ADS7056 [TI]

具有 SPI 的 14 位 2.5MSPS 超低功耗、超小型 SAR ADC;
ADS7056
型号: ADS7056
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 SPI 的 14 位 2.5MSPS 超低功耗、超小型 SAR ADC

文件: 总38页 (文件大小:2138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS7056  
ZHCSG66 MARCH 2017  
ADS7056超低功耗、超小尺寸 14 位高速 SAR ADC  
1 特性  
3 说明  
1
2.5MSPS 吞吐量  
超小尺寸 SAR ADC:  
2.25mm2 尺寸的 X2QFN-8 封装  
宽工作电压范围:  
ADS7056 是一款 14 2.5MSPS 模数转换器  
(ADC)。该器件包含一个基于电容器的逐次逼近型寄存  
(SAR) ADC,该 ADC 支持宽模拟输入电压范围  
(对于 AVDD 0V,对于 AVDD 范围为 2.35V 至  
3.6V)。  
AVDD2.35V 3.6V  
DVDD1.65V 3.6V(与 AVDD 无关)  
温度范围:-40°C +125°C  
串行外设接口 (SPI) 兼容串口由 CS SCLK 信号控  
制。输入信号在 CS 下降沿进行采样,SCLK 用于转换  
和串行数据输出。该器件支持宽数字电源范围(1.65V  
3.6V),可直接连接到各种主机控制器。ADS7056  
的标称 DVDD 范围(1.65V 1.95V)符合 JESD8-  
7A 标准。  
单极输入范围:0V AVDD  
出色的性能:  
14 NMC DNL±2 LSB INL  
74.5dB SINAD (2kHz)  
73.7dB SINAD (1MHz)  
ADS7056 采用 8 引脚微型 X2QFN 封装,可以在扩展  
的工业温度范围(–40°C +125°C)内正常工作。该  
器件尺寸微小且功耗极低,非常适合空间受限类电池供  
电的 应用。  
超低功耗:  
2.5MSPS 下为 3.5mW (3.3V AVDD)  
100kSPS 下为 158µW (3.3V AVDD)  
集成偏移校准  
器件信息(1)  
SPI 兼容的串行接口:60MHz  
符合 JESD8-7A 标准的数字 I/O  
部件名称  
ADS7056  
封装  
封装尺寸(标称值)  
X2QFN (8)  
1.50mm x 1.50mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
声纳接收器  
光线路卡和模块  
热成像  
典型应用  
超声波流量计  
电机控制  
SONAR TX  
手持无线电  
环境传感  
AVDD  
AVDD used as Reference for  
device  
OPA836  
R
+
AVDD  
AINP  
AINM  
烟火检测  
Device  
SONAR RX  
C
GND  
RUG (8)  
Actual Device Size  
1.5 x 1.5 x 0.35(H) mm  
NOTE: ADS7056 08052012 公制)SMD 组件  
小。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS769  
 
 
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 23  
9.1 Application Information............................................ 23  
9.2 Typical Applications ................................................ 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ..................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 14  
7.1 Digital Voltage Levels ............................................. 14  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 30  
10.1 AVDD and DVDD Supply Recommendations....... 30  
10.2 Optimizing Power Consumed by the Device ........ 30  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 文档支持................................................................ 32  
12.2 接收文档更新通知 ................................................. 32  
12.3 社区资源................................................................ 32  
12.4 ....................................................................... 32  
12.5 静电放电警告......................................................... 32  
12.6 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 33  
7
8
4 修订历史记录  
日期  
修订版本  
注释  
2017 3 月  
*
首次发布。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
5 Pin Configuration and Functions  
RUG Package  
8-Pin X2QFN  
Top View  
CS  
1
2
3
7
6
5
AINP  
AVDD  
GND  
SDO  
SCLK  
Not to scale  
Pin Functions  
PIN  
NAME  
AINM  
NO.  
8
I/O  
DESCRIPTION  
Analog input  
Analog input  
Supply  
Analog signal input, negative  
Analog signal input, positive  
AINP  
AVDD  
CS  
7
6
Analog power-supply input, also provides the reference voltage to the ADC  
1
Digital input  
Supply  
Chip-select signal, active low  
DVDD  
GND  
SCLK  
SDO  
4
Digital I/O supply voltage  
5
Supply  
Ground for power supply, all analog and digital signals are referred to this pin  
3
Digital input  
Digital output  
Serial clock  
2
Serial data out  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
MAX  
3.9  
UNIT  
V
AVDD to GND  
DVDD to GND  
3.9  
V
AINP to GND  
AVDD + 0.3  
0.3  
V
AINM to GND  
V
Input current to any pin except supply pins  
Digital input voltage to GND  
Storage temperature, Tstg  
10  
mA  
V
–0.3  
–60  
DVDD + 0.3  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017, Texas Instruments Incorporated  
3
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.35  
1.65  
–40  
NOM  
3
MAX  
3.6  
UNIT  
V
AVDD  
DVDD  
TA  
Analog supply voltage range  
Digital supply voltage range  
Operating free-air temperature  
1.8  
25  
3.6  
V
125  
°C  
6.4 Thermal Information  
ADS7056  
THERMAL METRIC(1)  
RUG (X2QFN)  
UNIT  
8 PINS  
177.5  
51.5  
76.7  
1
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
76.7  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 2.5 MSPS, and VAINM = 0 V (unless otherwise noted); minimum and  
maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Full-scale input voltage span(1)  
0
–0.1  
–0.1  
AVDD  
AVDD + 0.1  
0.1  
V
V
AINP to GND  
AINM to GND  
Absolute input  
voltage range  
CS  
Sampling capacitance  
16  
14  
pF  
SYSTEM PERFORMANCE  
Resolution  
Bits  
Bits  
LSB(3)  
NMC  
INL(2)  
DNL  
No missing codes  
14  
–3  
Integral nonlinearity  
Differential nonlinearity  
Offset error  
±2  
±0.5  
±2.5  
1.75  
±0.01  
0.5  
3
1
6
–0.99  
–6  
LSB  
(2)  
EO  
After calibration(4)  
LSB  
dVOS/dT  
Offset error drift with temperature  
Gain error  
ppm/°C  
%FS  
(2)  
EG  
–0.1  
95  
0.1  
Gain error drift with temperature  
ppm/°C  
SAMPLING DYNAMICS  
tCONV Conversion time  
tACQ  
18 × tSCLK  
ns  
ns  
Acquisition time  
fSAMPLE  
Maximum throughput rate  
Aperture delay  
60-MHz SCLK, AVDD = 2.35 V to 3.6 V  
2.5  
MHz  
ns  
3
Aperture jitter, RMS  
12  
ps  
(1) Ideal input span; does not include gain or offset error.  
(2) See Figure 32, Figure 33, and Figure 34 for statistical distribution data for INL, offset error, and gain error.  
(3) LSB means least significant bit.  
(4) See the OFFCAL State section for details.  
4
Copyright © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Electrical Characteristics (continued)  
at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, fSAMPLE = 2.5 MSPS, and VAINM = 0 V (unless otherwise noted); minimum and  
maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC CHARACTERISTICS  
AVDD = 3.3 V  
72  
74.9  
73.7  
–85  
SNR  
Signal-to-noise ratio(5)  
dB  
AVDD = 2.5 V  
fIN = 2 kHz  
THD  
Total harmonic distortion(5)(6)  
fIN = 250 kHz  
fIN = 1000 kHz  
fIN = 2 kHz  
–84.8  
–84.5  
74.5  
73.7  
73.7  
89.8  
88  
dB  
71.75  
SINAD  
Signal-to-noise and distortion(5)  
fIN = 250 kHz  
fIN = 1000 kHz  
fIN = 2 kHz  
dB  
SFDR  
BW(fp)  
Spurious-free dynamic range(5)  
Full-power bandwidth  
fIN = 250 kHz  
fIN = 1000 kHz  
At –3 dB  
dB  
87.5  
200  
MHz  
DIGITAL INPUT/OUTPUT (CMOS Logic Family)  
VIH  
VIL  
High-level input voltage(7)  
Low-level input voltage(7)  
0.65 DVDD  
DVDD + 0.3  
0.35 DVDD  
DVDD  
V
V
–0.3  
At Isource = 500 µA  
At Isource = 2 mA  
At Isink = 500 µA  
At Isink = 2 mA  
0.8 DVDD  
VOH  
High-level output voltage(7)  
Low-level output voltage(7)  
V
V
DVDD – 0.45  
DVDD  
0
0
0.2 DVDD  
0.45  
VOL  
POWER-SUPPLY REQUIREMENTS  
AVDD  
DVDD  
Analog supply voltage  
2.35  
1.65  
3
3
3.6  
3.6  
V
V
Digital I/O supply voltage  
AVDD = 3.3 V, fSAMPLE = 2.5 MSPS  
AVDD = 3.3 V, fSAMPLE = 100 kSPS  
AVDD = 3.3 V, fSAMPLE = 10 kSPS  
AVDD = 2.5 V, fSAMPLE = 2.5 MSPS  
Static current with CS and SCLK high  
1050  
48  
1250  
50  
IAVDD  
Analog supply current  
Digital supply current  
5
µA  
750  
0.02  
DVDD = 1.8 V, CSDO = 20 pF,  
output code = 2AAAh(8)  
630  
IDVDD  
µA  
DVDD = 1.8 V, static current with CS  
and SCLK high  
0.01  
(5) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale,  
unless otherwise noted.  
(6) Calculated on the first nine harmonics of the input frequency.  
(7) Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V; see the Parameter Measurement Information  
section for details.  
(8) See the Estimating Digital Power Consumption section for details.  
Copyright © 2017, Texas Instruments Incorporated  
5
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
6.6 Timing Requirements  
all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted);  
minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
MIN  
16.66  
7
TYP  
MAX  
UNIT  
ns  
tCLK  
Time period of SCLK  
tsu_CSCK  
tht_CKCS  
tph_CK  
tpl_CK  
Setup time: CS falling edge to SCLK falling edge  
Hold time: SCLK rising edge to CS rising edge  
SCLK high time  
ns  
8
ns  
0.45  
0.45  
15  
0.55  
0.55  
tSCLK  
tSCLK  
ns  
SCLK low time  
tph_CS  
CS high time  
6.7 Switching Characteristics  
all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and CLOAD-SDO = 20 pF (unless otherwise noted);  
minimum and maximum values for TA = –40°C to +125°C; typical values at TA = 25°C  
PARAMETER  
Cycle time  
Conversion time  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
(1)  
tCYCLE  
tCONV  
400  
18 × tSCLK  
ns  
tden_CSDO Delay time: CS falling edge to data enable  
6.5  
10  
ns  
Delay time: SCLK rising edge to (next) data  
valid on SDO  
td_CKDO  
ns  
ns  
tht_CKDO  
tdz_CSDO  
SCLK rising edge to current data invalid  
2.5  
5.5  
Delay time: CS rising edge to SDO going to  
tri-state  
(1) tCYCLE = 1 / fSAMPLE  
.
Sample  
A+1  
Sample  
A
tph_CS  
tCYCLE  
tACQ  
tCONV  
CS  
SCLK  
SDO  
1
2
3
15  
16  
17  
18  
0
D12  
D0  
0
0
0
D13  
Data Output for Sample A-1  
Figure 1. Serial Transfer Frame  
6
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
tCLK  
tph_CK  
tpl_CK  
CS  
50%  
SCLK  
50%  
td_CKDO  
tsu_CSCK  
tht_CKCS  
SCLK  
50%  
SDO  
50%  
tht_CKDO  
tden_CSDO  
tdz_CSDO  
SDO  
Figure 2. Timing Specifications  
Copyright © 2017, Texas Instruments Incorporated  
7
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
0
-30  
0
-30  
-60  
-60  
-90  
-90  
-120  
-150  
-180  
-120  
-150  
-180  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Frequency (kHz)  
Frequency (kHz)  
D001  
D002  
SNR = 75.2 dB, THD = –90.25 dB, ENOB = 12.18 bits  
SNR = 74.3 dB, THD = –87.9 dB, fIN = 250 kHz  
Figure 3. Typical FFT  
Figure 4. Typical FFT  
0
0
-30  
-30  
-60  
-90  
-60  
-90  
-120  
-120  
-150  
-180  
-150  
-180  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Frequency (kHz)  
Frequency (kHz)  
D003  
D004  
SNR = 74.2 dB, THD = –90.25 dB, fIN = 500 kHz  
SNR = 73.9 dB, THD = –87.1 dB, fIN = 1000 kHz  
Figure 5. Typical FFT  
Figure 6. Typical FFT  
76  
75  
74  
73  
72  
76  
75  
74  
73  
72  
SNR  
SINAD  
SNR  
SINAD  
0
250  
500  
750  
1000  
-40  
-7  
26  
59  
92  
125  
Input Frequency (kHz)  
Free-Air Temperature (èC)  
D006  
D005  
Figure 8. SNR and SINAD vs Input Frequency  
Figure 7. SNR and SINAD vs Temperature  
8
Copyright © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
76  
75  
74  
73  
72  
-80  
-82  
-84  
-86  
-88  
-90  
SNR  
SINAD  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
Reference Voltage (V)  
Free-Air Temperature (èC)  
D007  
D008  
Figure 9. SNR and SINAD vs Reference Voltage (AVDD)  
Figure 10. THD vs Temperature  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
95  
93  
91  
89  
87  
85  
-40  
-7  
26  
59  
92  
125  
0
250  
500  
750  
1000  
Free-Air Temperature (èC)  
Input Frequency (kHz)  
D009  
D010  
Figure 11. SFDR vs Temperature  
Figure 12. THD vs Input Frequency  
97  
95  
93  
91  
89  
87  
85  
-80  
-82  
-84  
-86  
-88  
-90  
0
250  
500  
750  
1000  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Input Frequency (kHz)  
Reference Voltage (V)  
D011  
D012  
Figure 13. SFDR vs Input Frequency  
Figure 14. THD vs Reference Voltage (AVDD)  
Copyright © 2017, Texas Instruments Incorporated  
9
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
30000  
27000  
24000  
21000  
18000  
15000  
12000  
9000  
6000  
3000  
0
95  
93  
91  
89  
87  
85  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
8188 8189 8190 8191 8192 8193 8194 8195 8196  
Code  
Reference Voltage (V)  
D013  
D014  
Standard deviation of codes = 0.94 LSB, VIN = AVDD / 2  
Figure 15. SFDR vs Reference Voltage (AVDD)  
Figure 16. DC Input Histogram  
2
1
2
Calibrated  
Uncalibrated  
Calibrated  
Uncalibrated  
1
0
0
-1  
-1  
-2  
-2  
-40  
-7  
26  
59  
92  
125  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Free-Air Temperature (èC)  
Reference Voltage (V)  
D015  
D016  
Figure 17. Offset vs Temperature  
Figure 18. Offset vs Reference Voltage (AVDD)  
0.1  
0.05  
0
1
Calibrated  
Uncalibrated  
0.5  
0
-0.5  
-1  
-0.05  
-0.1  
-40  
-7  
26  
59  
92  
125  
0
3300  
6600  
9900  
13200  
16500  
Free-Air Temperature (èC)  
Code  
D017  
D019  
Figure 19. Gain Error vs Temperature  
Figure 20. Typical DNL  
10  
Copyright © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
1
0.5  
0
3
1.5  
0
-0.5  
-1  
-1.5  
-3  
0
3300  
3300  
2.6  
6600  
9900  
13200  
16500  
0
3300  
6600  
9900  
13200  
16500  
Code  
Code  
D020  
D021  
AVDD = 2.35 V  
Figure 21. Typical INL  
Figure 22. Typical DNL  
3
1.5  
0
1
0.5  
0
Minimum  
Maximum  
-1.5  
-3  
-0.5  
-1  
0
6600  
9900  
13200  
16500  
-40  
-7  
26  
59  
92  
125  
Code  
Free-Air Temperature (èC)  
D022  
D023  
AVDD = 2.35 V  
Figure 23. Typical INL  
Figure 24. DNL vs Temperature  
1
0.5  
0
3
Minimum  
Maximum  
Minimum  
Maximum  
1.5  
0
-0.5  
-1.5  
-1  
-3  
2.35  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
Reference Voltage (V)  
Free-Air Temperature (èC)  
D024  
D025  
Figure 25. DNL vs Reference Voltage  
Figure 26. INL vs Temperature  
Copyright © 2017, Texas Instruments Incorporated  
11  
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
3
1.5  
0
1.11  
1.095  
1.08  
Minimum  
Maximum  
1.065  
1.05  
-1.5  
-3  
1.035  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
-40  
-7  
26  
59  
92  
125  
Reference Voltage (V)  
Free-Air Temperature (èC)  
D026  
D027  
Figure 27. INL vs Reference Voltage  
Figure 28. AVDD Current vs Temperature  
1200  
960  
720  
480  
240  
0
1200  
1080  
960  
840  
720  
600  
0
500  
1000  
1500  
2000  
2500  
2.35  
2.6  
2.85  
3.1  
3.35  
3.6  
Throughput (Ksps)  
Supply Voltage (V)  
D028  
D029  
Figure 29. AVDD Current vs Throughput  
Figure 30. AVDD Current vs AVDD Voltage  
3500  
1500  
1200  
900  
600  
300  
0
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
0
1
2
3
-3  
-2  
-1  
-40  
-7  
26  
59  
92  
125  
0.5  
1.5  
2.5  
-2.5  
-1.5  
-0.5  
Free-Air Temperature (èC)  
6000 Devices  
D030  
CS = DVDD  
Figure 32. Typical INL Distribution  
Figure 31. Static AVDD Current vs Temperature  
12  
Copyright © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, DVDD = 1.8 V, fIN = 2 kHz, and fSample = 2.5 MSPS (unless otherwise noted)  
1200  
1000  
800  
600  
400  
200  
0
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
1
2
3
4
5
6
0
-2  
-1  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
-2.5  
-1.5  
-0.5  
0.01  
0.02  
0.03  
0.04  
0.05  
-0.05 -0.04 -0.03 -0.02 -0.01  
6000 Devices  
6000 Devices  
Figure 33. Typical Offset Error Distribution  
Figure 34. Typical Gain Error Distribution  
Copyright © 2017, Texas Instruments Incorporated  
13  
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Digital Voltage Levels  
The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 35 shows voltage  
levels for the digital input and output pins.  
Digital Output  
DVDD  
VOH  
DVDD-0.45V  
SDO  
0.45V  
VOL  
0V  
ISource= 2 mA, ISink = 2 mA,  
DVDD = 1.65 V to 1.95 V  
Digital Inputs  
DVDD + 0.3V  
VIH  
0.65DVDD  
CS  
SCLK  
0.35DVDD  
VIL  
DVDD = 1.65 V to 1.95 V  
-0.3V  
Figure 35. Digital Voltage Levels as per the JESD8-7A Standard  
14  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
8 Detailed Description  
8.1 Overview  
The ADS7056 is a 14-bit, 2.5-MSPS, analog-to-digital converter (ADC). The device includes a capacitor-based,  
successive-approximation register (SAR) ADC that supports a wide analog input voltage range (0 V to AVDD, for  
AVDD in the range of 2.35 V to 3.6 V). The device uses the AVDD supply voltage as the reference voltage for  
conversion of analog input to digital output and the AVDD supply voltage also powers the analog blocks of the  
device. The device has integrated offset calibration feature to calibrate its own offset; see the OFFCAL State  
section for details.  
The SPI-compatible serial interface is controlled by the CS and SCLK signals. The input signal is sampled with  
the CS falling edge and SCLK is used for conversion and serial data output. The device supports a wide digital  
supply range (1.65 V to 3.6 V), enabling direct interface to a variety of host controllers. The ADS7056 complies  
with the JESD8-7A standard for a normal DVDD range (1.65 V to 1.95 V); see the Digital Voltage Levels section  
for details.  
The ADS7056 is available in 8-pin, miniature, X2QFN package and is specified over extended industrial  
temperature range (–40°C to 125°C). Miniature form-factor and extremely low-power consumption make this  
device suitable for space-constrained, battery-powered applications.  
8.2 Functional Block Diagram  
DVDD  
AVDD  
GND  
Offset  
Calibration  
AINP  
AINM  
CS  
SCLK  
SDO  
CDAC  
Comparator  
Serial  
Interface  
SAR  
Copyright © 2017, Texas Instruments Incorporated  
15  
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Analog Input  
The device supports a unipolar, single-ended analog input signal. Figure 36 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. The sampling switch is represented by a resistance (RS1 and RS2, typically  
50 Ω) in series with an ideal switch (SW1 and SW2). The sampling capacitors, CS1 and CS2, are typically 16 pF.  
AVDD  
SW1  
Rs1  
AINP  
Cs1  
GND  
V_BIAS  
AVDD  
Cs2  
SW2  
Rs2  
AINM  
GND  
Figure 36. Equivalent Input Circuit for the Sampling Stage  
During the acquisition process, both positive and negative inputs are individually sampled on CS1 and CS2,  
respectively. During the conversion process, the device converts for the voltage difference between the two  
sampled values: VAINP – VAINM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog  
inputs within the specified range to avoid turning the diodes on.  
The full-scale analog input range (FSR) is 0 V to AVDD and the absolute input range on the AINM and AINP pins  
is –0.1 V to AVDD + 0.1 V.  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Feature Description (continued)  
8.3.2 Reference  
The device uses the analog supply voltage (AVDD) as the reference voltage for the analog-to-digital conversion.  
During the conversion process, the internal capacitors are switched to the AVDD pin as per the successive  
approximation algorithm. As shown in Figure 37, a 3.3-µF (CAVDD), low equivalent series resistance (ESR)  
ceramic capacitor is recommended to be placed between the AVDD and GND pins. The decoupling capacitor  
provides the instantaneous charge required by the internal circuit during the conversion process and maintains a  
stable dc voltage on the AVDD pin.  
See the Power Supply Recommendations and Layout Example sections for component recommendations and  
layout guidelines.  
AVDD  
CAVDD  
GND  
CDVDD  
DVDD  
Figure 37. Reference for the Device  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 ADC Transfer Function  
The device supports a unipolar, single-ended analog input signal. The output is in straight binary format.  
Figure 38 and Table 1 show the ideal transfer characteristics for the device.  
The least significant bit for the device is given by:  
1 LSB = VREF / 2N  
where:  
VREF = Voltage applied between the AVDD and GND pins and  
N = 14  
(1)  
PFSC  
MC + 1  
MC  
NFSC+1  
NFSC  
VIN  
V
REF  
V
REF  
VREF œ 1 LSB  
+ 1LSB  
1 LSB  
2
2
Single-Ended Analog Input  
(AINP œ AINM)  
Figure 38. Ideal Transfer Characteristics  
Table 1. Transfer Characteristics  
IDEAL OUTPUT CODE  
(Hex)  
INPUT VOLTAGE (AINP – AINM)  
CODE  
DESCRIPTION  
1 LSB  
1 LSB to 2 LSBs  
NFSC  
NFSC + 1  
MC  
Negative full-scale code  
0000  
0001  
1FFF  
2000  
3FFF  
Mid code  
VREF / 2 to VREF / 2 + 1 LSB  
VREF / 2 + 1 LSB to VREF / 2 + 2 LSBs  
VREF – 1 LSB  
MC + 1  
PFSC  
Positive full-scale code  
18  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
8.4 Device Functional Modes  
The device supports a simple, SPI-compatible interface to the external host. On power-up, the device is in ACQ  
state. The CS signal defines one conversion and serial data transfer frame. A frame starts with a CS falling edge  
and ends with a CS rising edge. The SDO pin is tri-stated when CS is high. With CS low, the clock provided on  
the SCLK pin is used for conversion and data transfer and the output data are available on the SDO pin.  
As shown in Figure 39, the device supports three functional states: acquisition (ACQ), conversion (CNV), and  
offset calibration (OFFCAL). The device status depends on the CS and SCLK signals provided by the host  
controller.  
ACQ  
OFFCAL  
CONV  
Figure 39. Functional State Diagram  
8.4.1 ACQ State  
In ACQ state, switches SW1 and SW2 connected to the analog input pins close and the device acquires the  
analog input signal on CS1 and CS2. The device enters ACQ state at power-up, at the end of every conversion,  
and after completing the offset calibration. A CS falling edge takes the device from ACQ state to CNV state.  
The device consumes extremely low power from the AVDD and DVDD power supplies when in ACQ state.  
Copyright © 2017, Texas Instruments Incorporated  
19  
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.2 CNV State  
In the CNV state, the device uses the external clock to convert the sampled analog input signal to an equivalent  
digital code as per the transfer function illustrated in Figure 38. The conversion process requires a minimum of  
18 SCLK falling edges to be provided within the frame. After the end of conversion process, the device  
automatically moves from CNV state to ACQ state. For acquisition of the next sample, a minimum time of tACQ  
must be provided.  
Figure 40 shows a detailed timing diagram for the serial interface. In the first serial transfer frame after power-up,  
the device provides the first data as all zeros. In any frame, the clocks provided on the SCLK pin are also used to  
transfer the output data for the previous conversion. A leading 0 is output on the SDO pin on the CS falling edge.  
The most significant bit (MSB) of the output data is launched on the SDO pin on the rising edge after the first  
SCLK falling edge. Subsequent output bits are launched on the subsequent rising edges provided on SCLK.  
When all 14 output bits are shifted out, the device outputs 0's on the subsequent SCLK rising edges. The device  
enters ACQ state after 18 clocks and a minimum time of tACQ must be provided for acquiring the next sample. If  
the device is provided with less than 18 SCLK falling edges in the present serial transfer frame, the device  
provides an invalid conversion result in the next serial transfer frame.  
Sample  
A+1  
Sample  
A
tph_CS  
tCYCLE  
tACQ  
tCONV  
CS  
SCLK  
SDO  
1
2
3
15  
16  
17  
18  
0
D12  
D0  
0
0
0
D13  
Data Output for Sample A-1  
Figure 40. Serial Interface Timing Diagram  
8.4.3 OFFCAL State  
In OFFCAL state, the device calibrates and corrects for its internal offset errors. In OFFCAL state, the sampling  
capacitors are disconnected from the analog input pins (AINP and AINM). The offset calibration is effective for all  
subsequent conversions until the device is powered off. An offset calibration cycle is recommended at power-up  
and whenever there is a significant change in the operating conditions for the device (such as in the AVDD  
voltage and operating temperature).  
The host controller must provide a serial transfer frame as described in Figure 41 or in Figure 42 to enter  
OFFCAL state.  
20  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Device Functional Modes (continued)  
8.4.3.1 Offset Calibration on Power-Up  
On power-up, the host must provide 24 SCLKs in the first serial transfer to enter the OFFCAL state. The device  
provides 0's on SDO during offset calibration. For acquisition of the next sample, a minimum time of tACQ must be  
provided. If the host controller enters the OFFCAL state, but pulls the CS pin high before providing 24 SCLKs,  
then the offset calibration process is aborted and the device enters the ACQ state. Figure 41 and Table 2 provide  
the timing for offset calibration on power-up.  
First  
Next  
Sample  
Sample  
tCYCLE  
tACQ  
CS  
SCLK  
SDO  
1
2
3
4
24  
0
0
0
0
0
0
Data Output for First Sample  
Figure 41. Timing for Offset Calibration on Power-Up  
Table 2. Timing Specifications for Offset Calibration on Power-Up(1)  
MIN  
24 × tCLK + tACQ  
95  
TYP  
MAX  
UNIT  
tcycle  
tACQ  
fSCLK  
Cycle time for offset calibration on power-up  
ns  
ns  
Acquisition time  
Frequency of SCLK  
60  
MHz  
(1) In addition to the timing specifications of Figure 41 and Table 2, the timing specifications described in Figure 2 and the Timing  
Requirements table are also applicable for offset calibration on power-up.  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
8.4.3.2 Offset Calibration During Normal Operation  
During normal operation, the host must provide 64 SCLKs in the serial transfer frame to enter the OFFCAL state.  
The device provides the conversion result for the previous sample during the first 18 SCLKs and 0's on SDO for  
the rest of the SCLKs in the serial transfer frame. For acquisition of the next sample, a minimum time of tACQ  
must be provided. If the host controller enters the OFFCAL state, but pulls the CS high before providing 64  
SCLKs, then the offset calibration process is aborted and the device enters ACQ state. Figure 42 and Table 3  
provide the timing for offset calibration during normal operation.  
Sample  
A
Sample  
A+1  
tCYCLE  
tACQ  
CS  
SCLK  
SDO  
4
16  
17  
64  
1
2
3
D12  
D0  
0
0
0
D13  
Data Output for Sample A-1  
Figure 42. Timing for Offset Calibration During Normal Operation  
Table 3. Timing Specifications for Offset Calibration During Normal Operation(1)  
MIN  
64 × tCLK + tACQ  
95  
TYP  
MAX  
UNIT  
ns  
tcycle  
tACQ  
fSCLK  
Cycle time for offset calibration on power-up  
Acquisition time  
ns  
Frequency of SCLK  
60  
MHz  
(1) In addition to the timing specifications of Figure 42 and Table 3, the timing specifications described in Figure 2 and the Timing  
Requirements table are also applicable for offset calibration during normal operation.  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR) analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This section  
details some general principles for designing the input driver circuit, reference driver circuit, and provides typical  
application circuits designed for the device.  
9.2 Typical Applications  
9.2.1 Single-Supply Data Acquisition With the ADS7056  
Analog Power Supply for  
ADC  
REF1933  
AVDD (+3.3V)  
(AVDD + 0.2V) to 5.5 V  
1uF  
VIN  
VOUT  
GND  
3.3uF  
OPA_VDD  
(+5V)  
33  
œ
33 ꢀ  
33 ꢀ  
AVDD  
SCLK  
CS  
VIN  
33 ꢀ  
+
Host  
OPA836  
Device  
+
Controller  
SDO  
œ
VSOURCE  
680pF  
GND  
GND  
Device: 14 Bit , 2.5 MSPS,  
Single-Ended Input  
Input Driver  
Figure 43. DAQ Circuit: Single-Supply DAQ  
9.2.1.1 Design Requirements  
The goal of the circuit shown in Figure 43 is to design a single-supply data acquisition (DAQ) circuit based on the  
ADS7056 with SNR greater than 74 dB and THD less than –85 dB for input frequencies of 2 kHz to 100 kHz at a  
throughput of 2.5 MSPS for applications such as sonar receivers and ultrasonic flow meters.  
9.2.1.2 Detailed Design Procedure  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and charge  
kickback filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a  
high-precision ADC.  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.2.1 Low Distortion Charge Kickback Filter Design  
Figure 44 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and  
connects the sampling capacitor (CSH) to the input driver circuit. This action introduces a transient on the input  
pins of the SAR ADC. An ideal amplifier with 0 Ω of output impedance and infinite current drive can settle this  
transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched  
capacitor load can create stability issues.  
Charge Kickback Filter  
SAR ADC  
-
RFLT  
SW  
CSH  
+
VIN  
CFLT  
1
f-3dB  
=
2 Œ x RFLT x CFLT  
Figure 44. Input Sample-and-Hold Circuit for a Typical SAR ADC  
For ac signals, the filter bandwidth must be kept low to band-limit the noise fed into the ADC input, thereby  
increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive  
circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage  
of the ADC. A filter capacitor, CFLT, is connected across the ADC inputs. This capacitor helps reduce the  
sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold  
capacitors during the acquisition process. As a rule of thumb, the value of this capacitor is at least 20 times the  
specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is equal to  
16 pF. Thus, the value of CFLT is greater than 320 pF. Select a COG- or NPO-type capacitor because these  
capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying  
voltages, frequency, and time.  
Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design.  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Typical Applications (continued)  
9.2.1.2.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance  
goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth: select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter (see the Low  
Distortion Charge Kickback Filter Design section for details.) at the inputs of the ADC. Higher bandwidth also  
minimizes the harmonic distortion at higher input frequencies. Select the amplifier with the unity-gain  
bandwidth (UGB) as described in Equation 2 to maintain the overall stability of the input driver circuit.  
1
UGB í 4ì  
2Œ ìRFLT ì CFLT  
where:  
UGB = unity-gain bandwidth  
(2)  
Noise: noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to ensure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. As Equation 3 explains, noise from the input driver  
circuit is band limited by designing a low cutoff frequency RC filter.  
SNR(dB)  
-
(
)
2
1
5
VREF  
2 2  
V1 f _AMP_PP  
Œ
20  
NG ì  
+e2n_RMS ì ìf  
Ç
ì
ì 10  
(
)
-3dB  
6.6  
2
where:  
V1/f_AMP_PP is the peak-to-peak flicker noise in µVRMS  
en_RMS is the amplifier broadband noise  
f–3dB is the –3-dB bandwidth of the RC filter and  
NG is the noise gain of the front-end circuit, which is equal to 1 in the buffer configuration  
(3)  
Distortion: both the ADC and the input driver introduce distortion in a data acquisition block. To ensure that  
the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of  
the input driver must be at least 10 dB lower than the distortion of the ADC.  
For the application circuit of Figure 43, the OPA836 is selected for its high bandwidth (205 MHz), low noise  
(4.6 nV/Hz), high output drive capacity (45 mA), and fast settling response (22 ns for 0.1% settling).  
9.2.1.2.3 Reference Circuit  
The analog supply voltage of the device is also used as a voltage reference for conversion. Decouple the AVDD  
pin with a 3.3-µF, low-ESR ceramic capacitor.  
Copyright © 2017, Texas Instruments Incorporated  
25  
 
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.1.3 Application Curves  
Figure 45 and Figure 46 provide the measurement results for the circuit described in Figure 43.  
0
-50  
0
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Frequency (kHz)  
Frequency (kHz)  
D036  
D037  
SNR = 75.8 dB, THD = –90.1 dB, SINAD = 75 dB  
SNR = 75 dB, THD = –88.7 dB, SINAD = 74.3 dB  
Figure 45. Test Results for the ADS7056 and OPA836 for a  
2-kHz Input  
Figure 46. Test Results for the ADS7056 and OPA836 for a  
100-kHz Input  
9.2.2 High Bandwidth (1 MHz) Data Acquisition With the ADS7056  
Analog Power Supply for  
ADC  
REF1933  
AVDD(+3.3V)  
(AVDD + 0.2V) to 5.5 V  
1uF  
VIN  
VOUT  
GND  
3.3uF  
499Ω  
VDD(+6V)  
499Ω  
10  
œ
33 ꢀ  
33 ꢀ  
AVDD  
SCLK  
CS  
AINP  
+
VSOURCE  
33 ꢀ  
+
Host  
Controller  
œ
THS4031  
470pF  
Device  
SDO  
VCM  
(+0.825 V)  
AINM  
VSS(-6V)  
GND  
Device: 14 Bit , 2.5 MSPS,  
Single-Ended Input  
Figure 47. High Bandwidth DAQ Circuit  
26  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Typical Applications (continued)  
9.2.2.1 Design Requirements  
Applications such as ultrasonic flow meters, global positioning systems (GPS), handheld radios, and motor  
controls need analog-to-digital converters that are interfaced to high-frequency sensors (200 kHz to 1 MHz). The  
goal of the circuit described in Figure 47 is to design a single-supply digital acquisition (DAQ) circuit based on the  
ADS7056 with SNR greater than 73 dB and THD less than –85 dB for input frequencies of 200 kHz to 1 MHz at  
a throughput of 2.5 MSPS.  
9.2.2.2 Detailed Design Procedure  
To achieve a SINAD greater than 73 dB, the operational amplifier must have high bandwidth in order to settle the  
input signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the  
total system noise below 20% of the input-referred noise of the ADC. For the application circuit shown in  
Figure 47, the THS4031 is selected for its high bandwidth (275 MHz), low total harmonic distortion of –90 dB at  
1 MHz, and ultra-low noise of 1.6 nV/Hz. The THS4031 is powered up from dual power supply (VDD = 6 V and  
VSS = –6 V).  
For chip-select signals, high-frequency system SNR performance is highly dependent on jitter. Thus, selecting a  
clock source with very low jitter (< 20-ps RMS) is recommended.  
9.2.2.3 Application Curves  
Figure 48 shows the FFT plot for the ADS7056 with a 500-kHz input frequency used for the circuit in Figure 47.  
Figure 49 shows the FFT plot for the ADS7056 with a 1000-kHz input frequency used for the circuit in Figure 47.  
0
0
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Frequency (kHz)  
Frequency (kHz)  
D035  
D038  
SNR = 74.2 dB, THD = –90.4 dB, SINAD = 73.5 dB  
SNR = 73.5 dB, THD = –87.8 dB, SINAD = 73 dB  
Figure 48. Test Results for the ADS7056 and THS4031 for  
a 500-kHz Input  
Figure 49. Test Results for the ADS7056 and THS4031 for  
a 1000-kHz Input  
Copyright © 2017, Texas Instruments Incorporated  
27  
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
Typical Applications (continued)  
9.2.3 14-Bit, 10-kSPS DAQ Circuit Optimized for DC Sensor Measurements  
AVDD  
Sensor  
RSOURCE  
AVDD  
AINP  
+
TI Device  
œ
CFLT  
AINM  
GND  
Copyright © 2017, Texas Instruments Incorporated  
Figure 50. Interfacing the Device Directly With Sensors  
In applications such as environmental sensors, gas detectors, and smoke or fire detectors where the input is very  
slow moving and the sensor can be connected directly to the device operating at a lower throughput rate, a DAQ  
circuit can be designed without the input driver for the ADC. This type of a use case is of particular interest for  
applications in which the primary goal is to achieve the absolute lowest power, size, and cost. Typical  
applications that fall into this category are low-power sensor applications (such as temperature, pressure,  
humidity, gas, and chemical).  
9.2.3.1 Design Requirements  
For this design example, use the parameters listed in Table 4 as the input parameters.  
Table 4. Design Parameters  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
74 dB  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
–85 dB  
73 dB  
12 bits  
Power  
20 µW  
9.2.3.2 Detailed Design Procedure  
The ADS7056 can be directly interfaced with sensors at lower throughput without the need of an amplifier buffer.  
The analog input source drive must be capable of driving the switched capacitor load of a SAR ADC and settling  
the analog input signal within the acquisition time of the SAR ADC. However, the output impedance of the sensor  
must be taken into account when interfacing a SAR ADC directly with sensors. Drive the analog input of the SAR  
ADC with a low impedance source. The input signal requires more acquisition time to settle to the desired  
accuracy because of the higher output impedance of the sensor. Figure 50 shows the simplified circuit for a  
sensor as a voltage source with output impedance (Rsource).  
The acquisition time of a SAR ADC (such as the ADS7056 ) can be increased by reducing throughput in the  
following ways:  
1. Reducing the SCLK frequency to reduce the throughput, or  
2. Keeping the SCLK fixed at the highest permissible value (that is, 60 MHz for the device) and increasing the  
CS high time.  
28  
Copyright © 2017, Texas Instruments Incorporated  
 
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
Table 5 lists the acquisition time for the above two cases for a throughput of 10 kSPS. Clearly, case 2 provides  
more acquisition time for the input signal to settle.  
Table 5. Acquisition Time with Different SCLK Frequencies  
CONVERSION TIME  
ACQUISITION TIME  
CASE  
SCLK  
tcycle  
(= 18 × tSCLK  
)
(= tcycle – tconv  
)
1
2
0.24 MHz  
60 MHz  
100 µs  
100 µs  
75 µs  
25 µs  
0.3 µs  
99.7 µs  
9.2.3.3 Application Curve  
When the output impedance of the sensor increases, the time required for the input signal to settle increases and  
the performance of the SAR ADC starts degrading if the input signal does not settle within the acquisition time of  
the ADC. The performance of the SAR ADC can be improved by reducing the throughput to provide enough time  
for the input signal to settle. Figure 51 provides the results for ENOB achieved from the ADS7056 for case 2 at  
different throughputs with different input impedances at the device input.  
12.5  
12  
11.5  
11  
10.5  
33Ohm, 680pF  
330Ohm, 680pF  
3.3kOhm, 680pF  
10kOhm, 680pF  
20kOhm, 680pF  
10  
9.5  
2
22  
42  
62  
82  
100  
Sampling Speed(kSPS)  
D039  
Figure 51. Effective Number of Bits (ENOB) Achieved From the ADS7056 at Different Throughputs  
Table 6 shows the results and performance summary for this 14-bit, 10-kSPS DAQ circuit application.  
Table 6. Results and Performance Summary for a 14-Bit, 10-kSPS DAQ Circuit for DC Sensor  
Measurements  
DESIGN PARAMETER  
Throughput  
GOAL VALUE  
10 kSPS  
74 dB  
ACHIEVED RESULT  
10 kSPS  
75 dB  
SNR at 100 Hz  
THD at 100 Hz  
SINAD at 100 Hz  
ENOB  
–85 dB  
73 dB  
–89 dB  
74.3 dB  
12  
12.05  
Power  
20 µW  
17 µW  
Copyright © 2017, Texas Instruments Incorporated  
29  
 
 
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 AVDD and DVDD Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. AVDD powers the analog blocks and is also  
used as the reference voltage for the analog-to-digital conversion. Always set the AVDD supply to be greater  
than or equal to the maximum input signal to avoid saturation of codes. Decouple the AVDD pin to the GND pin  
with a 3.3-µF ceramic decoupling capacitor.  
DVDD is used for the interface circuits. Decouple the DVDD pin to the GND pin with a 1-µF ceramic decoupling  
capacitor. Figure 52 shows the decoupling recommendations.  
AVDD  
CAVDD  
GND  
CDVDD  
DVDD  
Figure 52. Power-Supply Decoupling  
10.2 Optimizing Power Consumed by the Device  
Keep the analog supply voltage (AVDD) in the specified operating range and equal to the maximum analog  
input voltage.  
Keep the digital supply voltage (DVDD) in the specified operating range and at the lowest value supported by  
the host controller.  
Reduce the load capacitance on the SDO output.  
Run the device at the optimum throughput. Power consumption reduces proportionally with the throughput.  
10.2.1 Estimating Digital Power Consumption  
The current consumption from the DVDD supply depends on the DVDD voltage, the load capacitance on the  
SDO pin (CLOAD-SDO), and the output code, and can be calculated as:  
IDVDD = CLOAD-SDO × V × f  
where:  
CLOAD-SDO = Load capacitance on the SDO pin  
V = DVDD supply voltage  
f = frequency of transitions on the SDO output  
(4)  
The number of transitions on the SDO output depends on the output code, and thus changes with the analog  
input. The maximum value of f occurs when data output on the SDO change on every SCLK (that is, for output  
codes of 2AAAh or 1555h). With an output code of 2AAAh, f = 17.5 MHz and when CLOAD-SDO = 20 pF and DVDD  
= 1.8 V, IDVDD= 630 µA.  
30  
Copyright © 2017, Texas Instruments Incorporated  
 
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
11 Layout  
11.1 Layout Guidelines  
Figure 53 shows a board layout example for the device. The key considerations for layout are:  
Use a solid ground plane underneath the device and partition the PCB into analog and digital sections  
Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference  
input signals away from noise sources.  
The power sources to the device must be clean and well-bypassed. Use CAVDD decoupling capacitors in close  
proximity to the analog (AVDD) power supply pin.  
Use a CDVDD decoupling capacitor close to the digital (DVDD) power-supply pin.  
Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.  
Connect the ground pin to the ground plane using a short, low-impedance path.  
Place the charge kickback filter components close to the device.  
Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors are recommended because these  
components provide the most stable electrical properties over voltage, frequency, and temperature changes.  
11.2 Layout Example  
Figure 53. Example Layout  
版权 © 2017, Texas Instruments Incorporated  
31  
 
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档请参阅以下部分:  
OPAx836 极低功耗、轨至轨输出、负轨输入、电压反馈运算放大器》  
REF19xx 低漂移、低功率、双路输出、VREF VREF/2 电压基准》  
OPAx365 50MHz、零交叉、低失真、高 CMRRRRI/O、单电源运算放大器》  
《具有集成 ADC 驱动器缓冲器的 REF61xx 高精度电压基准》  
THS4281 极低功耗、高速、轨至轨输入和输出电压反馈运算放大器》  
ADS7042 超低功耗、超小尺寸、12 位、1MSPSSAR ADC》  
ADS7049-Q1 小型低功耗 12 位、2MSPS SAR ADC》  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
33  
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
PACKAGE OUTLINE  
RUG0008A  
X2QFN - 0.4 mm max height  
SCALE 7.500  
PLASTIC QUAD FLATPACK - NO LEAD  
1.55  
1.45  
B
A
PIN 1 INDEX AREA  
1.55  
1.45  
C
0.4 MAX  
SEATING PLANE  
0.05  
0.00  
0.08 C  
SYMM  
0.35  
0.25  
2X  
(0.15)  
TYP  
0.45  
0.35  
2X  
4
3
5
SYMM  
2X  
1
4X 0.5  
0.25  
0.15  
2X  
7
1
0.3  
4X  
8
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X0.1)  
C A  
C
B
0.4  
0.3  
6X  
4222060/A 05/14/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
34  
版权 © 2017, Texas Instruments Incorporated  
ADS7056  
www.ti.com.cn  
ZHCSG66 MARCH 2017  
EXAMPLE BOARD LAYOUT  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
(R0.05) TYP  
4
SYMM  
(1.35)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222060/A 05/14/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
版权 © 2017, Texas Instruments Incorporated  
35  
ADS7056  
ZHCSG66 MARCH 2017  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RUG0008A  
X2QFN - 0.4 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.3)  
2X (0.6)  
8
6X (0.55)  
1
7
4X (0.25)  
SYMM  
(1.3)  
4X (0.5)  
2X (0.2)  
3
5
4
SYMM  
(1.35)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICKNESS  
SCALE:25X  
4222060/A 05/14/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
36  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS7056IRUGR  
ACTIVE  
X2QFN  
RUG  
8
3000 RoHS & Green  
NIPDAUAG  
Level-1-260C-UNLIM  
-40 to 125  
5I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS7056IRUGR

具有 SPI 的 14 位 2.5MSPS 超低功耗、超小型 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7057

14 位 2.5MSPS 差分输入小型低功耗 SAR ADC
TI

ADS7057IRUGR

14 位 2.5MSPS 差分输入小型低功耗 SAR ADC | RUG | 8 | -40 to 125
TI

ADS7066

具有内部基准电压、GPIO 和 SPI 的 8 通道、250kSPS、16 位模数转换器 (ADC)
TI

ADS7066IYBHR

具有内部基准电压、GPIO 和 SPI 的 8 通道、250kSPS、16 位模数转换器 (ADC) | YBH | 16 | -40 to 125
TI

ADS7066IYBHT

具有内部基准电压、GPIO 和 SPI 的 8 通道、250kSPS、16 位模数转换器 (ADC) | YBH | 16 | -40 to 125
TI

ADS7067

ADS7067 Small, 8-Channel, 16-Bit, 800-kSPS SAR ADC With GPIOs
TI

ADS7067IYBHR

ADS7067 Small, 8-Channel, 16-Bit, 800-kSPS SAR ADC With GPIOs
TI

ADS7067IYBHT

ADS7067 Small, 8-Channel, 16-Bit, 800-kSPS SAR ADC With GPIOs
TI

ADS7067_V01

ADS7067 Small, 8-Channel, 16-Bit, 800-kSPS SAR ADC With GPIOs
TI

ADS7128

具有 I2C 接口、GPIO、CRC 和 RMS 模块的小型 8 通道 12 位模数转换器 (ADC)
TI

ADS7128IRTER

具有 I2C 接口、GPIO、CRC 和 RMS 模块的小型 8 通道 12 位模数转换器 (ADC) | RTE | 16 | -40 to 85
TI