ADS7961-Q1 [TI]

汽车类 8 位、1MSPS、16 通道单端微功耗、串行接口 ADC;
ADS7961-Q1
型号: ADS7961-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 8 位、1MSPS、16 通道单端微功耗、串行接口 ADC

文件: 总55页 (文件大小:1521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
ADS79xx-Q1 8 位,10 位和 12 位,1MSPS4 通道,8 通道,12 通道和  
16 通道,单端,微功耗,串行接口,模数转换器  
1 特性  
ADS79xx-Q1 器件在 2.7V 5.25V 的宽模拟电源范  
围内运行。由于功耗极低,这些器件非常适合于电池供  
电和隔离式电源供电的应用。  
1
符合汽车应用要求  
具有经 AEC-Q100 测试的下列结果:  
器件温度 1 级:-40°C 125°C 的环境运行温  
度范围  
4 通道和 8 通道器件采用 30 引脚 TSSOP 封装。 12  
通道和 16 通道器件采用 38 引脚 TSSOP 封装。  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
器件信息(1)  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
器件名称  
ADS7950-Q1  
ADS7951-Q1  
ADS7954-Q1  
ADS7958-Q1  
ADS7959-Q1  
ADS7952-Q1  
ADS7953-Q1  
ADS7956-Q1  
ADS7957-Q1  
ADS7960-Q1  
ADS7961-Q1  
封装  
封装尺寸  
产品系列:  
8 位,10 位和 12 位分辨率  
TSSOP (30)  
7.80mm × 4.40mm  
4 通道、8 通道和 12 通道器件与 16 通道器件  
均采用相同封装尺寸  
1MHz 采样率串行器件  
模拟电源范围:2.7V 5.25V  
I/O 电源范围:1.7V 5.25V  
两个软件可选单极、输入范围:  
TSSOP (38)  
9.70mm x 4.40mm  
0V 2.5V)或(0V 5V)  
针对通道选择的自动和手动模式  
每通道两个可编程警报级别  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
四个独立可配置通用输入输出 (GPIO) 接口  
典型功率耗散值:1MSPS 下为 14.5mW (V(+VA)  
5V(+VBD) = 3V)  
=
详细方框图  
PGA Gain  
Control  
断电电流 (1μA)  
High input  
impedance PGA  
(or non inverting  
buffer such as  
THS4031)  
GPIO1  
GPIO2  
GPIO3  
30 引脚和 38 引脚薄型小外形尺寸 (TSSOP) 封装  
2 应用范围  
MXO  
AINP  
GPIO0  
high-alarm  
low-alarm  
车载系统  
Ch0  
Ch1  
电源监控  
Ch2  
电池供电系统  
高速、数据采集系统  
To  
Host  
ADC  
SDO  
3 说明  
SDI  
SCLK  
CS  
ADS79xx-Q1 器件系列由多通道 8 位,10 位和 12 位  
模数转换器 (ADC) 组成。 此器件包括一个基于电容器  
的逐次逼近寄存器 (SAR) ADC,此 ADC 支持固有的  
采样保持。 多特性和出色性能使得 ADS79xx-Q1 器件  
可用于需要对多条通道进行监控的广泛应用。  
(1)  
Chn  
REF  
10 µF  
REF5025  
o/p  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBAS652  
 
 
 
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ...................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 25  
8.5 Digital Output Code................................................. 35  
8.6 Programming: GPIO................................................ 36  
Application and Implementation ........................ 40  
9.1 Application Information............................................ 40  
9.2 Typical Applications ................................................ 40  
9.3 Do's and Don'ts....................................................... 42  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configurations and Functions....................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 Handling Ratings....................................................... 5  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
9
10 Power-Supply Recommendations ..................... 42  
11 Layout................................................................... 43  
11.1 Layout Guidelines ................................................. 43  
11.2 Layout Example .................................................... 43  
12 器件和文档支持 ..................................................... 44  
12.1 文档支持................................................................ 44  
12.2 相关链接................................................................ 44  
12.3 ....................................................................... 44  
12.4 静电放电警告......................................................... 44  
12.5 术语表 ................................................................... 44  
13 机械封装和可订购信息 .......................................... 44  
7.5 Electrical Characteristics: ADS7950-Q1, ADS7951-  
Q1, ADS7952-Q1, ADS7953-Q1 ............................... 6  
7.6 Electrical Characteristics: ADS7954-Q1, ADS7956-  
Q1, ADS7957-Q1....................................................... 8  
7.7 Electrical Characteristics: ADS7958-Q1, ADS7959-  
Q1, ADS7960-Q1, ADS7961-Q1 ............................... 9  
7.8 Timing Requirements.............................................. 11  
7.9 Typical Characteristics (All ADS79xx-Q1 Family  
Devices) ................................................................... 12  
7.10 Typical Characteristics (12-Bit Devices Only)....... 13  
8
Detailed Description ............................................ 20  
4 修订历史记录  
Changes from Original (May 2014) to Revision A  
Page  
在器件信息表中添加了所有器件 ............................................................................................................................................. 1  
Deleted Device Comparison Table footnote........................................................................................................................... 3  
Changed entire Application and Implementation section .................................................................................................... 40  
2
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
5 Device Comparison Table  
RESOLUTION  
10 BIT  
NUMBER OF CHANNELS  
12 BIT  
8 BIT  
4
8
ADS7950-Q1  
ADS7951-Q1  
ADS7952-Q1  
ADS7953-Q1  
ADS7954-Q1  
ADS7958-Q1  
ADS7959-Q1  
ADS7960-Q1  
ADS7961-Q1  
12  
16  
ADS7956-Q1  
ADS7957-Q1  
6 Pin Configurations and Functions  
DBT Package  
TSSOP-30  
(Top View)  
1
30  
29  
28  
27  
26  
25  
GPIO2  
GPIO3  
REFM  
REFP  
GPIO1  
1
30  
29  
28  
27  
26  
25  
GPIO2  
GPIO3  
GPIO1  
GPIO0  
2
GPIO0  
+VBD  
BDGND  
SDO  
2
3
3
REFM  
REFP  
+VBD  
BDGND  
SDO  
4
4
5
+VA  
AGND  
MXO  
5
+VA  
AGND  
MXO  
6
SDI  
6
SDI  
7
24 SCLK  
23 CS  
7
24 SCLK  
23 CS  
ADS7950-Q1  
ADS7954-Q1  
ADS7958-Q1  
AINP  
AINM  
8
AINP  
AINM  
8
ADS7951-Q1  
ADS7959-Q1  
9
22  
AGND  
9
22  
AGND  
10  
21  
AGND  
+VA  
10  
21  
AGND  
+VA  
NC 11  
CH3 12  
NC 13  
20  
19  
CH0  
NC  
CH7 11  
CH6 12  
CH5 13  
CH4 14  
NC 15  
20  
19  
CH0  
CH1  
18 CH1  
17 NC  
16 NC  
18 CH2  
17 CH3  
16 NC  
CH2 14  
NC 15  
NC = No internal connection  
DBT Package  
TSSOP-38  
(Top View)  
1
2
3
4
5
6
7
8
9
10  
38  
1
38  
GPIO2  
GPIO3  
REFM  
REFP  
GPIO1  
GPIO2  
GPIO3  
REFM  
REFP  
+VA  
GPIO1  
2
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GPIO0  
+VBD  
BDGND  
SDO  
GPIO0  
+VBD  
3
4
BDGND  
SDO  
SDI  
5
+VA  
6
AGND  
AGND  
MXO  
SDI  
7
MXO  
AINP  
AINM  
SCLK  
CS  
SCLK  
CS  
8
AINP  
9
AINM  
AGND  
NC  
AGND  
+VA  
AGND  
ADS7952-Q1  
ADS7956-Q1  
ADS7953-Q1  
ADS7957-Q1  
ADS7961-Q1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
AGND  
CH15  
CH14  
+VA  
11 ADS7960-Q1 28  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND  
12  
13  
14  
15  
16  
17  
18  
19  
27  
26  
25  
24  
23  
22  
21  
20  
NC  
NC  
CH13  
CH12  
CH11  
CH10  
CH9  
NC  
CH11  
CH10  
CH9  
CH8  
CH8  
AGND  
AGND  
Copyright © 2014, Texas Instruments Incorporated  
3
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Pin Functions  
PIN  
NUMBER  
I/O  
DESCRIPTION  
ADS7953-Q1, ADS7952-Q1,  
ADS7957-Q1, ADS7956-Q1,  
ADS7961-Q1 ADS7960-Q1  
ADS7950-Q1,  
ADS7954-Q1,  
ADS7958-Q1  
NAME  
ADS7951-Q1,  
ADS7959-Q1  
ADC ANALOG INPUT  
AINM  
AINP  
9
8
9
8
9
8
9
8
I
I
ADC input ground  
Signal input to ADC  
DIGITAL CONTROL SIGNALS  
CS  
31  
32  
33  
34  
31  
32  
33  
34  
23  
24  
25  
26  
23  
24  
25  
26  
I
I
Chip-select input  
Serial clock input  
Serial data input  
Serial data output  
SCLK  
SDI  
I
SDO  
O
GENERAL PURPOSE INPUTS AND OUTPUTS(1)  
GPIO0  
I/O General-purpose input or output  
37  
37  
29  
29  
High or low  
alarm  
Active high output indicating high alarm or low alarm, depending on  
programming  
O
GPIO1  
Low alarm  
GPIO2  
Range  
GPIO3  
PD  
I/O General-purpose input or output  
Active high output indicating low alarm  
I/O General-purpose input or output  
Selects range: High Range 2; Low Range 1  
I/O Genera-purpose input or output  
38  
1
38  
1
30  
1
30  
1
O
I
2
2
2
2
I
Active low power-down input  
MULTIPLEXER  
Ch0  
28  
27  
26  
25  
24  
23  
22  
21  
18  
17  
16  
15  
14  
13  
12  
11  
7
28  
27  
26  
25  
24  
23  
22  
21  
18  
17  
16  
15  
7
20  
19  
18  
17  
14  
13  
12  
11  
7
20  
18  
14  
12  
7
I
I
Ch1  
Ch2  
I
Ch3  
I
Ch4  
I
Ch5  
I
Ch6  
I
Ch7  
I
Analog channels for multiplexer  
Ch8  
I
Ch9  
I
Ch10  
Ch11  
Ch12  
Ch13  
Ch14  
Ch15  
MXO  
I
I
I
I
I
I
O
Multiplexer output  
NC PINS  
11  
12  
13  
14  
15  
16  
11  
13  
15  
16  
17  
19  
NC  
Pins internally not connected, do not float these pins  
(1) These pins have programmable dual functionality. See Table 12 for functionality programming.  
4
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Pin Functions (continued)  
PIN  
NUMBER  
ADS7953-Q1, ADS7952-Q1,  
I/O  
DESCRIPTION  
ADS7950-Q1,  
ADS7954-Q1,  
ADS7958-Q1  
NAME  
ADS7951-Q1,  
ADS7957-Q1, ADS7956-Q1,  
ADS7961-Q1 ADS7960-Q1  
ADS7959-Q1  
POWER SUPPLY AND GROUND  
6
6
6
6
10  
10  
19  
20  
30  
35  
5
10  
22  
27  
5
10  
22  
27  
5
AGND  
19  
20  
30  
35  
5
Analog ground  
BDGND  
+VA  
Digital ground  
Analog power supply  
Digital I/O supply  
29  
36  
29  
36  
21  
28  
21  
28  
+VBD  
REFERENCE  
REFM  
3
4
3
4
3
4
3
4
I
I
Reference ground  
Reference input  
REFP  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted).  
MIN  
MAX  
UNIT  
V
Supply voltage to ground  
Signal input  
+VA to AGND, +VBD to BDGND  
AINP or CHn to AGND  
To BDGND  
–0.3  
–0.3  
–0.3  
–0.3  
7
V(+VA) + 0.3  
7
V
Digital input  
V
Digital output  
To BDGND  
V(+VA) + 0.3  
150  
V
Junction temperature, TJ  
°C  
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is  
not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
–65  
–2  
MAX  
150  
2
UNIT  
°C  
Tstg  
Storage temperature range  
Human-body model (HBM), per AEC Q100-002(1), level H2  
kV  
Corner pins  
(1, 15, 16, and 30 for 30-pin packages  
1, 19, 20, and 38 for 38-pin packages)  
Electrostatic  
discharge  
V(ESD)  
–750  
–500  
750  
500  
Charged-device model (CDM),  
per AEC Q100-001, level C4B  
V
All pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2014, Texas Instruments Incorporated  
5
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
MAX UNIT  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
1.7  
2
NOM  
3.3  
V(+VA)  
V(+VBD)  
V(REF)  
ƒ(SCLK)  
TA  
Analog power-supply voltage  
Digital I/O-supply voltage  
Reference voltage  
5.25  
V(+VA)  
3
V
V
3.3  
2.5  
V
SCLK frequency  
20  
MHz  
°C  
Operating temperature range  
–40  
125  
7.4 Thermal Information  
ADS79xx-Q1  
THERMAL METRIC(1)  
DBT (TSSOP)  
38 PINS  
83.6  
DBT (TSSOP)  
30 PINS  
89.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
29.8  
22.9  
44.7  
43.1  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.9  
0.8  
ψJB  
44.1  
42.5  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics: ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Range 1  
0
0
Vref  
2 × Vref  
V
V
V
Full-scale input span(1)  
Absolute input range  
Range 2 while 2 × Vref +VA  
Range 1  
–0.2  
Vref + 0.2  
2 × Vref  
+
Range 2 while 2 × Vref +VA  
–0.2  
V
0.2  
Input capacitance  
15  
61  
ρF  
Input leakage current  
TA = 125°C  
nA  
SYSTEM PERFORMANCE  
Resolution  
12  
Bits  
Bits  
1.5 LSB(2)  
No missing codes  
Integral linearity  
Differential linearity  
Offset error(3)  
11  
–1.5  
–2  
±0.75  
±0.75  
±1.1  
±0.2  
±0.2  
±2  
1.5  
3.5  
2
LSB  
LSB  
LSB  
LSB  
LSB  
–3.5  
–2  
Range 1  
Range 2  
Gain error  
TUE  
Total unadjusted error  
SAMPLING DYNAMICS  
Conversion time  
20-MHz SCLK  
20-MHz SCLK  
800  
1
ns  
ns  
Acquisition time  
325  
Maximum throughput rate  
Aperture delay  
MHz  
ns  
5
150  
150  
Step response  
ns  
Over voltage recovery  
ns  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least-significant bit.  
(3) Measured relative to an ideal full-scale input  
6
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Electrical Characteristics: ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1 (continued)  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC CHARACTERISTICS  
THD  
Total harmonic distortion(4)  
100 kHz  
100 kHz  
100 kHz  
100 kHz  
At –3 dB  
–82  
71.7  
71.3  
84  
dB  
dB  
SNR  
Signal-to-noise ratio  
70  
68  
SINAD  
SFDR  
Signal-to-noise + distortion  
Spurious-free dynamic range  
Small signal bandwidth  
dB  
dB  
47  
MHz  
Any off-channel with 100 kHz. Full-scale input to channel  
being sampled with DC input (isolation crosstalk).  
–95  
–85  
dB  
dB  
Channel-to-channel crosstalk  
From previously sampled to channel with 100 kHz. Full-  
scale input to channel being sampled with DC input  
(memory crosstalk).  
EXTERNAL REFERENCE INPUT  
Vref  
Rref  
Reference voltage at REFP(5)  
2
2.5  
3
V
Reference resistance  
100  
kΩ  
ALARM SETTING  
Higher threshold range  
0
0
FFC  
FFC  
Hex  
Hex  
Lower threshold range  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
0.7 ×  
V(+VBD)  
High logic-level input voltage  
V
V(+VA) = 5 V  
0.8  
0.4  
V
V
VIL  
Low logic-level input voltage  
High logic-level output voltage  
V(+VA) = 3 V  
VOH  
At source current (IS) = 200 μA  
V(+VBD)  
V
V
0.2  
VOL  
Low logic-level output voltage  
Data format MSB first  
At Isink = 200 μA  
0.4  
MSB first  
POWER SUPPLY REQUIREMENTS  
V(+VA)  
Analog power-supply voltage  
Digital I/O-supply voltage  
2.7  
1.7  
3.3  
3.3  
1.8  
1.05  
2.3  
1.1  
1
5.25  
V
V(+VBD)  
V(+VA)  
V
At V(+VA) = 2.7 V to 3.6 V and 1-MHz throughput  
At V(+VA) = 2.7 V to 3.6 V static state  
mA  
mA  
mA  
mA  
μA  
mA  
µs  
I(+VA)  
Supply current (normal mode)  
At V(+VA) = 4.7 V to 5.25 V and 1-MHz throughput  
At V(+VA) = 4.7 V to 5.25 V static state  
3
1.5  
Power-down state supply current  
Digital I/O-supply current  
Power-up time  
I(+VBD)  
V(+VA) = 5.25 V, ƒsample = 1 MHz  
1
1
1
Invalid conversions after power up or  
reset  
cycle  
Latch-up  
JESD78 class I  
TEMPERATURE RANGE  
Specified performance  
–40  
125  
°C  
(4) Calculated on the first nine harmonics of the input frequency.  
(5) The device is designed to operate over Vref = 2 V to 3 V. However, lower noise performance can be expected at Vref < 2.4 V, because of  
SNR degradation resulting from lowered signal range.  
Copyright © 2014, Texas Instruments Incorporated  
7
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.6 Electrical Characteristics: ADS7954-Q1, ADS7956-Q1, ADS7957-Q1  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Range 1  
0
0
Vref  
2 × Vref  
V
V
Full-scale input span(1)  
Range 2 while 2 × Vref +VA  
Range 1  
–0.2  
–0.2  
Vref + 0.2  
V
Absolute input range  
Range 2 while 2 × Vref +VA  
2 × Vref +0.2  
V
Input capacitance  
15  
61  
ρF  
nA  
Input leakage current  
TA = 125°C  
SYSTEM PERFORMANCE  
Resolution  
10  
Bits  
Bits  
No missing codes  
Integral linearity  
Differential linearity  
Offset error(3)  
10  
–0.5  
–0.5  
–1.5  
–1  
±0.2  
±0.2  
±0.5  
±0.1  
±0.1  
0.5  
0.5  
1.5  
1
LSB(2)  
LSB  
LSB  
LSB  
LSB  
Range 1  
Range 2  
Gain error  
SAMPLING DYNAMICS  
Conversion time  
Acquisition time  
20-MHz SCLK  
20-MHz SCLK  
800  
1
ns  
ns  
325  
Maximum throughput rate  
Aperture delay  
MHz  
ns  
5
150  
150  
Step response  
ns  
Over voltage recovery  
DYNAMIC CHARACTERISTICS  
ns  
THD  
Total harmonic distortion(4)  
100 kHz  
100 kHz  
100 kHz  
100 kHz  
At –3 dB  
–80  
dB  
dB  
SNR  
Signal-to-noise ratio  
60  
60  
SINAD  
SFDR  
Signal-to-noise + distortion  
Spurious-free dynamic range  
Full-power bandwidth  
dB  
82  
47  
dB  
MHz  
Any off-channel with 100 kHz. Full-scale input to channel  
being sampled with dc input.  
–95  
–85  
dB  
dB  
Channel-to-channel crosstalk  
From previously sampled to channel with 100 kHz. Full-  
scale input to channel being sampled with dc input.  
EXTERNAL REFERENCE INPUT  
Vref  
Rref  
Reference voltage at REFP  
Reference resistance  
2
2.5  
3
V
100  
kΩ  
ALARM SETTING  
Higher threshold range  
000  
000  
FFC  
FFC  
Hex  
Hex  
Lower threshold range  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
High logic-level input voltage  
VIH  
0.7 ×  
V(+VBD)  
V
V(+VBD) = 5 V  
0.8  
0.4  
V
V
VIL  
Low logic-level input voltage  
High logic-level output voltage  
V(+VBD) = 3 V  
VOH  
At source current (IS) = 200 μA  
V(+VBD)  
V
V
0.2  
VOL  
Low logic-level output voltage  
Data format MSB first  
At Isink = 200 μA  
0.4  
MSB first  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input  
(4) Calculated on the first nine harmonics of the input frequency.  
8
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Electrical Characteristics: ADS7954-Q1, ADS7956-Q1, ADS7957-Q1 (continued)  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY REQUIREMENTS  
V(+VA)  
Analog power-supply voltage  
Digital I/O-supply voltage  
2.7  
1.7  
3.3  
3.3  
1.8  
1.05  
2.3  
1.1  
1
5.25  
V
V(+VBD)  
V(+VA)  
V
At V(+VA) = 2.7 V to 3.6 V and 1-MHz throughput  
At V(+VA) = 2.7 V to 3.6 V static state  
mA  
mA  
mA  
mA  
μA  
mA  
μs  
1
3
I(+VA)  
Supply current (normal mode)  
At V(+VA) = 4.7 V to 5.25 V and 1-MHz throughput  
At V(+VA) = 4.7 V to 5.25 V static state  
1.5  
Power-down state supply current  
Digital I/O-supply current  
Power-up time  
I(+VBD)  
V(+VA) = 5.25 V, ƒsample = 1 MHz  
1
1
1
Invalid conversions after power up or  
reset  
cycle  
Latch-up  
JESD78 class I  
TEMPERATURE RANGE  
Specified performance  
–40  
125  
°C  
7.7 Electrical Characteristics: ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Range 1  
0
0
Vref  
V
V
Full-scale input span(1)  
Absolute input range  
Range 2 while 2 × Vref +VA  
2 × Vref  
Vref  
+
Range 1  
–0.20  
–0.20  
V
V
0.2  
2 × Vref  
+ 0.2  
Range 2 while 2 × Vref +VA  
Input capacitance  
15  
61  
ρF  
Input leakage current  
TA = 125°C  
nA  
SYSTEM PERFORMANCE  
Resolution  
8
Bits  
Bits  
No missing codes  
Integral linearity  
Differential linearity  
Offset error(3)  
8
–0.3  
–0.3  
–0.5  
–0.6  
±0.1  
±0.1  
±0.2  
±0.1  
±0.1  
0.3  
0.3  
0.5  
0.6  
LSB(2)  
LSB  
LSB  
LSB  
LSB  
Range 1  
Range 2  
Gain error  
SAMPLING DYNAMICS  
Conversion time  
20-MHz SCLK  
20-MHz SCLK  
800  
1
ns  
ns  
Acquisition time  
325  
Maximum throughput rate  
Aperture delay  
MHz  
ns  
5
150  
150  
Step response  
ns  
Over voltage recovery  
ns  
(1) Ideal input span; does not include gain or offset error.  
(2) LSB means least significant bit.  
(3) Measured relative to an ideal full-scale input  
Copyright © 2014, Texas Instruments Incorporated  
9
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Electrical Characteristics: ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1 (continued)  
V(+VA) = 2.7 V to 5.25 V, V(+VBD) = 1.7 V to V(+VA), Vref = 2.5 V ± 0.1 V, TA = –40°C to 125°C, ƒsample = 1 MHz (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC CHARACTERISTICS  
THD  
Total harmonic distortion(4)  
100 kHz  
100 kHz  
100 kHz  
100 kHz  
At –3 dB  
–75  
dB  
dB  
SNR  
Signal-to-noise ratio  
49  
49  
SINAD  
SFDR  
Signal-to-noise + distortion  
Spurious-free dynamic range  
Full-power bandwidth  
dB  
–78  
47  
dB  
MHz  
Any off-channel with 100 kHz. Full-scale input to channel being  
sampled with dc input.  
–95  
–85  
dB  
dB  
Channel-to-channel crosstalk  
From previously sampled to channel with 100 kHz. Full-scale input  
to channel being sampled with dc input.  
EXTERNAL REFERENCE INPUT  
Vref  
reference voltage at REFP  
Reference resistance  
2
2.5  
3
V
100  
kΩ  
ALARM SETTING  
Higher threshold range  
000  
000  
FF  
FF  
Hex  
Hex  
Lower threshold range  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
High logic-level input voltage  
0.7 ×  
V(+VBD)  
V
V(+VBD) = 5 V  
0.8  
0.4  
V
V
VIL  
Low logic-level input voltage  
High logic-level output voltage  
V(+VBD) = 3 V  
VOH  
At source current (IS) = 200 μA  
V(+VBD)  
V
V
0.2  
VOL  
Low logic-level output voltage  
Data format  
At Isink = 200 μA  
0.4  
MSB first  
POWER SUPPLY REQUIREMENTS  
V(+VA)  
Analog power-supply voltage  
Digital I/O-supply voltage  
2.7  
1.7  
3.3  
3.3  
1.8  
1.05  
2.3  
1.1  
1
5.25  
V
V(+VBD)  
V(+VA)  
V
At V(+VA) = 2.7 V to 3.6 V and 1-MHz throughput  
At V(+VA) = 2.7 V to 3.6 V static state  
mA  
mA  
mA  
mA  
μA  
mA  
μs  
I(+VA)  
Supply current (normal mode)  
At V(+VA) = 4.7 V to 5.25 V and 1-MHz throughput  
At V(+VA) = 4.7 V to 5.25 V static state  
3
1.5  
Power-down state supply current  
Digital I/O-supply current  
Power-up time  
I(+VBD)  
V(+VA) = 5.25 V, ƒsample = 1 MHz  
1
1
1
Invalid conversions after power up or  
reset  
cycle  
Latch-up  
JESD78 class I  
–40  
TEMPERATURE RANGE  
Specified performance  
125  
°C  
(4) Calculated on the first nine harmonics of the input frequency.  
10  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
7.8 Timing Requirements  
All specifications typical at –40°C to 125°C, V(+VA) = 2.7 V to 5.25 V (unless otherwise specified). See Figure 45, Figure 46,  
Figure 47, and Figure 48.  
PARAMETER(1)(2)  
MIN  
TYP  
MAX  
UNIT  
SCLK  
SCLK  
SCLK  
ns  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
V(+VBD) = 1.8 V  
V(+VBD) = 3 V  
V(+VBD) = 5 V  
16  
tc  
Conversion time  
16  
16  
40  
40  
40  
Minimum quiet sampling time needed from bus Tri-state to  
start of next conversion  
tq  
ns  
ns  
38  
27  
17  
ns  
td1  
Delay time, CS low to first data (DO–15) out  
Setup time, CS low to first rising edge of SCLK  
Delay time, SCLK falling to SDO next data bit valid  
Hold time, SCLK falling to SDO data bit valid  
Delay time, 16th SCLK falling edge to SDO 3-state  
Setup time, SDI valid to rising edge of SCLK  
Hold time, rising edge of SCLK to SDI valid  
Pulse duration CS high  
ns  
ns  
8
6
4
ns  
tsu1  
ns  
ns  
35  
27  
17  
ns  
td2  
ns  
ns  
7
5
3
ns  
th1  
ns  
ns  
26  
22  
13  
ns  
td3  
ns  
ns  
2
3
ns  
tsu2  
ns  
4
ns  
12  
10  
6
ns  
th2  
ns  
ns  
20  
20  
20  
ns  
tw1  
ns  
ns  
24  
21  
12  
ns  
td4  
Delay time CS high to SDO 3-state  
Pulse duration SCLK high  
ns  
ns  
20  
20  
20  
20  
20  
20  
ns  
twH  
twL  
ƒ(SCLK)  
ns  
ns  
ns  
Pulse duration SCLK low  
ns  
ns  
20  
20  
20  
MHz  
MHz  
MHz  
Frequency SCLK  
(1) 1.8-V specifications apply from 1.7 V to 1.9 V, 3-V specifications apply from 2.7 V to 3.6 V, 5-V specifications apply from 4.75 V to 5.25  
V.  
(2) With 50-pF load  
Copyright © 2014, Texas Instruments Incorporated  
11  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.9 Typical Characteristics (All ADS79xx-Q1 Family Devices)  
1.5  
1.4  
3.5  
3
1.3  
1.2  
1.1  
1
2.5  
2
1.5  
1
0.9  
2.7  
3.4  
4.1  
Supply Voltage (V)  
4.8  
5.5  
2.7  
3.4  
4.1  
Supply Voltage (V)  
4.8  
5.5  
ƒsample = 1 MSPS  
TA = 25°C  
ƒsample = 0 MSPS  
TA = 25°C  
Figure 1. Supply Current (I(+VA)) vs Supply Voltage (V(+VA)  
)
Figure 2. Idle Supply Current (I(+VA)) vs Supply Voltage  
(V(+VA)  
)
1.115  
3.4  
3.2  
1.11  
1.105  
1.1  
3
1.095  
1.09  
1.085  
1.08  
2.8  
2.6  
2.4  
2.2  
2
1.075  
1.07  
-40  
15  
70  
125  
-40  
15  
70  
125  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
ƒsample = 0 MSPS  
V(+VBD) = 5.5 V  
ƒsample = 1 MSPS  
V(+VBD) = 5.5 V  
Figure 4. Idle Supply Current (I(+VA)) vs  
Free-Air Temperature  
Figure 3. Supply Current (I(+VA)) vs Free-Air Temperature  
2.5  
2.5  
5 V  
5 V  
2.7 V  
2.7 V  
2
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
100  
200  
300  
Sample Rate (KSPS)  
400  
500  
0
200  
400  
600  
800  
1000  
Sample Rate (KSPS)  
No power-down  
With power-down mode enabled  
TA = 25°C  
TA = 25°C  
Figure 6. Supply Current (I(+VA)) vs Sample Rate with  
Power-Down Mode Enabled  
Figure 5. Supply Current (I(+VA)) vs Sample Rate  
12  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
7.10 Typical Characteristics (12-Bit Devices Only)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
1
0.8  
0.6  
0.4  
0.2  
1
DNL max  
DNL min  
INL max  
INL min  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
0
-0.2  
-0.4  
-0.6  
-0.6  
-0.8  
-1  
-0.8  
-1  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.5  
2.7  
3.2  
4.2  
Supply Voltage (V)  
4.7  
5.2  
3.7  
Supply Voltage (V)  
ƒsample = 1 MSPS  
TA = 25°C  
ƒsample = 1 MSPS  
TA = 25°C  
Figure 8. Integral Nonlinearity vs Supply Voltage (V(+VA)  
)
Figure 7. Differential Nonlinearity vs Supply Voltage (V(+VA)  
)
1
1
DNL max  
INL max  
0.8  
0.8  
0.6  
DNL min  
INL min  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
-0.2  
-0.2  
-0.4  
-0.6  
-0.4  
-0.6  
-0.8  
-1  
-0.8  
-1  
-40  
15  
70  
125  
-40  
15 70  
Free-Air Temperature (°C)  
125  
Free-Air Temperature (°C)  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Figure 10. Integral Nonlinearity vs Free-Air Temperature  
Figure 9. Differential Nonlinearity vs Free-Air Temperature  
2
2
1.8  
1.6  
1.8  
1.6  
1.4  
1.4  
1.2  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
0
0
1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.5  
Interace Supply (V)  
2.7  
3.4  
4.1  
Supply Voltage (V)  
4.8  
5.5  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VBD) = 1.8 V  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5.5 V  
Figure 11. Offset Error vs Supply Voltage (V(+VA)  
)
Figure 12. Offset Error vs Interface Supply Voltage (V(+VBD)  
)
Copyright © 2014, Texas Instruments Incorporated  
13  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (12-Bit Devices Only) (continued)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
1
0.8  
0.6  
0.4  
0.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.8  
-1  
2.7  
3.4  
4.1  
Supply Voltage (V)  
4.8  
5.5  
1.8 2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.5  
Interface Supply (V)  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VBD) = 1.8 V  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5.5 V  
Figure 13. Gain Error vs Supply Voltage (V(+VA)  
)
Figure 14. Gain Error vs Interface Supply Voltage (V(+VBD))  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.3  
0.2  
0.4  
0.2  
0
0.1  
0
-40  
15  
70  
125  
-40  
15 70  
Free-Air Temperature (°C)  
125  
Free-Air Temperature (°C)  
ƒsample = 1 MSPS  
V(+VA) = 5.5 V  
V(+VBD) = 1.8 V  
ƒsample = 1 MSPS  
V(+VA) = 5.5 V  
V(+VBD) = 1.8 V  
Figure 16. Gain Error vs Free-Air Temperature  
Figure 15. Offset Error vs Free-Air Temperature  
72  
72  
71.5  
71  
71.5  
71  
70.5  
70.5  
70  
70  
69.5  
69  
69.5  
69  
2.7  
3.4  
4.1  
4.8  
5.5  
2.7  
3.4  
4.1  
4.8  
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
TA = 25°C  
V(+VBD) = 3 V  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
TA = 25°C  
V(+VBD) = 3 V  
Figure 18. Signal-to-Noise With Distortion vs Supply Voltage  
(V(+VA)  
Figure 17. Signal-to-Noise Ratio vs Supply Voltage (+VA)  
)
14  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Typical Characteristics (12-Bit Devices Only) (continued)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
-80  
-81  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
-89  
-90  
2.7  
3.4  
4.1  
Supply Voltage (V)  
4.8  
5.5  
2.7  
3.4  
4.1  
4.8  
5.5  
Supply Voltage (V)  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
TA = 25°C  
V(+VBD) = 3 V  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
TA = 25°C  
V(+VBD) = 3 V  
Figure 20. Spurious-Free Dynamic Range (SFDR) vs Supply  
Voltage (V(+VA)  
Figure 19. Total Harmonic Distortion (THD) vs Supply  
Voltage (V(+VA)  
)
)
72  
72  
71.5  
71.5  
71  
70.5  
70  
71  
70.5  
70  
69.5  
69  
69.5  
69  
-40  
15  
70  
125  
-40  
15  
70  
125  
Free-Air Temperature (°C)  
Free-Air Temperature (°C)  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
V(+VA) = 5 V  
V(+VBD) = 3 V  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
V(+VA) = 5 V  
V(+VBD) = 3 V  
Figure 21. Signal-to-Noise Ratio vs Free-Air Temperature  
Figure 22. Signal-to-Noise With Distortion vs Free-Air  
Temperature  
90  
-80  
-81  
89  
88  
87  
86  
85  
84  
83  
82  
-82  
-83  
-84  
-85  
-86  
-87  
-88  
-89  
-90  
81  
80  
-40  
15  
70  
Free-Air Temperature (°C)  
-40  
15  
70  
125  
125  
Free-Air Temperature (°C)  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
V(+VA) = 5 V  
V(+VBD) = 3 V  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
V(+VA) = 5 V  
V(+VBD) = 3 V  
Figure 23. Total Harmonic Distortion vs Free-Air  
Temperature  
Figure 24. Spurious-Free Dynamic Range vs Free-air  
Temperature  
Copyright © 2014, Texas Instruments Incorporated  
15  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (12-Bit Devices Only) (continued)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
73  
72.5  
72  
73  
72.5  
72  
71.5  
71.5  
71  
70.5  
70  
71  
70.5  
70  
69.5  
69  
69.5  
69  
10  
30  
50  
70  
90  
110 130 150  
10  
30  
50  
70  
90  
110 130 150  
Input Frequency (KHz)  
Input Frequency (KHz)  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 3 V  
MXO shorted to AINP  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 3 V  
MXO shorted to AINP  
Figure 25. Signal-to-Noise Ratio vs Input Frequency  
Figure 26. Signal-to-Noise With Distortion vs Input  
Frequency  
-70  
-72  
-74  
100  
95  
90  
85  
80  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
75  
70  
10  
30  
50  
70  
90  
110 130 150  
10  
30  
50  
70  
Input Frequency (KHz)  
90  
110 130 150  
Input Frequency (KHz)  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 3 V  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 3 V  
MXO shorted to AINP  
MXO shorted to AINP  
Figure 27. Total Harmonic Distortion vs Input Frequency  
Figure 28. Spurious-Free Dynamic Range vs Input  
Frequency  
72  
71.5  
71  
-70  
10 Ω  
-72  
100 Ω  
500 Ω  
-74  
1000 Ω  
-76  
-78  
70.5  
-80  
-82  
70  
-84  
-86  
10 Ω  
69.5  
69  
100 Ω  
500 Ω  
1000 Ω  
-88  
-90  
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
Input Frequency (KHz)  
Input Frequency (KHz)  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample= 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Buffer between MXO and AINP  
Buffer between MXO and AINP  
Figure 29. Signal-to-Noise With Distortion vs Input  
Frequency (Across Different Source Resistance Values)  
Figure 30. Total Harmonic Distortion vs Input Frequency  
(Across Different Source Resistance Values)  
16  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Typical Characteristics (12-Bit Devices Only) (continued)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
90  
1
0.8  
0.6  
0.4  
0.2  
0
DNL max  
DNL min  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
10 Ω  
100 Ω  
500 Ω  
1000 Ω  
0
5
10  
Channel Number  
15  
20  
40  
60  
80  
Input Frequency (KHz)  
100  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Buffer between MXO and AINP  
Figure 32. Differential Nonlinearity Variation Across  
Channels  
Figure 31. Spurious-Free Dynamic Range vs Input  
Frequency (Across Different Source Resistance Values)  
1
1.6  
INL max  
0.8  
0.6  
0.4  
0.2  
INL min  
1.4  
1.2  
1
0.8  
0
-0.2  
-0.4  
-0.6  
0.6  
0.4  
0.2  
0
-0.8  
-1  
0
5
10  
15  
20  
0
5
10  
Channel Number  
15  
Channel Number  
V(+VA) = 5 V  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample = 1 MSPS  
V(+VBD) = 5 V  
Figure 33. Integral Nonlinearity Variation Across Channels  
Figure 34. Offset-Error Variation Across Channels  
0.25  
73  
72.5  
72  
0.2  
0.15  
0.1  
71.5  
71  
0.05  
0
70.5  
70  
0
5
10  
15  
20  
1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16  
Channel Number  
Channel Number  
V(+VA) = 5 V  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample = 1 MSPS  
V(+VBD) = 5 V  
Figure 36. Signal-to-Noise Ratio Variation Across Channels  
Figure 35. Gain-Error Variation Across Channels  
Copyright © 2014, Texas Instruments Incorporated  
17  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Typical Characteristics (12-Bit Devices Only) (continued)  
Variations for 10-bit and 8-bit devices are too small to be illustrated through the characteristic curves.  
120  
73  
100  
72.5  
80  
60  
40  
72  
71.5  
71  
20  
0
Isolation  
Memory  
70.5  
70  
0
50  
100  
150  
200  
250  
1
2 3 4 5 6 7 8 9 10 11 12 1314 15 16  
Channel Number  
Input Frequency (KHz)  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
ƒsample = 1 MSPS  
CH0, CH1  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Figure 37. Signal-to-Noise With Distortion Variation Across  
Channels  
Figure 38. Crosstalk vs Input Frequency  
25  
100  
VI = 2.5 V  
90  
VI = 1.25 V  
VI = 0 V  
80  
20  
70  
60  
15  
10  
50  
40  
30  
20  
10  
0
5
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
TUE Max (LSB)  
Free-Air Temperature (°C)  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Figure 40. Total Unadjusted Error (TUE) Maximum  
Figure 39. Input Leakage Current vs Free-Air Temperature  
25  
20  
15  
10  
5
0
TUE Min (LSB)  
Figure 41. Total Unadjusted Error (TUE) Minimum  
18  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
1024  
2048  
3072  
4096  
Code  
ƒsample = 1 MSPS  
TA = 25°C  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Figure 42. Differential Linearity (DNL) Error  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
4096  
1024  
2048  
3072  
0
Code  
ƒsample = 1 MSPS  
V(+VA) = 5 V  
V(+VBD) = 5 V  
Figure 43. Integral Linearity (INL) Error  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
500000  
0
200000  
300000  
400000  
100000  
Frequency (Hz)  
ƒsample = 1 MSPS  
ƒinput = 100 kHz  
V(+VA) = 5 V  
Npoints = 16,384  
V(+VBD) = 5 V  
Figure 44. Power Spectrum  
Copyright © 2014, Texas Instruments Incorporated  
19  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ADS79xx-Q1 device is a high-speed, low-power analog-to-digital converter (ADC) with an 8-bit, 10-bit, and  
12-bit multichannel successive-approximation register (SAR). The architecture of the device is based on charge  
redistribution, which includes a sample and hold function. The ADS79xx-Q1 device uses an external reference  
and an external serial clock (SCLK) to run the conversion.  
The analog input is provided to the CHn input channel. The output of the multiplexer can be shorted directly or  
can be connected thorough a buffer to the AINP pin. Because the AINM pin is shorted to AGND, when a  
conversion is initiated, the differential input between the AINP and AGND pins is sampled on the internal  
capacitor array. Two input ranges are supported. Users can program the input range to either 0 V to Vref or 0 V to  
2 × Vref using the mode-control register. The same register can program the input channel sequencing.  
The ADS79xx-Q1 device also has four general-purpose input and output (GPIO) pins that can be programmed  
independently as either general-purpose output (GPO) or general-purpose Input (GPI) pins. GPIOs also support  
alarm function for which high and low thresholds are programmable per channel.  
8.2 Functional Block Diagram  
+VA  
MXO  
AINP  
REFP  
+VBD  
CH0  
CH2  
CH3  
ADC  
SDO  
Compare  
Alarm  
threshold  
SDI  
CHn(1)  
Control logic  
and  
sequencing  
SCLK  
CS  
AGND  
AINM  
REFM  
GPIO  
BDGND  
(1) n is number of channels (4, 8, 12, or 16) depending on the device from the ADS79xx-Q1 device family.  
20  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
8.3 Feature Description  
8.3.1 Device Operation  
Figure 45, Figure 46, Figure 47, and Figure 48 illustrate device operation timing. Device operation is controlled  
with the CS, SCLK, and SDI pins. The device outputs data on the SDO pin.  
Frame n  
Frame n + 1  
CS  
SCLK  
SDO  
1
3
5
7
9
11  
13  
15 16  
1
3
5
7
9
11  
13  
15 16  
Top 4 Bit  
Top 4 Bit  
12-Bit Conversion Result  
12-Bit Conversion Result  
SDI  
16-Bit I/P Word  
16-Bit I/P Word  
Mux Chan Change  
Analog I/P Settling After Chan Change  
Mux Chan Change  
MUX  
Sampling  
Instance  
Acquisition  
Acquisition Phase tacq  
Conversion  
GPO  
Conversion Phase tcnv  
Data Written (through SDI) in Frame n  
Conversion Phase  
Data Written (through SDI) in Frame n – 1  
GPI  
GPI status is latched in on CS falling  
edge and transferred to SDO frame n  
Figure 45. Device Operation Timing Diagram  
Each frame begins with the falling edge of the CS pin. With the falling edge of the CS pin, the input signal from  
the selected channel is sampled, and the conversion process is initiated. The device outputs data while the  
conversion is in progress. The 16-bit data word contains a 4-bit channel address, followed by a 12-bit conversion  
result in most-significant-bit (MSB) first format. The GPIO status can be read instead of the channel address (see  
Table 1, Table 2, and Table 5).  
The device selects a new multiplexer channel on the second SCLK falling edge. The acquisition phase begins on  
the 14th SCLK rising edge. On the next CS falling edge the acquisition phase ends, and the device starts a new  
frame.  
There are four general-purpose IO (GPIO) pins. These pins can be individually programmed as GPO or GPI.  
Using these pins for preassigned functions is also possible (see Table 11). GPO data can be written into the  
device through the SDI line. The device refreshes the GPO data on the CS falling edge according to the SDI  
data written in previous frame.  
Similarly the device latches the GPI status on the CS falling edge and outputs the GPI data on the SDO line (if  
GPI read is enabled by writing DI04 = 1 in the previous frame) in the same frame starting with the CS falling  
edge.  
Copyright © 2014, Texas Instruments Incorporated  
21  
 
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
a
1/t Throughput (Single Frame)  
CS  
tw1  
tsu1  
SCLK  
SDO  
SDI  
3
4
13  
DO-3  
DI-3  
16  
DO-0  
DI-0  
1
2
5
6
12  
th1  
td3  
td1  
td2  
DO-  
15  
DO-11 DO-10  
MSB-1  
DO-4  
LSB  
DO-14 DO-13 DO-12  
MSB  
tsu2  
tq  
DI-15  
DI-14  
DI-13  
DI-12  
DI-11  
DI-10  
DI-4  
th2  
Figure 46. Serial Interface Timing Diagram for 8-Bit Devices  
(ADS7958, ADS7959, ADS7960, and ADS7961)  
a
1/t Throughput (Single Frame)  
CS  
SCLK  
SDO  
SDI  
tw1  
tsu1  
3
4
15  
DO-1  
DI-1  
16  
DO-0  
DI-0  
1
2
5
6
14  
th1  
td3  
td1  
td2  
DO-  
15  
DO-11 DO-10  
MSB-1  
DO-2  
LSB  
DO-14 DO-13 DO-12  
MSB  
tsu2  
tq  
DI-15  
DI-14  
DI-13  
DI-12  
DI-11  
DI-10  
DI-2  
th2  
Figure 47. Serial Interface Timing Diagram for 10-Bit Devices (ADS7954, ADS7956, and ADS7957)  
a
1/t Throughput (Single Frame)  
CS  
tw1  
tsu1  
SCLK  
SDO  
SDI  
3
4
15  
16  
1
2
5
6
14  
th1  
td3  
td1  
td2  
DO-  
15  
DO-11 DO-10  
MSB-1  
DO-2 DO-1  
LSB+2 LSB+1  
DO-0  
LSB  
DO-14 DO-13 DO-12  
MSB  
tsu2  
tq  
DI-1  
DI-0  
DI-15  
DI-14  
DI-13  
DI-12  
DI-11  
DI-10  
DI-2  
th2  
Figure 48. Serial Interface Timing Diagram for 12-Bit Devices  
(ADS7950, ADS7951, ADS7952, and ADS7953)  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Feature Description (continued)  
The falling edge of the CS pin clocks out the DO-15 bit (the first bit of the four bit channel address), and  
remaining address bits are clocked out on every falling edge of SCLK until the third falling edge. The conversion  
result MSB is clocked out on the fourth SCLK falling edge and LSB on the 11th, 13th, or 15th falling edge  
respectively for 8-bit, 10-bit, or 12-bit devices. On the 16th falling edge of the SCLK pin, the SDO pin enters tri-  
state condition. The conversion ends on the 16th falling edge of SCLK.  
While the device outputs data on the SDO pin, a 16-bit word is read on the SDI pin. The SDI data are latched on  
every rising edge of the SCLK pin beginning with the first clock; see Figure 46, Figure 47, and Figure 48.  
The CS pin can be asserted (pulled high) only after 16 clocks have elapsed.  
The device has two (high and low) programmable alarm thresholds per channel. If the input crosses these limits  
the device flags out an alarm on the GPIO0 or GPIO1 pin depending on the GPIO-program register settings (see  
Table 11). The alarm is asserted (under the alarm conditions) on the 12th falling edge of the SCLK pin in the  
same frame when a data conversion is in progress. The alarm output is reset on the tenth falling edge of the  
SCLK pin in the next frame.  
8.3.2 Device Power-up Sequence  
Figure 49 illustrates the device power-up sequence. Manual mode is the default power-up channel-sequencing  
mode and channel-0 is the first channel by default. As explained previously, these devices offer program  
registers to configure user-programmable features (such as GPIO, alarm, and to preprogram the channel  
sequence for the auto modes). At power up or on reset, these registers are set to the default values listed in  
Table 1 to Table 11. Program these registers on power up or after reset. When configured, the device is ready to  
use in any of the three channel sequencing modes: manual, auto-1, and auto-2.  
Copyright © 2014, Texas Instruments Incorporated  
23  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Feature Description (continued)  
Device power up or  
reset  
Device operation in  
CS  
manual mode,  
First frame  
channel-0.  
SDO pin is invalid in  
the first frame  
Auto-1 register  
program (see note A.)  
CS  
CS  
Auto-2 register  
program (see note A.)  
Alarm register program  
(see note A.)  
CS  
CS  
GPIO register program  
(see note A.)  
Operation in  
manual mode  
CS  
Operation in  
auto-1 mode  
Operation in  
auto-2 mode  
CS  
CS  
A. The device continues operation in manual-mode channel 0 throughout the programming sequence and outputs valid conversion results.  
Changing the channel, range, or GPIO is possible by inserting extra frames in between two programming blocks. Bypassing any  
programming block is also possible if that feature in not intended for use.  
B. Reprogramming the device at any time during operation, regardless of what mode the device is in, is possible. During programming, the  
device continues operation in whatever mode it is in and outputs valid data.  
Figure 49. Device Power-Up Sequence  
24  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Feature Description (continued)  
8.3.3 Analog Input  
The ADS79x-Q1 device family offers 8-bit, 10-bit, and 12-bit ADCs with 4-channel, 8-channel, 12-channel, 16-  
channel multiplexers for analog input. The multiplexer output is available on the MXO pin. The AINP pin is the  
ADC input pin. The devices offers flexibility for a system designer as both MXO and AINP are accessible  
externally.  
Figure 50 shows the equivalent circuit at the input and output of the multiplexer and the input of the converter  
during sampling. When the converter enters hold mode, the input impedance at AINP is greater than 1 GΩ.  
80  
MXO  
Ch0  
200 ꢀ  
5 pF AINP  
3 pF  
3 pF  
7 pF  
Chn  
20 Mꢀ  
Ch0 assumed to be on  
Chn assumed to be off  
Figure 50. ADC and MUX Equivalent Circuit  
When the converter samples an input, the voltage difference between the AINP and AGND pins is captured on  
the internal capacitor array. The peak input current through the analog inputs depends upon a number of factors  
including sample rate, input voltage, and source impedance. The current into the ADS79xx-Q1 device charges  
the internal capacitor array during the sample period. After this capacitance is fully charged, there is no further  
input current.  
To maintain the linearity of the converter, the Ch0 through Chn and AINP inputs must be within the input range  
limits specified. Outside of these ranges, converter linearity may not meet specifications.  
8.3.4 Reference  
The ADS79xx-Q1 device can operate with an external 2.5-V ±10-mV reference. A clean, low-noise, well-  
decoupled reference voltage on the REF pin is required to ensure good performance from the converter. A low-  
noise, band-gap reference (such as the REF5025 device) can be used to drive this pin. A 10-μF ceramic  
decoupling capacitor is required between the REF and GND pins of the converter. Place the capacitor as close  
as possible to the device pins.  
8.3.5 Power Saving  
The ADS79xx-Q1 device offers a power-down feature to save power when not in use. There are two ways to  
power down the device. The device can be powered down by writing the DI05 bit equal to 1 in the mode control  
register (see Table 1, Table 2, and Table 5). In this case, the device powers down on the 16th falling edge of the  
SCLK pin in the next data frame. Another way to power down the device is through the GPIO pins. The GPIO3  
pin can act as a PD input (see Table 11 for assigning this functionality to the GPIO3 pin) which is an  
asynchronous and active-low input. The device powers down instantaneously after the GPIO3 pin (PD) equals 0.  
The device powers up again on the CS falling edge when the DI05 bit equals 0 in the mode control register, and  
the GPIO3 pin (PD) equals 1.  
8.4 Device Functional Modes  
8.4.1 Channel Sequencing Modes  
There are three modes for channel sequencing, including manual mode, auto-1 mode, and auto-2 mode. Mode  
selection occurs by writing into the control register (see Table 1, Table 2, and Table 5). A new multiplexer  
channel is selected on the second falling edge of SCLK (as shown in Figure 45) in all three modes.  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
Manual mode: When configured to operate in manual mode, the next selected channel is programmed in each  
frame and the device selects the programmed channel in the next frame. On power up or after  
reset the default channel is channel-0 and the device is in manual mode.  
Auto-1 mode: In this mode the device scans pre-programmed channels in ascending order. A new multiplexer  
channel is selected every frame on the second falling edge of the SCLK pin. A separate program  
register preprograms the channel sequence. Table 3 and Table 4 show auto-1 program register  
settings.  
When programmed, the device retains the program register settings until the device is powered down, reset,  
or reprogrammed. The device is allowed to exit and reenter the auto-1 mode any number of times without  
disturbing the program register settings.  
The auto-1 program register is reset to F, FF, FFF, or FFFF (hex) for the 4-channel, 8-channel, 12-channel,  
or 16-channel devices, respectively, upon device power up or reset (implying the device scans all channels in  
ascending order).  
Auto-2 mode: In this mode the user can configure the program register to select the last channel in the scan  
sequence. The device scans all channels from channel-0 up to, and including, the last channel in  
ascending order. The multiplexer channel is selected every frame on the second falling edge of the  
SCLK pin. A separate program register preprograms the last channel in the sequence (multiplexer  
depth). Table 6 lists the auto-2 program register settings for selection of the last channel in the  
sequence.  
When programmed, the device retains the program register settings until the device is powered down, reset,  
or reprogrammed. The device is allowed to exit and re-enter auto-2 mode any number of times, without  
disturbing the program register settings.  
On power up or reset, bits D9 to D6 of the auto-2 program register are reset to 3, 7, B, or F (hex) 4-channel,  
8-channel, 12-channel or 16-channel devices, respectively (implying the device scans all channels in  
ascending order).  
8.4.2 Device Programming and Mode Control  
The following sections describe device programming and mode control. The ADS79xx-Q1 device feature two  
types of registers to configure and operate the devices in different modes. These registers are referred as  
configuration registers. The two types of configuration registers are mode control registers and program registers.  
8.4.2.1 Mode Control Register  
A mode control register is configured to operate the device in one of three channel sequencing modes, either  
manual mode, auto-1 mode, or auto-2 mode. This register is also used to control user programmable features,  
such as range selection, device power-down control, GPIO read control, and writing output data into the GPIO  
pins.  
8.4.2.2 Program Registers  
The program registers are used for device-configuration settings and are typically programmed once on power  
up or after device reset. There are different program registers including auto-1 mode programming for  
preprogramming the channel sequence, auto-2 mode programming for selection of the last channel in the  
sequence, alarm programming for all 16 channels (or 4, 8 , or 12 channels depending on the device), and GPIO  
for individual pin configuration, such as GPI or GPO or a preassigned function.  
8.4.3 Operating In Manual Mode  
Figure 51 illustrates details regarding entering and running in manual channel-sequencing mode. Table 1 lists the  
mode control register settings for manual mode in detail. Note that there are no program registers for manual  
mode.  
26  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Device Functional Modes (continued)  
Device operation in auto-1 or auto-2 mode  
CS  
Frame: n – 1  
No  
Change to Manual mode?  
Yes  
Sample: Samples and converts the channel selected in frame n – 1  
Mux: Selects the channel incremented from the previous frame as per auto sequence.  
This channel is acquired in this frame and sampled at the start of frame n + 1  
Range: As programmed in frame n – 1. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 1  
DI15 to DI12 = 0001 binary. Selects manual mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 to DI7 = binary address of the channel  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame: n  
Request  
for manual  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n – 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n – 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
Sample: Samples and converts the channel selected in frame n  
Mux: Selects the channel in frame n (manual mode). This channel is acquired in this frame and  
sampled at the start of frame n + 2  
Range: As programmed in frame n. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 2  
DI15 to DI12 = 0001 binary. To continue in manual mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 to DI7 = binary address of the channel  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 1  
DI4 to DI0 - As per GPIO settings  
Entry into  
manual  
mode  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
Sample: Samples and converts the channel selected in frame n + 1  
Mux: Selects the channel programmed in frame n + 1 (manual mode). This channel is  
acquired in this frame and sampled at the start of frame n +3  
Range: As programmed in frame n + 1. Applies to the channel selected for acquisition in  
the current frame.  
SDI: Programming for frame n + 3  
DI15 to DI12 = 0001 binary. Selects manual mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 to DI7 = binary address of the channel  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 2  
Operation  
in manual  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n + 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n + 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
CS  
Continue operation in manual mode  
Figure 51. Entering and Running in Manual Channel-Sequencing Mode  
Copyright © 2014, Texas Instruments Incorporated  
27  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 1. Mode-Control Register Settings for Manual Mode  
DESCRIPTION  
RESET  
STATE  
LOGIC  
STATE  
BITS  
DI15-12  
DI11  
FUNCTION  
0001  
0001  
Selects manual mode  
0
1
0
Enables programming of bits DI06 through DI00  
Device retains values of bits DI06 through DI00 from the previous frame  
DI10-07  
0000  
This 4-bit data represents the address of the next channel to be selected in the next frame. DI10 = MSB and DI07  
= LSB.  
For example, 0000 represents channel-0, 0001 represents channel-1, and so on.  
DI06  
DI05  
DI04  
0
0
0
0
1
0
1
Selects 2.5-V input range (range 1)  
Selects 5-V input range (range 2)  
Device normal operation (no power down)  
Device powers down on 16th SCLK falling edge  
The SDO pin outputs the current channel address of the channel on bits DO15 through DO12  
followed by a 12-bit conversion result on bits DO11 through DI00.  
0
1
The GPIO3 through GPIO0 data (both input and output) is mapped onto bits DO15 through DO12 in  
the order shown below. Lower data bits DO11 through DO00 represent the 12-bit conversion result  
of the current channel.  
DOI5  
DOI4  
DOI3  
DOI2  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
DI03-00  
0000  
The GPIO data for the channels configured as an output. The device ignores the data for the channel which is  
configured as input. The SDI bit and corresponding GPIO information is given below.  
DI03  
DI02  
DI01  
DI00  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
28  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
8.4.4 Operating In Auto-1 Mode  
Figure 52 shows a flowchart containing the details regarding entering and running in auto-1 channel-sequencing  
mode. Table 2 lists the mode control register settings for auto-1 mode in detail.  
Device operation in manual or auto-2 mode  
CS  
Frame: n – 1  
No  
Change to auto-1 mode?  
Yes  
Sample: Samples and converts the channel selected in frame n – 1  
Mux: Selects the channel incremented from the previous frame as per the auto-2 sequence, or  
channel programmed in the previous frame in case of manual mode. This channel is only acquired  
in this frame and sampled at the start of frame n + 1  
Range: As programmed in frame n – 1. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 1  
DI15 to DI12 = 0001 binary. Selects auto-1 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = x. The device automatically resets the channel to the lowest number in auto-1 sequence  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame: n  
Request  
for auto-1  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n – 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n – 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
Sample: Samples and converts the channel selected in frame n  
Mux: Selects the lowest channel number in auto-1 sequence. This channel is acquired in  
this frame and sampled at the start of frame n + 2  
Range: As programmed in frame n. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 2  
DI15 to DI12 = 0001 binary. To continue in auto-1 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = 0, not to reset the channel sequence  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 1  
DI4 to DI0 - As per GPIO settings  
Entry into  
auto-1  
mode  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
Sample: Samples and converts the channel selected in frame n + 1  
(for example, the lowest channel number in the auto-1 sequence)  
Mux: Selects the next highest channel in auto-1 sequence. This channel is acquired in this frame  
and sampled at the start of frame n + 3  
Range: As programmed in frame n + 1. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 3  
DI15 to DI12 = 0001 binary. To continue in auto-1 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = 0 not to reset the channel sequence  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 2  
Operation  
in auto-1l  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n + 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n + 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
CS  
Continue operation in auto-1 mode  
Figure 52. Entering and Running in Auto-1 Channel-Sequencing Mode  
Copyright © 2014, Texas Instruments Incorporated  
29  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Table 2. Mode-Control Register Settings for Auto-1 Mode  
DESCRIPTION  
RESET  
STATE  
BITS  
LOGIC  
STATE  
FUNCTION  
DI15-12  
DI11  
0001  
0010  
Selects auto-1 mode  
0
1
Enables programming of bits DI10 through DI00  
0
Device retains values of bits DI10 through DI00 from previous frame  
DI10  
0
1
The channel counter is reset to the lowest programmed channel in the auto-1 program register  
The channel counter increments every conversion (no reset)  
Do not care  
0
DI09-07  
DI06  
000  
0
xxx  
0
Selects 2.5-V input range (range 1)  
1
Selects 5-V input range (range 2)  
DI05  
DI04  
0
0
0
Device normal operation (no powerdown)  
1
Device powers down on the 16th SCLK falling edge  
SDO outputs current channel address of the channel on DO15..12 followed by 12-bit conversion  
result on DO11 through DO00.  
0
1
The GPIO3 to GPIO0 data (both input and output) is mapped onto DO15 through DO12 in the order  
shown below. Lower data bits DO11 through DO00 represent the 12-bit conversion result of the  
current channel.  
DO15  
DO14  
DO13  
DO12  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
DI03-00  
0000  
The GPIO data for the channels configured as an output. The device ignores the data for the channel which is  
configured as input. The SDI bit and corresponding GPIO information is given below  
DI03  
DI02  
DI01  
DI00  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
The auto-1 program register is programmed (once on power up or reset) to preselect the channels for the auto-1  
sequence, as shown in Figure 53. The auto-1 program-register programming requires two CS frames for  
complete programming. In the first CS frame, the device enters the auto-1 register programming sequence, and  
in the second frame the device programs the auto-1 program register. For complete details see Table 2, Table 3,  
and Table 4.  
30  
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Device in any  
operation mode  
CS  
No  
Program auto 1  
register?  
Yes  
SDI:  
DI15 to DI12 = 1000  
(The device enters  
auto-1 programming  
sequence)  
CS  
Entry into auto-1  
register  
programming  
sequence  
SDI: DI15 to DI0  
(see note A.)  
CS  
Auto-1 register  
programming  
End of auto-1 register  
programming  
A. Per Table 3 and Table 4.  
B. The device continues operation in the selected mode during programming. The SDO pin is valid, however changing the range or writing  
the GPIO data into the device during programming is not possible.  
Figure 53. Auto-1 Register Programming Flowchart  
Table 3. Program Register Settings for Auto-1 Mode  
DESCRIPTION  
FUNCTION  
RESET  
STATE  
BITS  
LOGIC STATE  
FRAME 1  
DI15-12  
NA  
1000  
The device enters auto-1 program sequence. Device programming occurs in the next  
frame.  
DI11-00  
FRAME 2  
DI15-00  
NA  
Do not care  
All 1's  
1 (individual bit)  
A particular channel is programmed to be selected in the channel scanning sequence. The  
channel numbers are mapped one-to-one with respect to the SDI bits.  
For example, DI15 Ch15, DI14 Ch14 … DI00 Ch00  
A particular channel is programmed to be skipped in the channel scanning sequence. The  
channel numbers are mapped one-to-one with respect to the SDI bits.  
For example, DI15 Ch15, DI14 Ch14 … DI00 Ch00  
0 (individual bit)  
Copyright © 2014, Texas Instruments Incorporated  
31  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Table 4. Mapping of Channels to SDI Bits  
DEVICE(1)  
SDI BITS  
DI15 DI14 DI13 DI12 DI11 DI10 DI09 DI08 DI07 DI06 DI05 DI04 DI03 DI02 DI01 DI00  
4 Channel  
8 Channel  
12 Channel  
16 Channel  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
X
X
X
X
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
1/0  
(1) When operating in auto-1 mode, the device only scans the channels programmed to be selected.  
8.4.5 Operating In Auto-2 Mode  
Figure 54 illustrates the details regarding entering and running in auto-2 channel-sequencing mode. Table 5 lists  
the mode-control register settings for auto-2 mode in detail.  
Table 5. Mode-Control Register Settings for Auto-2 Mode  
DESCRIPTION  
RESET  
STATE  
BITS  
LOGIC  
STATE  
FUNCTION  
DI15-12  
DI11  
0001  
0011  
Selects auto-2 mode  
0
1
Enables programming of bits DI10 through DI00  
The device retains values of DI10 through DI00 from the previous frame  
The channel number is reset to Ch-00  
0
DI10  
0
1
0
The channel counter increments every conversion (no reset)  
Do not care  
DI09-07  
DI06  
000  
0
xxx  
0
Selects 2.5-V input range (range 1)  
1
Selects 5-V input range (range 2)  
DI05  
DI04  
0
0
0
Device normal operation (no powerdown)  
The device powers down on the 16th SCLK falling edge  
1
The SDO pin outputs the current channel address of the channel on bits DO15 through DO12  
followed by the 12-bit conversion result on bits DO11 through DO00.  
0
1
The GPIO3 to GPIO0 data (both input and output) is mapped onto bits DO15 through DO12 in the  
order shown below. Lower data bits DO11 through DO00 represent the 12-bit conversion result of the  
current channel.  
DO15  
DO14  
DO13  
DO12  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
DI03-00  
0000  
The GPIO data for the channels configured as an output. The device ignores data for the channel that is  
configured as input. The SDI bit and corresponding GPIO information is given below.  
DI03  
DI02  
DI01  
DI00  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
32  
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Device operation in manual or auto-1 mode  
CS  
Frame: n – 1  
No  
Change to auto-2 mode?  
Yes  
Sample: Samples and converts the channel selected in frame n – 1  
Mux: Selects the channel incremented from the previous frame as per the auto-1 sequence, or  
channel programmed in the previous frame in case of manual mode. This channel is acquired  
in this frame and sampled at the start of frame n + 1  
Range: As programmed in frame n – 1. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 1  
DI15 to DI12 = 0001 binary. Selects auto-2 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = x. The device automatically resets to channel-0  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame: n  
Request  
for auto-2  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n – 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n – 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
Sample: Samples and converts the channel selected in frame n  
Mux: Selects the channel0 in auto-1 sequenc. This channel is acquired in  
this frame and sampled at the start of frame n + 2  
Range: As programmed in frame n. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 2  
DI15 to DI12 = 0001 binary. To continue in auto-2 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = 0, not to reset the channel sequence  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 1  
DI4 to DI0 - As per GPIO settings  
Entry into  
auto-2  
mode  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO [om in the same frame  
Sample: Samples and converts to channel-0  
(for example, the lowest channel number in the auto-1 sequence)  
Mux: Selects the next highest channel in auto-2 sequence. This channel is acquired in this frame  
and sampled at the start of frame n + 3  
Range: As programmed in frame n + 1. Applies to the channel selected for acquisition in the  
current frame.  
SDI: Programming for frame n + 3  
DI15 to DI12 = 0001 binary. To continue in auto-2 mode  
DI11 = 1 enables the programming of range and GPIO  
DI10 = 0 not to reset the channel sequence  
DI6 - As per the required range for the channel to be selected  
DI5 = 0 - No power down  
CS  
Frame:  
n + 2  
Operation  
in auto-2  
mode  
DI4 to DI0 - As per GPIO settings  
SDO: DO15 to DO0 address (or GPIO data) and conversion data of the channel  
selected in frame n + 1  
GPIO:  
O/P: Latched on the CS pin falling edge as per DI3 to DI0 written in frame n + 1  
I/P: Input status latched on the falling edge of CS and transferred serially on the  
SDO pin in the same frame  
CS  
Continue operation in auto-2 mode  
Figure 54. Entering and Running in Auto-2 Channel-Sequencing Mode  
Copyright © 2014, Texas Instruments Incorporated  
33  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
The auto-2 program register is programmed (once on power up or reset) to preselect the last channel (or  
sequence depth) in the auto-2 sequence. Unlike auto-1 program-register programming, auto-2 program-register  
programming requires only one CS frame for complete programming. Figure 55 and Table 6 provide complete  
details.  
Device in any  
operation mode  
CS  
No  
Program auto 2  
register?  
Yes  
SDI:  
DI15 to DI12 = 1001  
DI9 to DI6 = binary  
address of last channel  
in the sequence  
(see note A.)  
CS  
Auto 2 register  
programming  
End of auto-2 register  
programming  
A. See Table 6.  
B. The device continues operation in the selected mode during programming. The SDO pin is valid, however changing the range or writing  
the GPIO data into the device during programming is not possible.  
Figure 55. Auto-2 Register Programming Flowchart  
Table 6. Program Register Settings for Auto-2 Mode  
DESCRIPTION  
RESET  
STATE  
BITS  
LOGIC  
STATE  
FUNCTION  
DI15-12  
DI11-10  
DI09-06  
NA  
1001  
The auto-2 program register is selected for programming  
NA  
NA  
Do not care  
aaaa  
This 4-bit data represents the address of the last channel in the scanning sequence. During device  
operation in auto-2 mode, the channel counter begins at CH-00 and increments every frame until  
the counter equals aaaa. The channel counter then rolls over to CH-00 in the next frame.  
DI05-00  
NA  
Do not care  
8.4.6 Continued Operation In A Selected Mode  
When a device is programmed to operate in one of the modes, the user can continue to operate in the same  
mode. Table 7 lists mode-control register settings to continue operating in a selected mode.  
Table 7. Continued Operation in a Selected Mode  
DESCRIPTION  
RESET  
STATE  
BITS  
LOGIC  
STATE  
FUNCTION  
DI15-12  
0001  
0000  
The device continues to operate in the selected mode. In auto-1 and auto-2 modes the channel  
counter increments normally, whereas in the manual mode the device continues with the last  
selected channel. The device ignores data on bits DI11-DI00 and continues operating as per the  
previous settings. This feature is provided so that the SDI pin can be held low when no changes are  
required in the mode-control register settings.  
DI11-00  
All 0  
The device ignores these bits when bit DI15-12 is set to 0000 logic state  
34  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
8.5 Digital Output Code  
As discussed previously in the Device Operation section, the digital output of the ADS79xx-Q1 devices is SPI™  
compatible. Table 8, Table 9, and Table 10 list the output codes corresponding to various analog input voltages.  
Table 8. Ideal Input Voltages and Output Codes for 8-Bit Devices  
(ADS7958, ADS7959, ADS7960, and ADS7961)  
DIGITAL OUTPUT  
STRAIGHT BINARY  
DESCRIPTION  
Full-scale range  
ANALOG VALUE  
BINARY CODE  
HEX CODE  
Range 1 Vref  
Vref / 256  
Range 2 2 × Vref  
Least-significant bit (LSB)  
Full scale  
2 × Vref / 256  
2 × Vref – 1 LSB  
Vref  
Vref – 1 LSB  
Vref / 2  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
FF  
80  
7F  
00  
Midscale  
Midscale – 1 LSB  
Zero  
Vref / 2 – 1 LSB  
0 V  
Vref – 1 LSB  
0 V  
Table 9. Ideal Input Voltages and Output Codes for 10-Bit Devices  
(ADS7958, ADS7959, ADS7960, and ADS7961)  
DIGITAL OUTPUT  
STRAIGHT BINARY  
DESCRIPTION  
ANALOG VALUE  
BINARY CODE  
HEX CODE  
Full-scale range  
Least-significant bit (LSB)  
Full scale  
Range 1 Vref  
Vref / 1024  
Vref – 1 LSB  
Vref / 2  
Range 2 2 × Vref  
2 × Vref / 1024  
2 Vref – 1 LSB  
Vref  
11 1111 1111  
10 0000 0000  
01 1111 1111  
00 0000 0000  
3FF  
200  
1FF  
000  
Midscale  
Midscale – 1 LSB  
Zero  
Vref / 2 – 1 LSB  
0 V  
Vref – 1 LSB  
0 V  
Table 10. Ideal Input Voltages and Output Codes for 12-Bit Devices  
(ADS7950, ADS7951, ADS7952, and ADS7953)  
DIGITAL OUTPUT  
STRAIGHT BINARY  
DESCRIPTION  
ANALOG VALUE  
BINARY CODE  
HEX CODE  
Full-scale range  
Least-significant bit (LSB)  
Full scale  
Range 1 Vref  
Vref / 4096  
Vref – 1 LSB  
Vref / 2  
Range 2 2 × Vref  
2 × Vref / 4096  
2 × Vref – 1 LSB  
Vref  
1111 1111 1111  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
FFF  
800  
7FF  
000  
Midscale  
Midscale – 1 LSB  
Zero  
Vref / 2 – 1 LSB  
0 V  
Vref – 1 LSB  
0 V  
Copyright © 2014, Texas Instruments Incorporated  
35  
 
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
8.6 Programming: GPIO  
8.6.1 GPIO Registers  
www.ti.com.cn  
The device has four general-purpose input and output (GPIO) pins. Each of the four pins can be independently  
programmed as general purpose output (GPO) or general purpose input (GPI). Using the GPIOs pins for some  
preassigned functions (see Table 11) is possible. The GPO data can be written into the device through the SDI  
line. The device refreshes the GPO data on every CS falling edge as per the SDI data written in the previous  
frame. Similarly, the device latches the GPI status on the CS falling edge and outputs it on the SDO pin (if the  
GPI pin is read-enabled by writing bit DI04 equal to 1 during the previous frame) in the same frame starting on  
the CS falling edge.  
Figure 56 shows the details regarding programming the GPIO registers. Table 11 lists the details regarding  
GPIO-register programming settings.  
Device in any  
operation mode  
CS  
No  
Program GPIO  
register?  
Yes  
SDI:  
DI15 to DI12 = 0100  
(see note A.)  
CS  
GPIO register  
programming  
End of GPIO register  
programming  
A. See Table 12 for DI11 to DI00 data.  
B. The device continues its operation in selected mode during programming. SDO is valid, however changing the range or writing GPIO data  
into the device during programming is not possible.  
Figure 56. GPIO Program-Register Programming Flowchart  
36  
Copyright © 2014, Texas Instruments Incorporated  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Programming: GPIO (continued)  
Table 11. GPIO Program-Register Settings  
DESCRIPTION  
RESET  
STATE  
BITS  
LOGIC  
STATE  
FUNCTION  
DI15-12 NA  
DI11-10 00  
0100  
00  
The device selects GPIO program registers for programming.  
Do not program these bits to any logic state other than 00.  
DI09  
0
1
The device resets all registers in the next CS frame to the reset state shown in the corresponding tables  
(the device also resets itself).  
0
Device normal operation.  
DI08  
DI07  
0
0
1
The device configures the GPIO3 pin as the device power-down input.  
The GPIO3 pin remains a general-purpose input or output.  
The device configures the GPIO2 pin as a device-range input.  
The GPIO2 pin remains a general-purpose input or output.  
The GPIO1 and GPIO0 pins remain a general-purpose input or output.  
0
1
0
DI06-04 000  
000  
xx1  
The device configures the GPIO0 pin as a high-alarm or low-alarm output. This output is active high.  
GPIO1 remains general-purpose input or output.  
010  
100  
110  
The device configures GPIO0 as a high-alarm output. This output is active high. The GPIO1 pin remains a  
general-purpose input or output.  
The device configures GPIO1 as a low-alarm output. This output is active high. The GPIO0 pin remains a  
general-purpose input or output.  
The device configures GPIO1 as a low-alarm output and the GPIO0 pin as a high-alarm output. These  
outputs are active high.  
Note: The following settings are valid for the GPIO pins that are not assigned a specific function through bits DI08 to DI04  
DI03  
DI02  
DI01  
DI00  
0
0
0
0
1
0
1
0
1
0
1
0
The GPIO3 pin is configured as general-purpose output.  
The GPIO3 pin is configured as general-purpose input.  
The GPIO2 pin is configured as general-purpose output.  
The GPIO2 pin is configured as general-purpose input.  
The GPIO1 pin is configured as general-purpose output.  
The GPIO1 pin is configured as general-purpose input.  
The GPIO0 pin is configured as general-purpose output.  
The GPIO0 pin is configured as general-purpose input.  
8.6.2 Alarm Thresholds for GPIO Pins  
Each channel has two alarm program registers, one for setting the high alarm threshold and the other for setting  
the low alarm threshold. For ease of programming, two alarm programming registers per channel, corresponding  
to four consecutive channels, are assembled into one group (a total of eight registers). There are four of these  
groups for 16-channel devices, and one, two or three of these groups for the 12-, 8-, or 4-channel devices,  
respectively. Table 12 lists the grouping of the various channels for each device in the ADS79xx-Q1 family.  
Figure 57 illustrates the details regarding programming the alarm thresholds. Table 13 lists the details regarding  
the alarm-program register settings.  
Table 12. Grouping of Alarm Program Registers  
GROUP  
NUMBER  
REGISTERS  
APPLICABLE FOR DEVICE  
0
High and low alarm for channel 0, 1, 2, and 3  
ADS750, ADS7952, ADS7951, and ADS7953; ADS7954, ADS7956,  
and ADS7957; ADS7958, ADS7959, ADS7960, and ADS7961  
1
2
3
High and low alarm for channel 4, 5, 6, and 7  
High and low alarm for channel 8, 9, 10, and 11  
High and low alarm for channel 12, 13, 14, and 15  
ADS7951, ADS7952, and ADS7953; ADS7956, and ADS7957;  
ADS7959, ADS7960, and ADS7961  
ADS7953 and ADS7952, ADS7957 and ADS7956, ADS7961 and  
ADS7960  
ADS7953, ADS7957, and ADS7961  
Copyright © 2014, Texas Instruments Incorporated  
37  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Each alarm group requires nine CS frames for programming the respective alarm thresholds. In the first frame  
the device enters the programming sequence and in each subsequent frame the device programs one of the  
registers from the group. The device offers a feature to program less than eight registers in one programming  
sequence. The device exits the alarm threshold programming sequence in the next frame after encountering the  
first exit alarm program bit high.  
Device in any operation  
mode  
CS  
No  
Program alarm  
thresholds?  
Yes  
SDI:  
DI15 to DI12 = 11xx  
(see note A.)  
Device enters alarm  
register programming  
sequence  
CS  
Entry into alarm-  
register  
programming  
sequence  
SDI: DI15 to 0  
(see note B.)  
CS  
Alarm-register  
programming  
sequence  
No  
Yes  
DI12 = 1?  
Yes  
Program  
another group  
of four channels?  
No  
End of alarm  
programing  
A. xx indicates a group of four channels (see Table 12).  
B. Per Table 12.  
C. The device continues operation in the selected mode during programming. The SDO pin is valid, however changing the range or writing  
the GPIO data into the device during programming is not possible.  
Figure 57. Alarm Program Register Programming Flowchart  
38  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Table 13. Alarm Program Register Settings  
DESCRIPTION  
BITS  
RESET STATE  
LOGIC  
STATE  
FUNCTION  
FRAME 1  
1100  
1101  
1110  
1111  
The device enters alarm programming sequence for group 0  
The device enters alarm programming sequence for group 1  
The device enters alarm programming sequence for group 2  
The device enters alarm programming sequence for group 3  
DI15-12 NA  
Note: Bits DI15-12 = 11bb is the alarm programming request for group bb. Here, bb represents the alarm programming group number in  
binary format.  
DI11-14 NA  
Do not care  
FRAME 2 AND ONWARDS  
cc  
Where cc represents the lower two bits of the channel number in binary format. The device  
programs the alarm for the channel represented by the binary number bbcc. Note that bb is  
programmed in the first frame.  
DI15-14 NA  
1
0
0
1
High-alarm register selection  
DI13  
DI12  
NA  
NA  
Low-alarm register selection  
Continue alarm programming sequence in next frame  
Exit alarm programming in the next frame. Note: If the alarm programming sequence is not  
terminated using this feature then the device remains in the alarm programming sequence state  
and all SDI data is treated as alarm thresholds.  
DI11-10 NA  
All ones for high  
xx  
Do not care  
This 10-bit data represents the alarm threshold. The 10-bit alarm threshold is compared with the upper 10-bit  
word of the 12-bit conversion result. The device sets off an alarm when the conversion result is higher (high  
alarm) or lower (low alarm) than this number. For 10-bit devices, all 10 bits of the conversion result are  
compared with the set threshold. For 8-bit devices, all 8 bits of the conversion result are compared with DI09  
to DI02 and DI00 and DI01 are do not care.  
alarm register  
DI09-00  
and all zeros for  
low alarm register  
Copyright © 2014, Texas Instruments Incorporated  
39  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
9 Application and Implementation  
9.1 Application Information  
www.ti.com.cn  
In general applications, when the internal multiplexer is updated, the previously converted channel charge is  
stored in the 15-pF internal input capacitance that disturbs the voltage at the newly selected channel. This  
disturbance is expected to settle to 1 LSB during sampling (acquisition) time to avoid degrading converter  
performance. The initial absolute disturbance error at the channel input must be less than 0.5 V to prevent  
source current saturation or slewing that causes significantly long settling times. Fortunately, significantly  
reducing disturbance error is easy to accomplish by simply placing a large enough capacitor at the input of each  
channel. Specifically, with a 150-pF capacitor, instantaneous charge distribution keeps disturbance error below  
0.46 V because the internal input capacitance can only hold up to 75 pC (or 5 V × 15 pF). The remaining error  
must be corrected by the voltage source at each input, with impedance low enough to settle within 1 LSB. The  
following application examples explain the considerations for the input source impedance (RSOURCE).  
9.2 Typical Applications  
9.2.1 Unbuffered Multiplexer Output (MXO)  
This application is the most typical application, but requires the lowest RSOURCE for good performance. In this  
configuration, the 2xREF range allows larger source impedance than the 1xREF range because the 1xREF  
range LSB size is smaller, thus making it more sensitive to settling error.  
AINP  
MXO  
RSOURCE  
GPIO 0  
GPIO 1  
Ch0  
Ch1  
Chn  
150 pF  
RSOURCE  
GPIO 2  
GPIO 3  
To  
Host  
See  
SDO  
SDI  
SCLK  
150 pF  
RSOURCE  
Note A  
ADC  
CS  
150 pF  
REF  
o/p  
REF5025  
10 PF  
A. A restriction on the source impedance exists. RSOURCE 100 Ω for the 1xREF 12-bit settling at 1 MSPS or RSOURCE 250 Ω for the  
1xREF 12-bit settling at 1 MSPS .  
Figure 58. Application Diagram for an Unbuffered MXO  
9.2.1.1 Design Requirements  
The design is optimized to show the input source impedance (RSOURCE) between the 100 Ω to 10,000 Ω required  
to meet the 1-LSB settling at 12-bit, 10-bit, and 8-bit resolutions at different throughput in 1xREF (2.5-V) and  
2xREF (5-V) input ranges.  
9.2.1.2 Detailed Design Procedure  
Although the required input source impedance can be estimated assuming a 0.5-V initial error and exponential  
recovery during sampling (acquisition) time, this estimation over-simplifies the complex interaction between the  
converter and source, thus yielding inaccurate estimates. Thus, this design uses an iterative approach with the  
converter itself to provide reliable impedance values.  
To determine the actual maximum source impedance for a particular resolution and sampling rate, two  
subsequent channels are set at least 95% of the full-scale range apart. With a 1xREF range and 2.5 Vref, the  
channel difference is at least 2.375 V. With 2xREF and 2.5 Vref, the difference is at least 4.75 V. With a source  
impedance between 100 Ω to 10,000 Ω, the conversion runs at a constant rate and a channel update is issued  
that captures the first couple samples after the update. This process is repeated at least 100 times to remove  
any noise and to show a clear settling error. The first sample after the channel update is then compared against  
the second one. If the first and second samples are more than 1 LSB apart, throughput rate is reduced until the  
settling error becomes 1 LSB, which then sets the maximum throughput for the selected impedance. The whole  
process is repeated for nine different impedances between 100 Ω to 10,000 Ω.  
40  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
Typical Applications (continued)  
9.2.1.3 Application Curves  
These curves show the RSOURCE for an unbuffered MXO.  
1000  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
12-bit  
10-bit  
12-bit  
10-bit  
8-bit  
900  
8-bit  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
1000  
10000  
100  
1000  
10000  
Rsource (:)  
Rsource (:)  
D1001  
D101  
Figure 59. 2xREF Input Range Settling without an  
MXO Buffer  
Figure 60. 1xREF Input Range Settling without an  
MXO Buffer  
9.2.2 OPA192 Buffered Multiplexer Output (MXO)  
The use of a buffer relaxes the RSOURCE requirements to an extent. Charge from the sample-and-hold capacitor  
no longer dominates as a residual charge from a previous channel. Although having good performance is  
possible with a larger impedance using the OPA192, the output capacitance of the MXO also holds the previous  
channel charge and cannot be isolated, which limits how large the input impedance can finally be for good  
performance. In this configuration, the 1xREF range allows slightly higher impedance because the OPA192  
(20 V/µs) slews approximately 2.5 V in contrast to the 2xREF range that requires the OPA192 to slew  
approximately 5 V.  
5V  
+
OPA192  
-
100  
150pF  
AINP  
MXO  
RSOURCE  
GPIO 0  
GPIO 1  
Ch0  
Ch1  
Chn  
150 pF  
RSOURCE  
GPIO 2  
GPIO 3  
To  
Host  
See  
SDO  
SDI  
SCLK  
150 pF  
RSOURCE  
Note A  
ADC  
REF  
CS  
150 pF  
REF5025  
o/p  
10 PF  
A. Restriction on the source impedance exists. R(SOURCE) 500 Ω for a 12-bit settling at 1 MSPS with both 1xREF and 2xREF ranges.  
Figure 61. Application Diagram for an OPA192 Buffered MXO  
9.2.2.1 Design Requirements  
The design is optimized to show the input source impedance (RSOURCE) between the 100 Ω to 10,000 Ω required  
to meet a 1-LSB settling at 12-bit, 10-bit, and 8-bit resolutions at different throughput in 1xREF (2.5 V) and  
2xREF (5 V) input ranges.  
Copyright © 2014, Texas Instruments Incorporated  
41  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Typical Applications (continued)  
9.2.2.2 Detailed Design Procedure  
The design procedure is similar to the unbuffered-MXO application, but includes an operation amplifier in unity  
gain as a buffer. The most important parameter for multiplexer buffering is slew rate. The amplifier must finish  
slewing before the start of sampling (acquisition) to keep the buffer operating in small-signal mode during  
sampling (acquisition) time. Also, between the buffer output and converter input (INP), there must be a capacitor  
large enough to keep the buffer in small-signal operation during sampling (acquisition) time. Because 150 pF is  
large enough to protect the buffer form hold charge from internal capacitors, this value selected along with the  
lowest impedance that allows the op amp to remain stable.  
The converter allows the MXO to settle approximately 600 ns before sampling. During this time, the buffer slews  
and then enters small-signal operation. For a 5-V step change, slew rate stays constant during the first 4 V. The  
last 1 V includes a transition from slewing and non-slewing. Thus, the buffer cannot be assumed to keep a  
constant slew during the 600 ns available for MXO settling. Assuming that the last 1-V slew is reduced to half is  
recommended. For this reason, slew is 10 V/µs or (5 Vref + 1 V) / 0.6 µs to account for the 1-V slow slew. The  
OPA192 has a 20-V/us slew, and is capable of driving 150 pF with more than a 50° phase margin with a 50-or  
100-Riso, making the OPA192 an ideal selection for the ADS79xx-Q1 family of converters.  
9.2.2.3 Application Curves  
These curves show the RSOURCE for an OPA192 buffered MXO.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
12-bit  
10-bit  
8-bit  
12-bit  
10-bit  
8-bit  
100  
1000  
10000  
100  
1000  
10000  
Rsource (:)  
Rsource (:)  
D102  
D103  
Figure 62. 2xREF Input Range Settling with an  
OPA192 MXO Buffer  
Figure 63. 1xREF Input Range Settling with an  
OPA192 MXO Buffer  
9.3 Do's and Don'ts  
Use capacitors to decouple the dynamic current transients at each pins, including reference, supply, and input  
signal.  
Do not place capacitors on the MXO pin. This placement causes issues with the signal settling when the  
multiplexer changes channels.  
Depending on the PCB layout, there can be parasitic inductance on the SCLK trace that causes ringing. To  
minimize ringing, do not place a capacitor at the SCLK pin. Instead, place a small resistor in series with the  
SCLK pin to slow down the clock edges.  
10 Power-Supply Recommendations  
The devices are designed to operate from an analog supply voltage (V(+VA)) range between 2.7 V and 5.25 V and  
a digital supply voltage (V(+VBD)) range between 1.7 V and 5.25 V. Both supplies must be well regulated. The  
analog supply is always greater than or equal to the digital supply. A 1-µF ceramic decoupling capacitor is  
required at each supply pin and must be placed as close as possible to the device.  
42  
Copyright © 2014, Texas Instruments Incorporated  
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
www.ti.com.cn  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
11 Layout  
11.1 Layout Guidelines  
A copper fill area underneath the device ties the AGND, BDGND, AINM, and REFM pins together. This  
copper fill area must also be connected to the analog ground plane of the PCB using at least four vias.  
The power sources must be clean and properly decoupled by placing a capacitor close to each of the three  
supply pins, as shown in Figure 64. To minimize ground inductance, ensure that each capacitor ground pin is  
connected to a grounding via by a very short and thick trace.  
The REFP pin requires a 10-μF ceramic capacitor to meet performance specifications. Place the capacitor  
directly next to the device. This capacitor ground pin must be routed to the REFM pin by a very short trace,  
as shown in Figure 64.  
Do not place any vias between a capacitor pin and a device pin.  
NOTE  
The full-power bandwidth of the converter makes the ADC sensitive to high frequencies in  
digital lines. Organize components in the PCB by keeping digital lines apart from the  
analog signal paths. This design configuration is critical to minimize crosstalk. For  
example, in Figure 64, input drivers are expected to be on the left of the converter and the  
microcontroller on the right.  
11.2 Layout Example  
Analog Inputs  
1 µF  
10 µF  
Pin 1  
GPIO  
Analog Ground  
1 µF  
+VBD  
GPIO  
SPI  
1 µF  
Analog Inputs  
Figure 64. Layout Example  
版权 © 2014, Texas Instruments Incorporated  
43  
 
ADS7950-Q1, ADS7951-Q1, ADS7952-Q1, ADS7953-Q1, ADS7954-Q1  
ADS7956-Q1, ADS7957-Q1, ADS7958-Q1, ADS7959-Q1, ADS7960-Q1, ADS7961-Q1  
ZHCSCF3A MAY 2014REVISED AUGUST 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
REF5025 数据表,SBOS410  
OPA192 数据表,SBOS620  
12.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
14. 相关链接  
部件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADS7950-Q1  
ADS7951-Q1  
ADS7952-Q1  
ADS7953-Q1  
ADS7954-Q1  
ADS7956-Q1  
ADS7957-Q1  
ADS7958-Q1  
ADS7959-Q1  
ADS7960-Q1  
ADS7961-Q1  
12.3 商标  
SPI is a trademark of Motorola Inc.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
44  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7950QDBTRQ1  
ADS7951QDBTRQ1  
ADS7952QDBTRQ1  
ADS7953QDBTRQ1  
ADS7954QDBTRQ1  
ADS7956QDBTRQ1  
ADS7957QDBTRQ1  
ADS7958QDBTRQ1  
ADS7959QDBTRQ1  
ADS7960QDBTRQ1  
ADS7961QDBTRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
38  
38  
30  
38  
38  
30  
30  
38  
38  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ADS7950Q  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ADS7951Q  
ADS7952Q  
ADS7953Q  
ADS7954Q  
ADS7956Q  
ADS7957Q  
ADS7958Q  
ADS7959Q  
ADS7960Q  
ADS7961Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS7950QDBTRQ1  
ADS7951QDBTRQ1  
ADS7952QDBTRQ1  
ADS7953QDBTRQ1  
ADS7954QDBTRQ1  
ADS7956QDBTRQ1  
ADS7957QDBTRQ1  
ADS7958QDBTRQ1  
ADS7959QDBTRQ1  
ADS7960QDBTRQ1  
ADS7961QDBTRQ1  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
38  
38  
30  
38  
38  
30  
30  
38  
38  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.9  
8.3  
8.3  
1.6  
1.6  
1.8  
1.8  
1.6  
1.8  
1.8  
1.6  
1.6  
1.8  
1.8  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
10.2  
10.2  
8.3  
12.0  
12.0  
8.0  
6.9  
6.95  
6.9  
10.2  
10.2  
8.3  
12.0  
12.0  
8.0  
6.9  
6.95  
6.95  
6.9  
8.3  
8.0  
10.2  
10.2  
12.0  
12.0  
6.9  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS7950QDBTRQ1  
ADS7951QDBTRQ1  
ADS7952QDBTRQ1  
ADS7953QDBTRQ1  
ADS7954QDBTRQ1  
ADS7956QDBTRQ1  
ADS7957QDBTRQ1  
ADS7958QDBTRQ1  
ADS7959QDBTRQ1  
ADS7960QDBTRQ1  
ADS7961QDBTRQ1  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
38  
38  
30  
38  
38  
30  
30  
38  
38  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
2000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
6.55  
6.25  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
38 X 0.5  
38  
1
2X  
9
9.75  
9.65  
NOTE 3  
19  
B
20  
0.23  
38 X  
0.17  
4.45  
1.2 MAX  
0.1  
C A B  
4.35  
NOTE 4  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220221/A 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220221/A 05/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBT0038A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
38 X (1.5)  
SYMM  
(R0.05) TYP  
38  
1
38 X (0.3)  
38 X (0.5)  
SYMM  
19  
20  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220221/A 05/2020  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY