AM62A74AUMSIAMBQ1 [TI]

2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, front cameras | AMB | 484 | -40 to 125;
AM62A74AUMSIAMBQ1
型号: AM62A74AUMSIAMBQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, front cameras | AMB | 484 | -40 to 125

文件: 总218页 (文件大小:4175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
AM62Ax Sitara™ Processors  
One Camera Serial interface (CSI-2) Receiver with  
4-Lane D-PHY  
1 Features  
– MIPI® CSI-2 v1.3 Compliant + MIPI D-PHY 1.2  
– Support for 1,2,3 or 4 data lane mode up to 1.5  
Gbps per lane  
– ECC verification/correction with CRC check +  
ECC on RAM  
– Virtual Channel support (up to 16)  
– Ability to write stream data directly to DDR via  
DMA  
Video Encoder/Decoder  
– Support for HEVC (H.265) Main profiles at  
Level 5.1 High-tier  
– Support for H.264 BaseLine/Main/High Profiles  
at Level 5.2  
– Support for up to 4K UHD resolution  
(3840 × 2160)  
Processor Cores:  
Up to Quad Arm® Cortex®-A53 microprocessor  
subsystem at up to 1.4 GHz  
– Quad-core Cortex-A53 cluster with 512KB L2  
shared cache with SECDED ECC  
– Each A53 core has 32KB L1 DCache with  
SECDED ECC and 32KB L1 ICache with Parity  
protection  
Single-core Arm® Cortex®-R5F at up to 800 MHz,  
integrated as part of MCU Channel with FFI  
– 32KB ICache, 32KB L1 DCache, and 64KB  
TCM with SECDED ECC on all memories  
– 512KB SRAM with SECDED ECC  
Single-core Arm® Cortex®-R5F at up to 800 MHz,  
integrated to support Device Management  
– 32KB ICache, 32KB L1 DCache, and 64KB  
TCM with SECDED ECC on all memories  
Deep Learning Accelerator based on Single-core  
C7x  
Clocking options supporting 240 MPixels/s,  
120 MPixels/s, or 60 MPixels/s  
Motion JPEG encode at 416 MPixels/s with  
resolutions up to 4K UHD (3840 × 2160)  
Memory Subsystem:  
– C7x floating point, up to 40 GFLOPS, 256-bit  
Vector DSP at 1.0 GHz  
– Matrix Multiply Accelerator (MMA), up to 2  
TOPS (8b) at 1.0 GHz  
– 32KB L1 DCache with SECDED ECC and  
64KB L1 ICache with Parity protection  
– 1.25MB of L2 SRAM with SECDED ECC  
Up to 2.29MB of On-chip RAM  
– 64KB of On-Chip RAM (OCRAM) with  
SECDED ECC, can be divided into smaller  
banks in increments of 32KB for as many as  
2 separate memory banks  
– 256KB of On-Chip RAM with SECDED ECC in  
SMS Subsystem  
– 176KB of On-Chip RAM with SECDED ECC in  
SMS Subsystem for TI security firmware  
– 512KB of On-chip RAM with SECDED ECC in  
Cortex-R5F MCU Subsystem  
Vision Processing Accelerators (VPAC) with Image  
Signal Processor (ISP) and multiple vision assist  
accelerators:  
– 315 MPixel/s ISP; Up to 5MP @ 60 fps  
– Support for 12-bit RGB-IR  
– 64KB of On-chip RAM with SECDED ECC in  
Device/Power Manager Subsystem  
– 1.25MB of L2 SRAM with SECDED ECC in C7x  
Deep Learning Accelerator  
– Support for up to 16-bit input RAW format  
– Line support up to 4096  
– Wide Dynamic Range (WDR), Lens Distortion  
Correction (LDC), Vision Imaging Subsystem  
(VISS), and Multi-Scalar (MSC) support  
DDR Subsystem (DDRSS)  
– Supports LPDDR4  
Output color format : 8-bits, 12-bits, and  
YUV 4:2:2, YUV 4:2:0, RGB, HSV/HSL  
– 32-bit data bus with inline ECC  
– Supports speeds up to 3733 MT/s  
– Max addressable range of 8GBytes  
Multimedia:  
Display subsystem  
– Single display support  
– Up to 2048x1080 @ 60fps  
– Up to 165-MHz pixel clock support with  
independent PLL  
– DPI 24-bit RGB parallel interface  
– Supports safety features such as freeze frame  
detection and MISR data check  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Functional Safety:  
High-Speed Interfaces:  
• Integrated Ethernet switch supporting (total 2  
Functional Safety-Compliant targeted [Industrial]  
– Developed for functional safety applications  
– Documentation will be available to aid IEC  
61508 functional safety system design  
– Systematic capability up to SIL 3 targeted  
– Hardware Integrity up to SIL 2 targeted  
– Safety-related certification  
external ports)  
– RMII(10/100) or RGMII (10/100/1000)  
– IEEE1588 (Annex D, Annex E, Annex F with  
802.1AS PTP)  
– Clause 45 MDIO PHY management  
– Packet Classifier based on ALE engine with  
512 classifiers  
IEC 61508 by TÜV SÜD planned  
– Priority based flow control  
Functional Safety-Compliant targeted [Automotive]  
– Developed for functional safety applications  
– Documentation will be available to aid ISO  
26262 functional safety system design  
– Systematic capability up to ASIL D targeted  
– Hardware integrity up to ASIL B targeted  
– Safety-related certification  
– Time Sensitive Networking (TSN) support  
– Four CPU H/W interrupt Pacing  
– IP/UDP/TCP checksum offload in hardware  
Two USB2.0 Ports  
– Port configurable as USB host, USB peripheral,  
or USB Dual-Role Device (DRD mode)  
– Integrated USB VBUS detection  
ISO 26262 by TÜV SÜD planned  
AEC-Q100 qualified [Automotive]  
General Connectivity:  
Security:  
9x Universal Asynchronous Receiver-Transmitters  
(UART)  
5x Serial Peripheral Interface (SPI) controllers  
6x Inter-Integrated Circuit (I2C) ports  
3x Multichannel Audio Serial Ports (McASP)  
Secure boot supported  
– Hardware-enforced Root-of-Trust (RoT)  
– Support to switch RoT via backup key  
– Support for takeover protection, IP protection,  
and anti-roll back protection  
– Transmit and Receive Clocks up to 50 MHz  
– Up to 16/10/6 Serial Data Pins across 3x  
McASP with Independent TX and RX Clocks  
– Supports Time Division Multiplexing (TDM),  
Inter-IC Sound (I2S), and Similar Formats  
– Supports Digital Audio Interface Transmission  
(SPDIF, IEC60958-1, and AES-3 Formats)  
– FIFO Buffers for Transmit and Receive (256  
Bytes)  
– Support for audio reference output clock  
3x enhanced PWM modules (ePWM)  
3x enhanced Quadrature Encoder Pulse modules  
(eQEP)  
3x enhanced Capture modules (eCAP)  
General-Purpose I/O (GPIO), All LVCMOS I/O can  
be configured as GPIO  
3x Controller Area Network (CAN) modules with  
CAN-FD support  
– Conforms w/ CAN Protocol 2.0 A, B and ISO  
11898-1  
– Full CAN FD support (up to 64 data bytes)  
– Parity/ECC check for Message RAM  
– Speed up to 8 Mbps  
Trusted Execution Environment (TEE) supported  
– Arm TrustZone® based TEE  
– Extensive firewall support for isolation  
– Secure watchdog/timer/IPC  
– Secure storage support  
– Replay Protected Memory Block (RPMB)  
support  
Dedicated Security Controller with user  
programmable HSM core and dedicated security  
DMA & IPC subsystem for isolated processing  
Cryptographic acceleration supported  
– Session-aware cryptographic engine with ability  
to auto-switch key-material based on incoming  
data stream  
Supports cryptographic cores  
– AES – 128-/192-/256-Bit key sizes  
– SHA2 – 224-/256-/384-/512-Bit key sizes  
– DRBG with true random number generator  
– PKA (Public Key Accelerator) to Assist in  
RSA/ECC processing for secure boot  
Debugging security  
– Secure software controlled debug access  
– Security aware debugging  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Media and Data Storage:  
Power Management:  
3x Secure Digital® (SD®) (4b+4b+8b) interface  
– 1x 8-bit eMMC interface up to HS200 speed  
– 2x 4-bit SD/SDIO interface up to UHS-I  
– Compliant with eMMC 5.1, SD 3.0, and SDIO  
Version 3.0  
Low-power modes supported by Device/Power  
Manager  
– Partial IO support for CAN/GPIO/UART wakeup  
– DeepSleep : I/O + DDR (suspend to RAM)  
– DeepSleep  
1× General-Purpose Memory Controller (GPMC)  
up to 133 MHz  
– MCU Only  
– Standby  
– Dynamic frequency scaling for Cortex-A53  
– Flexible 8- and 16-bit Asynchronous Memory  
Interface with up to four Chip (22-bit address)  
Selects (NAND, NOR, Muxed-NOR, and  
SRAM)  
– Uses BCH code to support 4-, 8-, or 16-bit ECC  
– Uses Hamming code to support 1-bit ECC  
– Error Locator Module (ELM)  
Boot Options:  
UART  
I2C EEPROM  
OSPI/QSPI Flash  
GPMC NOR/NAND Flash  
SD Card  
eMMC  
USB (host) Mass storage  
USB (device) boot from external host (DFU mode)  
Ethernet  
Used with the GPMC to locate addresses  
of data errors from syndrome polynomials  
generated using a BCH algorithm  
Supports 4-, 8-, and 16-bit per 512-  
Byte block error location based on BCH  
algorithms  
Technology / Package:  
OSPI/QSPI with DDR / SDR support  
– Support for Serial NAND and Serial NOR Flash  
devices  
– 4GBytes memory address support  
– XIP mode with optional on-the-fly encryption  
16-nm FinFET technology  
18 mm x 18 mm, 0.8-mm pitch full-array, 484-pin  
FCBGA (AMB)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
2 Applications  
Driver Monitoring System (DMS) / Occupancy Monitoring System (OMS)  
eMirror/Camera Mirror System (CMS)  
Machine Vision Camera  
Barcode scanner  
Front camera system  
Stick up camera / Video doorbell  
Autonomous Mobile Robots (AMR)  
3 Description  
AM62Ax is an extension of the Sitaraautomotive-grade family of heterogeneous Arm® processors with  
embedded Deep Learning (DL), Video and Vision Processing acceleration, display interface and extensive  
automotive peripheral and networking options. AM62Ax is built for a set of cost-sensitive automotive applications  
including driver and in-cabin monitoring systems, next generation of eMirror system, as well as a broad set  
of industrial applications in Factory Automation, Building Automation, and other markets. The cost optimized  
AM62Ax provides high-performance compute for both traditional and deep learning algorithms at industry  
leading power/performance ratios with a high level of system integration to enable scalability and lower costs  
for advanced automotive platforms supporting multiple sensor modalities in stand-alone Electronic Control Units  
(ECUs).  
AM62Ax contains up to four Arm® Cortex®-A53 cores with 64-bit architecture, a Vision Processing Accelerator  
(VPAC) with Image Signal Processor (ISP) and multiple vision assist accelerators, Deep Learning (DL) and video  
accelerators, a Cortex®-R5F MCU Channel core and a Cortex®-R5F Device Management core. The Cortex-  
A53s provide the powerful computing elements necessary for Linux applications as well as the implementation of  
traditional vision computing based-algorithms such as driver monitoring. Building on the existing world-class ISP,  
TI’s 7th generation ISP includes flexibility to process a broader sensor suite including RGB-InfraRed (RGB-IR),  
support for higher bit depth, and features targeting analytics applications. Key cores include the next generation  
C7000DSP from Texas Instruments (“C7x”) with scalar and vector cores, dedicated “MMA” deep learning  
accelerator enabling performance up to 2 TOPS within the lowest power envelope in the industry when operating  
at the typical automotive worst case junction temperature of 125°C.  
The 3-port Gigabit Ethernet switch has one internal port and two external ports with TSN support and can be  
used to enable industrial networking options. In addition, an extensive peripherals set is included in AM62Ax  
to enable system level connectivity such as USB, MMC/SD, Camera interface, OSPI, CAN-FD and GPMC for  
parallel host interface to an external ASIC/FPGA. AM62Ax supports secure boot for IP protection with the built-in  
HSM (Hardware Security Module) and also employs advanced power management support for portable and  
power-sensitive applications.  
Package Information  
PART NUMBER  
XAM62A7x...AMB  
XAM62A3x...AMB  
PACKAGE(1)  
BODY SIZE  
18 mm x 18 mm  
18 mm x 18 mm  
FCBGA (484-pin) 0.8mm full array  
FCBGA (484-pin) 0.8mm full array  
(1) For more information, see Section 11, Mechanical, Packaging, and Orderable Information.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
3.1 Functional Block Diagram  
Figure 3-1 is functional block diagram for the device.  
AM62Ax  
Application Cores  
MCU Channel  
with FFI  
Device Management  
Arm®  
Arm®  
®
64KB TCM  
Cortex®-R5F  
with ECC  
Arm  
Cortex -A53  
Arm®  
Cortex®-A53  
®
Cortex®-R5F  
Arm®  
®
64KB TCM  
with ECC  
Arm  
Cortex -A53  
Deep Learning Accelerator (2 TOPS)  
C7x256v and MMA  
Cortex®-A53  
®
1.25MB Dedicated L2 SRAM  
with ECC  
512KB SRAM  
with ECC  
512KB Shared L2 with ECC  
System Memory  
Safety DTK  
64KB SRAM  
with ECC  
(Shared)  
GPMC  
General Connectivity and IO  
General Connectivity  
(MCUSS)  
2-port Gb Ethernet w/ 1588  
DDR4/LPDDR4  
with inline ECC  
(32b)  
3x MMCSD  
GPIO  
GPIO  
2x SPI  
UART  
3x SPI  
8x UART  
CAN-FD  
5x I2C  
3x ePWM  
3x eCAP  
3x eQEP  
2x USB 2.0  
Multimedia  
3x McASP  
JPEG Encode  
RGB-IR VPAC  
CSI2 -Rx 4L  
2x CAN-FD  
I2C  
1x Display  
with DPI  
H.264/H.265  
Video Codec  
OSPI  
Security  
HSM  
(Secure Boot)  
SHA  
MD5  
PKA  
DRBG  
TRNG  
SMS  
AES  
432KB SRAM with ECC  
System Services  
DMA  
Firewall  
DCC  
ESM  
ECC  
Device/Power  
Manager  
System  
Monitor  
Secure  
Boot  
Debug  
Timers  
IPC  
Figure 3-1. Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................4  
3 Description.......................................................................4  
3.1 Functional Block Diagram...........................................5  
4 Revision History.............................................................. 6  
5 Device Comparison.........................................................7  
5.1 Related Products........................................................ 8  
6 Terminal Configuration and Functions..........................9  
6.1 Pin Diagrams.............................................................. 9  
6.2 Pin Attributes.............................................................10  
6.3 Signal Descriptions................................................... 44  
6.4 Pin Connectivity Requirements.................................70  
7 Specifications................................................................ 74  
7.1 Absolute Maximum Ratings...................................... 74  
7.2 ESD Ratings............................................................. 76  
7.3 Power-On Hours (POH)............................................76  
7.4 Recommended Operating Conditions.......................77  
7.5 Operating Performance Points..................................79  
7.6 Electrical Characteristics...........................................81  
7.7 VPP Specifications for One-Time Programmable  
7.8 Thermal Resistance Characteristics......................... 87  
7.9 Timing and Switching Characteristics....................... 88  
8 Detailed Description....................................................198  
8.1 Overview.................................................................198  
9 Applications, Implementation, and Layout............... 199  
9.1 Device Connection and Layout Fundamentals....... 199  
9.2 Peripheral- and Interface-Specific Design  
Information................................................................ 200  
10 Device and Documentation Support........................207  
10.1 Device Nomenclature............................................207  
10.2 Tools and Software............................................... 210  
10.3 Documentation Support........................................ 210  
10.4 Support Resources............................................... 210  
10.5 Trademarks...........................................................210  
10.6 Electrostatic Discharge Caution............................211  
10.7 Glossary................................................................211  
11 Mechanical, Packaging, and Orderable  
Information.................................................................. 212  
11.1 Packaging Information.......................................... 212  
(OTP) eFuses..............................................................86  
4 Revision History  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial Release.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
5 Device Comparison  
Table 5-1 shows a comparison between devices, highlighting the differences.  
Note  
Availability of features listed in this table are a function of shared IO pins, where IO signals associated  
with many of the features are multiplexed to a limited number of pins. The SysConfig tool should  
be used to assign signal functions to pins. This will provide a better understanding of limitations  
associated with pin multiplexing.  
Note  
To understand what device features are currently supported by TI Software Development Kits (SDKs),  
see the AM62Ax Software Build Sheet.  
Table 5-1. Device Comparison  
AM62A7  
AM62A3  
REFERENCE  
NAME  
FEATURES  
AM62A74 AM62A72  
AM62A34  
TBD  
AM62A32  
AM62A31  
TBD  
CTRLMMR_WKUP_JTAG_DEVICE_ID[31:13]  
DEVICE_ID register bit field value(1)  
TBD  
TBD  
TBD  
PROCESSORS AND ACCELERATORS  
Speed Grades  
See Table 7-1, Device Speed Grades  
Arm Cortex-A53  
Microprocessor Subsystem  
Arm A53  
Quad Core  
Dual Core  
Quad Core  
Dual Core  
Single Core  
Single Core  
Arm Cortex-R5F in MCU domain  
MCU_R5F  
Functional Safety Optional(4)  
C7xV-256 Deep Learning Accelerator  
Vision Processing Accelerators  
Video Encoder / Decoder  
C7x MMA  
VPAC  
Up to 2 TOPS  
Up to 1 TOPS  
Up to 5MP @ 60 fps  
VENC/VDEC  
MJPEG  
Yes  
Yes  
Motion JPEG Encoder  
Device Management Subsystem  
Hardware Security Module  
Crypto Accelerators  
WKUP_R5F  
HSM  
Single Core  
Yes  
Security  
Yes  
PROGRAM AND DATA STORAGE  
On-Chip Shared Memory (RAM) in MAIN  
Domain  
OCSRAM  
64KB  
On-Chip Shared Memory (RAM) in MCU  
Domain  
MCU_MSRAM  
512KB  
LPDDR4 DDR Subsystem  
General-Purpose Memory Controller  
PERIPHERALS  
DDRSS  
GPMC  
32-bit data with inline ECC up to 8GB  
Up to 1GB with ECC  
Display Subsystem(2)  
DSS  
1x DPI (Optional)  
Modular Controller Area Network Interface  
Full CAN-FD Support  
MCAN  
CAN-FD  
GPIO  
2
TBD  
General-Purpose I/O  
Up to 168  
Inter-Integrated Circuit Interface  
Multichannel Audio Serial Port  
Multichannel Serial Peripheral Interface  
I2C  
6
MCASP  
MCSPI  
3
5
1x eMMC (8-bits)  
Multi-Media Card/ Secure Digital Interface  
MM/CSD  
2x SD/SDIO (4-bits)  
OSPI/QSPI/SPI(3) Flash Subsystem  
Gigabit Ethernet Interface  
OSPI  
Yes  
CPSW3G  
TIMER  
EPWM  
ECAP  
Yes  
General-Purpose Timers  
12 (4 in MCU Channel)  
Enhanced Pulse-Width Modulator Module  
Enhanced Capture Module  
3
3
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
AM62A31  
SPRSP77 – MARCH 2023  
Table 5-1. Device Comparison (continued)  
AM62A7  
AM62A3  
REFERENCE  
NAME  
FEATURES  
AM62A74 AM62A72  
AM62A34  
AM62A32  
Enhanced Quadrature Encoder Pulse  
Module  
EQEP  
3
Universal Asynchronous Receiver and  
Transmitter  
UART  
9
CSI2-RX Controller with DPHY  
USB2.0 Controller with PHY  
CSI-RX  
USB 2.0  
1
2
(1) For more details about the CTRLMMR_WKUP_JTAG_DEVICE_ID register and DEVICE_ID bit field, see the device TRM.  
(2) Display Subsystem is available when selecting an orderable part number that includes a feature code of M. Refer to Device Naming  
Convention for definition of feature codes.  
(3) A single instance of an OSPI flash host configured to operate with OSPI/QSPI/SPI devices.  
(4) Functional Safety is available when selecting an orderable part number that includes a feature code of S to Z. Refer to Device Naming  
Convention for definition of feature codes.  
5.1 Related Products  
Sitara™ processors Broad family of scalable processors based on Arm® Cortex®-A cores with flexible  
accelerators, peripherals, connectivity and unified software support – perfect for sensors to servers. Sitara  
processors have the reliability needed for use in industrial applications.  
TBD  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
6 Terminal Configuration and Functions  
6.1 Pin Diagrams  
Note  
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt  
is made to use "ball" only when referring to the physical package.  
Figure 6-1 shows the ball locations for the 484-ball flip chip ball grid array (FCBGA) package to quickly locate  
signal names and ball grid numbering. This figure is used in conjunction with Section 6.2.1 through Section 6.4  
(Pin Attributes table and all Signal Descriptions tables, including the Pin Connectivity Requirements table).  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
CSI0  
_RXCLKP  
CSI0  
_RXCLKN  
RGMII1  
_RD0  
RGMII1  
_TXC  
RGMII2  
_TXC  
RGMII2  
_RD3  
RGMII2  
_RD2  
AB  
AA  
Y
VSS  
VDDS_DDR  
VSS  
DDR0_DQ31  
VSS  
MMC0_DAT1 MMC0_CLK MMC0_DAT7  
VSS  
CSI0_RXP3  
CSI0_RXN3  
VSS  
VSS  
VSS  
VSS  
RGMII1_RX  
_CTL  
RGMII1  
_RXC  
RGMII1  
_TD3  
RGMII2  
_TD2  
RGMII2  
_TD0  
RGMII2  
_RXC  
RGMII2  
_RD0  
VOUT0  
_PCLK  
VDDS_DDR  
VSS  
DDR0_DQ24  
VSS  
DDR0_DQ29  
VSS  
DDR0_DQ28  
VSS  
DDR0_DQ30 MMC0_DAT0 MMC0_DAT3  
VSS  
USB0_DP  
USB0_DM  
USB1_DP  
VSS  
USB1_DM  
VSS  
CSI0_RXP2  
CSI0_RXN2  
CSI0_RXN1  
CSI0_RXP0  
VSS  
CSI0_RXP1  
VSS  
DDR0_DQS3  
_n  
RGMII1  
_TD2  
RGMII1  
_TD0  
RGMII2  
_TD1  
RGMII2_TX  
_CTL  
RGMII2  
_RD1  
VOUT0  
_DATA14  
VOUT0  
_DATA15  
VSS  
VSS  
MMC0_CMD MMC0_DAT2 MMC0_DAT4  
VSS  
VSS  
VSS  
USB0  
_RCALIB  
RGMII1  
_RD2  
RGMII1_TX  
_CTL  
RGMII2  
_TD3  
RGMII2_RX  
_CTL  
VOUT0  
_DATA13  
VOUT0  
_DATA12  
VOUT0  
_DATA11  
VOUT0  
_DATA10  
W
V
DDR0_DQS3  
DDR0_DM3  
DDR0_DQ27  
VSS  
USB1_VBUS  
VSS  
MMC0_DAT5  
VSS  
MMC0_DAT6  
CSI0_RXN0  
MDIO0_MDC  
VSS  
CSI0  
_RXRCALIB  
MDIO0  
_MDIO  
RGMII1  
_RD3  
RGMII1  
_RD1  
RGMII1  
_TD1  
VOUT0  
_VSYNC  
VOUT0  
_DATA9  
VOUT0  
_DATA8  
VOUT0  
_DATA7  
VOUT0  
_DATA6  
VSS  
DDR0_DQ25  
VSS  
DDR0_DQ26  
VSS  
VSS  
USB0_VBUS  
VDDSHV4  
VDDSHV4  
VSS  
RSVD7  
RSVD6  
VSS  
USB1  
_RCALIB  
VDDA_3P3  
_USB  
VOUT0  
_DATA5  
VOUT0  
_DATA3  
VOUT0  
_DATA2  
VOUT0  
_DATA1  
VOUT0  
_DATA0  
U
T
DDR0_DM2  
VSS  
DDR0_DQ23  
VSS  
DDR0_DQ18  
VSS  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VSS  
VSS  
CAP_VDDS2  
VSS  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VOUT0_DE  
VDDA_CORE VDDA_1P8 VDDA_CORE VDDA_1P8  
_USB  
VOUT0  
_HSYNC  
VOUT0  
_DATA4  
GPMC0  
_AD14  
GPMC0  
_AD15  
GPMC0  
_AD12  
VSS  
DDR0_DQ22  
VSS  
DDR0_DQ17  
VSS  
DDR0_DQ16  
VSS  
VSS  
VSS  
_USB  
_CSIRX0  
_CSIRX0  
GPMC0  
_WAIT1  
GPMC0  
_WAIT0  
GPMC0  
_AD10  
GPMC0  
_AD13  
GPMC0  
_AD11  
R
P
DDR0_DQS2  
VSS  
DDR0_DQ21  
VSS  
DDR0_DQ19  
DDR0_CKE1  
VSS  
DDR0_BG1 CAP_VDDS4 VDD_CORE  
VSS  
VDDA_PLL1  
VSS  
VDD_CORE  
GPMC0_AD9  
DDR0_DQS2  
_n  
DDR0  
_RESET0_n  
VDDA  
_TEMP0  
DDR0_DQ20 DDR0_CKE0  
DDR0_BG0  
VSS  
VDDS_DDR VDDR_CORE VDD_CORE  
VSS  
VDD_CORE  
VSS  
VDDR_CORE  
VDD_CORE  
VSS  
VSS  
GPMC0_AD5 GPMC0_AD6  
VSS  
GPMC0_AD7 GPMC0_AD8  
DDR0_CS1  
_n  
DDR0_ACT  
_n  
N
M
L
VSS  
DDR0_PAR  
DDR0_A13  
DDR0_A9  
DDR0_A10  
DDR0_A1  
DDR0_A7  
DDR0_ODT1  
DDR0_A12  
VSS  
DDR0_WE_n VDDS_DDR  
VSS  
VDDA_PLL0  
VSS  
VSS  
VDD_CORE  
VSS  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV1  
VSS  
GPMC0_AD4 GPMC0_AD3 GPMC0_AD2 GPMC0_AD1 GPMC0_AD0 GPMC0_CLK  
DDR0_CAS  
_n  
DDR0_RAS  
VSS  
VDDA_DDR  
_PLL0  
GPMC0  
_BE1n  
GPMC0  
_CSn0  
GPMC0  
_CSn3  
GPMC0  
_CSn1  
GPMC0  
_CSn2  
DDR0_CK0  
VSS  
DDR0_A3  
VSS  
VDDS_DDR  
VDDR_CORE  
VDD_CORE VDDA_PLL2 VDDR_CORE  
CAP_VDDS3  
VDDSHV1  
VSS  
_n  
DDR0_CK0  
_n  
VDDS_DDR  
_C  
VDDA  
_TEMP2  
GPMC0_OEn  
_REn  
GPMC0  
_ADVn_ALE  
GPMC0  
_BE0n_CLE  
DDR0_A11  
DDR0_A5  
DDR0_A0  
DDR0_A8  
VDDS_DDR  
VDD_CORE  
VDD_CORE  
VSS  
VDD_CORE  
VSS  
VSS  
OSPI0_DQS  
OSPI0_D4  
OSPI0_D0  
OSPI0_CLK  
OSPI0  
_CSn2  
OSPI0  
_LBCLKO  
K
VSS  
DDR0_A4  
VSS  
DDR0_A6  
DDR0_BA0  
VSS  
VDDS_DDR  
VSS  
VDDA_PLL4  
VDDA_MCU  
VSS  
VDDR_CORE VDDA_PLL3 VDD_CORE  
CAP_VDDS1 GPMC0_WPn GPMC0_DIR GPMC0_WEn  
DDR0_CS0  
_n  
J
VSS  
DDR0_A2  
VDDS_DDR VDDS_OSC0 VDD_CORE  
VDD_CORE  
VSS  
VMON_VSYS  
VSS  
VDD_CORE VDDR_CORE VDD_CORE CAP_VDDS6  
VSS  
OSPI0_D1  
OSPI0_D3  
OSPI0_D2  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
DDR0  
_ALERT_n  
VDDSHV  
_CANUART  
VDD  
_CANUART  
VDDSHV  
_MCU  
OSPI0  
_CSn0  
H
G
F
DDR0_BA1  
VSS  
DDR0_ODT0 DDR0_CAL0  
VSS  
VDDSHV0  
CAP_VDDS0  
VSS  
VSS  
VDDSHV5  
CAP_VDDS5  
TRSTn  
VDDSHV6  
VDDSHV5  
VSS  
VDDSHV6  
VSS  
MMC2_CLK  
CAP_VDDS  
_CANUART  
CAP_VDDS  
_MCU  
VDDSHV  
_MCU  
VDDA  
_TEMP1  
OSPI0  
_CSn1  
OSPI0  
_CSn3  
DDR0_DQS1 DDR0_DQ11  
VSS  
DDR0_DQ13  
VSS  
DDR0_DQ12  
RSVD3  
RSVD5  
VPP  
VSS  
VDDSHV0  
VSS  
MMC2_DAT3 MMC2_CMD  
DDR0_DQS1  
MCU_UART0 VMON_3P3  
_TXD  
VMON_1P8  
_SOC  
UART0  
_CTSn  
RESETSTA  
Tz  
VSS  
_n  
DDR0_DM1  
VSS  
DDR0_DQ9  
RSVD4  
EMU1  
VSS  
EXTINTn  
I2C1_SDA  
I2C0_SCL  
I2C1_SCL  
MCAN0_TX  
SPI0_CLK  
PORz_OUT  
MMC1_SDCD  
MMC1_SDWP  
MCAN0_RX  
MMC2_DAT2 MMC2_DAT1 MMC2_SDCD  
MMC2_DAT0 MMC2_SDWP MMC1_CLK  
_SOC  
WKUP  
_UART0  
_TXD  
MCU_MCAN0  
_RX  
MCU_SPI0  
_CS0  
MCU_I2C0  
_SCL  
WKUP_I2C0  
_SDA  
RESET  
_REQz  
E
VSS  
DDR0_DQ8  
VSS  
DDR0_DQ14  
VSS  
DDR0_DQ10  
RSVD1  
RSVD2  
UART0_RXD  
SPI0_D1  
I2C0_SDA  
SPI0_CS0  
SPI0_CS1  
MCU_MCAN1 MCU_UART0  
MCU_I2C0  
_SDA  
MCU_UART0  
_RTSn  
PMIC_LPM  
_EN0  
WKUP_I2C0 MCU_RESETS  
_SCL  
USB1  
_DRVVBUS  
D
C
B
DDR0_DQS0  
VSS  
DDR0_DQ15  
DDR0_DQ5  
VSS  
VSS  
DDR0_DQ3  
DDR0_DQ4  
VSS  
VSS  
UART0_TXD  
VSS  
MMC1_DAT1 MMC1_DAT3  
MMC1_CMD MMC1_DAT2  
_TX  
_RXD  
TATz  
WKUP  
_UART0  
_RTSn  
WKUP  
_UART0  
_RXD  
WKUP  
_UART0  
_CTSn  
DDR0_DQS0  
_n  
MCU_MCAN0  
_TX  
MCU_SPI0  
_CS1  
MCU  
_RESETz  
UART0  
_RTSn  
MCASP0  
_AXR3  
USB0  
_DRVVBUS  
DDR0_DM0  
DDR0_DQ6  
VDDS_DDR  
VSS  
RSVD0  
EMU0  
TDO  
MCU  
_ERRORn  
MCU_MCAN1  
_RX  
WKUP  
_CLKOUT0  
MCU_UART0  
_CTSn  
MCU_SPI0  
_D1  
MCU_SPI0  
_CLK  
EXT  
_REFCLK1  
MCASP0  
_AXR1  
MCASP0  
_AXR2  
MCASP0  
_AXR0  
MCASP0  
MMC1_DAT0  
_AFSR  
VDDS_DDR  
DDR0_DQ1  
DDR0_DQ2  
VSS  
TMS  
TCK  
SPI0_D0  
WKUP  
_LFOSC0  
_XI  
WKUP  
_LFOSC0  
_XO  
MCU_OSC0  
_XO  
MCU_OSC0  
_XI  
MCU_SPI0  
_D0  
MCASP0  
_ACLKX  
MCASP0  
_AFSX  
MCASP0  
VSS  
A
VSS  
DDR0_DQ7  
VSS  
DDR0_DQ0  
VSS  
MCU_PORz  
VSS  
VSS  
TDI  
VSS  
_ACLKR  
Not to scale  
Figure 6-1. AMB FCBGA-N484 Pin Diagram (Bottom View)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
6.2 Pin Attributes  
The following list describes the contents of each column in the Table 6-1, Pin Attributes (AMB Package) table:  
1. BALL NUMBER: Ball numbers assigned to each terminal of the Ball Grid Array package.  
2. BALL NAME: Ball name assigned to each terminal of the Ball Grid Array package (this name is typically  
taken from the primary MUXMODE 0 signal function).  
3. SIGNAL NAME: Signal name(s) of all dedicated and pin multiplexed signal functions associated with a ball.  
Note  
Many device pins support multiple signal functions. Some signal functions are selected via a  
single layer of multiplexers associated with pins. Other signal functions are selected via two or  
more layers of multiplexers, where one layer is associated with the pins and other layers are  
associated with peripheral logic functions.  
The Table 6-1, Pin Attributes (AMB Package) table only defines signal multiplexing at the pins.  
For more information, related to signal multiplexing at the pins, see Pad Configuration Registers  
section in Device Configuration chapter of the device TRM. Refer to the respective peripheral  
chapter in the device TRM for information associated with peripheral signal multiplexing.  
4. MUX MODE: The MUXMODE value associated with each pin multiplexed signal function:  
a. MUXMODE 0 is the primary pin multiplexed signal function. However, the primary pin multiplexed signal  
function is not necessarily the default pin multiplexed signal function.  
Note  
The value found in the MUX MODE AFTER RESET column defines the default pin  
multiplexed signal function selected when MCU_PORz is deasserted.  
a. MUXMODE values 1 through 15 are possible for pin multiplexed signal functions. However, not all  
MUXMODE values have been implemented. The only valid MUXMODE values are those defined as pin  
multiplexed signal functions within the Pin Attributes table. Only valid values of MUXMODE should be  
used.  
b. Bootstrap defines SOC configuration pins, where the logic state applied to each pin is latched on the  
rising edge of PORz_OUT. These input signal functions are fixed to their respective pins and are not  
programable via MUXMODE.  
c. An empty box means Not Applicable.  
Note  
The following configurations of MUXMODE must be avoided for proper device operation.  
Configuring multiple pins operating as inputs to the same pin multiplexed signal function is not  
supported as it can yield unexpected results.  
Configuring a pin to an undefined pin multiplexing mode will cause the pin behavior to be  
undefined.  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
5. TYPE: Signal type and direction:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output, with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output, with three-state output function  
OZ = Output with three-state output function  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor.  
6. DSIS: The deselected input state (DSIS) indicates the state driven to the subsystem input (logic "0", logic  
"1", or "pad" level) when the pin multiplexed signal function is not selected by MUXMODE.  
0: Logic 0 driven to the subsystem input.  
1: Logic 1 driven to the subsystem input.  
pad: Logic state of the pad is driven to the subsystem input.  
An empty box means Not Applicable.  
7. BALL STATE DURING RESET RX/TX/PULL: State of the terminal while MCU_PORz is asserted, where RX  
defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state of  
internal pull resistors:  
RX (Input buffer)  
– Off: The input buffer is disabled.  
– On: The input buffer is enabled.  
TX (Output buffer)  
– Off: The output buffer is disabled.  
– Low: The output buffer is enabled and drives VOL  
PULL (Internal pull resistors)  
.
– Off: Internal pull resistors are turned off.  
– Up: Internal pull-up resistor is turned on.  
– Down: Internal pull-down resistor is turned on.  
– NA: Not Applicable.  
An empty box means Not Applicable.  
8. BALL STATE AFTER RESET RX/TX/PULL: State of the terminal after MCU_PORz is deasserted, where  
RX defines the state of the input buffer, TX defines the state of the output buffer, and PULL defines the state  
of internal pull resistors:  
RX (Input buffer)  
– Off: The input buffer is disabled.  
– On: The input buffer is enabled.  
TX (Output buffer)  
– Off: The output buffer is disabled.  
– SS: The subsystem selected with MUXMODE determines the output buffer state.  
PULL (Internal pull resistors)  
– Off: Internal pull resistors are turned off.  
– Up: Internal pull-up resistor is turned on.  
– Down: Internal pull-down resistor is turned on.  
– NA: Not Applicable.  
An empty box means Not Applicable.  
9. MUX MODE AFTER RESET: The value found in this column defines the default pin multiplexed signal  
function after MCU_PORz is deasserted.  
An empty box means Not Applicable.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
10. I/O VOLTAGE VALUE: This column describes I/O operating voltage options of the respective power supply,  
when applicable.  
An empty box means Not Applicable.  
For more information, see valid operating voltage range(s) defined for each power supply in Section 7.4,  
Recommended Operating Conditions.  
11. POWER: The power supply of the associated I/O, when applicable.  
An empty box means Not Applicable.  
12. HYS: Indicates if the input buffer associated with this I/O has hysteresis:  
Yes: With hysteresis  
No: Without hysteresis  
An empty box means Not Applicable.  
For more information, see the hysteresis values in Section 7.6, Electrical Characteristics.  
13. BUFFER TYPE: This column defines the buffer type associated with a terminal. This information can be  
used to determine which Electrical Characteristics table is applicable.  
An empty box means Not Applicable.  
For electrical characteristics, refer to the appropriate buffer type table in Section 7.6, Electrical  
Characteristics.  
14. PULL UP/DOWN TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and  
pulldown resistors can be enabled or disabled via software.  
PU: Internal pull-up  
PD: Internal pull-down  
PU/PD: Internal pull-up and pull-down  
An empty box means No internal pull.  
15. PADCONFIG Register:Name of the IO pad configuration register associated with Ball.  
16. PADCONFIG Address:Physical address of the IO pad configuration register associated with Ball.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
G13  
K16  
CAP_VDDS0  
CAP_VDDS1  
CAP_VDDS2  
CAP_VDDS3  
CAP_VDDS4  
CAP_VDDS5  
CAP_VDDS6  
CAP_VDDS_CANUART  
CAP_VDDS_MCU  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI0_RXN0  
CAP_VDDS0  
CAP  
CAP_VDDS1  
CAP_VDDS2  
CAP_VDDS3  
CAP_VDDS4  
CAP_VDDS5  
CAP_VDDS6  
CAP_VDDS_CANUART  
CAP_VDDS_MCU  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXRCALIB  
CSI0_RXN0  
CAP  
T14  
CAP  
M16  
R8  
CAP  
CAP  
G15  
J16  
CAP  
CAP  
G8  
CAP  
G10  
AB14  
AB13  
V10  
CAP  
I
I
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
VDDA_1P8_CSIRX  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
D-PHY  
A
I
W12  
Y13  
CSI0_RXN1  
CSI0_RXN1  
I
AA13  
AB11  
W13  
Y14  
CSI0_RXN2  
CSI0_RXN2  
I
CSI0_RXN3  
CSI0_RXN3  
I
CSI0_RXP0  
CSI0_RXP0  
I
CSI0_RXP1  
CSI0_RXP1  
I
AA12  
AB10  
CSI0_RXP2  
CSI0_RXP2  
I
CSI0_RXP3  
CSI0_RXP3  
I
VDDS_DDR,  
VDDS_DDR_C  
N5  
H7  
M5  
N2  
M6  
N6  
J5  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
O
IO  
O
O
O
O
O
O
O
O
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
J2  
DDR0_A1  
DDR0_A1  
VDDS_DDR,  
VDDS_DDR_C  
J4  
DDR0_A2  
DDR0_A2  
VDDS_DDR,  
VDDS_DDR_C  
L4  
DDR0_A3  
DDR0_A3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VDDS_DDR,  
VDDS_DDR_C  
J1  
K5  
K3  
H2  
L6  
DDR0_A4  
DDR0_A4  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A5  
DDR0_A5  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A6  
DDR0_A6  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A7  
DDR0_A7  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_A8  
DDR0_A8  
VDDS_DDR,  
VDDS_DDR_C  
L2  
DDR0_A9  
DDR0_A9  
VDDS_DDR,  
VDDS_DDR_C  
K2  
L5  
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
M3  
M2  
K6  
H3  
P4  
R7  
H6  
M1  
L1  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
O
O
O
O
O
O
IO  
IO  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
P3  
P5  
J6  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
N4  
C2  
F3  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VDDS_DDR,  
VDDS_DDR_C  
U1  
W3  
A5  
B4  
B6  
D5  
C5  
C3  
B2  
A3  
E2  
F5  
E6  
G2  
G6  
G4  
E4  
D3  
T6  
T4  
U5  
R5  
P2  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
DDR0_DQ17  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DM2  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
DDR0_DM3  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
DDR0_DQ17  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VDDS_DDR,  
VDDS_DDR_C  
R3  
T2  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_DQS2  
DDR0_DQS2_n  
DDR0_DQS3  
DDR0_DQS3_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_DQS2  
DDR0_DQS2_n  
DDR0_DQS3  
DDR0_DQS3_n  
DDR0_ODT0  
DDR0_ODT1  
DDR0_RESET0_n  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
1.1 V/1.2 V  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
U3  
Y2  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
V2  
VDDS_DDR,  
VDDS_DDR_C  
V4  
VDDS_DDR,  
VDDS_DDR_C  
W5  
Y4  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
AA3  
AA5  
AB4  
D1  
C1  
G1  
F1  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
R1  
P1  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
W1  
Y1  
VDDS_DDR,  
VDDS_DDR_C  
VDDS_DDR,  
VDDS_DDR_C  
H5  
N3  
P6  
VDDS_DDR,  
VDDS_DDR_C  
O
VDDS_DDR,  
VDDS_DDR_C  
O
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
EMU0  
PADCONFIG:  
MCU_PADCONFIG30  
0x04084078  
C13  
E10  
F17  
EMU0  
EMU1  
0
0
IO  
IO  
0
0
On / Off / Up  
On / Off / Up  
Off / Off / NA  
On / Off / Up  
On / Off / Up  
Off / Off / NA  
0
0
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV0  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
I2C OD FS  
PU/PD  
PU/PD  
EMU1  
PADCONFIG:  
MCU_PADCONFIG31  
0x0408407C  
EXTINTn  
EXTINTn  
0
7
I
1
pad  
0
PADCONFIG:  
PADCONFIG125  
0x000F41F4  
GPIO1_31  
IOD  
EXT_REFCLK1  
SYNC1_OUT  
0
1
2
3
4
5
6
7
8
0
2
6
7
0
2
3
6
7
0
3
6
7
8
0
2
6
7
I
O
SPI2_CS3  
IO  
O
1
0
EXT_REFCLK1  
SYSCLKOUT0  
TIMER_IO4  
PADCONFIG:  
PADCONFIG124  
0x000F41F0  
B16  
IO  
O
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
CLKOUT0  
CP_GEMAC_CPTS0_RFT_CLK  
GPIO1_30  
I
0
pad  
0
IO  
IO  
O
ECAP0_IN_APWM_OUT  
GPMC0_ADVn_ALE  
MCASP1_AXR2  
TRC_DATA7  
GPMC0_ADVn_ALE  
IO  
O
0
pad  
0
PADCONFIG:  
PADCONFIG33  
0x000F4084  
L18  
N22  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_32  
IO  
O
GPMC0_CLK  
GPMC0_CLK  
MCASP1_AXR3  
GPMC0_FCLK_MUX  
TRC_DATA6  
IO  
O
PADCONFIG:  
PADCONFIG31  
0x000F407C  
Off / Off / Off  
Off / Off / Off  
O
GPIO0_31  
IO  
O
pad  
0
GPMC0_DIR  
GPMC0_DIR  
MCASP2_AXR13  
TRC_DATA14  
GPIO0_40  
IO  
O
PADCONFIG:  
PADCONFIG41  
0x000F40A4  
K18  
L17  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
IO  
O
pad  
0
EQEP2_S  
GPMC0_OEn_REn  
MCASP1_AXR1  
TRC_DATA8  
GPMC0_OEn_REn  
IO  
O
0
PADCONFIG:  
PADCONFIG34  
0x000F4088  
Off / Off / Off  
Off / Off / Off  
GPIO0_33  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
GPMC0_WEn  
MCASP1_AXR0  
TRC_DATA9  
GPIO0_34  
0
O
IO  
O
GPMC0_WEn  
2
0
pad  
0
PADCONFIG:  
PADCONFIG35  
0x000F408C  
K19  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
6
7
IO  
O
GPMC0_WPn  
AUDIO_EXT_REFCLK1  
GPMC0_A22  
UART6_TXD  
TRC_DATA13  
GPIO0_39  
0
1
IO  
OZ  
O
GPMC0_WPn  
2
PADCONFIG:  
PADCONFIG40  
0x000F40A0  
K17  
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
VDDSHV3  
3
6
O
7
IO  
IO  
IO  
O
pad  
0
GPMC0_AD0  
MCASP2_AXR4  
TRC_CLK  
0
GPMC0_AD0  
3
0
PADCONFIG:  
PADCONFIG15  
0x000F403C  
N21  
N20  
N19  
N18  
N17  
6
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
GPIO0_15  
7
IO  
I
pad  
BOOTMODE00  
GPMC0_AD1  
MCASP2_AXR5  
TRC_CTL  
Bootstrap  
0
IO  
IO  
O
0
0
GPMC0_AD1  
3
PADCONFIG:  
PADCONFIG16  
0x000F4040  
6
GPIO0_16  
7
IO  
I
pad  
BOOTMODE01  
GPMC0_AD2  
MCASP2_AXR6  
TRC_DATA0  
GPIO0_17  
Bootstrap  
0
IO  
IO  
O
0
0
GPMC0_AD2  
3
PADCONFIG:  
PADCONFIG17  
0x000F4044  
6
7
IO  
I
pad  
BOOTMODE02  
GPMC0_AD3  
MCASP2_AXR7  
TRC_DATA1  
GPIO0_18  
Bootstrap  
0
IO  
IO  
O
0
0
GPMC0_AD3  
3
PADCONFIG:  
PADCONFIG18  
0x000F4048  
6
7
IO  
I
pad  
BOOTMODE03  
GPMC0_AD4  
MCASP2_AXR8  
TRC_DATA2  
GPIO0_19  
Bootstrap  
0
IO  
IO  
O
0
0
GPMC0_AD4  
3
PADCONFIG:  
PADCONFIG19  
0x000F404C  
6
7
IO  
I
pad  
BOOTMODE04  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
GPMC0_AD5  
0
IO  
IO  
O
IO  
I
0
0
GPMC0_AD5  
MCASP2_AXR9  
TRC_DATA3  
3
PADCONFIG:  
PADCONFIG20  
0x000F4050  
P18  
P19  
P21  
6
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
GPIO0_20  
7
pad  
BOOTMODE05  
GPMC0_AD6  
MCASP2_AXR10  
TRC_DATA4  
Bootstrap  
0
IO  
IO  
O
IO  
I
0
0
GPMC0_AD6  
3
PADCONFIG:  
PADCONFIG21  
0x000F4054  
6
VDDSHV3  
VDDSHV3  
GPIO0_21  
7
pad  
BOOTMODE06  
GPMC0_AD7  
MCASP2_AXR11  
TRC_DATA5  
Bootstrap  
0
IO  
IO  
O
IO  
I
0
0
GPMC0_AD7  
3
PADCONFIG:  
PADCONFIG22  
0x000F4058  
6
GPIO0_22  
7
pad  
0
BOOTMODE07  
GPMC0_AD8  
VOUT0_DATA16  
UART2_RXD  
MCASP2_AXR0  
GPIO0_23  
Bootstrap  
0
IO  
O
I
1
GPMC0_AD8  
2
1
0
PADCONFIG:  
PADCONFIG23  
0x000F405C  
P22  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
3
IO  
IO  
I
7
pad  
BOOTMODE08  
GPMC0_AD9  
VOUT0_DATA17  
UART2_TXD  
MCASP2_AXR1  
GPIO0_24  
Bootstrap  
0
IO  
O
O
IO  
IO  
I
0
1
GPMC0_AD9  
2
PADCONFIG:  
PADCONFIG24  
0x000F4060  
R19  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
3
0
7
pad  
BOOTMODE09  
GPMC0_AD10  
VOUT0_DATA18  
UART3_RXD  
MCASP2_AXR2  
GPIO0_25  
Bootstrap  
0
IO  
O
I
0
1
GPMC0_AD10  
2
1
0
PADCONFIG:  
PADCONFIG25  
0x000F4064  
R20  
3
IO  
IO  
O
I
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
7
8
pad  
OBSCLK0  
BOOTMODE10  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
GPMC0_AD11  
VOUT0_DATA19  
UART3_TXD  
0
IO  
O
O
IO  
O
IO  
I
0
1
GPMC0_AD11  
2
PADCONFIG:  
PADCONFIG26  
0x000F4068  
R22  
MCASP2_AXR3  
TRC_DATA23  
GPIO0_26  
3
0
pad  
0
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
On / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
6
7
BOOTMODE11  
GPMC0_AD12  
VOUT0_DATA20  
UART4_RXD  
MCASP2_AFSX  
TRC_DATA22  
GPIO0_27  
Bootstrap  
0
IO  
O
I
1
GPMC0_AD12  
2
1
0
PADCONFIG:  
PADCONFIG27  
0x000F406C  
T22  
3
IO  
O
IO  
I
VDDSHV3  
6
7
pad  
0
BOOTMODE12  
GPMC0_AD13  
VOUT0_DATA21  
UART4_TXD  
Bootstrap  
0
IO  
O
O
IO  
O
IO  
I
1
GPMC0_AD13  
2
PADCONFIG:  
PADCONFIG28  
0x000F4070  
R21  
MCASP2_ACLKX  
TRC_DATA21  
GPIO0_28  
3
0
pad  
0
VDDSHV3  
6
7
BOOTMODE13  
GPMC0_AD14  
VOUT0_DATA22  
UART5_RXD  
MCASP2_AFSR  
TRC_DATA20  
GPIO0_29  
Bootstrap  
0
IO  
O
I
1
2
1
0
GPMC0_AD14  
3
IO  
O
IO  
I
PADCONFIG:  
PADCONFIG29  
0x000F4074  
T20  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
6
7
pad  
1
UART2_CTSn  
BOOTMODE14  
GPMC0_AD15  
VOUT0_DATA23  
UART5_TXD  
8
Bootstrap  
I
0
IO  
O
O
IO  
O
IO  
O
I
0
1
2
GPMC0_AD15  
MCASP2_ACLKR  
TRC_DATA19  
GPIO0_30  
3
0
PADCONFIG:  
PADCONFIG30  
0x000F4078  
T21  
On / Off / Off  
On / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
6
7
8
pad  
UART2_RTSn  
BOOTMODE15  
Bootstrap  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
GPMC0_BE0n_CLE  
0
2
6
7
0
3
6
7
0
3
6
7
0
3
6
7
0
1
2
3
6
7
8
0
1
2
3
4
6
7
8
0
2
6
7
O
IO  
O
GPMC0_BE0n_CLE  
MCASP1_ACLKX  
TRC_DATA10  
GPIO0_35  
0
pad  
0
PADCONFIG:  
PADCONFIG36  
0x000F4090  
L19  
M18  
M19  
M21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
O
GPMC0_BE1n  
MCASP2_AXR12  
TRC_DATA11  
GPIO0_36  
GPMC0_BE1n  
IO  
O
PADCONFIG:  
PADCONFIG37  
0x000F4094  
VDDSHV3  
VDDSHV3  
VDDSHV3  
IO  
O
pad  
0
GPMC0_CSn0  
MCASP2_AXR14  
TRC_DATA15  
GPIO0_41  
GPMC0_CSn0  
IO  
O
PADCONFIG:  
PADCONFIG42  
0x000F40A8  
IO  
O
pad  
0
GPMC0_CSn1  
MCASP2_AXR15  
TRC_DATA16  
GPIO0_42  
GPMC0_CSn1  
IO  
O
PADCONFIG:  
PADCONFIG43  
0x000F40AC  
IO  
O
pad  
GPMC0_CSn2  
I2C2_SCL  
IOD  
IO  
I
1
0
1
GPMC0_CSn2  
MCASP1_AXR4  
UART4_RXD  
TRC_DATA17  
GPIO0_43  
PADCONFIG:  
PADCONFIG44  
0x000F40B0  
M22  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
O
IO  
IO  
O
pad  
0
MCASP1_AFSR  
GPMC0_CSn3  
I2C2_SDA  
IOD  
OZ  
O
1
0
GPMC0_A20  
UART4_TXD  
MCASP1_AXR5  
TRC_DATA18  
GPIO0_44  
GPMC0_CSn3  
PADCONFIG:  
PADCONFIG45  
0x000F40B4  
M20  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
IO  
O
IO  
IO  
I
pad  
0
MCASP1_ACLKR  
GPMC0_WAIT0  
MCASP1_AFSX  
TRC_DATA12  
GPIO0_37  
1
GPMC0_WAIT0  
IO  
O
0
PADCONFIG:  
PADCONFIG38  
0x000F4098  
R18  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
GPMC0_WAIT1  
VOUT0_EXTPCLKIN  
GPMC0_A21  
UART6_RXD  
GPIO0_38  
0
1
2
3
7
8
0
2
3
4
5
6
7
8
9
0
2
3
4
5
6
7
8
0
1
2
3
4
7
8
9
I
I
1
0
GPMC0_WAIT1  
OZ  
I
PADCONFIG:  
PADCONFIG39  
0x000F409C  
R17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV3  
Yes  
LVCMOS  
PU/PD  
1
pad  
0
IO  
IO  
IOD  
O
EQEP2_I  
I2C0_SCL  
1
SYNC0_OUT  
OBSCLK1  
O
I2C0_SCL  
UART1_DCDn  
EQEP2_A  
I
1
0
PADCONFIG:  
PADCONFIG120  
0x000F41E0  
D17  
I
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EHRPWM_SOCA  
GPIO1_26  
O
IO  
IO  
IO  
IOD  
IO  
IO  
I
pad  
0
ECAP1_IN_APWM_OUT  
SPI2_CS0  
1
I2C0_SDA  
1
SPI2_CS2  
1
TIMER_IO5  
0
I2C0_SDA  
UART1_DSRn  
EQEP2_B  
1
PADCONFIG:  
PADCONFIG121  
0x000F41E4  
E16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
I
0
EHRPWM_SOCB  
GPIO1_27  
O
IO  
IO  
IOD  
I
pad  
0
ECAP2_IN_APWM_OUT  
I2C1_SCL  
1
UART1_RXD  
TIMER_IO0  
1
IO  
IO  
I
0
I2C1_SCL  
SPI2_CS1  
1
PADCONFIG:  
PADCONFIG122  
0x000F41E8  
C17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EHRPWM0_SYNCI  
GPIO1_28  
0
IO  
IO  
I
pad  
0
EHRPWM2_A  
MMC2_SDCD  
0
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
I2C1_SDA  
0
1
2
3
4
7
8
9
0
1
2
3
4
5
7
8
9
0
1
2
3
4
5
7
8
9
0
1
2
6
7
8
0
1
2
7
8
IOD  
O
1
UART1_TXD  
TIMER_IO1  
IO  
IO  
O
0
0
I2C1_SDA  
SPI2_CLK  
PADCONFIG:  
PADCONFIG123  
0x000F41EC  
E17  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EHRPWM0_SYNCO  
GPIO1_29  
IO  
IO  
I
pad  
0
EHRPWM2_B  
MMC2_SDWP  
MCAN0_RX  
0
I
1
UART5_TXD  
TIMER_IO3  
O
IO  
O
0
MCAN0_RX  
SYNC3_OUT  
UART1_RIn  
PADCONFIG:  
PADCONFIG119  
0x000F41DC  
C18  
I
1
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
EQEP2_S  
IO  
IO  
IO  
I
GPIO1_25  
pad  
0
MCASP2_AXR1  
EHRPWM_TZn_IN4  
MCAN0_TX  
0
O
UART5_RXD  
TIMER_IO2  
I
1
0
IO  
O
MCAN0_TX  
SYNC2_OUT  
UART1_DTRn  
EQEP2_I  
PADCONFIG:  
PADCONFIG118  
0x000F41D8  
B17  
O
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
I
0
pad  
0
GPIO1_24  
MCASP2_AXR0  
EHRPWM_TZn_IN3  
MCASP0_ACLKR  
SPI2_CLK  
0
IO  
IO  
O
0
0
MCASP0_ACLKR  
UART1_TXD  
EHRPWM0_B  
GPIO1_14  
PADCONFIG:  
PADCONFIG108  
0x000F41B0  
A21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
pad  
0
EQEP1_I  
MCASP0_ACLKX  
SPI2_CS1  
0
MCASP0_ACLKX  
1
PADCONFIG:  
PADCONFIG105  
0x000F41A4  
A19  
ECAP2_IN_APWM_OUT  
GPIO1_11  
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
LVCMOS  
PU/PD  
pad  
0
EQEP1_A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MCASP0_AFSR  
SPI2_CS0  
0
1
2
6
7
8
0
1
2
7
8
0
2
6
7
8
0
1
2
6
7
8
0
1
2
3
5
7
8
0
1
2
3
5
7
8
IO  
IO  
I
0
1
MCASP0_AFSR  
UART1_RXD  
EHRPWM0_A  
GPIO1_13  
1
PADCONFIG:  
PADCONFIG107  
0x000F41AC  
B21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
pad  
0
EQEP1_S  
MCASP0_AFSX  
SPI2_CS3  
0
MCASP0_AFSX  
1
PADCONFIG:  
PADCONFIG106  
0x000F41A8  
A20  
B20  
AUDIO_EXT_REFCLK1  
GPIO1_12  
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
pad  
0
EQEP1_B  
MCASP0_AXR0  
AUDIO_EXT_REFCLK0  
EHRPWM1_B  
GPIO1_10  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
0
MCASP0_AXR0  
0
PADCONFIG:  
PADCONFIG104  
0x000F41A0  
0
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
pad  
0
EQEP0_I  
MCASP0_AXR1  
SPI2_CS2  
0
1
MCASP0_AXR1  
ECAP1_IN_APWM_OUT  
EHRPWM1_A  
GPIO1_9  
0
PADCONFIG:  
PADCONFIG103  
0x000F419C  
B18  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
0
pad  
0
EQEP0_S  
MCASP0_AXR2  
SPI2_D1  
0
0
MCASP0_AXR2  
UART1_RTSn  
UART6_TXD  
ECAP2_IN_APWM_OUT  
GPIO1_8  
PADCONFIG:  
PADCONFIG102  
0x000F4198  
B19  
O
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
I
0
pad  
0
EQEP0_B  
MCASP0_AXR3  
SPI2_D0  
IO  
IO  
I
0
0
MCASP0_AXR3  
UART1_CTSn  
UART6_RXD  
ECAP1_IN_APWM_OUT  
GPIO1_7  
1
PADCONFIG:  
PADCONFIG101  
0x000F4194  
C19  
I
1
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
IO  
IO  
I
0
pad  
0
EQEP0_A  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MCU_ERRORn  
PADCONFIG:  
MCU_PADCONFIG24  
0x04084060  
B8  
E12  
D9  
MCU_ERRORn  
0
IO  
Off / Off / Down  
Off / Off / NA  
Off / Off / NA  
On / SS / Down  
On / SS / NA  
On / SS / NA  
0
7
7
1.8 V  
VDDS_OSC0  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
LVCMOS  
I2C OD FS  
I2C OD FS  
PU/PD  
MCU_I2C0_SCL  
MCU_I2C0_SCL  
MCU_GPIO0_17  
MCU_I2C0_SDA  
MCU_GPIO0_18  
0
7
0
7
IOD  
IOD  
IOD  
IOD  
1
PADCONFIG:  
MCU_PADCONFIG17  
0x04084044  
1.8 V/3.3 V  
1.8 V/3.3 V  
pad  
1
MCU_I2C0_SDA  
PADCONFIG:  
MCU_PADCONFIG18  
0x04084048  
pad  
MCU_MCAN0_RX  
MCU_TIMER_IO0  
MCU_SPI1_CS3  
MCU_GPIO0_14  
MCU_MCAN0_TX  
WKUP_TIMER_IO0  
MCU_SPI0_CS3  
MCU_GPIO0_13  
MCU_MCAN1_RX  
MCU_TIMER_IO3  
MCU_SPI0_CS2  
MCU_SPI1_CS2  
MCU_SPI1_CLK  
MCU_GPIO0_16  
MCU_MCAN1_TX  
MCU_TIMER_IO2  
MCU_SPI1_CS1  
MCU_EXT_REFCLK0  
MCU_GPIO0_15  
MCU_OSC0_XI  
0
1
2
7
0
1
2
7
0
1
2
3
4
7
0
1
3
4
7
I
1
0
MCU_MCAN0_RX  
IO  
IO  
IO  
O
PADCONFIG:  
MCU_PADCONFIG14  
0x04084038  
E8  
C7  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
pad  
MCU_MCAN0_TX  
IO  
IO  
IO  
I
0
1
PADCONFIG:  
MCU_PADCONFIG13  
0x04084034  
pad  
1
IO  
IO  
IO  
IO  
IO  
O
0
MCU_MCAN1_RX  
1
PADCONFIG:  
MCU_PADCONFIG16  
0x04084040  
B9  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
PU/PD  
1
0
pad  
MCU_MCAN1_TX  
IO  
IO  
I
0
1
PADCONFIG:  
MCU_PADCONFIG15  
0x0408403C  
D7  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_CANUART  
LVCMOS  
PU/PD  
0
IO  
I
pad  
A12  
A11  
MCU_OSC0_XI  
MCU_OSC0_XO  
MCU_PORz  
1.8 V  
1.8 V  
VDDS_OSC0  
VDDS_OSC0  
HFOSC  
HFOSC  
MCU_OSC0_XO  
O
PADCONFIG:  
MCU_PADCONFIG22  
0x04084058  
A7  
MCU_PORz  
0
I
0
0
1.8 V  
VDDS_OSC0  
Yes  
Yes  
FS RESET  
LVCMOS  
MCU_RESETSTATz  
MCU_RESETSTATz  
MCU_GPIO0_21  
0
7
O
PADCONFIG:  
MCU_PADCONFIG23  
0x0408405C  
D14  
Off / Low / Off  
Off / SS / Off  
1.8 V/3.3 V  
VDDSHV_MCU  
PU/PD  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MCU_RESETz  
PADCONFIG:  
MCU_PADCONFIG21  
0x04084054  
C12  
MCU_RESETz  
0
I
On / Off / Up  
Off / Off / Off  
Off / Off / Off  
On / Off / Up  
Off / Off / Off  
Off / Off / Off  
0
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
MCU_SPI0_CLK  
MCU_SPI0_CLK  
MCU_GPIO0_2  
0
7
IO  
IO  
0
PADCONFIG:  
MCU_PADCONFIG2  
0x04084008  
B13  
E11  
pad  
MCU_SPI0_CS0  
MCU_SPI0_CS0  
0
4
IO  
IO  
1
0
PADCONFIG:  
MCU_PADCONFIG0  
0x04084000  
WKUP_TIMER_IO1  
MCU_GPIO0_0  
7
IO  
pad  
1
MCU_SPI0_CS1  
MCU_OBSCLK0  
MCU_SYSCLKOUT0  
MCU_EXT_REFCLK0  
MCU_TIMER_IO1  
MCU_GPIO0_1  
0
1
2
3
4
7
0
IO  
O
MCU_SPI0_CS1  
O
PADCONFIG:  
MCU_PADCONFIG1  
0x04084004  
C11  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV_MCU  
Yes  
LVCMOS  
PU/PD  
I
0
0
IO  
IO  
IO  
pad  
0
MCU_SPI0_D0  
MCU_SPI0_D0  
PADCONFIG:  
MCU_PADCONFIG3  
0x0408400C  
A15  
B12  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
MCU_GPIO0_3  
MCU_SPI0_D1  
MCU_GPIO0_4  
7
0
7
IO  
IO  
IO  
pad  
0
MCU_SPI0_D1  
PADCONFIG:  
MCU_PADCONFIG4  
0x04084010  
pad  
MCU_UART0_CTSn  
MCU_TIMER_IO0  
MCU_SPI1_D0  
0
1
3
7
0
1
3
7
0
I
1
0
MCU_UART0_CTSn  
IO  
IO  
IO  
O
PADCONFIG:  
MCU_PADCONFIG7  
0x0408401C  
B11  
D10  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
0
MCU_GPIO0_7  
pad  
MCU_UART0_RTSn  
MCU_TIMER_IO1  
MCU_SPI1_D1  
MCU_UART0_RTSn  
IO  
IO  
IO  
I
0
0
PADCONFIG:  
MCU_PADCONFIG8  
0x04084020  
MCU_GPIO0_8  
pad  
1
MCU_UART0_RXD  
MCU_UART0_RXD  
PADCONFIG:  
MCU_PADCONFIG5  
0x04084014  
D8  
F8  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
MCU_GPIO0_5  
MCU_UART0_TXD  
MCU_GPIO0_6  
7
0
7
IO  
O
pad  
MCU_UART0_TXD  
PADCONFIG:  
MCU_PADCONFIG6  
0x04084018  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MDIO0_MDC  
MDIO0_MDC  
0
7
0
7
O
PADCONFIG:  
PADCONFIG88  
0x000F4160  
V12  
V13  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_86  
IO  
IO  
IO  
pad  
0
MDIO0_MDIO  
MDIO0_MDIO  
GPIO0_85  
PADCONFIG:  
PADCONFIG87  
0x000F415C  
pad  
MMC0_CLK  
I2C3_SCL  
0
1
2
5
6
7
0
1
2
5
6
7
0
2
3
7
0
2
3
7
0
1
2
3
7
0
1
2
3
7
IO  
IOD  
IO  
IO  
IO  
IO  
IO  
IOD  
IO  
IO  
IO  
IO  
IO  
IO  
I
0
1
MMC0_CLK  
EHRPWM2_A  
SPI1_CS1  
0
PADCONFIG:  
PADCONFIG134  
0x000F4218  
AB7  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
1
TIMER_IO4  
GPIO1_40  
0
pad  
1
MMC0_CMD  
I2C3_SDA  
1
MMC0_CMD  
EHRPWM2_B  
SPI1_CS2  
0
PADCONFIG:  
PADCONFIG136  
0x000F4220  
Y6  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
1
TIMER_IO5  
GPIO1_41  
0
pad  
0
MMC1_CLK  
TIMER_IO4  
UART3_RXD  
GPIO1_46  
MMC1_CLK  
0
PADCONFIG:  
PADCONFIG141  
0x000F4234  
E22  
C21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV5  
VDDSHV5  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
1
IO  
IO  
IO  
O
pad  
1
MMC1_CMD  
TIMER_IO5  
UART3_TXD  
GPIO1_47  
MMC1_CMD  
0
PADCONFIG:  
PADCONFIG143  
0x000F423C  
IO  
I
pad  
0
MMC1_SDCD  
UART6_RXD  
TIMER_IO6  
UART3_RTSn  
GPIO1_48  
MMC1_SDCD  
I
1
PADCONFIG:  
PADCONFIG144  
0x000F4240  
E18  
D18  
IO  
O
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
I
pad  
0
MMC1_SDWP  
UART6_TXD  
TIMER_IO7  
UART3_CTSn  
GPIO1_49  
MMC1_SDWP  
O
PADCONFIG:  
PADCONFIG145  
0x000F4244  
IO  
I
0
1
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MMC2_CLK  
MCASP1_ACLKR  
MCASP1_AXR5  
UART6_RXD  
GPIO0_69  
0
1
2
3
7
0
1
2
3
7
0
1
3
7
0
1
3
7
0
1
2
6
7
0
1
2
5
6
7
0
1
2
5
6
7
IO  
IO  
IO  
I
0
0
MMC2_CLK  
PADCONFIG:  
PADCONFIG70  
0x000F4118  
H22  
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV6  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
1
IO  
IO  
IO  
IO  
O
pad  
1
MMC2_CMD  
MCASP1_AFSR  
MCASP1_AXR4  
UART6_TXD  
GPIO0_70  
MMC2_CMD  
0
PADCONFIG:  
PADCONFIG72  
0x000F4120  
G22  
0
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
VDDSHV6  
IO  
I
pad  
0
MMC2_SDCD  
MCASP1_ACLKX  
UART4_RXD  
GPIO0_71  
MMC2_SDCD  
IO  
I
0
PADCONFIG:  
PADCONFIG73  
0x000F4124  
F22  
E21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
IO  
I
pad  
0
MMC2_SDWP  
MCASP1_AFSX  
UART4_TXD  
GPIO0_72  
MMC2_SDWP  
IO  
O
0
PADCONFIG:  
PADCONFIG74  
0x000F4128  
IO  
IO  
I
pad  
1
MMC0_DAT0  
UART3_CTSn  
EHRPWM_TZn_IN1  
SPI2_CLK  
MMC0_DAT0  
1
PADCONFIG:  
PADCONFIG133  
0x000F4214  
AA6  
I
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
Yes  
SDIO  
PU/PD  
IO  
IO  
IO  
O
0
GPIO1_39  
pad  
1
MMC0_DAT1  
UART3_RTSn  
EHRPWM1_B  
SPI1_CS3  
MMC0_DAT1  
IO  
IO  
IO  
IO  
IO  
O
0
1
PADCONFIG:  
PADCONFIG132  
0x000F4210  
AB6  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
SDIO  
PU/PD  
SPI2_CS0  
1
GPIO1_38  
pad  
1
MMC0_DAT2  
UART3_TXD  
EHRPWM1_A  
SPI1_CLK  
MMC0_DAT2  
IO  
IO  
IO  
IO  
0
0
PADCONFIG:  
PADCONFIG131  
0x000F420C  
Y7  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
TIMER_IO0  
0
GPIO1_37  
pad  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MMC0_DAT3  
0
1
2
5
6
7
0
1
2
6
7
0
1
2
6
7
0
1
2
5
6
7
0
1
2
5
6
7
0
1
2
3
4
7
IO  
I
1
1
UART3_RXD  
EHRPWM0_B  
SPI1_CS0  
MMC0_DAT3  
IO  
IO  
IO  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG130  
0x000F4208  
AA7  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV4  
Yes  
SDIO  
PU/PD  
1
SPI2_CS2  
1
GPIO1_36  
pad  
1
MMC0_DAT4  
UART2_CTSn  
EHRPWM0_A  
SPI2_D1  
MMC0_DAT4  
1
PADCONFIG:  
PADCONFIG129  
0x000F4204  
Y8  
IO  
IO  
IO  
IO  
O
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV4  
VDDSHV4  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
0
GPIO1_35  
pad  
1
MMC0_DAT5  
UART2_RTSn  
EHRPWM_TZn_IN2  
SPI2_D0  
MMC0_DAT5  
PADCONFIG:  
PADCONFIG128  
0x000F4200  
W7  
I
0
0
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
IO  
IO  
IO  
O
GPIO1_34  
pad  
1
MMC0_DAT6  
UART2_TXD  
EHRPWM0_SYNCO  
SPI1_D1  
MMC0_DAT6  
O
PADCONFIG:  
PADCONFIG127  
0x000F41FC  
W9  
AB8  
B22  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV4  
VDDSHV4  
VDDSHV5  
Yes  
Yes  
Yes  
SDIO  
SDIO  
SDIO  
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
IO  
IO  
I
0
1
SPI2_CS3  
GPIO1_33  
pad  
1
MMC0_DAT7  
UART2_RXD  
EHRPWM0_SYNCI  
SPI1_D0  
1
MMC0_DAT7  
I
0
PADCONFIG:  
PADCONFIG126  
0x000F41F8  
IO  
IO  
IO  
IO  
I
0
SPI2_CS1  
1
GPIO1_32  
pad  
1
MMC1_DAT0  
CP_GEMAC_CPTS0_HW2TSPUSH  
TIMER_IO3  
0
MMC1_DAT0  
IO  
I
0
PADCONFIG:  
PADCONFIG140  
0x000F4230  
UART2_CTSn  
ECAP2_IN_APWM_OUT  
GPIO1_45  
1
IO  
IO  
0
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
MMC1_DAT1  
0
1
2
3
4
7
0
1
2
3
7
0
1
2
3
7
0
1
IO  
I
1
0
0
CP_GEMAC_CPTS0_HW1TSPUSH  
TIMER_IO2  
MMC1_DAT1  
IO  
O
PADCONFIG:  
PADCONFIG139  
0x000F422C  
D21  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV5  
Yes  
SDIO  
PU/PD  
UART2_RTSn  
ECAP1_IN_APWM_OUT  
GPIO1_44  
IO  
IO  
IO  
O
0
pad  
1
MMC1_DAT2  
MMC1_DAT2  
CP_GEMAC_CPTS0_TS_SYNC  
TIMER_IO1  
PADCONFIG:  
PADCONFIG138  
0x000F4228  
C22  
D22  
IO  
O
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV5  
VDDSHV5  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
UART2_TXD  
GPIO1_43  
IO  
IO  
O
pad  
1
MMC1_DAT3  
MMC1_DAT3  
CP_GEMAC_CPTS0_TS_COMP  
TIMER_IO0  
PADCONFIG:  
PADCONFIG137  
0x000F4224  
IO  
I
0
1
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
UART2_RXD  
GPIO1_42  
IO  
IO  
IO  
pad  
1
MMC2_DAT0  
MMC2_DAT0  
PADCONFIG:  
PADCONFIG69  
0x000F4114  
MCASP1_AXR0  
0
E20  
F21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
GPIO0_68  
7
IO  
pad  
MMC2_DAT1  
MMC2_DAT1  
0
1
IO  
IO  
1
0
PADCONFIG:  
PADCONFIG68  
0x000F4110  
MCASP1_AXR1  
GPIO0_67  
7
IO  
pad  
MMC2_DAT2  
MCASP1_AXR2  
UART5_TXD  
GPIO0_66  
0
1
3
7
0
1
3
7
0
IO  
IO  
O
1
0
MMC2_DAT2  
PADCONFIG:  
PADCONFIG67  
0x000F410C  
F20  
G21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV6  
VDDSHV6  
Yes  
Yes  
SDIO  
SDIO  
PU/PD  
PU/PD  
IO  
IO  
IO  
I
pad  
1
MMC2_DAT3  
MCASP1_AXR3  
UART5_RXD  
GPIO0_65  
MMC2_DAT3  
0
PADCONFIG:  
PADCONFIG66  
0x000F4108  
1
IO  
O
pad  
OSPI0_CLK  
OSPI0_CLK  
PADCONFIG:  
PADCONFIG0  
0x000F4000  
L22  
L21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
GPIO0_0  
7
IO  
pad  
OSPI0_DQS  
OSPI0_DQS  
0
5
I
I
0
1
PADCONFIG:  
PADCONFIG2  
0x000F4008  
UART5_CTSn  
GPIO0_2  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
OSPI0_LBCLKO  
OSPI0_LBCLKO  
0
5
IO  
O
0
PADCONFIG:  
PADCONFIG1  
0x000F4004  
UART5_RTSn  
GPIO0_1  
K22  
H21  
G19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
7
0
IO  
O
pad  
OSPI0_CSn0  
OSPI0_CSn0  
PADCONFIG:  
PADCONFIG11  
0x000F402C  
GPIO0_11  
7
0
7
IO  
O
pad  
OSPI0_CSn1  
OSPI0_CSn1  
GPIO0_12  
PADCONFIG:  
PADCONFIG12  
0x000F4030  
IO  
pad  
1
OSPI0_CSn2  
0
1
2
3
4
5
7
0
1
2
3
4
5
7
0
O
IO  
O
SPI1_CS1  
OSPI0_CSn2  
OSPI0_RESET_OUT1  
MCASP1_AFSR  
MCASP1_AXR2  
UART5_RXD  
PADCONFIG:  
PADCONFIG13  
0x000F4034  
K20  
IO  
IO  
I
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV1  
Yes  
LVCMOS  
PU/PD  
1
GPIO0_13  
IO  
O
pad  
OSPI0_CSn3  
OSPI0_RESET_OUT0  
OSPI0_ECC_FAIL  
MCASP1_ACLKR  
MCASP1_AXR3  
UART5_TXD  
O
OSPI0_CSn3  
I
1
0
0
PADCONFIG:  
PADCONFIG14  
0x000F4038  
G20  
IO  
IO  
O
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV1  
Yes  
LVCMOS  
PU/PD  
GPIO0_14  
IO  
IO  
pad  
0
OSPI0_D0  
OSPI0_D0  
PADCONFIG:  
PADCONFIG3  
0x000F400C  
J21  
J18  
J19  
H18  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
VDDSHV1  
VDDSHV1  
VDDSHV1  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
GPIO0_3  
OSPI0_D1  
GPIO0_4  
OSPI0_D2  
GPIO0_5  
OSPI0_D3  
GPIO0_6  
7
0
7
0
7
0
7
IO  
IO  
IO  
IO  
IO  
IO  
IO  
pad  
0
OSPI0_D1  
PADCONFIG:  
PADCONFIG4  
0x000F4010  
pad  
0
OSPI0_D2  
PADCONFIG:  
PADCONFIG5  
0x000F4014  
pad  
0
OSPI0_D3  
PADCONFIG:  
PADCONFIG6  
0x000F4018  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
OSPI0_D4  
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
1
2
3
7
0
IO  
IO  
IO  
I
0
1
OSPI0_D4  
SPI1_CS0  
PADCONFIG:  
PADCONFIG7  
0x000F401C  
K21  
MCASP1_AXR1  
UART6_RXD  
GPIO0_7  
0
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV1  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
1
IO  
IO  
IO  
IO  
O
pad  
0
OSPI0_D5  
OSPI0_D5  
SPI1_CLK  
0
PADCONFIG:  
PADCONFIG8  
0x000F4020  
H19  
J20  
J22  
MCASP1_AXR0  
UART6_TXD  
GPIO0_8  
0
VDDSHV1  
VDDSHV1  
VDDSHV1  
IO  
IO  
IO  
IO  
O
pad  
0
OSPI0_D6  
OSPI0_D6  
SPI1_D0  
0
PADCONFIG:  
PADCONFIG9  
0x000F4024  
MCASP1_ACLKX  
UART6_RTSn  
GPIO0_9  
0
IO  
IO  
IO  
IO  
I
pad  
0
OSPI0_D7  
OSPI0_D7  
SPI1_D1  
0
PADCONFIG:  
PADCONFIG10  
0x000F4028  
MCASP1_AFSX  
UART6_CTSn  
GPIO0_10  
0
1
IO  
O
pad  
PMIC_LPM_EN0  
PMIC_LPM_EN0  
PADCONFIG:  
MCU_PADCONFIG32  
0x04084080  
D12  
F18  
Off / Off / Off  
Off / Low / Off  
Off / Low / Off  
On / Off / Up  
Off / Off / Off  
Off / SS / Off  
Off / SS / Off  
Off / SS / Off  
On / Off / Up  
Off / Off / Off  
0
0
0
0
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV0  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
MCU_GPIO0_22  
PORz_OUT  
7
IO  
pad  
PORz_OUT  
PADCONFIG:  
PADCONFIG148  
0x000F4250  
0
O
RESETSTATz  
PADCONFIG:  
PADCONFIG147  
0x000F424C  
F19  
RESETSTATz  
RESET_REQz  
0
0
O
I
VDDSHV0  
RESET_REQz  
PADCONFIG:  
PADCONFIG146  
0x000F4248  
E19  
VDDSHV0  
RGMII1_RXC  
RGMII1_RXC  
0
1
I
I
0
0
PADCONFIG:  
PADCONFIG82  
0x000F4148  
RMII1_REF_CLK  
AA16  
VDDSHV2  
GPIO0_80  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
RGMII1_RX_CTL  
RGMII1_RX_CTL  
0
1
I
I
0
0
PADCONFIG:  
PADCONFIG81  
0x000F4144  
RMII1_RX_ER  
GPIO0_79  
AA15  
AB17  
W16  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
7
IO  
pad  
RGMII1_TXC  
RGMII1_TXC  
0
1
IO  
I
0
0
PADCONFIG:  
PADCONFIG76  
0x000F4130  
RMII1_CRS_DV  
GPIO0_74  
7
IO  
pad  
RGMII1_TX_CTL  
RGMII1_TX_CTL  
RMII1_TX_EN  
0
1
O
O
PADCONFIG:  
PADCONFIG75  
0x000F412C  
GPIO0_73  
7
IO  
pad  
RGMII2_RXC  
RMII2_REF_CLK  
MCASP2_AXR1  
GPIO1_2  
0
1
2
7
0
1
2
7
0
1
2
7
0
1
2
7
0
1
I
0
0
RGMII2_RXC  
I
PADCONFIG:  
PADCONFIG96  
0x000F4180  
AA20  
W18  
AB19  
Y19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
I
0
pad  
0
RGMII2_RX_CTL  
RMII2_RX_ER  
MCASP2_AXR3  
GPIO1_1  
RGMII2_RX_CTL  
I
0
PADCONFIG:  
PADCONFIG95  
0x000F417C  
IO  
IO  
IO  
I
0
pad  
0
RGMII2_TXC  
RMII2_CRS_DV  
MCASP2_AXR5  
GPIO0_88  
RGMII2_TXC  
0
PADCONFIG:  
PADCONFIG90  
0x000F4168  
IO  
IO  
O
O
IO  
IO  
I
0
pad  
RGMII2_TX_CTL  
RMII2_TX_EN  
MCASP2_AXR4  
GPIO0_87  
RGMII2_TX_CTL  
PADCONFIG:  
PADCONFIG89  
0x000F4164  
0
pad  
0
RGMII1_RD0  
RGMII1_RD0  
RMII1_RXD0  
PADCONFIG:  
PADCONFIG83  
0x000F414C  
I
0
AB16  
V15  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
GPIO0_81  
7
IO  
pad  
RGMII1_RD1  
RGMII1_RD1  
RMII1_RXD1  
0
1
I
I
0
0
PADCONFIG:  
PADCONFIG84  
0x000F4150  
GPIO0_82  
7
0
IO  
I
pad  
0
RGMII1_RD2  
RGMII1_RD2  
PADCONFIG:  
PADCONFIG85  
0x000F4154  
W15  
GPIO0_83  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
RGMII1_RD3  
RGMII1_RD3  
GPIO0_84  
0
7
I
0
PADCONFIG:  
PADCONFIG86  
0x000F4158  
V14  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
pad  
RGMII1_TD0  
RGMII1_TD0  
RMII1_TXD0  
0
1
O
O
PADCONFIG:  
PADCONFIG77  
0x000F4134  
Y17  
V16  
GPIO0_75  
7
IO  
pad  
RGMII1_TD1  
RGMII1_TD1  
RMII1_TXD1  
0
1
O
O
PADCONFIG:  
PADCONFIG78  
0x000F4138  
GPIO0_76  
7
0
IO  
O
pad  
pad  
RGMII1_TD2  
RGMII1_TD2  
PADCONFIG:  
PADCONFIG79  
0x000F413C  
Y16  
GPIO0_77  
7
IO  
RGMII1_TD3  
RGMII1_TD3  
CLKOUT0  
0
1
O
O
PADCONFIG:  
PADCONFIG80  
0x000F4140  
AA17  
GPIO0_78  
7
IO  
pad  
RGMII2_RD0  
RMII2_RXD0  
MCASP2_AXR2  
GPIO1_3  
0
1
2
7
0
1
2
5
7
0
2
7
8
0
2
7
8
0
1
2
7
I
0
0
RGMII2_RD0  
I
PADCONFIG:  
PADCONFIG97  
0x000F4184  
AA21  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
IO  
I
0
pad  
0
RGMII2_RD1  
RMII2_RXD1  
MCASP2_AFSR  
MCASP2_AXR7  
GPIO1_4  
RGMII2_RD1  
I
0
PADCONFIG:  
PADCONFIG98  
0x000F4188  
Y20  
IO  
IO  
IO  
I
0
Off / Off / Off  
Off / Off / Off  
0
pad  
0
RGMII2_RD2  
MCASP2_AXR0  
GPIO1_5  
RGMII2_RD2  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG99  
0x000F418C  
AB21  
AB20  
AA19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
VDDSHV2  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
pad  
0
EQEP2_A  
RGMII2_RD3  
AUDIO_EXT_REFCLK0  
GPIO1_6  
I
0
RGMII2_RD3  
IO  
IO  
I
0
PADCONFIG:  
PADCONFIG100  
0x000F4190  
pad  
0
EQEP2_B  
RGMII2_TD0  
RMII2_TXD0  
MCASP2_AXR6  
GPIO0_89  
O
O
IO  
IO  
RGMII2_TD0  
PADCONFIG:  
PADCONFIG91  
0x000F416C  
0
pad  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
RGMII2_TD1  
0
1
2
5
7
0
2
7
8
0
1
2
7
8
O
O
RGMII2_TD1  
RMII2_TXD1  
MCASP2_ACLKR  
MCASP2_AXR8  
GPIO0_90  
PADCONFIG:  
PADCONFIG92  
0x000F4170  
Y18  
AA18  
W17  
IO  
0
0
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV2  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
IO  
IO  
pad  
RGMII2_TD2  
MCASP2_AFSX  
GPIO0_91  
O
RGMII2_TD2  
IO  
0
pad  
0
PADCONFIG:  
PADCONFIG93  
0x000F4174  
VDDSHV2  
VDDSHV2  
IO  
EQEP2_I  
IO  
RGMII2_TD3  
CLKOUT0  
O
RGMII2_TD3  
O
PADCONFIG:  
PADCONFIG94  
0x000F4178  
MCASP2_ACLKX  
GPIO1_0  
IO  
0
pad  
0
IO  
EQEP2_S  
IO  
C6  
D6  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
RSVD0  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IO  
RSVD1  
E7  
RSVD2  
F6  
RSVD3  
F10  
G7  
U11  
V11  
RSVD4  
RSVD5  
RSVD6  
RSVD7  
SPI0_CLK  
0
1
2
7
0
2
0
SPI0_CLK  
CP_GEMAC_CPTS0_TS_SYNC  
EHRPWM1_A  
GPIO1_17  
O
PADCONFIG:  
PADCONFIG111  
0x000F41BC  
A17  
D16  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
0
pad  
1
IO  
SPI0_CS0  
SPI0_CS0  
IO  
PADCONFIG:  
PADCONFIG109  
0x000F41B4  
EHRPWM0_A  
IO  
0
GPIO1_15  
7
IO  
pad  
1
SPI0_CS1  
0
1
2
3
7
9
IO  
O
CP_GEMAC_CPTS0_TS_COMP  
EHRPWM0_B  
SPI0_CS1  
IO  
IO  
IO  
I
0
0
PADCONFIG:  
PADCONFIG110  
0x000F41B8  
C16  
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
ECAP0_IN_APWM_OUT  
GPIO1_16  
pad  
0
EHRPWM_TZn_IN5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
SPI0_D0  
0
1
2
7
0
1
2
7
IO  
I
0
0
SPI0_D0  
CP_GEMAC_CPTS0_HW1TSPUSH  
EHRPWM1_B  
PADCONFIG:  
PADCONFIG112  
0x000F41C0  
B15  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
IO  
IO  
IO  
I
0
GPIO1_18  
pad  
0
SPI0_D1  
SPI0_D1  
CP_GEMAC_CPTS0_HW2TSPUSH  
EHRPWM_TZn_IN0  
GPIO1_19  
0
PADCONFIG:  
PADCONFIG113  
0x000F41C4  
E15  
VDDSHV0  
I
0
IO  
pad  
TCK  
PADCONFIG:  
MCU_PADCONFIG25  
0x04084064  
A14  
A16  
C14  
B14  
F15  
TCK  
TDI  
0
0
0
0
0
I
On / Off / Up  
On / Off / Up  
Off / Off / Up  
On / Off / Up  
On / Off / Down  
On / Off / Up  
On / Off / Up  
Off / SS / Up  
On / Off / Up  
On / Off / Down  
0
0
0
0
0
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
TDI  
PADCONFIG:  
MCU_PADCONFIG27  
0x0408406C  
I
TDO  
PADCONFIG:  
MCU_PADCONFIG28  
0x04084070  
TDO  
TMS  
TRSTn  
OZ  
TMS  
PADCONFIG:  
MCU_PADCONFIG29  
0x04084074  
I
I
TRSTn  
PADCONFIG:  
MCU_PADCONFIG26  
0x04084068  
UART0_CTSn  
SPI0_CS2  
0
1
2
3
4
5
7
8
9
I
IO  
IOD  
I
1
1
I2C3_SCL  
1
UART0_CTSn  
UART2_RXD  
TIMER_IO6  
1
PADCONFIG:  
PADCONFIG116  
0x000F41D0  
F14  
IO  
IO  
IO  
IO  
I
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
AUDIO_EXT_REFCLK0  
GPIO1_22  
0
pad  
0
MCASP2_AFSX  
MMC2_SDCD  
0
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
UART0_RTSn  
0
1
2
3
4
5
7
8
9
0
1
2
3
7
0
1
2
3
7
O
IO  
IOD  
O
SPI0_CS3  
1
1
I2C3_SDA  
UART0_RTSn  
UART2_TXD  
TIMER_IO7  
PADCONFIG:  
PADCONFIG117  
0x000F41D4  
C15  
IO  
IO  
IO  
IO  
I
0
0
Off / Off / Off  
Off / Off / Off  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
AUDIO_EXT_REFCLK1  
GPIO1_23  
pad  
0
MCASP2_ACLKX  
MMC2_SDWP  
UART0_RXD  
ECAP1_IN_APWM_OUT  
SPI2_D0  
0
I
1
UART0_RXD  
IO  
IO  
IO  
IO  
O
0
PADCONFIG:  
PADCONFIG114  
0x000F41C8  
E14  
D15  
0
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
VDDSHV0  
VDDSHV0  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
EHRPWM2_A  
GPIO1_20  
0
pad  
UART0_TXD  
ECAP2_IN_APWM_OUT  
SPI2_D1  
UART0_TXD  
IO  
IO  
IO  
IO  
0
0
PADCONFIG:  
PADCONFIG115  
0x000F41CC  
Off / Off / Off  
Off / Off / Off  
1.8 V/3.3 V  
EHRPWM2_B  
GPIO1_21  
0
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
AA10  
AA9  
USB0_DM  
USB0_DM  
IO  
1.8 V/3.3 V  
1.8 V/3.3 V  
USB2PHY  
USB2PHY  
VDDA_1P8_USB,  
VDDA_3P3_USB  
USB0_DP  
USB0_DP  
IO  
O
USB0_DRVVBUS  
USB0_DRVVBUS  
0
7
PADCONFIG:  
PADCONFIG149  
0x000F4268  
C20  
Off / Off / Down  
Off / Off / Down  
7
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
GPIO1_50  
IO  
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
W10  
V8  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
A
A
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
USB2PHY  
USB2PHY  
USB2PHY  
USB2PHY  
VDDA_1P8_USB,  
VDDA_3P3_USB  
VDDA_1P8_USB,  
VDDA_3P3_USB  
Y11  
Y10  
IO  
VDDA_1P8_USB,  
VDDA_3P3_USB  
USB1_DP  
USB1_DP  
IO  
O
USB1_DRVVBUS  
USB1_DRVVBUS  
0
7
PADCONFIG:  
PADCONFIG150  
0x000F4280  
D19  
U7  
Off / Off / Down  
Off / Off / Down  
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV0  
Yes  
LVCMOS  
PU/PD  
GPIO1_51  
IO  
A
pad  
VDDA_1P8_USB,  
VDDA_3P3_USB  
USB1_RCALIB  
USB1_RCALIB  
USB2PHY  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VDDA_1P8_USB,  
VDDA_3P3_USB  
V6  
USB1_VBUS  
USB1_VBUS  
A
1.8 V/3.3 V  
USB2PHY  
T10  
T12  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
U10  
T11  
T9  
M9  
J10  
N9  
VDDA_PLL0  
VDDA_PLL0  
R11  
M13  
K13  
K10  
P16  
G18  
L10  
VDDA_PLL1  
VDDA_PLL1  
VDDA_PLL2  
VDDA_PLL2  
VDDA_PLL3  
VDDA_PLL3  
VDDA_PLL4  
VDDA_PLL4  
VDDA_TEMP0  
VDDA_TEMP1  
VDDA_TEMP2  
VDDA_TEMP0  
VDDA_TEMP1  
VDDA_TEMP2  
J14, K12,  
M10, M14, VDDR_CORE  
P12, P9  
VDDR_CORE  
PWR  
G14, H13  
K15, L16  
VDDSHV0  
VDDSHV1  
VDDSHV0  
VDDSHV1  
PWR  
PWR  
R13, T13,  
U13  
VDDSHV2  
VDDSHV3  
VDDSHV2  
VDDSHV3  
PWR  
PWR  
L15, M15,  
N15  
T8, U8  
G16, H15  
H16, H17  
H8  
VDDSHV4  
VDDSHV4  
PWR  
PWR  
PWR  
PWR  
PWR  
VDDSHV5  
VDDSHV5  
VDDSHV6  
VDDSHV6  
VDDSHV_CANUART  
VDDSHV_MCU  
VDDSHV_CANUART  
VDDSHV_MCU  
G11, H10  
A2, AA1,  
AB2, B1, J7,  
K8, L7, M8,  
N7, P8  
VDDS_DDR  
VDDS_DDR  
PWR  
L8  
J8  
VDDS_DDR_C  
VDDS_OSC0  
VDDS_DDR_C  
VDDS_OSC0  
PWR  
PWR  
PWR  
H9  
VDD_CANUART  
VDD_CANUART  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
J11, J13, J15,  
J9, K14, L11,  
L13, L9, M12,  
N11, N13,  
VDD_CORE  
VDD_CORE  
PWR  
P10, P14,  
R15, R9, T16,  
U15  
F12  
F9  
VMON_1P8_SOC  
VMON_3P3_SOC  
VMON_VSYS  
VMON_1P8_SOC  
VMON_3P3_SOC  
VMON_VSYS  
VOUT0_DE  
A
A
H12  
A
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
O
VOUT0_DE  
GPMC0_A17  
UART3_CTSn  
GPIO0_62  
OZ  
I
PADCONFIG:  
PADCONFIG63  
0x000F40FC  
U17  
T18  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
1
IO  
O
pad  
VOUT0_HSYNC  
GPMC0_A16  
UART3_RTSn  
GPIO0_61  
VOUT0_HSYNC  
OZ  
O
PADCONFIG:  
PADCONFIG62  
0x000F40F8  
IO  
O
pad  
VOUT0_PCLK  
GPMC0_A19  
UART2_CTSn  
GPIO0_64  
VOUT0_PCLK  
OZ  
I
PADCONFIG:  
PADCONFIG65  
0x000F4104  
AA22  
V17  
U22  
U21  
U20  
1
IO  
O
pad  
VOUT0_VSYNC  
GPMC0_A18  
UART2_RTSn  
GPIO0_63  
VOUT0_VSYNC  
OZ  
O
PADCONFIG:  
PADCONFIG64  
0x000F4100  
IO  
O
pad  
VOUT0_DATA0  
GPMC0_A0  
VOUT0_DATA0  
OZ  
I
PADCONFIG:  
PADCONFIG46  
0x000F40B8  
UART2_RXD  
GPIO0_45  
1
IO  
O
pad  
VOUT0_DATA1  
GPMC0_A1  
VOUT0_DATA1  
OZ  
O
PADCONFIG:  
PADCONFIG47  
0x000F40BC  
UART2_TXD  
GPIO0_46  
IO  
O
pad  
VOUT0_DATA2  
GPMC0_A2  
VOUT0_DATA2  
OZ  
I
PADCONFIG:  
PADCONFIG48  
0x000F40C0  
UART3_RXD  
GPIO0_47  
1
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VOUT0_DATA3  
GPMC0_A3  
UART3_TXD  
GPIO0_48  
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
O
OZ  
O
VOUT0_DATA3  
PADCONFIG:  
PADCONFIG49  
0x000F40C4  
U19  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
7
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
O
pad  
VOUT0_DATA4  
GPMC0_A4  
UART4_RXD  
GPIO0_49  
VOUT0_DATA4  
OZ  
I
PADCONFIG:  
PADCONFIG50  
0x000F40C8  
T19  
U18  
V22  
V21  
V19  
V18  
W22  
W21  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
VDDSHV3  
1
IO  
O
pad  
VOUT0_DATA5  
GPMC0_A5  
UART4_TXD  
GPIO0_50  
VOUT0_DATA5  
OZ  
O
PADCONFIG:  
PADCONFIG51  
0x000F40CC  
IO  
O
pad  
VOUT0_DATA6  
GPMC0_A6  
UART5_RXD  
GPIO0_51  
VOUT0_DATA6  
OZ  
I
PADCONFIG:  
PADCONFIG52  
0x000F40D0  
1
IO  
O
pad  
VOUT0_DATA7  
GPMC0_A7  
UART5_TXD  
GPIO0_52  
VOUT0_DATA7  
OZ  
O
PADCONFIG:  
PADCONFIG53  
0x000F40D4  
IO  
O
pad  
VOUT0_DATA8  
GPMC0_A8  
UART6_RXD  
GPIO0_53  
VOUT0_DATA8  
OZ  
I
PADCONFIG:  
PADCONFIG54  
0x000F40D8  
1
IO  
O
pad  
VOUT0_DATA9  
GPMC0_A9  
UART6_TXD  
GPIO0_54  
VOUT0_DATA9  
OZ  
O
PADCONFIG:  
PADCONFIG55  
0x000F40DC  
IO  
O
pad  
pad  
VOUT0_DATA10  
GPMC0_A10  
UART6_RTSn  
GPIO0_55  
VOUT0_DATA10  
OZ  
O
PADCONFIG:  
PADCONFIG56  
0x000F40E0  
IO  
O
VOUT0_DATA11  
GPMC0_A11  
UART6_CTSn  
GPIO0_56  
VOUT0_DATA11  
OZ  
I
PADCONFIG:  
PADCONFIG57  
0x000F40E4  
1
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
VOUT0_DATA12  
0
1
4
7
0
1
4
7
0
1
4
7
0
1
4
7
O
OZ  
O
VOUT0_DATA12  
GPMC0_A12  
UART5_RTSn  
GPIO0_57  
PADCONFIG:  
PADCONFIG58  
0x000F40E8  
W20  
W19  
Y21  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV3  
Yes  
Yes  
Yes  
Yes  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
PU/PD  
PU/PD  
IO  
O
pad  
VOUT0_DATA13  
GPMC0_A13  
UART5_CTSn  
GPIO0_58  
VOUT0_DATA13  
OZ  
I
PADCONFIG:  
PADCONFIG59  
0x000F40EC  
VDDSHV3  
VDDSHV3  
VDDSHV3  
1
IO  
O
pad  
VOUT0_DATA14  
GPMC0_A14  
UART4_RTSn  
GPIO0_59  
VOUT0_DATA14  
OZ  
O
PADCONFIG:  
PADCONFIG60  
0x000F40F0  
IO  
O
pad  
VOUT0_DATA15  
GPMC0_A15  
UART4_CTSn  
GPIO0_60  
VOUT0_DATA15  
OZ  
I
PADCONFIG:  
PADCONFIG61  
0x000F40F4  
Y22  
F7  
1
IO  
PWR  
pad  
VPP  
VPP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
A1, A10, A13,  
A18, A22, A4,  
A6, AA11,  
AA14, AA2,  
AA4, AA8,  
AB1, AB12,  
AB15, AB18,  
AB22, AB3,  
AB5, AB9,  
B3, B5, B7,  
C4, D11, D2,  
D20, D4, E1,  
E3, E5, F11,  
F13, F16, F2,  
F4, G12,  
G17, G3, G5,  
G9, H1, H11,  
H14, H20,  
H4, J12, J17,  
J3, K1, K11,  
K4, K7, K9,  
L12, L14,  
VSS  
VSS  
PWR  
L20, L3, M11,  
M17, M4, M7,  
N1, N10,  
N12, N14,  
N16, N8, P11,  
P13, P15,  
P17, P20, P7,  
R10, R12,  
R14, R16,  
R2, R4, R6,  
T1, T15, T17,  
T3, T5, T7,  
U12, U14,  
U16, U2, U4,  
U6, U9, V1,  
V20, V3, V5,  
V7, V9, W11,  
W14, W2,  
W4, W6, W8,  
Y12, Y15, Y3,  
Y5, Y9  
WKUP_CLKOUT0  
WKUP_CLKOUT0  
MCU_GPIO0_23  
WKUP_I2C0_SCL  
MCU_GPIO0_19  
WKUP_I2C0_SDA  
MCU_GPIO0_20  
0
7
0
7
0
7
O
PADCONFIG:  
MCU_PADCONFIG33  
0x04084084  
B10  
D13  
E13  
Off / Off / Off  
Off / Off / NA  
Off / Off / NA  
Off / SS / Off  
On / SS / NA  
On / SS / NA  
0
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_MCU  
VDDSHV_MCU  
VDDSHV_MCU  
Yes  
Yes  
Yes  
LVCMOS  
I2C OD FS  
I2C OD FS  
PU/PD  
IO  
pad  
1
WKUP_I2C0_SCL  
IOD  
IOD  
IOD  
IOD  
PADCONFIG:  
MCU_PADCONFIG19  
0x0408404C  
pad  
1
WKUP_I2C0_SDA  
PADCONFIG:  
MCU_PADCONFIG20  
0x04084050  
pad  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-1. Pin Attributes (AMB Package) (continued)  
BALL  
STATE  
DURING  
RESET  
BALL  
STATE  
AFTER  
RESET  
MUX  
MODE  
AFTER  
RESET  
[9]  
BALL NAME [2]  
PADCONFIG Register [15]  
PADCONFIG Address [16]  
MUX  
MODE  
[4]  
I/O  
PULL  
UP/DOWN  
TYPE [14]  
BALL  
NUMBER [1]  
TYPE  
[5]  
DSIS  
[6]  
HYS  
[12]  
BUFFER  
TYPE [13]  
SIGNAL NAME [3]  
OPERATING  
VOLTAGE [10]  
POWER [11]  
(RX/TX/PULL) [7] (RX/TX/PULL) [8]  
A8  
A9  
WKUP_LFOSC0_XI  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
I
1.8 V  
1.8 V  
VDDS_OSC0  
VDDS_OSC0  
LFXOSC  
LFXOSC  
WKUP_LFOSC0_XO  
WKUP_UART0_CTSn  
WKUP_TIMER_IO0  
MCU_SPI1_CS0  
O
I
0
1
3
7
0
1
3
7
0
2
1
0
WKUP_UART0_CTSn  
IO  
IO  
IO  
O
IO  
IO  
IO  
I
PADCONFIG:  
MCU_PADCONFIG11  
0x0408402C  
C10  
C8  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
1
MCU_GPIO0_11  
pad  
WKUP_UART0_RTSn  
WKUP_TIMER_IO1  
MCU_SPI1_CLK  
WKUP_UART0_RTSn  
0
0
PADCONFIG:  
MCU_PADCONFIG12  
0x04084030  
MCU_GPIO0_12  
pad  
1
WKUP_UART0_RXD  
WKUP_UART0_RXD  
MCU_SPI0_CS2  
PADCONFIG:  
MCU_PADCONFIG9  
0x04084024  
IO  
1
C9  
E9  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
Off / Off / Off  
7
7
1.8 V/3.3 V  
1.8 V/3.3 V  
VDDSHV_CANUART  
VDDSHV_CANUART  
Yes  
Yes  
LVCMOS  
LVCMOS  
PU/PD  
PU/PD  
MCU_GPIO0_9  
7
IO  
pad  
WKUP_UART0_TXD  
WKUP_UART0_TXD  
MCU_SPI1_CS2  
0
2
O
PADCONFIG:  
MCU_PADCONFIG10  
0x04084028  
IO  
1
MCU_GPIO0_10  
7
IO  
pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
6.3 Signal Descriptions  
Many signals are available on multiple pins, according to the software configuration of the pin multiplexing  
options.  
The following list describes the column headers:  
1. SIGNAL NAME: The name of the signal passing through the pin.  
Note  
Signal names and descriptions provided in each Signal Descriptions table, represent the pin  
multiplexed signal function which is implemented at the pin and selected via PADCONFIG  
registers. Device subsystems may provide secondary multiplexing of signal functions, which are  
not described in these tables. For more information on secondary multiplexed signal functions,  
see the respective peripheral chapter of the device TRM.  
2. PIN TYPE: Signal direction and type:  
I = Input  
O = Output  
OD = Output, with open-drain output function  
IO = Input, Output, or simultaneously Input and Output  
IOD = Input, Output, or simultaneously Input and Output with open-drain output function  
IOZ = Input, Output, or simultaneously Input and Output with three-state output function  
OZ = Output with three-state output function  
A = Analog  
PWR = Power  
GND = Ground  
CAP = LDO Capacitor  
3. DESCRIPTION: Description of the signal  
4. BALL: Ball number(s) associated with signal  
6.3.1 CPSW3G  
6.3.1.1 MAIN Domain  
Table 6-2. CPSW3G0 RGMII1 Signal Descriptions  
SIGNAL NAME [1]  
RGMII1_RXC  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AA16  
AA15  
AB17  
W16  
I
I
RGMII Receive Clock  
RGMII1_RX_CTL  
RGMII1_TXC  
RGMII1_TX_CTL  
RGMII1_RD0  
RGMII1_RD1  
RGMII1_RD2  
RGMII1_RD3  
RGMII1_TD0  
RGMII1_TD1  
RGMII1_TD2  
RGMII1_TD3  
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
IO  
O
I
AB16  
V15  
I
I
W15  
I
V14  
O
O
O
O
Y17  
V16  
Y16  
AA17  
Table 6-3. CPSW3G0 RGMII2 Signal Descriptions  
SIGNAL NAME [1]  
RGMII2_RXC  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
I
RGMII Receive Clock  
AA20  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-3. CPSW3G0 RGMII2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
W18  
RGMII2_RX_CTL  
RGMII2_TXC  
RGMII2_TX_CTL  
RGMII2_RD0  
RGMII2_RD1  
RGMII2_RD2  
RGMII2_RD3  
RGMII2_TD0  
RGMII2_TD1  
RGMII2_TD2  
RGMII2_TD3  
I
IO  
O
I
RGMII Receive Control  
RGMII Transmit Clock  
RGMII Transmit Control  
RGMII Receive Data 0  
RGMII Receive Data 1  
RGMII Receive Data 2  
RGMII Receive Data 3  
RGMII Transmit Data 0  
RGMII Transmit Data 1  
RGMII Transmit Data 2  
RGMII Transmit Data 3  
AB19  
Y19  
AA21  
Y20  
I
I
AB21  
AB20  
AA19  
Y18  
I
O
O
O
O
AA18  
W17  
Table 6-4. CPSW3G0 RMII1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB17  
AA16  
AA15  
W16  
RMII1_CRS_DV  
RMII1_REF_CLK  
RMII1_RX_ER  
RMII1_TX_EN  
RMII1_RXD0  
RMII1_RXD1  
RMII1_TXD0  
I
I
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Receive Data 0  
RMII Receive Data 1  
RMII Transmit Data 0  
RMII Transmit Data 1  
I
O
I
AB16  
V15  
I
O
O
Y17  
RMII1_TXD1  
V16  
Table 6-5. CPSW3G0 RMII2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB19  
AA20  
W18  
RMII2_CRS_DV  
RMII2_REF_CLK  
RMII2_RX_ER  
RMII2_TX_EN  
RMII2_RXD0  
RMII2_RXD1  
RMII2_TXD0  
I
I
RMII Carrier Sense / Data Valid  
RMII Reference Clock  
RMII Receive Data Error  
RMII Transmit Enable  
RMII Receive Data 0  
RMII Receive Data 1  
RMII Transmit Data 0  
RMII Transmit Data 1  
I
O
I
Y19  
AA21  
Y20  
I
O
O
AA19  
Y18  
RMII2_TXD1  
6.3.2 CPTS  
Note  
Some CPTS signals are connected directly to CPTS modules within the device. Other CPTS signals  
are connected to the Time Sync Router and fanned out to peripherals linked to the router. Input  
signals are sent to the peripherals while output signals are sourced from the peripherals. For more  
information, see the Time Sync and Compare Events section in the Time Sync chapter in the device  
TRM.  
6.3.2.1 MAIN Domain  
Table 6-6. CPTS Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
CP_GEMAC_CPTS0_RFT_CLK  
I
CPTS Reference Clock Input  
B16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-6. CPTS Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
CPTS Time Stamp Counter Compare Output from  
CPSW3G0 CPTS  
CP_GEMAC_CPTS0_TS_COMP  
O
C16, D22  
A17, C22  
B15, D21  
B22, E15  
D17  
CPTS Time Stamp Counter Bit Output from CPSW3G0  
CPTS  
CP_GEMAC_CPTS0_TS_SYNC  
CP_GEMAC_CPTS0_HW1TSPUSH  
CP_GEMAC_CPTS0_HW2TSPUSH  
SYNC0_OUT  
O
I
CPTS Hardware Time Stamp Push Input to Time Sync  
Router  
CPTS Hardware Time Stamp Push Input to Time Sync  
Router  
I
CPTS Time Stamp Generator Bit 0 Output from Time  
Sync Router  
O
O
O
O
CPTS Time Stamp Generator Bit 1 Output from Time  
Sync Router  
SYNC1_OUT  
B16  
CPTS Time Stamp Generator Bit 2 Output from Time  
Sync Router  
SYNC2_OUT  
B17  
CPTS Time Stamp Generator Bit 3 Output from Time  
Sync Router  
SYNC3_OUT  
C18  
6.3.3 CSI-2  
6.3.3.1 MAIN Domain  
Table 6-7. CSIRX0 Signal Descriptions  
SIGNAL NAME [1]  
CSI0_RXCLKN  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB14  
I
I
CSI Differential Receive Clock Input (negative)  
CSI Differential Receive Clock Input (positive)  
CSI0_RXCLKP  
AB13  
CSI pin connected to external resistor for on-chip  
resistor calibration  
CSI0_RXRCALIB (1)  
A
V10  
CSI0_RXN0  
CSI0_RXN1  
CSI0_RXN2  
CSI0_RXN3  
CSI0_RXP0  
CSI0_RXP1  
CSI0_RXP2  
CSI0_RXP3  
I
I
I
I
I
I
I
I
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (negative)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
CSI Differential Receive Input (positive)  
W12  
Y13  
AA13  
AB11  
W13  
Y14  
AA12  
AB10  
(1) An external 499 Ω ±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
6.3.4 DDRSS  
6.3.4.1 MAIN Domain  
Table 6-8. DDRSS0 Signal Descriptions  
SIGNAL NAME [1]  
DDR0_ACT_n  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
O
DDRSS Activation Command  
N5  
H7  
DDR0_ALERT_n  
DDR0_CAS_n (1)  
IO  
DDRSS Alert  
DDR4 Column Address Strobe / LPDDR4 Chip Select  
1B  
O
M5  
DDR0_PAR  
DDR0_RAS_n (1)  
DDR0_WE_n  
DDR0_A0  
O
O
O
O
O
DDRSS Command and Address Parity  
DDR4 Row Address Strobe / LPDDR4 Chip Select 0B  
DDRSS Write Enable  
N2  
M6  
N6  
J5  
DDRSS Address Bus  
DDR0_A1  
DDRSS Address Bus  
J2  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-8. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
J4  
DDR0_A2  
DDR0_A3  
DDR0_A4  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
DDR0_A9  
DDR0_A10  
DDR0_A11  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
O
O
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Address Bus  
DDRSS Bank Address  
DDRSS Bank Address  
DDRSS Bank Group  
DDRSS Bank Group  
IO Pad Calibration Resistor  
DDRSS Clock  
L4  
O
J1  
O
K5  
K3  
H2  
L6  
O
O
O
O
L2  
O
K2  
L5  
O
O
M3  
M2  
K6  
H3  
P4  
R7  
H6  
M1  
L1  
O
O
O
O
O
DDR0_CAL0 (2)  
A
DDR0_CK0  
O
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n (1)  
DDR0_CS1_n (1)  
DDR0_DM0  
DDR0_DM1  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
DDR0_DQ17  
O
DDRSS Negative Clock  
DDRSS Clock Enable  
DDRSS Clock Enable  
DDR4 Chip Select 0 / LPDDR4 Chip Select 0A  
DDR4 Chip Select 1 / LPDDR4 Chip Select 1A  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data Mask  
DDRSS Data  
O
P3  
P5  
J6  
O
O
O
N4  
C2  
F3  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
U1  
W3  
A5  
B4  
B6  
D5  
C5  
C3  
B2  
A3  
E2  
F5  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
E6  
G2  
G6  
G4  
E4  
D3  
T6  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
T4  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-8. DDRSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
DDRSS Data  
U5  
R5  
P2  
R3  
T2  
U3  
Y2  
V2  
V4  
W5  
Y4  
AA3  
AA5  
AB4  
D1  
C1  
G1  
F1  
DDRSS Data Strobe  
DDR0_DQS0_n  
DDR0_DQS1  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
DDR0_DQS1_n  
DDR0_DQS2  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
R1  
P1  
DDR0_DQS2_n  
DDR0_DQS3  
DDRSS Complimentary Data Strobe  
DDRSS Data Strobe  
W1  
Y1  
DDR0_DQS3_n  
DDR0_ODT0  
DDRSS Complimentary Data Strobe  
DDRSS On-Die Termination for Chip Select 0  
DDRSS On-Die Termination for Chip Select 1  
DDRSS Reset  
H5  
N3  
P6  
DDR0_ODT1  
O
DDR0_RESET0_n  
O
(1) DDRSS implements different signal functions on these signals based on the attached memory device type. The signals function as  
Column Address Strobe, Row Address Strobe, Chip Select 0, and Chip Select 1 when DDRSS is configured to operate with DDR4  
memory devices. The signals function as Chip Select 1B, Chip Select 0B, Chip Select 0A, and Chip Select 1A respectively when  
DDRSS is configured to operate with LPDDR4 memory devices. For more information, refer to Section 9.2.1, DDR Board Design and  
Layout Guidelines.  
(2) An external 240 Ω ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.  
6.3.5 DSS  
6.3.5.1 MAIN Domain  
Table 6-9. DSS0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
U17  
VOUT0_DE  
O
I
Video Output Data Enable  
VOUT0_EXTPCLKIN  
VOUT0_HSYNC  
VOUT0_PCLK  
Video Output External Pixel Clock Input  
Video Output Horizontal Sync  
Video Output Pixel Clock Output  
Video Output Vertical Sync  
Video Output Data 0  
R17  
O
O
O
O
O
O
O
O
O
T18  
AA22  
V17  
VOUT0_VSYNC  
VOUT0_DATA0  
VOUT0_DATA1  
VOUT0_DATA2  
VOUT0_DATA3  
VOUT0_DATA4  
VOUT0_DATA5  
U22  
Video Output Data 1  
U21  
Video Output Data 2  
U20  
Video Output Data 3  
U19  
Video Output Data 4  
T19  
Video Output Data 5  
U18  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-9. DSS0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
V22  
VOUT0_DATA6  
VOUT0_DATA7  
VOUT0_DATA8  
VOUT0_DATA9  
VOUT0_DATA10  
VOUT0_DATA11  
VOUT0_DATA12  
VOUT0_DATA13  
VOUT0_DATA14  
VOUT0_DATA15  
VOUT0_DATA16  
VOUT0_DATA17  
VOUT0_DATA18  
VOUT0_DATA19  
VOUT0_DATA20  
VOUT0_DATA21  
VOUT0_DATA22  
VOUT0_DATA23  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Video Output Data 6  
Video Output Data 7  
Video Output Data 8  
Video Output Data 9  
Video Output Data 10  
Video Output Data 11  
Video Output Data 12  
Video Output Data 13  
Video Output Data 14  
Video Output Data 15  
Video Output Data 16  
Video Output Data 17  
Video Output Data 18  
Video Output Data 19  
Video Output Data 20  
Video Output Data 21  
Video Output Data 22  
Video Output Data 23  
V21  
V19  
V18  
W22  
W21  
W20  
W19  
Y21  
Y22  
P22  
R19  
R20  
R22  
T22  
R21  
T20  
T21  
6.3.6 ECAP  
6.3.6.1 MAIN Domain  
Table 6-10. ECAP0 Signal Descriptions  
SIGNAL NAME [1]  
ECAP0_IN_APWM_OUT  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
IO  
B16, C16  
Table 6-11. ECAP1 Signal Descriptions  
SIGNAL NAME [1]  
ECAP1_IN_APWM_OUT  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
B18, C19, D17,  
D21, E14  
IO  
Table 6-12. ECAP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Enhanced Capture (ECAP) Input or Auxiliary PWM  
(APWM) Ouput  
A19, B19, B22,  
D15, E16  
ECAP2_IN_APWM_OUT  
IO  
6.3.7 Emulation and Debug  
6.3.7.1 MAIN Domain  
Table 6-13. Trace Signal Descriptions  
SIGNAL NAME [1]  
TRC_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
N21  
O
O
O
O
O
O
Trace Clock  
Trace Control  
Trace Data 0  
Trace Data 1  
Trace Data 2  
Trace Data 3  
TRC_CTL  
N20  
TRC_DATA0  
N19  
TRC_DATA1  
N18  
TRC_DATA2  
N17  
TRC_DATA3  
P18  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-13. Trace Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
TRC_DATA4  
TRC_DATA5  
TRC_DATA6  
TRC_DATA7  
TRC_DATA8  
TRC_DATA9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Trace Data 4  
Trace Data 5  
Trace Data 6  
Trace Data 7  
Trace Data 8  
Trace Data 9  
Trace Data 10  
Trace Data 11  
Trace Data 12  
Trace Data 13  
Trace Data 14  
Trace Data 15  
Trace Data 16  
Trace Data 17  
Trace Data 18  
Trace Data 19  
Trace Data 20  
Trace Data 21  
Trace Data 22  
Trace Data 23  
P19  
P21  
N22  
L18  
L17  
K19  
L19  
M18  
R18  
K17  
K18  
M19  
M21  
M22  
M20  
T21  
T20  
R21  
T22  
R22  
TRC_DATA10  
TRC_DATA11  
TRC_DATA12  
TRC_DATA13  
TRC_DATA14  
TRC_DATA15  
TRC_DATA16  
TRC_DATA17  
TRC_DATA18  
TRC_DATA19  
TRC_DATA20  
TRC_DATA21  
TRC_DATA22  
TRC_DATA23  
6.3.7.2 MCU Domain  
Table 6-14. JTAG Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
C13  
EMU0  
EMU1  
TCK  
IO  
Emulation Control 0  
Emulation Control 1  
JTAG Test Clock Input  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG Test Mode Select Input  
JTAG Reset  
IO  
E10  
I
A14  
TDI  
I
A16  
TDO  
OZ  
C14  
TMS  
I
I
B14  
TRSTn  
F15  
6.3.8 EPWM  
6.3.8.1 MAIN Domain  
Table 6-15. EPWM Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
D17  
EHRPWM_SOCA  
EHRPWM_SOCB  
EHRPWM_TZn_IN0  
EHRPWM_TZn_IN1  
EHRPWM_TZn_IN2  
EHRPWM_TZn_IN3  
EHRPWM_TZn_IN4  
EHRPWM_TZn_IN5  
O
O
I
EHRPWM Start of Conversion A  
EHRPWM Start of Conversion B  
E16  
EHRPWM Trip Zone Input 0 (active low)  
EHRPWM Trip Zone Input 1 (active low)  
EHRPWM Trip Zone Input 2 (active low)  
EHRPWM Trip Zone Input 3 (active low)  
EHRPWM Trip Zone Input 4 (active low)  
EHRPWM Trip Zone Input 5 (active low)  
E15  
I
AA6  
I
W7  
I
B17  
I
C18  
I
C16  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-16. EPWM0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
B21, D16, Y8  
A21, AA7, C16  
AB8, C17  
EHRPWM0_A  
IO  
IO  
I
EHRPWM Output A  
EHRPWM0_B  
EHRPWM Output B  
EHRPWM0_SYNCI  
EHRPWM0_SYNCO  
Sync Input to EHRPWM module from an external pin  
Sync Input to EHRPWM module from an external pin  
O
E17, W9  
Table 6-17. EPWM1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
A17, B18, Y7  
AB6, B15, B20  
EHRPWM1_A  
EHRPWM1_B  
IO  
IO  
EHRPWM Output A  
EHRPWM Output B  
Table 6-18. EPWM2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB7, C17, E14  
D15, E17, Y6  
EHRPWM2_A  
EHRPWM2_B  
IO  
IO  
EHRPWM Output A  
EHRPWM Output B  
6.3.9 EQEP  
6.3.9.1 MAIN Domain  
Table 6-19. EQEP0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
C19  
EQEP0_A (1)  
EQEP0_B (1)  
EQEP0_I (1)  
EQEP0_S (1)  
I
EQEP Quadrature Input A  
EQEP Quadrature Input B  
EQEP Index  
I
B19  
IO  
IO  
B20  
EQEP Strobe  
B18  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
Table 6-20. EQEP1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
A19  
EQEP1_A (1)  
EQEP1_B (1)  
EQEP1_I (1)  
EQEP1_S (1)  
I
EQEP Quadrature Input A  
I
EQEP Quadrature Input B  
EQEP Index  
A20  
IO  
IO  
A21  
EQEP Strobe  
B21  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
Table 6-21. EQEP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB21, D17  
EQEP2_A (1)  
EQEP2_B (1)  
EQEP2_I (1)  
EQEP2_S (1)  
I
EQEP Quadrature Input A  
I
EQEP Quadrature Input B  
EQEP Index  
AB20, E16  
IO  
IO  
AA18, B17, R17  
C18, K18, W17  
EQEP Strobe  
(1) This EQEP input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
6.3.10 GPIO  
6.3.10.1 MAIN Domain  
Table 6-22. GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
GPIO0_0  
IO  
General Purpose Input/Output  
L22  
K22  
L21  
J21  
GPIO0_1  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
GPIO0_2  
IO  
GPIO0_3  
IO  
GPIO0_4  
IO  
J18  
GPIO0_5  
IO  
J19  
GPIO0_6  
IO  
H18  
K21  
H19  
J20  
GPIO0_7  
IO  
GPIO0_8  
IO  
GPIO0_9  
IO  
GPIO0_10  
GPIO0_11  
GPIO0_12  
GPIO0_13 (1)  
GPIO0_14 (1)  
GPIO0_15  
GPIO0_16  
GPIO0_17  
GPIO0_18  
GPIO0_19  
GPIO0_20  
GPIO0_21  
GPIO0_22  
GPIO0_23  
GPIO0_24  
GPIO0_25  
GPIO0_26  
GPIO0_27  
GPIO0_28  
GPIO0_29  
GPIO0_30  
GPIO0_31  
GPIO0_32  
GPIO0_33  
GPIO0_34  
GPIO0_35  
GPIO0_36  
GPIO0_37  
GPIO0_38  
GPIO0_39  
GPIO0_40  
GPIO0_41  
GPIO0_42  
IO  
J22  
IO  
H21  
G19  
K20  
G20  
N21  
N20  
N19  
N18  
N17  
P18  
P19  
P21  
P22  
R19  
R20  
R22  
T22  
R21  
T20  
T21  
N22  
L18  
L17  
K19  
L19  
M18  
R18  
R17  
K17  
K18  
M19  
M21  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-22. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
M22  
M20  
U22  
U21  
U20  
U19  
T19  
GPIO0_43 (1)  
GPIO0_44 (1)  
GPIO0_45  
GPIO0_46  
GPIO0_47  
GPIO0_48  
GPIO0_49  
GPIO0_50  
GPIO0_51  
GPIO0_52  
GPIO0_53  
GPIO0_54  
GPIO0_55  
GPIO0_56  
GPIO0_57  
GPIO0_58  
GPIO0_59  
GPIO0_60  
GPIO0_61  
GPIO0_62  
GPIO0_63  
GPIO0_64  
GPIO0_65 (1)  
GPIO0_66 (1)  
GPIO0_67 (1)  
GPIO0_68 (1)  
GPIO0_69 (1)  
GPIO0_70 (1)  
GPIO0_71 (1)  
GPIO0_72 (1)  
GPIO0_73  
GPIO0_74  
GPIO0_75  
GPIO0_76  
GPIO0_77  
GPIO0_78  
GPIO0_79  
GPIO0_80  
GPIO0_81  
GPIO0_82  
GPIO0_83  
GPIO0_84  
GPIO0_85  
GPIO0_86  
GPIO0_87  
IO  
General Purpose Input/Output  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
IO  
IO  
IO  
IO  
IO  
IO  
U18  
V22  
IO  
IO  
V21  
IO  
V19  
IO  
V18  
IO  
W22  
W21  
W20  
W19  
Y21  
IO  
IO  
IO  
IO  
IO  
Y22  
IO  
T18  
IO  
U17  
V17  
IO  
IO  
AA22  
G21  
F20  
IO  
IO  
IO  
F21  
IO  
E20  
IO  
H22  
G22  
F22  
IO  
IO  
IO  
E21  
IO  
W16  
AB17  
Y17  
IO  
IO  
IO  
V16  
IO  
Y16  
IO  
AA17  
AA15  
AA16  
AB16  
V15  
IO  
IO  
IO  
IO  
IO  
W15  
V14  
IO  
IO  
V13  
IO  
V12  
IO  
Y19  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-22. GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
GPIO0_88  
GPIO0_89  
GPIO0_90  
GPIO0_91  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
AB19  
AA19  
Y18  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
AA18  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
Table 6-23. GPIO1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
W17  
W18  
AA20  
AA21  
Y20  
AB21  
AB20  
C19  
B19  
B18  
B20  
A19  
A20  
B21  
A21  
D16  
C16  
A17  
B15  
E15  
E14  
D15  
F14  
GPIO1_0  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IOD  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
GPIO1_1  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
GPIO1_2  
GPIO1_3  
GPIO1_4  
GPIO1_5  
GPIO1_6  
GPIO1_7  
GPIO1_8  
GPIO1_9  
GPIO1_10  
GPIO1_11  
GPIO1_12  
GPIO1_13  
GPIO1_14  
GPIO1_15  
GPIO1_16 (1)  
GPIO1_17  
GPIO1_18  
GPIO1_19  
GPIO1_20  
GPIO1_21  
GPIO1_22  
GPIO1_23  
GPIO1_24  
GPIO1_25  
GPIO1_26  
GPIO1_27  
GPIO1_28  
GPIO1_29  
GPIO1_30  
GPIO1_31 (1)  
GPIO1_32 (1)  
GPIO1_33 (1)  
GPIO1_34 (1)  
GPIO1_35 (1)  
GPIO1_36 (1)  
C15  
B17  
C18  
D17  
E16  
C17  
E17  
B16  
F17  
AB8  
W9  
W7  
Y8  
AA7  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-23. GPIO1 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Y7  
GPIO1_37 (1)  
GPIO1_38 (1)  
GPIO1_39 (1)  
GPIO1_40 (1)  
GPIO1_41 (1)  
GPIO1_42 (1)  
GPIO1_43 (1)  
GPIO1_44 (1)  
GPIO1_45 (1)  
GPIO1_46 (1)  
GPIO1_47 (1)  
GPIO1_48 (1)  
GPIO1_49 (1)  
GPIO1_50  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
AB6  
AA6  
AB7  
Y6  
D22  
C22  
D21  
B22  
E22  
C21  
E18  
D18  
C20  
D19  
GPIO1_51  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6.3.10.2 MCU Domain  
Table 6-24. MCU_GPIO0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_GPIO0_0 (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
E11  
C11  
B13  
A15  
B12  
D8  
IO  
IO  
General Purpose Input/Output  
MCU_GPIO0_1 (1)  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
General Purpose Input/Output  
MCU_GPIO0_2  
IO  
MCU_GPIO0_3  
IO  
MCU_GPIO0_4  
IO  
MCU_GPIO0_5  
IO  
MCU_GPIO0_6  
IO  
F8  
MCU_GPIO0_7 (1)  
MCU_GPIO0_8 (1)  
MCU_GPIO0_9  
IO  
B11  
D10  
C9  
IO  
IO  
MCU_GPIO0_10  
MCU_GPIO0_11 (1)  
MCU_GPIO0_12 (1)  
MCU_GPIO0_13  
MCU_GPIO0_14  
MCU_GPIO0_15 (1)  
MCU_GPIO0_16 (1)  
MCU_GPIO0_17  
MCU_GPIO0_18  
MCU_GPIO0_19  
MCU_GPIO0_20  
MCU_GPIO0_21  
MCU_GPIO0_22  
IO  
E9  
IO  
C10  
C8  
IO  
IO  
C7  
IO  
E8  
IO  
D7  
IO  
B9  
IOD  
IOD  
IOD  
IOD  
IO  
E12  
D9  
D13  
E13  
D14  
D12  
IO  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-24. MCU_GPIO0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
B10  
MCU_GPIO0_23  
IO  
General Purpose Input/Output  
(1) This GPIO input signal has a debounce function. For more information on I/O Debounce configuration, see the TRM Device  
Configuration chapter.  
6.3.11 GPMC  
6.3.11.1 MAIN Domain  
Table 6-25. GPMC0 Signal Descriptions  
SIGNAL NAME [1]  
GPMC0_ADVn_ALE  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
GPMC Address Valid (active low) or Address Latch  
Enable  
O
L18  
GPMC0_CLK  
O
O
O
GPMC clock  
N22  
K18  
N22  
GPMC0_DIR  
GPMC Data Bus Signal Direction Control  
GPMC functional clock output  
GPMC0_FCLK_MUX  
GPMC Output Enable (active low) or Read Enable  
(active low)  
GPMC0_OEn_REn  
O
L17  
GPMC0_WEn  
GPMC0_WPn  
O
O
GPMC Write Enable (active low)  
K19  
K17  
GPMC Flash Write Protect (active low)  
GPMC Address 0 Output. Only used to effectively  
address 8-bit data non-multiplexed memories  
GPMC0_A0  
GPMC0_A1  
GPMC0_A2  
GPMC0_A3  
GPMC0_A4  
GPMC0_A5  
GPMC0_A6  
GPMC0_A7  
GPMC0_A8  
GPMC0_A9  
GPMC0_A10  
GPMC0_A11  
GPMC0_A12  
GPMC0_A13  
GPMC0_A14  
GPMC0_A15  
GPMC0_A16  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
OZ  
U22  
U21  
U20  
U19  
T19  
U18  
V22  
V21  
V19  
V18  
W22  
W21  
W20  
W19  
Y21  
Y22  
T18  
GPMC address 1 Output in A/D non-multiplexed mode  
and Address 17 in A/D multiplexed mode  
GPMC address 2 Output in A/D non-multiplexed mode  
and Address 18 in A/D multiplexed mode  
GPMC address 3 Output in A/D non-multiplexed mode  
and Address 19 in A/D multiplexed mode  
GPMC address 4 Output in A/D non-multiplexed mode  
and Address 20 in A/D multiplexed mode  
GPMC address 5 Output in A/D non-multiplexed mode  
and Address 21 in A/D multiplexed mode  
GPMC address 6 Output in A/D non-multiplexed mode  
and Address 22 in A/D multiplexed mode  
GPMC address 7 Output in A/D non-multiplexed mode  
and Address 23 in A/D multiplexed mode  
GPMC address 8 Output in A/D non-multiplexed mode  
and Address 24 in A/D multiplexed mode  
GPMC address 9 Output in A/D non-multiplexed mode  
and Address 25 in A/D multiplexed mode  
GPMC address 10 Output in A/D non-multiplexed  
mode and Address 26 in A/D multiplexed mode  
GPMC address 11 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 12 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 13 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 14 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 15 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 16 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-25. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
GPMC address 17 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC0_A17  
GPMC0_A18  
GPMC0_A19  
GPMC0_A20  
GPMC0_A21  
GPMC0_A22  
OZ  
U17  
GPMC address 18 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
OZ  
OZ  
OZ  
OZ  
OZ  
V17  
AA22  
M20  
R17  
GPMC address 19 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 20 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 21 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
GPMC address 22 Output in A/D non-multiplexed  
mode and unused in A/D multiplexed mode  
K17  
GPMC Data 0 Input/Output in A/D non-multiplexed  
mode and additionally Address 1 Output in A/D  
multiplexed mode  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
N21  
N20  
N19  
N18  
N17  
P18  
P19  
P21  
P22  
R19  
R20  
R22  
T22  
R21  
T20  
GPMC Data 1 Input/Output in A/D non-multiplexed  
mode and additionally Address 2 Output in A/D  
multiplexed mode  
GPMC Data 2 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 3 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 4 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 5 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 6 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 7 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 8 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 9 Input/Output in A/D non-multiplexed  
mode and additionally Address 3 Output in A/D  
multiplexed mode  
GPMC Data 10 Input/Output in A/D non-multiplexed  
mode and additionally Address 11 Output in A/D  
multiplexed mode  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC Data 11 Input/Output in A/D non-multiplexed  
mode and additionally Address 12 Output in A/D  
multiplexed mode  
GPMC Data 12 Input/Output in A/D non-multiplexed  
mode and additionally Address 13 Output in A/D  
multiplexed mode  
GPMC Data 13 Input/Output in A/D non-multiplexed  
mode and additionally Address 14 Output in A/D  
multiplexed mode  
GPMC Data 14 Input/Output in A/D non-multiplexed  
mode and additionally Address 15 Output in A/D  
multiplexed mode  
GPMC0_AD14  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-25. GPMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
GPMC0_AD15  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
GPMC Data 15 Input/Output in A/D non-multiplexed  
mode and additionally Address 16 Output in A/D  
multiplexed mode  
IO  
T21  
L19  
GPMC Lower-Byte Enable (active low) or Command  
Latch Enable  
GPMC0_BE0n_CLE  
O
GPMC0_BE1n  
GPMC0_CSn0  
GPMC0_CSn1  
GPMC0_CSn2  
GPMC0_CSn3  
GPMC0_WAIT0  
GPMC0_WAIT1  
O
O
O
O
O
I
GPMC Upper-Byte Enable (active low)  
GPMC Chip Select 0 (active low)  
GPMC Chip Select 1 (active low)  
GPMC Chip Select 2 (active low)  
GPMC Chip Select 3 (active low)  
GPMC External Indication of Wait  
GPMC External Indication of Wait  
M18  
M19  
M21  
M22  
M20  
R18  
R17  
I
6.3.12 I2C  
6.3.12.1 MAIN Domain  
Table 6-26. I2C0 Signal Descriptions  
SIGNAL NAME [1]  
I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
D17  
IOD  
I2C Clock  
I2C Data  
I2C0_SDA  
IOD  
E16  
Table 6-27. I2C1 Signal Descriptions  
SIGNAL NAME [1]  
I2C1_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
C17  
IOD  
I2C Clock  
I2C Data  
I2C1_SDA  
IOD  
E17  
Table 6-28. I2C2 Signal Descriptions  
SIGNAL NAME [1]  
I2C2_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
M22  
IOD  
I2C Clock  
I2C Data  
I2C2_SDA  
IOD  
M20  
Table 6-29. I2C3 Signal Descriptions  
SIGNAL NAME [1]  
I2C3_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB7, F14  
C15, Y6  
IOD  
I2C Clock  
I2C Data  
I2C3_SDA  
IOD  
6.3.12.2 MCU Domain  
Table 6-30. MCU_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
IOD  
I2C Clock  
I2C Data  
E12  
D9  
MCU_I2C0_SDA  
IOD  
6.3.12.3 WKUP Domain  
Table 6-31. WKUP_I2C0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_I2C0_SCL  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
D13  
IOD  
I2C Clock  
I2C Data  
WKUP_I2C0_SDA  
IOD  
E13  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
6.3.13 MCAN  
6.3.13.1 MAIN Domain  
Table 6-32. MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
AMB PIN [4]  
C18  
I
MCAN0_TX  
O
B17  
6.3.13.2 MCU Domain  
Table 6-33. MCU_MCAN0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN0_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
AMB PIN [4]  
I
E8  
C7  
MCU_MCAN0_TX  
O
Table 6-34. MCU_MCAN1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_MCAN1_RX  
PIN TYPE [2]  
DESCRIPTION [3]  
MCAN Receive Data  
MCAN Transmit Data  
AMB PIN [4]  
I
B9  
D7  
MCU_MCAN1_TX  
O
6.3.14 MCASP  
6.3.14.1 MAIN Domain  
Table 6-35. MCASP0 Signal Descriptions  
SIGNAL NAME [1]  
MCASP0_ACLKR  
MCASP0_ACLKX  
MCASP0_AFSR  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
A21  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
A19  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
B21  
MCASP0_AFSX  
A20  
MCASP0_AXR0  
B20  
MCASP0_AXR1  
B18  
MCASP0_AXR2  
B19  
MCASP0_AXR3  
C19  
Table 6-36. MCASP1 Signal Descriptions  
SIGNAL NAME [1]  
MCASP1_ACLKR  
MCASP1_ACLKX  
MCASP1_AFSR  
MCASP1_AFSX  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
G20, H22, M20  
F22, J20, L19  
G22, K20, M22  
E21, J22, R18  
E20, H19, K19  
F21, K21, L17  
F20, K20, L18  
G20, G21, N22  
G22, M22  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Receive Bit Clock  
MCASP Transmit Bit Clock  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP1_AXR0  
MCASP1_AXR1  
MCASP1_AXR2  
MCASP1_AXR3  
MCASP1_AXR4  
MCASP1_AXR5  
H22, M20  
Table 6-37. MCASP2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
MCASP2_ACLKR  
IO  
MCASP Receive Bit Clock  
T21, Y18  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-37. MCASP2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
MCASP2_ACLKX  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
MCASP Transmit Bit Clock  
C15, R21, W17  
T20, Y20  
AA18, F14, T22  
AB21, B17, P22  
AA20, C18, R19  
AA21, R20  
R22, W18  
N21, Y19  
AB19, N20  
AA19, N19  
N18, Y20  
N17, Y18  
P18  
MCASP2_AFSR  
MCASP2_AFSX  
MCASP2_AXR0  
MCASP2_AXR1  
MCASP2_AXR2  
MCASP2_AXR3  
MCASP2_AXR4  
MCASP2_AXR5  
MCASP2_AXR6  
MCASP2_AXR7  
MCASP2_AXR8  
MCASP2_AXR9  
MCASP2_AXR10  
MCASP2_AXR11  
MCASP2_AXR12  
MCASP2_AXR13  
MCASP2_AXR14  
MCASP2_AXR15  
MCASP Receive Frame Sync  
MCASP Transmit Frame Sync  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
MCASP Serial Data (Input/Output)  
P19  
P21  
M18  
K18  
M19  
M21  
6.3.15 MCSPI  
6.3.15.1 MAIN Domain  
Table 6-38. MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
SPI0_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
A17  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI0_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
D16  
SPI0_CS1  
C16  
SPI0_CS2  
F14  
SPI0_CS3  
C15  
SPI0_D0  
B15  
SPI0_D1  
SPI Data 1  
E15  
Table 6-39. MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
SPI1_CLK  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
H19, Y7  
AA7, K21  
AB7, K20  
Y6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI1_CS0  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI1_CS1  
SPI1_CS2  
SPI1_CS3  
AB6  
SPI1_D0  
AB8, J20  
J22, W9  
SPI1_D1  
SPI Data 1  
Table 6-40. MCSPI2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
SPI2_CLK  
IO  
SPI Clock  
A21, AA6, E17  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-40. MCSPI2 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB6, B21, D17  
A19, AB8, C17  
AA7, B18, E16  
A20, B16, W9  
C19, E14, W7  
B19, D15, Y8  
SPI2_CS0  
SPI2_CS1  
SPI2_CS2  
SPI2_CS3  
SPI2_D0  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
SPI2_D1  
SPI Data 1  
6.3.15.2 MCU Domain  
Table 6-41. MCU_MCSPI0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI0_CLK  
MCU_SPI0_CS0  
MCU_SPI0_CS1  
MCU_SPI0_CS2  
MCU_SPI0_CS3  
MCU_SPI0_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
B13  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 1  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
E11  
C11  
B9, C9  
C7  
A15  
MCU_SPI0_D1  
SPI Data 1  
B12  
Table 6-42. MCU_MCSPI1 Signal Descriptions  
SIGNAL NAME [1]  
MCU_SPI1_CLK  
MCU_SPI1_CS0  
MCU_SPI1_CS1  
MCU_SPI1_CS2  
MCU_SPI1_CS3  
MCU_SPI1_D0  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
B9, C8  
C10  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
SPI Clock  
SPI Chip Select 0  
SPI Chip Select 2  
SPI Chip Select 2  
SPI Chip Select 3  
SPI Data 0  
D7  
B9, E9  
E8  
B11  
MCU_SPI1_D1  
SPI Data 1  
D10  
6.3.16 MDIO  
6.3.16.1 MAIN Domain  
Table 6-43. MDIO0 Signal Descriptions  
SIGNAL NAME [1]  
MDIO0_MDC  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
V12  
O
MDIO Clock  
MDIO Data  
MDIO0_MDIO  
IO  
V13  
6.3.17 MMC  
6.3.17.1 MAIN Domain  
Table 6-44. MMC0 Signal Descriptions  
SIGNAL NAME [1]  
MMC0_CLK (1)  
MMC0_CMD  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB7  
IO  
IO  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Clock  
MMC/SD/SDIO Command  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
Y6  
MMC0_DAT0  
AA6  
MMC0_DAT1  
AB6  
MMC0_DAT2  
Y7  
MMC0_DAT3  
AA7  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-44. MMC0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
MMC0_DAT4  
MMC0_DAT5  
MMC0_DAT6  
MMC0_DAT7  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
Y8  
W7  
W9  
AB8  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
(1) For MMC0_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG135 register must remain in its default state  
of 0x1 because of retiming purposes.  
Table 6-45. MMC1 Signal Descriptions  
SIGNAL NAME [1]  
MMC1_CLK (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
E22  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC1_CMD  
MMC1_SDCD  
MMC1_SDWP  
MMC1_DAT0  
MMC1_DAT1  
MMC1_DAT2  
MMC1_DAT3  
MMC/SD/SDIO Command  
SD Card Detect  
C21  
E18  
I
SD Write Protect  
D18  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
B22  
D21  
C22  
D22  
(1) For MMC1_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG142 register must remain in its default state  
of 0x1 because of retiming purposes.  
Table 6-46. MMC2 Signal Descriptions  
SIGNAL NAME [1]  
MMC2_CLK (1)  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
H22  
IO  
IO  
I
MMC/SD/SDIO Clock  
MMC2_CMD  
MMC2_SDCD  
MMC2_SDWP  
MMC2_DAT0  
MMC2_DAT1  
MMC2_DAT2  
MMC2_DAT3  
MMC/SD/SDIO Command  
SD Card Detect  
G22  
C17, F14, F22  
C15, E17, E21  
E20  
I
SD Write Protect  
IO  
IO  
IO  
IO  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
MMC/SD/SDIO Data  
F21  
F20  
G21  
(1) For MMC2_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG71 register must remain in its default state  
of 0x1 because of retiming purposes.  
6.3.18 OSPI  
6.3.18.1 MAIN Domain  
Table 6-47. OSPI0 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
L22  
OSPI0_CLK  
OSPI0_DQS  
O
I
OSPI Clock  
OSPI Data Strobe (DQS) or Loopback Clock Input  
OSPI ECC Status  
L21  
OSPI0_ECC_FAIL  
OSPI0_LBCLKO  
OSPI0_CSn0  
OSPI0_CSn1  
OSPI0_CSn2  
OSPI0_CSn3  
OSPI0_D0  
I
G20  
IO  
O
O
O
O
IO  
IO  
OSPI Loopback Clock Output  
OSPI Chip Select 0 (active low)  
OSPI Chip Select 1 (active low)  
OSPI Chip Select 2 (active low)  
OSPI Chip Select 3 (active low)  
OSPI Data 0  
K22  
H21  
G19  
K20  
G20  
J21  
OSPI0_D1  
OSPI Data 1  
J18  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-47. OSPI0 Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
J19  
OSPI0_D2  
OSPI0_D3  
OSPI0_D4  
OSPI0_D5  
OSPI0_D6  
OSPI0_D7  
IO  
IO  
IO  
IO  
IO  
IO  
O
OSPI Data 2  
OSPI Data 3  
OSPI Data 4  
OSPI Data 5  
OSPI Data 6  
OSPI Data 7  
OSPI Reset  
OSPI Reset  
H18  
K21  
H19  
J20  
J22  
OSPI0_RESET_OUT0  
OSPI0_RESET_OUT1  
G20  
O
K20  
6.3.19 Power Supply  
Table 6-48. Power Supply Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
External capacitor connection for IO group 0  
External capacitor connection for IO group 1  
External capacitor connection for IO group 2  
External capacitor connection for IO group 3  
External capacitor connection for IO group 4  
External capacitor connection for IO group 5  
External capacitor connection for IO group 6  
External capacitor connection for IO CANUART  
External capacitor connection for IO MCU  
USB 1.8 V analog supply  
AMB PIN [4]  
G13  
K16  
T14  
M16  
R8  
CAP_VDDS0 (1)  
CAP_VDDS1 (1)  
CAP_VDDS2 (1)  
CAP_VDDS3 (1)  
CAP_VDDS4 (1)  
CAP_VDDS5 (1)  
CAP_VDDS6 (1)  
CAP_VDDS_CANUART (1)  
CAP_VDDS_MCU (1)  
VDDA_1P8_USB  
VDDA_1P8_CSIRX0  
VDDA_3P3_USB  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDA_MCU  
CAP  
CAP  
CAP  
CAP  
CAP  
CAP  
G15  
J16  
CAP  
CAP  
G8  
CAP  
G10  
T10  
T12  
U10  
T11  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
CSIRX analog supply high  
USB 3.3 V analog supply  
CSIRX analog supply low  
USB Core Supply  
T9  
DDR Deskew PLL analog supply  
POR and MCU PLL analog supply  
MAIN PLL analog supply  
M9  
J10  
VDDA_PLL0  
N9  
VDDA_PLL1  
PER0 PLL and PER1 PLL analog supply  
VIDEO PLL analog supply  
R11  
M13  
K13  
K10  
P16  
G18  
L10  
VDDA_PLL2  
VDDA_PLL3  
C7x PLL and DSS PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
TEMP0 analog supply  
VDDA_PLL4  
VDDA_TEMP0  
VDDA_TEMP1  
TEMP1 analog supply  
VDDA_TEMP2  
TEMP2 analog supply  
J14, K12, M10,  
M14, P12, P9  
VDDR_CORE  
PWR  
Core Supply  
VDDSHV0  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
IO supply for IO group 0  
IO supply for IO group 1  
IO supply for IO group 2  
IO supply for IO group 3  
IO supply for IO group 4  
IO supply for IO group 5  
IO supply for IO group 6  
IO supply for IO CANUART  
G14, H13  
K15, L16  
VDDSHV1  
VDDSHV2  
R13, T13, U13  
L15, M15, N15  
T8, U8  
VDDSHV3  
VDDSHV4  
VDDSHV5  
G16, H15  
H16, H17  
H8  
VDDSHV6  
VDDSHV_CANUART  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-48. Power Supply Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
VDDSHV_MCU  
PWR  
IO supply for IO MCU  
G11, H10  
A2, AA1, AB2,  
B1, J7, K8, L7,  
M8, N7, P8  
VDDS_DDR  
PWR  
DDR PHY IO supply  
VDDS_DDR_C  
VDDS_OSC0  
PWR  
PWR  
PWR  
DDR clock IO supply  
MCU_OSC0 supply  
CANUART Core Supply  
L8  
J8  
VDD_CANUART  
H9  
J11, J13, J15, J9,  
K14, L11, L13,  
L9, M12, N11,  
N13, P10, P14,  
R15, R9, T16,  
U15  
VDD_CORE  
VPP  
PWR  
PWR  
Core supply  
eFuse ROM programming supply  
F7  
A1, A10, A13,  
A18, A22, A4,  
A6, AA11, AA14,  
AA2, AA4, AA8,  
AB1, AB12,  
AB15, AB18,  
AB22, AB3, AB5,  
AB9, B3, B5, B7,  
C4, D11, D2,  
D20, D4, E1, E3,  
E5, F11, F13,  
F16, F2, F4,  
G12, G17, G3,  
G5, G9, H1, H11,  
H14, H20, H4,  
J12, J17, J3, K1,  
K11, K4, K7, K9,  
L12, L14, L20,  
L3, M11, M17,  
M4, M7, N1,  
VSS  
PWR  
Ground  
N10, N12, N14,  
N16, N8, P11,  
P13, P15, P17,  
P20, P7, R10,  
R12, R14, R16,  
R2, R4, R6, T1,  
T15, T17, T3, T5,  
T7, U12, U14,  
U16, U2, U4, U6,  
U9, V1, V20, V3,  
V5, V7, V9, W11,  
W14, W2, W4,  
W6, W8, Y12,  
Y15, Y3, Y5, Y9  
(1) This pin must always be connected via a 1-μF capacitor to VSS.  
6.3.20 Reserved  
Table 6-49. Reserved Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
N/A  
Reserved, must be left unconnected  
C6  
D6  
E7  
N/A  
N/A  
N/A  
N/A  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
F6  
F10  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-49. Reserved Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
Reserved, must be left unconnected  
AMB PIN [4]  
RSVD5  
RSVD6  
RSVD7  
N/A  
N/A  
N/A  
G7  
U11  
V11  
6.3.21 System and Miscellaneous  
6.3.21.1 Boot Mode Configuration  
6.3.21.1.1 MAIN Domain  
Table 6-50. Sysboot Signal Descriptions  
SIGNAL NAME [1]  
BOOTMODE00  
BOOTMODE01  
BOOTMODE02  
BOOTMODE03  
BOOTMODE04  
BOOTMODE05  
BOOTMODE06  
BOOTMODE07  
BOOTMODE08  
BOOTMODE09  
BOOTMODE10  
BOOTMODE11  
BOOTMODE12  
BOOTMODE13  
BOOTMODE14  
BOOTMODE15  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
N21  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bootmode pin 0  
Bootmode pin 1  
Bootmode pin 2  
Bootmode pin 3  
Bootmode pin 4  
Bootmode pin 5  
Bootmode pin 6  
Bootmode pin 7  
Bootmode pin 8  
Bootmode pin 9  
Bootmode pin 10  
Bootmode pin 11  
Bootmode pin 12  
Bootmode pin 13  
Bootmode pin 14  
Bootmode pin 15  
N20  
N19  
N18  
N17  
P18  
P19  
P21  
P22  
R19  
R20  
R22  
T22  
R21  
T20  
T21  
6.3.21.2 Clock  
6.3.21.2.1 MCU Domain  
Table 6-51. MCU Clock Signal Descriptions  
SIGNAL NAME [1]  
MCU_OSC0_XI  
PIN TYPE [2]  
DESCRIPTION [3]  
High frequency oscillator input  
High frequency oscillator output  
AMB PIN [4]  
A12  
I
MCU_OSC0_XO  
O
A11  
6.3.21.2.2 WKUP Domain  
Table 6-52. WKUP Clock Signal Descriptions  
SIGNAL NAME [1]  
WKUP_LFOSC0_XI  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
I
Low frequency (32.768 KHz) oscillator input  
Low frequency (32.768 KHz) oscillator output  
A8  
A9  
WKUP_LFOSC0_XO  
O
6.3.21.3 System  
6.3.21.3.1 MAIN Domain  
Table 6-53. System Signal Descriptions  
SIGNAL NAME [1]  
AUDIO_EXT_REFCLK0  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AB20, B20, F14  
A20, C15, K17  
IO  
IO  
External clock input to McASP or output from McASP  
External clock input to McASP or output from McASP  
AUDIO_EXT_REFCLK1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-53. System Signal Descriptions (continued)  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
RMII Clock Output (50 MHz). This pin is used for clock  
source to the external RMII PHY and must also be  
routed back to the respective RMII[x]_REF_CLK pin  
for proper device operation.  
CLKOUT0  
EXTINTn  
O
AA17, B16, W17  
I
I
External Interrupt  
F17  
B16  
EXT_REFCLK1  
OBSCLK0  
External clock input to Main Domain  
Main Domain Observation clock output for test and  
debug purposes only  
O
O
R20  
D17  
Main Domain Observation clock output for test and  
debug purposes only  
OBSCLK1  
PORz_OUT  
O
O
I
Main Domain POR status output  
F18  
F19  
E19  
RESETSTATz  
RESET_REQz  
Main Domain warm reset status output  
Main Domain external warm reset request input  
Main Domain system clock output (divided by 4) for  
test and debug purposes only  
SYSCLKOUT0  
O
B16  
6.3.21.3.2 MCU Domain  
Table 6-54. MCU System Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
Error signal output from MCU Domain ESM  
External input to MCU Domain  
AMB PIN [4]  
B8  
MCU_ERRORn  
IO  
I
MCU_EXT_REFCLK0  
C11, D7  
MCU Domain Observation clock output for test and  
debug purposes only  
MCU_OBSCLK0  
O
C11  
MCU_PORz  
I
O
I
MCU and Main Domain cold reset  
MCU Domain warm reset status output  
MCU and Main Domain warm reset  
A7  
MCU_RESETSTATz  
MCU_RESETz  
D14  
C12  
MCU Domain system clock output (divided by 4) for  
test and debug purposes only  
MCU_SYSCLKOUT0  
O
C11  
6.3.21.3.3 WKUP Domain  
Table 6-55. WKUP System Signal Descriptions  
SIGNAL NAME [1]  
PMIC_LPM_EN0  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
D12  
Dual-function PMIC control output, Low Power Mode  
(active low) or PMIC Enable (active high)  
O
O
WKUP_CLKOUT0  
WKUP Domain CLKOUT0 output  
B10  
6.3.21.4 VMON  
Table 6-56. VMON Signal Descriptions  
SIGNAL NAME [1]  
VMON_1P8_SOC  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
A
A
Voltage monitor input for 1.8 V SoC power supply  
Voltage monitor input for 3.3 V SoC power supply  
F12  
F9  
VMON_3P3_SOC  
Voltage monitor input, fixed 0.45 V (+/-3%) threshold.  
Use with external precision voltage divider to monitor a  
higher voltage rail such as the PMIC input supply.  
VMON_VSYS  
A
H12  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
6.3.22 TIMER  
6.3.22.1 MAIN Domain  
Table 6-57. TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Timer Inputs and Outputs (not tied to single timer  
instance)  
TIMER_IO0  
IO  
C17, D22, Y7  
Timer Inputs and Outputs (not tied to single timer  
instance)  
TIMER_IO1  
TIMER_IO2  
TIMER_IO3  
TIMER_IO4  
TIMER_IO5  
TIMER_IO6  
TIMER_IO7  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
C22, E17  
B17, D21  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
B22, C18  
Timer Inputs and Outputs (not tied to single timer  
instance)  
AB7, B16, E22  
C21, E16, Y6  
E18, F14  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
C15, D18  
6.3.22.2 MCU Domain  
Table 6-58. MCU_TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Timer Inputs and Outputs (not tied to single timer  
instance)  
MCU_TIMER_IO0  
IO  
B11, E8  
Timer Inputs and Outputs (not tied to single timer  
instance)  
MCU_TIMER_IO1  
MCU_TIMER_IO2  
MCU_TIMER_IO3  
IO  
IO  
IO  
C11, D10  
D7  
Timer Inputs and Outputs (not tied to single timer  
instance)  
Timer Inputs and Outputs (not tied to single timer  
instance)  
B9  
6.3.22.3 WKUP Domain  
Table 6-59. WKUP_TIMER Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Timer Inputs and Outputs (not tied to single timer  
instance)  
WKUP_TIMER_IO0  
IO  
C10, C7  
Timer Inputs and Outputs (not tied to single timer  
instance)  
WKUP_TIMER_IO1  
IO  
C8, E11  
6.3.23 UART  
6.3.23.1 MAIN Domain  
Table 6-60. UART0 Signal Descriptions  
SIGNAL NAME [1]  
UART0_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
F14  
I
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
UART0_RTSn  
O
I
C15  
UART0_RXD  
E14  
UART0_TXD  
O
UART Transmit Data  
D15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-61. UART1 Signal Descriptions  
SIGNAL NAME [1]  
UART1_CTSn  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Clear to Send (active low)  
UART Data Set Ready (active low)  
UART Data Terminal Ready (active low)  
UART Ring Indicator  
AMB PIN [4]  
I
I
C19  
D17  
UART1_DCDn  
UART1_DSRn  
UART1_DTRn  
UART1_RIn  
I
E16  
O
I
B17  
C18  
UART1_RTSn  
UART1_RXD  
UART1_TXD  
O
I
UART Request to Send (active low)  
UART Receive Data  
B19  
B21, C17  
A21, E17  
O
UART Transmit Data  
Table 6-62. UART2 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AA22, B22, T20,  
Y8  
UART2_CTSn  
UART2_RTSn  
UART2_RXD  
UART2_TXD  
I
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
D21, T21, V17,  
W7  
O
I
AB8, D22, F14,  
P22, U22  
C15, C22, R19,  
U21, W9  
O
UART Transmit Data  
Table 6-63. UART3 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AA6, D18, U17  
AB6, E18, T18  
UART3_CTSn  
UART3_RTSn  
I
UART Clear to Send (active low)  
UART Request to Send (active low)  
O
AA7, E22, R20,  
U20  
UART3_RXD  
UART3_TXD  
I
UART Receive Data  
UART Transmit Data  
C21, R22, U19,  
Y7  
O
Table 6-64. UART4 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
Y22  
UART4_CTSn  
UART4_RTSn  
I
UART Clear to Send (active low)  
UART Request to Send (active low)  
O
Y21  
F22, M22, T19,  
T22  
UART4_RXD  
UART4_TXD  
I
UART Receive Data  
UART Transmit Data  
E21, M20, R21,  
U18  
O
Table 6-65. UART5 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
L21, W19  
UART5_CTSn  
UART5_RTSn  
I
UART Clear to Send (active low)  
UART Request to Send (active low)  
O
K22, W20  
B17, G21, K20,  
T20, V22  
UART5_RXD  
UART5_TXD  
I
UART Receive Data  
UART Transmit Data  
C18, F20, G20,  
T21, V21  
O
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-66. UART6 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
AMB PIN [4]  
J22, W21  
UART6_CTSn  
UART6_RTSn  
I
O
J20, W22  
C19, E18, H22,  
K21, R17, V19  
UART6_RXD  
UART6_TXD  
I
UART Receive Data  
UART Transmit Data  
B19, D18, G22,  
H19, K17, V18  
O
6.3.23.2 MCU Domain  
Table 6-67. MCU_UART0 Signal Descriptions  
SIGNAL NAME [1]  
MCU_UART0_CTSn  
MCU_UART0_RTSn  
MCU_UART0_RXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
AMB PIN [4]  
I
B11  
D10  
D8  
O
I
MCU_UART0_TXD  
O
UART Transmit Data  
F8  
6.3.23.3 WKUP Domain  
Table 6-68. WKUP_UART0 Signal Descriptions  
SIGNAL NAME [1]  
WKUP_UART0_CTSn  
WKUP_UART0_RTSn  
WKUP_UART0_RXD  
PIN TYPE [2]  
DESCRIPTION [3]  
UART Clear to Send (active low)  
UART Request to Send (active low)  
UART Receive Data  
AMB PIN [4]  
I
C10  
C8  
C9  
E9  
O
I
WKUP_UART0_TXD  
O
UART Transmit Data  
6.3.24 USB  
6.3.24.1 MAIN Domain  
Table 6-69. USB0 Signal Descriptions  
SIGNAL NAME [1]  
USB0_DM  
PIN TYPE [2]  
DESCRIPTION [3]  
AMB PIN [4]  
AA10  
AA9  
IO  
IO  
O
A
USB 2.0 Differential Data (negative)  
USB 2.0 Differential Data (positive)  
USB VBUS control output (active high)  
Pin to connect to calibration resistor  
USB Level-shifted VBUS Input  
USB0_DP  
USB0_DRVVBUS  
USB0_RCALIB (1)  
USB0_VBUS (2)  
C20  
W10  
A
V8  
(1) An external 499 Ω ±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.2.3, USB  
VBUS Design Guidelines.  
Table 6-70. USB1 Signal Descriptions  
SIGNAL NAME [1]  
PIN TYPE [2]  
DESCRIPTION [3]  
USB 2.0 Differential Data (negative)  
USB 2.0 Differential Data (positive)  
USB VBUS control output (active high)  
Pin to connect to calibration resistor  
USB Level-shifted VBUS Input  
AMB PIN [4]  
USB1_DM  
USB1_DP  
IO  
IO  
O
A
Y11  
Y10  
D19  
U7  
USB1_DRVVBUS  
USB1_RCALIB (1)  
USB1_VBUS (2)  
A
V6  
(1) An external 499 Ω ±1% resistor must be connected between this pin and VSS and the maximum power dissipation for the resistor is  
7.2mW. No external voltage should be applied to this pin.  
(2) An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.2.3, USB  
VBUS Design Guidelines.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
6.4 Pin Connectivity Requirements  
This section describes connectivity requirements for package balls that have specific connectivity requirements  
and package balls that may be unused.  
Note  
All power pins must be supplied with the voltages specified in Section 7.4, Recommended Operating  
Conditions, unless otherwise specified.  
Note  
For additional clarification, "leave unconnected" means no signal traces connected to these ball  
numbers.  
Table 6-71. Connectivity Requirements  
AMB  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
Each of these balls must be connected to VSS through separate external pull  
resistors to ensure they are held to a valid logic low level if a PCB signal  
trace is connected and not actively driven by an attached device. The internal  
pull-down may be used to hold a valid logic low level if no PCB signal trace is  
connected to the ball.  
B8  
F15  
MCU_ERRORn  
TRSTn  
C13  
E10  
C12  
E19  
A14  
A16  
B14  
EMU0  
EMU1  
MCU_RESETz  
RESET_REQz  
TCK  
Each of these balls must be connected to the corresponding power supply(1)  
through separate external pull resistors to ensure these balls are held to a valid  
logic high level if a PCB signal trace is connected and not actively driven by  
an attached device. The internal pull-up may be used to hold a valid logic high  
level if no PCB signal trace is connected to the ball.  
TDI  
TMS  
E12  
D9  
D13  
E13  
MCU_I2C0_SCL  
MCU_I2C0_SDA  
WKUP_I2C0_SCL  
WKUP_I2C0_SDA  
Each of these balls must be connected to the corresponding power supply(1)  
through separate external pull resistors to ensure these balls are held to a valid  
logic high level.  
N21  
N20  
N19  
N18  
N17  
P18  
P19  
P21  
P22  
R19  
R20  
R22  
T22  
R21  
T20  
T21  
GPMC0_AD0  
GPMC0_AD1  
GPMC0_AD2  
GPMC0_AD3  
GPMC0_AD4  
GPMC0_AD5  
GPMC0_AD6  
GPMC0_AD7  
GPMC0_AD8  
GPMC0_AD9  
GPMC0_AD10  
GPMC0_AD11  
GPMC0_AD12  
GPMC0_AD13  
GPMC0_AD14  
GPMC0_AD15  
Each of these balls must be connected to the corresponding power supply(1) or  
VSS through separate external pull resistors to ensure these balls are held to  
a valid logic high or low level as appropriate to select the desired device boot  
mode.  
A2  
AA1  
AB2  
B1  
J7  
K8  
L7  
M8  
N7  
P8  
L8  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR  
VDDS_DDR_C  
If DDRSS is not used, each of these balls must be connected directly to VSS.  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 6-71. Connectivity Requirements (continued)  
AMB  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
N5  
H7  
M5  
N2  
M6  
N6  
J5  
DDR0_ACT_n  
DDR0_ALERT_n  
DDR0_CAS_n  
DDR0_PAR  
DDR0_RAS_n  
DDR0_WE_n  
DDR0_A0  
J2  
DDR0_A1  
J4  
DDR0_A2  
L4  
DDR0_A3  
J1  
DDR0_A4  
K5  
K3  
H2  
L6  
DDR0_A5  
DDR0_A6  
DDR0_A7  
DDR0_A8  
L2  
DDR0_A9  
K2  
L5  
DDR0_A10  
DDR0_A11  
M3  
M2  
K6  
H3  
P4  
R7  
H6  
M1  
L1  
DDR0_A12  
DDR0_A13  
DDR0_BA0  
DDR0_BA1  
DDR0_BG0  
DDR0_BG1  
DDR0_CAL0  
DDR0_CK0  
DDR0_CK0_n  
DDR0_CKE0  
DDR0_CKE1  
DDR0_CS0_n  
DDR0_CS1_n  
DDR0_DM0  
DDR0_DM1  
DDR0_DM2  
DDR0_DM3  
DDR0_DQ0  
DDR0_DQ1  
DDR0_DQ2  
DDR0_DQ3  
DDR0_DQ4  
DDR0_DQ5  
DDR0_DQ6  
DDR0_DQ7  
DDR0_DQ8  
DDR0_DQ9  
DDR0_DQ10  
DDR0_DQ11  
DDR0_DQ12  
DDR0_DQ13  
DDR0_DQ14  
DDR0_DQ15  
DDR0_DQ16  
DDR0_DQ17  
DDR0_DQ18  
DDR0_DQ19  
DDR0_DQ20  
DDR0_DQ21  
DDR0_DQ22  
DDR0_DQ23  
DDR0_DQ24  
DDR0_DQ25  
DDR0_DQ26  
DDR0_DQ27  
DDR0_DQ28  
P3  
P5  
J6  
If DDRSS is not used, leave unconnected.  
N4  
C2  
F3  
U1  
W3  
A5  
B4  
B6  
D5  
C5  
C3  
B2  
A3  
E2  
F5  
E6  
G2  
G6  
G4  
E4  
D3  
T6  
T4  
U5  
R5  
P2  
R3  
T2  
U3  
Y2  
V2  
V4  
W5  
Y4  
Note: The DDR0 pins in this list can only be left unconnected when  
VDDS_DDR and VDDS_DDR_C are connected to VSS. The DDR0 pins must  
be connected as defined in the DDR Board Design and Layout Guidelines,  
when VDDS_DDR and VDDS_DDR_C are connected to a power source.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 6-71. Connectivity Requirements (continued)  
AMB  
BALL  
BALL NAME  
CONNECTION REQUIREMENTS  
NUMBER  
AA3  
AA5  
AB4  
D1  
DDR0_DQ29  
DDR0_DQ30  
DDR0_DQ31  
DDR0_DQS0  
C1  
G1  
F1  
DDR0_DQS0_n  
DDR0_DQS1  
DDR0_DQS1_n  
DDR0_DQS2  
R1  
P1  
W1  
Y1  
DDR0_DQS2_n  
DDR0_DQS2  
DDR0_DQS2_n  
DDR0_ODT0  
H5  
N3  
DDR0_ODT1  
P6  
DDR0_RESET0_n  
USB0 and USB1 share these power rails, so each of these balls must be  
connected to valid power sources when either USB0 or USB1 is used.  
T9  
T10  
U10  
VDDA_CORE_USB  
VDDA_1P8_USB  
VDDA_3P3_USB  
If USB0 and USB1 are not used, each of these balls must be connected  
directly to VSS.  
If USB0 or USB1 is not used, leave the respective DM, DP, and VBUS balls  
unconnected.  
AA10  
AA9  
W10  
V8  
Y11  
Y10  
U7  
USB0_DM  
USB0_DP  
USB0_RCALIB  
USB0_VBUS  
USB1_DM  
USB1_DP  
USB1_RCALIB  
USB1_VBUS  
Note: The USB0_RCALIB and USB1_RCALIB pins can only be  
left unconnected when VDDA_CORE_USB, VDDA_1P8_USB, and  
VDDA_3P3_USB are connected to VSS. The USB0_RCALIB and  
USB1_RCALIB pins must be connected to VSS through separate  
appropriate external resistors when VDDA_CORE_USB, VDDA_1P8_USB,  
and VDDA_3P3_USB are connected to power sources.  
V6  
If CSIRX0 is not used and the device boundary scan function is required, each  
of these balls must be connected to valid power sources.  
T11  
T12  
VDDA_CORE_CSIRX0  
VDDA_1P8_CSIRX0  
If CSIRX0 is not used and the device boundary scan function is not required,  
each of these balls may alternatively be connected directly to VSS.  
AB14  
AB13  
W12  
W13  
Y13  
CSI0_RXCLKN  
CSI0_RXCLKP  
CSI0_RXN0  
CSI0_RXP0  
CSI0_RXN1  
CSI0_RXP1  
CSI0_RXN2  
CSI0_RXP2  
CSI0_RXN3  
CSI0_RXP3  
CSI0_RXRCALIB  
Y14  
If CSIRX0 is not used, leave unconnected.  
AA13  
AA12  
AB11  
AB10  
V10  
H12  
VMON_VSYS  
If VMON_VSYS is not used, this ball must be connected directly to VSS.  
If VMON_1P8_SOC and VMON_3P3_SOC are not used to monitor the SOC  
power rails, these balls must still be connected to their respective 1.8V and  
3.3V power rails.  
F12  
F9  
VMON_1P8_SOC  
VMON_3P3_SOC  
(1) To determine which power supply is associated with any IO, see POWER column of the Pin Attributes table.  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Note  
Internal pull resistors are weak and may not source enough current to maintain a valid logic level for  
some operating conditions. This may be the case when connected to components with leakage to the  
opposite logic level, or when external noise sources couple to signal traces attached to balls which  
are only pulled to a valid logic level by the internal resistor. Therefore, external pull resistors may be  
required to hold a valid logic level on balls with external connections.  
If balls are allowed to float between valid logic levels, the input buffer may enter a high-current state  
which could damage the IO cell.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7 Specifications  
Note  
All specifications listed are preliminary and may change during device characterization.  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1) (2)  
PARAMETER  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX UNIT  
VDD_CORE  
Core supply  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.57  
1.57  
1.98  
1.98  
1.98  
1.98  
2.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDDR_CORE  
VDD_CANUART  
VDDA_CORE_CSIRX0  
VDDA_CORE_USB  
VDDA_DDR_PLL0  
VDDS_DDR  
RAM supply  
CANUART core supply  
CSIRX0 core supply  
USB0 and USB1 core supply  
DDR Deskew PLL supply  
DDR PHY IO supply  
VDDS_DDR_C  
VDDS_OSC0  
VDDA_MCU  
DDR clock IO supply  
MCU_OSC0 supply  
RCOSC, POR, POK, and MCU PLL analog supply  
MAIN PLL and VIDEO PLL analog supply  
PER0 PLL and PER1 PLL analog supply  
C7x PLL and DSS PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
DDR PLL analog supply  
VDDA_PLL0  
VDDA_PLL1  
VDDA_PLL2  
VDDA_PLL3  
1.98  
1.98  
1.98  
1.98  
1.98  
2.2  
VDDA_PLL4  
VDDA_1P8_CSIRX0  
VDDA_1P8_USB  
VDDA_TEMP0  
VDDA_TEMP1  
VDDA_TEMP2  
VPP  
CSIRX0 1.8 V analog supply  
USB0 and USB1 1.8 V analog supply  
TEMP0 analog supply  
TEMP1 analog supply  
TEMP2 analog supply  
1.98  
1.98  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
3.63  
eFuse ROM programming supply  
IO supply for IO MCU  
VDDSHV_MCU  
VDDSHV_CANUART  
VDDSHV0  
IO supply for IO CANUART  
IO supply for IO group 0  
VDDSHV1  
IO supply for IO group 1  
VDDSHV2  
IO supply for IO group 2  
VDDSHV3  
IO supply for IO group 3  
VDDSHV4  
IO supply for IO group 4  
VDDSHV5  
IO supply for IO group 5  
VDDSHV6  
IO supply for IO group 6  
VDDA_3P3_USB  
USB0 and USB1 3.3 V analog supply  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
over operating junction temperature range (unless otherwise noted)(1) (2)  
PARAMETER  
MIN  
MAX UNIT  
MCU_PORz  
-0.3  
3.63  
V
MCU_I2C0_SCL, MCU_I2C0_SDA,  
WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
EXTINTn  
When operating at 1.8V  
-0.3  
-0.3  
1.98(3)  
V
MCU_I2C0_SCL, MCU_I2C0_SDA,  
WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
EXTINTn  
Steady-state max voltage at all fail-safe IO pins  
3.63(3)  
When operating at 3.3V  
VMON_1P8_SOC  
-0.3  
-0.3  
-0.3  
-0.3  
1.98  
3.63  
1.98  
3.6  
V
V
V
V
VMON_3P3_SOC  
VMON_VSYS(4)  
USB0_VBUS, USB1_VBUS(6)  
Steady-state max voltage at all other IO pins(5)  
IO supply  
voltage + 0.3  
All other IO pins  
-0.3  
V
V
20% of IO supply voltage for up to 20%  
of the signal period (see Figure 7-1, IO  
Transient Voltage Ranges)  
Transient overshoot and undershoot at IO pin  
Latch-up performance(8)  
0.2 × VDD(7)  
I-Test  
-100  
-55  
100  
1.5 x VDD(7)  
+150  
mA  
V
Over-Voltage (OV) Test  
TSTG  
Storage temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Section 7.4, Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be  
fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
(3) The absolute maximum ratings for these fail-safe pins depends on their IO supply operating voltage. Therefore, this value is also  
defined by the maximum VIH value found in the I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics section, where  
the electrical characteristics table has separate parameter values for 1.8-V mode and 3.3-V mode.  
(4) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.2.4, System Power  
Supply Monitor Design Guidelines.  
(5) This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For  
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be  
–0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used  
to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range,  
including power supply ramp-up and ramp-down sequences.  
(6) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.2.3, USB  
Design Guidelines.  
(7) VDD is the voltage on the corresponding power-supply pin(s) for the IO.  
(8) For current pulse injection (I-Test):  
Pins stressed per JEDEC JESD78 (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times  
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.  
For over-voltage performance (Over-Voltage (OV) Test):  
Supplies stressed per JEDEC JESD78 (Class II) and passed specified voltage injection.  
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply  
voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO  
power supplies are turned off. The MCU_I2C0_SCL, MCU_I2C0_SDA, WKUP_I2C0_SCL, WKUP_I2C0_SDA,  
EXTINTn, VMON_1P8_SOC, VMON_3P3_SOC, and MCU_PORz are the only fail-safe IO terminals. All other IO  
terminals are not fail-safe and the voltage applied to them should be limited to the value defined by the Steady  
State Max. Voltage at all IO pins parameter in Section 7.1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Overshoot = 20% of nominal  
IO supply voltage  
Tovershoot  
Tperiod  
Tundershoot  
Undershoot = 20% of nominal  
IO supply voltage  
A. Tovershoot + Tundershoot < 20% of Tperiod  
Figure 7-1. IO Transient Voltage Ranges  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
±1000  
Corner pins  
V(ESD)  
Electrostatic discharge  
(A1, A22, AB1, and  
AB22)  
±750  
±250  
V
Charged-device model (CDM), per AEC Q100-011  
All other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Power-On Hours (POH)  
POWER ON HOURS (POH)(1) (2) (3)  
JUNCTION TEMPERATURE RANGE  
LIFETIME (POH)  
100000  
Commercial  
0°C to 95°C  
-40°C to 105°C  
-40°C to 125°C  
Extended Industrial  
Automotive  
100000  
20000(4)  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard  
terms and conditions for TI semiconductor products.  
(2) Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted  
temperatures.  
(3) POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH.  
(4) Automotive profile is defined as 20000 power on hours with a junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C,  
and 10%@125°C.  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.4 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN(1)  
NOM MAX(1) UNIT  
VDD_CORE(2)  
Core supply  
CSIRX0 core supply  
USB0 and USB1 core supply  
DDR Deskew PLL supply  
0.75-V operation  
0.85-V operation  
0.715  
0.75  
0.79  
V
VDDA_CORE_CSIRX0(2)  
VDDA_CORE_USB(2)  
VDDA_DDR_PLL0(2)  
0.81  
0.85  
0.895  
V
0.75-V operation  
0.85-V operation  
0.715  
0.81  
0.81  
1.06  
1.14  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
1.71  
see(7)  
1.71  
3.135  
3.135  
0
0.75  
0.85  
0.85  
1.1  
0.79  
0.895  
0.895  
1.17  
1.26  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
see(7)  
1.89  
3.465  
3.465  
1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD_CANUART(3)  
CANUART core supply  
RAM supply  
VDDR_CORE  
VDDS_DDR(4)  
DDR PHY IO supply  
DDR clock IO supply  
1.1-V operation  
1.2-V operation  
VDDS_DDR_C(4)  
1.2  
VDDS_OSC0  
VDDA_MCU  
MCU_OSC0 supply  
1.8  
RCOSC, POR, POK, and MCU PLL analog supply  
MAIN PLL and VIDEO PLL analog supply  
PER0 PLL and PER1 PLL analog supply  
C7x PLL and DSS PLL analog supply  
ARM0 PLL and SMS PLL analog supply  
DDR PLL analog supply  
1.8  
VDDA_PLL0  
1.8  
VDDA_PLL1  
1.8  
VDDA_PLL2  
1.8  
VDDA_PLL3  
1.8  
VDDA_PLL4  
1.8  
VDDA_1P8_CSIRX0  
VDDA_1P8_USB  
VDDA_TEMP0  
VDDA_TEMP1  
VDDA_TEMP2  
VPP  
CSIRX0 1.8 V analog supply  
1.8  
USB0 and USB1 1.8 V analog supply  
TEMP0 analog supply  
1.8  
1.8  
TEMP1 analog supply  
1.8  
TEMP2 analog supply  
1.8  
eFuse ROM programming supply  
Voltage monitor for 1.8 V SoC power supply  
USB0 and USB1 3.3 V analog supply  
Voltage monitor for 3.3 V SoC power supply  
Voltage monitor pin  
see(7)  
VMON_1P8_SOC  
VDDA_3P3_USB  
VMON_3P3_SOC  
VMON_VSYS  
USB0_VBUS  
USB1_VBUS  
1.8  
3.3  
3.3  
see(5)  
see(6)  
see(6)  
1.8  
USB0 Level-shifted VBUS Input  
USB1 Level-shifted VBUS Input  
0
3.465  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
1.89  
3.465  
0
1.8-V operation  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
1.71  
3.135  
VDDSHV_CANUART(3)  
VDDSHV_MCU  
VDDSHV0  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
Dual-voltage IO supply  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
1.8-V operation  
3.3-V operation  
3.3  
1.8  
3.3  
1.8  
3.3  
1.8  
VDDSHV1  
3.3  
1.8  
VDDSHV2  
3.3  
1.8  
VDDSHV3  
3.3  
1.8  
VDDSHV4  
3.3  
1.8  
VDDSHV5  
3.3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
over operating junction temperature range (unless otherwise noted)  
SUPPLY NAME  
DESCRIPTION  
MIN(1)  
1.71  
3.135  
-40  
NOM MAX(1) UNIT  
1.8-V operation  
3.3-V operation  
Automotive  
1.8  
3.3  
1.89  
3.465  
125  
V
V
VDDSHV6  
Dual-voltage IO supply  
°C  
°C  
TJ  
Operating junction temperature range  
Extended Industrial  
-40  
105  
(1) The voltage at the device ball must never drop below the MIN voltage or rise above the MAX voltage for any amount of time during  
normal device operation.  
(2) VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 shall be sourced from the same power source.  
Care should be taken to ensure that voltage differential between VDD_CORE and VDDA_CORE_USB is within +/- 1%.  
(3) VDD_CANUART and VDDSHV_CANUART shall be connected to always on power sources when using Partial IO low power mode.  
VDD_CANUART shall be connected to the same power source as VDD_CORE and VDDSHV_CANUART shall be connected to any  
valid IO power source when not using Partial IO low power mode.  
(4) VDDS_DDR and VDDS_DDR_C shall be sourced from the same power source.  
(5) The VMON_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.2.4, System Power  
Supply Monitor Design Guidelines.  
(6) An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.2.3, USB  
Design Guidelines.  
(7) Refer to the Recommended Operating Conditions for OTP eFuse Programming table for VPP supply voltages based on eFuse usage.  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.5 Operating Performance Points  
Table 7-1 defines the maximum operating frequency of the clocks for each device speed grade and Table 7-2  
defines the only valid Operating Performance Points (OPPs) for the device subsystem and core clocks.  
Table 7-1. Device Speed Grades  
MAXIMUM  
TRANSITION  
MAXIMUM OPERATING FREQUENCY (MHz)  
RATE (MT/s)  
(2)  
Speed  
Grade  
VDD_CORE  
(V)(1)  
DEVICE  
MANAGER  
R5F  
MCU  
R5F  
/
A53SS  
(Cortex-  
A53x)  
VENC  
/
VDEC  
MAIN  
SYSCLK  
C7x  
HSM  
VPAC  
MJPEG  
LPDDR4  
/
SYSCLK  
CLK  
800  
/
400  
800  
/
400  
M
N
O
P
Q
R
S
T
0.75/0.85  
800  
800  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
500  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
375  
375  
375  
375  
375  
375  
375  
375  
375  
375  
400  
400  
400  
400  
400  
400  
400  
400  
400  
400  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
3200  
3200  
3200  
3733  
3200  
3733  
3200  
3733  
3200  
3733  
0.75  
0.85  
850  
800  
/
400  
800  
/
400  
1000  
800  
/
400  
800  
/
400  
0.75/0.85  
0.75/0.85  
1000  
1000  
1000  
1000  
500  
500  
800  
/
400  
800  
/
400  
0.75  
0.85  
0.75  
0.85  
0.75  
0.85  
0.75  
0.85  
0.75  
0.85  
0.75  
0.85  
850  
1000  
850  
800  
/
400  
800  
/
400  
800  
/
400  
800  
/
400  
1000  
1250  
1400  
1250  
1400  
1250  
1400  
1250  
1400  
800  
/
400  
800  
/
400  
500  
500  
800  
/
400  
800  
/
400  
850  
1000  
850  
800  
/
400  
800  
/
400  
U
V
800  
/
400  
800  
/
400  
1000  
(1) Nominal operating voltage, see Recommended Operating Conditions.  
(2) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.  
Refer to DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-2. Device Operating Performance Points  
FIXED OPERATING FREQUENCY OPTIONS (MHz)(2)  
MT/s(3)  
DEVICE  
MANAGER  
MCU  
R5F  
/
A53SS(1)  
C7x  
VENC  
/
VDEC  
OPP  
MAIN  
SYSCLK  
R5F  
/
CLK  
HSM  
VPAC  
MJPEG  
LPDDR4  
SYSCLK  
From  
ARM0  
PLL  
Bypass  
to  
Speed  
Grade  
Maximum  
From  
C7x  
PLL  
Bypass  
to  
Speed  
Grade  
Maximum  
800  
/
400  
800  
/
400  
From  
DDR  
High  
500  
250  
400  
133  
400,  
200,  
or  
PLL  
187.5,  
or  
375  
Bypass(4)  
to  
250  
400  
/
200  
400  
/
133  
100  
Speed  
Grade  
Maximum  
Low  
(1) Default operating frequency, set by software at boot. Supports Dynamic Frequency Scaling after boot.  
(2) Fixed operating frequency, set by software at boot.  
(3) Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.  
Refer to DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum DDR frequency.  
(4) The DDR PLL output, which sources DDR0_CK0 and DDR0_CK0_n, is typically defined in units of frequency. So the "DDR PLL  
Bypass" transaction rate is equal to 2x the DDR PLL output frequency when operating in bypass mode.  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.6 Electrical Characteristics  
Note  
The interfaces or signals described in Section 7.6 correspond to the interfaces or signals available in  
multiplexing mode 0 (Primary Signal Function).  
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical  
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC  
electrical characteristics are specified for the different multiplexing modes (Functions).  
7.6.1 I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8 V MODE  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.3 × VDD(1)  
V
V
VILSS  
Input Low Voltage Steady State  
Input High Voltage  
VIH  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.1 × VDD(1)  
1.98(2)  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
VOL  
Output Low Voltage  
0.2 × VDD(1)  
V
(3)  
IOL  
Low Level Output Current  
VOL(MAX)  
10  
mA  
18f(4)  
or  
(5)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3 V MODE (6)  
VIL  
Input Low Voltage  
0.3 × VDD(1)  
0.25 × VDD(1)  
3.63(2)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.7 × VDD(1)  
0.7 × VDD(1)  
0.05 × VDD(1)  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 3.3 V  
or  
VI = 0 V  
IIN  
Input Leakage Current.  
±10  
0.4  
µA  
VOL  
Output Low Voltage  
V
(3)  
IOL  
Low Level Output Current  
VOL(MAX)  
10  
mA  
33f(4)  
or  
(5)  
SRI  
Input Slew Rate  
8E+7  
V/s  
3.3E+6  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
(2) This value also defines the Absolute Maximum Ratings value the IO.  
(3) The IOL parameter defines the minimum Low Level Output Current for which the device is able to maintain the specified VOL value.  
The value defined by this parameter should be considered the maximum current available to a system implementation which needs to  
maintain the specified VOL value for attached components.  
(4) f = toggle frequency of the input signal in Hz.  
(5) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
(6) I2C Hs-mode is not supported when operating the IO in 3.3 V mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.6.2 Fail-Safe Reset (FS RESET) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.3 ×  
VDDS_OSC0  
VIL  
Input Low Voltage  
V
0.3 ×  
VDDS_OSC0  
VILSS  
VIH  
VIHSS  
VHYS  
Input Low Voltage Steady State  
Input High Voltage  
V
V
0.7 ×  
VDDS_OSC0  
0.7 ×  
VDDS_OSC0  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
200  
mV  
VI = 1.8 V  
or  
VI = 0 V  
IIN  
Input Leakage Current.  
Input Slew Rate  
±10  
µA  
18f(1)  
or  
(2)  
SRI  
V/s  
1.8E+6  
(1) f = toggle frequency of the input signal in Hz.  
(2) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
7.6.3 High-Frequency Oscillator (HFOSC) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.35 ×  
VDDS_OSC0  
VIL  
Input Low Voltage  
V
0.65 ×  
VDDS_OSC0  
VIH  
Input High Voltage  
V
VHYS  
Input Hysteresis Voltage  
49  
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
7.6.4 Low-Frequency Oscillator (LFXOSC) Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.30 ×  
VDDS_OSC0  
VIL  
VIH  
Input Low Voltage  
V
0.70 ×  
VDDS_OSC0  
Input High Voltage  
V
Active Mode  
85  
mV  
mV  
VHYS  
Input Hysteresis Voltage  
Bypass Mode  
324  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.6.5 SDIO Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8 V MODE  
VIL  
Input Low Voltage  
0.58  
0.58  
V
V
VILSS  
Input Low Voltage Steady State  
Input High Voltage  
VIH  
1.27  
1.7  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
RPU  
RPD  
VOL  
Pull-up Resistor  
40  
40  
50  
50  
60  
60  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
0.45  
VDDSHV5 -  
0.45  
VOH  
Output High Voltage  
V
(1)  
IOL  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
4
4
mA  
mA  
(1)  
IOH  
18f(2)  
or  
(3)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3 V MODE  
0.25 ×  
VDDSHV5  
VIL  
Input Low Voltage  
V
V
V
0.15 ×  
VDDSHV5  
VILSS  
VIH  
VIHSS  
VHYS  
Input Low Voltage Steady State  
Input High Voltage  
0.625 ×  
VDDSHV5  
0.625 ×  
VDDSHV5  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 3.3 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0 V  
RPU  
RPD  
Pull-up Resistor  
40  
40  
50  
50  
60  
60  
kΩ  
kΩ  
Pull-down Resistor  
0.125 ×  
VDDSHV5  
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
V
V
0.75 ×  
VDDSHV5  
(1)  
IOL  
Low Level Output Current  
High Level Output Current  
VOL(MAX)  
VOH(MIN)  
6
mA  
mA  
(1)  
IOH  
10  
33f(2)  
or  
(3)  
SRI  
Input Slew Rate  
V/s  
3.3E+6  
(1) The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is  
able to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current  
available to a system implementation which needs to maintain the specified VOL and VOH values for attached components.  
(2) f = toggle frequency of the input signal in Hz.  
(3) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
MAX UNIT  
SPRSP77 – MARCH 2023  
7.6.6 LVCMOS Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.8-V MODE  
VIL  
Input Low Voltage  
0.35 × VDD(1)  
0.3 × VDD(1)  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
0.65 × VDD(1)  
0.85 × VDD(1)  
150  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
mV  
VI = 1.8 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
RPU  
RPD  
VOL  
VOH  
Pull-up Resistor  
15  
15  
22  
22  
30  
30  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
Output High Voltage  
Low Level Output Current  
High Level Output Current  
0.45  
VDD(1) - 0.45  
V
(2)  
IOL  
VOL(MAX)  
VOH(MIN)  
3
3
mA  
mA  
(2)  
IOH  
18f(3)  
or  
(4)  
SRI  
Input Slew Rate  
V/s  
1.8E+6  
3.3-V MODE  
VIL  
Input Low Voltage  
0.8  
0.6  
V
V
VILSS  
VIH  
Input Low Voltage Steady State  
Input High Voltage  
2.0  
2.0  
V
VIHSS  
VHYS  
Input High Voltage Steady State  
Input Hysteresis Voltage  
V
150  
mV  
VI = 3.3 V  
or  
IIN  
Input Leakage Current.  
±10  
µA  
VI = 0.0 V  
RPU  
RPD  
VOL  
VOH  
Pull-up Resistor  
15  
15  
22  
22  
30  
30  
kΩ  
kΩ  
V
Pull-down Resistor  
Output Low Voltage  
Output High Voltage  
Low Level Output Current  
High Level Output Current  
0.4  
2.4  
5
V
(2)  
IOL  
VOL(MAX)  
VOH(MIN)  
mA  
mA  
(2)  
IOH  
9
33f(3)  
or  
(4)  
SRI  
Input Slew Rate  
V/s  
3.3E+6  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
(2) The IOL and IOH parameters define the minimum Low Level Output Current and High Level Output Current for which the device is  
able to maintain the specified VOL and VOH values. Values defined by these parameters should be considered the maximum current  
available to a system implementation which needs to maintain the specified VOL and VOH values for attached components.  
(3) f = toggle frequency of the input signal in Hz.  
(4) This MIN parameter only applies to input signal functions which are not defined in their respective Timing and Switching  
Characteristics sections. Select the MIN parameter which results in the largest value.  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.6.7 CSI-2 (D-PHY) Electrical Characteristics  
Note  
CSIRX0 is compliant with MIPI DPHY v1.2 dated August 1, 2014 including ECNs and Errata as  
applicable  
7.6.8 USB2PHY Electrical Characteristics  
Note  
The USB0 and USB1 interfaces are compliant with Universal Serial Bus Revision 2.0 Specification  
dated April 27, 2000 including ECNs and Errata as applicable.  
7.6.9 DDR Electrical Characteristics  
Note  
The DDR interface is compatible with LPDDR4 devices  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.7 VPP Specifications for One-Time Programmable (OTP) eFuses  
This section specifies the operating conditions required for programming the OTP eFuses .  
7.7.1 Recommended Operating Conditions for OTP eFuse Programming  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
DESCRIPTION  
MIN  
NOM  
MAX  
UNIT  
VDD_CORE  
Supply voltage range for the core domain during OTP  
operation; OPP NOM (BOOT)  
See Section 7.4  
V
VPP  
Supply voltage range for the eFuse ROM domain during  
normal operation without hardware support to program  
eFuse ROM  
NC(1)  
V
V
V
Supply voltage range for the eFuse ROM domain during  
normal operation with hardware support to program eFuse  
ROM  
0
Supply voltage range for the eFuse ROM domain during  
OTP programming(2)  
1.71  
1.8  
1.89  
I(VPP)  
SR(VPP)  
Tj  
VPP current  
400  
6E + 4  
85  
mA  
V/s  
°C  
VPP Slew Rate  
Operating junction temperature range while programming  
eFuse ROM.  
0
25  
(1) NC indicates No Connect.  
(2) Supply voltage range includes DC errors and peak-to-peak noise.  
7.7.2 Hardware Requirements  
The following hardware requirements must be met when programming keys in the OTP eFuses:  
The VPP power supply must be disabled when not programming OTP registers.  
The VPP power supply must be ramped up after the proper device power-up sequence (for more details, see  
Section 7.9.2.2, Power Supply Sequencing).  
7.7.3 Programming Sequence  
Programming sequence for OTP eFuses:  
Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal during  
power up and normal operation.  
Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP  
software package).  
Apply the voltage on the VPP terminal according to the specification in Section 7.7.1.  
Run the software that programs the OTP registers.  
After validating the content of the OTP registers, remove the voltage from the VPP terminal.  
7.7.4 Impact to Your Hardware Warranty  
You accept that e-Fusing the TI Devices with security keys permanently alters them. You acknowledge that  
the e-Fuse can fail, for example, due to incorrect or aborted program sequence or if you omit a sequence  
step. Further the TI Device may fail to secure boot if the error code correction check fails for the Production  
Keys or if the image is not signed and optionally encrypted with the current active Production Keys. These  
types of situations will render the TI Device inoperable and TI will be unable to confirm whether the TI Devices  
conformed to their specifications prior to the attempted e-Fuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY  
(WARRANTY OR OTHERWISE) FOR ANY TI DEVICES THAT HAVE BEEN e-FUSED WITH SECURITY KEYS.  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.8 Thermal Resistance Characteristics  
This section provides the thermal resistance characteristics used on this device.  
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below  
the TJ value identified in Section 7.4, Recommended Operating Conditions.  
7.8.1 Thermal Resistance Characteristics for AMB Package  
It is recommended to perform thermal simulations at the system level with the worst case device power consumption.  
AMB PACKAGE  
NO.  
PARAMETER  
DESCRIPTION  
AIR FLOW  
(m/s)(2)  
°C/W(1) (3)  
T1  
JC  
Junction-to-case  
Junction-to-board  
Junction-to-free air  
0.77  
3.3  
N/A  
N/A  
0
T2  
JB  
T3  
12.5  
8.6  
T4  
1
JA  
T5  
Junction-to-moving air  
7.6  
2
T6  
7.0  
3
T7  
0.39  
0.41  
0.42  
0.43  
3.1  
0
T8  
1
ΨJT  
Junction-to-package top  
T9  
2
T10  
T11  
T12  
T13  
T14  
3
0
2.8  
1
ΨJB  
Junction-to-board  
2.7  
2
2.6  
3
(1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on  
a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Packages  
(2) m/s = meters per second.  
(3) °C/W = degrees Celsius per watt.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9 Timing and Switching Characteristics  
Note  
The Timing Requirements and Switching Characteristics values may change following the silicon  
characterization result.  
Note  
The default SLEWRATE settings in each pad configuration register must be used to ensure timings,  
unless specific instructions are given otherwise.  
7.9.1 Timing Parameters and Information  
The timing parameter symbols used in Section 7.9 are created in accordance with JEDEC Standard 100. To  
shorten the symbols, some pin names and other related terminologies have been abbreviated in Table 7-3:  
Table 7-3. Timing Parameters Subscripts  
SYMBOL  
PARAMETER  
Cycle time (period)  
Delay time  
c
d
dis  
en  
h
Disable time  
Enable time  
Hold time  
su  
START  
t
Setup time  
Start bit  
Transition time  
Valid time  
v
w
Pulse duration (width)  
Unknown, changing, or don't care level  
Fall time  
X
F
H
High  
L
Low  
R
Rise time  
V
Valid  
IV  
AE  
FE  
LE  
Z
Invalid  
Active Edge  
First Edge  
Last Edge  
High impedance  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.2 Power Supply Requirements  
This section describes the power supply requirements to ensure proper device operation.  
Note  
All power balls must be supplied with the voltages specified in the Recommended Operating  
Conditions section, unless otherwise specified in Signal Descriptions and Pin Connectivity  
Requirements.  
7.9.2.1 Power Supply Slew Rate Requirement  
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the  
maximum slew rate of supplies to be less than 18 mV/µs. For instance, as shown in Figure 7-2, TI recommends  
having the supply ramp slew for a 1.8-V supply of more than 100 µs.  
Figure 7-2 describes the Power Supply Slew Rate Requirement in the device.  
Supply value  
t
slew rate < 18 mV/μs  
slew > (supply value) / (18 mV/μs)  
or  
supply value × 55.6 μs/V  
SPRT740_ELCH_06  
Figure 7-2. Power Supply Slew and Slew Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.2.2 Power Supply Sequencing  
This section describes power sequence requirements using power sequence diagrams and associated notes.  
Each power sequence diagram demonstrates the sequential order expected for each device power rail. This  
is done by assigning each device power rail to one or more waveform. A dual-voltage power rail may be  
associated with more than one waveform and the associated note will describe which waveform is applicable.  
Each waveform defines a transition region for the associated power rails and shows its sequential relationship  
to the transition regions of other power rails. The notes associated with the power sequence diagram provides  
further detail of these requirements. See the Power-up Sequence section for details on power-up requirements,  
and the Power-down Sequence section for details on power-down requirements.  
Two types of power supply transition regions are used to simplify the power supply sequencing diagrams. The  
legends shown in Figure 7-3 and Figure 7-4 along with their descriptions are provided to clarify what each  
transition regions represents.  
Figure 7-3 defines a transition region with multiple power rails which may be sourced from multiple power  
supplies or a single power supply. Transitions shown within the transition region represent a use case where  
multiple power supplies are used to source power rails associated with this waveform, and these power  
supplies are allowed to ramp at different times within the region since they do not have any specific sequence  
requirement relative to each other.  
Figure 7-3. Multiple Power Supply Transition Legend  
Figure 7-4 defines a transition region with one or more power rails which must be sourced from a single common  
power supply. No transitions are shown within the region to represent a single ramp within the transition region.  
Figure 7-4. Single Common Power Supply Transition Legend  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.2.2.1 Power-Up Sequencing  
Figure 7-5 describes the device power-up sequencing.  
VSYS  
Note 1  
Note 2  
VSYS, VMON_VSYS  
VMON_VSYS  
(3)  
(3)  
(3)  
(3)  
VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(3)  
,
(3)  
VDDSHV_CANUART , VDDA_3P3_USB,  
(4)  
VMON_3P3_SOC  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
VDDS_OSC0, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
,
VDDSHV_CANUART , VDDA_MCU,  
VDDA_PLL0, VDDA_PLL1, VDDA_PLL2, VDDA_PLL3, VDDA_PLL4, VDDA_PLL5, VDDA_1P8_CSIRX0,  
(6)  
VDDA_1P8_USB, VMON_1P8_SOC , VDDA_TEMP0, VDDA_TEMP1, VDDA_TEMP2  
(12) (12)  
VDDSHV4 , VDDSHV5 , VDDSHV6  
(12)  
(7)  
VDDS_DDR , VDDS_DDR_C  
(7)  
(8)(10)  
(8)  
(8)  
, VDD_CANUART , VDDA_CORE_CSIRX0 , VDDA_CORE_USB  
(8)  
VDD_CORE  
,
(12)  
VDDA_DDR_PLL0  
(9)(10)  
(10) (9)  
, VDDR_CORE , VDDA_CANUART ,VDDA_CORE_CSIRX0  
(9)  
VDD_CORE  
,
(12)  
(9)  
VDDA_CORE_USB0 ,VDDA_DDR_PLL0  
Hi-Z  
(11)  
VPP  
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XO  
AM62Ax_ELCH_01  
Figure 7-5. Power-Up Sequencing  
1. VSYS represents the name of a supply which sources power to the entire system. This supply is expected to  
be a pre-regulated supply that sources power management devices which source all other supplies.  
2. VMON_VSYS input is used to monitor VSYS via an external resistor divider circuit. For more information,  
see the System Power Supply Monitor Design Guidelines.  
3. VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-6] are dual voltage IO supplies which can  
be operated at 1.8V or 3.3V depending on the application requirements. VDDSHV_CANUART shall be  
connected to an always-on power source when using Partial IO low power mode, or connected to any valid  
IO power source when not using Partial IO low power mode. When VDDSHV_CANUART is not connected to  
an always-on power source and is operating at 3.3V, it shall be ramped up with other 3.3V supplies during  
the 3.3V ramp period defined by this waveform.  
When any of the VDDSHV_MCU and VDDSHVx [x=0-6] IO supplies are operating at 3.3V, they shall be  
ramped up with other 3.3V supplies during the 3.3V ramp period defined by this waveform.  
4. The VMON_3P3_SOC input is used to monitor supply voltage and shall be connected to the respective 3.3V  
supply source.  
5. VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-6] are dual voltage IO supplies which can  
be operated at 1.8V or 3.3V depending on the application requirements. VDDSHV_CANUART shall be  
connected to an always-on power source when using Partial IO low power mode, or connected to any valid  
IO power source when not using Partial IO low power mode. When VDDSHV_CANUART is not connected to  
an always-on power source and is operating at 1.8V, it shall be ramped up with other 1.8V supplies during  
the 1.8V ramp period defined by this waveform.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
When any of the VDDSHV_MCU and VDDSHVx [x=0-6] IO supplies are operating at 1.8V, they shall be  
ramped up with other 1.8V supplies during the 1.8V ramp period defined by this waveform.  
6. The VMON_1P8_SOC input is used to monitor supply voltage and shall be connected to the respective 1.8V  
supply source.  
7. VDDS_DDR and VDDS_DDR_C are expected to be powered by the same source such that they ramp  
together.  
8. VDD_CANUART shall be connected to an always-on power source when using Partial IO or IO Only + DDR  
Self-refresh low power modes, or connected to the same power source as VDD_CORE when not using  
these low power modes.  
VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 shall always be sourced  
from the same power source and can be operated at 0.75V or 0.85V. When these supplies are operating at  
0.75V, they shall be ramped up prior to all 0.85V supplies as shown in this waveform.  
The potential applied to VDD_CORE must never be greater than the potential applied to VDD_CANUART  
+ 0.18V during power-up or power-down. This requires VDD_CANUART to ramp up before and ramp down  
after VDD_CORE. VDD_CANUART does not have any ramp requirements beyond the one defined for  
VDD_CORE.  
9. VDD_CANUART shall be connected to an always-on power source when using Partial IO or IO Only + DDR  
Self-refresh low power modes, or connected to the same power source as VDD_CORE when not using  
these low power modes.  
VDD_CORE, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 shall be sourced from  
the same power source and can be operated at 0.75V or 0.85V. When these supplies are operating at 0.85V,  
they shall be ramped up with other 0.85V supplies during the 0.85V ramp period defined by this waveform.  
The potential applied to VDD_CORE must never be greater than the potential applied to VDD_CANUART  
+ 0.18V during power-up or power-down. This requires VDD_CANUART to ramp up before and ramp down  
after VDD_CORE. VDD_CANUART does not have any ramp requirements beyond the one defined for  
VDD_CORE.  
10. The potential applied to VDDR_CORE must never be greater than the potential applied to VDD_CORE +  
0.18V during power-up or power-down. This requires VDD_CORE to ramp up before and ramp down after  
VDDR_CORE when VDD_CORE is operating at 0.75V. VDD_CORE does not have any ramp requirements  
beyond the one defined for VDDR_CORE. VDD_CORE and VDDR_CORE are expected to be powered by  
the same source so they ramp together when VDD_CORE is operating at 0.85V.  
The potential applied to VDD_CORE must never be greater than the potential applied to VDD_CANUART  
+ 0.18V during power-up or power-down. This requires VDD_CANUART to ramp up before and ramp down  
after VDD_CORE. VDD_CANUART does not have any ramp requirements beyond the one defined for  
VDD_CORE.  
11. VPP is the 1.8V eFuse programming supply, which shall be left floating (HiZ) or grounded during power-up/  
down sequences and during normal device operation. This supply shall only be sourced while programming  
eFuse.  
12. VDDSHV4, VDDSHV5, and VDDSHV6 were designed to support power-up, power-down, or dynamic  
voltage change without any dependency on other power rails. This capability is required to support UHS-I  
SD Cards.  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.2.2.2 Power-Down Sequencing  
Figure 7-6 describes the device power-down sequencing.  
VSYS  
VSYS, VMON_VSYS  
VMON_VSYS  
(1)  
(1)  
(1)  
(1)  
VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(1)  
,
(1)  
VDDSHV_CANUART , VDDA_3P3_USB,  
VMON_3P3_SOC  
(2)  
(2)  
(2)  
(2)  
VDDS_OSC0, VDDSHV_MCU , VDDSHV0 , VDDSHV1 , VDDSHV2 , VDDSHV3  
(2)  
,
(2)  
VDDSHV_CANUART , VDDA_MCU,  
VDDA_PLL0, VDDA_PLL1, VDDA_PLL2, VDDA_PLL3, VDDA_PLL4, VDDA_PLL5, VDDA_1P8_CSIRX0,  
VDDA_1P8_USB, VMON_1P8_SOC, VDDA_TEMP0, VDDA_TEMP1, VDDA_TEMP2  
(6) (6)  
VDDSHV4 , VDDSHV5 , VDDSHV6  
(6)  
VDDS_DDR, VDDS_DDR_C  
(3)(5)  
(3)  
(3)  
, VDD_CANUART , VDDA_CORE_CSIRX0 , VDDA_CORE_USB  
(3)  
VDD_CORE  
,
(6)  
VDDA_DDR_PLL0  
(4)(5)  
(5)  
(4)  
, VDDR_CORE , VDDA_CANUART , VDDA_CORE_CSIRX0 ,  
(4)  
VDD_CORE  
(4)  
VDDA_CORE_USB ,VDDA_DDR_PLL0  
(6)  
VPP  
Hi-Z  
MCU_PORz  
MCU_OSC0_XI, MCU_OSC0_XO  
AM62Ax_ELCH_02  
Figure 7-6. Power-Down Sequencing  
1. VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-6] when operating at 3.3V.  
2. VDDSHV_CANUART, VDDSHV_MCU, and VDDSHVx [x=0-6] when operating at 1.8V.  
3. VDD_CORE, VDD_CANUART, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 when  
operating at 0.75V.  
4. VDD_CORE, VDD_CANUART, VDDA_CORE_CSIRX0, VDDA_CORE_USB, and VDDA_DDR_PLL0 when  
operating at 0.85V.  
5. The potential applied to VDDR_CORE must never be greater than the potential applied to VDD_CORE +  
0.18V during power-up or power-down. This requires VDD_CORE to ramp up before and ramp down after  
VDDR_CORE when VDD_CORE is operating at 0.75V. VDD_CORE does not have any ramp requirements  
beyond the one defined for VDDR_CORE. VDD_CORE and VDDR_CORE are expected to be powered by  
the same source so they ramp together when VDD_CORE is operating at 0.85V.  
The potential applied to VDD_CORE must never be greater than the potential applied to VDD_CANUART  
+ 0.18V during power-up or power-down. This requires VDD_CANUART to ramp up before and ramp down  
after VDD_CORE. VDD_CANUART does not have any ramp requirements beyond the one defined for  
VDD_CORE.  
6. VDDSHV4, VDDSHV5, and VDDSHV6 were designed to support power-up, power-down, or dynamic  
voltage change without any dependency on other power rails. This capability is required to support UHS-I  
SD Cards.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.3 System Timing  
For more details about features and additional description information on the subsystem multiplexing signals,  
see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.9.3.1 Reset Timing  
Tables and figures provided in this section define timing conditions, timing requirements, and switching  
characteristics for reset related signals.  
Table 7-4. Reset Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
VDD(1) = 1.8V  
VDD(1) = 3.3V  
0.0033  
0.0018  
V/ns  
V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30 pF  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
Table 7-5. MCU_PORz Timing Requirements  
see Figure 7-7  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid (using external crystal circuit)  
RST1  
9500000  
ns  
th(SUPPLIES_VALID - MCU_PORz)  
Hold time, MCU_PORz active (low) at Power-up  
after supplies valid and external clock stable (using  
external LVCMOS clock source)  
RST2  
1200  
1200  
ns  
ns  
Pulse Width, MCU_PORz low after Power-up  
(without removal of Power or system reference  
clock MCU_OSC0_XI/XO)  
RST3 tw(MCU_PORzL)  
Figure 7-7. MCU_PORz Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-6. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see Figure 7-8  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
MCU_RESETSTATz active (low)  
RST4 td(MCU_PORzL-MCU_RESETSTATzL)  
RST5 td(MCU_PORzH-MCU_RESETSTATzH)  
RST6 td(MCU_PORzL-RESETSTATzL)  
RST7 td(MCU_PORzH-RESETSTATzH)  
RST8 tw(MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
MCU_RESETSTATz inactive (high)  
6120*S(1)  
0
ns  
ns  
ns  
ns  
Delay time, MCU_PORz active (low) to  
RESETSTATz active (low)  
Delay time, MCU_PORz inactive (high) to  
RESETSTATz inactive (high)  
9195*S(1)  
966*S(1)  
Pulse Width, MCU_RESETSTATz low  
(SW_MCU_WARMRST)  
Pulse Width, RESETSTATz low  
(SW_MCU_WARMRST, SW_MAIN_PORz, or  
SW_MAIN_WARMRST)  
RST9 tw(RESETSTATzL)  
4040*S  
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
Figure 7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-7. MCU_RESETz Timing Requirements  
see Figure 7-9  
NO.  
PARAMETER  
MIN  
MAX UNIT  
(1)  
RST10 tw(MCU_RESETzL)  
Pulse Width, MCU_RESETz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
Table 7-8. MCU_RESETSTATz, and RESETSTATz Switching Characteristics  
see Figure 7-9  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_RESETz active (low) to  
MCU_RESETSTATz active (low)  
RST11 td(MCU_RESETzL-MCU_RESETSTATzL)  
0
ns  
Delay time, MCU_RESETz inactive (high) to  
MCU_RESETSTATz inactive (high)  
RST12 td(MCU_RESETzH-MCU_RESETSTATzH)  
RST13 td(MCU_RESETzL-RESETSTATzL)  
966*S(1)  
0
ns  
ns  
ns  
Delay time, MCU_RESETz active (low) to  
RESETSTATz active (low)  
RST14 td(MCU_RESETzH-RESETSTATzH)  
Delay time, MCU_RESETz inactive (high) to  
RESETSTATz inactive (high)  
4040*S(1)  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
Figure 7-9. MCU_RESETz, MCU_RESETSTATz, and RESETSTATz Timing Requirements and Switching  
Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-9. RESET_REQz Timing Requirements  
see Figure 7-10  
NO.  
PARAMETER  
MIN  
MAX UNIT  
(1)  
RST15 tw(RESET_REQzL)  
Pulse Width, RESET_REQz active (low)  
1200  
ns  
(1) This timing parameter is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.  
Table 7-10. RESETSTATz Switching Characteristics  
see Figure 7-10  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, RESET_REQz active (low) to  
RESETSTATz active (low)  
RST16 td(RESET_REQzL-RESETSTATzL)  
900*T(1)  
ns  
Delay time, RESET_REQz inactive (high) to  
RESETSTATz inactive (high)  
RST17 td(RESET_REQzH-RESETSTATzH)  
4040*S(2)  
ns  
(1) T = Reset Isolation Time (Software Dependent)  
(2) S = MCU_OSC0_XI/XO clock period in ns.  
Figure 7-10. RESET_REQz and RESETSTATz Timing Requirements and Switching Characteristics  
Table 7-11. EMUx Timing Requirements  
see Figure 7-11  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Setup time, EMU[1:0] before MCU_PORz inactive  
(high)  
RST18 tsu(EMUx-MCU_PORz)  
3*S(1)  
ns  
Hold time, EMU[1:0] after MCU_PORz inactive  
(high)  
RST19 th(MCU_PORz - EMUx)  
10  
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
Figure 7-11. EMUx Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-12. BOOTMODE Timing Requirements  
see Figure 7-12  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Setup time, BOOTMODE[15:00] before  
PORz_OUT high (External MCU PORz event or  
Software SW_MAIN_PORz)  
RST23 tsu(BOOTMODE-PORz_OUT)  
3*S(1)  
ns  
Hold time, BOOTMODE[15:00] after PORz_OUT  
high (External MCU PORz event, or Software  
SW_MAIN_PORz)  
RST24 th(PORz_OUT - BOOTMODE)  
0
ns  
(1) S = MCU_OSC0_XI/XO clock period in ns.  
Table 7-13. PORz_OUT Switching Characteristics  
see Figure 7-12  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Delay time, MCU_PORz active (low) to  
PORz_OUT active (low)  
RST25 td(MCU_PORzL-PORz_OUT)  
RST26 td(MCU_PORzH-PORz_OUT)  
RST27 tw(PORz_OUTL)  
0
ns  
Delay time, MCU_PORz inactive (high) to  
PORz_OUT inactive (high)  
1840  
1200  
ns  
ns  
Pulse Width, PORz_OUT low (MCU_PORz or  
SW_MAIN_PORz)  
Figure 7-12. BOOTMODE Timing Requirements and PORz_OUT Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.3.2 Error Signal Timing  
Tables and figures provided in this section define timing conditions and switching characteristics for  
MCU_ERRORn.  
Table 7-14. Error Signal Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30 pF  
Table 7-15. MCU_ERRORn Switching Characteristics  
see Figure 7-13  
NO.  
PARAMETER  
MIN  
MAX UNIT  
Cycle time minimum, MCU_ERRORn (PWM  
mode enabled)  
ERR1 tc(MCU_ERRORn)  
ERR2 tw(MCU_ERRORn)  
td (ERROR_CONDITION-  
(P*H)+(P*L)(1) (3) (4)  
P*R(1) (2)  
ns  
Pulse width minimum, MCU_ERRORn active  
(PWM mode disabled)(5)  
ns  
ns  
Delay time, ERROR CONDITION to  
MCU_ERRORn active(5)  
ERR3  
50*P(1)  
MCU_ERRORnL)  
(1) P = ESM functional clock period in ns.  
(2) R = Error Pin Counter Pre-Load Register count value.  
(3) H = Error Pin PWM High Pre-Load Register count value.  
(4) L = Error Pin PWM Low Pre-Load Register count value.  
(5) When PWM mode is enabled, MCU_ERRORn stops toggling after ERR3 and will maintain its value (either high or low) until the error is  
cleared. When PWM mode is disabled, MCU_ERRORn is active low.  
Internal Error Condition  
(Active High)  
ERR1  
MCU_ERRORn  
(PWM Mode Enabled)  
ERR2  
ERR3  
MCU_ERRORn  
(PWM Mode Disabled)  
Figure 7-13. MCU_ERRORn Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.3.3 Clock Timing  
Tables and figures provided in this section define timing conditions, timing requirements, and switching  
characteristics for clock signals.  
Table 7-16. Clock Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
0.5  
V/ns  
OUTPUT CONDITIONS  
5 ns ≤ tc < 8 ns  
8 ns ≤ tc < 20 ns  
20 ns ≤ tc  
5 pF  
10 pF  
30 pF  
CL  
Output load capacitance  
Table 7-17. Clock Timing Requirements  
see Figure 7-14  
NO.  
MIN  
MAX UNIT  
CLK1 tc(EXT_REFCLK1)  
Cycle time minimum, EXT_REFCLK1  
10  
E*0.45(1)  
E*0.45(1)  
10  
ns  
CLK2 tw(EXT_REFCLK1H)  
Pulse Duration, EXT_REFCLK1 high  
E*0.55(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK3 tw(EXT_REFCLK1L)  
Pulse Duration, EXT_REFCLK1 low  
E*0.55(1)  
CLK1 tc(MCU_EXT_REFCLK0)  
CLK2 tw(MCU_EXT_REFCLK0H)  
CLK3 tw(MCU_EXT_REFCLK0L)  
CLK1 tc(AUDIO_EXT_REFCLK0)  
CLK2 tw(AUDIO_EXT_REFCLK0H)  
CLK3 tw(AUDIO_EXT_REFCLK0L)  
CLK1 tc(AUDIO_EXT_REFCLK1)  
CLK2 tw(AUDIO_EXT_REFCLK1H)  
CLK3 tw(AUDIO_EXT_REFCLK1L)  
Cycle time minimum, MCU_EXT_REFCLK0  
Pulse Duration, MCU_EXT_REFCLK0 high  
Pulse Duration, MCU_EXT_REFCLK0 low  
Cycle time minimum, AUDIO_EXT_REFCLK0  
Pulse Duration, AUDIO_EXT_REFCLK0 high  
Pulse Duration, AUDIO_EXT_REFCLK0 low  
Cycle time minimum, AUDIO_EXT_REFCLK1  
Pulse Duration, AUDIO_EXT_REFCLK1 high  
Pulse Duration, AUDIO_EXT_REFCLK1 low  
F*0.45(2)  
F*0.45(2)  
20  
F*0.55(2)  
F*0.55(2)  
G*0.45(3)  
G*0.45(3)  
20  
G*0.55(3)  
G*0.55(3)  
H*0.45(4)  
H*0.45(4)  
H*0.55(4)  
H*0.55(4)  
(1) E = EXT_REFCLK1 cycle time in ns.  
(2) F = MCU_EXT_REFCLK0 cycle time in ns.  
(3) G = AUDIO_EXT_REFCLK0 cycle time in ns.  
(4) H = AUDIO_EXT_REFCLK1 cycle time in ns.  
CLK1  
CLK2  
CLK3  
Input Clock  
Figure 7-14. Clock Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-18. Clock Switching Characteristics  
see Figure 7-15  
NO.  
PARAMETER  
MIN  
8
MAX UNIT  
CLK4 tc(SYSCLKOUT0)  
CLK5 tw(SYSCLKOUT0H)  
CLK6 tw(SYSCLKOUT0L)  
CLK4 tc(OBSCLK0)  
Cycle time minimum,SYSCLKOUT0  
Pulse Duration, SYSCLKOUT0 high  
Pulse Duration, SYSCLKOUT0 low  
Cycle time minimum, OBSCLK0  
Pulse Duration, OBSCLK0 high  
ns  
A*0.4(1)  
A*0.4(1)  
5
A*0.6(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A*0.6(1)  
CLK5 tw(OBSCLK0H)  
B*0.45(2)  
B*0.45(2)  
5
B*0.55(2)  
B*0.55(2)  
CLK6 tw(OBSCLK0L)  
Pulse Duration, OBSCLK0 low  
CLK4 tc(OBSCLK1)  
Cycle time minimum, OBSCLK1  
Pulse Duration, OBSCLK1 high  
CLK5 tw(OBSCLK1H)  
TBD*0.45  
TBD*0.45  
20  
TBD*0.55  
TBD*0.55  
CLK6 tw(OBSCLK1L)  
Pulse Duration, OBSCLK1 low  
CLK4 tc(CLKOUT0)  
Cycle time minimum, CLKOUT0  
Pulse Duration, CLKOUT0 high  
CLK5 tw(CLKOUT0H)  
C*0.4(3)  
C*0.4(3)  
10  
C*0.6(3)  
C*0.6(3)  
CLK6 tw(CLKOUT0L)  
Pulse Duration, CLKOUT0 low  
CLK4 tc(MCU_SYSCLKOUT0)  
CLK5 tw(MCU_SYSCLKOUT0H)  
CLK6 tw(MCU_SYSCLKOUT0L)  
CLK4 tc(MCU_OBSCLK0)  
CLK5 tw(MCU_OBSCLK0H)  
CLK6 tw(MCU_OBSCLK0L)  
CLK4 tc(WKUP_CLKOUT0)  
CLK5 tw(WKUP_CLKOUT0H)  
CLK6 tw(WKUP_CLKOUT0L)  
Cycle time minimum, MCU_SYSCLKOUT0  
Pulse Duration, MCU_SYSCLKOUT0 high  
Pulse Duration, MCU_SYSCLKOUT0 low  
Cycle time minimum, MCU_OBSCLK0  
Pulse Duration, MCU_OBSCLK0 high  
Pulse Duration, MCU_OBSCLK0 low  
Cycle time minimum, WKUP_CLKOUT0  
Pulse Duration, WKUP_CLKOUT0 high  
Pulse Duration, WKUP_CLKOUT0 low  
E*0.4(4)  
E*0.4(4)  
5
E*0.6(4)  
E*0.6(4)  
D*0.45(5)  
D*0.45(5)  
5
D*0.55(5)  
D*0.55(5)  
W*0.4(6)  
W*0.4(6)  
W*0.6(6)  
W*0.6(6)  
Cycle time minimum, AUDIO_EXT_REFCLK0  
(McASP Clock Source)  
20  
ns  
ns  
CLK4 tc(AUDIO_EXT_REFCLK0 )  
Cycle time minimum, AUDIO_EXT_REFCLK0  
(PLL Clock Source)  
10  
CLK5 tw(AUDIO_EXT_REFCLK0 H)  
CLK6 tw(AUDIO_EXT_REFCLK0 L)  
Pulse Duration, AUDIO_EXT_REFCLK0 high  
Pulse Duration, AUDIO_EXT_REFCLK0 low  
G*0.4(7)  
G*0.4(7)  
G*0.6(7)  
G*0.6(7)  
ns  
ns  
Cycle time minimum, AUDIO_EXT_REFCLK1  
(McASP Clock Source)  
20  
ns  
ns  
CLK4 tc(AUDIO_EXT_REFCLK1 )  
Cycle time minimum, AUDIO_EXT_REFCLK1  
(PLL Clock Source)  
10  
CLK5 tw(AUDIO_EXT_REFCLK1 H)  
CLK6 tw(AUDIO_EXT_REFCLK1 L)  
Pulse Duration, AUDIO_EXT_REFCLK1 high  
Pulse Duration, AUDIO_EXT_REFCLK1 low  
J*0.4(8)  
J*0.4(8)  
J*0.6(8)  
J*0.6(8)  
ns  
ns  
(1) A = SYSCLKOUT0 cycle time in ns.  
(2) B = OBSCLK0 cycle time in ns.  
(3) C = CLKOUT0 cycle time in ns.  
(4) E = MCU_SYSCLKOUT0 cycle time in ns.  
(5) D = MCU_OBSCLK0 cycle time in ns.  
(6) W = WKUP_CLKOUT0 cycle time in ns.  
(7) G = AUDIO_EXT_REFCLK0 cycle time in ns.  
(8) J = AUDIO_EXT_REFCLK1 cycle time in ns.  
CLK4  
CLK5  
CLK6  
Output Clock  
Figure 7-15. Clock Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.4 Clock Specifications  
7.9.4.1 Input Clocks / Oscillators  
Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as  
follows:  
MCU_OSC0_XO/MCU_OSC0_XI — external main crystal interface pins connected to the internal high-  
frequency oscillator (MCU_HFOSC0), which is the default clock source for internal reference clock  
HFOSC0_CLKOUT.  
WKUP_LFOSC0_XO/WKUP_LFOSC0_XI — external crystal interface pins connected to internal low-  
frequency oscillator (WKUP_LFOSC0), which sources optional 32768 Hz reference clock.  
General purpose clock inputs  
– MCU_EXT_REFCLK0 — optional external system clock.  
– EXT_REFCLK1 — optional external system clock.  
External CPTS reference clock inputs  
– CP_GEMAC_CPTS0_RFT_CLK — optional reference clock input for CPTS_RFT_CLK.  
External audio reference clock inputs/outputs  
– AUDIO_EXT_REFCLK[1:0] — optional McASP high-frequency input clocks when configured to operate as  
an input.  
For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.4.1.1 MCU_OSC0 Internal Oscillator Clock Source  
Figure 7-16 shows the recommended crystal circuit. All discrete components used to implement the oscillator  
circuit should be placed as close as possible to the MCU_OSC0_XI and MCU_OSC0_XO pins.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
Crystal  
CL2  
CL1  
PCB Ground  
AM65x_MCU_OSC_INT_01  
Figure 7-16. MCU_OSC0 Crystal Implementation  
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-19 summarizes the  
required electrical constraints.  
Table 7-19. MCU_OSC0 Crystal Circuit Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Fxtal  
Fxtal  
Crystal Parallel Resonance Frequency  
25  
Crystal Frequency Stability and Tolerance  
Ethernet RGMII and RMII  
not used  
±100  
Ethernet RGMII and RMII  
using derived clock  
±50  
CL1+PCBXI  
CL2+PCBXO  
CL  
Capacitance of CL1 + CPCBXI  
Capacitance of CL2 + CPCBXO  
Crystal Load Capacitance  
12  
12  
6
24  
24  
12  
7
pF  
pF  
pF  
pF  
pF  
pF  
Ω
Cshunt  
Crystal Circuit Shunt Capacitance  
ESRxtal = 30 Ω  
25 MHz  
25 MHz  
25 MHz  
ESRxtal = 40 Ω  
ESRxtal = 50 Ω  
5
5
(1)  
ESRxtal  
Crystal Effective Series Resistance  
(1) The maximum ESR of the crystal is a function of the crystal frequency and shunt capacitance. See the Cshunt parameter.  
When selecting a crystal, the system design must consider temperature and aging characteristics of the crystal  
based on worst case environment and expected life expectancy of the system.  
Table 7-20 details the switching characteristics of the oscillator.  
Table 7-20. MCU_OSC0 Switching Characteristics - Crystal Mode  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
pF  
CXI  
XI Capacitance  
XO Capacitance  
TBD  
TBD  
TBD  
CXO  
CXIXO  
pF  
XI to XO Mutual Capacitance  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-20. MCU_OSC0 Switching Characteristics - Crystal Mode (continued)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ts  
Start-up Time  
4
ms  
VDD_CORE (min.)  
VSS  
VDD_CORE  
VDDS_OSC0  
VDDS_OSC0 (min.)  
MCU_OSC0_XO  
tsX  
VSS  
Time  
AM65x_MCU_OSC_STARTUP_02  
Figure 7-17. MCU_OSC0 Start-up Time  
7.9.4.1.1.1 Load Capacitance  
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined  
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors  
CL1, CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to  
MCU_OSC0_XI and MCU_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the  
PCB designer should be able to extract parasitic capacitance for each signal trace. The MCU_OSC0 circuits  
and device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic  
capacitance values are defined in Table 7-20.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CL1  
CPCBXI  
CXI  
CL2  
CPCBXO  
CXO  
MCU_OSC0_XO  
AM65x_MCU_OSC_CC_05  
Figure 7-18. Load Capacitance  
Load capacitors, CL1 and CL2 in Figure 7-16, should be chosen such that the below equation is satisfied. CL in  
the equation is the load specified by the crystal manufacturer.  
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]  
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the  
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO  
=
0.5 pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) -  
(CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF  
7.9.4.1.1.2 Shunt Capacitance  
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for  
MCU_OSC0 operating conditions defined in Table 7-19. Shunt capacitance, Cshunt, of the crystal circuit is a  
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal  
circuit components to MCU_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB  
designer should be able to extract mutual parasitic capacitance between these signal traces. The device  
package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined  
in Table 7-20.  
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is  
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can  
also be minimized by placing a ground trace between these signals when the layout requires them to be routed  
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as  
possible when selecting a crystal.  
Device  
Crystal Circuit  
Components  
PCB  
Signal Traces  
MCU_OSC0_XI  
CPCBXIXO  
CXIXO  
CO  
MCU_OSC0_XO  
AM65x_MCU_OSC_SC_06  
Figure 7-19. Shunt Capacitance  
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt  
capacitance specified by the crystal manufacturer.  
Cshunt ≥ CO + CPCBXIXO + CXIXO  
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 Ω,  
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.4.1.2 MCU_OSC0 LVCMOS Digital Clock Source  
Figure 7-20 shows the recommended oscillator connections when MCU_OSC0_XI is connected to a 1.8-V  
LVCMOS square-wave digital clock source.  
Note  
A DC steady-state condition is not allowed on MCU_OSC0_XI when the oscillator is powered up. This  
is not allowed because MCU_OSC0_XI is internally AC coupled to a comparator that can enter an  
unknown state when DC is applied to the input. Therefore, application software must power down  
MCU_OSC0 any time MCU_OSC0_XI is not toggling between logic states.  
Device  
MCU_OSC0_XO  
MCU_OSC0_XI  
PCB Ground  
AM65x_MCU_OSC_EXT_CLK_03  
Figure 7-20. 1.8-V LVCMOS-Compatible Clock Input  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.4.1.3 WKUP_LFOSC0 Internal Oscillator Clock Source  
Figure 7-21 shows the recommended crystal circuit. It is recommended that preproduction printed-circuit board  
(PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator  
operation when combined with production crystal circuit components. In most cases, Rbias is not required and  
Rd is a 0-Ω resistor. These resistors may be removed from production PCB designs after evaluating oscillator  
performance with production crystal circuit components installed on preproduction PCBs.  
Device  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
Rd  
Crystal  
(Optional)  
(Optional)  
Rbias  
Cf2  
Cf1  
PCB Ground  
J7ES_LF_OSC_INT_12  
Figure 7-21. WKUP_LFOSC0 Crystal Implementation  
Table 7-21 presents LFXOSC modes of operation.  
Table 7-21. LFXOSC Modes of Operation  
CLK_O  
UT  
MODE  
BP_C PD_C  
XI  
XO  
DESCRIPTION  
ACTIVE  
0
0
XTAL  
XTAL CLK_OU  
T
Active oscillator mode providing 32kHz  
PWRDN  
BYPASS  
0
1
1
X
PD  
PD  
LOW Output will be pulled down to LOW. PAD to be tri-stated. Active mode disabled  
X
CLK  
CLK  
XI is driven by external clock source. XO is pulled down to LOW. Due to ESD  
diode to supply, XI should not be driven unless oscillator supply is present.  
Note  
User should set CTRLMMR_WKUP_LFXOSC_TRIM[18:16] i_mult = 3b’001 for CL in the range 6pf to  
9.5pf. CTRLMMR_WKUP_LFXOSC_TRIM [18:16] i_mult = 3b’010 for CL in the range 8.5pf to 12pf.  
Default setting is 3b’010.  
Note  
The load capacitors, Cf1 and Cf2 in Figure 7-22, should be chosen such that the below equation is  
satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components  
used to implement the oscillator circuit should be placed as close as possible to the associated  
oscillator WKUP_LFOSC0_XI, WKUP_LFOSC0_XO, and VSS pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Cf1Cf2  
= (Cf1+Cf2)  
C
L
J7ES_CL_MATH_03  
Figure 7-22. Load Capacitance Equation  
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-22 summarizes the  
required electrical constraints.  
Table 7-22. WKUP_LFOSC0 Crystal Electrical Characteristics  
NAME  
fp  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
Parallel resonance crystal frequency  
32768  
Hz  
Cf1  
Cf2  
Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2  
Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2  
12  
12  
24  
24  
4
pF  
pF  
pF  
pF  
pF  
pF  
Ω
ESRxtal – 40 kΩ  
ESRxtal – 60 kΩ  
ESRxtal – 80 kΩ  
ESRxtal – 100 kΩ  
3
Cshunt Shunt capacitance  
2
1
(1)  
ESR  
Crystal effective series resistance  
(1) The maximum ESR of the crystal is a function of the crystal frequency and shunt capacitance. See the Cshunt parameter.  
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based  
on the worst case environment and expected life expectancy of the system.  
Table 7-23 details the switching characteristics of the oscillator and the requirements of the input clock.  
Table 7-23. WKUP_LFOSC0 Switching Characteristics – Crystal Mode  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Hz  
fxtal  
tsX  
Oscillation frequency  
Start-up time  
32768  
96.5  
ms  
VDD_CORE (min.)  
VSS  
VDD_CORE  
VDDS_OSC0  
VDDS_OSC0 (min.)  
WKUP_LFOSC0_XO  
tsX  
VSS  
Time  
LFXOSC_STARTUP_02  
Figure 7-23. WKUP_LFOSC0 Start-up Time  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.4.1.4 WKUP_LFOSC0 LVCMOS Digital Clock Source  
Figure 7-24 shows the recommended oscillator connections when WKUP_LFOSC0_XI is connected to a 1.8-V  
LVCMOS square-wave digital clock source.  
Device  
WKUP_LFOSC0_XI  
WKUP_LFOSC0_XO  
PCB Ground  
AM62x_MCU_OSC_EXT_CLK_03  
Figure 7-24. 1.8-V LVCMOS-Compatible Clock Input  
7.9.4.1.5 WKUP_LFOSC0 Not Used  
Figure 7-25 shows the recommended oscillator connections when WKUP_LFOSC0 is not used.  
Device  
WKUP_LFOSC0_XO  
WKUP_LFOSC0_XI  
NC  
PCB Ground  
Figure 7-25. WKUP_LFOSC0 Not Used  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.4.2 Output Clocks  
The device provides several system clock outputs. Summary of these output clocks are as follows:  
MCU_SYSCLKOUT0  
– MCU_PLL0_HSDIV0_CLKOUT (MCU_SYSCLKOUT0) divided by 4 and sent out of the device as  
MCU_SYSCLKOUT0. This clock output is provided for test and debug purposes only.  
MCU_OBSCLK0  
– Observation clock output for test and debug purposes only.  
WKUP_CLKOUT0  
– WKUP domain CLKOUT0 output.  
SYSCLKOUT0  
– MAIN_PLL0_HSDIV0_CLKOUT (SYSCLKOUT0) divided by 4 and then sent out of the device as  
SYSCLKOUT0. This clock output is provided for test and debug purposes only.  
CLKOUT0  
– CLKOUT0 is the Ethernet subsystem clock (MAIN_PLL2_HSDIV1_CLKOUT) divided-by-5 or divided-  
by-10. This clock output was provided as an optional source to the external PHY. When configured  
to operate as the RMII Clock source (50 MHz) the signal must also be routed back to the respective  
RMII[x]_REF_CLK pin for proper device operation.  
OBSCLK[1:0]  
– Observation clock outputs for test and debug purposes only.  
AUDIO_EXT_REFCLK[1:0]  
– Option of sourcing one of six McASP high-frequency audio reference clocks,  
MAIN_PLL1_HSDIV6_CLKOUT, or MAIN_PLL2_HSDIV8_CLKOUT when configured to operate as an  
output.  
7.9.4.3 PLLs  
Power is supplied to the Phase-Locked Loop circuits (PLLs) by internal regulators that derive their power from  
off-chip power-sources.  
There is one PLL in the MCU domain:  
MCU PLL  
There are nine PLLs in the MAIN domain:  
MAIN PLL  
PER0 PLL  
PER1 PLL  
VIDEO PLL  
C7x PLL  
ARM0 PLL  
DDR PLL  
SMS PLL  
DSS PLL  
The system designer should consider the reference clock source start-up time and the PLL lock requirements  
before configuring and using any of the PLL outputs as clock sources. The device reference clock input  
requirements are defined in Section 7.9.4.1, Input Clocks / Oscillators. PLL configuration details are described in  
the device TRM.  
For more information on PLLs, see the PLL subsection in the Clocking subsection of the Device Configuration  
section in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.4.4 Recommended System Precautions for Clock and Control Signal Transitions  
All clock and strobe signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic  
manner.  
Monotonic transitions are more likely to occur with fast signal transitions. It is easy for noise to create non-  
monotonic events on a signal with slow transitions. Therefore, avoid slow signal transitions on all clock and  
control signals since they are more likely to generate glitches inside the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5 Peripherals  
7.9.5.1 CPSW3G  
For more details about features and additional description information on the device Gigabit Ethernet MAC, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.9.5.1.1 CPSW3G MDIO Timing  
Table 7-24, Table 7-25, Table 7-26, and Figure 7-26 present timing conditions, requirements, and switching  
characteristics for CPSW3G MDIO.  
Table 7-24. CPSW3G MDIO Timing Conditions  
PARAMETER  
MIN  
0.9  
10  
MAX  
3.6  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
470  
Table 7-25. CPSW3G MDIO Timing Requirements  
see Figure 7-26  
NO.  
PARAMETER  
MIN  
90  
0
MAX  
UNIT  
ns  
MDIO1 tsu(MDIO_MDC)  
MDIO2 th(MDC_MDIO)  
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high  
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high  
ns  
Table 7-26. CPSW3G MDIO Switching Characteristics  
see Figure 7-26  
NO.  
PARAMETER  
MIN  
400  
160  
160  
-150  
MAX  
UNIT  
ns  
MDIO3 tc(MDC)  
Cycle time, MDIO[x]_MDC  
MDIO4 tw(MDCH)  
MDIO5 tw(MDCL)  
MDIO7 td(MDC_MDIO)  
Pulse Duration, MDIO[x]_MDC high  
Pulse Duration, MDIO[x]_MDC low  
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid  
ns  
ns  
150  
ns  
MDIO3  
MDIO4  
MDIO5  
MDIO[x]_MDC  
MDIO1  
MDIO2  
MDIO[x]_MDIO  
(input)  
MDIO7  
MDIO[x]_MDIO  
(output)  
CPSW2G_MDIO_TIMING_01  
Figure 7-26. CPSW3G MDIO Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.1.2 CPSW3G RMII Timing  
Table 7-27, Table 7-28, Figure 7-27, Table 7-29, Figure 7-28, Table 7-30, and Figure 7-29 present timing  
conditions, requirements, and switching characteristics for CPSW3G RMII.  
Table 7-27. CPSW3G RMII Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
VDD(1) = 1.8V  
VDD(1) = 3.3V  
0.18  
0.4  
0.54 V/ns  
1.2 V/ns  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
3
25  
pF  
(1) VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball(s), see  
POWER column of the Pin Attributes table.  
Table 7-28. RMII[x]_REF_CLK Timing Requirements – RMII Mode  
see Figure 7-27  
NO.  
PARAMETER  
tc(REF_CLK)  
tw(REF_CLKH)  
tw(REF_CLKL)  
DESCRIPTION  
Cycle time, RMII[x]_REF_CLK  
MIN  
MAX  
20.001  
13  
UNIT  
ns  
RMII1  
RMII2  
RMII3  
19.999  
Pulse Duration, RMII[x]_REF_CLK High  
Pulse Duration, RMII[x]_REF_CLK Low  
7
7
ns  
13  
ns  
RMII1  
RMII2  
RMII[x]_REF_CLK  
RMII3  
Figure 7-27. CPSW3G RMII[x]_REF_CLK Timing Requirements – RMII Mode  
Table 7-29. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements – RMII Mode  
see Figure 7-28  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
4
MAX  
UNIT  
ns  
RMII4  
tsu(RXD-REF_CLK)  
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK  
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK  
Hold time RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK  
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK  
tsu(CRS_DV-REF_CLK)  
tsu(RX_ER-REF_CLK)  
th(REF_CLK-RXD)  
4
ns  
4
ns  
RMII5  
2
ns  
th(REF_CLK-CRS_DV)  
th(REF_CLK-RX_ER)  
2
ns  
2
ns  
RMII4  
RMII5  
RMII[x]_REF_CLK  
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,  
RMII[x]_RX_ER  
Figure 7-28. CPSW3G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements – RMII  
Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-30. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode  
see Figure 7-29  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
RMII6 td(REF_CLK-TXD)  
Delay time, RMII[x]_REF_CLK High to RMII[x]_  
TXD[1:0] valid  
2
10  
ns  
td(REF_CLK-TX_EN)  
Delay time, RMII[x]_REF_CLK to RMII[x]_TX_EN  
valid  
2
10  
ns  
RMII6  
RMII[x]_REF_CLK  
RMII[x]_TXD[1:0], RMII[x]_TX_EN  
Figure 7-29. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.1.3 CPSW3G RGMII Timing  
Table 7-31, Table 7-32, Table 7-33, Figure 7-30, Table 7-34, Table 7-35, and Figure 7-31 present timing  
conditions, requirements, and switching characteristics for CPSW3G RGMII.  
Table 7-31. CPSW3G RGMII Timing Conditions  
PARAMETER  
MIN  
2.64  
2
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
5
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
PCB CONNECTIVITY REQUIREMENTS  
RGMII[x]_RXC,  
RGMII[x]_RD[3:0],  
RGMII[x]_RX_CTL  
50  
50  
ps  
ps  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
Delay)  
RGMII[x]_TXC,  
RGMII[x]_TD[3:0],  
RGMII[x]_TX_CTL  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-32. RGMII[x]_RXC Timing Requirements – RGMII Mode  
see Figure 7-30  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_RXC  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII1 tc(RXC)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
RGMII2 tw(RXCH)  
Pulse duration, RGMII[x]_RXC high  
Pulse duration, RGMII[x]_RXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII3 tw(RXCL)  
100Mbps  
1000Mbps  
3.6  
4.4  
Table 7-33. RGMII[x]_RD[3:0], and RGMII[x]_RX_CTL Timing Requirements – RGMII Mode  
see Figure 7-30  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1
MAX UNIT  
RGMII4 tsu(RD-RXC)  
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC  
high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
1
1
tsu(RX_CTL-RXC)  
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
RGMII5 th(RXC-RD)  
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
10Mbps  
1
1
th(RXC-RX_CTL)  
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC  
high/low  
1
100Mbps  
1000Mbps  
1
1
RGMII1  
RGMII2  
RGMII3  
RGMII[x]_RXC(A)  
RGMII4  
RGMII5  
RGMII[x]_RD[3:0](B)  
RGMII[x]_RX_CTL(B)  
1st Half-byte  
RXDV  
2nd Half-byte  
RXERR  
A. RGMII[x]_RXC must be externally delayed relative to the data and control pins.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_RXC and data bits 7-4 on the falling edge of RGMII[x]_RXC. Similarly, RGMII[x]_RX_CTL carries RXDV on rising edge of  
RGMII[x]_RXC and RXERR on falling edge of RGMII[x]_RXC.  
Figure 7-30. CPSW3G RGMII[x]_RXC, RGMII[x]_RD[3:0], RGMII[x]_RX_CTL Timing Requirements - RGMII  
Mode  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-34. RGMII[x]_TXC Switching Characteristics – RGMII Mode  
see Figure 7-31  
NO.  
PARAMETER  
DESCRIPTION  
Cycle time, RGMII[x]_TXC  
MODE  
10Mbps  
MIN  
360  
36  
MAX UNIT  
RGMII6 tc(TXC)  
440  
44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
7.2  
160  
16  
8.8  
240  
24  
RGMII7 tw(TXCH)  
Pulse duration, RGMII[x]_TXC high  
Pulse duration, RGMII[x]_TXC low  
100Mbps  
1000Mbps  
10Mbps  
3.6  
160  
16  
4.4  
240  
24  
RGMII8 tw(TXCL)  
100Mbps  
1000Mbps  
3.6  
4.4  
Table 7-35. RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL Switching Characteristics – RGMII Mode  
see Figure 7-31  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
10Mbps  
MIN  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
MAX UNIT  
RGMII9 tosu(TD-TXC)  
Output setup time(1), RGMII[x]_TD[3:0] valid to  
RGMII[x]_TXC high/low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100Mbps  
1000Mbps  
10Mbps  
tosu(TX_CTL-TXC)  
Output setup time(1), RGMII[x]_TX_CTL valid to  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
10Mbps  
RGMII10 toh(TXC-TD)  
Output hold time(1), RGMII[x]_TD[3:0] valid after  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
10Mbps  
toh(TXC-TX_CTL)  
Output hold time(1), RGMII[x]_TX_CTL valid after  
RGMII[x]_TXC high/low  
100Mbps  
1000Mbps  
(1) Output setup/hold times are defining a delay relationship of the transmit data and control outputs relative to the transmit clock output,  
but this output relationship is being presented as the minimum setup/hold times provided to the attached receiver. This approach  
matches how the output timing relationships are defined in the RGMII specification.  
RGMII6  
RGMII7  
RGMII8  
RGMII[x]_TXC(A)  
RGMII9  
RGMII[x]_TD[3:0](B)  
RGMII[x]_TX_CTL(B)  
1st Half-byte  
TXEN  
2nd Half-byte  
TXERR  
RGMII10  
A. TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.  
B. Data and control information is received using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on the rising edge of  
RGMII[x]_TXC and data bits 7-4 on the falling edge of RGMII[x]_TXC. Similarly, RGMII[x]_TX_CTL carries TXEN on rising edge of  
RGMII[x]_TXC and TXERR on falling edge of RGMII[x]_TXC.  
Figure 7-31. CPSW3G RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics  
- RGMII Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.2 CPTS  
Table 7-36, Table 7-37, Figure 7-32, Table 7-38, and Figure 7-33 present timing conditions, requirements, and  
switching characteristics for CPTS.  
Table 7-36. CPTS Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
Table 7-37. CPTS Timing Requirements  
see Figure 7-32  
NO.  
T1  
T2  
T3  
T4  
T5  
PARAMETER  
DESCRIPTION  
Pulse duration, HWnTSPUSH high  
MIN  
12P(1) + 2  
12P(1) + 2  
5
MAX  
UNIT  
ns  
tw(HWTSPUSHH)  
tw(HWTSPUSHL)  
tc(RFT_CLK)  
Pulse duration, HWnTSPUSH low  
Cycle time, RFT_CLK  
ns  
8
ns  
tw(RFT_CLKH)  
tw(RFT_CLKL)  
Pulse duration, RFT_CLK high  
Pulse duration, RFT_CLK low  
0.45T(2)  
0.45T(2)  
ns  
ns  
(1) P = functional clock period in ns.  
(2) T = RFT_CLK cycle time in ns.  
T1  
T2  
HWn_TSPUSH  
RFT_CLK  
T3  
T4  
T5  
Figure 7-32. CPTS Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-38. CPTS Switching Characteristics  
see Figure 7-33  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, TS_COMP high  
SOURCE  
MIN  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
36P(1) - 2  
5P(1) - 2  
MAX UNIT  
T6  
tw(TS_COMPH)  
tw(TS_COMPL)  
tw(TS_SYNCH)  
tw(TS_SYNCL)  
tw(SYNC_OUTH)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T7  
Pulse duration, TS_COMP low  
Pulse duration, TS_SYNC high  
Pulse duration, TS_SYNC low  
Pulse duration, SYNCn_OUT high  
T8  
T9  
T10  
TS_SYNC  
GENF  
T11  
tw(SYNC_OUTL)  
Pulse duration, SYNCn_OUT low  
TS_SYNC  
GENF  
36P(1) - 2  
5P(1) - 2  
(1) P = functional clock period in ns.  
T6  
T7  
TS_COMP  
T8  
T9  
TS_SYNC  
T10  
T11  
SYNCn_OUT  
Figure 7-33. CPTS Switching Characteristics  
For more information, see Data Movement Architecture (DMA) chapter in the device TRM.  
7.9.5.3 CSI-2  
Note  
For more information, see the Camera Streaming Interface Receiver (CSI_RX_IF) section in the  
device TRM.  
The CSI_RX_IF deals with the processing of the pixel data coming from an external image sensor. It is a key  
component for the following multimedia applications: camera viewfinder, video record, and still image capture.  
The CSI_RX_IF has a primary serial interface CSI-2 port (CSIRX0) compliant with the MIPI D-PHY RX  
specification v1.2 and the MIPI CSI-2 specification v1.3, with 4 differential data lanes plus 1 differential clock  
lane in synchronous mode, double data rate. Refer to the MIPI specifications for timing details.  
Support for 1,2,3 or 4 data lane mode up to 1.5Gbps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.4 DDRSS  
For more details about features and additional description information on the device LPDDR4 Memory Interface,  
see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Table 7-39 and Figure 7-34 present switching characteristics for DDRSS.  
Table 7-39. DDRSS Switching Characteristics  
see Figure 7-34  
NO.  
PARAMETER  
DDR TYPE  
MIN  
MAX UNIT  
20 ns  
tc(DDR_CKP/  
1
Cycle time, DDR_CKP and DDR_CKN  
LPDDR4  
0.5358(1)  
DDR_CKN)  
(1) Minimum DDR clock Cycle time will be limited based on the specific memory type (vendor) used in a system and by PCB  
implementation. Refer to AM62Ax DDR Board Design and Layout Guidelines for the proper PCB implementation to achieve maximum  
DDR frequency.  
1
DDR0_CKP  
DDR0_CKN  
Figure 7-34. DDRSS Switching Characteristics  
For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.5 DSS  
Table 7-40, Table 7-41, Figure 7-35, Table 7-42 and Figure 7-36 present timing conditions, requirements, and  
switching characteristics for DSS.  
Table 7-40. DSS Timing Conditions  
PARAMETER  
MIN  
1.44  
1.5  
MAX  
26.4  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Mismatch Delay)  
Propagation delay mismatch across all traces  
100  
ps  
Table 7-41. DSS External Pixel Clock Timing Requirements  
see Figure 7-35  
NO.  
MIN  
MAX  
UNIT  
D6  
D7  
D8  
tc(extpclkin)  
Cycle time, VOUT(x)_EXTPCLKIN(2)  
6.06  
ns  
ns  
ns  
tw(extpclkinL)  
tw(extpclkinH)  
Pulse duration, VOUT(x)_EXTPCLKIN(2) low  
Pulse duration, VOUT(x)_EXTPCLKIN(2) high  
0.475P(1)  
0.475P(1)  
(1) P = VOUT(x)_EXTPCLKIN cycle time in ns  
(2) x in VOUT(x) = 0  
D7  
D8  
D6  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_EXTPCLKIN  
VOUT(x)_EXTPCLKIN  
DPI_TIMING_02  
Figure 7-35. DSS External Pixel Clock Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-42. DSS Switching Characteristics  
see Figure 7-36  
NO.  
PARAMETER  
MIN  
6.06  
MAX UNIT  
D1  
D2  
D3  
tc(pclk)  
Cycle time, VOUT(x)_PCLK(2)  
ns  
ns  
ns  
tw(pclkL)  
tw(pclkH)  
Pulse duration, VOUT(x)_PCLK(2) low  
Pulse duration, VOUT(x)_PCLK(2) high  
0.475P(1)  
0.475P(1)  
Delay time, VOUT(x)_PCLK(2) transition to VOUT(x)_DATA[23:0](2)  
transition  
D4  
D5  
td(pclkV-dataV)  
-0.68  
-0.68  
1.78  
1.78  
ns  
ns  
Delay time, VOUT(x)_PCLK(2) transition to control signals  
VOUT(x)_VSYNC(2), VOUT(x)_HSYNC(2), VOUT(x)_DE(2) falling  
edge  
td(pclkV-ctrlL)  
(1) P = VOUT(x)_PCLK cycle time in ns  
(2) x in VOUT(x) = 0  
D2  
D3  
D1  
Falling-edge Clock Reference  
Rising-edge Clock Reference  
VOUT(x)_PCLK  
VOUT(x)_PCLK  
D5  
VOUT(x)_VSYNC  
D5  
VOUT(x)_HSYNC  
D4  
VOUT(x)_DATA[23:0]  
VOUT(x)_DE  
data_1 data_2  
D5  
data_n  
DPI_TIMING_01  
A. The assertion of data can be programmed to occur on the falling or rising edge of the pixel clock. Refer to Display Subsystem (DSS)  
section in Peripherals chapter in the device TRM.  
B. The polarity and pulse width of VOUT(x)_HSYNC and VOUT(x)_VSYNC are programmable, refer to Display Subsystem (DSS) section  
in Peripherals chapter in the device TRM.  
C. The VOUT(x)_PCLK frequency is configurable, refer to Display Subsystem section in Peripherals chapter in the device TRM.  
Figure 7-36. DSS Switching Characteristics  
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter of the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.6 ECAP  
Table 7-43, Table 7-44, Figure 7-37, Table 7-45, and Figure 7-38 present timing conditions, requirements, and  
switching characteristics for ECAP.  
Table 7-43. ECAP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-44. ECAP Timing Requirements  
see Figure 7-37  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, CAP (asynchronous)  
MIN  
MAX  
UNIT  
CAP1 tw(CAP)  
2P(1) + 2  
ns  
(1) P = sysclk period in ns.  
CAP1  
CAP  
EPERIPHERALS_TIMNG_01  
Figure 7-37. ECAP Timings Requirements  
Table 7-45. ECAP Switching Characteristics  
see Figure 7-38  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
CAP2 tw(APWM)  
Pulse duration, APWMx high/low  
2P(1) - 2  
ns  
(1) P = sysclk period in ns.  
CAP2  
APWM  
EPERIPHERALS_TIMNG_02  
Figure 7-38. ECAP Switching Characteristics  
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.7 Emulation and Debug  
For more details about features and additional description information on the device Trace and JTAG interfaces,  
see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
7.9.5.7.1 Trace  
Table 7-46. Trace Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
OUTPUT CONDITIONS  
CL Output load capacitance  
PCB CONNECTIVITY REQUIREMENTS  
2
5
pF  
ps  
td(Trace Mismatch)  
Propagation delay mismatch across all traces  
200  
Table 7-47. Trace Switching Characteristics  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
1.8V Mode  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Cycle time, TRC_CLK  
6.83  
2.66  
2.66  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
0.85  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
0.85  
0.85  
0.85  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
3.3V Mode  
DBTR1 tc(TRC_CLK)  
DBTR2 tw(TRC_CLKH)  
DBTR3 tw(TRC_CLKL)  
Cycle time, TRC_CLK  
8.78  
3.64  
3.64  
ns  
ns  
ns  
Pulse width, TRC_CLK high  
Pulse width, TRC_CLK low  
tosu(TRC_DATAV-  
DBTR4  
Output setup time, TRC_DATA valid to TRC_CLK edge  
1.10  
ns  
TRC_CLK)  
DBTR5 toh(TRC_CLK-TRC_DATAI) Output hold time, TRC_CLK edge to TRC_DATA invalid  
DBTR6 tosu(TRC_CTLV-TRC_CLK) Output setup time, TRC_CTL valid to TRC_CLK edge  
1.10  
1.10  
1.10  
ns  
ns  
ns  
DBTR7 toh(TRC_CLK-TRC_CTLI)  
Output hold time, TRC_CLK edge to TRC_CTL invalid  
DBTR1  
DBTR2  
DBTR3  
TRC_CLK  
(Worst Case 1)  
(Ideal)  
(Worst Case 2)  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
DBTR4  
DBTR6  
DBTR5  
DBTR7  
TRC_DATA  
TRC_CTL  
SPRSP08_Debug_01  
Figure 7-39. Trace Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.7.2 JTAG  
Table 7-48. JTAG Timing Conditions  
PARAMETER  
MIN  
0.5  
5
MAX  
2.0  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
15  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
Propagation delay mismatch across all traces  
83.5  
1000(1)  
100  
ps  
ps  
td(Trace Mismatch Delay)  
(1) Maximum propagation delay associated with the JTAG signal traces has a significant impact on maximum TCK operating frequency. It  
may be possible to increase the trace delay beyond this value, but the operating frequency of TCK must be reduced to account for the  
additional trace delay.  
Table 7-49. JTAG Timing Requirements  
see Figure 7-40  
NO.  
MIN  
MAX  
UNIT  
ns  
J1  
tc(TCK)  
Cycle time minimum, TCK  
40(1)  
J2  
tw(TCKH)  
Pulse width minimum, TCK high  
0.4P(2)  
ns  
J3  
tw(TCKL)  
Pulse width minimum, TCK low  
0.4P(2)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
Input setup time minimum, TDI valid to TCK high  
Input setup time minimum, TMS valid to TCK high  
Input hold time minimum, TDI valid from TCK high  
Input hold time minimum, TMS valid from TCK high  
2
2
3
3
ns  
J4  
J5  
ns  
ns  
ns  
(1) The maximum TCK operating frequency assumes the following timing requirements and switching characteristis for the attached  
debugger. The operating frequency of TCK must be reduced to provide appropriate timing margin if the debugger exceeds any of these  
assumptions.  
Minimum TDO setup time of 2 ns relative to the rising edge of TCK  
TDI and TMS output delay in the range of -12.9 ns to 13.9 ns relative to the falling edge of TCK  
(2) P = TCK cycle time in ns  
Table 7-50. JTAG Switching Characteristics  
see Figure 7-40  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
ns  
J6  
J7  
td(TCKL-TDOI)  
td(TCKL-TDOV)  
Delay time minimum, TCK low to TDO invalid  
Delay time maximum, TCK low to TDO valid  
0
12  
ns  
J1  
J2  
J3  
TCK  
TDI / TMS  
TDO  
J4  
J5  
J4  
J5  
J7  
J6  
Figure 7-40. JTAG Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.8 EPWM  
Table 7-51, Table 7-52, Figure 7-41, Table 7-53, Figure 7-42, Figure 7-43, and Figure 7-44 present timing  
conditions, requirements, and switching characteristics for EPWM.  
Table 7-51. EPWM Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-52. EPWM Timing Requirements  
see Figure 7-41  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_SYNCI  
MIN  
2P(1) + 2  
3P(1) + 2  
MAX  
UNIT  
ns  
PWM6 tw(SYNCIN)  
PWM7 tw(TZ)  
Pulse duration, EHRPWM_TZn_IN low  
ns  
(1) P = sysclk period in ns.  
PWM6  
EHRPWM_SYNCI  
PWM7  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMNG_07  
Figure 7-41. EPWM Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-53. EPWM Switching Characteristics  
see Figure 7-42, Figure 7-43, and Figure 7-44  
NO.  
PARAMETER  
DESCRIPTION  
Pulse duration, EHRPWM_A/B high/low  
Pulse duration, EHRPWM_SYNCO  
MIN  
P(1) - 3  
P(1) - 3  
MAX  
UNIT  
ns  
PWM1 tw(PWM)  
PWM2 tw(SYNCOUT)  
PWM3 td(TZ-PWM)  
ns  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B forced  
high/low  
11  
11  
ns  
PWM4 td(TZ-PWMZ)  
PWM5 tw(SOC)  
Delay time, EHRPWM_TZn_IN active to EHRPWM_A/B Hi-Z  
Pulse duration, EHRPWM_SOCA/B output  
ns  
ns  
P(1) - 3  
(1) P = sysclk period in ns.  
PWM1  
EHRPWM_A/B  
PWM1  
PWM2  
EHRPWM_SYNCO  
EHRPWM_SOCA/B  
PWM5  
EPERIPHERALS_TIMNG_04  
Figure 7-42. EHRPWM Switching Characteristics  
PWM3  
EHRPWM_A/B  
EHRPWM_TZn_IN  
EPERIPHERALS_TIMING_05  
Figure 7-43. EHRPWM_TZn_IN to EHRPWM_A/B Forced Switching Characteristics  
PWM4  
EHRPWM_A/B  
EHRPWM_TZn_IN  
Figure 7-44. EHRPWM_TZn_IN to EHRPWM_A/B Hi-Z Switching Characteristics  
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in  
the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.9 EQEP  
Table 7-54, Table 7-55, Figure 7-45, and Table 7-56 present timing conditions, requirements, and switching  
characteristics for EQEP.  
Table 7-54. EQEP Timing Conditions  
PARAMETER  
MIN  
1
MAX  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
7
OUTPUT CONDITIONS  
CL  
Output load capacitance  
2
Table 7-55. EQEP Timing Requirements  
see Figure 7-45  
NO.  
PARAMETER  
DESCRIPTION  
MIN  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
2P(1) + 2  
MAX  
UNIT  
ns  
QEP1  
QEP2  
QEP3  
QEP4  
QEP5  
tw(QEP)  
Pulse duration, QEP_A/B  
Pulse duration, QEP_I high  
Pulse duration, QEP_I low  
tw(QEPIH)  
tw(QEPIL)  
tw(QEPSH)  
tw(QEPSL)  
ns  
ns  
Pulse duration, QEP_S high  
Pulse duration, QEP_S low  
ns  
ns  
(1) P = sysclk period in ns  
QEP1  
QEP_A/B  
QEP2  
QEP_I  
QEP3  
QEP4  
QEP_S  
QEP5  
EPERIPHERALS_TIMNG_03  
Figure 7-45. EQEP Timing Requirements  
Table 7-56. EQEP Switching Characteristics  
NO.  
PARAMETER  
td(QEP-CNTR)  
DESCRIPTION  
MIN  
MAX  
UNIT  
QEP6  
Delay time, external clock to counter increment  
24  
ns  
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter  
in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.10 GPIO  
Table 7-57, Table 7-58, and Table 7-59 present timing conditions, requirements, and switching characteristics for  
GPIO.  
The device has three instances of the GPIO module.  
MCU_GPIO0  
GPIO0  
GPIO1  
Note  
GPIOn_x is generic name used to describe a GPIO signal, where n represents the specific GPIO  
module and x represents one of the input/output signals associated with the module.  
For additional description information on the device GPIO, see the corresponding subsections within  
Signal Descriptions and Detailed Description sections.  
Table 7-57. GPIO Timing Conditions  
PARAMETER  
BUFFER TYPE  
MIN  
MAX UNIT  
INPUT CONDITIONS  
SRI Input slew rate  
OUTPUT CONDITIONS  
CL Output load capacitance  
LVCMOS  
0.2  
0.2  
6.6 V/ns  
0.8 V/ns  
I2C OD FS  
LVCMOS  
3
3
10  
pF  
pF  
I2C OD FS  
100  
Table 7-58. GPIO Timing Requirements  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
1.8 V  
3.3 V  
MIN  
MAX UNIT  
2P + 2.6(1)  
2P + 3.5(1)  
ns  
ns  
GPIO1 tw(GPIO_IN)  
Pulse width, GPIOn_x  
(1) P = functional clock period in ns.  
Table 7-59. GPIO Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
BUFFER TYPE  
MIN  
MAX UNIT  
0.975P(1)  
-
LVCMOS  
ns  
ns  
3.6  
GPIO2 tw(GPIO_OUT)  
Pulse width, GPIOn_x  
I2C OD FS  
160  
(1) P = functional clock period in ns.  
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.11 GPMC  
For more details about features and additional description information on the device General-Purpose Memory  
Controller, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Table 7-60 presents timing conditions for GPMC.  
Table 7-60. GPMC Timing Conditions  
PARAMETER  
MIN  
1.65  
2
MAX UNIT  
INPUT CONDITIONS  
SRI  
Input slew rate  
4
V/ns  
pF  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
20  
PCB CONNECTIVITY REQUIREMENTS  
133 MHz Synchronous Mode  
All other modes  
140  
140  
360  
720  
ps  
ps  
td(Trace Delay)  
Propagation delay of each trace  
td(Trace Mismatch  
Propagation delay mismatch across all traces  
200  
ps  
Delay)  
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the  
device TRM.  
7.9.5.11.1 GPMC and NOR Flash — Synchronous Mode  
Table 7-61 and Table 7-62 present timing requirements and switching characteristics for GPMC and NOR Flash -  
Synchronous Mode.  
Table 7-61. GPMC and NOR Flash Timing Requirements — Synchronous Mode  
see Figure 7-46, Figure 7-47, and Figure 7-50  
MIN  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
GPMC_FCLK = GPMC_FCLK =  
100 MHz(1)  
133 MHz(1)  
F12 tsu(dV-clkH)  
F13 th(clkH-dV)  
F21 tsu(waitV-clkH)  
F22 th(clkH-waitV)  
Setup time, input data  
GPMC_AD[15:0] valid before output  
clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
1.61  
0.92  
ns  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0.86  
2.09  
2.09  
1.61  
0.86  
2.09  
2.09  
3.41  
2.09  
2.09  
0.92  
3.41  
2.09  
2.09  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold time, input data  
GPMC_AD[15:0] valid after output  
clock GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Setup time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j](2) (3) valid before  
output clock GPMC_CLK high  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Hold time, input wait  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GPMC_WAIT[j](2) (3) valid after  
output clock GPMC_CLK high  
not_div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
(1) GPMC_FCLK select  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
gpmc_fclk_sel[1:0] = 2b01 to select the 100MHz GPMC_FCLK  
gpmc_fclk_sel[1:0] = 2b00 to select the 133MHz GPMC_FCLK  
(2) In GPMC_WAIT[j], j is equal to 0 or 1.  
(3) Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see General-  
Purpose Memory Controller (GPMC) section in the device TRM.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For not_div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h:  
GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4)  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
Table 7-62. GPMC and NOR Flash Switching Characteristics – Synchronous Mode  
see Figure 7-46, Figure 7-47, Figure 7-48, Figure 7-49, and Figure 7-50  
MIN  
100 MHz  
10.00  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(16)  
UNIT  
(2)  
133 MHz  
F0 1 / tc(clk)  
F1 tw(clkH)  
Period, output clock GPMC_CLK(15)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
7.52  
ns  
Typical pulse duration, output clock  
GPMC_CLK high  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
0.475P  
- 0.3(14)  
0.475P  
ns  
ns  
- 0.3(14)  
F1 tw(clkL)  
Typical pulse duration, output clock  
GPMC_CLK low  
div_by_1_mode;  
GPMC_FCLK_MUX;  
0.475P  
- 0.3(14)  
0.475P  
- 0.3(14)  
TIMEPARAGRANULARITY_X1  
F2 td(clkH-csnV)  
Delay time, output clock GPMC_CLK  
rising edge to output chip select  
GPMC_CSn[i] transition(13)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
F - 2.2  
F + F - 2.2  
3.75  
F + ns  
3.75  
(5)  
(5)  
F3 td(clkH-CSn[i]V) Delay time, output clock GPMC_CLK  
rising edge to output chip select  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
E - 2.2  
E + E - 2.2 E + 4.5 ns  
3.18  
(4)  
(4)  
GPMC_CSn[i] invalid(13)  
F4 td(aV-clk)  
Delay time, output address  
GPMC_A[27:1] valid to output clock  
GPMC_CLK first edge  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
B - 2.3 B + 4.5 B - 2.3 B + 4.5 ns  
(2)  
(2)  
F5 td(clkH-aIV)  
Delay time, output clock GPMC_CLK  
rising edge to output address  
GPMC_A[27:1] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
-2.3  
4.5  
-2.3  
4.5 ns  
F6 td(be[x]nV-clk)  
Delay time, output lower byte  
enable and command latch enable  
div_by_1_mode;  
GPMC_FCLK_MUX;  
B - 2.3 B + 1.9 B - 2.3 B + 1.9 ns  
(2)  
(2)  
GPMC_BE0n_CLE, output upper byte TIMEPARAGRANULARITY_X1  
enable GPMC_BE1n valid to output  
clock GPMC_CLK first edge  
F7 td(clkH-be[x]nIV) Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
div_by_1_mode;  
GPMC_FCLK_MUX;  
D - D + 1.9 D - 2.3 D + 1.9 ns  
2.3(3)  
(3)  
enable and command latch enable  
TIMEPARAGRANULARITY_X1  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n invalid(10)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-62. GPMC and NOR Flash Switching Characteristics – Synchronous Mode (continued)  
see Figure 7-46, Figure 7-47, Figure 7-48, Figure 7-49, and Figure 7-50  
MIN  
100 MHz  
D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns  
MAX  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(16)  
UNIT  
(2)  
133 MHz  
F7 td(clkL-be[x]nIV) Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
(3)  
(3)  
F7 td(clkL-be[x]nIV). Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
invalid(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
D - 2.3 D + 1.9 D - 2.3 D + 1.9 ns  
(3)  
(3)  
F8 td(clkH-advn)  
F9 td(clkH-advnIV)  
F10 td(clkH-oen)  
F11 td(clkH-oenIV)  
F14 td(clkH-wen)  
Delay time, output clock GPMC_CLK  
rising edge to output address  
valid and address latch enable  
GPMC_ADVn_ALE transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
G - G + 4.5 G - 2.3 G + 4.5 ns  
2.3(6)  
(6)  
Delay time, output clock GPMC_CLK  
rising edge to output address  
valid and address latch enable  
GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
D - 2.3 D + 4.5 D - 2.3 D + 4.5 ns  
(3)  
(3)  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
H - 2.3 H + 3.5 H - 2.3 H + 3.5 ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output enable  
GPMC_OEn_REn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
H - 2.3 H + 3.5 H - 2.3 H + 3.5 ns  
(7)  
(7)  
Delay time, output clock GPMC_CLK  
rising edge to output write enable  
GPMC_WEn transition  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1;  
no extra_delay  
I - 2.3 I + 4.5 I - 2.3 I + 4.5 ns  
(8)  
(8)  
F15 td(clkH-do)  
F15 td(clkL-do)  
F15 td(clkL-do).  
F17 td(clkH-be[x]n)  
Delay time, output clock GPMC_CLK  
rising edge to output data  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
GPMC_AD[15:0] transition(10)  
Delay time, GPMC_CLK falling  
edge to GPMC_AD[15:0] data bus  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
Delay time, GPMC_CLK falling  
edge to GPMC_AD[15:0] data bus  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 2.7 J - 2.3 J + 2.7 ns  
(9)  
(9)  
Delay time, output clock GPMC_CLK  
rising edge to output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE transition(10)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
(9)  
(9)  
F17 td(clkL-be[x]n)  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(11)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
(9)  
(9)  
F17 td(clkL-be[x]n).  
Delay time, GPMC_CLK falling edge  
to GPMC_BE0n_CLE, GPMC_BE1n  
transition(12)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2.3 J + 1.9 J - 2.3 J + 1.9 ns  
(9)  
(9)  
F18 tw(csnV)  
Pulse duration, output chip select  
GPMC_CSn[i](13) low  
Read  
Write  
Read  
Write  
A
A
C
C
A
A
C
C
ns  
ns  
ns  
ns  
F19 tw(be[x]nV)  
Pulse duration, output lower byte  
enable and command latch enable  
GPMC_BE0n_CLE, output upper byte  
enable GPMC_BE1n low  
F20 tw(advnV)  
Pulse duration, output address  
valid and address latch enable  
GPMC_ADVn_ALE low  
Read  
Write  
K
K
K
K
ns  
ns  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
Copyright © 2023 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
With n being the page burst access number.  
(2) B = ClkActivationTime × GPMC_FCLK(14)  
(3) For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(4) For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) For csn falling edge (CS activated):  
Case GPMCFCLKDIVIDER = 0:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and  
CSOnTime are even)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
F = 0.5 × CSExtraDelay × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime) is a multiple of 3)  
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)  
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(14) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)  
(6) For ADV falling edge (ADV activated):  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and  
ADVOnTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Reading mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and  
ADVRdOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)  
For ADV rising edge (ADV deactivated) in Writing mode:  
Case GPMCFCLKDIVIDER = 0:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and  
ADVWrOffTime are even)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
G = 0.5 × ADVExtraDelay × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)  
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)  
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(14) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)  
(7) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and  
OEOnTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For OE rising edge (OE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and  
OEOffTime are even)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
H = 0.5 × OEExtraDelay × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime) is a multiple of 3)  
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)  
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(14) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(8) For WE falling edge (WE activated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and  
WEOnTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)  
For WE rising edge (WE deactivated):  
Case GPMCFCLKDIVIDER = 0:  
I = 0.5 × WEExtraDelay × GPMC_FCLK (14)  
Case GPMCFCLKDIVIDER = 1:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and  
WEOffTime are even)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) otherwise  
Case GPMCFCLKDIVIDER = 2:  
I = 0.5 × WEExtraDelay × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime) is a multiple of 3)  
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)  
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(14) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)  
(9) J = GPMC_FCLK(14)  
(10) First transfer only for CLK DIV 1 mode.  
(11) Half cycle; for all data after initial transfer for CLK DIV 1 mode.  
(12) Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK.  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
(14) P = GPMC_CLK period in ns  
(15) Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the  
GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER.  
(16) For div_by_1_mode:  
GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
Copyright © 2023 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = PER1_PLL_CLKOUT / 3 = 300 / 3 = 100MHz  
SPRSP77 – MARCH 2023  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
For no extra_delay:  
GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed  
GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed  
GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed  
GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
F6  
GPMC_A[MSB:1]  
Valid Address  
F7  
F19  
F19  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F12  
D 0  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_01  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-46. GPMC and NOR Flash — Synchronous Single Read (GPMCFCLKDIVIDER = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F4  
GPMCA[MSB:1]  
Valid Address  
F6  
F7  
GPMC_BE0n_CLE  
GPMC_BE1n  
F7  
F9  
F6  
F8  
F8  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
F10  
F11  
F13  
F13  
F12  
D 0  
F22  
F12  
D 3  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 1  
D 2  
F21  
GPMC_02  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-47. GPMC and NOR Flash — Synchronous Burst Read — 4x16–bit (GPMCFCLKDIVIDER = 0)  
F1  
F1  
F0  
GPMC_CLK  
GPMC_CSn[i]  
F2  
F3  
F4  
F6  
Valid Address  
GPMC_A[MSB:1]  
F17  
F17  
F17  
F17  
F17  
F17  
GPMC_BE0n_CLE  
GPMC_BE1n  
F6  
F8  
F8  
F9  
GPMC_ADVn_ALE  
GPMC_WEn  
F14  
F14  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
D 0  
D 3  
GPMC_03  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Copyright © 2023 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-48. GPMC and NOR Flash—Synchronous Burst Write (GPMCFCLKDIVIDER = 0)  
F1  
F0  
F1  
GPMC_CLK  
F2  
F3  
GPMC_CSn[i]  
F6  
F6  
F4  
F7  
GMPC_BE0n_CLE  
Valid  
F7  
Valid  
GPMC_BE1n  
GPMC_A[27:17]  
Address (MSB)  
F5  
F12  
F13  
F4  
F12  
GPMC_AD[15:0]  
Address (LSB)  
D0  
D1  
D2  
D3  
F8  
F8  
F9  
GPMC_ADVn_ALE  
F10  
F11  
GPMC_OEn_REn  
GPMC_WAIT[j]  
GPMC_04  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-49. GPMC and Multiplexed NOR Flash — Synchronous Burst Read  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
F1  
F1  
F0  
GPMC_CLK  
F2  
F3  
F18  
GPMC_CSn[i]  
F4  
GPMC_A[27:17]  
Address (MSB)  
F17  
F17  
F6  
F17  
F17  
F17  
F17  
GPMC_BE1n  
F6  
BPMC_BE0n_CLE  
F8  
F8  
F20  
F9  
GPMC_ADVn_ALE  
F14  
F14  
GPMC_WEn  
F15  
D 1  
F15  
D 2  
F15  
GPMC_AD[15:0]  
Address (LSB)  
D 0  
D 3  
F22  
F21  
GPMC_WAIT[j]  
GPMC_05  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
B. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-50. GPMC and Multiplexed NOR Flash — Synchronous Burst Write  
Copyright © 2023 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.11.2 GPMC and NOR Flash — Asynchronous Mode  
Table 7-63 and Table 7-64 present timing requirements and switching characteristics for GPMC and NOR Flash  
— Asynchronous Mode.  
Table 7-63. GPMC and NOR Flash Timing Requirements – Asynchronous Mode  
see Figure 7-51, Figure 7-52, Figure 7-53, and Figure 7-55  
NO. PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
FA5(1) tacc(d)  
Data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
FA2 tacc1-pgmode(d)  
0(2)  
Page mode successive data access time  
Page mode first data access time  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
P(3) ns  
FA2 tacc2-pgmode(d)  
1(1)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H(4) ns  
TIMEPARAGRANULARITY_X1  
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active  
functional clock edge. FA5 value must be stored inside the AccessTime register bit field.  
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of  
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional  
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.  
(3) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(4) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(5)  
(5) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
Table 7-64. GPMC and NOR Flash Switching Characteristics – Asynchronous Mode  
see Figure 7-51, Figure 7-52, Figure 7-53, Figure 7-54, Figure 7-55, and Figure 7-56  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
N (12) ns  
N (12)  
133 MHz  
FA0 tw(be[x]nV)  
Pulse duration, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid time  
Read  
Write  
FA1 tw(csnV)  
Pulse duration, output chip select GPMC_CSn[i](13)  
low  
Read  
Write  
Read  
Write  
A (1) ns  
A (1)  
FA3 td(csnV-advnIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
B - 2 (2) B + 2(2) ns  
B - 2(2) B + 2(2)  
FA4 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Single read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
C - 2(3) C + 2(3) ns  
FA9 td(aV-csnV)  
Delay time, output address GPMC_A[27:1] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
J - 2(9)  
J + 2(9) ns  
TIMEPARAGRANULARITY_X1  
FA10 td(be[x]nV-csnV)  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE, output  
upper-byte enable GPMC_BE1n valid to output  
chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2(9)  
J + 2(9) ns  
FA12 td(csnV-advnV)  
FA13 td(csnV-oenV)  
FA16 tw(aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output address valid and address latch  
enable GPMC_ADVn_ALE valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
K - 2(10) K + 2(10) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
L - 2(11) L + 2(11) ns  
Pulse duration output address GPMC_A[26:1]  
invalid between 2 successive read and write  
accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
G (7)  
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-64. GPMC and NOR Flash Switching Characteristics – Asynchronous Mode (continued)  
see Figure 7-51, Figure 7-52, Figure 7-53, Figure 7-54, Figure 7-55, and Figure 7-56  
MIN  
MAX  
NO. PARAMETER  
DESCRIPTION  
MODE(15)  
UNIT  
133 MHz  
FA18 td(csnV-oenIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output enable GPMC_OEn_REn invalid  
(Burst read)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
I - 2(8)  
I + 2(8) ns  
FA20 tw(aV)  
Pulse duration, output address GPMC_A[27:1]  
valid - 2nd, 3rd, and 4th accesses  
div_by_1_mode;  
GPMC_FCLK_MUX;  
D (4)  
ns  
TIMEPARAGRANULARITY_X1  
FA25 td(csnV-wenV)  
FA27 td(csnV-wenIV)  
FA28 td(wenV-dV)  
FA29 td(dV-csnV)  
FA37 td(oenV-aIV)  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
E - 2(5) E + 2(5) ns  
Delay time, output chip select GPMC_CSn[i](13)  
valid to output write enable GPMC_WEn invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
F - 2(6) F + 2(6) ns  
Delay time, output write enable GPMC_WEn valid  
to output data GPMC_AD[15:0] valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
2
ns  
Delay time, output data GPMC_AD[15:0] valid to  
output chip select GPMC_CSn[i](13) valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
J - 2(9)  
J + 2(9) ns  
Delay time, output enable GPMC_OEn_REn valid  
to output address GPMC_AD[15:0] phase end  
div_by_1_mode;  
GPMC_FCLK_MUX;  
2
ns  
TIMEPARAGRANULARITY_X1  
(1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
with n being the page burst access number  
(2) For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×  
GPMC_FCLK(14)  
(3) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(4) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(5) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(6) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(7) G = Cycle2CycleDelay × GPMC_FCLK(14)  
(8) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay))  
× GPMC_FCLK(14)  
(9) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)  
(10) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(11) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)  
(12) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)  
(13) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(15) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
Valid Address  
FA0  
FA10  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA10  
FA3  
FA12  
GPMC_ADVn_ALE  
FA4  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data IN 0  
Data IN 0  
GPMC_WAIT[j]  
GPMC_06  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], jis equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-51. GPMC and NOR Flash — Asynchronous Read — Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA5  
FA5  
FA1  
FA1  
GPMC_CSn[i]  
FA16  
FA9  
FA9  
Address 0  
FA0  
Address 1  
FA0  
GPMC_A[MSB:1]  
FA10  
FA10  
Valid  
FA0  
Valid  
FA0  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
Valid  
FA10  
FA10  
FA3  
FA3  
FA12  
FA12  
GPMC_ADCn_ALE  
FA4  
FA4  
FA13  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
Data Upper  
GPMC_WAIT[j]  
GPMC_07  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-52. GPMC and NOR Flash — Asynchronous Read — 32–Bit  
Copyright © 2023 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
GPMC_FCLK  
GPMC_CLK  
FA20  
Add3  
FA20  
Add1  
FA21  
FA20  
Add2  
FA1  
GPMC_CSn[i]  
FA9  
Add0  
Add4  
GPMC_A[MSB:1]  
FA0  
FA10  
FA10  
GPMC_BE0n_CLE  
FA0  
GPMC_BE1n  
FA12  
GPMC_ADVn_ALE  
FA18  
FA13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
D3  
D0  
D1  
D2  
D3  
GPMC_WAIT[j]  
GPMC_08  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC  
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by  
active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.  
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC  
functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock  
edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first  
input page data). FA20 value must be stored in PageBurstAccessTime register bits field.  
D. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-53. GPMC and NOR Flash — Asynchronous Read — Page Mode 4x16–Bit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[MSB:1]  
Valid Address  
FA0  
FA10  
GPMC_BE0n_CLE  
FA0  
FA10  
GPMC_BE1n  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
FA29  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
Data OUT  
GPMC_09  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-54. GPMC and NOR Flash — Asynchronous Write — Single Word  
Copyright © 2023 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
GPMC_FCLK  
SPRSP77 – MARCH 2023  
GPMC_CLK  
FA1  
FA5  
GPMC_CSn[i]  
FA9  
Address (MSB)  
FA0  
GPMC_A[27:17]  
FA10  
FA10  
GPMC_BE0n_CLE  
GPMC_BE1n  
Valid  
FA0  
Valid  
FA3  
FA12  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
FA4  
FA13  
FA29  
FA37  
Data IN  
Data IN  
Address (LSB)  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
GPMC_10  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock  
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock  
edge. FA5 value must be stored inside AccessTime register bits field.  
C. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
Figure 7-55. GPMC and Multiplexed NOR Flash — Asynchronous Read — Single Word  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
GPMC_FCLK  
GPMC_CLK  
FA1  
GPMC_CSn[i]  
FA9  
GPMC_A[27:17]  
Address (MSB)  
FA0  
FA10  
GPMC_BE0n_CLE  
FA0  
FA10  
GPMC_BE1n  
FA3  
FA12  
GPMC_ADVn_ALE  
FA27  
FA25  
GPMC_WEn  
FA29  
FA28  
GPMC_AD[15:0]  
Valid Address (LSB)  
Data OUT  
GPMC_WAIT[j]  
GPMC_11  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-56. GPMC and Multiplexed NOR Flash — Asynchronous Write — Single Word  
Copyright © 2023 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.11.3 GPMC and NAND Flash — Asynchronous Mode  
Table 7-65 and Table 7-66 present timing requirements and switching characteristics for GPMC and NAND Flash  
— Asynchronous Mode.  
Table 7-65. GPMC and NAND Flash Timing Requirements – Asynchronous Mode  
see Figure 7-59  
MIN  
MAX  
NO.  
PARAMETER  
DESCRIPTION  
MODE(4)  
UNIT  
133 MHz  
GNF12(1) tacc(d)  
Access time, input data GPMC_AD[15:0](3)  
div_by_1_mode;  
GPMC_FCLK_MUX;  
J(2) ns  
TIMEPARAGRANULARITY_X1  
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC  
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the  
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.  
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
Table 7-66. GPMC and NAND Flash Switching Characteristics – Asynchronous Mode  
see Figure 7-57, Figure 7-58, Figure 7-59 and Figure 7-60  
NO.  
PARAMETER  
MODE(4)  
MIN  
MAX UNIT  
GNF0 tw(wenV)  
Pulse duration, output write enable GPMC_WEn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
A
ns  
TIMEPARAGRANULARITY_X1  
GNF1 td(csnV-wenV)  
GNF2 tw(cleH-wenV)  
GNF3 tw(wenV-dV)  
GNF4 tw(wenIV-dIV)  
GNF5 tw(wenIV-cleIV)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
B - 2  
C - 2  
D - 2  
E - 2  
F - 2  
G - 2  
C - 2  
B + 2 ns  
C + 2 ns  
D + 2 ns  
E + 2 ns  
F + 2 ns  
G + 2 ns  
C + 2 ns  
Delay time, output lower-byte enable and  
command latch enable GPMC_BE0n_CLE high to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output data GPMC_AD[15:0] valid to  
output write enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output data GPMC_AD[15:0] invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Delay time, output write enable GPMC_WEn  
invalid to output lower-byte enable and command  
latch enable GPMC_BE0n_CLE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF6 tw(wenIV-CSn[i]V) Delay time, output write enable GPMC_WEn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
GNF7 tw(aleH-wenV)  
Delay time, output address valid and address latch  
enable GPMC_ADVn_ALE high to output write  
enable GPMC_WEn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-66. GPMC and NAND Flash Switching Characteristics – Asynchronous Mode (continued)  
see Figure 7-57, Figure 7-58, Figure 7-59 and Figure 7-60  
NO.  
PARAMETER  
MODE(4)  
MIN  
MAX UNIT  
GNF8 tw(wenIV-aleIV)  
Delay time, output write enable GPMC_WEn  
invalid to output address valid and address latch  
enable GPMC_ADVn_ALE invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
F - 2  
F + 2 ns  
GNF9 tc(wen)  
Cycle time, write  
div_by_1_mode;  
GPMC_FCLK_MUX;  
H
ns  
TIMEPARAGRANULARITY_X1  
GNF10 td(csnV-oenV)  
GNF13 tw(oenV)  
GNF14 tc(oen)  
Delay time, output chip select GPMC_CSn[i](2)  
valid to output enable GPMC_OEn_REn valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
I - 2  
I + 2 ns  
Pulse duration, output enable GPMC_OEn_REn  
valid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
K
ns  
ns  
Cycle time, read  
div_by_1_mode;  
GPMC_FCLK_MUX;  
L
TIMEPARAGRANULARITY_X1  
GNF15 tw(oenIV-CSn[i]V) Delay time, output enable GPMC_OEn_REn  
invalid to output chip select GPMC_CSn[i](2)  
invalid  
div_by_1_mode;  
GPMC_FCLK_MUX;  
TIMEPARAGRANULARITY_X1  
M - 2  
M + 2 ns  
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(3)  
(2) In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.  
(4) For div_by_1_mode:  
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:  
GPMC_CLK frequency = GPMC_FCLK frequency  
For GPMC_FCLK_MUX:  
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = CPSWHSDIV_CLKOUT3 = 2000/15 = 133.33 MHz  
For TIMEPARAGRANULARITY_X1:  
GPMC_CONFIG1_i Register: TIMEPARAGRANULARITY = 0h = x1 latencies (affecting RD/WRCYCLETIME, RD/  
WRACCESSTIME, PAGEBURSTACCESSTIME, CSONTIME, CSRD/WROFFTIME, ADVONTIME, ADVRD/WROFFTIME,  
OEONTIME, OEOFFTIME, WEONTIME, WEOFFTIME, CYCLE2CYCLEDELAY, BUSTURNAROUND, TIMEOUTSTARTVALUE,  
WRDATAONADMUXBUS)  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF2  
GNF6  
GNF5  
GPMC_BE0n_CLE  
GPMC_ADCn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF0  
GNF3  
GNF4  
GPMC_AD[15:0]  
Command  
GPMC_12  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-57. GPMC and NAND Flash — Command Latch Cycle  
Copyright © 2023 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
GPMC_FCLK  
SPRSP77 – MARCH 2023  
GNF1  
GNF7  
GNF6  
GNF8  
GPMC_CSn[i]  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GPMC_WEn  
GNF9  
GNF0  
GNF3  
GNF4  
Address  
GPMC_AD[15:0]  
GPMC_13  
A. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-58. GPMC and NAND Flash — Address Latch Cycle  
GPMC_FCLK  
GPMC_CSn[i]  
GNF12  
GNF10  
GNF15  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GNF14  
GNF13  
GPMC_OEn_REn  
GPMC_AD[15:0]  
GPMC_WAIT[j]  
DATA  
GPMC_14  
A. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional  
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional  
clock edge. GNF12 value must be stored inside AccessTime register bits field.  
B. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.  
C. In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0 or 1.  
Figure 7-59. GPMC and NAND Flash — Data Read Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
GPMC_FCLK  
GPMC_CSn[i]  
GNF1  
GNF6  
GPMC_BE0n_CLE  
GPMC_ADVn_ALE  
GPMC_OEn_REn  
GNF9  
GNF0  
GPMC_WEn  
GNF3  
GNF4  
GPMC_AD[15:0]  
DATA  
GPMC_15  
A. `In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.  
Figure 7-60. GPMC and NAND Flash — Data Write Cycle  
Copyright © 2023 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.12 I2C  
The device contains six multicontroller Inter-Integrated Circuit (I2C) controllers. Each I2C controller was  
designed to be compliant to the Philips I2C-bus™ specification version 2.1. However, the device IOs are not  
fully compliant to the I2C electrical specification. The speeds supported and exceptions are described per port  
below:  
I2C0, I2C1, I2C2, and I2C3  
– Speeds:  
Standard-mode (up to 100 Kbits/s)  
– 1.8 V  
– 3.3 V  
Fast-mode (up to 400 Kbits/s)  
– 1.8 V  
– 3.3 V  
– Exceptions:  
The IOs associated with these ports are not compliant to the fall time requirements defined in the I2C  
specification because they are implemented with higher performance LVCMOS push-pull IOs that were  
designed to support other signal functions that could not be implemented with I2C compatible IOs. The  
LVCMOS IOs being used on these ports are connected such they emulate open-drain outputs. This  
emulation is achieved by forcing a constant low output and disabling the output buffer to enter the Hi-Z  
state.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet.  
MCU_I2C0 and WKUP_I2C0  
– Speeds:  
Standard-mode (up to 100 Kbits/s)  
– 1.8 V  
– 3.3 V  
Fast-mode (up to 400 Kbits/s)  
– 1.8 V  
– 3.3 V  
Hs-mode (up to 3.4 Mbits/s)  
– 1.8 V  
– Exceptions:  
The IOs associated with these ports were not design to support Hs-mode while operating at 3.3 V. So  
Hs-mode is limited to 1.8-V operation.  
The rise and fall times of the I2C signals connected to these ports must not exceed a slew rate of 0.8  
V/ns (or 8E+7 V/s). This limit is more restrictive than the minimum fall time limits defined in the I2C  
specification. Therefore, it may be necessary to add additional capacitance to the I2C signals to slow  
the rise and fall times such that they do not exceed a slew rate of 0.8 V/ns.  
The I2C specification defines a maximum input voltage VIH of (VDD + 0.5 V), which exceeds the  
absolute maximum ratings for the device IOs. The system must bemdaex signed to ensure the I2C signals  
never exceed the limits defined in the Absolute Maximum Ratings section of this datasheet.  
Note  
I2C3 has one or more signals which can be multiplexed to more than one pin. Timing is only valid for  
specific pin combinations known as IOSETs. Valid pin combinations or IOSETs for this interface are  
defined in the SysConfig-PinMux Tool.  
Refer to the Philips I2C-bus specification version 2.1 for timing details.  
For more details about features and additional description information on the device Inter-Integrated Circuit, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.13 MCAN  
Table 7-67 and Table 7-68 presents timing conditions and switching characteristics for MCAN.  
For more details about features and additional description information on the device Controller Area Network  
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Note  
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,  
where n represents the specific MCAN module.  
Table 7-67. MCAN Timing Conditions  
PARAMETER  
MIN  
2
MAX  
15  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
5
20  
Table 7-68. MCAN Switching Characteristics  
NO.  
PARAMETER  
DESCRIPTION  
Delay time, transmit shift register to MCANn_TX  
Delay time, MCANn_RX to receive shift register  
MIN  
MAX  
10  
UNIT  
ns  
MCAN1 td(MCAN_TX)  
MCAN2 td(MCAN_RX)  
10  
ns  
For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.14 MCASP  
Note  
McASP has one or more signals which can be multiplexed to more than one pin. Timing requirements  
and switching characteristics defined in this section are only valid for specific pin combinations known  
as IOSETs. Valid pin combinations or IOSETs for this interface are defined in the SysConfig-PinMux  
Tool.  
Table 7-69, Table 7-70, Figure 7-61, Table 7-71, and Figure 7-62 present timing conditions, requirements, and  
switching characteristics for MCASP.  
Table 7-69. MCASP Timing Conditions  
PARAMETER  
MIN  
0.7  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
PCB CONNECTIVITY REQUIREMENTS  
td(Trace Delay)  
Propagation delay of each trace  
100  
1100  
100  
ps  
ps  
td(Trace Mismatch Delay)  
Propagation delay mismatch across all traces  
Table 7-70. MCASP Timing Requirements  
see Figure 7-61  
NO.  
MODE(1)  
MIN  
20  
MAX UNIT  
ASP1 tc(AHCLKRX)  
ASP2 tw(AHCLKRX)  
ASP3 tc(ACLKRX)  
ASP4 tw(ACLKRX)  
Cycle time, MCASP[x]_AHCLKR/X(4)  
ns  
ns  
0.5P(2)  
-
Pulse duration, MCASP[x]_AHCLKR/X(4) high or low  
Cycle time, MCASP[x]_ACLKR/X(4)  
1.53  
20  
ns  
ns  
0.5R(3)  
-
Pulse duration, MCASP[x]_ACLKR/X(4) high or low  
1.53  
Setup time, MCASP[x]_AFSR/X(4) input valid before  
MCASP[x]_ACLKR/X(4)  
ACLKR/X int  
9.29  
4
ns  
ns  
ns  
ns  
ASP5 tsu(AFSRX-ACLKRX)  
ASP6 th(ACLKRX-AFSRX)  
ASP7 tsu(AXR-ACLKRX)  
ASP8 th(ACLKRX-AXR)  
ACLKR/X ext in/out  
ACLKR/X int  
Hold time, MCASP[x]_AFSR/X(4) input valid after  
MCASP[x]_ACLKR/X(4)  
-1  
ACLKR/X ext in/out  
ACLKR/X int  
1.6  
9.29  
4
Setup time, MCASP[x]_AXR(4) input valid before  
MCASP[x]_ACLKR/X(4)  
ACLKR/X ext in/out  
ACLKR/X int  
Hold time, MCASP[x]_AXR(4) input valid after  
MCASP[x]_ACLKR/X(4)  
-1  
ACLKR/X ext in/out  
1.6  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns.  
(3) R = ACLKR/X period in ns.  
(4) x in MCASP[x]_* is 0, 1 or 2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
ASP2  
ASP2  
ASP1  
MCASP[x]_ACLKR/X (Falling Edge Polarity)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP4  
ASP4  
ASP3  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)  
ASP6  
ASP5  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
ASP8  
ASP7  
MCASP[x]_AXR[x] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
B. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
Figure 7-61. MCASP Timing Requirements  
Copyright © 2023 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-71. MCASP Switching Characteristics  
see Figure 7-62  
NO.  
PARAMETER  
DESCRIPTION  
MODE(1)  
MIN  
20  
MAX UNIT  
ASP9 tc(AHCLKRX)  
ASP10 tw(AHCLKRX)  
ASP11 tc(ACLKRX)  
ASP12 tw(ACLKRX)  
Cycle time, MCASP[x]_AHCLKR/X(4)  
ns  
ns  
ns  
ns  
Pulse duration, MCASP[x]_AHCLKR/X(4) high or low  
Cycle time, MCASP[x]_ACLKR/X(4)  
0.5P(2) - 2  
20  
Pulse duration, MCASP[x]_ACLKR/X(4) high or low  
0.5R(3) - 2  
-1  
Delay time, MCASP[x]_ACLKR/X(4) transmit edge to  
MCASP[x]_AFSR/X(4) output valid  
ACLKR/X int  
7.25  
ns  
12.84  
ASP13 td(ACLKRX-AFSRX)  
ASP14 td(ACLKX-AXR)  
ASP15 tdis(ACLKX-AXR)  
ACLKR/X ext in/out  
ACLKR/X int  
-15.29  
-1  
Delay time, MCASP[x]_ACLKX(4) transmit edge to  
MCASP[x]_AXR(4) output valid  
7.25  
ns  
12.84  
ACLKR/X ext in/out  
ACLKR/X int  
-15.29  
-1  
Disable time, MCASP[x]_ACLKX(4) transmit edge to  
MCASP[x]_AXR(4) output high impedance  
7.25  
ns  
14  
ACLKR/X ext in/out  
-14.9  
(1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1  
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0  
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1  
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1  
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0  
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1  
(2) P = AHCLKR/X period in ns.  
(3) R = ACLKR/X period in ns.  
(4) x in MCASP[x]_* is 0, 1 or 2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
ASP10  
ASP10  
ASP9  
MCASP[x]_ACLKR/X (Falling Edge Polarity)  
MCASP[x]_AHCLKR/X (Rising Edge Polarity)  
ASP12  
ASP12  
ASP11  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)  
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)  
ASP13  
ASP13  
ASP13  
ASP13  
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)  
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)  
MCASP[x]_AXR[x] (Data Out/Transmit)  
ASP13  
ASP13  
ASP13  
ASP14  
ASP15  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
A. For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured  
for rising edge (to shift data in).  
B. For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured  
for falling edge (to shift data in).  
Figure 7-62. MCASP Switching Characteristics  
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device  
TRM.  
Copyright © 2023 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.15 MCSPI  
Note  
McSPI has one or more signals which can be multiplexed to more than one pin. Timing requirements  
and switching characteristics defined in this section are only valid for specific pin combinations known  
as IOSETs. Valid pin combinations or IOSETs for this interface are defined in the SysConfig-PinMux  
Tool.  
For more details about features and additional description information on the device Serial Port Interface, see  
the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Table 7-72 presents timing conditions for MCSPI.  
Table 7-72. MCSPI Timing Conditions  
PARAMETER  
MIN  
2
MAX  
8.5  
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
6
12  
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the  
device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.15.1 MCSPI — Controller Mode  
Table 7-73, Figure 7-63, Table 7-74, and Figure 7-64 present timing requirements and switching characteristics  
for SPI – Controller Mode.  
Table 7-73. MCSPI Timing Requirements – Controller Mode  
see Figure 7-63  
NO.  
SM4  
SM5  
PARAMETER  
DESCRIPTION  
MIN  
2.8  
3
MAX  
UNIT  
ns  
tsu(POCI-SPICLK)  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
th(SPICLK-POCI)  
ns  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SM5  
SM5  
SM4  
SM4  
Bit n-1  
Bit n-2  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM2  
SM1  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SM5  
SM4  
SM5  
Bit n-2  
SM4  
Bit n-1  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_02  
Figure 7-63. SPI Controller Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-74. MCSPI Switching Characteristics - Controller Mode  
see Figure 7-64  
NO.  
PARAMETER  
MIN  
20  
0.5P - 1(1)  
0.5P - 1(1)  
-3  
MAX UNIT  
SM1  
SM2  
SM3  
SM6  
SM7  
SM8  
tc(SPICLK)  
Cycle time, SPIn_CLK  
ns  
ns  
ns  
tw(SPICLKL)  
tw(SPICLKH)  
td(SPICLK-PICO)  
td(CS-PICO)  
td(CS-SPICLK)  
Pulse duration, SPIn_CLK low  
Pulse duration, SPIn_CLK high  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
Delay time, SPIn_CSi active to SPIn_CLK first edge  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
5
PHA = 0  
PHA = 1  
PHA = 0  
PHA = 1  
B - 4 (3)  
A - 4 (2)  
A - 4(2)  
B - 4(3)  
SM9  
td(SPICLK-CS)  
Delay time, SPIn_CLK last edge to SPIn_CSi inactive  
(1) P = SPI_CLK period in ns.  
(2) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A =  
(TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register.  
(3) B = (TCS + .5) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even >= 2.  
PHA=0  
EPOL=1  
SPI_CS[i] (OUT)  
SM1  
SM3  
SM8  
SM2  
SM9  
POL=0  
POL=1  
SPI_SCLK (OUT)  
SM1  
SM3  
SM2  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM7  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (OUT)  
SPI_SCLK (OUT)  
SM1  
SM2  
SM8  
SM3  
SM2  
SM9  
POL=0  
POL=1  
SM1  
SM3  
SPI_SCLK (OUT)  
SPI_D[x] (OUT)  
SM6  
Bit n-1  
SM6  
Bit n-2  
SM6  
Bit n-3  
SM6  
Bit 1  
Bit0  
SPRSP08_TIMING_McSPI_01  
Figure 7-64. SPI Controller Mode Transmit Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.15.2 MCSPI — Peripheral Mode  
Table 7-75, Figure 7-65, Table 7-76, and Figure 7-66 present timing requirements and switching characteristics  
for SPI – Peripheral Mode.  
Table 7-75. MCSPI Timing Requirements – Peripheral Mode  
see Figure 7-65  
NO.  
SS1  
SS2  
SS3  
SS4  
SS5  
SS8  
SS9  
PARAMETER  
DESCRIPTION  
MIN  
MAX  
UNIT  
ns  
tc(SPICLK)  
Cycle time, SPIn_CLK  
20  
0.45P(1)  
0.45P(1)  
tw(SPICLKL)  
Pulse duration, SPIn_CLK low  
ns  
tw(SPICLKH)  
Pulse duration, SPIn_CLK high  
ns  
tsu(PICO-SPICLK)  
th(SPICLK-PICO)  
tsu(CS-SPICLK)  
th(SPICLK-CS)  
Setup time, SPIn_D[x] valid before SPIn_CLK active edge  
Hold time, SPIn_D[x] valid after SPIn_CLK active edge  
Setup time, SPIn_CSi valid before SPIn_CLK first edge  
Hold time, SPIn_CSi valid after SPIn_CLK last edge  
5
5
5
5
ns  
ns  
ns  
ns  
(1) P = SPIn_CLK period in ns.  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS2  
POL=1  
SPI_SCLK (IN)  
SS5  
SS4  
SS5  
Bit n-2  
SS4  
Bit n-1  
Bit n-3  
Bit n-4  
Bit 0  
SPI_D[x] (IN)  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
SPI_SCLK (IN)  
SS1  
SS3  
POL=1  
SPI_SCLK (IN)  
SS4  
SS5  
SS4  
SS5  
Bit n-1  
Bit n-2  
Bit n-3  
Bit 1  
Bit 0  
SPI_D[x] (IN)  
SPRSP08_TIMING_McSPI_04  
Figure 7-65. SPI Peripheral Mode Receive Timing  
Copyright © 2023 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
Table 7-76. MCSPI Switching Characteristics – Peripheral Mode  
see Figure 7-66  
NO.  
SS6  
SS7  
PARAMETER  
td(SPICLK-POCI)  
tsk(CS-POCI)  
DESCRIPTION  
Delay time, SPIn_CLK active edge to SPIn_D[x]  
Delay time, SPIn_CSi active edge to SPIn_D[x]  
MIN  
2
MAX  
UNIT  
ns  
17.12  
20.95  
ns  
PHA=0  
EPOL=1  
SPI_CS[i] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS3  
SS9  
POL=0  
POL=1  
SS1  
SS2  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS7  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
Bit n-4  
Bit 0  
PHA=1  
EPOL=1  
SPI_CS[i] (IN)  
SPI_SCLK (IN)  
SS1  
SS2  
SS8  
SS3  
SS2  
SS9  
POL=0  
POL=1  
SS1  
SS3  
SPI_SCLK (IN)  
SPI_D[x] (OUT)  
SS6  
Bit n-1  
SS6  
Bit n-2  
SS6  
Bit n-3  
SS6  
Bit 1  
Bit 0  
SPRSP08_TIMING_McSPI_03  
Figure 7-66. SPI Peripheral Mode Transmit Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16 MMCSD  
The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD),  
and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at  
transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking  
for syntactical correctness.  
For more details about MMCSD interfaces, see the corresponding MMC0, MMC1, and MMC2 subsections within  
Signal Descriptions and Detailed Description sections.  
Note  
Some operating modes require software configuration of the MMC DLL delay settings, as shown in  
Table 7-77 and Table 7-95.  
The modes which show a value of "Tuning" in the ITAPDLYSEL column of Table 7-77 and Table 7-95  
require a tuning algorithm to be used for optimizing input timing. Refer to the MMCSD Programming  
Guide in the device TRM for more information on the tuning algorithm and configuration of input  
delays required to optimize input timing.  
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in  
the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1 MMC0 - eMMC/SD/SDIO Interface  
MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and it supports the  
following eMMC applications:  
Legacy SDR  
High Speed SDR  
HS200  
MMC0 interface is also compliant with the SD Host Controller Standard Specification 4.10 and SD Physical  
Layer Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications:  
Default Speed  
High Speed  
UHS–I SDR12  
UHS–I SDR25  
UHS–I SDR50  
UHS–I DDR50  
UHS–I SDR104  
Table 7-77 presents the required DLL software configuration settings for MMC0 timing modes.  
Table 7-77. MMC0 DLL Delay Mapping for all Timing Modes  
REGISTER NAME  
BIT FIELD  
MMCSD0_SS_PHY_CTRL_4_REG  
[15:12] [8]  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
MMCSD0_SS_PHY_CTRL_5_REG  
[20]  
[4:0]  
[2:0]  
BIT FIELD NAME  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
8-bit PHY operating  
1.8 V, 25 MHz  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
NA(1)  
NA(1)  
NA(1)  
NA(1)  
0x6  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
NA(1)  
NA(1)  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
Legacy  
SDR  
8-bit PHY operating  
3.3 V, 25 MHz  
8-bit PHY operating  
1.8 V, 50 MHz  
NA(1)  
High  
Speed  
SDR  
8-bit PHY operating  
3.3 V, 50 MHz  
NA(1)  
8-bit PHY operating  
1.8 V, 200 MHz  
HS200  
Tuning(2)  
0x0  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
0x0  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
0x0  
0x0  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0xF  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0xF  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
0xC  
0x9  
Tuning(2)  
Tuning(2)  
Tuning(2)  
UHS-I  
DDR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
0x6  
(1) NA means Not Applicable  
(2) Tuning means this mode requires a tuning algorithm to be used for optimal input timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-78 presents timing conditions for MMC0.  
Table 7-78. MMC0 Timing Conditions  
PARAMETER  
MIN  
MAX UNIT  
INPUT CONDITIONS  
Legacy SDR @ 3.3 V  
High Speed SDR@ 3.3V  
Default Speed  
0.69  
0.14  
2.06 V/ns  
High Speed  
Legacy SDR @ 1.8 V  
UHS-I SDR12  
SRI  
Input slew rate  
1.44 V/ns  
1.34 V/ns  
High Speed SDR @ 1.8 V  
UHS-I SDR25  
0.3  
1
UHS-I DDR50  
2
V/ns  
OUTPUT CONDITIONS  
HS200  
UHS-I SDR104  
1
1
10  
12  
pF  
pF  
CL  
Output load capacitance  
All other modes  
PCB CONNECTIVITY REQUIREMENTS  
Legacy SDR  
High Speed SDR  
HS200  
126  
756  
ps  
ps  
Default Speed  
High Speed  
UHS-I SDR12  
UHS-I SDR25  
UHS-I SDR50  
UHS-I SDR104  
td(Trace Delay)  
Propagation delay of each trace  
126  
239  
1386  
UHS-I DDR50  
1134  
8
ps  
ps  
High Speed SDR  
HS200  
High Speed  
UHS-I SDR104  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
Delay)  
UHS-I DDR50  
20  
ps  
ps  
All other modes  
100  
Copyright © 2023 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1.1 Legacy SDR Mode  
Table 7-79, Figure 7-67, Table 7-80, and Figure 7-68 present timing requirements and switching characteristics  
for MMC0 – Legacy SDR Mode.  
Table 7-79. MMC0 Timing Requirements – Legacy SDR Mode  
see Figure 7-67  
IO  
NO.  
Operating  
Voltage  
MIN  
MAX  
UNIT  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
4.2  
2.15  
0.87  
1.67  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LSDR1  
LSDR2  
LSDR3  
LSDR4  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
2.15  
0.87  
1.67  
Figure 7-67. MMC0 – Legacy SDR – Receive Mode  
Table 7-80. MMC0 Switching Characteristics – Legacy SDR Mode  
see Figure 7-68  
IO  
NO.  
PARAMETER  
Operating  
Voltage  
MIN  
MAX UNIT  
fop(clk)  
Operating frequency, MMC0_CLK  
Cycle time, MMC0_CLK  
25  
MHz  
ns  
LSDR5  
LSDR6  
LSDR7  
tc(clk)  
40  
18.7  
18.7  
-2.1  
-1.8  
-2.1  
-1.8  
tw(clkH)  
tw(clkL)  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
ns  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
2.1  
2.2  
2.1  
2.2  
ns  
LSDR8  
LSDR9  
td(clkL-cmdV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
ns  
ns  
td(clkL-dV)  
ns  
Figure 7-68. MMC0 – Legacy SDR – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.1.2 High Speed SDR Mode  
Table 7-81, Figure 7-69, Table 7-82, and Figure 7-70 present timing requirements and switching characteristics  
for MMC0 – High Speed SDR Mode.  
Table 7-81. MMC0 Timing Requirements – High Speed SDR Mode  
see Figure 7-69  
IO  
NO.  
Operating  
Voltage  
MIN  
MAX UNIT  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
2.15  
2.24  
1.27  
1.66  
2.15  
2.24  
1.27  
1.66  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSSDR1  
HSSDR2  
HSSDR3  
HSSDR4  
tsu(cmdV-clkH) Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge  
Figure 7-69. MMC0 – High Speed SDR Mode – Receive Mode  
Table 7-82. MMC0 Switching Characteristics – High Speed SDR Mode  
see Figure 7-70  
IO  
NO.  
PARAMETER  
Operating  
Voltage  
MIN  
MAX UNIT  
fop(clk)  
Operating frequency, MMC0_CLK  
Cycle time, MMC0_CLK  
50  
MHz  
ns  
HSSDR5  
HSSDR6  
HSSDR7  
tc(clk)  
20  
9.2  
tw(clkH)  
tw(clkL)  
Pulse duration, MMC0_CLK high  
Pulse duration, MMC0_CLK low  
ns  
9.2  
ns  
1.8 V  
3.3 V  
1.8 V  
3.3 V  
-1.55  
-1.8  
-1.55  
-1.8  
3.05  
2.2  
ns  
HSSDR8  
HSSDR9  
td(clkL-cmdV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition  
ns  
3.05  
2.2  
ns  
td(clkL-dV)  
ns  
Figure 7-70. MMC0 – High Speed SDR Mode – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1.3 HS200 Mode  
Table 7-83 and Figure 7-71 present switching characteristics for MMC0 – HS200 Mode.  
Table 7-83. MMC0 Switching Characteristics – HS200 Mode  
see Figure 7-71  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
HS2005  
HS2006  
HS2007  
HS2008  
HS2009  
tc(clk)  
Cycle time, MMC0_CLK  
5
2.12  
2.12  
1.07  
1.07  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition  
3.21  
3.21  
ns  
ns  
Figure 7-71. MMC0 – HS200 Mode – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.1.4 Default Speed Mode  
Table 7-84, Figure 7-72, Table 7-85, and Figure 7-73 present timing requirements and switching characteristics  
for MMC0 – Default Speed Mode.  
Table 7-84. Timing Requirements for MMC0 – Default Speed Mode  
see Figure 7-72  
NO.  
DS1  
DS2  
DS3  
DS4  
MIN  
2.15  
1.67  
2.15  
1.67  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
DS2  
DS4  
DS1  
DS3  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-72. MMC0 – Default Speed – Receive Mode  
Table 7-85. Switching Characteristics for MMC0 – Default Speed Mode  
see Figure 7-73  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
25  
DS5  
DS6  
DS7  
DS8  
DS9  
tc(clk)  
Cycle time, MMC0_CLK  
40  
18.7  
18.7  
- 1.8  
- 1.8  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[3:0] transition  
2.2  
2.2  
ns  
ns  
DS5  
DS6  
DS7  
MMC[x]_CLK  
MMC[x]_CMD  
DS8  
DS9  
MMC[x]_DAT[3:0]  
Figure 7-73. MMC0 – Default Speed – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1.5 High Speed Mode  
Table 7-86, Figure 7-74, Table 7-87, and Figure 7-75 present timing requirements and switching characteristics  
for MMC0 – High Speed Mode.  
Table 7-86. Timing Requirements for MMC0 – High Speed Mode  
see Figure 7-74  
NO.  
HS1  
HS2  
HS3  
HS4  
MIN  
2.24  
1.66  
2.24  
1.66  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
HS1  
HS3  
HS2  
HS4  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-74. MMC0 – High Speed – Receive Mode  
Table 7-87. Switching Characteristics for MMC0 – High Speed Mode  
see Figure 7-75  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
HS5  
HS6  
HS7  
HS8  
HS9  
tc(clk)  
Cycle time. MMC0_CLK  
20  
9.2  
tw(clkH)  
Pulse duration, MMC0_CLK high  
ns  
tw(clkL)  
Pulse duration, MMC0_CLK low  
9.2  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMC0_CLK falling edge to MMC0_CMD transition  
Delay time, MMC0_CLK falling edge to MMC0_DAT[3:0] transition  
-1.8  
-1.8  
2.2  
2.2  
ns  
ns  
HS5  
HS6  
HS7  
MMC[x]_CLK  
HS8  
HS9  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-75. MMC0 – High Speed – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.1.6 UHS–I SDR12 Mode  
Table 7-88, Figure 7-76, Table 7-89, and Figure 7-77 present timing requirements and switching characteristics  
for MMC0 – UHS-I SDR12 Mode.  
Table 7-88. Timing Requirements for MMC0 – UHS-I SDR12 Mode  
see Figure 7-76  
NO.  
MIN  
4.2  
MAX  
UNIT  
ns  
SDR121 tsu(cmdV-clkH)  
SDR122 th(clkH-cmdV)  
SDR123 tsu(dV-clkH)  
SDR124 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
0.87  
4.2  
ns  
ns  
0.87  
ns  
MMC[x]_CLK  
SDR122  
SDR124  
SDR121  
SDR123  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-76. MMC0 – UHS-I SDR12 – Receive Mode  
Table 7-89. Switching Characteristics for MMC0 – UHS-I SDR12 Mode  
see Figure 7-77  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
25  
SDR125 tc(clk)  
Cycle time, MMC0_CLK  
40  
18.7  
18.7  
1.5  
SDR126 tw(clkH)  
SDR127 tw(clkL)  
SDR128 td(clkL-cmdV)  
SDR129 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
8.6  
8.6  
ns  
1.5  
ns  
SDR125  
SDR126  
SDR127  
MMC[x]_CLK  
SDR128  
SDR128  
MMC[x]_CMD  
SDR129  
SDR129  
MMC[x]_DAT[3:0]  
Figure 7-77. MMC0 – UHS-I SDR12 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1.7 UHS–I SDR25 Mode  
Table 7-90, Figure 7-78, Table 7-91, and Figure 7-79 present timing requirements and switching characteristics  
for MMC0 – UHS-I SDR25 Mode.  
Table 7-90. Timing Requirements for MMC0 – UHS-I SDR25 Mode  
see Figure 7-78  
NO.  
MIN  
2.15  
1.27  
2.15  
1.27  
MAX  
UNIT  
ns  
SDR251 tsu(cmdV-clkH)  
SDR252 th(clkH-cmdV)  
SDR253 tsu(dV-clkH)  
SDR254 th(clkH-dV)  
Setup time, MMC0_CMD valid before MMC0_CLK rising edge  
Hold time, MMC0_CMD valid after MMC0_CLK rising edge  
Setup time, MMC0_DAT[3:0] valid before MMC0_CLK rising edge  
Hold time, MMC0_DAT[3:0] valid after MMC0_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
SDR252  
SDR254  
SDR251  
SDR253  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-78. MMC0 – UHS-I SDR25 – Receive Mode  
Table 7-91. Switching Characteristics for MMC0 – UHS-I SDR25 Mode  
see Figure 7-79  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
SDR255 tc(clk)  
Cycle time, MMC0_CLK  
20  
9.2  
9.2  
2.4  
2.4  
SDR256 tw(clkH)  
SDR257 tw(clkL)  
SDR258 td(clkL-cmdV)  
SDR259 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
8.1  
8.1  
ns  
ns  
SDR255  
SDR256  
SDR257  
MMC[x]_CLK  
SDR258  
SDR258  
MMC[x]_CMD  
SDR259  
SDR259  
MMC[x]_DAT[3:0]  
Figure 7-79. MMC0 – UHS-I SDR25 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.1.8 UHS–I SDR50 Mode  
Table 7-92 and Figure 7-80 presents switching characteristics for MMC0 – UHS-I SDR50 Mode.  
Table 7-92. Switching Characteristics for MMC0 – UHS-I SDR50 Mode  
see Figure 7-80  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
100  
SDR505 tc(clk)  
Cycle time, MMC0_CLK  
10  
4.45  
4.45  
1.2  
SDR506 tw(clkH)  
SDR507 tw(clkL)  
SDR508 td(clkL-cmdV)  
SDR509 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
SDR505  
SDR506  
SDR507  
MMC[x]_CLK  
SDR508  
SDR508  
MMC[x]_CMD  
SDR509  
SDR509  
MMC[x]_DAT[3:0]  
Figure 7-80. MMC0 – UHS-I SDR50 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.1.9 UHS–I DDR50 Mode  
Table 7-93 and Figure 7-81 present switching characteristics for MMC0 – UHS-I DDR50 Mode.  
Table 7-93. Switching Characteristics for MMC0 – UHS-I DDR50 Mode  
see Figure 7-81  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
50  
DDR505  
DDR506  
DDR507  
DDR508  
DDR509  
tc(clk)  
Cycle time, MMC0_CLK  
20  
9.2  
tw(clkH)  
tw(clkL)  
td(clk-cmdV)  
td(clk-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
9.2  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK transition to MMC0_DAT[3:0] transition  
1.12  
1.12  
6.43  
6.43  
ns  
ns  
DDR505  
DDR506  
DDR507  
MMC[x]_CLK  
MMC[x]_CMD  
DDR508  
DDR509  
DDR509  
MMC[x]_DAT[3:0]  
Figure 7-81. MMC0 – UHS-I DDR50 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.1.10 UHS–I SDR104 Mode  
Table 7-94 and Figure 7-82 present switching characteristics for MMC0 – UHS-I SDR104 Mode.  
Table 7-94. Switching Characteristics for MMC0 – UHS-I SDR104 Mode  
see Figure 7-82  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMC0_CLK  
200  
SDR1045 tc(clk)  
Cycle time, MMC0_CLK  
5
2.12  
2.12  
1.07  
1.07  
SDR1046 tw(clkH)  
SDR1047 tw(clkL)  
SDR1048 td(clkL-cmdV)  
SDR1049 td(clkL-dV)  
Pulse duration, MMC0_CLK high  
ns  
Pulse duration, MMC0_CLK low  
ns  
Delay time, MMC0_CLK rising edge to MMC0_CMD transition  
Delay time, MMC0_CLK rising edge to MMC0_DAT[3:0] transition  
3.21  
3.21  
ns  
ns  
SDR1045  
SDR1046  
SDR1047  
MMC[x]_CLK  
SDR1048  
SDR1048  
MMC[x]_CMD  
SDR1049  
SDR1049  
MMC[x]_DAT[3:0]  
Figure 7-82. MMC0 – UHS-I SDR104 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.2 MMC1/MMC2 - SD/SDIO Interface  
MMC1/MMC2 interface is compliant with the SD Host Controller Standard Specification 4.10 and SD Physical  
Layer Specification v3.01 as well as SDIO Specification v3.00 and it supports the following SD Card applications:  
Default speed  
High speed  
UHS–I SDR12  
UHS–I SDR25  
UHS–I SDR50  
UHS–I DDR50  
UHS–I SDR104  
Table 7-95 presents the required DLL software configuration settings for MMC1/2 timing modes.  
Table 7-95. MMC1/MMC2 DLL Delay Mapping for all Timing Modes  
MMCSD1_SS_PHY_CTRL_4_REG/  
MMCSD2_SS_PHY_CTRL_4_REG  
MMCSD1_SS_PHY_CTRL_5_REG/  
MMCSD2_SS_PHY_CTRL_5_REG  
REGISTER NAME  
BIT FIELD  
[20]  
[15:12]  
[8]  
[4:0]  
[2:0]  
BIT FIELD NAME  
OTAPDLYENA OTAPDLYSEL ITAPDLYENA ITAPDLYSEL  
CLKBUFSEL  
INPUT  
DELAY  
ENABLE  
INPUT  
DELAY  
VALUE  
DELAY  
BUFFER  
DURATION  
DELAY  
ENABLE  
DELAY  
VALUE  
MODE  
DESCRIPTION  
Default  
Speed  
4-bit PHY operating  
3.3 V, 25 MHz  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0xF  
0xF  
0xC  
0x9  
0x6  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
0x7  
High  
Speed  
4-bit PHY operating  
3.3 V, 50 MHz  
UHS-I  
SDR12  
4-bit PHY operating  
1.8 V, 25 MHz  
0x0  
UHS-I  
SDR25  
4-bit PHY operating  
1.8 V, 50 MHz  
0x0  
UHS-I  
SDR50  
4-bit PHY operating  
1.8 V, 100 MHz  
Tuning(1)  
Tuning(1)  
Tuning(1)  
UHS-I  
DR50  
4-bit PHY operating  
1.8 V, 50 MHz  
UHS-I  
SDR104  
4-bit PHY operating  
1.8, V 200 MHz  
(1) Tuning means this mode requires a tuning algorithm to be used for optimal input timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
MAX UNIT  
SPRSP77 – MARCH 2023  
Table 7-96 presents timing conditions for MMC1.  
Table 7-96. MMC1/MMC2 Timing Conditions  
PARAMETER  
MIN  
Input Conditions  
Default Speed  
High Speed  
0.69  
2.06 V/ns  
1.34 V/ns  
SRI  
Input slew rate  
UHS–I SDR12  
UHS–I SDR25  
0.34  
1
UHS–I DDR50  
2
V/ns  
pF  
Output Conditions  
CL  
Output load capacitance  
All modes  
1
10  
PCB Connectivity Requirements  
UHS–I DDR50  
All other modes  
239  
126  
1134  
1386  
ps  
ps  
td(Trace Delay)  
Propagation delay of each trace  
High Speed  
UHS–I SDR104  
8
ps  
td(Trace Mismatch  
Propagation delay mismatch across all  
traces  
UHS–I DDR50  
All other modes  
20  
ps  
ps  
Delay)  
100  
Copyright © 2023 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.2.1 Default Speed Mode  
Table 7-97, Figure 7-83, Table 7-98, and Figure 7-84 present timing requirements and switching characteristics  
for MMC1/MMC2 – Default Speed Mode.  
Table 7-97. Timing Requirements for MMC1/MMC2 – Default Speed Mode  
see Figure 7-83  
NO.  
DS1  
DS2  
DS3  
DS4  
MIN  
2.15  
1.67  
2.15  
1.67  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
DS2  
DS4  
DS1  
DS3  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-83. MMC1/MMC2 – Default Speed – Receive Mode  
Table 7-98. Switching Characteristics for MMC1/MMC2 – Default Speed Mode  
see Figure 7-84  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
25  
DS5  
DS6  
DS7  
DS8  
DS9  
tc(clk)  
Cycle time, MMCx_CLK  
40  
18.7  
18.7  
- 1.8  
- 1.8  
tw(clkH)  
Pulse duration, MMCx_CLK high  
ns  
tw(clkL)  
Pulse duration, MMCx_CLK low  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMCx_CLK falling edge to MMCx_CMD transition  
Delay time, MMCx_CLK falling edge to MMCx_DAT[3:0] transition  
2.2  
2.2  
ns  
ns  
DS5  
DS6  
DS7  
MMC[x]_CLK  
MMC[x]_CMD  
DS8  
DS9  
MMC[x]_DAT[3:0]  
Figure 7-84. MMC1/MMC2 – Default Speed – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.2.2 High Speed Mode  
Table 7-99, Figure 7-85, Table 7-100, and Figure 7-86 present timing requirements and switching characteristics  
for MMC1/MMC2 – High Speed Mode.  
Table 7-99. Timing Requirements for MMC1/MMC2 – High Speed Mode  
see Figure 7-85  
NO.  
HS1  
HS2  
HS3  
HS4  
MIN  
2.24  
1.66  
2.24  
1.66  
MAX  
UNIT  
ns  
tsu(cmdV-clkH)  
th(clkH-cmdV)  
tsu(dV-clkH)  
th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
HS1  
HS3  
HS2  
HS4  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-85. MMC1/MMC2 – High Speed – Receive Mode  
Table 7-100. Switching Characteristics for MMC1/MMC2 – High Speed Mode  
see Figure 7-86  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
HS5  
HS6  
HS7  
HS8  
HS9  
tc(clk)  
Cycle time. MMCx_CLK  
20  
9.2  
tw(clkH)  
Pulse duration, MMCx_CLK high  
ns  
tw(clkL)  
Pulse duration, MMCx_CLK low  
9.2  
ns  
td(clkL-cmdV)  
td(clkL-dV)  
Delay time, MMCx_CLK falling edge to MMCx_CMD transition  
Delay time, MMCx_CLK falling edge to MMCx_DAT[3:0] transition  
- 1.8  
- 1.8  
2.2  
2.2  
ns  
ns  
HS5  
HS6  
HS7  
MMC[x]_CLK  
HS8  
HS9  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-86. MMC1/MMC2 – High Speed – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.2.3 UHS–I SDR12 Mode  
Table 7-101, Figure 7-87, Table 7-102, and Figure 7-88 present timing requirements and switching  
characteristics for MMC1/MMC2 – UHS-I SDR12 Mode.  
Table 7-101. Timing Requirements for MMC1/MMC2 – UHS-I SDR12 Mode  
see Figure 7-87  
NO.  
MIN  
4.2  
MAX  
UNIT  
ns  
SDR121 tsu(cmdV-clkH)  
SDR122 th(clkH-cmdV)  
SDR123 tsu(dV-clkH)  
SDR124 th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
0.87  
4.2  
ns  
ns  
0.87  
ns  
MMC[x]_CLK  
SDR122  
SDR124  
SDR121  
SDR123  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-87. MMC1/MMC2 – UHS-I SDR12 – Receive Mode  
Table 7-102. Switching Characteristics for MMC1/MMC2 – UHS-I SDR12 Mode  
see Figure 7-88  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
25  
SDR125 tc(clk)  
Cycle time, MMCx_CLK  
40  
18.7  
18.7  
1.5  
SDR126 tw(clkH)  
SDR127 tw(clkL)  
SDR128 td(clkL-cmdV)  
SDR129 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
8.6  
8.6  
ns  
1.5  
ns  
SDR125  
SDR126  
SDR127  
MMC[x]_CLK  
SDR128  
SDR128  
MMC[x]_CMD  
SDR129  
SDR129  
MMC[x]_DAT[3:0]  
Figure 7-88. MMC1/MMC2 – UHS-I SDR12 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.2.4 UHS–I SDR25 Mode  
Table 7-103, Figure 7-89, Table 7-104, and Figure 7-90 present timing requirements and switching  
characteristics for MMC1/MMC2 – UHS-I SDR25 Mode.  
Table 7-103. Timing Requirements for MMC1/MMC2 – UHS-I SDR25 Mode  
see Figure 7-89  
NO.  
MIN  
2.15  
1.27  
2.15  
1.27  
MAX  
UNIT  
ns  
SDR251 tsu(cmdV-clkH)  
SDR252 th(clkH-cmdV)  
SDR253 tsu(dV-clkH)  
SDR254 th(clkH-dV)  
Setup time, MMCx_CMD valid before MMCx_CLK rising edge  
Hold time, MMCx_CMD valid after MMCx_CLK rising edge  
Setup time, MMCx_DAT[3:0] valid before MMCx_CLK rising edge  
Hold time, MMCx_DAT[3:0] valid after MMCx_CLK rising edge  
ns  
ns  
ns  
MMC[x]_CLK  
SDR252  
SDR254  
SDR251  
SDR253  
MMC[x]_CMD  
MMC[x]_DAT[3:0]  
Figure 7-89. MMC1/MMC2 – UHS-I SDR25 – Receive Mode  
Table 7-104. Switching Characteristics for MMC1/MMC2 – UHS-I SDR25 Mode  
see Figure 7-90  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
SDR255 tc(clk)  
Cycle time, MMCx_CLK  
20  
9.2  
9.2  
2.4  
2.4  
SDR256 tw(clkH)  
SDR257 tw(clkL)  
SDR258 td(clkL-cmdV)  
SDR259 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
8.1  
8.1  
ns  
ns  
SDR255  
SDR256  
SDR257  
MMC[x]_CLK  
SDR258  
SDR258  
MMC[x]_CMD  
SDR259  
SDR259  
MMC[x]_DAT[3:0]  
Figure 7-90. MMC1/MMC2 – UHS-I SDR25 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.2.5 UHS–I SDR50 Mode  
Table 7-105 and Figure 7-91 presents switching characteristics for MMC1/MMC2 – UHS-I SDR50 Mode.  
Table 7-105. Switching Characteristics for MMC1/MMC2 – UHS-I SDR50 Mode  
see Figure 7-91  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
100  
SDR505 tc(clk)  
Cycle time, MMCx_CLK  
10  
4.45  
4.45  
1.2  
SDR506 tw(clkH)  
SDR507 tw(clkL)  
SDR508 td(clkL-cmdV)  
SDR509 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
6.35  
6.35  
ns  
1.2  
ns  
SDR505  
SDR506  
SDR507  
MMC[x]_CLK  
SDR508  
SDR508  
MMC[x]_CMD  
SDR509  
SDR509  
MMC[x]_DAT[3:0]  
Figure 7-91. MMC1/MMC2 – UHS-I SDR50 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.16.2.6 UHS–I DDR50 Mode  
Table 7-106 and Figure 7-92 present switching characteristics for MMC1/MMC2 – UHS-I DDR50 Mode.  
Table 7-106. Switching Characteristics for MMC1/MMC2 – UHS-I DDR50 Mode  
see Figure 7-92  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
50  
DDR505  
DDR506  
DDR507  
DDR508  
DDR509  
tc(clk)  
Cycle time, MMCx_CLK  
20  
9.2  
tw(clkH)  
tw(clkL)  
td(clk-cmdV)  
td(clk-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
9.2  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK transition to MMCx_DAT[3:0] transition  
1.12  
1.12  
6.43  
6.43  
ns  
ns  
DDR505  
DDR506  
DDR507  
MMC[x]_CLK  
MMC[x]_CMD  
DDR508  
DDR509  
DDR509  
MMC[x]_DAT[3:0]  
Figure 7-92. MMC1/MMC2 – UHS-I DDR50 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.16.2.7 UHS–I SDR104 Mode  
Table 7-107 and Figure 7-93 present switching characteristics for MMC1/MMC2 – UHS-I SDR104 Mode.  
Table 7-107. Switching Characteristics for MMC1/MMC2 – UHS-I SDR104 Mode  
see Figure 7-93  
NO.  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fop(clk)  
Operating frequency, MMCx_CLK  
200  
SDR1045 tc(clk)  
Cycle time, MMCx_CLK  
5
2.12  
2.12  
1.07  
1.07  
SDR1046 tw(clkH)  
SDR1047 tw(clkL)  
SDR1048 td(clkL-cmdV)  
SDR1049 td(clkL-dV)  
Pulse duration, MMCx_CLK high  
ns  
Pulse duration, MMCx_CLK low  
ns  
Delay time, MMCx_CLK rising edge to MMCx_CMD transition  
Delay time, MMCx_CLK rising edge to MMCx_DAT[3:0] transition  
3.21  
3.21  
ns  
ns  
SDR1045  
SDR1046  
SDR1047  
MMC[x]_CLK  
SDR1048  
SDR1048  
MMC[x]_CMD  
SDR1049  
SDR1049  
MMC[x]_DAT[3:0]  
Figure 7-93. MMC1/MMC2 – UHS-I SDR104 – Transmit Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.17 OSPI  
OSPI0 offers two data capture modes, PHY mode and Tap mode.  
PHY mode uses an internal reference clock to transmit and receive data via a DLL based PHY, where each  
reference clock cycle produces a single cycle of OSPI0_CLK for Single Data Rate (SDR) transfers or a half  
cycle of OSPI0_CLK for Double Data Rate (DDR) transfers. PHY mode supports four clocking topologies  
for the receive data capture clock. Internal PHY Loopback - uses the internal reference clock as the PHY  
receive data capture clock. Internal Pad Loopback - uses OSPI0_LBCLKO looped back into the PHY from the  
OSPI0_LBCLKO pin as the PHY receive data capture clock. External Board Loopback - uses OSPI0_LBCLKO  
looped back into the PHY from the OSPI0_DQS pin as the PHY receive data capture clock. DQS - uses the DQS  
output from the attached device as the PHY receive data capture clock. SDR transfers are not supported when  
using the Internal Pad Loopback and DQS clocking topologies. DDR transfers are not supported when using the  
Internal PHY Loopback or Internal Pad Loopback clocking topologies.  
Tap mode uses an internal reference clock with selectable taps to adjusted data transmit and receive capture  
delays relative to OSPI0_CLK, which is a divide by 4 of the internal reference clock for SDR transfers or a divide  
by 8 of the internal reference clock for DDR transfers. Tap mode only supports one clocking topology for the  
receive data capture clock. No Loopback - uses the internal reference clock as the Tap receive data capture  
clock. This clocking topology supports a maximum internal reference clock rate of 200 MHz, which produces an  
OSPI0_CLK rate up to 50 MHz for SDR mode or 25 MHz for DDR mode.  
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device  
TRM.  
For more details about features and additional description information on the device Octal Serial Peripheral  
Interface, see the corresponding subsections within Signal Descriptions and Detailed Description sections.  
Section 7.9.5.17.1 defines timing requirements and switching characteristics associated with PHY mode and  
Section 7.9.5.17.2 defines timing requirements and switching characteristics associated with Tap mode.  
Table 7-108 presents timing conditions for OSPI0.  
Table 7-108. OSPI0 Timing Conditions  
PARAMETER  
MODE  
MIN  
1
MAX UNIT  
INPUT CONDITIONS  
SRI Input slew rate  
OUTPUT CONDITIONS  
6
V/ns  
pF  
CL  
Output load capacitance  
3
10  
PCB CONNECTIVITY REQUIREMENTS  
No Loopback  
Propagation delay of OSPI0_CLK trace  
Internal PHY Loopback  
Internal Pad Loopback  
450  
ps  
td(Trace Delay)  
Propagation delay of OSPI0_LBCLKO  
trace  
External Board Loopback  
DQS  
2L(1) - 30  
L(1) - 30  
2L(1) + 30  
L(1) + 30  
ps  
ps  
Propagation delay of OSPI0_DQS trace  
Propagation delay mismatch of  
OSPI0_D[7:0] and OSPI0_CSn[3:0]  
relative to OSPI0_CLK  
td(Trace Mismatch  
All modes  
60  
ps  
Delay)  
(1) L = Propagation delay of OSPI0_CLK trace  
Copyright © 2023 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.17.1 OSPI0 PHY Mode  
7.9.5.17.1.1 OSPI0 With PHY Data Training  
Read and write data valid windows will shift due to variation in process, voltage, temperature, and operating  
frequency. A data training method may be implemented to dynamically configure optimal read and write timing.  
Implementing data training enables proper operation across temperature with a specific process, voltage, and  
frequency operating condition, while achieving a higher operating frequency.  
Data transmit and receive timing parameters are not defined for the data training use case since they are  
dynamically adjusted based on the operating condition.  
Table 7-109 defines DLL delays required for OSPI0 with Data Training. Table 7-110, Figure 7-94, Table 7-111,  
and Figure 7-95 present timing requirements and switching characteristics for OSPI0 with Data Training.  
Table 7-109. OSPI0 DLL Delay Mapping for PHY Data Training  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
DELAY VALUE  
Transmit  
All modes  
Receive  
(1)  
PHY_CONFIG_TX_DLL_DELAY_FLD,  
(2)  
All modes  
PHY_CONFIG_RX_DLL_DELAY_FLD  
(1) Transmit DLL delay value determined by training software  
(2) Receive DLL delay value determined by training software  
Table 7-110. OSPI0 Timing Requirements – PHY Data Training  
see Figure 7-94  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
(1)  
O15 tsu(D-LBCLK)  
O16 th(LBCLK-D)  
DDR with DQS  
ns  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
(1)  
DDR with DQS  
ns  
(1) Minimum setup and hold time requirements for OSPI0_D[7:0] inputs are not defined when Data Training is used to find the optimum  
data valid window.  
OSPI_DQS  
O15 O16 O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
Figure 7-94. OSPI0 Timing Requirements – PHY Data Training, DDR with DQS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-111. OSPI Switching Characteristics – PHY Data Training  
See Figure 7-95  
NO.  
PARAMETER  
MODE  
1.8V, DDR  
3.3V, DDR  
DDR  
MIN  
6.02  
MAX UNIT  
ns  
ns  
ns  
ns  
O1  
tc(CLK)  
Cycle time, OSPI0_CLK  
7.52  
O2  
O3  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
DDR  
((0.475P(1)) +  
(0.975M(2)R(4)) +  
(0.04TD(5)) - 1)  
((0.525P(1)) +  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
O4  
td(CSn-CLK)  
DDR  
(1.025M(2)R(4)) +  
(0.11TD(5)) + 1)  
ns  
((0.475P(1)) +  
(0.975N(3)R(4)) -  
(0.04TD(5)) - 1)  
((0.525P(1)) +  
(1.025N(3)R(4)) -  
(0.11TD(5)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
O5  
O6  
td(CLK-CSn)  
DDR  
DDR  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
(6)  
(6)  
td(CLK-D)  
(1) P = OSPI0_CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
(5) TD = PHY_CONFIG_TX_DLL_DELAY_FLD  
(6) Minimum and maximum delay times for OSPI0_D[7:0] outputs are not defined when Data Training is used to find the optimum data  
valid window.  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
OSPI_D[i:0]  
O2  
O6  
O6  
O1  
OSPI_TIMING_01  
Figure 7-95. OSPI0 Switching Characteristics – PHY DDR Data Training  
Copyright © 2023 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.17.1.2 OSPI0 Without Data Training  
Note  
Timing parameters defined in this section are only applicable when data training is not implemented  
and DLL delays are configured as described in Table 7-112 and Table 7-115.  
7.9.5.17.1.2.1 OSPI0 PHY SDR Timing  
Table 7-112 defines DLL delays required for OSPI0 PHY SDR Mode. Table 7-113, Figure 7-96, Figure 7-97,  
Table 7-114, and Figure 7-98 present timing requirements and switching characteristics for OSPI0 PHY SDR  
Mode.  
Table 7-112. OSPI0 DLL Delay Mapping for PHY SDR Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
DELAY VALUE  
Transmit  
All modes  
Receive  
PHY_CONFIG_TX_DLL_DELAY_FLD,  
0x0  
0x0  
All modes  
PHY_CONFIG_RX_DLL_DELAY_FLD  
Table 7-113. OSPI0 Timing Requirements – PHY SDR Mode  
see Figure 7-96 and Figure 7-97  
NO.  
MODE  
MIN  
4.8  
MAX UNIT  
1.8V, SDR with Internal PHY Loopback  
3.3V, SDR with Internal PHY Loopback  
1.8V, SDR with Internal PHY Loopback  
3.3V, SDR with Internal PHY Loopback  
1.8V, SDR with External Board Loopback  
3.3V, SDR with External Board Loopback  
1.8V, SDR with External Board Loopback  
3.3V, SDR with External Board Loopback  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
O19 tsu(D-CLK)  
O20 th(CLK-D)  
O21 tsu(D-LBCLK)  
O22 th(LBCLK-D)  
5.19  
-0.5  
-0.5  
0.6  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
0.9  
1.7  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
2.0  
OSPI_CLK  
O19  
O20  
OSPI_D[i:0]  
OSPI_TIMING_05  
Figure 7-96. OSPI0 Timing Requirements – PHY SDR with Internal PHY Loopback  
OSPI_DQS  
O21  
O22  
OSPI_D[i:0]  
OSPI_TIMING_06  
Figure 7-97. OSPI0 Timing Requirements – PHY SDR with External Board Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-114. OSPI0 Switching Characteristics – PHY SDR Mode  
see Figure 7-98  
NO.  
PARAMETER  
MODE  
1.8V  
MIN  
7
MAX UNIT  
ns  
ns  
ns  
ns  
O7  
tc(CLK)  
Cycle time, OSPI0_CLK  
3.3V  
6.03  
O8  
O9  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O10 td(CSn-CLK)  
O11 td(CLK-CSn)  
ns  
ns  
(0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
1.8V  
3.3V  
-1.16  
-1.33  
1.25  
1.51  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
O12 td(CLK-D)  
(1) P = CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
Figure 7-98. OSPI0 Switching Characteristics – PHY SDR  
Copyright © 2023 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.17.1.2.2 OSPI0 PHY DDR Timing  
Table 7-115 defines DLL delays required for OSPI0 PHY DDR Mode. Table 7-116, Figure 7-99, Table 7-117, and  
Figure 7-100 present timing requirements and switching characteristics for OSPI0 PHY DDR Mode.  
Table 7-115. OSPI0 DLL Delay Mapping for PHY DDR Timing Modes  
MODE  
OSPI_PHY_CONFIGURATION_REG BIT FIELD  
DELAY VALUE  
Transmit  
1.8V  
PHY_CONFIG_TX_DLL_DELAY_FLD  
PHY_CONFIG_TX_DLL_DELAY_FLD  
0x46  
0x43  
3.3V  
Receive  
1.8V, DQS  
3.3V, DQS  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
PHY_CONFIG_RX_DLL_DELAY_FLD  
0x15  
0x3A  
0x0  
All other modes  
Table 7-116. OSPI0 Timing Requirements – PHY DDR Mode  
see Figure 7-99  
NO.  
MODE  
MIN  
0.53  
MAX UNIT  
1.8V, DDR with External Board Loopback  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.8V, DDR with DQS  
3.3V, DDR with External Board Loopback  
3.3V, DDR with DQS  
-0.46  
1.23  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_DQS edge  
O15 tsu(D-LBCLK)  
-0.66  
1.24(1)  
3.59  
1.8V, DDR with External Board Loopback  
1.8V, DDR with DQS  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_DQS edge  
O16 th(LBCLK-D)  
3.3V, DDR with External Board Loopback  
3.3V, DDR with DQS  
1.44(1)  
7.92  
(1) This Hold time requirement is larger than the Hold time provided by a typical OSPI/QSPI/SPI device. Therefore, the trace length  
between the SoC and attached OSPI/QSPI/SPI device must be sufficiently long enough to ensure that the Hold time is met at the SoC.  
The length of the SoC's external loopback clock (OSPI0_LBCLKO to OSPI0_DQS) may need to be shortened to compensate.  
OSPI_DQS  
O15 O16 O15 O16  
OSPI_D[i:0]  
OSPI_TIMING_04  
Figure 7-99. OSPI0 Timing Requirements – PHY DDR with External Board Loopback or DQS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-117. OSPI0 Switching Characteristics – PHY DDR Mode  
see Figure 7-100  
NO.  
PARAMETER  
MODE  
MIN  
19  
MAX UNIT  
O1  
O2  
O3  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) -  
((0.525P(1)) -  
O4  
O5  
td(CSn-CLK)  
td(CLK-CSn)  
ns  
ns  
(0.975M(2)R(4))) (1.025M(2)R(4)) + 7)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 7)  
(1.025N(3)R(4)))  
1.8V  
3.3V  
-7.71  
-7.71  
-1.56  
-1.56  
ns  
ns  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
O6  
td(CLK-D)  
(1) P = OSPI0_CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O6  
O6  
O1  
OSPI_D[i:0]  
OSPI_TIMING_01  
Figure 7-100. OSPI0 Switching Characteristics – PHY DDR  
Copyright © 2023 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.17.2 OSPI0 Tap Mode  
7.9.5.17.2.1 OSPI0 Tap SDR Timing  
Table 7-118, Figure 7-101, Table 7-119, and Figure 7-102 present timing requirements and switching  
characteristics for OSPI0 Tap SDR Mode.  
Table 7-118. OSPI0 Timing Requirements – Tap SDR Mode  
see Figure 7-101  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
(10.4 -  
O19 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
(0.7 +  
O20 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = refclk cycle time in ns  
OSPI_CLK  
O19  
O20  
OSPI_D[i:0]  
OSPI_TIMING_05  
Figure 7-101. OSPI0 Timing Requirements – Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-119. OSPI0 Switching Characteristics – Tap SDR Mode  
see Figure 7-102  
NO.  
PARAMETER  
MODE  
MIN  
20  
MAX UNIT  
O7  
O8  
O9  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
((0.525P(1)) +  
O10 td(CSn-CLK)  
O11 td(CLK-CSn)  
O12 td(CLK-D)  
ns  
ns  
ns  
(0.975M(2)R(4)) - 1) (1.025M(2)R(4)) + 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
- 4.25  
7.25  
(1) P = CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
OSPI_CSn  
O11  
O10  
O7  
O9  
O8  
OSPI_CLK  
OSPI_D[i:0]  
O12  
OSPI_TIMING_02  
Figure 7-102. OSPI0 Switching Characteristics – Tap SDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.17.2.2 OSPI0 Tap DDR Timing  
Table 7-120, Figure 7-103, Table 7-121, and Figure 7-104 present timing requirements and switching  
characteristics for OSPI0 Tap DDR Mode.  
Table 7-120. OSPI0 Timing Requirements – Tap DDR Mode  
see Figure 7-103  
NO.  
MODE  
MIN  
MAX UNIT  
Setup time, OSPI0_D[7:0] valid before  
active OSPI0_CLK edge  
(12.04 -  
O13 tsu(D-CLK)  
No Loopback  
ns  
(0.975T(1)R(2)))  
Hold time, OSPI0_D[7:0] valid after active  
OSPI0_CLK edge  
(1.84 +  
O14 th(CLK-D)  
No Loopback  
ns  
(0.975T(1)R(2)))  
(1) T = OSPI_RD_DATA_CAPTURE_REG[DELAY_FLD]  
(2) R = refclk cycle time in ns  
OSPI_CLK  
O13 O14 O13 O14  
OSPI_D[i:0]  
OSPI_TIMING_03  
Figure 7-103. OSPI0 Timing Requirements – Tap DDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
Table 7-121. OSPI0 Switching Characteristics – Tap DDR Mode  
see Figure 7-104  
NO.  
PARAMETER  
MODE  
MIN  
40  
MAX UNIT  
O1  
O2  
O3  
tc(CLK)  
Cycle time, OSPI0_CLK  
ns  
ns  
ns  
tw(CLKL)  
tw(CLKH)  
Pulse duration, OSPI0_CLK low  
Pulse duration, OSPI0_CLK high  
((0.475P(1)) - 0.3)  
((0.475P(1)) - 0.3)  
((0.525P(1)) +  
Delay time, OSPI0_CSn[3:0] active edge  
to OSPI0_CLK rising edge  
((0.475P(1)) +  
O4  
td(CSn-CLK)  
( 1.025M(2)R(4)) +  
1)  
ns  
((0.975M(2)R(4)) - 1)  
Delay time, OSPI0_CLK rising edge to  
OSPI0_CSn[3:0] inactive edge  
((0.475P(1)) +  
((0.525P(1)) +  
O5  
O6  
td(CLK-CSn)  
td(CLK-D)  
ns  
ns  
(0.975N(3)R(4)) - 1) (1.025N(3)R(4)) + 1)  
Delay time, OSPI0_CLK active edge to  
OSPI0_D[7:0] transition  
(- 17.94 +  
(- 1.56 +  
(0.975T(5)R(4)))  
(1.025T(5)R(4)))  
(1) P = CLK cycle time = SCLK period in ns  
(2) M = OSPI_DEV_DELAY_REG[D_INIT_FLD]  
(3) N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]  
(4) R = refclk cycle time in ns  
(5) T = OSPI_RD_DATA_CAPTURE_REG[DDR_READ_DELAY_FLD]  
OSPI_CSn  
O4  
O3  
O5  
OSPI_CLK  
O2  
O6  
O6  
O1  
OSPI_D[i:0]  
OSPI_TIMING_01  
Figure 7-104. OSPI0 Switching Characteristics – Tap DDR, No Loopback  
Copyright © 2023 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
7.9.5.18 Timers  
For more details about features and additional description information on the device Timers, see the  
corresponding subsections within Signal Descriptions and Detailed Description sections.  
Table 7-122. Timer Timing Conditions  
PARAMETER  
MIN  
0.5  
2
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
10  
Table 7-123. Timer Input Timing Requirements  
see Figure 7-105  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX UNIT  
T1  
tw(TINPH)  
Pulse duration, high  
Pulse duration, low  
CAPTURE  
4P(1)  
+
ns  
2.5  
T2  
tw(TINPL)  
CAPTURE  
4P(1)  
+
ns  
2.5  
(1) P = functional clock period in ns.  
Table 7-124. Timer Output Switching Characteristics  
see Figure 7-105  
NO.  
PARAMETER  
DESCRIPTION  
MODE  
MIN  
MAX  
UNIT  
T3  
tw(TOUTH)  
Pulse duration, high  
Pulse duration, low  
PWM  
4P(1)  
-
ns  
2.5  
T4  
tw(TOUTL)  
PWM  
4P(1)  
-
ns  
2.5  
(1) P = functional clock period in ns.  
T1  
T2  
TIMER_IOx (inputs)  
T3  
T4  
TIMER_IOx (outputs)  
TIMER_01  
Figure 7-105. Timer Timing Requirements and Switching Characteristics  
For more information, see Timers section in Peripherals chapter in the device TRM.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
7.9.5.19 UART  
For more details about features and additional description information on the device Universal Asynchronous  
Receiver Transmitter, see the corresponding subsections within Signal Descriptions and Detailed Description  
sections.  
Table 7-125. UART Timing Conditions  
PARAMETER  
MIN  
0.5  
1
MAX  
5
UNIT  
V/ns  
pF  
INPUT CONDITIONS  
SRI  
Input slew rate  
OUTPUT CONDITIONS  
CL  
Output load capacitance  
30(1)  
(1) This value represents an absolute maximum load capacitance. As the UART baud rate increases, it may be necessary to reduce the  
load capacitance to a value less than this maximum limit to provide enough timing margin for the attached device. The output rise/fall  
times increase as capacitive load increases, which decreases the time data is valid for the receiver of the attached devices. Therefore,  
it is important to understand the minimum data valid time required by the attached device at the operating baud rate. Then use the  
device IBIS models to verify the actual load capacitance on the UART signals does not increase the rise/fall times beyond the point  
where the minimum data valid time of the attached device is violated.  
Table 7-126. UART Timing Requirements  
see Figure 7-106  
NO.  
PARAMETER  
tw(RXD)  
tw(RXDS)  
DESCRIPTION  
MIN  
MAX  
UNIT  
0.95U(1)  
1.05U(1)  
1
Pulse width, receive data bit high or low  
ns  
(2)  
(2)  
0.95U(1)  
2
Pulse width, receive start bit low  
ns  
(2)  
(1) U = UART baud time in ns = 1/programmed baud rate.  
(2) This value defines the data valid time, where the input voltage is required to be above VIH or below VIL.  
Table 7-127. UART Switching Characteristics  
see Figure 7-106  
NO.  
PARAMETER  
DESCRIPTION  
Programmable baud rate for Main Domain UARTs  
Programmable baud rate for MCU and WKUP Domain UARTs  
Pulse width, transmit data bit high or low  
MIN  
MAX  
12  
UNIT  
Mbps  
Mbps  
ns  
f(baud)  
3.7  
3
4
tw(TXD)  
U(1) - 2  
U(1) - 2  
U(1) + 2  
tw(TXDS)  
Pulse width, transmit start bit low  
ns  
(1) U = UART baud time in ns = 1/actual baud rate, where the actual baud rate is defined in the UART Baud Rate Settings table of the  
device TRM.  
2
1
Start  
VIH  
Bit  
UARTi_RXD  
VIL  
Data Bits  
4
3
Start  
Bit  
UARTi_TXD  
Data Bits  
UART_TIMING_01_RCVRVIHVIL  
Figure 7-106. UART Timing Requirements and Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter  
in the device TRM.  
7.9.5.20 USB  
The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the  
specification for timing details.  
For more details about features and additional description information on the device Universal Serial Bus  
Subsystem (USB), see the corresponding subsections within Signal Descriptions and Detailed Description  
sections.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
8 Detailed Description  
8.1 Overview  
Copyright © 2023 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
9 Applications, Implementation, and Layout  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Device Connection and Layout Fundamentals  
9.1.1 Power Supply  
9.1.1.1 Power Distribution Network Implementation Guidance  
The Sitara Processor Power Distribution Networks: Implementation and Analysis provides guidance for  
successful implementation of the power distribution network. This includes PCB stackup guidance as well as  
guidance for optimizing the selection and placement of the decoupling capacitors. TI only supports designs that  
follow the board design guidelines contained in the application report.  
9.1.2 External Oscillator  
For more information about External Oscillators, see the Clock Specifications section.  
9.1.3 JTAG, EMU, and TRACE  
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various  
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target  
Connection Guide.  
For recommendations on JTAG, EMU, and TRACE routing, see the Emulation and Trace Headers Technical  
Reference Manual  
9.1.4 Unused Pins  
For more information about Unused Pins, see Section 6.4, Pin Connectivity Requirements  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
9.2 Peripheral- and Interface-Specific Design Information  
9.2.1 DDR Board Design and Layout Guidelines  
The goal of the AM62Ax DDR Board Design and Layout Guidelines is to make the DDR system  
implementation straightforward for all designers. Requirements have been distilled down to a set of layout and  
routing rules that allow designers to successfully implement a robust design for the topologies that TI supports.  
TI only supports board designs using LPDDR4 memories that follow the guidelines in this document.  
Copyright © 2023 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
9.2.2 OSPI/QSPI/SPI Board Design and Layout Guidelines  
The following section details the PCB routing guidelines that must be observed when connecting OSPI, QSPI, or  
SPI devices.  
9.2.2.1 No Loopback, Internal PHY Loopback, and Internal Pad Loopback  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The signal propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to  
B) must be ≤ 450 ps (~7cm as stripline or ~8cm as microstrip)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-1  
Propagation delays and matching:  
– (A to B) ≤ 450 ps  
– (E to F, or F to E) = ((A to B) ± 60 ps)  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
OSPI[x]_LBCLKO  
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_01  
* 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK pin, is placeholder for fine tuning, if needed.  
Figure 9-1. OSPI Connectivity Schematic for No Loopback, Internal PHY Loopback, and Internal Pad  
Loopback  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
9.2.2.2 External Board Loopback  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The OSPI[x]_LBCLKO output pin must be looped back to the OSPI[x]_DQS input pin  
The signal propagation delay of the OSPI[x]_LBCLKO pin to the OSPI[x]_DQS pin (C to D) must be  
approximately twice the propagation delay of the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device  
CLK pin (A to B)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-2  
Propagation delays and matching:  
– (C to D) = 2 x ((A to B) ± 30 ps), see the exception note below.  
– (E to F, or F to E) = ((A to B) ± 60 ps)  
Note  
The External Board Loopback hold time requirement (defined by parameter number O16 in Table  
7-116, OSPI0 Timing Requirements - PHY DDR Mode) may be larger than the hold time provided by  
a typical OSPI/QSPI/SPI device. In this case, the propagation delay of OPSI[x]_LBCLKO pin to the  
OSPI[x]_DQS pin (C to D) can be reduced to provide additional hold time.  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
C
R1  
0 Ω*  
OSPI[x]_LBCLKO  
D
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_02  
* 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK and OSPI[x]_LBCLKO pins, is a placeholder for fine tuning, if  
needed.  
Figure 9-2. OSPI Connectivity Schematic for External Board Loopback  
Copyright © 2023 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
9.2.2.3 DQS (only available in Octal SPI devices)  
The OSPI[x]_CLK output pin must be connected to the CLK input pin of the attached OSPI/QSPI/SPI device  
The DQS pin of the attached OSPI/QSPI/SPI device must be connected to OSPI[x]_DQS pin  
The signal propagation delay from the attached OSPI/QSPI/SPI device DQS pin to the OSPI[x]_DQS pin (D  
to C) must be approximately equal to the signal propagation delay from the OSPI[x]_CLK pin to the attached  
OSPI/QSPI/SPI device CLK pin (A to B)  
The signal propagation delay of each OSPI[x]_D[y] and OSPI[x]_CSn[z] pin to the corresponding attached  
OSPI/QSPI/SPI device data and control pin (E to F, or F to E) must be approximately equal to the signal  
propagation delay from the OSPI[x]_CLK pin to the attached OSPI/QSPI/SPI device CLK pin (A to B)  
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-3  
Propagation delays and matching:  
– (D to C) = ((A to B) ± 30 ps)  
– (E to F, or F to E) = ((A to B) ± 60 ps)  
A
B
R1  
0 Ω*  
OSPI/QSPI/SPI  
Device Clock Input  
OSPI[x]_CLK  
OSPI[x]_LBCLKO  
C
D
OSPI Device DQS  
OSPI[x]_DQS  
E
F
OSPI[x]_D[y],  
OSPI[x]_CSn[z]  
OSPI/QSPI/SPI  
Device IO[y], CS#  
OSPI_Board_03  
* 0 Ω resistor (R1), located as close as possible to the OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed.  
Figure 9-3. OSPI Connectivity Schematic for DQS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
9.2.3 USB VBUS Design Guidelines  
The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as  
20 V when the Power Delivery addendum is supported. Some automotive applications require a max voltage to  
be 30 V.  
The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in  
the Figure 9-4), which limits the voltage applied to the actual device pin (USB0_VBUS). The tolerance of these  
external resistors should be equal to or less than 1%, and the leakage current of Zener diode at 5 V should be  
less than 100 nA.  
Device  
USBn_VBUS  
16.5 kΩ  
1%  
3.5 kΩ  
1%  
VBUS signal  
10 kΩ  
1%  
6.8V  
(BZX84C6V8 or equivalent)  
VSS  
VSS  
J7ES_USB_VBUS_01  
Figure 9-4. USB VBUS Detect Voltage Divider / Clamp Circuit  
The USB0_VBUS pin can be considered to be fail-safe because the external circuit in Figure 9-4 limits the input  
current to the actual device pin in a case where VBUS is applied while the device is powered off.  
9.2.4 System Power Supply Monitor Design Guidelines  
The VMON_VSYS pin provides a way to monitor a system power supply. This system power supply is typically  
a single pre-regulated power source for the entire system and can be connected to the VMON_VSYS pin via  
and external resistor divider circuit. This system supply is monitored by comparing the external voltage divider  
output voltage to an internal voltage reference, where a power fail event is triggered when the voltage applied  
to VMON_VSYS drops below the internal reference voltage. The actual system power supply voltage trip point  
is determined by the system designer when selecting component values used to implement the external resistor  
voltage divider circuit.  
When designing the resistor divider circuit the designer must understand various factors which contribute to  
variability in the system power supply monitor trip point. The first thing to consider is the initial accuracy of  
the VMON_VSYS input threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision  
1% resistors with similar thermal coefficient are recommended for implementing the resistor voltage divider.  
This minimizes variability contributed by resistor value tolerances. Input leakage current associated with  
VMON_VSYS must also be considered since any current flowing into the pin creates a loading error on the  
voltage divider output. The VMON_VSYS input leakage current can be in the range of 10 nA to 2.5 µA when  
applying 0.45 V.  
Note  
The resistor voltage divider shall be designed such that the output voltage never exceeds the  
maximum value defined in the Recommended Operating Conditions section, during normal operating  
conditions.  
Figure 9-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger  
threshold is 5 V - 10%, or 4.5 V.  
Copyright © 2023 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
For this example, the designer must understand which variables effect the maximum trigger threshold when  
selecting resistor values. A device which has a VMON_VSYS input threshold of 0.45 V + 3% needs to be  
considered when trying to design a voltage divider that doesn’t trip until the system supply drops 10%. The effect  
of resistor tolerance and input leakage also needs to be considered, but the contribution to the maximum trigger  
point is not obvious. When selecting component values which produce a maximum trigger voltage, the system  
designer must consider a condition where the value of R1 is 1% low and the value of R2 is 1% high combined  
with a condition where input leakage current for the VMON_VSYS pin is 2.5 µA. When implementing a resistor  
divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a maximum trigger threshold of 4.517 V.  
Once component values have been selected to satisfy the maximum trigger voltage as described above, the  
system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an  
output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input  
leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result  
is a minimum trigger threshold of 4.013 V.  
This example demonstrates a system power supply voltage trip point that ranges from 4.013 V to 4.517  
V. Approximately 250 mV of this range is introduced by VMON_VSYS input threshold accuracy of ±3%,  
approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV  
of this range is introduced by loading error when VMON_VSYS input leakage current is 2.5 µA.  
The resistor values selected in this example produces approximately 100 µA of bias current through the resistor  
divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above can be reduced to about  
10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor divider bias  
current vs loading error is something the system designer needs to consider when selecting component values.  
The system designer must also consider implementing a noise filter on the voltage divider output since  
VMON_VSYS has minimum hysteresis and a high-bandwidth response to transients. This can be done by  
installing a capacitor across R1 as shown in Figure 9-5. However, the system designer must determine the  
response time of this filter based on system supply noise and expected response to transient events.  
Device  
VMON_VSYS  
R2  
VSYS  
40.2 kΩ 1%  
C1  
Value = Determined by system designer  
(System Power Supply)  
4.81 kΩ  
1%  
R1  
VSS  
SPRSP56_VMON_ER_MON_01  
Figure 9-5. System Supply Monitor Voltage Divider Circuit  
VMON_1P8_SOC pin provides a way to monitor external 1.8 V power supplies. This pin must be connected  
directly to their respective power source. An internal resistor divider with software control is implemented inside  
the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under  
voltage and over voltage interrupts.  
VMON_3P3_SOC pin provides a way to monitor external 3.3 V power supplies. This pin must be connected  
directly to their respective power source. An internal resistor divider with software control is implemented inside  
the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under  
voltage and over voltage interrupts.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
9.2.5 High Speed Differential Signal Routing Guidance  
The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed  
differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and  
spacing limits. TI supports only designs that follow the board design guidelines contained in the application note.  
9.2.6 Thermal Solution Guidance  
The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful  
implementation of a thermal solution for system designs containing this device. This document provides  
background information on common terms and methods related to thermal solutions. TI only supports designs  
that follow system design guidelines contained in the application note.  
Copyright © 2023 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
10 Device and Documentation Support  
10.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for  
example, AM62AxAMB). Texas Instruments recommends two of three possible prefix designators for its support  
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering  
prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
P
Experimental device that is not necessarily representative of the final device's electrical specifications and  
may not use production assembly flow.  
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical  
specifications.  
null Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.  
TMDS Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
For orderable part numbers of AM62Ax devices in the AMB package type, see the Package Option Addendum of  
this document, the TI website (ti.com), or contact your TI sales representative.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
10.1.1 Standard Package Symbolization  
Note  
Some devices may have a cosmetic circular marking visible on the top of the device package which  
results from the production test process. In addition, some devices may also show a color variation in  
the package substrate which results from the substrate manufacturer. These differences are cosmetic  
only with no reliability impact.  
SITARA  
aBBBBBBr  
ZfYytPPPQ1  
XXXXXXX  
A1 (PIN ONE INDICATOR)  
G1  
YYY  
O
Figure 10-1. Printed Device Reference  
Copyright © 2023 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
10.1.2 Device Naming Convention  
FIELD PARAMETER FIELD DESCRIPTION  
VALUE  
DESCRIPTION  
X(1)  
Prototype  
a
Device evolution stage  
P
Preproduction (production test flow, no reliability data)  
Production  
BLANK(2)  
AM62A74  
AM62A72  
Base production part  
number  
BBBBBBB  
AM62A34  
see Device Comparison  
SR1.0  
AM62A32  
AM62A31  
r
Device revision  
A
M
N
O
P
Q
Z
Device Speed Grade  
See Device Speed Grades  
R
S
T
U
V
G
Base  
Features  
f
(see Device  
Comparison)  
L
Features supported by G, plus Multimedia JPEG Encoder  
Features supported by L, plus Display Subsystem  
Secure with Dummy Key / No Functional Safety  
Secure with Production Key / No Functional Safety  
Secure with Production Key / Functional Safety  
M
1 to 9  
H to R  
S to Z  
Security / Functional  
Safety  
Y
t
–40°C to 105°C - Extended Industrial (see Recommended Operation  
Conditions)  
A
Temperature(3)  
I
–40°C to 125°C - Automotive (see Recommended Operation Conditions)  
FC/CSP BGA (484)  
ppp  
Q
Package Designator  
AMB  
Q1  
Auto Qualified (Q100)  
Automotive Designator  
BLANK  
Standard  
xxxxxxx  
YYY  
ZZZ  
O
Lot Trace Code (LTC)  
Production Code, For TI use only  
Production Code, For TI use only  
Pin one designator  
G1  
ECAT - Green package designator  
(1) Device symbolization was changed after prototype devices began to ship. The prototype devices were symbolized  
XAM62A74ATMGHIAMB, which does not match the naming convention defined by this table. The prototype device symbolization  
corresponds to device XAM62A74AUMHIAMB.  
(2) BLANK in the symbol or part number is collapsed so there are no gaps between characters.  
(3) Applies to device max junction temperature.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
10.2 Tools and Software  
The following Development Tools support development for TI's Embedded Processing platforms:  
Development Tools  
Code Composer StudioIntegrated Development Environment Code Composer Studio (CCS) Integrated  
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded  
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded  
applications. The tool includes an optimizing C/C++ compiler, source code editor, project build environment,  
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through  
each step of the application development flow. Familiar tools and interfaces allow users to get started faster  
than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with  
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment  
for embedded developers.  
SysConfig-PinMux Tool The SysConfig-PinMux Tool is a software tool which provides a Graphical User  
Interface for configuring pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI  
Embedded Processor devices. The tool can be used to automatically calculate the optimal pinmux configuration  
to satisfy entered system requirements. The tool generates output C header/code files that can be imported  
into software development kits (SDKs) and used to configure customer's software to meet custom hardware  
requirements. The Cloud-based SysConfig-PinMux Tool is also available.  
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments  
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized  
distributor.  
10.3 Documentation Support  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
The following documents describe the AM62Ax devices.  
Technical Reference Manual  
AM62x Sitara Processors Technical Reference Manual: Details the integration, the environment, the  
functional description, and the programming models for each peripheral and subsystem in the AM62Ax family of  
devices.  
Errata  
AM62Ax Sitara Processors Silicon Errata: Describes the known exceptions to the functional specifications for  
the device.  
10.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
10.5 Trademarks  
Sitara, C7000, Code Composer Studio, and TI E2Eare trademarks of Texas Instruments.  
Arm®, Cortex®, and TrustZone® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere.  
MIPI® is a registered trademark of MIPI Alliance.  
Secure Digital® and SD® are registered trademarks of SD Card Association.  
All trademarks are the property of their respective owners.  
Copyright © 2023 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
www.ti.com  
SPRSP77 – MARCH 2023  
10.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
AM62A7, AM62A7-Q1, AM62A3, AM62A3-Q1  
SPRSP77 – MARCH 2023  
www.ti.com  
11 Mechanical, Packaging, and Orderable Information  
11.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: AM62A7 AM62A7-Q1 AM62A3 AM62A3-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AM62A31AMLHAAMB  
AM62A32AMLHAAMB  
AM62A32AMLSIAMBQ1  
AM62A34ASMHAAMB  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
AMB  
AMB  
AMB  
AMB  
484  
484  
484  
484  
84  
84  
84  
84  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 105  
TBD  
Call TI  
RoHS & Green  
Level-3-250C-168 HR  
AM62A34A  
SMHAAMB  
498  
AM62A34ASMSIAMBQ1  
AM62A74AUMHAAMB  
AM62A74AUMHAAMBR  
AM62A74AUMSIAMBQ1  
AM62A74AUMSIAMBRQ1  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
AMB  
AMB  
AMB  
AMB  
AMB  
484  
484  
484  
484  
484  
84  
84  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-250C-168 HR  
Level-3-250C-168 HR  
Level-3-250C-168 HR  
Level-3-250C-168 HR  
Level-3-250C-168 HR  
-40 to 125  
-40 to 105  
-40 to 105  
-40 to 125  
-40 to 125  
AM62A34A  
SMSIAMBQ1  
498  
AM62A74A  
UMHAAMB  
498  
500  
84  
AM62A74A  
UMHAAMB  
498  
AM62A74A  
UMSIAMBQ1  
498  
500  
AM62A74A  
UMSIAMBQ1  
498  
AM62A74AVMSIAMBQ1  
XAM62A34ASMHAAMB  
PREVIEW  
ACTIVE  
FCBGA  
FCBGA  
AMB  
AMB  
484  
484  
84  
84  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 105  
Samples  
Samples  
Samples  
Samples  
XAM62A34ASMHIAMB  
XAM62A74AUMHAAMB  
XAM62A74AUMHIAMB  
ACTIVE  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
AMB  
AMB  
AMB  
484  
484  
484  
84  
84  
84  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 105  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jul-2023  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AM62A7, AM62A7-Q1 :  
Catalog : AM62A7  
Automotive : AM62A7-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE OUTLINE  
AMB0484A  
FCBGA - 2.556 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
18.1  
17.9  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
18.1  
17.9  
(
13.6)  
(
0.1 C  
17.6)  
(
11.6)  
2.144  
1.940  
0.2 C  
2.556  
2.328  
C
SEATING PLANE  
0.2 C  
0.5  
0.3  
TYP  
16.8 TYP  
SYMM  
(0.6) TYP  
(0.6) TYP  
0.8 TYP  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
SYMM  
16.8  
TYP  
K
J
H
G
F
E
D
C
B
A
1
2 3  
6 7  
8
9 10 12 14 16 18 20 22  
11 13 15 17 19 21  
0.55  
0.45  
4
5
484X  
NOTE 3  
0.8 TYP  
0.25  
0.1  
C A B  
C
4228703/A 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Ball diameter after reflow. Dimension is measured at the maximum solder ball diameter parallel to primary datum C.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
AMB0484A  
FCBGA - 2.556 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
484X ( 0.45)  
1
2
3
5
8
9
10 11 12  
15  
4
6
7
13 14  
16 17 18 19 20 21 22  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
K
SYMM  
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.45)  
METAL  
EXPOSED METAL  
(
0.45)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4228703/A 04/2022  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
AMB0484A  
FCBGA - 2.556 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
484X ( 0.45)  
1
2
3
5
8
9
10 11 12  
15  
4
6
7
13 14  
16 17 18 19 20 21 22  
A
(0.8) TYP  
B
C
D
E
F
G
H
J
K
SYMM  
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4228703/A 04/2022  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

AM62A74AUMSIAMBRQ1

2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, front cameras | AMB | 484 | -40 to 125
TI

AM62A74AVMSIAMBQ1

2 TOPS vision SoC with RGB-IR ISP for 1-2 cameras, driver monitoring, front cameras | AMB | 484 | -40 to 125
TI

AM631031

IDT - Manual - Tool Kit
MOLEX

AM631033

IDT - Manual - Tool Kit
MOLEX

AM63125

IDT - Manual - Tool Kit
MOLEX

AM6314916

IDT - Manual - Tool Kit
MOLEX

AM631494

IDT - Manual - Tool Kit
MOLEX

AM631496

IDT - Manual - Tool Kit
MOLEX

AM631498

IDT - Manual - Tool Kit
MOLEX

AM63173

IDT - Manual Press
MOLEX