ADS5474-SP [TI]

耐辐射加固保障 (RHA)、QMLV、100krad、陶瓷、14 位、单通道、400MSPS ADC;
ADS5474-SP
型号: ADS5474-SP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射加固保障 (RHA)、QMLV、100krad、陶瓷、14 位、单通道、400MSPS ADC

文件: 总28页 (文件大小:1426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
14 位,400 每秒百万次采样 (MSPS) 模数转换器  
查询样品: ADS5474-SP  
1
特性  
400 MSPS 采样率  
采用 84 引脚陶瓷绝缘分流条封装 (HFG)  
14 位分辨率,10.9 位有效位数 (ENOB)  
1.28GHz 输入带宽  
军用温度范围:  
-55°C +125°C T外壳  
(1)  
可提供工程评估 (/EM) 样品  
230MHz 400MSPS 时,无杂散动态范围  
(SFDR) = 78dBc  
12 位和 14 位系列引脚相似且兼容:  
ADS5463-SP ADS5444-SP  
230MHz 400MSPS 时,信噪比 (SNR) =  
69.8dBFS  
应用范围  
2.2 VPP差分输入电压  
测试和测量仪器  
兼容低压差分信令 (LVDS) 的输出  
总功率耗散:2.5W  
软件定义无线电  
数据采集  
断电模式:50mW  
功率放大器线性化  
通信仪器  
偏移二进制输出格式  
半速率输出时钟上升沿和下降沿的输出数据变换  
片上模拟缓冲器、跟踪保持和基准电路  
雷达  
(1) 这些部件只用于工程评估。 它们的加工工艺为非兼容流程(例  
如,无预烧过程等)并且只在 25°C 的温度额定值下测试。 这  
些部件不适合于品质检定、生产、辐射测试或飞行使用。 不担  
保完全军用额定温度  
-55°C 125°C 范围内或使用寿命内的部件性能。  
说明/订购信息  
ADS5474 是一款 14 位,400MSPS 模数转换器 (ADC),此转换器在提供 LVDS 兼容数字输出的同时,可由 5V 和  
3V 电源供电运行。 这个 ADC 121314 ADC 系列的一员,采样率在 210MSPS 500MSPS 之间。  
ADS5474 输入缓冲器隔离了板上跟踪和保持 (T&H) 的内部开关,这样在提供一个高阻抗输入的同时,防止内部开  
关干扰信号源。 还提供了一个内部基准发生器来简化系统设计。  
在采样率为 400MSPS 时,针对超过 400MHz 的宽带宽信号的转换,设计使用 1.4GHz 输入带宽,ADS5474 在宽  
输入频率范围内具有出色低噪声性能和无杂散动态范围。  
ADS5474 采用 84 引脚陶瓷绝缘分流条封装 (HFG)。 此器件采用德州仪器 (TI) 互补双极工艺 (BiCom3) 制造,并  
且在完全军用温度范围(-55°C +125°C T外壳)内额定运行。  
VIN  
VIN  
+
+
A1  
TH1  
TH2  
A2  
TH3  
A3  
ADC3  
S
S
ADC1  
DAC1  
ADC2  
DAC2  
VREF  
Reference  
5
5
6
Digital Error Correction  
CLK  
CLK  
Timing  
OVR  
OVR  
DRY  
DRY  
D[13:0]  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLAS574  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range, unless otherwise noted.  
ADS5474-SP  
UNIT  
V
AVDD5 to GND  
AVDD3 to GND  
DVDD3 to GND  
6
Supply voltage  
5
V
5
–0.3 to (AVDD5 + 0.3)  
–0.3 to (AVDD5 + 0.3)  
±2.5  
V
Analog input to GND  
Clock input to GND  
CLK to CLK  
V
V
V
Digital data output to GND  
–0.3 to (DVDD3 + 0.3)  
–55 to +125  
+150  
V
Operating case temperature range, TC  
Maximum junction temperature, TJ  
Storage temperature range  
°C  
°C  
°C  
kV  
–65 to +150  
2
ESD, human-body model (HBM)  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied. Kirkendall voidings and current density information for calculation of expected lifetime are available upon  
request.  
THERMAL CHARACTERISTICS(1)  
PARAMETER  
Junction-to-free-air thermal resistance  
Junction-to-case thermal resistance  
TEST CONDITIONS  
TYP  
21.81  
0.849  
UNIT  
°C/W  
°C/W  
RθJA  
RθJC  
Junction-to-case thermal resistance  
MIL-STD-883 Test Method 1012  
(1) This CQFP package has built-in vias that electrically and thermally connect the bottom of the die to a pad on the bottom of the package.  
To efficiently remove heat and provide a low-impedance ground path, a thermal land is required on the surface of the PCB directly  
underneath the body of the package. During normal surface mount flow solder operations, the heat pad on the underside of the package  
is soldered to this thermal land creating an efficient thermal path. Normally, the PCB thermal land has a number of thermal vias within it  
that provide a thermal path to internal copper areas (or to the opposite side of the PCB) that provide for more efficient heat removal. TI  
typically recommends an 11,9 mm2 board-mount thermal pad. This allows maximum area for thermal dissipation, while keeping leads  
away from the pad area to prevent solder bridging. A sufficient quantity of thermal/electrical vias must be included to keep the device  
within recommended operating conditions. This pad must be electrically at ground potential.  
2
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
1000  
100  
10  
1
80  
90 100 110 120 130 140 150 160 170 180  
Continuous Junction Temperature - °C  
Figure 1. Operating Life Derating Chart, Electromigration Fail Mode  
Copyright © 2013, Texas Instruments Incorporated  
3
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLIES  
AVDD5  
AVDD3  
DVDD3  
Analog supply voltage  
Analog supply voltage  
Output driver supply voltage  
4.75  
3.1  
3
5
3.3  
3.3  
5.25  
3.6  
V
V
V
3.6  
ANALOG INPUT  
Differential input range  
Input common mode  
2.2  
3.1  
VPP  
V
VCM  
DIGITAL OUTPUT (DRY, DATA, OVR)  
Maximum differential output load  
CLOCK INPUT (CLK)  
10  
pF  
CLK input sample rate (sine wave)  
Clock amplitude, differential sine wave(1)  
20(1)  
0.5  
400 MSPS  
5
60  
VPP  
%
(1)  
Clock duty cycle  
40  
50  
TC  
Operating case temperature range  
–55  
+125  
°C  
(1) Parameters are assured by characterization, but not production tested.  
ELECTRICAL CHARACTERISTICS  
Typical values at TC = +25°C: minimum and maximum values over full temperature range TC,MIN = –55°C to TC,MAX = 125°C,  
sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, –1 dBFS differential input,  
and 3 VPP differential clock, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
14  
Bits  
ANALOG INPUTS  
Differential input range  
2.2  
3.1  
VPP  
V
Analog input common-mode voltage  
Input resistance (dc)  
Self-biased; see VCM specification below  
Each input to VCM  
500  
7.4  
Input capacitance  
Each input to GND  
pF  
Analog input bandwidth (–3dB)  
1.28  
GHz  
Common-mode signal < 50 MHz  
(see Figure 28)  
CMRR  
Common-mode rejection ratio  
100  
dB  
INTERNAL REFERENCE VOLTAGE  
VREF  
Reference voltage  
2.4  
3.1  
V
V
With internal VREF. Provided as an output  
via the VCM pin for dc-coupled  
applications.  
Analog input common-mode voltage  
reference output  
VCM  
2.9  
3.3  
VCM temperature coefficient  
–0.8  
mV/°C  
DYNAMIC ACCURACY  
No missing codes  
Assured  
±0.7  
DNL  
INL  
Differential linearity error  
Integral linearity error  
Offset error  
fIN = 10 MHz  
fIN = 10 MHz  
–0.99  
–7.0  
–16  
2.5  
7.0  
16  
LSB  
LSB  
±1.5  
mV  
Offset temperature coefficient  
Gain error  
0.02  
mV/°C  
%FS  
–5  
5
Gain temperature coefficient  
–0.02  
%FS/°C  
4
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values at TC = +25°C: minimum and maximum values over full temperature range TC,MIN = –55°C to TC,MAX = 125°C,  
sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, –1 dBFS differential input,  
and 3 VPP differential clock, unless otherwise noted.  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IAVDD5  
IAVDD3  
5-V analog supply current  
3.3-V analog supply current  
338  
185  
75  
380  
210  
85  
mA  
mA  
VIN = full-scale, fIN = 70 MHz,  
fS = 400 MSPS  
3.3-V digital supply current  
(includes LVDS)  
IDVDD3  
mA  
Total power dissipation  
Power-up time  
2.5  
50  
2.835  
W
From turn-on of AVDD5  
μs  
From PDWN pin switched from HIGH  
(PDWN active) to LOW (ADC awake)  
(see Figure 29)  
Wake-up time  
5
μs  
Power-down power dissipation  
PDWN pin = logic HIGH  
50  
75  
90  
350  
mW  
dB  
Power-supply rejection ratio,  
AVDD5 supply  
PSRR  
PSRR  
PSRR  
Power-supply rejection ratio,  
AVDD3 supply  
Without 0.1 μF board supply capacitors,  
with < 1 MHz supply noise  
dB  
dB  
Power-supply rejection ratio,  
DVDD3 supply  
110  
DYNAMIC AC CHARACTERISTICS  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
70.5  
68.7  
69.9  
69.8  
69.2  
68.8  
67.3  
66.6  
64.4  
79.4  
76.3  
78.8  
78  
65  
65  
SNR  
SFDR  
HD2  
Signal-to-noise ratio  
dBFS  
69  
64.5  
Spurious-free dynamic range  
74.3  
70.5  
58.6  
54.3  
46  
dBc  
92  
87  
87  
84  
Second-harmonic  
77  
dBc  
75  
68  
64  
53  
Copyright © 2013, Texas Instruments Incorporated  
5
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values at TC = +25°C: minimum and maximum values over full temperature range TC,MIN = –55°C to TC,MAX = 125°C,  
sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, –1 dBFS differential input,  
and 3 VPP differential clock, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS (continued)  
fIN = 30 MHz  
81  
86  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
fIN = 30 MHz  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
80  
80  
HD3  
Third-harmonic  
76  
dBc  
72  
60  
56  
48  
93  
91  
91  
88  
Worst harmonic/spur  
(other than HD2 and HD3)  
87  
dBc  
87  
91  
87  
80  
77  
73.5  
74.9  
74.9  
71.3  
68.4  
57.8  
53.6  
45  
THD  
Total harmonic distortion  
dBc  
6
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Typical values at TC = +25°C: minimum and maximum values over full temperature range TC,MIN = –55°C to TC,MAX = 125°C,  
sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, –1 dBFS differential input,  
and 3 VPP differential clock, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS (continued)  
fIN = 30 MHz  
69.8  
67.7  
68.9  
68.9  
67.5  
66.1  
58.2  
54.3  
45.9  
fIN = 70 MHz  
fIN = 130 MHz  
fIN = 230 MHz  
fIN = 351 MHz  
fIN = 451 MHz  
fIN = 651 MHz  
fIN = 751 MHz  
fIN = 999 MHz  
62.5  
60.5  
SINAD  
Signal-to-noise and distortion  
dBc  
fIN1 = 69 MHz, fIN2 = 70 MHz,  
each tone at –7 dBFS  
84.2  
98.5  
82.5  
99  
fIN1 = 69 MHz, fIN2 = 70 MHz,  
each tone at –16 dBFS  
Two-tone SFDR  
dBFS  
fIN1 = 297.5 MHz, fIN2 = 302.5 MHz,  
each tone at –7 dBFS  
fIN1 = 297.5 MHz, fIN2 = 302.5 MHz,  
each tone at –16 dBFS  
fIN = 70 MHz  
10.1  
9.77  
10.9  
10.5  
1.8  
ENOB  
Effective number of bits  
RMS idle-channel noise  
Bits  
fIN = 230 MHz  
Inputs tied to common-mode  
LSB  
LVDS DIGITAL OUTPUTS  
VOD  
VOC  
Differential output voltage (±)  
Common-mode output voltage  
247  
350  
454  
mV  
V
1.115  
1.375  
DIGITAL INPUTS  
VIH  
VIL  
IIH  
High level input voltage  
2.0  
-1  
V
Low level input voltage  
High level input current  
Low level input current  
Input Capacitance  
0.8  
1
V
PWD (pin 33)  
μA  
μA  
pF  
IIL  
CIN  
2.2  
Copyright © 2013, Texas Instruments Incorporated  
7
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
TIMING INFORMATION  
Sample  
N–1  
N+4  
N+2  
ta  
N
N+1  
N+3  
N+5  
tCLKH  
tCLKL  
CLK  
CLK  
Latency = 3.5 Clock Cycles  
tDRY  
DRY  
DRY(1)  
tDATA  
D[13:0], OVR  
N–1  
N
N+1  
D[13:0], OVR  
(1) Polarity of DRY is undetermined. For further information, see the Digital Outputs section.  
Figure 2. Timing Diagram  
TIMING CHARACTERISTICS(1)  
Typical values at TC = +25°C: minimum and maximum values over full temperature range TC,MIN = –55°C to TC,MAX = +125°C,  
sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, and 3 VPP differential  
clock, unless otherwise noted.  
PARAMETER  
Aperture delay  
TEST CONDITIONS  
MIN  
TYP  
200  
103  
3.5  
MAX  
UNIT  
ps  
ta  
Aperture jitter, rms  
Latency  
Internal jitter of the ADC  
fs  
cycles  
ns  
tCLK  
Clock period  
2.5  
1
50  
tCLKH  
tCLKL  
tDRY  
Clock pulse duration, high  
Clock pulse duration, low  
CLK to DRY delay(2)  
ns  
1
ns  
Zero crossing, 10-pF parasitic loading to GND on each  
output pin  
700  
1600  
1600  
0
2500  
2600  
700  
ps  
tDATA  
tSKEW  
CLK to DATA/OVR delay(2)  
DATA to DRY skew  
Zero crossing, 10-pF parasitic loading to GND on each  
output pin  
650  
ps  
ps  
tDATA – tDRY, 10-pF parasitic loading to GND on each output  
pin  
-700  
tRISE  
tFALL  
DRY/DATA/OVR rise time  
DRY/DATA/OVR fall time  
10-pF parasitic loading to GND on each output pin  
10-pF parasitic loading to GND on each output pin  
500  
500  
ps  
ps  
(1) Timing parameters are assured by characterization, but not production tested.  
(2) DRY, DATA, and OVR are updated on the falling edge of CLK. The latency must be added to tDATA to determine the overall propagation  
delay.  
8
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
PIN CONFIGURATION  
HFG PACKAGE  
(TOP VIEW)  
84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64  
AGND  
DVDD3  
GND  
1
63  
D5  
2
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
D5  
D4  
D4  
3
AVDD5  
NC  
4
5
D3  
NC  
6
D3  
VREF  
GND  
7
D2  
8
D2  
AVDD5  
GND  
9
GND  
DVDD3  
D1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
ADS5474-SP  
CLK  
CLK  
D1  
D0  
GND  
AVDD5  
AVDD5  
GND  
D0  
NC  
NC  
AIN+  
NC  
AIN–  
NC  
GND  
OVR  
OVR  
AGND  
AVDD5  
GND  
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  
Copyright © 2013, Texas Instruments Incorporated  
9
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
Table 1. TERMINAL FUNCTIONS  
TERMINAL  
NAME  
AIN  
NO.  
DESCRIPTION  
17  
18  
Differential input signal (positive)  
AIN  
Differential input signal (negative)  
4, 9, 14, 15, 20, 23,  
25, 27, 29, 33  
AVDD5  
Analog power supply (5 V)  
AVDD3  
DVDD3  
37, 39, 41  
2, 54, 70  
Analog power supply (3.3 V)  
Digital and output driver power supply (3.3 V)  
1,3, 8, 10, 13, 16,  
19, 21, 22, 24, 26,  
GND  
28, 30, 32, 34, 36, Ground  
38, 40, 42, 43, 55,  
64, 69  
CLK  
11  
12  
Differential input clock (positive). Conversion is initiated on rising edge.  
CLK  
Differential input clock (negative)  
D0, D0  
50, 51  
LVDS digital output pair, least-significant bit (LSB)  
D1, D1,  
D2–D5,  
D6-D7,  
D8-D12  
52, 53,  
56–63,  
65–68,  
71–82  
LVDS digital output pairs  
D13, D13  
DRY, DRY  
NC  
81, 82  
84, 83  
LVDS digital output pair, most significant bit (MSB)  
Data ready LVDS output pair  
5, 6, 46, 47, 48, 49 No connect  
Overrange indicator LVDS output. A logic high signals an analog input in excess of the full-scale  
range.  
OVR, OVR  
45, 44  
Common-mode voltage output (3.1 V nominal). Commonly used in DC-coupled applications to set the  
input signal to the correct common-mode voltage.  
VCM  
31  
(This pin is not used on the ADS5463-SP and ADS5444-SP)  
Power-down (active high). Device is in sleep mode when PDWN pin is logic HIGH. ADC converter is  
awake when PDWN is logic LOW (grounded).  
(This pin is not used on the ADS5463-SP and ADS5444-SP)  
PDWN  
VREF  
35  
7
Reference voltage input/output (2.4 V nominal)  
10  
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
TYPICAL CHARACTERISTICS  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
SPECTRAL PERFORMANCE  
FFT FOR 30 MHz INPUT SIGNAL  
SPECTRAL PERFORMANCE  
FFT FOR 70 MHz INPUT SIGNAL  
0
±20  
0
±20  
SFDR = 79.4 dBc  
SFDR = 76.3 dBc  
SNR = 70.5 dBFS  
SINAD = 69.8 dBFS  
THD = 77 dBc  
SNR = 68.7 dBFS  
SINAD = 67.7 dBFS  
THD = 73.5 dBc  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency ± MHz  
Frequency ± MHz  
C001  
C002  
Figure 3.  
Figure 4.  
SPECTRAL PERFORMANCE  
FFT FOR 130 MHz INPUT SIGNAL  
SPECTRAL PERFORMANCE  
FFT FOR 230 MHz INPUT SIGNAL  
0
±20  
0
±20  
SFDR = 78.8 dBc  
SNR = 69.9 dBFS  
SINAD = 68.9 dBFS  
THD = 74.9 dBc  
SFDR = 78 dBc  
SNR = 69.8 dBFS  
SINAD = 68.9 dBFS  
THD = 74.9 dBc  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency ± MHz  
Frequency ± MHz  
C003  
C004  
Figure 5.  
Figure 6.  
Copyright © 2013, Texas Instruments Incorporated  
11  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
SPECTRAL PERFORMANCE  
FFT FOR 351 MHz INPUT SIGNAL  
SPECTRAL PERFORMANCE  
FFT FOR 451 MHz INPUT SIGNAL  
0
±20  
0
±20  
SFDR = 74.3 dBc  
SFDR = 70.5 dBc  
SND = 69.2 dBFS  
SINAD = 67.5 dBFS  
THD = 71.3 dBc  
SNR = 68.8 dBFS  
SINAD = 66.1 dBFS  
THD = 68.4 dBc  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency ± MHz  
Frequency ± MHz  
C005  
C006  
Figure 7.  
Figure 8.  
SPECTRAL PERFORMANCE  
FFT FOR 751 MHz INPUT SIGNAL  
SPECTRAL PERFORMANCE  
FFT FOR 999 MHz INPUT SIGNAL  
0
±20  
0
±20  
SFDR = 54.3 dBc  
SFDR = 46 dBc  
SNR = 66.6 dBFS  
SINAD = 54.3 dBFS  
THD = 53.6 dBC  
SNR = 64.4 dBFS  
SINAD = 45.9 dBFS  
THD = 45 dBc  
±40  
±40  
±60  
±60  
±80  
±80  
±100  
±120  
±100  
±120  
0
20  
40  
60  
80 100 120 140 160 180 200  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency ± MHz  
Frequency ± MHz  
C007  
C008  
Figure 9.  
Figure 10.  
12  
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
TWO-TONE INTERMODULATION DISTORTION  
TWO-TONE INTERMODULATION DISTORTION  
(FFT for 297.5 MHz and 302.5 MHz at –7 dBFS)  
(FFT for 69 MHz and 70 MHz at –7 dBFS)  
0
-20  
0
-20  
fIN1 = 69 MHz, -7 dBFS  
fIN2 = 70 MHz, -7 dBFS  
fIN1 = 297.5 MHz, -7 dBFS  
fIN2 = 302.5 MHz, -7 dBFS  
IMD3 = 82.5 dBFS  
IMD3 = 84.2 dBFS  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency - MHz  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency - MHz  
C009  
C010  
Figure 11.  
Figure 12.  
TWO-TONE INTERMODULATION DISTORTION  
(FFT for 69 MHz and 70 MHz at –16 dBFS)  
TWO-TONE INTERMODULATION DISTORTION  
(FFT for 297.5 MHz and 302.5 MHz at –16 dBFS)  
0
-20  
0
-20  
fIN1 = 297.5 MHz, -16 dBFS  
fIN2 = 302.5 MHz, -16 dBFS  
fIN1 = 69 MHz, -16 dBFS  
fIN2 = 70 MHz, -16 dBFS  
IMD3 = 99 dBFS  
IMD3 = 98.5 dBFS  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency - MHz  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency - MHz  
C011  
C012  
Figure 13.  
Figure 14.  
Copyright © 2013, Texas Instruments Incorporated  
13  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
NORMALIZED GAIN RESPONSE  
vs  
INPUT FREQUENCY  
DIFFERENTIAL NONLINEARITY  
0.5  
0.4  
5
0
fS = 400 MSPS  
fIN = 70 MHz  
0.3  
±5  
0.2  
±10  
±15  
±20  
±25  
±30  
±35  
±40  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
fS = 400 MSPS  
AIN = “0.38 VPP  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Code  
10M  
100M  
1G  
5G  
Frequency ± Hz  
C013  
Figure 15.  
Figure 16.  
INTEGRAL NONLINEARITY  
NOISE HISTOGRAM WITH INPUTS SHORTED  
2.0  
1.5  
25  
20  
15  
10  
5
fS = 400 MSPS  
fS = 400 MSPS  
fIN = VCM  
fIN = 70 MHz  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Code  
Output Code  
C016  
Figure 17.  
Figure 18.  
14  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
AC PERFORMANCE  
AC PERFORMANCE  
vs  
vs  
INPUT AMPLITUDE (70 MHz Input Signal)  
INPUT AMPLITUDE (230 MHz Input Signal)  
100  
80  
120  
100  
80  
fS = 400 MSPS  
fIN = 70 MHz  
fS = 400 MSPS  
fIN = 230 MHz  
60  
60  
40  
40  
20  
20  
0
0
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBc)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBc)  
±20  
±40  
±20  
±40  
SNR (dBFS)  
SNR (dBFS)  
0
0
±100 ±90 ±80 ±70 ±60 ±50 ±40 ±30 ±20 ±10  
±100 ±90 ±80 ±70 ±60 ±50 ±40 ±30 ±20 ±10  
Input Amplitude ± dBFS  
Input Amplitude ± dBFS  
C017  
C018  
Figure 19.  
Figure 20.  
TWO-TONE PERFORMANCE  
vs  
INPUT AMPLITUDE (f1 = 297.5 MHz and f2 = 302.5 MHz)  
SFDR  
vs  
AVDD5 OVER TEMPERATURE  
96  
100  
fIN1 = 297.5 MHz  
fIN2 = 302.5 MHz  
fS = 400 MSPS  
fIN = 230 MHz  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2F1-F2 (dBc)  
±55ƒC  
25°C  
2F2-F1 (dBc)  
Worst Spur (dBc)  
125°C  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
0
±100 ±90 ±80 ±70 ±60 ±50 ±40 ±30 ±20 ±10  
AVDD5 Supply Volttage ± V  
Input Amplitude ± dBFS  
C020  
C019  
Figure 21.  
Figure 22.  
Copyright © 2013, Texas Instruments Incorporated  
15  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
SNR  
SFDR  
vs  
vs  
AVDD5 OVER TEMPERATURE  
AVDD33 OVER TEMPERATURE  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
92  
88  
84  
80  
76  
72  
68  
64  
fS = 400 MSPS  
fIN = 230 MHz  
fS = 400 MSPS  
fIN = 230 MHz  
±55ƒC  
25°C  
±55ƒC  
25°C  
125°C  
125°C  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD5 Supply Volttage ± V  
AVDD33 Supply Volttage ± V  
C021  
C022  
Figure 23.  
Figure 24.  
SNR  
vs  
SFDR  
vs  
AVDD33 OVER TEMPERATURE  
DVDD18 OVER TEMPERATURE  
74  
72  
70  
68  
66  
64  
92  
88  
84  
80  
76  
72  
68  
64  
fS = 400 MSPS  
fIN = 230 MHz  
fS = 400 MSPS  
fIN = 230 MHz  
±55ƒC  
25°C  
±55ƒC  
25°C  
125°C  
125°C  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
AVDD33 Supply Volttage ± V  
DVDD18 Supply Volttage ± V  
C023  
C024  
Figure 25.  
Figure 26.  
16  
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude =  
–1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.  
SNR  
CMRR  
vs  
vs  
DVDD18 OVER TEMPERATURE  
COMMON-MODE INPUT FREQUENCY  
0
±10  
74  
72  
70  
68  
66  
64  
400 MSPS  
fS = 400 MSPS  
fIN = 230 MHz  
±20  
±30  
±40  
±50  
±60  
±70  
±80  
±90  
±100  
±110  
±120  
±130  
±55ƒC  
25°C  
125°C  
100m  
1
10  
100  
1k  
10k  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Frequency (MHz)  
DVDD18 Supply Volttage ± V  
C026  
C025  
Figure 27.  
Figure 28.  
ADC WAKEUP TIME  
75  
Wake from PDWN  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Wake from 5 V Supply  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Time - ms  
Figure 29.  
Copyright © 2013, Texas Instruments Incorporated  
17  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
APPLICATIONS INFORMATION  
Theory of Operation  
The ADS5474 is a 14-bit, 400-MSPS, monolithic pipeline ADC. Its bipolar analog core operates from 5-V and  
3.3-V supplies, while the output uses a 3.3-V supply to provide LVDS-compatible outputs. The conversion  
process is initiated by the rising edge of the external input clock. At that instant, the differential input signal is  
captured by the input track-and-hold (T&H), and the input sample is converted sequentially by a series of lower  
resolution stages, with the outputs combined in a digital correction logic block. Both the rising and the falling  
clock edges are used to propagate the sample through the pipeline every half clock cycle. This process results in  
a data latency of 3.5 clock cycles, after which the output data are available as a 14-bit parallel word, coded in  
offset binary format.  
Input Configuration  
The analog input for the ADS5474 consists of an analog pseudo-differential buffer followed by a bipolar transistor  
T&H. The analog buffer isolates the source driving the input of the ADC from any internal switching and presents  
a high impedance that is easy to drive at high input frequencies, compared to an ADC without a buffered input.  
The input common-mode is set internally through a 500-resistor connected from 3.1 V to each of the inputs  
(common-mode is ~2.4V on 12- and 13-bit members of this family). This configuration results in a differential  
input impedance of 1 k.  
ADS5474-SP  
AVDD5  
~ 2.5 nH Bond Wire  
Buffer  
AIN  
~ 200 fF  
Bond Pad  
CIN = 7.4 pF  
500 W  
1.6 pF  
GND  
VCM  
AVDD5  
1.6 pF  
Buffer  
GND  
500 W  
~ 2.5 nH Bond Wire  
AIN  
~ 200 fF  
Bond Pad  
CIN = 7.4 pF  
GND  
Figure 30. Analog Input Equivalent Circuit  
For a full-scale differential input, each of the differential lines of the input signal (pins 16 and 17) swings  
symmetrically between (3.1 V + 0.55 V) and (3.1 V – 0.55 V). This range means that each input has a maximum  
signal swing of 1.1 VPP for a total differential input signal swing of 2.2 VPP. Operation below 2.2 VPP is allowable,  
with the characteristics of performance versus input amplitude demonstrated in Figure 19 and Figure 20. For  
instance, for performance at 1.1 VPP rather than 2.2 VPP, refer to the SNR and SFDR at –6 dBFS (0 dBFS =  
2.2 VPP). The maximum swing is determined by the internal reference voltage generator, eliminating the need for  
any external circuitry for this purpose.  
18  
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
The ADS5474 performs optimally when the analog inputs are driven differentially. The circuit in Figure 31 shows  
one possible configuration using an RF transformer with termination either on the primary or on the secondary of  
the transformer. In addition, the evaluation module is configured with two back-to-back transformers, also  
demonstrating good performance. If voltage gain is required, a step-up transformer can be used.  
Z0  
R0  
50 W  
50 W  
AIN  
R
200 W  
ADS5474-SP  
AC Signal  
Source  
AIN  
Mini-Circuits  
JTX-4-10T  
Figure 31. Converting a Single-Ended Input to a Differential Signal Using an RF Transformer  
In addition to the transformer configurations, Texas Instruments offers a wide selection of single-ended  
operational amplifiers that can be selected depending on the application. An RF gain-block amplifier, such as  
Texas Instruments' THS9001, can also be used for high-input-frequency applications. For large voltage gains at  
intermediate-frequencies in the 50 MHz to 400 MHz range, the configuration shown in Figure 32 can be used.  
The component values can be tuned for different intermediate frequencies. The example shown in Figure 32 is  
located on the evaluation module and is tuned for an IF of 170 MHz. More information regarding this  
configuration can be found in the ADS5474 EVM User Guide (SLAU194) and the THS9001 50-MHz to 350-MHz  
Cascadeable Amplifier data sheet (SLOS426), both available for download at www.ti.com.  
1000 pF  
1000 pF  
THS9001  
VIN  
AIN  
50 W  
50 W  
18 µH  
39 pF  
ADS5474-SP  
0.1 µF  
THS9001  
VIN  
AIN  
1000 pF  
1000 pF  
Figure 32. Using the THS9001 IF Amplifier With the ADS5474  
Copyright © 2013, Texas Instruments Incorporated  
19  
 
 
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
For applications requiring dc-coupling with the signal source, a differential input/differential output amplifier such  
as the THS4509 (shown in Figure 33) provides good harmonic performance and low noise over a wide range of  
frequencies.  
VIN  
100 W  
348 W  
From  
50 W  
Source  
+5V  
78.9 W  
49.9 W  
49.9 W  
0.22 µF  
AIN  
ADS5474-SP  
THS4509  
CM  
18 pF  
100 W  
VCM  
AIN  
49.9 W  
78.9 W  
49.9 W  
0.22 µF  
0.22 µF  
0.1 µF  
0.1 µF  
348 W  
Figure 33. Using the THS4509 or THS4520 With the ADS5474  
In this configuration, the THS4509 amplifier circuit provides 10 dB of gain, converts the single-ended input to  
differential, and sets the proper input common-mode voltage to the ADS5474 by utilizing the VCM output pin of  
the ADC. The 50-resistors and 18-pF capacitor between the THS4509 outputs and ADS5474 inputs (along  
with the input capacitance of the ADC) limit the bandwidth of the signal to about 70 MHz (–3 dB). Input  
termination is accomplished via the 78.9-resistor and 0.22-μF capacitor to ground, in conjunction with the input  
impedance of the amplifier circuit. A 0.22-μF capacitor and 49.9-resistor are inserted to ground across the  
78.9-resistor and 0.22-μF capacitor on the alternate input to balance the circuit. Gain is a function of the  
source impedance, termination, and 348-feedback resistor. See the THS4509 data sheet for further  
component values to set proper 50-termination for other common gains. Because the ADS5474 recommended  
input common-mode voltage is 3.1 V, the THS4509 operates from a single power-supply input with VS+ = 5 V and  
VS– = 0 V (ground). This configuration has the potential to slightly exceed the recommended output voltage from  
the THS4509 of 3.6V due to the ADC input common-mode of 3.1V and the +0.55V full-scale signal. This will not  
harm the THS4509 but may result in a degradation in the harmonic performance of the THS4509. An amplifier  
with a wider recommended output voltage range is the THS4520, which is optimized for low noise and low  
distortion in the range of frequencies up to ~20 MHz. Applications that are not sensitive to harmonic distortion  
could consider either device at higher frequencies.  
20  
Copyright © 2013, Texas Instruments Incorporated  
 
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
Clock Inputs  
The ADS5474 clock input can be driven with either a differential clock signal or a single-ended clock input. The  
characterization of the ADS5474 is typically performed with a 3-VPP differential clock, but the ADC performs well  
with a differential clock amplitude down to ~0.5 VPP, as shown in . The clock amplitude becomes more of a factor  
in performance as the analog input frequency increases. In low-input-frequency applications, where jitter may not  
be a big concern, the use of a single-ended clock could save cost and board space without much performance  
tradeoff. When clocked with this configuration, it is best to connect CLK to ground with a 0.01-μF capacitor, while  
CLK is ac-coupled with a 0.01-μF capacitor to the clock source, as shown in Figure 35.  
ADS5474-SP  
AVDD5  
~ 2.5 nH Bond Wire  
CLK  
Parasitic  
~ 200 fF  
Bond Pad  
CIN = 4 pF  
GND  
1000 W  
~ 0.2 pF  
Internal  
Clock  
Buffer  
~ 2.4 V  
AVDD5  
GND  
Parasitic  
~ 0.2 pF  
1000 W  
~ 2.5 nH Bond Wire  
CLK  
~ 200 fF  
Bond Pad  
CIN = 4 pF  
GND  
S0292-04  
Figure 34. Clock Input Circuit  
Square Wave or  
Sine Wave  
CLK  
0.01 µF  
ADS5474-SP  
CLK  
0.01 µF  
Figure 35. Single-Ended Clock  
For jitter-sensitive applications, the use of a differential clock has some advantages at the system level. The  
differential clock allows for common-mode noise rejection at the printed circuit board (PCB) level. With a  
differential clock, the signal-to-noise ratio of the ADC is better for jitter-sensitive, high-frequency applications  
because the board level clock jitter is superior.  
Larger clock amplitude levels are recommended for high analog input frequencies or slow clock frequencies. In  
the case of a sinusoidal clock, larger amplitudes result in higher clock slew rates and reduces the impact of clock  
noise on jitter. At high analog input frequencies, the sampling process is sensitive to jitter. And at slow clock  
frequencies, a small amplitude sinusoidal clock has a lower slew rate and can create jitter-related SNR  
degradation. Figure 36 demonstrates a recommended method for converting a single-ended clock source into a  
differential clock; it is similar to the configuration found on the evaluation board and was used for much of the  
characterization. See also Clocking High Speed Data Converters (SLYT075) for more details.  
Copyright © 2013, Texas Instruments Incorporated  
21  
 
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
0.1 µF  
Clock  
Source  
CLK  
ADS5474-SP  
CLK  
Figure 36. Differential Clock  
The common-mode voltage of the clock inputs is set internally to 2.4 V using internal 1-kresistors. It is  
recommended to use ac coupling, but if this scheme is not possible, the ADS5474 features good tolerance to  
clock common-mode variation. Additionally, the internal ADC core uses both edges of the clock for the  
conversion process. Ideally, a 50% duty-cycle clock signal should be provided.  
The ADS5474 is capable of achieving 69.2 dBFS SNR at 350 MHz of analog input frequency. In order to achieve  
the SNR at 350 MHz the clock source rms jitter must be at least 144 fsec in order for the total rms jitter to be 177  
fsec. A summary of maximum recommended rms clock jitter as a function of analog input frequency is provided  
in Table 2. The equations used to create the table are also presented.  
Table 2. Recommended RMS Clock Jitter  
MAXIMUM CLOCK  
INPUT FREQUENCY  
(MHz)  
MEASURED SNR  
(dBc)  
TOTAL JITTER  
(fsec rms)  
JITTER  
(fsec rms)  
30  
70  
69.3  
69.1  
69.1  
68.8  
68.2  
67.4  
65.6  
63.7  
1818  
798  
429  
251  
177  
151  
111  
104  
1816  
791  
417  
229  
144  
110  
42  
130  
230  
350  
450  
750  
1000  
14  
Equation 1 and Equation 2 are used to estimate the required clock source jitter.  
SNR (dBc) = -20 ´ LOG10 (2 ´ p ´ fIN ´ jTOTAL  
)
(1)  
(2)  
2
1/2  
jTOTAL = (jADC2 + jCLOCK  
)
where:  
jTOTAL = the rms summation of the clock and ADC aperture jitter;  
jADC = the ADC internal aperture jitter which is located in the data sheet;  
jCLOCK = the rms jitter of the clock at the clock input pins to the ADC; and  
fIN = the analog input frequency.  
Notice that the SNR is a strong function of the analog input frequency, not the clock frequency. The slope of the  
clock source edges can have a mild impact on SNR as well and is not taken into account for these estimates.  
For this reason, maximizing clock source amplitudes at the ADC clock inputs is recommended, though not  
required (faster slope is desirable for jitter-related SNR). For more information on clocking high-speed ADCs, see  
Application Note SLWA034, Implementing a CDC7005 Low Jitter Clock Solution For High-Speed, High-IF ADC  
Devices, on the Texas Instruments web site. Recommended clock distribution chips (CDCs) are the TI  
CDC7005, the CDCM7005-SP and CDCE72010. Depending on the jitter requirements, a band pass filter (BPF)  
is sometimes required between the CDC and the ADC. If the insertion loss of the BPF causes the clock  
amplitude to be too low for the ADC, or the clock source amplitude is too low to begin with, an inexpensive  
amplifier can be placed between the CDC and the BPF.  
22  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
Figure 37 represents a scenario where an LVCMOS single-ended clock output is used from a TI CDCM7005-SP  
with the clock signal path optimized for maximum amplitude and minimum jitter. This type of conditioning might  
generally be well-suited for use with greater than 150 MHz of input frequency. The jitter of this setup is difficult to  
estimate and requires a careful phase noise analysis of the clock path. The BPF (and possibly a low-cost  
amplifier because of insertion loss in the BPF) can improve the jitter between the CDC and ADC when the jitter  
provided by the CDC is still not adequate. The total jitter at the CDCM7005-SP output depends largely on the  
phase noise of the VCXO selected, as well as the CDCM7005-SP, and typically has 50–100 fs of rms jitter. If it is  
determined that the jitter from the CDCM7005-SP with a VCXO is sufficient without further conditioning, it is  
possible to clock the ADS5474 directly from the CDCM7005-SP using differential LVPECL outputs, as illustrated  
in Figure 38 (see the CDCM7005-SP data sheet for the exact schematic). This scenario may be more suitable for  
less than 150 MHz of input frequency where jitter is not as critical. A careful analysis of the required jitter is  
recommended before determining the proper approach.  
Low-Jitter Clock Distribution  
AMP and/or BPF are Optional  
Board Master  
Reference Clock  
(high or low jitter)  
10 MHz  
CLKIN  
BPF  
LVCMOS  
AMP  
XFMR  
REF  
CLKIN  
400 MHz  
ADC  
800 MHz (to transmit DAC)  
100 MHz (to DSP)  
ADS5474-SP  
LVPECL  
or  
LVCMOS  
Low-Jitter Oscillator  
800 MHz  
200 MHz (to FPGA)  
To Other  
VCXO  
CDC  
(Clock Distribution Chip)  
CDCM7005-SP  
This is an example block diagram.  
Consult the CDCM7005 data sheet for proper schematic and specifications regarding allowable input and output  
frequency and amplitude ranges.  
Figure 37. Optimum Jitter Clock Circuit  
Copyright © 2013, Texas Instruments Incorporated  
23  
 
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
Low-Jitter Clock Distribution  
400 MHz  
Board Master  
Reference Clock  
(high or low jitter)  
10 MHz  
CLKIN  
CLKIN  
LVPECL  
REF  
ADC  
800 MHz (to transmit DAC)  
100 MHz (to DSP)  
ADS5474-SP  
LVPECL  
or  
LVCMOS  
Low-Jitter Oscillator  
800 MHz  
200 MHz (to FPGA)  
To Other  
VCXO  
CDC  
(Clock Distribution Chip)  
CDCM7005-SP  
This is an example block diagram.  
Consult the CDCM7005 data sheet for proper schematic and specifications regarding allowable input and output  
frequency and amplitude ranges.  
Figure 38. Acceptable Jitter Clock Circuit  
Digital Outputs  
The ADC provides 14 LVDS-compatible, offset binary data outputs (D13 to D0; D13 is the MSB and D0 is the  
LSB), a data-ready signal (DRY), and an over-range indicator (OVR). It is recommended to use the DRY signal  
to capture the output data of the ADS5474. DRY is source-synchronous to the DATA/OVR outputs and operates  
at the same frequency, creating a half-rate DDR interface that updates data on both the rising and falling edges  
of DRY. It is recommended that the capacitive loading on the digital outputs be minimized. Higher capacitance  
shortens the data-valid timing window. The values given for timing (see Figure 2) were obtained with a measured  
10-pF parasitic board capacitance to ground on each LVDS line (or 5-pF differential parasitic capacitance). When  
setting the time relationship between DRY and DATA at the receiving device, it is generally recommended that  
setup time be maximized, but this partially depends on the setup and hold times of the device receiving the  
digital data (like an FPGA or Field Programmable Field Array). Since DRY and DATA are coincident, it will likely  
be necessary to delay either DRY or DATA such that setup time is maximized.  
Referencing Figure 2, the polarity of DRY with respect to the sample N data output transition is undetermined  
because of the unknown startup logic level of the clock divider that generates the DRY signal (DRY is a  
frequency divide-by-two of CLK). Either the rising or the falling edge of DRY will be coincident with sample N and  
the polarity of DRY could invert when power is cycled off/on or when the power-down pin is cycled. Data capture  
from the transition and not the polarity of DRY is recommended, but not required. If the synchronization of  
multiple ADS5474 devices is required, it might be necessary to use a form of the CLKIN signal rather than DRY  
to capture the data.  
The DRY frequency is identical on the ADS5474 and ADS5463 (where DRY equals ½ the CLK frequency), but  
different than it is on the pin-similar ADS5444 (where DRY equals the CLK frequency). The LVDS outputs all  
require an external 100-load between each output pair in order to meet the expected LVDS voltage levels. For  
long trace lengths, it may be necessary to place a 100-load on each digital output as close to the ADS5474 as  
possible and another 100-differential load at the end of the LVDS transmission line to provide matched  
impedance and avoid signal reflections. The effective load in this case reduces the LVDS voltage levels by half.  
The OVR output equals a logic high when the 14-bit output word attempts to exceed either all 0s or all 1s. This  
flag is provided as an indicator that the analog input signal exceeded the full-scale input limit of approximately  
2.2 VPP (± gain error). The OVR indicator is provided for systems that use gain control to keep the analog input  
signal within acceptable limits.  
24  
Copyright © 2013, Texas Instruments Incorporated  
ADS5474-SP  
www.ti.com.cn  
ZHCSBJ5 SEPTEMBER 2013  
Power Supplies  
The ADS5474 uses three power supplies. For the analog portion of the design, a 5-V and 3.3-V supply (AVDD5  
and AVDD3) are used, while the digital portion uses a 3.3-V supply (DVDD3). The use of low-noise power  
supplies with adequate decoupling is recommended. Linear supplies are preferred to switched supplies; switched  
supplies tend to generate more noise components that can be coupled to the ADS5474. The user may be able to  
supply power to the device with a less-than-ideal supply and still achieve good performance. It is not possible to  
make a single recommendation for every type of supply and level of decoupling for all systems. The power  
consumption of the ADS5474 does not change substantially over clock rate or input frequency as a result of the  
architecture and process.  
Because there are two diodes connected in reverse between AVDD3 and DVDD3 internally, a power-up  
sequence is recommended. When there is a delay in power up between these two supplies, the one that lags  
could have current sinking through an internal diode before it powers up. The sink current can be large or small  
depending on the impedance of the external supply and could damage the device or affect the supply source.  
The best power up sequence is one of the following options (regardless of when AVDD5 powers up):  
1) Power up both AVDD3 and DVDD3 at the same time (best scenario), OR  
2) Keep the voltage difference less than 0.8V between AVDD3 and DVDD3 during the power up (0.8V is not a  
hard specification - a smaller delta between supplies is safer).  
If the above sequences are not practical then the sink current from the supply needs to be controlled or  
protection added externally. The max transient current (on the order of μsec) for DVDD3 or AVDD3 pin is 500mA  
to avoid potential damage to the device or reduce its lifetime.  
Values for analog and clock input given in the Absolute Maximum Ratings are valid when the supplies are on.  
When the power supplies are off and the clock or analog inputs are still alive, the input voltage and current needs  
to be limited to avoid device damage. If the ADC supplies are off, the max/min continuous DC voltage is +/- 0.95  
V and max DC current is 20 mA for each input pin (clock or analog), relative to ground.  
Figure 39. PSRR vs Supply Injected Frequency  
0
-10  
-20  
-30  
-40  
-50  
AVDD3  
AVDD5  
-60  
-70  
-80  
-90  
DVDD3  
-100  
-110  
-120  
0.1  
1
10  
Frequency (MHz)  
100  
1000  
Copyright © 2013, Texas Instruments Incorporated  
25  
ADS5474-SP  
ZHCSBJ5 SEPTEMBER 2013  
www.ti.com.cn  
DEFINITION OF SPECIFICATIONS  
The injected frequency level is translated into dBFS,  
the spur in the output FFT is measured in dBFS, and  
the difference is the PSRR in dB. The measurement  
calibrates out the benefit of the board supply  
decoupling capacitors.  
Analog Bandwidth  
The analog input frequency at which the power of the  
fundamental is reduced by 3 dB with respect to the  
low-frequency value.  
Signal-to-Noise Ratio (SNR)  
Aperture Delay  
SNR is the ratio of the power of the fundamental (PS)  
to the noise floor power (PN), excluding the power at  
dc and in the first five harmonics.  
The delay in time between the rising edge of the input  
sampling clock and the actual time at which the  
sampling occurs.  
P
10  
P
S
SNR + 10log  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
N
(4)  
SNR is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used  
as the reference, or dBFS (dB to full-scale) when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Clock Pulse Duration/Duty Cycle  
The duty cycle of a clock signal is the ratio of the time  
the clock signal remains at a logic high (clock pulse  
duration) to the period of the clock signal, expressed  
as a percentage.  
Signal-to-Noise and Distortion (SINAD)  
SINAD is the ratio of the power of the fundamental  
(PS) to the power of all the other spectral components  
including noise (PN) and distortion (PD), but excluding  
dc.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions at analog input  
values spaced exactly 1 LSB apart. DNL is the  
deviation of any single step from this ideal value,  
measured in units of LSB.  
P
S
Common-Mode Rejection Ratio (CMRR)  
SINAD + 10log  
10  
P
) P  
CMRR measures the ability to reject signals that are  
presented to both analog inputs simultaneously. The  
injected common-mode frequency level is translated  
into dBFS, the spur in the output FFT is measured in  
dBFS, and the difference is the CMRR in dB.  
N
D
(5)  
SINAD is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used  
as the reference, or dBFS (dB to full-scale) when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Effective Number of Bits (ENOB)  
ENOB is a measure in units of bits of converter  
performance as compared to the theoretical limit  
based on quantization noise:  
Temperature Drift  
Temperature drift (with respect to gain error and  
offset error) specifies the change from the value at  
ENOB = (SINAD – 1.76)/6.02  
(3)  
the nominal temperature to the value at TMIN or TMAX  
.
It is computed as the maximum variation the  
parameters over the whole temperature range divided  
Gain Error  
Gain error is the deviation of the ADC actual input  
full-scale range from its ideal value, given as a  
percentage of the ideal input full-scale range.  
by TMIN – TMAX  
.
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS)  
to the power of the first five harmonics (PD).  
Integral Nonlinearity (INL)  
INL is the deviation of the ADC transfer function from  
a best-fit line determined by a least-squares curve fit  
of that transfer function. The INL at each analog input  
value is the difference between the actual transfer  
function and this best-fit line, measured in units of  
LSB.  
P
10  
P
S
THD + 10log  
D
(6)  
THD is typically given in units of dBc (dB to carrier).  
Two-Tone Intermodulation Distortion (IMD3)  
IMD3 is the ratio of the power of the fundamental (at  
frequencies f1, f2) to the power of the worst spectral  
component at either frequency 2f1 – f2 or 2f2 – f1).  
IMD3 is given in units of either dBc (dB to carrier)  
when the absolute power of the fundamental is used  
as the reference, or dBFS (dB to full-scale) when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Offset Error  
Offset error is the deviation of output code from mid-  
code when both inputs are tied to common-mode.  
Power-Supply Rejection Ratio (PSRR)  
PSRR is a measure of the ability to reject frequencies  
present on the power supply.  
26  
Copyright © 2013, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY