
11  
10  
9
LVDS 5 V  
LVDS 3.3 V  
CMOS 5 V  
LVDS 5V  
LVDS 3.3V  
CMOS 5 V  
CMOS 3.3 V  
CMOS 3.3 V  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
5
10  
15  
20  
Clock Frequency (MHz)  
D041  
D042  
Figure 46. Controller-Side Supply Current vs Temperature  
Figure 47. Controller-Side Supply Current vs  
Clock Frequency  
Copyright © 2017, Texas Instruments Incorporated  
19  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The differential analog input (AINP and AINN) of the AMC1305-Q1 is a fully-differential amplifier feeding the  
switched-capacitor input of a second-order delta-sigma (ΔΣ) modulator stage that digitizes the input signal into a  
1-bit output stream. The isolated data output (DOUT) of the converter provides a stream of digital ones and zeros  
synchronous to the externally-provided clock source at the CLKIN pin with a frequency in the range of 5 MHz to  
20.1 MHz. The time average of this serial bit-stream output is proportional to the analog input voltage.  
The Functional Block Diagram section shows a detailed block diagram of the AMC1305-Q1. The analog input  
range is tailored to directly accommodate a voltage drop across a shunt resistor used for current sensing. The  
SiO2-based capacitive isolation barrier supports a high level of magnetic field immunity as described in the  
application report ISO72x Digital Isolator Magnetic-Field Immunity (SLLA181A), available for download at  
www.ti.com. The external clock input simplifies the synchronization of multiple current-sense channels on the  
system level. The extended frequency range of up to 20.1 MHz supports higher performance levels compared to  
other solutions available on the market.  
8.2 Functional Block Diagram  
DVDD  
AVDD  
AINP  
AINN  
BUF  
BUF  
TX  
TX  
DOUT  
DOUT_N  
(AMC1305L25-Q1 only)  
-
û-Modulator  
+
TX  
CLKIN  
CLKIN_N  
(AMC1305L25-Q1 only)  
1.25-V  
Reference  
BUF  
TX  
AMC1305-Q1  
DGND  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
8.3 Feature Description  
8.3.1 Analog Input  
The AMC1305-Q1 incorporates front-end circuitry that contains a differential amplifier and sampling stage,  
followed by a ΔΣ modulator. The gain of the differential amplifier is set by internal precision resistors to a factor of  
4 for devices with a specified input voltage range of ±250 mV (for the AMC1305x25-Q1), or to a factor of 20 for  
devices with a ±50-mV input voltage range (for the AMC1305M05-Q1), resulting in a differential input impedance  
of 5 kΩ (for the AMC1305M05-Q1) or 25 kΩ (for the AMC1305x25-Q1).  
Consider the input impedance of the AMC1305-Q1 in designs with high-impedance signal sources that can  
cause degradation of gain and offset specifications. The importance of this effect, however, depends on the  
desired system performance. Additionally, the input bias current caused by the internal common-mode voltage at  
the output of the differential amplifier causes an offset that depends on the actual amplitude of the input signal.  
See the Isolated Voltage Sensing section for more details on reducing these effects.  
There are two restrictions on the analog input signals (AINP and AINN). First, if the input voltage exceeds the  
range of AGND – 6 V to AVDD + 0.5 V, the input current must be limited to 10 mA because the device input  
electrostatic discharge (ESD) protection diodes turn on. In addition, the linearity and noise performance of the  
device are ensured only when the differential analog input voltage remains within the specified linear full-scale  
range (FSR), that is ±250 mV (for the AMC1305x25-Q1) or ±50 mV (for the AMC1305M05-Q1), and within the  
specified input common-mode range.  
8.3.2 Modulator  
The modulator implemented in the AMC1305-Q1 is a second-order, switched-capacitor, feed-forward ΔΣ  
modulator, such as the one conceptualized in Figure 48. The analog input voltage VIN and the output V5 of the 1-  
bit digital-to-analog converter (DAC) are differentiated, providing an analog voltage V1 at the input of the first  
integrator stage. The output of the first integrator feeds the input of the second integrator stage, resulting in  
output voltage V3 that is differentiated with the input signal VIN and the output of the first integrator V2. Depending  
on the polarity of the resulting voltage V4, the output of the comparator is changed. In this case, the 1-bit DAC  
responds on the next clock pulse by changing its analog output voltage V5, causing the integrators to progress in  
the opposite direction while forcing the value of the integrator output to track the average value of the input.  
f/[YLb  
ë1  
ë2  
ë3  
ë4  
ëLb  
Integrator 1  
Integrator 2  
/at  
0 ë  
ë5  
DAC  
Figure 48. Block Diagram of a Second-Order Modulator  
The modulator shifts the quantization noise to high frequencies; see Figure 49. Therefore, use a low-pass digital  
filter at the output of the device to increase overall performance. This filter is also used to convert from the 1-bit  
data stream at a high sampling rate into a higher-bit data word at a lower rate (decimation). TI's microcontroller  
family TMS320F2837x offers a suitable programmable, hardwired filter structure termed a sigma-delta filter  
module (SDFM) optimized for usage with the AMC1305-Q1 family. Alternatively, a field-programmable gate array  
(FPGA) can be used to implement the digital filter.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Feature Description (continued)  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Figure 49. Quantization Noise Shaping  
8.3.3 Digital Output  
A differential input signal of 0 V ideally produces a stream of ones and zeros that are high 50% of the time. A  
differential input of 250 mV (for the AMC1305x25-Q1) or 50 mV (for the AMC1305M05-Q1) produces a stream of  
ones and zeros that are high 90% of the time. A differential input of –250 mV (–50 mV for the AMC1305M05-Q1)  
produces a stream of ones and zeros that are high 10% of the time. These input voltages are also the specified  
linear ranges of the different AMC1305-Q1 versions with performance as specified in this document. If the input  
voltage value exceeds these ranges, the output of the modulator shows non-linear behavior while the  
quantization noise increases. The output of the modulator would clip with a stream of only zeros with an input  
less than or equal to –312.5 mV (–62.5 mV for the AMC1305M05-Q1) or with a stream of only ones with an input  
greater than or equal to 312.5 mV (62.5 mV for the AMC1305M05-Q1). In this case, however, the AMC1305-Q1  
generates a single 1 (if the input is at negative full-scale) or 0 every 128 clock cycles to indicate proper device  
function (see the Fail-Safe Output section for more details). The input voltage versus the output modulator signal  
is shown in Figure 50.  
The density of ones in the output bit-stream for any input voltage value (with the exception of a full-scale input  
signal as described in Output Behavior in Case of Full-Scale Input ) can be calculated using Equation 1:  
V IN + VClipping  
2 * VClipping  
(1)  
The AMC1305-Q1 system clock is typically 20 MHz and is provided externally at the CLKIN pin. Data are  
synchronously provided at 20 MHz at the DOUT pin. Data change at the CLKIN falling edge. For more details,  
see the Switching Characteristics table.  
Modulator Output  
+FS (Analog Input)  
-FS (Analog Input)  
Analog Input  
Figure 50. Analog Input versus AMC1305-Q1 Modulator Output  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
8.4 Device Functional Modes  
8.4.1 Fail-Safe Output  
In the case of a missing high-side supply voltage (AVDD), the output of a ΔΣ modulator is not defined and could  
cause a system malfunction. In systems with high safety requirements, this behavior is not acceptable.  
Therefore, the AMC1305-Q1 implements a fail-safe output function that ensures the device maintains its output  
level in case of a missing AVDD, as shown in Figure 51.  
/[YLb  
!ë55  
5hÜÇ  
5hÜÇ  
!ë55 Dhh5  
!ë55 C!L[  
/ase 1: 5hÜÇ = Z1[ ÁZꢀv !ë55 (ꢁ]o•  
/ase 2: 5hÜÇ = Z0[ ÁZꢀv !ë55 (ꢁ]o•  
Figure 51. Fail-Safe Output of the AMC1305-Q1  
8.4.2 Output Behavior in Case of Full-Scale Input  
If a full-scale input signal is applied to the AMC1305-Q1 (that is, VIN VClipping), the device generates a single  
one or zero every 128 bits at DOUT, depending on the actual polarity of the signal being sensed, as shown in  
Figure 52.  
In this way, differentiating between a missing AVDD and a full-scale input signal is possible on the system level.  
/[YLb  
...  
...  
5hÜÇ  
5hÜÇ  
ëLb 312.5 mV (AMC1305M05: 61.5 mV)  
...  
...  
...  
...  
ëLb 312.5 mV (AMC1305M05: 61.5 mV)  
127 /[YLb cycles  
127 /[YLb cycles  
Figure 52. Overrange Output of the AMC1305-Q1  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Digital Filter Usage  
The modulator generates a bit stream that is processed by a digital filter to obtain a digital word similar to a  
conversion result of a conventional analog-to-digital converter (ADC). A very simple filter, built with minimal effort  
and hardware, is a sinc3-type filter, as shown in Equation 2:  
3
-OSR  
1- z  
÷
÷
H(z) =  
1- z-1  
«
(2)  
This filter provides the best output performance at the lowest hardware size (count of digital gates) for a second-  
order modulator. All the characterization in this document is also done with a sinc3 filter with an over-sampling  
ratio (OSR) of 256 and an output word width of 16 bits.  
SNR
=
1.76
d
B
+
6.02
dB
*
ENOB  
(3)  
16  
14  
12  
10  
8
6
4
sinc1  
sinc2  
sinc3  
2
0
1
10  
100  
1000  
OSR  
D053  
Figure 53. Measured Effective Number of Bits versus Oversampling Ratio  
An example code for an implementation of a sinc3 filter in an FPGA, see the application note Combining  
ADS1202 with FPGA Digital Filter for Current Measurement in Motor Control Applications (SBAA094), available  
for download at www.ti.com.  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
9.2 Typical Applications  
9.2.1 Traction Inverter Application  
Because to their high ac and dc performance, isolated ΔΣ modulators are being widely used in new generation  
traction inverter designs. Traction inverters are critical parts of electrical and hybrid electrical vehicles. The input  
structure of the AMC1305-Q1 is optimized for use with low-impedance shunt resistors and is therefore tailored for  
isolated current sensing using shunts.  
DC link  
Gate Driver  
Gate Driver  
Gate Driver  
RSHUNT  
RSHUNT  
RSHUNT  
Gate Driver  
Gate Driver  
Gate Driver  
AMC1305-Q1  
TMS320F2837x  
SD-D1  
AVDD  
AINP  
DVDD  
DOUT  
CLKIN  
DGND  
5.0 V  
3.3 V  
AINN  
AGND  
SD-C1  
AMC1305-Q1  
AVDD  
DVDD  
DOUT  
CLKIN  
DGND  
5.0 V  
3.3 V  
AINP  
AINN  
AGND  
SD-D2  
SD-C3  
AMC1305-Q1  
AMC1305-Q1  
AVDD  
AINP  
DVDD  
5.0 V  
3.3 V  
AVDD  
DVDD  
DOUT  
CLKIN  
DGND  
5.0 V  
3.3 V  
DOUT  
CLKIN  
DGND  
SD-D4  
SD-C4  
AINP  
AINN  
AGND  
AINN  
AGND  
PWMx  
SD-D5  
SD-C5  
Copyright © 2016, Texas Instruments Incorporated  
Figure 54. The AMC1305-Q1 in a Traction Inverter Application  
9.2.1.1 Design Requirements  
A typical operation of the device in a traction inverter application is shown in Figure 54. When the inverter stage  
is part of a motor drive system, measurement of the motor phase current is done via the shunt resistors (RSHUNT).  
Depending on the system design, either all three or only two phase currents are sensed.  
In this example, an additional fourth AMC1305-Q1 is used to support isolated voltage sensing of the dc link. This  
high voltage is reduced using a high-impedance resistive divider before being sensed by the device across a  
smaller resistor. The value of this resistor can degrade the performance of the measurement, as described in the  
Isolated Voltage Sensing section.  
9.2.1.2 Detailed Design Procedure  
The usually recommended RC filter in front of a ΔΣ modulator to improve signal-to-noise performance of the  
signal path, is not required for the AMC1305-Q1. By design, the input bandwidth of the analog front-end of the  
device is limited to 1 MHz.  
For modulator output bit-stream filtering, a device from TI's TMS320F2837x family of dual-core MCUs is  
recommended. This family supports up to eight channels of dedicated hardwired filter structures that significantly  
simplify system level design by offering two filtering paths per channel: one providing high accuracy results for  
the control loop and one fast response path for overcurrent detection.  
Copyright © 2017, Texas Instruments Incorporated  
25  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.3 Application Curve  
In motor control applications, a very fast response time for overcurrent detection is required. The time for fully  
settling the filter in case of a step-signal at the input of the modulator depends on its order; that is, a sinc3 filter  
requires three data updates for full settling (with fDATA = fCLK / OSR). Therefore, for overcurrent protection, filter  
types other than sinc3 can be a better choice; an alternative is the sinc2 filter. Figure 55 compares the settling  
times of different filter orders.  
16  
14  
12  
10  
8
6
4
sinc1  
sinc2  
sinc3  
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
settling time (µs)  
D054  
Figure 55. Measured Effective Number of Bits versus Settling Time  
The delay time of the sinc filter with a continuous signal is half of its settling time.  
26  
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
Typical Applications (continued)  
9.2.2 Isolated Voltage Sensing  
The AMC1305-Q1 is optimized for usage in current-sensing applications using low-impedance shunts. However,  
the device can also be used in isolated voltage-sensing applications if the impact of the (usually higher)  
impedance of the resistor used in this case is considered.  
High Voltage  
Potential  
5 V  
R1  
AVDD  
AINP  
AMC1305-Q1  
R2  
R3  
R4  
R5  
IIB  
-
RID  
ûModulator  
+
AINN  
R3'  
R4'  
R5'  
AGND  
VCM = 2 V  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 56. Using AMC1305-Q1 for Isolated Voltage Sensing  
9.2.2.1 Design Requirements  
Figure 56 shows a simplified circuit typically used in high-voltage sensing applications. The high impedance  
resistors (R1 and R2) are used as voltage dividers and dominate the current value definition. The resistance of  
the sensing resistor R3 is chosen to meet the input voltage range of the AMC1305-Q1. This resistor and the  
differential input impedance of the device (the AMC1305x25-Q1 is 25 kΩ, the AMC1305M05-Q1 is 5 kΩ) also  
create a voltage divider that results in an additional gain error. With the assumption of R1, R2, and RIN having a  
considerably higher value than R3, the resulting total gain error can be estimated using Equation 4, with EG  
being the gain error of the AMC1305-Q1.  
R3  
EGtot = EG  
+
RIN  
(4)  
This gain error can be easily minimized during the initial system level gain calibration procedure.  
9.2.2.2 Detailed Design Procedure  
As indicated in Figure 56, the output of the integrated differential amplifier is internally biased to a common-mode  
voltage of 2 V. This voltage results in a bias current IIB through the resistive network R4 and R5 (or R4' and R5')  
used for setting the gain of the amplifier. The value range of this current is specified in the Electrical  
Characteristics table. This bias current generates additional offset error that depends on the value of the resistor  
R3. Because the value of this bias current depends on the actual common-mode amplitude of the input signal (as  
shown in Figure 57), the initial system offset calibration does not minimize its effect. Therefore, in systems with  
high accuracy requirements TI recommends using a series resistor at the negative input (AINN) of the AMC1305-  
Q1 with a value equal to the shunt resistor R3 (that is R3' = R3 in Figure 56) to eliminate the effect of the bias  
current.  
Copyright © 2017, Texas Instruments Incorporated  
27  
 
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
Typical Applications (continued)  
This additional series resistor (R3') influences the gain error of the circuit. The effect can be calculated using  
Equation 5 with R5 = R5' = 50 kΩ and R4 = R4' = 2.5 kΩ (for the AMC1305M05-Q1) or 12.5 kΩ (for the  
AMC1305x25-Q1).  
R4  
÷
E (%) = 1 -  
*100%  
G
R4'+R3'  
«
(5)  
9.2.2.3 Application Curve  
Figure 57 shows the dependency of the input bias current on the common-mode voltage at the input of the  
AMC1305-Q1.  
AMC1305x25-Q1  
AMC1305M05-Q1  
Figure 57. Input Current vs Input Common-Mode Voltage  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
10 Power-Supply Recommendations  
In a typical traction inverter application, the high-side power supply (AVDD) for the device is derived from the  
floating power supply of the upper gate driver. For lowest cost, a Zener diode can be used to limit the voltage to  
5 V ±10%. Alternatively a low-cost low-drop regulator (LDO), for example the LP2951-xx-Q1, can be used to  
minimize noise on the power supply. A low-ESR decoupling capacitor of 0.1 µF is recommended for filtering this  
power-supply path. Place this capacitor (C2 in Figure 58) as close as possible to the AVDD pin of the AMC1305-  
Q1 for best performance. If better filtering is required, an additional 10-µF capacitor can be used. The floating  
ground reference (AGND) is derived from the end of the shunt resistor, which is connected to the negative input  
(AINN) of the device. If a four-pin shunt is used, the device inputs are connected to the inner leads, while AGND  
is connected to one of the outer leads of the shunt.  
For decoupling of the digital power supply on controller side, TI recommends using a 0.1-µF capacitor assembled  
as close to the DVDD pin of the AMC1305-Q1 as possible, followed by an additional capacitor in the range of  
1 µF to 10 µF.  
Floating  
Power Supply  
HV+  
20 V  
R1  
800  
AMC1305-Q1  
Gate Driver  
5.1 V  
DVDD  
AVDD  
3.3 V, or 5.0 V  
C1  
10 F  
C4  
0.1 F  
C2  
0.1 F  
C5  
2.2 F  
Z1  
1N751A  
AGND  
AINN  
DGND  
DOUT  
TMS320F2837x  
SD-Dx  
RSHUNT  
To Load  
SD-Cx  
PWMx  
AINP  
CLKIN  
Gate Driver  
Copyright © 2016, Texas Instruments Incorporated  
HV-  
Figure 58. Zener-Diode-Based High-Side Power Supply  
Copyright © 2017, Texas Instruments Incorporated  
29  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A layout recommendation showing the critical placement of the decoupling capacitors (as close as possible to the  
AMC1305-Q1) and placement of the other components required by the device is shown in Figure 59.  
For the AMC1305L25-Q1 version, place the 100-Ω termination resistor as close as possible to the CLKIN,  
CLKIN_N inputs of the device to achieve highest signal integrity. If not integrated, an additional termination  
resistor is required as close as possible to the LVDS data inputs of the MCU or filter device; see Figure 60.  
11.2 Layout Examples  
Top View  
Clearance area  
to be kept free of any  
conductive materials  
1
NC  
AINP  
AINN  
AGND  
NC  
DGND  
NC  
16  
0.1 µF  
SMD  
0603  
From shunt  
resistor  
DVDD  
CLKIN  
NC  
AMC1305Mxx-Q1  
to/from  
MCU  
(filter)  
DOUT  
NC  
NC  
LEGEND  
TOP layer:  
copper pour & traces  
AVDD  
AGND  
0.1 µF  
high-side area  
SMD  
0603  
controller-side area  
DGND  
via to ground plane  
via to supply plane  
Copyright © 2016, Texas Instruments Incorporated  
Figure 59. Recommended Layout of the AMC1305Mx-Q1  
30  
Copyright © 2017, Texas Instruments Incorporated  
 
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
Layout Examples (continued)  
to/from  
MCU  
(filter)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 60. Recommended Layout of the AMC1305L25-Q1  
版权 © 2017, Texas Instruments Incorporated  
31  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
ZHCSFZ3 FEBRUARY 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档请参阅以下部分:  
隔离相关术语  
ISO72x 数字隔离器磁场抗扰度》  
《使用 ADS1202 FPGA 数字滤波器的组合测量 测量》  
LP2951-xx-Q1 具有关断功能的可调节微功耗稳压器》  
TMS320F2837xD 双核 Delfino™ 微控制器》  
12.2 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可通过快速访问立刻订  
购。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
AMC1305L25-Q1  
AMC1305M05-Q1  
AMC1305M25-Q1  
12.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2017, Texas Instruments Incorporated  
AMC1305L25-Q1, AMC1305M05-Q1, AMC1305M25-Q1  
www.ti.com.cn  
ZHCSFZ3 FEBRUARY 2017  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1305L25QDWQ1  
AMC1305L25QDWRQ1  
AMC1305M05QDWQ1  
AMC1305M05QDWRQ1  
AMC1305M25QDWQ1  
AMC1305M25QDWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1305L25Q1  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
1305L25Q1  
1305M05Q1  
1305M05Q1  
1305M25Q1  
1305M25Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4220721/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SEE  
DETAILS  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
9
8
(9.3)  
LAND PATTERN EXAMPLE  
SCALE:7X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220721/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
8
9
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X  
4220721/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

AMC1305M05QDWRQ1

汽车类 ±50mV 输入、精密电流检测增强型隔离式调制器 | DW | 16 | -40 to 125
TI

AMC1305M25

±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1305M25-Q1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1305M25DW

±250mV 输入、精密电流检测增强型隔离式调制器

| DW | 16 | -40 to 125
TI

AMC1305M25DWR

±250mV 输入、精密电流检测增强型隔离式调制器

| DW | 16 | -40 to 125
TI

AMC1305M25QDWQ1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器 | DW | 16 | -40 to 125
TI

AMC1305M25QDWRQ1

汽车类 ±250mV 输入、精密电流检测增强型隔离式调制器 | DW | 16 | -40 to 125
TI

AMC1306E05

具有曼彻斯特编码的 ±50mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306E05DWV

具有曼彻斯特编码的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306E05DWVR

具有曼彻斯特编码的 ±50mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI

AMC1306E25

具有曼彻斯特编码的 ±250mV 输入、精密电流检测增强型隔离式调制器
TI

AMC1306E25DWV

具有曼彻斯特编码的 ±250mV 输入、精密电流检测增强型隔离式调制器 | DWV | 8 | -40 to 125
TI