ADS131A04IPBS [TI]

24 位 128kSPS 4 通道同步采样 Δ-Σ ADC | PBS | 32 | -40 to 125;
ADS131A04IPBS
型号: ADS131A04IPBS
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24 位 128kSPS 4 通道同步采样 Δ-Σ ADC | PBS | 32 | -40 to 125

文件: 总92页 (文件大小:1854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
ADS131A0x 双通道或四通道 24 128kSPS 同步采样 Δ-Σ ADC  
1 特性  
3 说明  
1
双通道或四通道同步采样差分输入  
数据速率:高达 128kSPS  
高性能:  
ADS131A02 ADS131A04 器件为双通道和四通道同  
步采样 24 ΔΣ 模数转换器 (ADC)ADS131A02 或  
ADS131A04 具有宽动态范围、最高 128kSPS 的可扩  
展数据速率以及内置故障监控器等特性,这使得它非常  
适合能源监控、电网保护和控制等 应用。ADC 输入端  
可以单独直接接入电阻分压器网络、电流互感器或  
Rogowski 线圈,以测量电压或电流。这两款器件具有  
灵活的电源选项(包括内部负电荷泵),可最大限度提  
高有效分辨率,非常适合宽动态范围 应用。  
单通道精度:在 10,000:1 动态范围内优于  
0.1%  
有效分辨率:20.6(8kSPS)  
总谐波失真 (THD)50Hz 60Hz 频率下为  
-100dB  
集成的负电荷泵 允许绝对输入电压低于接地值  
灵活的模拟电源选项:  
这两款器件提供异步和同步主从接口选项,可为多个器  
件串联而成的单一系统灵活实施 ADC 配置。接口上配  
有多种接口检查、ADC 启动检查和数据完整性检查功  
能,可报告 ADC 中的错误以及数据传输期间的错误。  
采用负电荷泵:3.0V 3.45V  
单极电源:3.3V 5.5V  
双极电源:±2.5V  
数字电源:1.65V 3.6V  
这种完整的模拟前端 (AFE) 解决方案采用 32 引脚  
TQFP 封装,其额定工业温度范围为 -40°C +125°  
C。  
低温漂内部基准电压:6ppm/°C  
模数转换器 (ADC) 自检  
通信时的循环冗余校验 (CRC) 和汉明码错误校正  
多个 SPI数据接口模式:  
器件信息(1)  
异步中断  
器件型号  
ADS131A0x  
封装  
TQFP (32)  
封装尺寸(标称值)  
同步主从接口  
5.00mm x 5.00mm  
封装:32 引脚 TQFP  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
工作温度范围:  
-40°C +125°C  
简化框图  
AVDD  
IOVDD  
REFP REFN  
REFEXT  
2 应用  
Reference  
Mux  
电源保护:断路器和继电器保护  
Voltage  
Reference  
Out-of-Range  
Detect  
电能计量:单相、多相、电能质量  
测试和测量  
M[2:0]  
RESET  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
电池测试系统  
DS ADC  
CS  
Control and  
Serial Interface  
数据采集系统  
SCLK  
DIN  
DOUT  
DRDY  
DS ADC  
Watchdog  
Timer  
DONE  
DS ADC  
DS ADC  
Data Integrity  
CLK/XTAL  
Negative  
Charge  
Pump  
XTAL1/CLKIN  
XTAL2  
GND  
VNCP  
AVSS  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS590  
 
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 25  
9.3 Feature Description................................................. 26  
9.4 Device Functional Modes........................................ 34  
9.5 Programming........................................................... 36  
9.6 Register Maps ........................................................ 55  
10 Application and Implementation........................ 67  
10.1 Application Information.......................................... 67  
10.2 Typical Application ................................................ 74  
10.3 Do's and Don'ts..................................................... 76  
10.4 Initialization Set Up .............................................. 78  
11 Power Supply Recommendations ..................... 80  
11.1 Negative Charge Pump......................................... 80  
11.2 Internal Digital LDO............................................... 80  
11.3 Power-Supply Sequencing.................................... 80  
11.4 Power-Supply Decoupling..................................... 81  
12 Layout................................................................... 82  
12.1 Layout Guidelines ................................................. 82  
12.2 Layout Example .................................................... 83  
13 器件和文档支持 ..................................................... 84  
13.1 文档支持 ............................................................... 84  
13.2 相关链接................................................................ 84  
13.3 接收文档更新通知 ................................................. 84  
13.4 社区资源................................................................ 84  
13.5 ....................................................................... 84  
13.6 静电放电警告......................................................... 84  
13.7 Glossary................................................................ 84  
14 机械、封装和可订购信息....................................... 84  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 5  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 9  
7.6 Timing Requirements: Asynchronous Interrupt  
Interface Mode ......................................................... 12  
7.7 Switching Characteristics: Asynchronous Interrupt  
Interface Mode ......................................................... 12  
7.8 Timing Requirements: Synchronous Master Interface  
Mode ........................................................................ 13  
7.9 Switching Characteristics: Synchronous Master  
Interface Mode ......................................................... 13  
7.10 Timing Requirements: Synchronous Slave Interface  
Mode ........................................................................ 14  
7.11 Switching Characteristics: Synchronous Slave  
Interface Mode ......................................................... 14  
7.12 Typical Characteristics.......................................... 17  
Parameter Measurement Information ................ 22  
8.1 Noise Measurements .............................................. 22  
Detailed Description ............................................ 25  
9.1 Overview ................................................................. 25  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (November 2016) to Revision D  
Page  
已更改 将文档标题从双通道或四通道 24 位同步采样 Δ-Σ ADC 更改为双通道或四通道 24 128kSPS 同步采样 Δ-Σ ADC 1  
已更改 VAVDD 改为 AVDDVAVSS 改为 AVSSVGND 改为 GND,且 VIOVDD 改为 IOVDD(全文通改............................... 1  
已更改 特性部分...................................................................................................................................................................... 1  
已更改 说明 部分中) ............................................................................................................................................................. 1  
Deleted footnote 2 ................................................................................................................................................................. 6  
Changed AVDD, AVSS, VNCP, and XTAL2 pin descriptions and footnote 1 for clarity ....................................................... 6  
Changed CAP to GND Power supply voltage parameter specifications from GND – 0.3 V to 0.3 V for the minimum  
specification and from GND + 2.0 V to 2.0 V for the maximum specification ........................................................................ 7  
Changed Analog input voltage parameter descriptions from REFEXT to AVDD to REFEXT and from REFN input to  
AVSS to REFN ....................................................................................................................................................................... 7  
Changed Digital input voltage parameter description to include the names of the digital input pins..................................... 7  
Deleted CMRR footnote from Recommended Operating Conditions table............................................................................ 8  
Added symbol to Reference input voltage parameter ............................................................................................................ 8  
Changed Offset drift parameter typical specification from 1.2 µV/°C to 2.5 µV/°C and maximum specification from 3  
µV/°C to 4 µV/°C..................................................................................................................................................................... 9  
Changed Gain drift parameter typical specification from 0.25 ppm/°C to 0.5 ppm/°C .......................................................... 9  
Deleted separate AVDD PSRR specification for the ADS131A02 ........................................................................................ 9  
2
版权 © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
修订历史记录 (接下页)  
Changed Reference buffer offset parameter typical specification from 170 µV to 250 µV .................................................... 9  
Changed Reference buffer offset drift parameter typical specification from 1.1 µV/°C to 4 µV/°C and maximum  
specification from 4.3 µV/°C to 7 µV/°C ................................................................................................................................. 9  
Changed Temperature drift parameter typical specification from 4 ppm/°C to 6 ppm/°C .................................................... 10  
Deleted VNCP parameter minimum specification and changed typical specification from –1.95 V to –2 V........................ 10  
Changed Electrical Characteristics table so all Power-Supply subsections are condensed to one Power-Supply  
subsection............................................................................................................................................................................. 10  
Changed free-air to ambient in condition statements of Timing Requirements tables......................................................... 12  
Changed location of several interface timing parameters to the Timing Requirements and Switching Characteristics  
tables from the Detailed Description section ....................................................................................................................... 12  
Changed unit from ns to tCLKIN in tc(SC) and tw(SCHL) rows of Timing Requirements: Synchronous Master Interface  
Mode table............................................................................................................................................................................ 13  
Added DRDY Synchronization Timing for Synchronous Slave Mode (CLKSRC = 0) to RESET Pin and Command  
Timing figures ....................................................................................................................................................................... 16  
Changed Clock section for clarification and changed setting of XTAL2 pin ........................................................................ 26  
Changed Clock Mode Configurations figure to include load capacitors for clarity ............................................................... 27  
Changed Analog Input section for clarity.............................................................................................................................. 28  
Changed Equivalent Analog Input Circuitry figure................................................................................................................ 28  
Changed Input Overrange and Underrange Detection section for clarity ............................................................................ 30  
Changed location of Reference section .............................................................................................................................. 30  
Changed External Reference Driver figure........................................................................................................................... 31  
Changed Internal Reference figure ..................................................................................................................................... 31  
Changed Digital Decimation Filter section for clarity............................................................................................................ 32  
Deleted figure and table from Reset (RESET) section......................................................................................................... 35  
Changed Fixed versus Dynamic-Frame Mode section for clarity......................................................................................... 36  
Added Cyclic Redundancy Check (CRC) section for clarity................................................................................................. 39  
Changed CRC with CRC_MODE = 0 and CRC Using the WREGS Command figures to using red shading instead of  
//Zero .................................................................................................................................................................................... 39  
Changed Data Ready (DRDY) section for clarity ................................................................................................................. 43  
Changed pulldown to pullup in bulleted list of ADC Frame Complete (DONE) section ...................................................... 47  
Changed description of UNLOCK from POR or RESET section.......................................................................................... 52  
Changed description of RREG: Read a Single Register section ......................................................................................... 52  
Changed number of registers written plus one (n+1) to number of registers written minus one in WREGS: Write  
Multiple Registers section..................................................................................................................................................... 54  
Changed User Register Description section for clarity......................................................................................................... 56  
Changed Unused Inputs and Outputs section for clarity...................................................................................................... 67  
Changed title of Multiple Device Configuration section and changed description for clarity ............................................... 68  
Changed first paragraph of First Device Configured in Asynchronous Interrupt Mode to condense data from last  
three paragraphs into one ................................................................................................................................................... 68  
Changed description of First Device Configured in Synchronous Master Mode section to condense all paragraphs  
into one................................................................................................................................................................................. 70  
Changed description of All Devices Configured in Synchronous Slave Mode section to condense all paragraphs into  
one ....................................................................................................................................................................................... 72  
Changed ADS131A0x Configuration Sequence figure......................................................................................................... 79  
Changed GND to AVSS in VNCP pin description of Negative Charge Pump section......................................................... 80  
Changed title of Internal Digital LDO section ....................................................................................................................... 80  
Changed description of Power-Supply Sequencing section................................................................................................. 80  
Changed Bipolar Analog Power Supply to Unipolar Analog Power Supply with Negative Charge Pump Enabled figures. 81  
版权 © 2016–2018, Texas Instruments Incorporated  
3
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
修订历史记录 (接下页)  
Changed first sentence of Layout Example section ............................................................................................................. 83  
Changed ADS131A0x Layout Example figure to improve layout......................................................................................... 83  
Changes from Revision B (September 2016) to Revision C  
Page  
已更改 将文档标题从用于电源监视、控制和保护的模拟前端更改为同步采样 Δ-Σ ADC......................................................... 1  
已更改 将噪声性能特性 中第二个子项目符号从ENOB 更改为有效分辨率.............................................................................. 1  
已更改 有效位数改为有效分辨率(说明部分 .......................................................................................................................... 1  
Changed format of Absolute Maximum Ratings table; specification values did not change.................................................. 7  
Changed title of Multiple Device Effective Resolution Histogram figure .............................................................................. 17  
Changed Noise Measurements section ............................................................................................................................... 22  
Changes from Revision A (March 2016) to Revision B  
Page  
ADS131A02 发布为生产数据 ............................................................................................................................................. 1  
Changed AC Performance, PSRR, THD, and SFDR parameters in Electrical Characteristics table: added rows for  
ADS131A02 and added ADS131A04 to rows specific to that device ................................................................................... 9  
Changed title of Figure 31 and Figure 32: added ADS131A04 ........................................................................................... 20  
Added Figure 33 and Figure 34 ........................................................................................................................................... 21  
Changed Noise Measurements section: changed Equation 1, Equation 2, Table 1, and Table 3 ...................................... 22  
Added footnote to Figure 43 ................................................................................................................................................ 31  
Changed R2 and R3 values in footnote of Figure 44 .......................................................................................................... 31  
Changed Cyclic Redundancy Check (CRC) section ............................................................................................................ 39  
Changed description of M2 pin functionality in Hamming Code Error Correction section ................................................... 40  
Changed description of M0 pin functionality in SPI Interface section .................................................................................. 42  
Changed first command status response value in RREGS: Read Multiple Registers section............................................. 52  
Changed Table 15: changed register bits of row 00h, default setting and register bits of row 01h, and changed bits  
2-0 of 11h, 12h, 13h, and 14h rows .................................................................................................................................... 55  
Changed ID_MSB: ID Control Register MSB and ID_LSB: ID Control Register LSB registers........................................... 56  
Changed bits 2-0 of all ADCx: ADC Channel Digital Gain Configuration Registers ............................................................ 66  
Changes from Original (March 2016) to Revision A  
Page  
ADS131A04 发布为生产数据 ............................................................................................................................................. 1  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
5 Device Comparison Table  
PRODUCT  
ADS131A02  
ADS131A04  
NO. OF ADC CHANNELS  
MAXIMUM SAMPLE RATE (kSPS)  
2
4
128  
128  
6 Pin Configuration and Functions  
ADS131A02: PBS Package  
32-Pin TQFP  
ADS131A04: PBS Package  
32-Pin TQFP  
Top View  
Top View  
32 31 30 29 28 27 26 25  
32 31 30 29 28 27 26 25  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
NC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
NC  
CS  
CS  
SCLK  
DOUT  
DIN  
SCLK  
DOUT  
DIN  
ADS131A02  
ADS131A04  
NC  
DRDY  
DONE  
RESET  
DRDY  
DONE  
RESET  
NC  
NC  
9
10 11 12 13 14 15 16  
9
10 11 12 13 14 15 16  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ADS131A02  
ADS131A04  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
AVDD  
AVSS  
1
2
1
2
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Supply  
Negative analog input 1  
Positive analog input 1  
Negative analog input 2  
Positive analog input 2  
Negative analog input 3  
Positive analog input 3  
Negative analog input 4  
Positive analog input 4  
3
3
4
4
9
5
6
7
8
9
Positive analog power supply. Connect a 1-µF capacitor to AVSS.  
Negative analog power supply  
10  
10  
Supply  
Digital low-dropout (LDO) regulator output. Connect a 1-µF  
capacitor to GND.  
CAP  
CS  
28  
23  
28  
23  
Analog output  
Digital input  
Chip select; active low  
(1) See the Unused Inputs and Outputs section for unused pin connections.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION(1)  
NAME  
ADS131A02  
ADS131A04  
DIN  
20  
18  
21  
20  
18  
21  
Digital input  
Digital output Communication done signal; active low  
Digital output Serial data output. Connect a 100-kΩ pullup resistor to IOVDD.  
Serial data input  
DONE  
DOUT  
Digital  
input/output  
Data ready; active low; host interrupt and synchronization for multi-  
devices  
DRDY  
GND  
19  
19  
27  
15  
29  
27  
15  
29  
Supply  
Digital ground  
IOVDD  
Supply  
Digital I/O supply voltage. Connect a 1-µF capacitor to GND.  
Serial peripheral interface (SPI) configuration mode.  
IOVDD: Asynchronous interrupt mode  
GND: Synchronous master mode  
No connection: Synchronous slave mode; use for multi-device  
mode  
M0(2)  
30  
30  
Digital input  
Digital input  
SPI word transfer size.  
IOVDD: 32 bit  
GND: 24 bit  
M1(2)  
31  
32  
31  
32  
No connection: 16 bit  
Hamming code enable.  
IOVDD: Hamming code word validation on  
GND: Hamming code word validation off  
No connection: reserved; do not use  
M2(2)  
Digital input  
NC  
NC  
5-8  
24  
Leave floating or connect directly to AVSS.  
24  
Digital output No connection  
Buffered external reference voltage input.  
REFEXT  
14  
14  
Analog input  
Connect a 1-µF capacitor to AVSS when using the internal  
reference.  
REFN  
REFP  
13  
12  
13  
12  
Analog input  
Negative reference voltage. Connect to AVSS.  
Positive reference voltage output. Connect a 1-µF capacitor to  
REFN.  
Analog output  
RESET  
RESV  
17  
16  
17  
16  
Digital input  
Digital input  
System reset; active low  
Reserved pin; connect to IOVDD  
Digital  
input/output  
SCLK  
22  
22  
Serial data clock  
Negative charge pump voltage output.  
Connect a 270-nF capacitor to AVSS when enabling the negative  
charge pump. Connect directly to AVSS if the negative charge  
pump is unused.  
VNCP  
11  
11  
Analog output  
XTAL1/CLKIN  
XTAL2  
25  
26  
25  
26  
Digital input  
Master clock input, crystal oscillator buffer input  
Crystal oscillator connection. Leave this pin unconnected if the  
crystal oscillator is unused.  
Digital output  
(2) Mode signal states are latched following a power-on-reset (POR). Tie these pins high or low with a resistance less than 1-kΩ resistor.  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
3.6  
UNIT  
AVDD to AVSS (charge pump enabled)  
AVDD to AVSS (charge pump disabled)  
–0.3  
6.0  
IOVDD to GND  
–0.3  
3.9  
Power supply voltage  
AVSS to GND  
–3.0  
0.3  
V
VNCP to AVSS  
–2.5  
0.3  
VNCP to AVDD  
–6.0  
0.3  
CAP to GND  
–0.3  
2.0  
Analog input voltage (charge pump enabled)  
AVSS – 1.65  
AVSS – 0.3  
AVSS – 0.3  
AVSS – 0.05  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVSS + 0.05  
Analog input voltage (charge pump disabled)  
Analog input voltage  
V
REFEXT  
REFN  
CS, DIN, DRDY, RESET, SCLK, XTAL1/CLKIN,  
M0, M1, M2, RESV  
Digital input voltage  
Input current  
GND – 0.3  
–10  
IOVDD + 0.3  
V
Continuous, any pin except supply pins  
Junction, TJ  
10  
mA  
150  
150  
Temperature  
°C  
Storage, Tstg  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
Negative Charge Pump Enabled (VNCPEN(1) = 1)  
AVDD to AVSS  
3.0  
3.0  
3.3  
3.3  
0
3.45  
3.45  
0.05  
3.6  
Analog supply voltage  
AVDD to GND  
AVSS to GND  
IOVDD to GND  
V
V
–0.05  
1.65  
Digital supply voltage(2)  
3.3  
Negative Charge Pump Disabled (VNCPEN = 0)  
AVDD to AVSS  
AVDD to GND  
AVSS to GND  
IOVDD to GND  
3.0  
1.5  
5.0  
2.5  
5.5  
5.5  
Analog supply voltage  
V
V
–2.75  
1.65  
–2.5  
3.3  
0.05  
3.6  
Digital supply voltage(2)  
ANALOG INPUTS  
VIN  
Differential input voltage  
VIN = VAINxP – VAINxN  
–VREF / Gain  
AVSS  
VREF / Gain  
AVDD  
V
V
V
V
VCM  
Common-mode input voltage  
VNCPEN = 0  
VNCPEN = 1  
AVSS  
AVDD  
VAINxP, VAINxN Absolute input voltage  
AVSS – 1.5  
AVDD  
EXTERNAL REFERENCE  
VREF  
Reference input voltage  
REFEXT – REFN  
2.0  
2.5 AVDD – 0.5  
AVSS  
VREFN + 2.0 VREFN + 2.5 AVDD – 0.5  
V
V
V
VREFN  
VREFEXT  
Reference negative input  
External reference positive input  
EXTERNAL CLOCK SOURCE  
IOVDD > 2.7 V  
0.4  
0.4  
16.384  
8.192  
25  
15.6  
16.5  
fCLKIN External clock input frequency  
MHz  
MHz  
IOVDD 2.7 V  
XTAL clock frequency(3)  
SCLK input to derive fMOD  
16.384  
CLKSRC bit = 1, fSCLK = fICLK  
IOVDD > 2.7 V  
,
,
0.2  
0.2  
16.384  
8.192  
25  
fSCLK  
MHz  
CLKSRC bit = 1, fSCLK = fICLK  
IOVDD 2.7 V  
15.6  
DIGITAL INPUTS  
Digital input voltage  
GND  
–40  
IOVDD  
125  
V
TEMPERATURE  
TA  
Operating ambient temperature  
°C  
(1) VNCPEN is bit 7 of the A_SYS_CFG register.  
(2) Tie IOVDD to the CAP pin if IOVDD 2.0 V.  
(3) Set IOVDD > 3.0 V to use a crystal across the XTAL1/CLKIN and XTAL2 pins.  
7.4 Thermal Information  
ADS131A0x  
PBS (TQFP)  
32 PINS  
77.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.0  
30.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
30.0  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
7.5 Electrical Characteristics  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C. All  
specifications are at IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF  
2.442 V, fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, and gain = 1 (unless otherwise noted).  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
Cs  
Zin  
Input capacitance  
3.5  
pF  
Differential input impedance  
fMOD = 4.096 MHz  
130  
kΩ  
ADC PERFORMANCE  
Resolution  
24  
Bits  
Gain  
1, 2, 4, 8, 16  
1
Data rate  
fMOD = 4.096 MHz  
128  
kSPS  
DC PERFORMANCE  
105  
111  
115  
dB  
AVDD – AVSS = 5 V, VREF = 4 V, VNCPEN bit = 0  
Dynamic range  
See Noise Measurements  
All other settings  
Best fit  
section  
INL  
Integral nonlinearity  
Offset error  
Offset drift  
8
500  
20  
4
ppm  
µV  
2.5  
µV/°C  
% of FS  
ppm/°C  
Gain error  
Excluding voltage reference and reference buffer error  
Excluding voltage reference and reference buffer error  
±0.03  
0.5  
Gain drift  
2
AC PERFORMANCE  
CMRR  
Common-mode rejection ratio  
fCM = 50 Hz or 60 Hz  
100  
80  
dB  
dB  
dB  
AVDD supply, fPS = 50 Hz and 60 Hz  
IOVDD supply, fPS = 50 Hz and 60 Hz  
fIN = 50 Hz and 60 Hz  
PSRR  
Power-supply rejection ratio  
Crosstalk  
105  
–125  
fIN = 50 Hz or 60 Hz, VREF = 2.442 V, VIN = –20 dBFS,  
normalized  
111  
115  
SNR  
Signal-to-noise ratio  
dB  
fIN = 50 Hz or 60 Hz, VREF = 4.0 V, VIN = –20 dBFS,  
normalized  
fIN = 50 Hz or 60 Hz (up to 50 harmonics), VIN = –0.5 dBFS,  
ADS131A02  
–101.5  
THD  
Total harmonic distortion  
Signal-to-noise + distortion  
Spurious-free dynamic range  
dB  
dB  
dB  
fIN = 50 Hz or 60 Hz (up to 50 harmonics), VIN = –0.5 dBFS,  
ADS131A04  
–103.5  
101  
SINAD  
SFDR  
fIN = 50 Hz or 60 Hz (up to 50 harmonics), VIN = –0.5 dBFS  
fIN = 50 Hz or 60 Hz (up to 50 harmonics), VIN = –0.5 dBFS,  
ADS131A02  
102.5  
fIN = 50 Hz or 60 Hz (up to 50 harmonics), VIN = –0.5 dBFS,  
ADS131A04  
105  
EXTERNAL REFERENCE  
Reference buffer offset  
TA = 25°C  
250  
4
µV  
µV/°C  
MΩ  
Reference buffer offset drift  
REFEXT input impedance  
–40°C TA +125°C  
7
50  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C. All  
specifications are at IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF  
2.442 V, fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, and gain = 1 (unless otherwise noted).  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL REFERENCE VOLTAGE (REFP – REFN)  
VREF_4V bit = 0  
2.442  
4.0  
VREF  
Reference output voltage  
V
VREF_4V bit = 1, AVDD – AVSS > 4.5 V  
Accuracy  
±0.1%  
6
Temperature drift  
Including reference buffer drift, –40°C TA +125°C  
REFEXT = 1-µF to AVSS, settled to 1%  
20 ppm/°C  
0.2  
Start-up time  
REFEXT = 1-µF to AVSS, settled to 0.1%  
REFEXT = 1-µF to AVSS, settled to 0.01%  
1.2  
ms  
µA  
250  
100  
REFP source capability  
EXTERNAL CLOCK SOURCE  
Internal ICLK frequency (SCLK output  
fICLK  
CLKSRC bit = 0  
0.2  
8.192  
12.5  
MHz  
MHz  
in master mode)  
VNCPEN bit = 0  
High-resolution mode  
0.1  
0.512  
0.1  
4.096  
4.096  
1.024  
1.024  
4.25  
4.25  
1.05  
1.05  
VNCPEN bit = 1  
fMOD  
ADC modulator frequency  
VNCPEN bit = 0  
Low-power mode  
VNCPEN bit = 1  
0.512  
DIGITAL INPUT/OUTPUT  
VIH  
VIL  
High-level input voltage  
0.8 IOVDD  
GND  
IOVDD  
V
V
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
0.2 IOVDD  
VOH  
VOL  
IIN  
IOH = 1 mA  
0.8 IOVDD  
V
IOL = –1 mA  
0.2 IOVDD  
10  
V
0 V < VDigital Input < IOVDD  
–10  
μA  
POWER-SUPPLY  
VNCP Negative charge pump output voltage  
–2  
–1.65  
V
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
3.2  
ADS131A02, high-resolution  
mode  
Negative charge pump  
disabled  
3
4
4
3.75  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
AVDD current  
mA  
ADS131A04, high-resolution  
mode  
Negative charge pump  
disabled  
4.7  
ADS131A02, low-power mode  
ADS131A04, low-power mode  
0.9  
1.1  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
0.6  
0.6  
0.8  
0.8  
ADS131A02, high-resolution  
mode  
Negative charge pump  
disabled  
0.8  
1.0  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
IOVDD current  
mA  
ADS131A04, high-resolution  
mode  
Negative charge pump  
disabled  
ADS131A02, low-power mode  
ADS131A04, low-power mode  
0.5  
0.5  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Electrical Characteristics (continued)  
Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C. All  
specifications are at IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF  
2.442 V, fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, and gain = 1 (unless otherwise noted).  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
12.5  
ADS131A02, high-resolution  
mode  
Negative charge pump  
disabled  
17  
15.8  
22.7  
4.6  
21  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
ADS131A04, high-resolution  
mode  
Negative charge pump  
disabled  
26.8  
Power dissipation  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
mW  
ADS131A02, low-power  
mode  
Negative charge pump  
disabled  
6.5  
AVDD = 3.3 V, AVSS = 0 V,  
negative charge pump  
enabled  
5.3  
ADS131A04, low-power  
mode  
Negative charge pump  
disabled  
7.2  
2.6  
Standby mode, fCLKIN = 16.384 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
7.6 Timing Requirements: Asynchronous Interrupt Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
64  
88  
32  
44  
16  
5
MAX  
MIN  
40  
56  
20  
28  
16  
4
MAX  
UNIT  
Single device  
tc(CLKIN)  
External clock period  
ns  
Multiple device chaining  
Single device  
Pulse duration,  
CLKIN high or low  
tw(CP)  
ns  
Multiple device chaining  
td(CSSC)  
td(SCS)  
Delay time, CS falling edge to first SCLK rising edge  
Delay time, SCLK falling edge to CS falling edge  
ns  
ns  
Single device  
SCLK period  
64  
88  
32  
44  
5
40  
64  
20  
32  
5
tc(SC)  
ns  
ns  
Multiple device chaining  
Single device  
Pulse duration,  
tw(SCHL)  
SCLK high or low  
Multiple device chaining  
td(SCCS)  
tsu(DI)  
Delay time, final SCLK falling edge to CS rising edge  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Pulse duration, CS high  
ns  
ns  
ns  
ns  
ns  
5
5
th(DI)  
8
8
tw(CSH)  
tw(RSL)  
20  
800  
15  
800  
Pulse duration, RESET low  
7.7 Switching Characteristics: Asynchronous Interrupt Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
MAX  
MIN  
MAX  
UNIT  
Propagation delay time,  
first SCLK rising edge to DOUT driven  
tp(SCDOD)  
tp(SCDO)  
28  
26  
15  
ns  
Propagation delay time,  
SCLK rising edge to valid new DOUT  
15  
ns  
HIZDLY = 00  
6
8
30  
37  
43  
47  
33  
39  
44  
48  
6
8
20  
27  
43  
47  
21  
27  
32  
36  
HIZDLY = 01  
HIZDLY = 10  
HIZDLY = 11  
DNDLY = 00  
DNDLY = 01  
DNDLY = 10  
DNDLY = 11  
Hold time, last SCLK falling edge  
to DOUT 3-state  
th(LSB)  
ns  
10  
12  
6
10  
12  
6
8
8
Propagation delay time, SCLK  
falling edge to DONE falling edge  
tp(DN)  
ns  
10  
12  
10  
12  
Propagation delay time,  
CS rising edge to DONE rising edge  
tp(CSDN)  
tp(CSDR)  
td(RSSC)  
32  
32  
ns  
tICLK  
ms  
Propagation delay time,  
CS rising edge to DRDY rising edge  
2.0  
2.0  
Delay time,  
RESET rising edge to READY response  
4.5  
4.5  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
7.8 Timing Requirements: Synchronous Master Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
64  
88  
32  
44  
2
MAX  
MIN  
40  
56  
20  
28  
2
MAX  
UNIT  
Single device  
tc(CLKIN)  
External clock period  
ns  
Multiple device chaining  
Single device  
Pulse duration,  
CLKIN high or low  
tw(CP)  
ns  
Multiple device chaining  
tc(SC)  
SCLK period  
tCLKIN  
tCLKIN  
ns  
tw(SCHL)  
tsu(DI)  
th(DI)  
Pulse duration, SCLK high or low  
1
1
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Pulse duration, RESET low  
5
5
8
8
ns  
tw(RSL)  
800  
800  
ns  
7.9 Switching Characteristics: Synchronous Master Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
MAX  
MIN  
MAX  
UNIT  
Propagation delay time,  
first SCLK rising edge to DOUT driven  
tp(SCDOD)  
tp(SCDO)  
tp(SDR)  
28  
15  
15  
ns  
Propagation delay time,  
SCLK rising edge to valid new DOUT  
26  
ns  
ns  
Propagation delay time,  
SCLK falling edge to DRDY falling edge  
31  
20  
HIZDLY = 00  
6
8
30  
37  
43  
47  
33  
39  
44  
48  
6
8
20  
27  
43  
47  
21  
27  
32  
36  
HIZDLY = 01  
HIZDLY = 10  
HIZDLY = 11  
DNDLY = 00  
DNDLY = 01  
DNDLY = 10  
DNDLY = 11  
Hold time, last SCLK falling edge  
to DOUT 3-state  
th(LSB)  
ns  
ns  
10  
12  
6
10  
12  
6
8
8
Propagation delay time, SCLK  
falling edge to DONE falling edge  
tp(DN)  
10  
12  
10  
12  
Propagation delay time,  
CS rising edge to DONE rising edge  
tp(CSDN)  
tp(DRS)  
32  
17  
32  
15  
ns  
ns  
Delay time,  
last SCLK rising edge to DRDY rising edge  
Delay time,  
RESET rising edge to READY response  
td(RSSC)  
4.5  
4.5  
ms  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
7.10 Timing Requirements: Synchronous Slave Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
64  
88  
32  
44  
6
MAX  
MIN  
40  
56  
20  
28  
4
MAX  
UNIT  
Single device  
tc(CLKIN)  
External clock period(1)  
ns  
Multiple device chaining  
Single device  
Pulse duration,  
tw(CP)  
ns  
CLKIN high or low(1)  
Multiple device chaining  
td(SCS)  
Delay time, SCLK falling edge to CS falling edge  
Delay time, CS falling edge to first SCLK rising edge  
ns  
ns  
td(CSSC)  
16  
64  
88  
32  
44  
5
16  
40  
64  
20  
32  
5
Single device  
SCLK period  
tc(SC)  
ns  
ns  
Multiple device chaining  
Single device  
Pulse duration,  
SCLK high or low  
tw(SCHL)  
Multiple device chaining  
tsu(DI)  
th(DI)  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Delay time, last SCLK falling edge to CS rising edge  
ns  
ns  
ns  
8
6
td(SCCS)  
5
5
Setup time, DRDY falling edge to master clock falling  
edge  
tsu(sync)  
10  
10  
ns  
ns  
th(sync)  
tDATA  
Hold time, DRDY low after master clock falling edge  
Data rate period  
10  
10  
Set by the CLK1 register and the CLK2 register  
tw(RSL)  
Pulse duration RESET low  
800  
800  
ns  
(1) Only valid if CLKSRC = 0  
7.11 Switching Characteristics: Synchronous Slave Interface Mode  
over operating ambient temperature range (unless otherwise noted)  
1.65 V IOVDD 2.7 V  
2.7 V < IOVDD 3.6 V  
MIN  
MAX  
MIN  
MAX  
UNIT  
Propagation delay time,  
first SCLK rising edge to DOUT driven  
tp(SCDOD)  
tp(SCDO)  
28  
15  
15  
ns  
Propagation delay time,  
SCLK rising edge to valid new DOUT  
26  
ns  
HIZDLY = 00  
6
8
30  
37  
43  
47  
33  
39  
44  
48  
6
8
20  
27  
43  
47  
21  
27  
32  
36  
HIZDLY = 01  
HIZDLY = 10  
HIZDLY = 11  
DNDLY = 00  
DNDLY = 01  
DNDLY = 10  
DNDLY = 11  
Hold time, last SCLK falling edge  
to DOUT 3-state  
th(LSB)  
ns  
10  
12  
6
10  
12  
6
8
8
Propagation delay time, SCLK  
falling edge to DONE falling edge  
tp(DN)  
ns  
10  
12  
10  
12  
Propagation delay time,  
CS rising edge to DONE rising edge  
tp(CSDN)  
td(RSSC)  
32  
32  
ns  
Delay time,  
RESET rising edge to READY response  
4.5  
4.5  
ms  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
tw(CP)  
tc(CLKIN)  
CLKIN  
DRDY  
CS  
tp(CSDR)  
td(SCCS)  
td(CSSC)  
td(SCS)  
tc(SC)  
tw(CSH)  
tw(SCHL)  
SCLK  
DIN  
tsu(DI)  
th(DI)  
tp(SCDOD)  
MSB  
tp(SCDO)  
th(LSB)  
MSB - 1  
LSB + 1  
LSB  
DOUT  
NOTE: SPI settings are CPOL = 0 and CPHA = 1. CS transitions must take place when SCLK is low.  
Figure 1. Asynchronous Interrupt Mode SPI Timing Diagram  
tw(CP)  
tc(CLKIN)  
CLKIN  
DRDY  
tc(SC)  
tp(SDR)  
SCLK  
tp(DRS)  
tw(SCHL)  
tsu(DI)  
th(DI)  
DIN  
tp(SCDO)  
tp(SCDOD)  
MSB  
th(LSB)  
MSB - 1  
LSB + 1  
LSB  
DOUT  
NOTE: SPI settings are CPOL = 0 and CPHA = 1.  
Figure 2. Synchronous Master Mode SPI Timing Diagram  
tw(CP)  
tc(CLKIN)  
CLKIN  
CS  
td(CSSC)  
tc(SC)  
tp(SCCS)  
td(SCS)  
tw(SCHL)  
SCLK  
DIN  
tsu(DI)  
th(DI)  
tp(SCDO)  
tp(SCDOD)  
MSB  
th(LSB)  
MSB - 1  
LSB + 1  
LSB  
DOUT  
NOTE: SPI settings are CPOL = 0 and CPHA = 1. CS can be tied directly to DRDY.  
Figure 3. Synchronous Slave Mode SPI Timing Diagram  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Optional Pulse  
Optional Pulse  
tDATA  
tDATA  
DRDY  
tsu(sync)  
th(sync)  
CLKIN  
Figure 4. DRDY Synchronization Timing for Synchronous Slave Mode (CLKSRC = 0)  
Optional Pulse  
Optional Pulse  
tDATA  
tDATA  
DRDY  
tsu(sync)  
th(sync)  
SCLK  
Figure 5. DRDY Synchronization Timing for Synchronous Slave Mode (CLKSRC = 1)  
DONE  
tp(CSDN)  
CS  
tp(DN)  
SCLK  
LSB + 1  
LSB  
DIN, DOUT  
Figure 6. DONE Signal Timing  
tw(RSL)  
RESET  
or  
RESET  
DIN  
td(RSSC)  
Ready  
DOUT  
Figure 7. RESET Pin and Command Timing  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
7.12 Typical Characteristics  
at TA = 25°C, IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF = 2.442 V,  
fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, HR mode, and gain = 1 (unless otherwise noted)  
25  
20  
15  
10  
5
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
0
-5  
-10  
-15  
-20  
-25  
-10  
-5  
0
5
10  
0
1
2
3
4
5
6
7
8
D001  
Input Referred Voltage (mV)  
Time (s)  
D008  
Shorted inputs, 1 kSPS, 65536 points, offset removed  
Shorted inputs, 65536 points  
Figure 8. Input-Referred Noise vs Time  
Figure 9. Single Device Noise Histogram  
75  
30000  
25000  
20000  
15000  
10000  
5000  
0
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
18  
18.1  
18.2  
18.3  
18.4  
D001  
D001  
Input Referred Voltage (mV)  
Effective Number of Bits  
Shorted inputs, 8 kSPS, 262144 points, offset removed  
Shorted inputs, 8 kSPS, 560 devices, multiple lots  
Figure 10. Single Device Noise Histogram  
Figure 11. Multiple Device Effective Resolution Histogram  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-100  
-100  
-120  
-140  
-160  
-180  
-120  
-140  
-160  
-180  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500 1000 1500 2000 2500 3000 3500 4000  
Frequency (Hz)  
Frequency (Hz)  
D011  
D012  
fIN = 60 Hz, 32768 points  
fIN = 60 Hz, 32768 points  
Figure 12. THD FFT Plot at 8 kSPS and –0.5 dBFS  
Figure 13. THD FFT Plot at 8 kSPS and –20 dBFS  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF = 2.442 V,  
fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, HR mode, and gain = 1 (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Frequency (Hz)  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (Hz)  
D001  
D029  
fIN = 60 Hz, 8 kSPS  
fIN = 60 Hz, 32768 points  
Figure 14. Low-Frequency FFT Plot  
Figure 15. THD FFT Plot at 16 kSPS and –0.5 dBFS  
-90  
-95  
0
-20  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Input Frequency (Hz)  
Frequency (Hz)  
D001  
D028  
fIN = 60 Hz, 32768 points  
Figure 17. THD vs Input Frequency  
Figure 16. THD FFT Plot at 16 kSPS and –20 dBFS  
4
3
5.4  
5.2  
5
Ta = -40  
Ta = 25  
Ta = 125  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
4.8  
4.6  
4.4  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Voltage (V)  
Temperature (èC)  
D001  
D018  
Figure 18. INL vs Temperature  
Figure 19. Noise RMS vs Temperature  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Typical Characteristics (continued)  
at TA = 25°C, IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF = 2.442 V,  
fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, HR mode, and gain = 1 (unless otherwise noted)  
900  
800  
700  
600  
500  
400  
0.05  
0.025  
0
Ch 1  
Ch 2  
Ch 3  
Ch 4  
-0.025  
Ch 1  
Ch 2  
Ch 3  
Ch 4  
-0.05  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D020  
D021  
Figure 20. Offset Error vs Temperature  
Figure 21. Gain Error vs Temperature  
2.448  
2.446  
2.444  
2.442  
2.44  
112  
111.5  
111  
110.5  
110  
109.5  
109  
108.5  
108  
Ta = -40èC  
Ta = 25èC  
Ta = 125èC  
107.5  
107  
-50  
-25  
0
25  
50  
75  
100  
125  
-120  
-100  
-80  
-60  
-40  
-20  
0
Temperature (èC)  
Input Voltage (dBFS)  
D013  
D001  
30 units, multiple lots  
Figure 22. Internal VREF vs Temperature  
Figure 23. Normalized SNR vs Amplitude  
140  
130  
120  
110  
100  
90  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
Ta = -40èC  
Ta = 25èC  
Ta = 125èC  
Ta = -40 èC  
Ta = 25 èC  
Ta = 125 èC  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
0
2000  
4000  
6000  
8000  
Input Voltage (dBFS)  
Frequency (Hz)  
D001  
D009  
Figure 24. Normalized THD vs Amplitude  
Figure 25. CMRR vs Frequency  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF = 2.442 V,  
fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, HR mode, and gain = 1 (unless otherwise noted)  
120  
40  
35  
30  
25  
20  
15  
10  
5
Channel 1  
Channel 2  
Channel 3  
Channel 4  
100  
80  
60  
40  
20  
0
AVDD  
IOVDD  
0
-135  
-130  
-125  
-120  
10 20  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
D001  
Crosstalk (dB)  
D019  
Figure 27. Crosstalk Histogram  
Figure 26. PSRR vs Frequency  
141.3  
141.2  
141.1  
141  
7000  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
140.9  
140.8  
140.7  
140.6  
140.5  
140.4  
140.3  
140.2  
140.1  
140  
0
0
1000000  
2000000  
fMOD (Hz)  
3000000  
4000000  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D001  
D001  
Figure 28. Differential Input Impedance vs  
Modulator Clock  
Figure 29. Differential Input Impedance vs  
Temperature at 4.096-MHz fMOD  
564.5  
564  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
563.5  
563  
562.5  
562  
561.5  
561  
560.5  
560  
ADS131A04 LPM  
ADS131A04 HRM  
559.5  
559  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Temperature (èC)  
fMOD (MHz)  
D001  
D001  
LPM = low-power mode, HRM = high-resolution mode  
Figure 30. Differential Input Impedance vs  
Temperature at 1.024-MHz fMOD  
Figure 31. ADS131A04 AVDD Current vs fMOD  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Typical Characteristics (continued)  
at TA = 25°C, IOVDD = 3.3 V, AVDD = 2.5 V, AVSS = –2.5 V, VNCPEN (register 0Bh, bit 7) = 0, internal VREF = 2.442 V,  
fCLKIN = 16.384 MHz, fMOD = 4.096 MHz, data rate = 8 kSPS, HR mode, and gain = 1 (unless otherwise noted)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3600  
3300  
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
ADS131A04 LPM  
ADS131A04 HRM  
ADS131A02 HRM  
ADS131A02 LPM  
600  
300  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
fMOD (MHz)  
fMOD (MHz)  
D001  
D001  
LPM = low-power mode, HRM = high-resolution mode  
LPM = low-power mode, HRM = high-resolution mode  
Figure 32. ADS131A04 IOVDD Current vs fMOD  
Figure 33. ADS131A02 AVDD Current vs fMOD  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
ADS131A02 HRM  
ADS131A02 LPM  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
fMOD (MHz)  
D001  
LPM = low-power mode, HRM = high-resolution mode  
Figure 34. ADS131A02 IOVDD Current vs fMOD  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Noise Measurements  
Adjust the data rate and gain to optimize the ADS131A02 and ADS131A04 noise performance. When averaging  
is increased by reducing the data rate, noise drops correspondingly. Table 1 and Table 2 summarize the  
ADS131A0x noise performance with a 2.442-V reference and a 3.3-V analog power supply. Table 3 and Table 4  
summarize the ADS131A02 and ADS131A04 noise performance with a 4.0-V reference and a 5-V analog power  
supply (or using ±2.5-V bipolar analog power supplies). The data are representative of typical noise performance  
at TA = 25°C when fMOD = 4.096 MHz. The data shown are typical results with the analog inputs shorted together  
and taking an average of multiple readings across all channels. A minimum 1 second of consecutive readings are  
used to calculate the RMS noise for each reading. The data are also representative of the ADS131A0x noise  
performance when using a low-noise external reference, such as the REF5025 or REF5040. The effective  
resolution data and dynamic range data in Table 1, Table 2, Table 3, and Table 4 are calculated using  
Equation 1 and Equation 2. The μVrms noise numbers in the tables are input-referred.  
«
÷
2ì VREF  
Gainì VRMS ◊  
Effective Resolution = log2  
(1)  
(2)  
VREF  
Dynamic Range = 20ìlog  
«
÷
÷
2 ìGainì VRMS ◊  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Noise Measurements (continued)  
Table 1. Dynamic Range, Effective Resolution, and Noise in μVrms at 3.3-V Analog Supply, and 2.442-V  
Reference for Gain = 1, 2, and 4  
GAIN  
x1  
x2  
x4  
fDATA AT  
4.096-MHz  
fMOD (kHz)  
EFFECTIVE  
RESOLUTION  
(Bits)  
EFFECTIVE  
RESOLUTION  
(Bits)  
EFFECTIVE  
RESOLUTION  
(Bits)  
OSR  
SETTING  
DYNAMIC  
RANGE (dB)  
DYNAMIC  
RANGE (dB)  
DYNAMIC  
RANGE (dB)  
μVrms  
1.82  
μVrms  
1.82  
μVrms  
1.70  
4096  
2048  
1024  
800  
768  
512  
400  
384  
256  
200  
192  
128  
96  
1.000  
2.000  
119.49  
116.47  
113.85  
112.93  
112.90  
110.73  
109.74  
109.53  
107.74  
106.48  
106.28  
104.05  
101.90  
97.63  
21.35  
20.85  
20.41  
20.26  
20.25  
19.89  
19.73  
19.70  
19.40  
19.19  
19.16  
18.78  
18.43  
17.72  
16.88  
15.62  
113.49  
110.97  
107.91  
106.72  
106.69  
104.83  
103.69  
103.65  
101.67  
100.55  
100.17  
97.98  
20.35  
19.94  
19.43  
19.23  
19.22  
18.91  
18.72  
18.72  
18.39  
18.20  
18.14  
17.78  
17.44  
16.72  
15.89  
14.62  
108.08  
105.22  
101.77  
101.05  
100.76  
98.75  
97.76  
97.58  
95.72  
94.54  
94.11  
92.00  
89.90  
85.52  
80.59  
73.02  
19.46  
18.98  
18.41  
18.29  
18.24  
17.91  
17.74  
17.71  
17.40  
17.21  
17.13  
16.78  
16.43  
15.71  
14.89  
13.61  
2.58  
2.44  
2.36  
4.000  
3.49  
3.47  
3.52  
5.120  
3.88  
3.98  
3.82  
5.333  
3.90  
3.99  
3.95  
8.000  
5.01  
4.95  
4.97  
10.240  
10.667  
16.000  
20.480  
21.333  
32.000  
42.667  
64.000  
85.333  
128.000  
5.61  
5.64  
5.58  
5.75  
5.66  
5.69  
7.07  
7.11  
7.06  
8.17  
8.09  
8.08  
8.36  
8.45  
8.49  
10.81  
13.85  
22.64  
40.50  
96.82  
10.88  
13.74  
22.64  
40.22  
97.12  
10.82  
13.79  
22.83  
40.26  
97.51  
95.95  
64  
91.61  
48  
92.58  
86.62  
32  
85.12  
78.96  
Table 2. Dynamic Range, Effective Resolution, and Noise in μVrms at 3.3-V Analog Supply, and 2.442-V  
Reference for Gain = 8 and 16  
GAIN  
x8  
x16  
fDATA AT 4.096-MHz  
fMOD (kHz)  
DYNAMIC RANGE  
(dB)  
EFFECTIVE  
RESOLUTION (Bits)  
DYNAMIC RANGE  
(dB)  
EFFECTIVE  
RESOLUTION (Bits)  
OSR SETTING  
μVrms  
1.77  
μVrms  
1.82  
4096  
2048  
1024  
800  
768  
512  
400  
384  
256  
200  
192  
128  
96  
1.000  
2.000  
101.72  
98.88  
95.97  
95.03  
94.63  
92.75  
91.84  
91.52  
89.57  
88.44  
88.26  
86.02  
83.91  
79.52  
74.60  
66.93  
18.40  
17.93  
17.44  
17.29  
17.22  
16.91  
16.76  
16.70  
16.38  
16.19  
16.16  
15.79  
15.44  
14.71  
13.89  
12.62  
95.45  
93.07  
89.82  
88.66  
88.41  
87.00  
85.62  
85.50  
83.58  
82.45  
82.12  
79.80  
77.72  
73.45  
68.47  
60.97  
17.36  
16.96  
16.42  
16.23  
16.19  
15.95  
15.72  
15.70  
15.38  
15.20  
15.14  
14.76  
14.41  
13.70  
12.87  
11.61  
2.45  
2.39  
4.000  
3.43  
3.48  
5.120  
3.82  
3.98  
5.333  
4.00  
4.09  
8.000  
4.96  
4.81  
10.240  
10.667  
16.000  
20.480  
21.333  
32.000  
42.667  
64.000  
85.333  
128.000  
5.51  
5.64  
5.72  
5.72  
7.16  
7.14  
8.16  
8.12  
8.32  
8.44  
10.77  
13.74  
22.78  
40.14  
97.05  
11.02  
14.00  
22.92  
40.66  
97.61  
64  
48  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Table 3. Dynamic Range, Effective Resolution, and Noise in μVrms at ±2.5-V Analog Supply, and 4.0-V  
Reference for Gain = 1, 2, and 4  
GAIN  
x1  
x2  
x4  
fDATA AT  
4.096-MHz  
fMOD (kHz)  
EFFECTIVE  
RESOLUTION  
(Bits)  
EFFECTIVE  
RESOLUTION  
(Bits)  
EFFECTIVE  
RESOLUTION  
(Bits)  
OSR  
SETTING  
DYNAMIC  
RANGE (dB)  
DYNAMIC  
RANGE (dB)  
DYNAMIC  
RANGE (dB)  
μVrms  
1.66  
μVrms  
1.64  
μVrms  
1.71  
4096  
2048  
1024  
800  
768  
512  
400  
384  
256  
200  
192  
128  
96  
1.000  
2.000  
124.55  
121.47  
118.44  
117.58  
116.75  
115.16  
114.15  
113.88  
112.09  
110.71  
110.13  
106.93  
104.17  
98.84  
22.19  
21.68  
21.18  
21.03  
20.89  
20.63  
20.46  
20.42  
20.12  
19.89  
19.79  
19.26  
18.80  
17.92  
17.00  
15.64  
118.69  
114.98  
112.48  
111.46  
110.88  
109.23  
108.33  
107.83  
105.76  
104.65  
104.10  
100.76  
98.18  
21.22  
20.60  
20.18  
20.02  
19.92  
19.65  
19.50  
19.41  
19.07  
18.88  
18.79  
18.24  
17.81  
16.91  
16.03  
14.60  
112.32  
109.58  
106.31  
105.29  
105.06  
103.10  
102.28  
101.70  
99.83  
20.16  
19.70  
19.16  
18.99  
18.95  
18.63  
18.49  
18.39  
18.08  
17.84  
17.78  
17.21  
16.78  
15.87  
15.01  
13.67  
2.38  
2.51  
2.34  
4.000  
3.37  
3.36  
3.41  
5.120  
3.72  
3.77  
3.84  
5.333  
4.10  
4.03  
3.94  
8.000  
4.93  
4.88  
4.94  
10.240  
10.667  
16.000  
20.480  
21.333  
32.000  
42.667  
64.000  
85.333  
128.000  
5.53  
5.41  
5.43  
5.71  
5.73  
5.80  
7.02  
7.27  
7.19  
8.22  
8.27  
98.37  
8.51  
8.79  
8.80  
97.99  
8.90  
12.72  
17.47  
32.27  
61.06  
156.92  
12.94  
17.41  
32.58  
59.91  
160.84  
94.59  
13.15  
17.74  
33.40  
60.74  
153.69  
92.00  
64  
92.74  
86.50  
48  
93.30  
87.45  
81.31  
32  
85.10  
78.87  
73.35  
Table 4. Dynamic Range, Effective Resolution, and Noise in μVrms at ±2.5-V Analog Supply, and 4.0-V  
Reference for Gain = 8 and 16  
GAIN  
x8  
x16  
fDATA AT 4.096-MHz  
fMOD (kHz)  
DYNAMIC RANGE  
(dB)  
EFFECTIVE  
RESOLUTION (Bits)  
DYNAMIC RANGE  
(dB)  
EFFECTIVE  
RESOLUTION (Bits)  
OSR SETTING  
μVrms  
1.70  
μVrms  
1.63  
4096  
2048  
1024  
800  
768  
512  
400  
384  
256  
200  
192  
128  
96  
1.000  
2.000  
106.35  
103.40  
100.46  
99.53  
99.19  
97.31  
96.23  
95.84  
93.87  
92.70  
92.10  
88.58  
86.27  
80.60  
75.29  
67.06  
19.17  
18.68  
18.19  
18.04  
17.98  
17.67  
17.49  
17.42  
17.09  
16.90  
16.80  
16.22  
15.83  
14.89  
14.01  
12.64  
100.66  
97.37  
94.59  
93.28  
93.09  
91.08  
90.16  
89.85  
87.73  
86.43  
85.68  
82.42  
80.00  
74.48  
69.10  
61.17  
18.22  
17.68  
17.21  
17.00  
16.97  
16.63  
16.48  
16.43  
16.07  
15.86  
15.73  
15.19  
14.79  
13.87  
12.98  
11.64  
2.38  
2.39  
4.000  
3.35  
3.29  
5.120  
3.72  
3.83  
5.333  
3.87  
3.91  
8.000  
4.81  
4.93  
10.240  
10.667  
16.000  
20.480  
21.333  
32.000  
42.667  
64.000  
85.333  
128.000  
5.45  
5.48  
5.70  
5.68  
7.15  
7.25  
8.18  
8.41  
8.77  
9.17  
13.14  
17.15  
32.92  
60.68  
156.51  
13.36  
17.64  
33.31  
61.90  
156.32  
64  
48  
32  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9 Detailed Description  
9.1 Overview  
The ADS131A02 and ADS131A04 are low-power, two- and four-channel, simultaneous-sampling, 24-bit, delta-  
sigma (ΔΣ), analog-to-digital converters (ADCs) with an integrated low-drift internal reference voltage. Data rate  
flexibility, wide dynamic range, and interface options make these devices good choices when designing for  
smart-grid and other industrial power monitor, control, and protection applications. The ADC interface data  
integrity features provide for a very low rate of transmission errors. Throughout this document, the ADS131A02  
and ADS131A04 are referred to as the ADS131A0x.  
The ADS131A0x has very flexible power-supply options. A 5-V single-supply (or ±2.5-V bipolar-supply) operation  
is available to support up to a 4.5-V external reference to maximize the dynamic range of the converter.  
Alternatively, a negative charge pump can be enabled to accept absolute input signals down to –1.5 V below  
ground when powered from a single 3.3-V supply. Five gain options are available to help maximize the ADC  
code range and 16 selectable oversampling ratio (OSR) options are selectable to optimize the converter for a  
specific data rate. The low-drift internal reference can be programmed to either 2.442 V or 4 V. Input signal out-  
of-range detection can be accomplished by using the integrated comparators, with programmable trigger-point  
settings. A detailed diagram of the ADS131A0x is shown in the Functional Block Diagram section.  
The device offers multiple serial peripheral interface (SPI) communication options to provide flexibility for  
interfacing to microprocessors or field-programmable gate arrays (FPGAs). Synchronous real-time and  
asynchronous interrupt communication modes are available using the SPI-compatible interface. Multiple devices  
can share a common SPI port and are synchronized by using the DRDY signal. Device communication is  
specified through configuration of the M0 interface mode pin and chaining of the DONE signal. Optional cyclic  
redundancy check (CRC) and hamming code correction on the interface enhance communication integrity.  
9.2 Functional Block Diagram  
AVDD  
IOVDD  
REFP REFN  
REFEXT  
Reference  
Mux  
Voltage  
Reference  
Out-of-Range  
Detect  
M[2:0]  
RESET  
AIN1N  
AIN1P  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
DS ADC  
CS  
Control and  
Serial Interface  
SCLK  
DIN  
DOUT  
DRDY  
DS ADC  
Watchdog  
Timer  
DONE  
DS ADC  
DS ADC  
Data Integrity  
CLK/XTAL  
Negative  
Charge  
Pump  
XTAL1/CLKIN  
XTAL2  
GND  
VNCP  
AVSS  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.3 Feature Description  
This section contains details of the ADS131A0x internal feature elements. The ADC clocking is discussed first,  
followed by the analog blocks and the digital filter.  
9.3.1 Clock  
Multiple clocks are created from one external master clock source in the ADS131A0x to create device  
configuration flexibility. The ADC operates from the internal system clock, ICLK, which is provided in one of three  
ways.  
An external master clock, CLKIN, can be applied directly to the XTAL1/CLKIN pin to be divided down to  
generate ICLK using the CLK_DIV[2:0] bits in the CLK1 register. In this case, leave the XTAL2 pin floating.  
A crystal oscillator can be applied between XTAL1/CLKIN and XTAL2, generating a master clock to be  
divided down using the CLK_DIV[2:0] bits in the CLK1 register to generate ICLK.  
A free-running SCLK can be internally routed to be set as ICLK. This mode is only available in synchronous  
slave interface mode. Tie the CLKIN/XTAL1 pin to GND. Leave the XTAL2 pin unconnected.  
The system ICLK is passed through a second 3-bit clock divider (ICLK_DIV[2:0] in the CLK2 register) to create  
the modulator clock, MODCLK. MODCLK is used for timing of the delta-sigma (ΔΣ) modulator sampling and  
digital filter.  
The interface operation mode determines the options for sourcing ICLK. When in asynchronous interrupt or  
synchronous master mode, generate ICLK by applying a direct external master clock signal to the XTAL1/CLKIN  
pin or by using a crystal oscillator across the XTAL1/CLKIN and XTAL2 pins. If directly applying a master clock to  
the XTAL1/CLKIN pin, leave XTAL2 floating. In synchronous slave mode, a free-running SCLK line can be  
connected directly into the ICLK_DIV block in place of the divided XTAL or CLKIN source. Use the CLKSRC bit  
in the CLK1 register to select between the XTAL1/CLKIN or SCLK input as the master clock source for the ADC.  
The CLKSRC bit must be set prior to powering up the ADC channels. Using SCLK as ICLK is useful in galvanic  
isolated applications to limit the digital I/O lines crossing the isolation barrier. Figure 35 shows the clock dividers  
and clocking names.  
AINxP  
ADC  
Sinc3 LPF  
CS  
AINxN  
DONE  
DIN  
DOUT  
CLKSRC  
M
XTAL1/CLKIN  
XTAL2  
fCLKIN  
fICLK  
X
CLK_DIV  
[2:0]  
ICLK_DIV  
[2:0]  
OSR  
[3:0]  
SPI  
+
fDATA  
fMOD  
Ctrl  
DRDY  
SCLK  
sync  
M0  
Figure 35. ADC Clock Generation  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Feature Description (continued)  
9.3.1.1 XTAL1/CLKIN and XTAL2  
XTAL1/CLKIN is the external clock input to the ADC and can be supplied from a clock source or by using a  
crystal (along with the XTAL2 pin). Figure 36 shows the configuration for the two clock input options.  
XTAL1/CLKIN  
XTAL2  
XTAL2  
XTAL1/CLKIN  
16.384-MHz  
Clock  
50 Ω  
a) External Clock Mode  
b) Crystal Oscillator Mode  
Figure 36. Clock Mode Configurations  
Input the clock directly to the XTAL1/CLKIN pin and leave the XTAL2 pin floating when using a direct clock  
source.  
Connect the crystal and load capacitors as shown in Figure 36b to the XTAL1/CLKIN and XTAL2 pins. Place the  
crystal and crystal load capacitors close to the ADC pins using short, direct traces. Connect the load capacitors  
to the digital ground. Do not connect any other external circuit to the crystal oscillator. Table 5 lists recommended  
crystals for use with the ADS131A0x. The crystal oscillator start-up time is typically 5 ms, but can be longer  
depending on the crystal characteristics.  
Table 5. Recommended Crystals  
OPERATING TEMPERATURE  
MANUFACTURER  
Abracon  
FREQUENCY  
16.384 MHz  
16.384 MHz  
16.384 MHz  
RANGE  
PART NUMBER  
–40°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
ABLS-16.384MHZ-L4Q-T  
ABM3C-16.384MHZ-D4Y-T  
ECS-163-18-5PXEN-TR  
Abracon  
ECS  
9.3.1.2 ICLK  
ICLK is the internal system clock to the ADC. ICLK is derived from CLKIN set through the CLK_DIV[2:0] bits in  
the CLK1 register or is set as SCLK when operating in synchronous slave mode. ICLK is used as the SCLK  
output when operating in synchronous master mode in addition to being used for the internal ADC clock timing.  
Use the CLKSRC bit to set the source for ICLK.  
9.3.1.3 MODCLK  
MODCLKis the modulator clock used for the ADC sampling. MODCLK is derived from ICLK set through the  
ICLK_DIV[2:0] bits in the CLK2 register. Verify that the fMOD minimum and maximum limits are met in the  
Electrical Characteristics table by adjusting the CLK_DIV[2:0] and ICLK_DIV[2:0] clock dividers.  
9.3.1.4 Data Rate  
The data rate is the rate at which conversion results are generated by the ADC. In a delta-sigma ADC, the  
oversampling ratio (OSR) is the ratio between the modulator frequency and the output data rate. The OSR[3:0]  
bits in the CLK2 register set the OSR on the ADS131A0x. The output data rate is the frequency of MODCLK  
(fMOD) divided by the OSR.  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.3.2 Analog Input  
The ADS131A0x analog inputs are directly connected to the switched-capacitor sampling network of the ΔΣ  
modulator without a multiplexer or integrated buffer. The device inputs are measured differentially (VIN = VAINxP  
VAINxN) and can span from –VREF / Gain to VREF / Gain. Figure 38 shows a conceptual diagram of the modulator  
circuit charging and discharging the sampling capacitor through switches, although the actual implementation is  
slightly different. The timing for switches S1 and S2, as shown in Figure 37, are 180 degrees out-of-phase of one  
another.  
tMOD = 1 / fMOD  
On  
S1  
Off  
On  
S2  
Off  
Figure 37. S1 and S2 Switch Timing  
Electrostatic discharge (ESD) circuitry protects the inputs. Figure 38 shows a simplified representation of the  
ESD circuit. Protection for input voltages exceeding AVDD can be modeled as a simple diode.  
The negative charge pump voltage, VNCP, controls the voltage at which the low-side protection devices begin  
conducting. Tie VNCP to AVSS if the charge pump is not used to ensure the clamping voltage is properly set.  
The charge pump cannot provide a large amount of current. The mechanism shown in Figure 38 ensures current  
provided by the charge pump is limited in the case of an overvoltage event.  
AVDD  
VNCP  
AINxP  
S1  
S2  
Cs  
2
AINxN  
S1  
VNCP  
AVDD  
Figure 38. Equivalent Analog Input Circuitry  
To prevent the ESD diodes from being enabled, the absolute voltage on any input must stay within the range  
provided by Equation 3 when the internal charge pump is disabled and within the range in Equation 4 when the  
internal charge pump is enabled:  
AVSS – 0.3 V < VAINxP or VAINxN < AVDD + 0.3 V  
AVSS – 1.65 V < VAINxP or VAINxN < AVDD + 0.3 V  
(3)  
(4)  
If the voltages on the input pins have any potential to violate these conditions, external clamp diodes or series  
resistors may be required to limit the input currents to safe values (see the Absolute Maximum Ratings table).  
The charging of the input capacitors draws a transient current from the sensor driving the ADS131A0x inputs.  
The average value of this current can be used to calculate an effective impedance of ZIN, where ZIN = VIN  
/
IAVERAGE. This effective input impedance is a function of the modulator sampling frequency and Equation 5 can  
be used to calculate an estimate value. When using fMOD = 4.096 MHz, the input impedance is approximately  
130 k.  
2
Zin  
=
fMOD ì Cs  
where  
fMOD = modulator clock and  
CS = 3.5 pF  
(5)  
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
There are two general methods of driving the ADS131A0x analog inputs, as shown in Figure 39: pseudo-  
differential or fully-differential.  
-VREF / Gain  
to  
VREF / Gain  
VREF / Gain  
Peak-to-Peak  
Device  
Device  
Common  
Voltage  
VREF / Gain  
Peak-to-Peak  
Common  
Voltage  
a) Psuedo-Differential Input  
b) Differential Input  
Figure 39. Pseudo-Differential and Fully-Differential Inputs  
To apply a pseudo-differential signal to the fully-differential inputs, apply a dc voltage to AINxN, preferably to the  
analog mid-supply [(AVDD + AVSS) / 2] or [(AVDD + VNCP) / 2] when the negative charge pump is enabled.  
The AINxP pins can swing between –VREF / Gain to VREF / Gain (as shown in Figure 40) around the common  
voltage. The common-mode voltage, VCM, changes with VAINxP  
.
Configure the signals at AINxP and AINxN to be 180° out-of-phase centered around a common-mode voltage to  
use a fully-differential input method. Both the AINxP and AINxN inputs swing from VCM +½ VREF / Gain to VCM –½  
VREF / Gain, as shown in Figure 41. The differential voltage at the maximum and minimum points is equal to VREF  
/ Gain to –VREF / Gain, respectively. The VCM voltage remains fixed when AINxP and AINxN swing. Use the  
ADS131A0x in a differential configuration to maximize the dynamic range of the data converter. For optimal  
performance, the VCM is recommended to be set at the midpoint of the analog supplies.  
Tie any unused analog input channels directly to AVSS.  
AINxP  
AINxP  
VCM  
VCM  
AINxN  
AINxN  
Figure 40. Pseudo-Differential Input Mode  
Figure 41. Fully-Differential Input Mode  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.3.3 Input Overrange and Underrange Detection  
Each ADS131A0x channel has two integrated comparators to detect overrange and underrange conditions on  
the input signals. Use the COMP_TH[2:0] bits in the A_SYS_CFG register to set a high and low threshold level  
using a 3-bit digital-to-analog converter (DAC). This threshold voltage is compared to the voltage on the input  
pins. The voltage monitor triggers an alarm by setting the F_ADCIN bit of the STAT_1 register when the  
individual voltage on AINxP or AINxN exceeds the threshold set by the COMP_TH[2:0] bits. When the F_ADCIN  
bit of the STAT_1 register is set, indicating an out-of-range event, read the STAT_P register or STAT_N register  
to determine exactly which input pin exceeded the set threshold. Figure 42 shows an input overrange and  
underrange detection block diagram.  
COMP_TH[2:0]  
œ
+
Latch  
S
Q
Q
œ
R
Conversion  
Start Reset  
COMP_TH[2:0]  
+
DOUT Data Frame  
AINxP  
AINxN  
Channel 1 Channel 2 Channel 3 Channel 4  
Status  
CRC  
C
A D  
Digital  
Filter  
ADC  
Data  
Data  
Data  
Data  
COMP_TH[2:0]  
COMP_TH[2:0]  
œ
+
Latch  
S
Q
Q
œ
R
Conversion  
Start Reset  
+
Figure 42. ADC Out-of-Range Detection Monitor  
9.3.4 Reference  
The ADS131A0x offers an integrated low-drift, 2.442-V or 4.0-V reference option. For applications that require a  
different reference voltage, the device offers a reference input option for use with an external reference voltage.  
The reference source is selected by the INT_REFEN bit in the A_SYS_CFG register. By default, the external  
reference is selected (INT_REFEN = 0). The internal voltage reference requires 0.2 ms to settle to 1% and 250  
ms to fully settle to 0.01% when switching from an external reference source to the internal reference (using the  
recommended bypass capacitor values). The external reference input is internally buffered to increase input  
impedance. Therefore, additional reference buffers are usually not required when using an external reference.  
Connect the reference voltage to the REFEXT pin when using an external reference.  
External band-limiting capacitors determine the amount of reference noise contribution. For high-end systems,  
choose capacitor values such that the bandwidth is limited to less than 10 Hz so that the reference noise does  
not dominate the system noise. In systems with strict ADC power-on requirements, using a large capacitor on the  
reference increases the time for the voltage to meet the desired value, thus increasing system power-on time.  
Figure 43 illustrates a typical external reference drive circuitry with recommended filtering options.  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
1 µF  
5 V  
VOUT  
AVDD  
100 Ω  
AVSS  
REF50xx  
10 µF  
AVSS  
GND  
REFEXT  
AVSS  
+
REFP  
R2  
1 µF  
R3  
REFN  
AVSS  
To ADC  
NOTE: R2 = 62.3 kΩ, R3 = 97.5 kΩ.  
Figure 43. External Reference Driver  
Set the INTREF_EN bit to 1 in the A_SYS_CFG register to use the internal reference. When the internal  
reference is selected, use the VREF_4V bit to select between a 2.442-V or 4.0-V reference. By default, the  
device is set to use the 2.442-V reference. The VREF_4V bit has no function when set to use the external  
reference. When enabling the negative charge pump with a 3.0-V to 3.45-V analog supply, the internal reference  
must be set to 2.442 V. Figure 44 shows a simplified block diagram of the internal ADS131A0x reference. The  
reference voltage is generated with respect to AVSS requiring a direct connection between REFN and AVSS.  
1 µF  
AVSS  
REFEXT  
R1  
Bandgap  
+
REFP  
INT_REFEN = 1  
VREF_4V = 0  
R2  
VREF_4V = 1  
1 µF  
R3  
REFN  
AVSS  
To ADC  
NOTE: R1 = 20 kΩ, R2 = 62.3 kΩ, R3 = 97.5 kΩ.  
Figure 44. Internal Reference  
Copyright © 2016–2018, Texas Instruments Incorporated  
31  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.3.5 ΔΣ Modulator  
The ADS131A0x is a multichannel, simultaneous sampling ΔΣ ADC where each channel has an individual  
modulator and digital filter. The modulator samples the input signal at the rate of fMOD derived as a function of the  
ADC operating clock, fICLK. As in the case of any ΔΣ modulator, the ADS131A0x noise is shaped until fMOD / 2.  
The modulator converts the analog input voltage into a pulse-code modulated (PCM) data stream. The on-chip  
digital decimation filters take this bitstream and provide attenuation to the now shaped, higher frequency noise.  
This ΔΣ sample and conversion process drastically reduces the complexity of the analog antialiasing filters  
typically required with nyquist ADCs.  
9.3.6 Digital Decimation Filter  
The digital filter receives the modulator output and decimates the data stream to create the final conversion  
result. The digital filter on each channel consists of a third-order sinc filter. The oversampling ratio (OSR)  
determines the number of samples taken to create the output data word, and is set by the modulator rate divided  
by the data rate (fMOD / fDATA). The OSR of the sinc filters is adjusted by the OSR[3:0] bits in the CLK2 register.  
The OSR setting is a global setting that affects all channels and, therefore, all channels operate at the same data  
rate in the device. By adjusting the OSR, tradeoffs can be made between noise and data rate to optimize the  
signal chain: filter more for lower noise (thus creating lower data rates), filter less for higher data rates.  
The sinc filter is a variable decimation rate, third-order, low-pass filter. Data are supplied to this section of the  
filter from the modulator at the rate of fMOD. Equation 6 shows the scaled sinc3 filter Z-domain transfer function.  
As shown in Table 6, the integer N is the set OSR and the integer K is a scaling factor for OSR values that are  
not an integer power of 2.  
3
1- Z-N  
(
)
H z = K ì  
( )  
Nì 1- Z-1  
(
)
(6)  
Equation 7 shows the sinc filter frequency domain transfer function. As shown in Table 6, the integer N is the set  
OSR and the integer K is a scaling factor for OSR values that are not an integer power of 2.  
3
»
ÿ
Ÿ
Npf  
fMOD  
sin  
H f = K ì  
( )  
»
ÿ
Ÿ
pf  
fMOD  
Nì sin  
where:  
N = oversampling ratio  
(7)  
Table 6. K Scaling Factor  
OSR (N)  
K SCALING VALUE  
0.9983778  
1.0  
800, 400, 200  
4096, 2048, 1024, 512, 256, 128, 64, 32  
768, 384, 192, 96, 48  
1.00195313  
The sinc3 filter has notches (or zeroes) that occur at the output data rate and multiples thereof. At these  
frequencies, the filter has infinite attenuation. Figure 45 and Figure 46 illustrate the digital filter frequency  
response out to a normalized input frequency (fIN / fDATA) of 5 and 0.5, respectively. Figure 47, Figure 48, and  
Figure 49 illustrate the frequency response for OSR = 32, OSR = 512, and OSR = 4096 up to fMOD, respectively.  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
0
-10  
0
-2  
-20  
-4  
-30  
-40  
-6  
-50  
-8  
-60  
-70  
-10  
-12  
-14  
-16  
-18  
-20  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA  
)
D001  
D002  
Figure 45. Sinc3 Filter Frequency Response  
Figure 46. Sinc3 Filter Roll-Off  
0
-10  
0
-20  
-40  
-20  
-30  
-40  
-60  
-50  
-60  
-80  
-70  
-100  
-120  
-140  
-160  
-180  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
0
60  
120  
180  
240  
300  
360  
420  
480  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA)  
D003  
D004  
Figure 47. Sinc3 Filter Frequency Response (OSR 32)  
Figure 48. Sinc3 Filter Frequency Response (OSR 512)  
0
-25  
-50  
-75  
-100  
-125  
-150  
-175  
-200  
-225  
-250  
0
400 800 1200 1600 2000 2400 2800 3200 3600 4000  
Normalized Frequency (fIN/fDATA  
)
D005  
Figure 49. Sinc3 Filter Frequency Response (OSR 4096)  
Copyright © 2016–2018, Texas Instruments Incorporated  
33  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
The K scaling factor for OSR values that are not an integer power of two adds a non-integer gain factor to the  
sinc3 frequency response across all frequencies. The host must account for the K scaling factor to obtain the  
ADC gain error given in the Electrical Characteristics table. Figure 50 overlays the digital filter frequency  
response for the three K scaling options in Table 6. Graph scaling is set to a narrow limit to show the small gain  
variation between OSR values.  
0.05  
OSR 512  
OSR 768  
0
OSR 800  
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
-0.35  
-0.4  
-0.45  
-0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1  
Normalized Frequency (fIN/fDATA  
)
D006  
Figure 50. Non-Binary OSR Sinc3 Filter Frequency Response  
The ADS131A0x immediately begins outputting conversion data when powered up and brought out of standby  
mode using the WAKEUP command. The sinc3 digital filter requires three conversion cycles to provide a settled  
conversion result, assuming the analog input has settled to its final value (tSETTLE). The output data are not gated  
when the digital filter settles, meaning that the first two conversion results show unsettled data from the filter path  
before settled data are available on the third conversion cycle. The first two unsettled conversion cycles, though  
unsettled, can be used for diagnostic purposes to ensure the ADC is coming out of standby as expected.  
Figure 51 shows the new data ready behavior and time needed for the digital filter coming out of standby.  
ADC_ENA  
WAKEUP  
DIN  
tSETTLE  
DRDY  
1
2
3
Figure 51. Sinc3 Filter Settling  
The digital filter uses a multiple stage linear-phase digital filter. Linear -phase filters exhibit constant delay time  
across all input frequencies (also know as constant group delay). This behavior results in zero-phase error when  
measuring multi-tone signals. For more information about group delay in delta-sigma ADCs, see the Accounting  
for delay from multiple sources in delta-sigma ADCs white paper.  
9.3.7 Watchdog Timer  
The ADS131A0x offers an integrated watchdog timer to protect the device from entering any unresponsive state.  
The watchdog timer is a 16-bit counter running on an internal 50-kHz clock. The timer resets with each data  
frame when the CS signal transitions from high to low. If a timer reset does not take place and the watchdog  
timer expires after 500 ms, the device assumes that an unresponsive state has occurred and issues a watchdog  
timer reset. Following the reset, the device enters the power-up state (see the Power-Up section), sets the  
F_WDT bit in the STAT_1 register, and indicates that a watchdog timer reset has taken place. Enable the  
watchdog timer by setting the WDT_EN bit in the D_SYS_CFG register.  
9.4 Device Functional Modes  
9.4.1 Low-Power and High-Resolution Mode  
The ADS131A0x offers two modes of operation: high-resolution and low-power mode. High-resolution mode  
enables a faster modulator clock, up to fMOD = 4.25 MHz, to maximize performance at higher data rates. Low-  
power mode scales the analog and digital currents and restricts the maximum fMOD to 1.05 MHz. Select the  
operating mode using the HRM bit in the A_SYS_CFG register.  
34  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Device Functional Modes (continued)  
9.4.2 Power-Up  
After all supplies are established and the RESET pin goes high, an internal power-on-reset (POR) is performed.  
As part of the POR process, all registers are initialized to the default states, the state of the Mx pins are latched,  
the interface is placed in a locked state, and the device enters standby mode. POR can take up to 4.5 ms to  
complete. When the host communicates with the ADS131A0x, the SPI interface outputs a READY status word  
indicating that the power-on cycle is completed and the device is ready to accept commands. The STAT_S  
register indicates if the ADC powered up properly or if any fault occurred during the initialization of the device.  
Send an UNLOCK command to enable the interface and begin communicating with the device. See Table 14 for  
more information on the READY status word and the UNLOCK from POR or RESET or RESET: Reset to POR  
Values sections for more information on bringing the device out of POR.  
9.4.3 Standby and Wake-Up Mode  
After being unlocked from POR or after reset, the device enters a low-power standby mode with all ADC  
channels powered down. After the registers are properly configured, enable all the ADC channels together by  
writing to the ADC_ENA register and issue a WAKEUP command to start conversions. To enter standby mode  
again, send the STANDBY command and disable all ADC channels by writing to the ADC_ENA register. The  
ADS131A0x requires using the WAKEUP and STANDBY commands together with writing to the ADC_ENA  
register to disable or enable ADC channels to start and stop conversions.  
9.4.4 Conversion Mode  
The device runs in continuous conversion mode. When a conversion completes, the device places the result in  
the output buffer and immediately begins another conversion. Data are available at the next data-ready indicator,  
although data may not be fully settled through the digital filter (see the Digital Decimation Filter section for more  
information on settled data).  
9.4.5 Reset (RESET)  
There are two methods to reset the ADS131A0x: pull the RESET pin low for at least tw(RSL) or send the RESET  
command. The RESET pin must be tied high if the RESET command is used. The RESET command takes effect  
at the completion of the command. As part of the reset process, all registers are initialized to the default states,  
the status of M0, M1, and M2 pins are latched, the interface is placed in a locked state, and the device enters  
standby mode. Reset can take up to 4.5 ms to complete. The device outputs a READY status word indicating  
that the reset is completed and the device is ready to accept commands. Send an UNLOCK command to enable  
the interface and begin communicating with the device. See Table 13 for more information on the READY status  
word, the UNLOCK from POR command, and the RESET command. Figure 7 illustrates the critical timing  
relationship of taking the ADS131A0x into reset and bringing the device out of reset.  
There are two methods to reset the ADS131A0x: pull the RESET pin low, or send the RESET command. When  
using the RESET pin, driving the pin low forces the device into reset. Follow the minimum pulse duration timing  
specifications before taking the RESET pin back high. The RESET command takes effect at the completion of  
the command (see the RESET: Reset to POR Values section for more information). After the device is reset, 4.5  
ms are required to complete initialization of the configuration registers to the default states and for the device to  
be ready for normal operation.. Figure 7 illustrates the critical timing relationship of taking the ADS131A0x into  
reset and bringing the device out of reset. Tie the RESET pin high if the RESET command is used to reset the  
device.  
Copyright © 2016–2018, Texas Instruments Incorporated  
35  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5 Programming  
9.5.1 Interface Protocol  
The ADS131A0x is designed with an interface protocol that expands the capability of outputting more ADC  
system monitors without disrupting data flow. This protocol communicates through standard serial peripheral  
interface (SPI) methods, using allocated device words within a single data transmission frame to pass  
information. A single data frame starts when the interface is enabled, typically done by pulling the CS line low.  
The duration of a data frame is made up of several device words with programmable bit lengths. A visual  
representation showing how a data frame is made up of multiple device words is shown in Figure 52.  
Data Frame  
SCLK  
Device Word 1  
Device Word 2 Device Word 3  
DIN  
DIN, DOUT  
Device word is length set by M1: 16, 24, or 32 bits.  
b) Single Device Word  
Device Word 1 Device Word 2 Device Word 3  
a) Frame  
DOUT  
Figure 52. Data Frame and Device Word  
9.5.1.1 Device Word Length  
The interface is full duplex, allowing the device to be read to and written from within the same data frame. The  
length of the individual device words is programmable through the state of the M1 pin. This pin must be set to  
one of three states at power-up. The pin state is latched at power-up and changing the pin state after power-up  
has no effect. Table 7 lists the modes associated with the M1 pin state. The M1 pin must be tied high to IOVDD  
through a < 1-kΩ resistor, low to GND through a < 1-kΩ resistor, or left floating.  
Table 7. M1 Pin Setting  
M1 STATE  
IOVDD  
GND  
DEVICE WORD LENGTH (Bits)  
32  
24  
16  
Float  
9.5.1.2 Fixed versus Dynamic-Frame Mode  
The device has two data frame size options to set the number of device words per frame: fixed and dynamic-  
frame mode, controlled by the FIXED bit in the D_SYS_CFG register. By default, the ADS131A0x powers up in  
dynamic-frame mode.  
In fixed-frame mode, there are always six device words for each data frame for the ADS131A0x. The first device  
word is reserved for the status word, the next four device words are reserved for the conversion data for each of  
the four channels, and the last word is reserved for the cyclic redundancy check (CRC) data word.  
In dynamic-frame mode, the number of device words per data frame is dependent on if the ADCs are enabled  
and if CRC data integrity is enabled. When the ADCs are powered down in standby mode, the number of device  
words per data frame is either one or two depending if CRC data integrity is enabled. In normal operation with  
the ADC channels powered up, the number of device words per data frame depends on if CRC is enabled. When  
CRC data integrity is disabled in dynamic-frame mode, the sixth device word for the ADS131A0x is removed  
from the data frame. If CRC data integrity remains enabled, the device word count remains at six.  
36  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Figure 53 shows the fixed-frame and dynamic-frame modes for the ADS131A04 in standby mode with CRC data  
integrity enabled and disabled. Figure 54 shows the fixed-frame and dynamic-frame modes for the ADS131A04  
with ADC channels and CRC data integrity enabled and disabled.  
Data Frame  
Data Frame  
DIN  
Command  
Status  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
DIN  
Command  
Status  
DOUT  
DOUT  
a) Fixed-Frame Size (CRC Disabled)  
b) Dynamic Frame Size (CRC Disabled)  
Data Frame  
Data Frame  
DIN  
Command  
Status  
00  
00  
00  
00  
00  
00  
00  
00  
CRC  
DIN  
Command  
Status  
CRC  
CRC  
DOUT  
CRC  
DOUT  
c) Fixed-Frame Size (CRC Enabled)  
d) Dynamic Frame Size (CRC Enabled)  
Figure 53. Fixed versus Dynamic-Frame Modes in Standby Mode  
Data Frame  
Data Frame  
DIN  
Command  
00  
00  
00  
00  
00  
00  
DIN  
Command  
Status  
00  
00  
00  
00  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
DOUT  
Status  
DOUT  
a) Fixed-Frame Size (CRC Disabled)  
b) Dynamic Frame Size (CRC Disabled)  
Data Frame  
Data Frame  
DIN  
Command  
Status  
00  
00  
00  
00  
CRC  
CRC  
DIN  
Command  
Status  
00  
00  
00  
00  
CRC  
CRC  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
DOUT  
DOUT  
c) Fixed-Frame Size (CRC Enabled)  
d) Dynamic Frame Size (CRC Enabled)  
NOTE: CMND = Command.  
Figure 54. Fixed versus Dynamic-Frame Modes With ADCs Enabled  
9.5.1.3 Command Word  
The command word is the first device word on every DIN data frame. This frame is reserved for sending user  
commands to write or read from registers (see the SPI Command Definitions section). The commands are stand-  
alone, 16-bit words that appear in the 16 most significant bits (MSBs) of the first device word of the DIN data  
frame. Write zeroes to the remaining unused least significant bits (LSBs) when operating in either 24-bit or 32-bit  
word size modes.  
Copyright © 2016–2018, Texas Instruments Incorporated  
37  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.1.4 Status Word  
The status word is the first device word in every DOUT data frame. The status word either provides a status  
update of the ADC internal system monitors or functions as a status response to an input command; see the SPI  
Command Definitions section. The contents of the status word are always 16 bits in length with the remaining  
LSBs set to zeroes depending on the device word length; see Table 7.  
9.5.1.5 Data Words  
The data words follow the status word. The device shifts individual channel data in separate data words. The  
ADS131A0x converter is 24-bit resolution regardless of the device word length; see Table 7. The output data are  
truncated to 16 bits when using the 16-bit device word length setting (or when enabling hamming code with a 24-  
bit device word length setting). The output data are extended to 32 bits with eight zeroes (00000000) added to  
the least significant bits when using the 32-bit device word length setting (when hamming code is disabled).  
Use the device word length (see Table 7) to set the output resolution of the ADS131A0x. When placing the  
hardware M1 pin in a floating state, the interface operates in 16-bit device word length mode by removing the  
eight least significant bits. The 16 bits of data per channel are sent in binary twos complement format, MSB first.  
The size of one code (LSB) is calculated using Equation 8:  
1 LSB = (2 × VREF / Gain) / 216 = FS / 215  
(8)  
A positive full-scale input [VIN (FS – 1 LSB) = (VREF / Gain – 1 LSB)] produces an output code of 7FFFh and a  
negative full-scale input (VIN –FS = –VREF / Gain) produces an output code of 8000h. The output clips at these  
codes for signals that exceed full-scale.  
Table 8 summarizes the ideal output codes for different input signals.  
Table 8. 16-Bit Ideal Output Code versus Input Signal  
INPUT SIGNAL, VIN  
IDEAL OUTPUT CODE(1)  
VAINxP - VAINxN  
FS (215 – 1) / 215  
7FFFh  
0001h  
0000h  
FFFFh  
8000h  
FS / 215  
0
–FS / 215  
–FS  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
Pull the M1 pin to IOVDD (through a < 1-kΩ resistor) or GND (through a < 1-kΩ resistor) to set the device either  
to a 24-bit or 32-bit device word length. In either setting, the ADS131A0x outputs 24 bits of data per channel in  
binary twos complement format, MSB first. The size of one code (LSB) is calculated using Equation 9:  
1 LSB = (2 × VREF / Gain) / 224 = FS / 223  
(9)  
A positive full-scale input [VIN (FS – 1 LSB) = (VREF / Gain – 1 LSB)] produces an output code of 7FFFFFh and  
a negative full-scale input (VIN –FS = –VREF / Gain) produces an output code of 800000h. The output clips at  
these codes for signals that exceed full-scale.  
Table 9 summarizes the ideal output codes for different input signals.  
Table 9. 24-Bit Ideal Output Code versus Input Signal  
INPUT SIGNAL, VIN  
VAINxP - VAINxN  
FS (223 – 1) / 223  
FS / 223  
IDEAL OUTPUT CODE(1)  
7FFFFFh  
000001h  
0
000000h  
–FS / 223  
FFFFFFh  
–FS  
800000h  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
38  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.5.1.6 Cyclic Redundancy Check (CRC)  
The CRC word is the last device word in the DIN and DOUT data frame. The CRC device word is optional and is  
enabled by the CRC_EN control bit in the D_SYS_CFG register. When enabled, a 16-bit CRC data check word  
is present in the 16 most significant bits of the last device word in the data frame on both DIN and DOUT. Use  
the CRC to provide detection of single and multiple bit errors during data transmission.  
The ADS131A0x implements a standard CRC16-CCITT algorithm using a polynomial of 11021h and an initial  
remainder of FFFFh.  
The CRC on all DIN commands is verified by the device prior to command execution except for the WREGS  
command; see the WREGS: Write Multiple Registers section. The WREGS command does not check the CRC  
prior to writing registers but does indicate if an error occurred. If the CRC on DIN is incorrect, F_CHECK in the  
STAT_1 register is set to 1 and the input command does not execute (for all commands except WREGS). Fill the  
unused device words on DIN with zeroes, placing the CRC word in the last device word.  
The number of input CRC errors is counted and stored in the error count register. The register counts errors up  
to 255 before rolling over to 0. The counter is cleard by reading the ERROR_CNT register.  
The CRC is calculated using specific device words in the data frame determined by the CRC_MODE and FIXED  
bits in the D_SYS_CFG register. For DIN, when the FIXED bit is 0, all device words are calculated into the CRC.  
When the FIXED bit is 1 and the CRC_MODE bit is 1, all device words are used for calculating the CRC on DIN.  
When the FIXED bit is 1 and the CRC_MODE bit is 0, only the command word and device words are used for  
the CRC calculation on DIN.  
For DOUT, when the FIXED bit is 0, all device words in the data frame are included in the CRC calculation.  
When the FIXED bit is 1 and CRC_MODE is 1, all device words in the data frame are included in the DOUT CRC  
calculation. When the FIXED bit is 1 and CRC_MODE is 0, only the command, status word, and active device  
words are included in the DOUT CRC calculation. When hamming codes are enabled, the hamming byte of each  
word is omitted in the CRC calculation.  
Figure 55 and Figure 56 show which device words are included in the CRC calculation on DIN and DOUT under  
various CRC settings. In the following examples, the device words that are not checked are highlighted in red.  
Data Frame  
DIN  
Command  
Status  
Zero  
Zero  
Zero  
Zero  
CRC  
CRC  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
DOUT  
NOTE: CRC_MODE = 1.  
Figure 55. CRC with CRC_MODE = 1  
Data Frame  
DIN  
Command  
Status  
Zero  
Zero  
Zero  
Zero  
CRC  
CRC  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
DOUT  
NOTE: CRC_MODE = 0.  
Figure 56. CRC with CRC_MODE = 0  
Copyright © 2016–2018, Texas Instruments Incorporated  
39  
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
The WREGS command causes the data frame to extend until the last register is written (see the WREGS: Write  
Multiple Registers section for more details), thus requiring the CRC to be placed on DIN after the data frame  
extension. The ADS131A0x places the CRC word on DOUT at the end of all ADC data. When sending the  
WREGS command, the device words following the CRC on DOUT are padded with zeroes and are not included  
in the CRC calculation; see Figure 57. The device words that are not checked are highlighted in red.  
Data Frame  
Registers Registers Registers Registers Registers  
DIN  
WREGS  
Status  
CRC  
Zero  
1, 2  
3, 4  
5, 6  
7, 8  
9, 10  
Channel 1 Channel 2 Channel 3 Channel 4  
Data Data Data Data  
DOUT  
CRC  
Figure 57. CRC Using the WREGS Command  
9.5.1.6.1 Computing the CRC  
The CRC byte is the 16-bit remainder of the bitwise exclusive-OR (XOR) operation of the data bytes by a CRC  
polynomial. The CRC is based on the CRC-CCITT polynomial X16 + X12 + X5 + 1.  
The binary coefficients of the polynomial are: 10001000 00010001. Calculate the CRC by dividing the data bytes  
(with the XOR operation, thus excluding the CRC) with the polynomial and compare the calculated CRC values  
to the provided CRC value. If the values do not match, then a data transmission error has occurred. In the event  
of a data transmission error, read or write the data again.  
The following list shows a general procedure to compute the CRC value. Assume the shift register is 16 bits  
wide:  
1. Set the polynomial value to 1021h  
2. Set the shift register to FFFFh  
3. For each byte in the data stream:  
Shift the next data byte left by eight bits and XOR the result with the shift register, placing the result into  
the shift register  
Do the following eight times:  
1. If the most significant bit of the shift register is set, shift the register left by one bit and XOR the result  
with the polynomial, placing the result into the shift register  
2. If the most significant bit of the shift register is not set, shift the register left by one bit  
4. The result in the shift register is the CRC check value  
NOTE  
The CRC algorithm used here employs an assumed set X16 bit. This bit is divided out by  
left-shifting it 16 times out of the register prior to XORing with the polynomial register. This  
process makes the CRC calculable with a 16-bit word size.  
9.5.1.7 Hamming Code Error Correction  
Hamming code is an optional data integrity feature used to correct for single-bit errors and detect multiple-bit  
errors in each device word. Enable hamming code with M2 pin settings (see Table 10 for details). Tie the M2 pin  
to IOVDD through a < 1-kΩ resistor to enable hamming code, or tie the M2 pin to GND through a < 1-kΩ resistor  
to disable hamming code.  
40  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Hamming code is only supported in 24-bit and 32-bit device word sizes. The ADS131A0x outputs 24 bits of  
conversion data and an 8-bit hamming code per channel when operating in 32-bit word size. The ADS131A0x  
outputs 16 bits of conversion data and an 8-bit hamming code per channel when operating in 24-bit word size.  
Table 10 lists the configuration options of the M1 and M2 hardware pins and the associated device word size.  
The status and command words are always 16 bits in length, reserving the eight least significant bits for  
hamming code.  
Table 10. M2 Pin Setting Options  
M2 STATE  
M1 STATE  
IOVDD  
GND  
DEVICE WORD SIZE  
32 bits  
CONVERSION DATA  
24 bits  
HAMMING DATA  
On: 8 bits  
On: 8 bits  
Not available  
Off  
IOVDD  
24 bits  
16 bits  
Float  
Not available  
32 bits  
Not available  
24 bit + 8 zeroes  
24 bit  
IOVDD  
GND  
GND  
Float  
24 bits  
Off  
Float  
16 bits  
16 bit  
Off  
N/A  
Not available  
Not available  
Not available  
When enabled, the hamming code byte is an additional 8-bits appended to the end of each device word on both  
the input and output, as shown in Figure 58. This additional eight bits are a combination of five hamming code  
(Hamming) bits, two checksum (ChS) bits, and one zero bit, as shown in Figure 59.  
32-Bit Command, Status  
16 Command, Status Bits  
00h  
8 HC Bits  
8 HC Bits  
8 HC Bits  
8 HC Bits  
Device Word  
24-Bit Command, Status  
Device Word  
16 Command, Status Bits  
24 Data Bits  
32-Bit ADC Data  
Device Word  
24-Bit ADC Data  
Device Word  
16 Data Bits  
32-Bit CRC  
Device Word  
16 CRC Bits  
00h  
8 HC Bits  
8 HC Bits  
24-Bit CRC  
Device Word  
16 CRC Bits  
Figure 58. Hamming Code on Each Device Word  
2 ChS  
Bits  
Bits  
5 Hamming Bits  
0
Figure 59. Hamming Code Bit Allocation  
CRC can be used with the hamming code error correction enabled. When the hamming code error correction is  
enabled with CRC, the 8-bit hamming data per device word is not protected by the CRC and is ignored in the  
calculation. For example, if the 32-bit word size is used with hamming code enabled, the CRC check only uses  
the most significant 24 bits of each device word and ignores the last eight bits used for the hamming code. The  
CRC considers each device word as being 24 bits.  
Copyright © 2016–2018, Texas Instruments Incorporated  
41  
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Table 11 shows the hamming bit coverage for 24-bit data. The encoded data bit 00 corresponds to the LSB of  
the data and bit 23 is the MSB of the data. The hamming code bits are interleaved within the data bits. H0 is the  
least significant bit of the hamming code and H4 is the most significant bit.  
Table 11. ADS131A0x Hamming Codes  
HAMMING OR  
DATA  
D
D
D
D
D
D
D
D
D
D
D
D
D
H
D
D
D
D
D
D
D
H
D
D
D
H
D
H
H
Encoded data  
bits  
00 01 02 03 04 05 06 07 08 09 10 11 12 04 13 14 15 16 17 18 19 03 20 21 22 02 23 01 00  
H0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H1  
H2  
H3  
H4  
x
x
x
x
x
x
x
x
x
x
x
x
x
Parity bit  
coverage  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
9.5.2 SPI Interface  
The device SPI-compatible serial interface is used to read conversion data, read and write the device  
configuration registers, and control device operation. Only CPOL = 0 and CPHA = 1 are supported. The interface  
consists of five control lines (CS, SCLK, DIN, DOUT, and DRDY) but can be used with only four signals as well.  
Three interface configurations are selectable in the ADS131A0x by M0 pin settings, as shown in Table 12:  
asynchronous interrupt mode, synchronous master mode, and synchronous slave mode.  
The M0 pin settings (listed in Table 12) are latched on power-up to set the interface. The same communication  
lines are used for all three interface modes: SCLK, DIN, DOUT, and DRDY, with CS as an option in 5-wire mode.  
An optional sixth signal (DONE) is available for use when chaining multiple devices, as discussed in the ADC  
Frame Complete (DONE) section. Tie the M0 pin high to IOVDD through a < 1-kΩ resistor, low to GND through a  
< 1-kΩ resistor, or leave the M0 pin floating.  
Table 12. M0 Pin Settings  
M0 STATE  
IOVDD  
GND  
INTERFACE MODE  
Asynchronous interrupt mode  
Synchronous master mode  
Synchronous slave mode  
Float  
9.5.2.1 Asynchronous Interrupt Mode  
The SPI uses five interface signals: CS, SCLK, DIN, DOUT, and DRDY in asynchronous interrupt mode. Use the  
four interface lines, CS, SCLK, DIN, and DOUT to read conversion data, read and write registers, and send  
commands to the ADS131A0x. Use the DRDY output as a status signal to indicate when new conversion data  
are ready. Figure 60 shows typical device connections for the ADS131A0x to a host microprocessor or digital  
signal processor (DSP) in asynchronous interrupt mode.  
IOVDD  
IOVDD  
Device  
MPU, DSP  
CS  
SCLK  
DIN  
CS  
M0  
SCLK  
MOSI  
MISO  
IRQ  
DOUT  
DRDY  
DONE  
Master  
CLK  
CLKIN  
Master  
Slave  
Figure 60. Asynchronous Interrupt Mode Device Connections  
42  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.5.2.1.1 Chip Select (CS)  
Chip select (CS) is an active-low input that selects the device for SPI communication and controls the beginning  
and end of a data frame in asynchronous interrupt mode. CS must remain low for the entire duration of the serial  
communication to complete a command or data readback. When CS is taken high, the serial interface (including  
the data frame) is reset, SCLK and DIN are ignored, and DOUT enters a high-impedance state. DRDY transitions  
low when data conversion is complete, regardless of whether CS is high or low.  
9.5.2.1.2 Serial Clock (SCLK)  
The serial clock (SCLK) features a Schmitt-triggered input and is used to clock data into and out of the device on  
DIN and DOUT, respectively. SCLKs can be sent continuously or in byte increments to the ADC. Even though  
the input has hysteresis, keeping the SCLK signal as clean as possible is recommended to prevent glitches from  
accidentally shifting data. When the serial interface is idle, hold SCLK low.  
9.5.2.1.3 Data Input (DIN)  
Use the data input (DIN) pin and SCLK to communicate with the ADS131A0x (user commands and register  
data). The device latches data on DIN on the SCLK falling edge. The command or register write takes effect  
following completion of the data frame.  
9.5.2.1.4 Data Output (DOUT)  
Use the data output (DOUT) pin with SCLK to read conversion and register data from the ADS131A0x. Data on  
DOUT are shifted out on the SCLK rising edge. DOUT goes to a high-impedance state when CS is high or after  
the least significant bit is shifted from the output shift register (see the th(LSB) specification in the Switching  
Characteristics: Asynchronous Interrupt Interface Mode table).  
9.5.2.1.5 Data Ready (DRDY)  
DRDY indicates when a new conversion result is ready for retrieval. When DRDY transitions from high to low,  
new conversion data are ready. The DRDY signal remains low for the duration of the data frame and returns high  
either when CS returns high (signaling the completion of the frame), or prior to new data being available. The  
high-to-low DRDY transition occurs at the set data rate regardless of the CS state. If data are not completely  
shifted out when new data are ready, the DRDY signal toggles high for a duration of 0.5 × tMOD and back low.  
The device sets the F_DRDY bit in the STAT_1 register indicating that the DOUT output shift register is not  
updated with the new conversion result. Figure 61 shows an example of new data being ready before previous  
data are shifted out, causing the new conversion result to be lost. The DRDY pin is always actively driven, even  
when CS is high.  
fDATA  
DRDY  
New data are lost,  
F_DRDY = 1.  
CS  
Channel 1  
Data  
Channel 2  
Data  
Channel 3  
Data  
DOUT  
Status  
Figure 61. Asynchronous Interrupt Mode Conversion Update During a Read Operation  
Copyright © 2016–2018, Texas Instruments Incorporated  
43  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.2.1.6 Asynchronous Interrupt Mode Data Retrieval  
Figure 62 shows the relationship between DRDY, CS, SCLK, DIN, and DOUT during data retrieval. The high-to-  
low DRDY transition indicates that new data are available. Transition CS from high to low to begin a data frame.  
At the end of the data frame, CS returns high and brings DRDY high.  
DRDY  
CS  
SCLK  
DIN  
DOUT  
Figure 62. DRDY Behavior with Data Retrieval in Asynchronous Interrupt Mode  
9.5.2.2 Synchronous Master Mode  
The SPI uses four interface signals: SCLK, DIN, DOUT, and DRDY in synchronous master mode. Connect the  
CS signal to the DONE signal when using a single device in synchronous master mode. The SCLK, DRDY, and  
DOUT signals are outputs from the device. Provide DIN from the microprocessor (MPU) or DSP using the SCLK  
edge timing of the ADS131A0x. Figure 63 shows typical device connections for the ADS131A0x in synchronous  
master mode to a host microprocessor or DSP.  
IOVDD  
Device  
MPU, DSP  
CS  
SCLK  
CS  
M0  
SCLK  
MOSI  
MISO  
IRQ  
DIN  
DOUT  
DRDY  
DONE  
Master  
CLK  
CLKIN  
Slave  
Master  
Figure 63. Synchronous Master Mode Device Connections  
9.5.2.2.1 Serial Clock (SCLK)  
SCLK is the serial peripheral interface (SPI) serial clock. Use SCLK to shift in commands and shift out data from  
the device, similar to the description provided in the Asynchronous Interrupt Mode section. The SCLK output  
equals the ICLK derived from the input clock, CLKIN, using the clock divider control in the CLK1 register. SCLKs  
continuously output at the ICLK rate with the beginning of a data frame set by a DRDY falling edge.  
9.5.2.2.2 Data Input (DIN)  
Use the data input (DIN) pin and SCLK to communicate with the ADS131A0x (user commands and register  
data). The device latches data on DIN on the SCLK falling edge. The command or register write takes effect  
following completion of the data frame.  
44  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.5.2.2.3 Data Output (DOUT)  
Use the data output pin (DOUT) with SCLK to read conversion and register data from the ADS131A0x. Data on  
DOUT are shifted out on the SCLK rising edge. DOUT goes to a high impedance state when CS is high or after  
the least significant bit is shifted from the output shift register (see the th(LSB) specification in the Switching  
Characteristics: Asynchronous Interrupt Interface Mode table).  
9.5.2.2.4 Data Ready (DRDY)  
The DRDY signal is an output that functions as a new data ready indicator and as the control for the start and  
stop of a data frame. A high-to-low transition of DRDY from the ADC indicates that the output shift register is  
updated with new data and begins a new data frame. Subsequent SCLKs shift out the first device word on  
DOUT.  
9.5.2.2.5 Chip Select (CS)  
For single device operation in synchronous master mode, tie the CS line to the DONE output signal.  
9.5.2.2.6 Synchronous Master Mode Data Retrieval  
Figure 64 shows the relationship between DRDY, DOUT, DIN, and SCLK during data retrieval in synchronous  
master mode. The high-to-low DRDY transition from the ADS131A0x starts a data frame and indicates that new  
data are available. DIN and DOUT transition on the SCLK rising edge. After the LSB is shifted out DRDY returns  
high, completing the data frame. The ICLK speed must be fast enough to shift out the required bits before new  
data are available because ICLK determines the SCLK output rate, as described in the Serial Clock (SCLK)  
section. Tie the CS signal to the DONE signal in single device synchronous master mode.  
DRDY  
SCLK  
DIN  
DOUT  
Figure 64. Data Retrieval in Synchronous Master Mode  
9.5.2.3 Synchronous Slave Mode  
The SPI uses five interface signals: CS, SCLK, DIN, DOUT, and DRDY in synchronous slave mode. The CS,  
SCLK, DIN, and DRDY signals are inputs to the device and the DOUT signal is an output. DRDY can be tied  
directly to CS (for a total of four interface lines) or can be used independently as a fourth input signal for  
synchronization to an external event; see the Data Ready (DRDY) section for more information on using the  
DRDY line for synchronization. Figure 65 shows typical device connections for the ADS131A0x in synchronous  
slave mode to a host microprocessor or DSP.  
IOVDD  
Device  
MPU, DSP  
CS  
SCLK  
CS  
Float  
M0  
SCLK  
MOSI  
MISO  
nIRQ  
DIN  
DOUT  
DRDY  
DONE  
Master  
CLK  
CLKIN  
Master  
Slave  
Figure 65. Synchronous Slave Mode Device Connections  
Copyright © 2016–2018, Texas Instruments Incorporated  
45  
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.2.3.1 Chip Select (CS)  
Chip select (CS) is an active-low input that selects the device for SPI communication and controls the beginning  
and end of a data frame in synchronous slave mode. CS must remain low for the entire duration of the serial  
communication to complete a command or data readback. When CS is taken high, the serial interface (including  
the data frame) is reset, SCLK and DIN are ignored, and DOUT enters a high-impedance state. Tie CS directly to  
the DRDY input signal to minimize communication lines as long as the synchronization timing in Figure 5 is met.  
Otherwise, the CS line can be used independent of DRDY.  
9.5.2.3.2 Serial Clock (SCLK)  
SCLK is the SPI serial clock. Use SCLK to shift in commands on DIN and shift out data from the device on  
DOUT, similar to the description in the Asynchronous Interrupt Mode section.  
If the SCLK source is free-running, the SCLK input signal can be set as the ADC ICLK, removing the need of a  
separate CLKIN. The CLKSRC bit in the CLK1 register controls the source for the ADC ICLK. The modulator  
clock is derived from the ICLK using the ICLK_DIV[2:0] bits in the CLK2 register; see Figure 35 for a diagram of  
how SCLK is routed into the device when serving as the ICLK. Setting SCLK as the internal ICLK requires that  
clocks are sent continuously without any delay or stop periods. Care must be taken to prevent glitches on SCLK  
at all times.  
9.5.2.3.3 Data Input (DIN)  
Use the data input pin (DIN) along with SCLK to communicate with the ADS131A0x (user commands and  
register data). The device latches data on DIN on the SCLK falling edge. The command or register write takes  
effect following the completion of the data frame.  
9.5.2.3.4 Data Output (DOUT)  
Use the data output pin (DOUT) with SCLK to read conversion and register data from the ADS131A0x. Data on  
DOUT are shifted out on the SCLK rising edge. DOUT goes to a high impedance state when CS is high or after  
the least significant bit is shifted from the output shift register (see the th(LSB) specification in the Switching  
Characteristics: Asynchronous Interrupt Interface Mode table).  
9.5.2.3.5 Data Ready (DRDY)  
In synchronous slave mode, DRDY is an input signal that must be pulsed at the device set data rate. The DRDY  
input signal is compared to an internally-generated data update signal to verify that these two signals are  
synchronized. A high-to-low DRDY transition is expected at the programmed data rate or at multiples thereof. In  
the event of an unexpected DRDY input pulse, the F_RESYNC bit flags in the STAT_1 register and the ADC  
digital filter resets. Use the DRDY input signal as a synchronization method to align new data ready with an  
external event or with a second ADS131A0x device. See the Timing Requirements: Synchronous Slave Interface  
Mode table for the timing requirements of the DRDY input in synchronous slave mode.  
46  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.5.2.3.6 Synchronous Slave Mode Data Retrieval  
Figure 66 shows the relationship between DRDY, CS, SCLK, DIN, and DOUT during data retrieval in  
synchronous slave mode. In synchronous slave mode, the high-to-low DRDY transition sent from the processor  
must be synchronized with the data rate programmed, or multiples thereof, to avoid a digital filter reset. The data  
frame begins with a high-to-low CS transition with or after DRDY transitions low. The DIN and DOUT signals  
transition on the SCLK rising edge. DRDY can return high at any point but must maintain a high-to-low transition  
at the set data rate to avoid a resynchronization event. To minimize interface lines, the CS signal can be tied  
directly to the DRDY signal; the timing specifications in the Timing Requirements: Synchronous Slave Interface  
Mode table are still maintained.  
tDATA  
DRDY  
CS  
SCLK  
DIN  
DOUT  
Figure 66. Data Retrieval in Synchronous Slave Mode  
9.5.2.4 ADC Frame Complete (DONE)  
The DONE output signal is an optional interface line that enables chaining multiple devices together to increase  
channel count. Connect the DONE signal to the CS of the next chained data converter in the system to control  
the start and stop of the subsequent converter interface. The DONE signal transitions from high to low following  
the LSB being shifted out. The delay time from the SCLK falling edge shifting out the LSB to the high-to-low  
DONE transition is configured using the DNDLY[1:0] bits in the D_SYS_CFG register. See Figure 6 for details of  
the signals and timings of the DONE signal.  
For single device operation, configure DONE in the following ways:  
In asynchronous slave mode, either float the DONE output signal or pull the DONE output signal to IOVDD  
through a 100-kΩ pullup resistor.  
In synchronous master mode, tie the DONE output signal to the CS input line.  
In synchronous slave mode, either float the DONE output signal or pull the DONE output signal to IOVDD  
through a 100-kΩ pullup resistor.  
See the Multiple Device Configuration section for more information on using the DONE signal for multiple device  
chaining.  
Copyright © 2016–2018, Texas Instruments Incorporated  
47  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.3 SPI Command Definitions  
The ADS131A0x device operation is controlled and configured through ten commands. Table 13 summarizes the  
available commands. The commands are stand-alone, 16-bit words and reside in the first device word of the data  
frame. Write zeroes to the remaining LSBs when operating in either 24-bit or 32-bit word sizes because each  
command is 16-bits in length. The commands are decoded following the completion of a data frame and take  
effect immediately. Each recognized command is acknowledged with a status output in the first device word of  
the next data frame.  
Table 13. Command Definitions  
COMMAND  
ADDITIONAL  
STATUS  
COMMAND  
DESCRIPTION  
DEVICE WORD  
DEVICE WORD  
RESPONSE  
SYSTEM COMMANDS  
NULL  
Null command  
Software reset  
0000h  
0011h  
0022h  
0033h  
STATUS  
READY  
RESET  
STANDBY  
WAKEUP  
Enter low-power standby mode  
Wake-up from standby mode  
ACK = 0022h  
ACK = 0033h  
Places the interface in a locked state and  
ignores all commands except NULL, RREGS,  
and UNLOCK  
LOCK  
0555h  
0655h  
ACK = 0555h  
ACK = 0655h  
Brings the device out of an unconfigured POR  
state or a locked state  
UNLOCK  
REGISTER WRITE AND READ COMMANDS  
(001a aaaa nnnn  
nnnn)b  
RREG  
Read a single register  
REG  
Read (nnnn nnnn + 1) registers starting at  
address a aaaa  
(001a aaaa nnnn  
nnnn)b  
RREGS  
WREG  
RREGS  
Write a single register at address a aaaa with  
data dddd dddd  
(010a aaaa dddd  
dddd)b  
REG (updated  
register)  
Write (nnnn nnnn + 1) registers beginning at  
address a aaaa. Additional device words are  
required to send data (dddd dddd) to register  
address (a) and data (eeee eeee) to register  
address (a+1). Each device word contains data  
for two registers.  
ACK =  
(010a_aaaa_nnnn_n  
nnn)b  
(011a aaaa nnnn  
nnnn)b  
(dddd dddd eeee  
eeee)b  
WREGS  
The data frame size is extended by (n / 2) device  
words to allow for command completion.  
48  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
A command status response is 16 bits in length, located in the MSBs of the first device word in the DOUT data  
frame. The response indicates that the command in the previous data frame is executed. When operating in 24-  
bit or 32-bit word size modes, the remaining LSBs of the command status response device word read back as  
zero unless hamming code is used. An example showing the acknowledgment to a user input command is  
shown in Figure 67.  
Data Frame  
User Command  
Status Response  
User Command  
Status Response  
DIN  
Channel Data  
Channel Data  
DOUT  
Figure 67. User Command Status Response  
Some user commands require multiple data words over multiple device frames. This section describes the  
commands and details which commands require multiple data words.  
The command status responses to the user commands are listed in Table 14. Every data frame begins with one  
of the listed command status responses on DOUT.  
Table 14. Command Status Responses  
ADDITIONAL  
RESPONSE  
DESCRIPTION  
DEVICE WORD  
(FFdd)h  
DEVICE WORD  
SYSTEM RESPONSE  
Fixed-status word stating that the device is in a power-up ready  
state or standby mode and is ready for use. The least significant  
byte of the device word indicates the address 0 hardware device ID  
code (dd). In the READY state, the device transmits only one word,  
allowing a 1-word command to be received. An UNLOCK command  
must be issued before the device responds to other commands.  
READY  
Acknowledgment response. The device has received and executed  
the command and repeats the received command (cccc) as the  
command status response. (A NULL input does not result in an ACK  
response).  
ACK  
(cccc)h  
Status byte update. Register address a aaaa contains data dddd  
dddd. This command status response is the response to a  
recognized RREGS or WREG command.  
An automatic status update of register address (02h) is sent when  
the NULL command is sent.  
(001a aaaa dddd  
dddd)b  
STATUS/REG  
Response for read (nnnn nnnn + 1) registers starting at address a  
aaaa. Data for two registers are output per device word. If the  
resulting address extends beyond the usable register space, zeroes  
are returned for remaining non-existent registers. During an RREGS  
response, any new input commands are ignored until the RREGS  
status response completes.  
(011a aaaa nnnn  
nnnn)b  
(dddd dddd eeee  
eeee)b  
RREGS  
Copyright © 2016–2018, Texas Instruments Incorporated  
49  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.3.1 NULL: Null Command  
The NULL command has no effect on ADC registers or data. Rather than producing an ACK response on DOUT,  
the command issues a register readback of the STAT_1 register to monitor for general fault updates. An example  
of the response to a NULL command is shown in Figure 68.  
Data Frame  
NULL (0000h)  
User Command  
DIN  
Status Response  
Channel Data  
REG(STAT_1)  
Channel Data  
DOUT  
Figure 68. NULL Command Status Response  
9.5.3.2 RESET: Reset to POR Values  
The RESET command places the ADC into a power-on reset (POR) state, resetting all user registers to the  
default states. The reset begins following the completion of the frame. When reset completes, the ADC enters a  
reset locked state and outputs the READY status response on DOUT as the command status response. An  
example of the response to a RESET command is shown in Figure 69.  
Data Frame  
RESET (0011h)  
Status Response  
NULL  
DIN  
Channel Data  
READY (FFxx)  
Locked State  
DOUT  
Reset Delay  
Figure 69. RESET Command Status Response  
9.5.3.3 STANDBY: Enter Standby Mode  
The STANDBY command places the ADC in a low-power standby mode, halting conversions. The digital  
interface remains powered, allowing all registers to retain the previous states. When in standby mode, writing  
and reading from registers is possible and any programmable bits that activate circuitry take effect in the device  
after the WAKEUP command is issued. The command status response following a STANDBY command is  
0022h. In standby mode, the command status response is dependent on the user command that is sent. All ADC  
channels must be disabled (by writing to the ADCx registers) prior to entering standby mode to reduce current  
consumption. An example for the response to the STANDBY command and behavior when in standby mode is  
shown in Figure 70.  
Data Frame  
STANDBY  
(0022h)  
WAKEUP  
(0033h)  
User Command  
NULL  
DIN  
Status  
Response  
Status  
Response  
REG  
(STAT_1)  
Channel Data  
ACK (0022h)  
Standby  
DOUT  
Standby  
Standby  
Figure 70. STANDBY Command Status Response  
50  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.5.3.4 WAKEUP: Exit STANDBY Mode  
The WAKEUP command brings the ADC out of standby mode. The ADC channels must be enabled (by writing to  
the ADCx registers) before bringing the device out of standby mode. Allow enough time for all circuits in standby  
mode to power-up (see the Electrical Characteristics table for details). The command status response following a  
WAKEUP command is 0033h. An example showing the response to exiting standby mode using the WAKEUP  
command is shown in Figure 71.  
Data Frame  
NULL  
WAKEUP (0033h)  
DIN  
RREG (STAT_1)  
Standby  
RREG (STAT_1)  
Standby  
ACK (0033h)  
Normal  
Data  
DOUT  
Figure 71. WAKEUP Command Status Response  
9.5.3.5 LOCK: Lock ADC Registers  
The LOCK command places the converter interface in a locked state where the interface becomes unresponsive  
to most input commands. The UNLOCK, NULL, RREG, and RREGS commands are the only commands that are  
recognized when reading back data. Following the LOCK command, the first DOUT status response reads 0555h  
followed by the command status response of a NULL command (by reading the STAT_1 register). An example  
showing the response to sending a LOCK command and entering a register locked state is shown in Figure 72.  
Data Frame  
LOCK (0555h)  
NULL  
NULL  
DIN  
Status Response  
Data  
ACK (0555h)  
Locked  
Data  
ACK (STAT_1)  
Locked  
Data  
DOUT  
Figure 72. LOCK Command Status Response  
9.5.3.6 UNLOCK: Unlock ADC Registers  
The UNLOCK command brings the converter out of the locked state, allowing all registers to be accessed in the  
next data frame. The command status response associated with the UNLOCK command is 0655h. An example  
of bringing the interface out of the locked state using the UNLOCK command is shown in Figure 73.  
Data Frame  
NULL  
UNLOCK (0655h)  
User Command  
DIN  
ACK (STAT_1)  
Locked  
Data  
ACK (STAT_1)  
Locked  
Data  
ACK (0655h)  
Unlocked  
Data  
DOUT  
Figure 73. UNLOCK Command Status Response  
Copyright © 2016–2018, Texas Instruments Incorporated  
51  
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.3.6.1 UNLOCK from POR or RESET  
When powering up the device or coming out of a power-on reset (POR) state, the ADC does not accept any  
commands. During this time, the jost can poll the ADC until the command status response reads back FFDDh  
(DD denotes the channel count defined by the NU_CH[3:0] bits in the ID_MSB register), indicating that the ADC  
power-on reset cycle is complete and that the ADC is ready to accept commands. Use the UNLOCK command  
to enable the SPI interface and begin communication with the device. The command status response associated  
with the UNLOCK command is 0655h. Figure 74 shows an example of unlocking the device after POR using the  
UNLOCK command.  
POR_EVENT  
Data Frame  
POR_EVENT  
DIN  
NULL  
UNLOCK (0655h)  
User Command  
POR_EVENT  
DOUT  
READY (FFxx)  
Locked  
READY (FFxx)  
Locked  
ACK (0655h)  
Unlocked  
Data  
Figure 74. UNLOCK from a POR Command Status Response  
9.5.3.7 RREG: Read a Single Register  
The RREG command reads register data from the ADC. RREG is a 16-bit command containing the command,  
the register address, and the number of registers to be to read. The command details are shown below:  
First byte: 001a aaaa, where a aaaa is the register address  
Second byte: 00h  
The ADC executes the command upon completion of the data frame and the register data transmission begins  
on the first device word of the following data frame. The response contains an 8-bit acknowledgement byte with  
the register address and an 8-bit data byte with the register content. Figure 75 shows an example command  
response to a single register read.  
Data Frame  
RREG REG(a)  
RREG REG(b)  
NULL  
DIN  
Status Word  
Data  
REG(a)  
Data  
REG(b)  
Data  
DOUT  
Figure 75. RREGS Command Status Response (Single Register Read)  
9.5.3.8 RREGS: Read Multiple Registers  
For a multiple register read back, the command status response exceeds the 16-bit reserved device word space,  
causing an overflow to additional command status words. The first command status response is an  
acknowledgment of multiple registers to be read back and the additional command status responses shift out  
register data. The command status response details are shown below:  
First command status response: 001a aaaa nnnn nnnn, where a aaaa is the starting register address and  
nnnn nnnn is the number of registers to read minus one (n-1).  
Additional command status responses: dddd dddd eeee eeee , where dddd dddd is the register data from the  
first register read back and eeee eeee is the register data from the second read back register.  
52  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
The number of additional command status responses across multiple frames is dependent on the number of  
registers to be read back. During a RREGS command status response, any new input commands are ignored  
until the command completes by shifting out all necessary command status responses. If the resulting address  
extends beyond the usable register space, zeroes are returned for any remaining non-existent registers. An  
example of the command response to reading four registers using a RREGS command is shown in Figure 76.  
Data Frame  
RREGS (2003h)  
NULL  
NULL  
NULL  
DIN  
REG (02h+03h)  
Status Word  
Data  
Ack (RREGS)  
Data  
REG (00h+01h)  
Data  
Data  
DOUT  
Figure 76. RREGS Command Status Response (Multiple Register Read)  
9.5.3.9 WREG: Write Single Register  
The WREG command writes data to a single register. The single register write command is a two-byte command  
containing the address and the data to write to the address. The command details are shown below:  
First byte: 010a aaaa, where a aaaa is the register address.  
Second byte: dddd dddd, where dddd dddd is the data to write to the address.  
The resulting command status response is a register read back from the updated register. An example of a  
single register write and response is shown in Figure 77.  
Data Frame  
WREG REG(a)  
WREG REG(b)  
NULL  
DIN  
Status Response  
Data  
REG(a)  
Data  
REG(b)  
Data  
DOUT  
Figure 77. WREG Command Status Response (Single Register Write)  
Copyright © 2016–2018, Texas Instruments Incorporated  
53  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.5.3.10 WREGS: Write Multiple Registers  
The WREGS command writes data to multiple registers. The command steps through each register  
incrementally, thus allowing the user to incrementally write to each register. This process extends the data frame  
by (n) device words to complete the command. If the resulting address extends beyond the usable register  
space, any following data for non-existent registers are ignored. The 16 bits contained in the first device word  
contain the command, the starting register address, and the number of registers to write, followed by additional  
device words for the register data. The command details are shown below:  
First user command device word: 011a aaaa nnnn nnnn, where a aaaa is the starting register address and  
nnnn nnnn is the number of registers to write minus one (n-1).  
Additional user command device words: dddd dddd eeee eeee, where dddd dddd is the data to write to the  
first register and eeee eeee is the register data for the second register.  
The user command device word uses the 16 MSBs regardless of word length (that is, only the 16 MSBs are  
used in 16-bit, 24-bit, or 32-bit word lengths). When additional command device words are required, only a  
maximum of two 8-bit registers can be written per command and any additional LSBs beyond 16 bits are ignored.  
The command status response for the WREGS command is 010a aaaa nnnn nnnn, where a aaaa is the starting  
register address and nnnn nnnn is the number of registers written minus one. An example of a multiple register  
write and the command status response is shown in Figure 78.  
Data Frame  
WREGS  
Command  
REG (a+b)  
REG (c+d)  
REG (m+n)  
NULL  
DIN  
WREGS  
Response  
Status Response Channel 1 Data Channel 2 Data  
Data  
00h  
Data  
DOUT  
Figure 78. WREGS Command Status Response (Multiple Register Write)  
54  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.6 Register Maps  
Table 15. Register Map  
REGISTER BITS  
ADDRESS  
(Hex)  
DEFAULT  
SETTING  
REGISTER NAME  
7
6
5
4
3
2
1
0
Read Only ID Registers  
00h  
ID_MSB  
xxh  
xxh  
NU_CH[7:0]  
REV_ID[7:0]  
01h  
ID_LSB  
Status Registers  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
STAT_1  
STAT_P  
00h  
00h  
00h  
00h  
00h  
xxh  
00h  
00h  
0
0
0
0
F_OPC  
F_SPI  
F_ADCIN  
F_WDT  
F_IN4P  
F_IN4N  
0
F_RESYNC  
F_IN3P  
F_DRDY  
F_IN2P  
F_IN2N  
F_CS  
F_CHECK  
F_IN1P  
0
0
0
0
0
0
0
0
0
STAT_N  
F_IN3N  
F_IN1N  
STAT_S  
F_STARTUP  
F_FRAME  
ERROR_CNT  
STAT_M2  
Reserved  
Reserved  
ER[7:0]  
0
0
0
0
0
0
M2PIN[1:0]  
M1PIN[1:0]  
M0PIN[1:0]  
0
0
0
0
0
0
0
0
0
0
0
0
User Configuration Registers  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
Reserved  
A_SYS_CFG  
D_SYS_CFG  
CLK1  
00h  
60h  
3Ch  
08h  
86h  
00h  
00h  
00h  
00h  
00h  
00h  
0
0
0
1
0
0
0
0
0
VNCPEN  
WDT_EN  
CLKSRC  
HRM  
VREF_4V  
DNDLY[1:0]  
INT_REFEN  
COMP_TH[2:0]  
FIXED  
CRC_MODE  
HIZDLY[1:0]  
CLK_DIV[2:0]  
OSR[3:0]  
ENA[3:0]  
CRC_EN  
0
0
0
0
0
0
0
0
0
0
0
CLK2  
ICLK_DIV[2:0]  
ADC_ENA  
Reserved  
ADC1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GAIN1_[2:0]  
GAIN2_[2:0]  
GAIN3_[2:0]  
GAIN4_[2:0]  
ADC2  
ADC3(1)  
ADC4(1)  
(1) This register is for the ADS131A04 only. This register is reserved for the ADS131A02.  
Copyright © 2016–2018, Texas Instruments Incorporated  
55  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1 User Register Description  
9.6.1.1 ID_MSB: ID Control Register MSB (address = 00h) [reset = xxh]  
This register is programmed during device manufacture to indicate device characteristics.  
Figure 79. ID_MSB Register  
7
6
5
4
3
2
1
0
NU_CH[7:0]  
R-xxh  
LEGEND: R = Read only; -n = value after reset  
Table 16. ID_MSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
NU_CH[7:0]  
R
xxh  
Channel count identification bits.  
These bits indicate the device channel count.  
02h : 2-channel device  
04h : 4-channel device  
9.6.1.2 ID_LSB: ID Control Register LSB (address = 01h) [reset = xxh]  
This register is reserved for future use.  
Figure 80. ID_LSB Register  
7
6
5
4
3
2
1
0
REV_ID[7:0]  
R-xxh  
LEGEND: R = Read only; -n = value after reset  
Table 17. ID_LSB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
REV_ID[7:0]  
R
xxh  
Reserved.  
These bits indicate the revision of the device and are subject to change  
without notice.  
56  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.6.1.3 STAT_1: Status 1 Register (address = 02h) [reset = 00h]  
This register contains general fault updates. This register is automatically transferred on the command status  
response when the NULL command is sent.  
Figure 81. STAT_1 Register  
7
0
6
5
4
3
2
1
0
F_OPC  
R-0h  
F_SPI  
R-0h  
F_ADCIN  
R-0h  
F_WDT  
R-0h  
F_RESYNC  
R-0h  
F_DRDY  
R-0h  
F_CHECK  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 18. STAT_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R
0h  
Reserved.  
Always read 0.  
6
F_OPC  
R
0h  
Command fault.  
This bit indicates that a received command is not recognized as valid and  
the command is ignored. This bit auto-clears on a STAT_1 data transfer,  
unless the condition remains.  
When in a locked state, this bit is set if any command other than LOCK,  
UNLOCK, NULL, or RREGS is written to the device.  
0 : No fault has occurred  
1 : Possible invalid command is ignored  
5
4
F_SPI  
R
R
0h  
0h  
SPI fault.  
This bit indicates that one of the status bits in the STAT_S register is set.  
Read the STAT_S register to clear the bit.  
0 : No fault has occurred  
1 : A bit in the STAT_S register is set high  
F_ADCIN  
ADC input fault.  
This bit indicates that one of the ADC input fault detection bits in the  
STAT_P or STAT_N register is set. Read the STAT_P and STAT_N  
registers to clear the bit.  
0 : No fault has occurred  
1 : A bit in the STAT_P or STAT_N register is set high  
3
2
F_WDT  
R
R
0h  
0h  
Watchdog timer timeout.  
This bit indicates if the watchdog timer times out before a new data frame  
transfer occurs.  
0 : No fault has occurred  
1 : Timer has run out (resets following register read back)  
F_RESYNC  
Resynchronization fault.  
This bit is set whenever the signal path is momentarily reset resulting from  
a DRDY synchronization event. This fault is only possible in synchronous  
slave mode.  
0 : Devices are in sync  
1 : Signal path is momentarily reset to maintain synchronization  
1
0
F_DRDY  
R
R
0h  
0h  
Data ready fault.  
This bit is set if data shifted out from the previous result are not complete  
by the time new ADC data are ready. The ADC DRDY line pulses,  
indicating that new data are available and overwrite the current data. This  
bit auto-clears on a STAT_1 transfer, unless the condition remains.  
0 : Data read back complete before new data update  
1 : New data update during DOUT data transmission  
F_CHECK  
DIN check fault.  
This bit is set if either of the following conditions are detected:  
Uncorrectable hamming error correction state is determined for any  
DIN word transfer when hamming code is enabled.  
CRC check word on DIN fails. The input command that triggered this  
error is ignored.  
This bit auto-clears on a STAT_S transfer, unless the condition remains.  
0 : No error in DIN transmission  
1 : DIN transmission error  
Copyright © 2016–2018, Texas Instruments Incorporated  
57  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1.4 STAT_P: Positive Input Fault Detect Status Register (address = 03h) [reset = 00h]  
This register stores the status of whether the positive input on each channel exceeds the threshold set by the  
COMP_TH[2:0] bits; see the Input Overrange and Underrange Detection section for details.  
Figure 82. STAT_P Register  
7
0
6
0
5
0
4
0
3
2
1
0
F_IN4P  
R-0h  
F_IN3P  
R-0h  
F_IN2P  
R-0h  
F_IN1P  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 19. STAT_P Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R
0h  
Reserved.  
Always read 0h.  
3
2
1
0
F_IN4P(1)  
F_IN3P(1)  
F_IN2P  
R
R
R
R
0h  
0h  
0h  
0h  
AIN4P threshold detect.  
0 : The channel 4 positive input pin does not exceed the set threshold  
1 : The channel 4 positive input pin exceeds the set threshold  
AIN3P threshold detect.  
0 : The channel 3 positive input pin does not exceed the set threshold  
1 : The channel 3 positive input pin exceeds the set threshold  
AIN2P threshold detect.  
0 : The channel 2 positive input pin does not exceed the set threshold  
1 : The channel 2 positive input pin exceeds the set threshold  
F_IN1P  
AIN1P threshold detect.  
0 : The channel 1 positive input pin does not exceed the set threshold  
1 : The channel 1 positive input pin exceeds the set threshold  
(1) This bit is not available in the ADS131A02 and always read 0.  
9.6.1.5 STAT_N: Negative Input Fault Detect Status Register (address = 04h) [reset = 00h]  
This register stores the status of whether the negative input on each channel exceeds the threshold set by the  
COMP_TH[2:0] bits; see the Input Overrange and Underrange Detection section for details.  
Figure 83. STAT_N Register  
7
0
6
0
5
0
4
0
3
2
1
0
F_IN4N  
R-0h  
F_IN3N  
R-0h  
F_IN2N  
R-0h  
F_IN1N  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 20. STAT_N Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R
0h  
Reserved.  
Always read 0h.  
3
2
1
0
F_IN4N(1)  
F_IN3N(1)  
F_IN2N  
R
R
R
R
0h  
0h  
0h  
0h  
AIN4N threshold detect.  
0 : The channel 4 negative input pin does not exceed the set threshold  
1 : The channel 4 negative input pin exceeds the set threshold  
AIN3N threshold detect.  
0 : The channel 3 negative input pin does not exceed the set threshold  
1 : The channel 3 negative input pin exceeds the set threshold  
AIN2N threshold detect.  
0 : The channel 2 negative input pin does not exceed the set threshold  
1 : The channel 2 negative input pin exceeds the set threshold  
F_IN1N  
AIN1N threshold detect.  
0 : The channel 1 negative input pin does not exceed the set threshold  
1 : The channel 1 negative input pin exceeds the set threshold  
(1) This bit is not available in the ADS131A02 and always read 0.  
58  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.6.1.6 STAT_S: SPI Status Register (address = 05h) [reset = 00h]  
This register indicates the detection of SPI fault conditions.  
Figure 84. STAT_S Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
F_STARTUP  
R-0h  
F_CS  
R-0h  
F_FRAME  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 21. STAT_S Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
Reserved  
R
00h  
Reserved.  
Always read 00h.  
2
1
0
F_STARTUP  
R
R
R
0h  
0h  
0h  
ADC startup fault.  
This bit indicates if an error is detected during power-up. This bit clears  
only when power is recycled.  
0 : No fault has occurred  
1 : A fault has occurred  
F_CS  
Chip-select fault.  
This bit is set if CS transitions when the SCLK pin is high. This bit auto-  
clears on a STAT_S transfer, unless the condition remains.  
0 : CS is asserted or deasserted when SCLK is low  
1 : CS is asserted or deasserted when SCLK is high  
F_FRAME  
Frame fault.  
This bit is set if the device detects that not enough SCLK cycles are sent in  
a data frame for the existing mode of operation. This bit auto-clears on a  
STAT_S transfer, unless the condition remains.  
0 : Enough SCLKs are sent per frame  
1 : Not enough SCLKs are sent per frame  
9.6.1.7 ERROR_CNT: Error Count Register (address = 06h) [reset = 00h]  
This register counts the hamming and CRC errors. This register is cleared when read.  
Figure 85. ERROR_CNT Register  
7
6
5
4
3
2
1
0
ER7  
R-0h  
ER6  
R-0h  
ER5  
R-0h  
ER4  
R-0h  
ER3  
R-0h  
ER2  
R-0h  
ER1  
R-0h  
ER0  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 22. ERROR_CNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
ER[7:0]  
R
00h  
Error tracking count.  
These bits count the number of hamming and CRC errors on the input. The  
counter saturates if the number of errors exceeds 255, FFh. This register is  
cleared when read.  
Copyright © 2016–2018, Texas Instruments Incorporated  
59  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1.8 STAT_M2: Hardware Mode Pin Status Register (address = 07h) [reset = xxh]  
This register indicates detection of the captured states of the hardware mode pins.  
Figure 86. STAT_M2 Register  
7
0
6
0
5
4
3
2
1
0
M2PIN[1:0]  
R-xh(1)  
M1PIN[1:0]  
R-xh(1)  
M0PIN[1:0]  
R-xh(1)  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
(1) Reset values are dependent on the state of the hardware pin.  
Table 23. STAT_M2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
Reserved  
R
0h  
Reserved.  
Always read 0h.  
5:4  
3:2  
1:0  
M2PIN[1:0]  
M1PIN[1:0]  
M0PIN[1:0]  
R
R
R
xh(1)  
xh(1)  
xh(1)  
M2 captured state.  
These bits indicate the captured state of the M2 hardware control pin.  
00 : GND (hamming code word validation off)  
01 : IOVDD (hamming code word validation on)  
10 : No connection  
11 : Reserved  
M1 captured state.  
These bits indicate the captured state of the M1 hardware control pin.  
00 : GND (24-bit device word)  
01 : IOVDD (32-bit device word)  
10 : No connection (16-bit device word)  
11 : Reserved  
M0 captured state.  
These bits indicate the captured state of the M0 hardware control pin.  
00 : GND (synchronous master mode)  
01 : IOVDD (asynchronous slave mode )  
10 : No connection (synchronous slave mode )  
11 : Reserved  
(1) Reset values are dependent on the state of the hardware pin.  
9.6.1.9 Reserved Registers (address = 08h to 0Ah) [reset = 00h]  
This register is reserved for future use.  
Figure 87. Reserved Registers  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R = Read only; -n = value after reset  
Table 24. Reserved Registers Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R
00h  
Reserved.  
Always read 00h.  
60  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.6.1.10 A_SYS_CFG: Analog System Configuration Register (address = 0Bh) [reset = 60h]  
This register configures the analog features in the ADS131A0x.  
Figure 88. A_SYS_CFG Register  
7
6
5
1
4
3
2
1
0
VNCPEN  
R/W-0h  
HRM  
VREF_4V  
R/W-0h  
INT_REFEN  
R/W-0h  
COMP_TH[2:0]  
R/W-0h  
R/W-1h  
R/W-1h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 25. A_SYS_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VNCPEN  
R/W  
0h  
Negative charge pump enable.  
This bit enables the negative charge pump when using a 3.0-V to 3.45-V  
unipolar power supply.  
0 : Negative charge pump powered down  
1 : Negative charge pump enabled  
6
HRM  
R/W  
1h  
High-resolution mode.  
This bit selects between high-resolution and low-power mode.  
0 : Low-power mode  
1 : High-resolution mode  
5
4
Reserved  
VREF_4V  
R/W  
R/W  
1h  
0h  
Reserved.  
Always write 1h.  
REFP reference voltage level.  
This bit determines the REFP reference voltage level when using the  
internal reference.  
0 : REFP is set to 2.442 V  
1 : REFP is set to 4.0 V  
3
INT_REFEN  
R/W  
R/W  
0h  
0h  
Internal reference enable.  
This bit connects the internal reference voltage to the reference buffer to  
use the internal reference  
0 : External reference voltage selected  
1 : Internal reference voltage enabled and selected  
2:0  
COMP_TH[2:0]  
Fault detect comparator threshold.  
These bits determine the fault detect comparator threshold level settings;  
see the  
Input Overrange and Underrange Detection section for details.  
Table 26 lists the bit settings for the high- and low-side thresholds. Values  
are approximate and are referenced to the device analog supply range.  
When VNCPEN = 0, AVDD and AVSS are used for the high and low  
threshold.  
When VNCPEN = 1, AVDD is used for the high threshold value. A –1.5-V  
supply, generated from the negative charge pump, is used for the low  
threshold value.  
Table 26. COMP_TH[2:0] Bit Settings  
COMPARATOR HIGH-SIDE THRESHOLD  
(%)  
COMPARATOR LOW-SIDE THRESHOLD  
(%)  
COMP_TH[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
95  
92.5  
90  
5
7.5  
10  
87.5  
85  
12.5  
15  
80  
20  
75  
25  
70  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
61  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1.11 D_SYS_CFG: Digital System Configuration Register (address = 0Ch) [reset = 3Ch]  
This register configures the digital features in the ADS131A0x.  
Figure 89. D_SYS_CFG Register  
7
6
5
4
3
2
1
0
WDT_EN  
R/W-0h  
CRC_MODE  
R/W-0h  
DNDLY[1:0]  
R/W-3h  
HIZDLY[1:0]  
R/W-3h  
FIXED  
R/W-0h  
CRC_EN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 27. D_SYS_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WDT_EN  
R/W  
0h  
Watchdog timer enable.  
This bit enables the watchdog timeout counter when set.  
Issue a hardware or software reset when disabling the watchdog timer for  
internal device synchronization; see the Watchdog Timer section.  
0 : Watchdog disabled  
1 : Watchdog enabled  
6
CRC_MODE  
DNDLY[1:0]  
R/W  
R/W  
0h  
3h  
CRC mode select.  
This bit determines which bits in the frame the CRC is valid for; see the  
Cyclic Redundancy Check (CRC) section.  
0 : CRC is valid on only the device words being sent and received  
1 : CRC is valid on all bits received and transmitted  
5:4  
DONE delay.  
These bits configure the time before the device asserts DONE after the  
LSB is shifted out.  
00 : 6-ns delay  
01 : 8-ns delay  
10 : 10-ns delay  
11 : 12-ns delay  
3:2  
HIZDLY[1:0]  
R/W  
3h  
Hi-Z delay.  
These bits configure the time that the device asserts Hi-Z on DOUT after  
the LSB of the data frame is shifted out.  
00 : 6-ns delay  
01 : 8-ns delay  
10 : 10-ns delay  
11 : 12-ns delay  
1
0
FIXED  
R/W  
R/W  
0h  
0h  
Fixed word size enable.  
This bit sets the data frame size.  
0 : Device words per data frame depends on whether the CRC and ADCs  
are enabled  
1 : Fixed six device words per frame for the ADS131A04 or fixed four  
device words per data frame for the ADS131A02  
CRC_EN  
Cyclic redundancy check enable.  
This bit enables the CRC data word for both the DIN and DOUT data frame  
transfers. When enabled, DIN commands must pass the CRC checks to be  
recognized by the device.  
0 : CRC disabled  
1 : CRC enabled  
62  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
9.6.1.12 CLK1: Clock Configuration 1 Register (address = 0Dh) [reset = 08h]  
This register configures the ADC clocking and sets the internal clock dividers.  
Figure 90. CLK1 Register  
7
6
0
5
0
4
0
3
2
1
0
0
CLKSRC  
R/W-0h  
CLK_DIV[2:0]  
R/W-4h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 28. CLK1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLKSRC  
R/W  
0h  
ADC clock source.  
This bit selects the source for ICLK; see the Clock section for more  
information on ADC clocking.  
0 : XTAL1/CLKIN pin or XTAL1/CLKIN and XTAL2 pins  
1 : SCLK pin  
6:4  
3:1  
Reserved  
R/W  
R/W  
0h  
4h  
Reserved.  
Always write 0h.  
CLK_DIV[2:0]  
CLKIN divider ratio.  
These bits set the CLKIN divider ratio to generate the internal fICLK  
frequency. ICLK is used as the fSCLK output when the ADC is operating in  
synchronous master mode.  
000 : Reserved  
001 : fICLK = fCLKIN / 2  
010 : fICLK = fCLKIN / 4  
011 : fICLK = fCLKIN / 6  
100 : fICLK = fCLKIN / 8  
101 : fICLK = fCLKIN / 10  
110 : fICLK = fCLKIN / 12  
111 : fICLK = fCLKIN / 14  
0
Reserved  
R/W  
0h  
Reserved.  
Always write 0.  
Copyright © 2016–2018, Texas Instruments Incorporated  
63  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1.13 CLK2: Clock Configuration 2 Register (address = 0Eh) [reset = 86h]  
This register configures the ADC modulator clock and oversampling ratio for the converter.  
Figure 91. CLK2 Register  
7
6
5
4
0
3
2
1
0
ICLK_DIV[2:0]  
R/W-4h  
OSR[3:0]  
R/W-6h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 29. CLK2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
ICLK_DIV[2:0]  
R/W  
4h  
ICLK divider ratio.  
These bits set the divider ratio to generate the ADC modulator clock, fMOD  
,
from the fICLK signal.  
000 : Reserved  
001 : fMOD = fICLK / 2  
010 : fMOD = fICLK / 4  
011 : fMOD = fICLK / 6  
100 : fMOD = fICLK / 8  
101 : fMOD = fICLK / 10  
110 : fMOD = fICLK / 12  
111 : fMOD = fICLK / 14  
4
Reserved  
OSR[3:0]  
R/W  
R/W  
0h  
6h  
Reserved.  
Always write 0h.  
3:0  
Oversampling ratio.  
These bits set the OSR to create the ADC output data rate, fDATA; see  
Table 30 for more details.  
0000 : fDATA = fMOD / 4096  
0001 : fDATA = fMOD / 2048  
0010 : fDATA = fMOD / 1024  
0011 : fDATA = fMOD / 800  
0100 : fDATA = fMOD / 768  
0101 : fDATA = fMOD / 512  
0110 : fDATA = fMOD / 400  
0111 : fDATA = fMOD / 384  
1000 : fDATA = fMOD / 256  
1001 : fDATA = fMOD / 200  
1010 : fDATA = fMOD / 192  
1011 : fDATA = fMOD / 128  
1100 : fDATA = fMOD / 96  
1101 : fDATA = fMOD / 64  
1110 : fDATA = fMOD / 48  
1111 : fDATA = fMOD / 32  
64  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Table 30. Data Rate Settings  
fDATA AT 2.048-MHz fMOD fDATA AT 4.096-MHz fMOD  
fDATA AT 4-MHz fMOD  
(kHz)  
OSR[3:0]  
OSR  
(kHz)  
0.500  
1.000  
2.000  
2.560  
2.667  
4.000  
5.120  
5.333  
8.000  
10.240  
10.667  
16.000  
21.333  
32.000  
42.667  
64.000  
(kHz)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4096  
2048  
1024  
800  
768  
512  
400  
384  
256  
200  
192  
128  
96  
1.000  
0.977  
1.953  
2.000  
4.000  
3.906  
5.120  
5.000  
5.333  
5.208  
8.000  
7.813  
10.240  
10.667  
16.000  
20.480  
21.333  
32.000  
42.667  
64.000  
85.333  
128.000  
10.000  
10.417  
15.625  
20.000  
20.833  
31.250  
41.667  
62.500  
83.333  
125.000  
64  
48  
32  
9.6.1.14 ADC_ENA: ADC Channel Enable Register (address = 0Fh) [reset = 00h]  
This register controls the enabling of ADC channels.  
Figure 92. ADC_ENA Register  
7
0
6
0
5
0
4
0
3
2
1
0
ENA[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 31. ADC_ENA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
Reserved  
R/W  
0h  
Reserved.  
Always write 0h.  
3:0  
ENA[3:0]  
R/W  
0h  
Enable ADC channels.  
These bits power-up or power-down the ADC channels. This setting is  
global for all channels.  
0000 : All ADC channels powered down  
1111 : All ADC channels powered up  
All other settings: Do not use  
Copyright © 2016–2018, Texas Instruments Incorporated  
65  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
9.6.1.15 Reserved Register (address = 10h) [reset = 00h]  
This register is reserved for future use.  
Figure 93. Reserved Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R = Read only; -n = value after reset  
Table 32. Reserved Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
Reserved  
R/W  
00h  
Reserved.  
Always write 00h.  
9.6.2 ADCx: ADC Channel Digital Gain Configuration Registers (address = 11h to 14h) [reset = 00h]  
These registers control the digital gain setting for the individual ADC channel (x denotes the ADC channel).  
For the ADS131A02, these registers are reserved.  
Figure 94. ADCx Register  
7
0
6
0
5
0
4
0
3
0
2
1
0
GAINx_[2:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 33. ADCx Registers Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
Reserved  
R/W  
00h  
Reserved.  
Always write 00h.  
2:0  
GAINx_[2:0]  
R/W  
0h  
Gain control (digital scaling).  
These bits determine the digital gain of the ADC output.  
000 : Gain = 1  
001 : Gain = 2  
010 : Gain = 4  
011 : Gain = 8  
100 : Gain = 16  
101, 110, 111 : Reserved  
66  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Unused Inputs and Outputs  
To minimize leakage currents on the analog inputs, leave any unused analog inputs floating or connected to  
AVSS. For the ADS131A02, the NC pins (pins 5-8) can be left floating or tied directly to AVSS.  
Pin 24 is a digital output unconnected (NC) pin. Leave pin 24 floating or tied to GND through a 10-kΩ pulldown  
resistor.  
Do not float unused digital inputs because excessive power-supply leakage current can result. Tie all unused  
digital inputs to the appropriate levels, IOVDD or DGND, even when in power-down mode.  
If the DONE or DRDY outputs are not used, leave these pins (pins 18 and 19, respectively) unconnected or tie  
these pins to IOVDD using a weak pullup resistor. Current consumed by the pullup resistor flows into the device  
and therefore increases power consumption.  
10.1.2 Power Monitoring Specific Applications  
Each channel of the ADS131A0x is identical, giving designers the flexibility to sense voltage or current with any  
channel. Simultaneous sampling allows the application to calculate instantaneous power for any simultaneous  
voltage and current measurement. Figure 95 shows an example system that measures voltage and current  
simultaneously.  
Phase B Phase A  
2.5 V  
AVDD  
R1  
RFILT  
AIN1P  
AIN1N  
R2  
R2  
CFILT  
R1  
RFILT  
CFILT  
Device  
RFILT  
CT  
AIN2P  
AIN2N  
R3  
CFILT  
AVSS  
-2.5 V  
Figure 95. Example Power-Monitoring System  
Copyright © 2016–2018, Texas Instruments Incorporated  
67  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Application Information (continued)  
In Figure 95, channel 1 is dedicated to measuring the voltage between phase A and phase B and channel 2 is  
dedicated to measuring the current on phase A.  
The resistors R1 and R2 form a voltage divider that steps the line voltage down to within the measurement range  
of the ADC. R1 can be formed by multiple resistors in series to dissipate power across several components. This  
configuration is also valid if the voltage is measured with respect to neutral instead of between phases.  
Channel 2 is dedicated to measuring current that flows on phase A. Resistor R3 serves as a burden resistor that  
shunts the current flowing across the secondary coil of the current transformer (CT). Current can also be  
measured using a Rogowski coil and an analog integrator or by performing integration digitally after a  
conversion.  
The RC filters formed by RFILT and CFILT serve as antialiasing filters for the converter. If an application requires a  
steeper filter roll-off, a second-order RC filter can be used.  
10.1.3 Multiple Device Configuration  
The ADS131A0x allows the designer to add channels to the system by placing an additional device on the SPI  
bus. The first device in the chain of devices can be configured using any of the interface modes. All subsequent  
devices must be configured in synchronous slave mode. In all cases, however, the chain of ADS131A0x devices  
appear to the host as a single device with extra channels with the exception that each device sends individual  
status and data integrity words. In this manner, no additional pins on the host are required for more devices on  
the chain. There are no special provisions that must be made in the interface except for extending the frame to  
the appropriate length.  
10.1.3.1 First Device Configured in Asynchronous Interrupt Mode  
Figure 96 illustrates a multiple device configuration where the first device is configured in asynchronous interrupt  
mode as indicated by the state of the M0 pin. The second ADS131A0x device and any additional devices are  
configured in synchronous slave mode. The DONE pin of each device connects to the CS of the subsequent  
device. In each case, after a device shifts out all of its data, the device deasserts DONE, selecting the  
subsequent device for communication. The DOUT of a device whose contents are already shifted out assumes a  
high-impedance state, allowing the DOUT pins of all devices to be tied together. To send commands to specific  
devices, send the respective command of the device when that device is selected for communication. The DRDY  
output of the first device serves as the DRDY input to all other devices to synchronize conversions. Figure 97  
illustrates an example interface timing diagram for this configuration.  
68  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Application Information (continued)  
IOVDD  
MCU/DSP/FPGA  
IOVDD  
CS  
SCLK  
DIN  
CS  
ADS131A0x  
Device 1  
SCLK  
MOSI  
MISO  
IRQ  
M0  
Asynchronous  
Interrupt Mode  
DOUT  
DRDY  
DONE  
CLK  
CLKIN  
CS  
SCLK  
DIN  
M0  
Float  
ADS131A0x  
Device 2  
DOUT  
DRDY  
DONE  
Synchronous  
Slave Mode  
CLKIN  
To Next Device  
Figure 96. Multiple Device Configuration Using Asynchronous Interrupt Mode  
DRDY  
CS(1)  
SCLK  
DIN  
MSB(1)  
LSB(1) MSB(2)  
LSB(N)  
DOUT  
DONE(1), CS(2)  
NOTE: (1) denotes device 1, (2) denotes device 2, and (N) denotes device N.  
Figure 97. Multiple Device Configuration Timing Diagram when Using Asynchronous Interrupt Mode  
Copyright © 2016–2018, Texas Instruments Incorporated  
69  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Application Information (continued)  
10.1.3.2 First Device Configured in Synchronous Master Mode  
Figure 98 shows a multiple device configuration where the first device is configured in synchronous master mode  
as indicated by the state of the M0 pin. The second ADS131A0x device and any additional devices are  
configured in synchronous slave mode. The DONE pin of each device connects to the CS pin of the subsequent  
device. In each case, after a device shifts out all of its data, the device deasserts DONE, selecting the  
subsequent device for communication. Tie the DONE pin of the last device to the CS pin of the first device to  
allow for an immediate second read back of conversion data in the case a data integrity test failed. The DOUT of  
a device whose contents are already shifted out assumes a high-impedance state, allowing the DOUT pins of all  
devices to be tied together. To send commands to specific devices, send the respective command of the device  
when that device is selected for communication. The DRDY output of the first device serves as the DRDY input  
to all other devices to synchronize conversions. DRDY also serves as the chip-select or frame sync signal for the  
host. SCLK is free running with the same frequency as ICLK in this configuration.Figure 99 illustrates an example  
interface timing diagram for this configuration.  
70  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Application Information (continued)  
IOVDD  
MCU/DSP/FPGA  
SCLK  
CS  
SCLK  
DIN  
ADS131A0x  
Device 1  
M0  
MISO  
Synchronous  
Master Mode  
DOUT  
DRDY  
DONE  
MOSI  
CS, FSYNC  
CLK  
CLKIN  
CS  
SCLK  
DIN  
ADS131A0x  
Device 2  
Float  
M0  
Synchronous  
Slave Mode  
DOUT  
DRDY  
DONE  
CLKIN  
Devices 3  
through N-1  
CS  
ADS131A0x  
Device N  
SCLK  
DIN  
Float  
M0  
Synchronous  
Slave Mode  
DOUT  
DRDY  
DONE  
CLKIN  
Figure 98. Multiple Device Configuration Using Synchronous Master Mode  
Copyright © 2016–2018, Texas Instruments Incorporated  
71  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Application Information (continued)  
DRDY  
SCLK  
DIN  
MSB(1)  
LSB(1) MSB(2)  
LSB(N)  
DOUT  
DONE(1), CS(2)  
NOTE: (1) denotes device 1, (2) denotes device 2, and (N) denotes device N.  
Figure 99. Multiple Device Configuration Timing Diagram When Using Synchronous Master Mode  
10.1.3.3 All Devices Configured in Synchronous Slave Mode  
Figure 100 illustrates a multiple device configuration where all devices are configured in synchronous slave  
mode. Figure 100 illustrates an external clock at the CLKIN pin, but a free-running SCLK can also be used as the  
conversion clock in this mode. SCLK must be free-running if the modulator clock is derived from the serial clock  
(CLKSRC = 1). See the Synchronous Slave Mode section for more information about clocking the device using  
SCLK. The DONE pin of each device connects to the CS pin of the subsequent device for communication. The  
DOUT pin of a device whose contents are already shifted out assumes a high-impedance state, allowing the  
DOUT pins of all devices to be tied together. To send commands to specific devices, send the respective  
command to the device when that device is selected for communication. In this configuration, conversions must  
be synchronized by the master. Synchronization is accomplished by tying the chip select or frame sync output of  
the host to the DRDY input of each device. See the Synchronous Slave Mode section for more information about  
conversion synchronization using slave mode. Figure 101 illustrates an example interface timing diagram for this  
configuration.  
72  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Application Information (continued)  
IOVDD  
MCU/DSP/FPGA  
CS, FSYNC  
SCLK  
CS  
SCLK  
DIN  
ADS131A0x  
Device 1  
Float  
M0  
MOSI  
Synchronous  
Slave Mode  
DOUT  
DRDY  
DONE  
MISO  
CLK  
CLKIN  
CS  
SCLK  
DIN  
ADS131A0x  
Device 2  
Float  
M0  
Synchronous  
Slave Mode  
DOUT  
DRDY  
DONE  
CLKIN  
To Next Device  
Figure 100. Multiple Device Configuration Using Synchronous Slave Mode  
DRDY, CS(1)  
SCLK  
DIN  
MSB(1)  
LSB(1) MSB(2)  
LSB(N)  
DOUT  
DONE(1), CS(2)  
NOTE: (1) denotes device 1, (2) denotes device 2, and (N) denotes device N.  
Figure 101. Multiple Device Configuration Timing Diagram When Using Synchronous Slave Mode  
Copyright © 2016–2018, Texas Instruments Incorporated  
73  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
10.2 Typical Application  
Figure 102 shows an ADS131A0x device used as part of a power-metering application. The ADS131A0x device  
is ideal because this device allows for simultaneous sampling of voltage and current. The upper channel is used  
to measure voltage, accomplished by stepping down the line voltage with a voltage divider. The lower channel  
measures current directly from the line by measuring voltage across the burden resistors R4.  
2.5 V  
R3  
R3  
R1  
R1  
R1  
AVDD  
Line  
INxP  
INxN  
R2  
C1  
Neutral  
ADS131A04  
R3  
R3  
2000:1  
INxP  
INxN  
Line Current IN  
R4  
R4  
C1  
Line Current OUT  
AVSS  
-2.5 V  
Figure 102. Typical Power Metering Connections  
Table 34. Power Metering Design Requirements  
10.2.1 Design Requirements  
DESIGN PARAMETER  
VALUE  
230 VRMS at 50 Hz  
Voltage input  
Current input range  
0.05 ARMS to 100 ARMS  
< 0.2%  
Active power measurement error  
74  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
10.2.2 Detailed Design Procedure  
In this configuration, line voltage is measured as a single-ended input. The 230-VRMS signal must be stepped  
down such that the signal peaks fall within the measurement range of the ADS131A04 when using the internal  
2.442-V reference. A voltage divider using the series combination of multiple R1 resistors and the R2 resistor  
steps the input to within an acceptable range. Using multiple R1 resistors along with proper spacing disperses  
energy among several components and provides a line of defense against short-circuits caused when one  
resistor fails. The output of this voltage divider can be calculated using Equation 10:  
«
÷
R2  
V
= VLINE  
IN  
3ìR1 + R2  
(10)  
If R1 and R2 are chosen as 330 kΩ and 3.9 kΩ, respectively, the voltage at the input of the ADS131A0x is 0.9025  
VRMS, corresponding to a 1.276 Vpeak that is within the measurement range of the ADC.  
Line current is measured by stepping the input current down through a current transformer (CT) then shunting  
the current on the secondary side through burden resistors. Then, the voltage is measured across the resistors  
and current is back calculated in the processor. The voltage across the burden resistors R4 is measured  
differentially by grounding the node between the two resistors. Equation 11 relates the voltage at the input to the  
ADS131A0x to the line current.  
2ìILINE ìR4  
V
=
IN  
«
÷
N
(11)  
If a CT with a 2000:1 turns ratio is used and R4 is chosen to be 8.2 Ω, then 100 ARMS of line current corresponds  
to 0.82 VRMS (1.16 Vpeak) at the input to the ADS131A0x. The design minimum line current of 50 mARMS  
corresponds to 0.41 mVRMS (0.58 mVpeak).  
The combination of R3 and C1 on each line serves as an antialiasing filter. Having C1 populated differentially  
between the inputs helps improve common-mode rejection because the tolerance of the capacitor is shared  
between the inputs. The half-power frequency of this filter can be calculated according to Equation 12:  
«
÷
1
f-3dB  
=
4ì pìR3 ìC1  
(12)  
A filter with R3 populated as 100 Ω and C1 as 2.7 nF gives a cutoff frequency of approximately 295 kHz. This  
filter provides nearly 17 dB of attenuation at the modulator frequency when the ADS131A04 modulator frequency  
is set to 2.048 MHz. R3 must be kept relatively low because large series resistance degrades THD.  
To get an accurate picture of instantaneous power, the phase delay of the current transformer must be taken into  
account. Many kinds of digital filters can be implemented in the application processor to delay the current  
measurement to better align with the input voltage.  
Copyright © 2016–2018, Texas Instruments Incorporated  
75  
 
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
10.2.3 Application Curve  
Figure 103 shows the active power measurement accuracy for the ADS131A0x across varying currents. Data  
was taken for a 0.5 lead, 0.5 lag, and unity power factors. For this test, the external 16.384-MHz crystal  
frequency was divided to give a modulator frequency of 2.048 MHz. Finally, an OSR of 256 was chosen to give  
the ADS131A04 an output data rate of 8 kSPS.  
0.5  
Power Factor  
0.4  
Unity  
0.5 Lead  
0.5 Lag  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Current Magnitude (A)  
D007  
Figure 103. Active Power Measurement Error  
10.3 Do's and Don'ts  
Do partition the analog, digital, and power-supply circuitry into separate sections on the printed circuit board  
(PCB).  
Do use a single ground plane for analog and digital grounds.  
Do place the analog components close to the ADC pins using short, direct connections.  
Do keep the SCLK pin free of glitches and noise.  
Do verify that the analog input voltages are within the specified voltage range under all input conditions.  
Do tie unused analog input pins to GND.  
Do provide current limiting to the analog inputs in case overvoltage faults occur.  
Do use a low-dropout (LDO) regulator to reduce ripple voltage generated by switch-mode power supplies.  
This reduction is especially true for AVDD where the supply noise can affect performance.  
Do keep the input series resistance low to maximize THD performance.  
Do not cross analog and digital signals.  
Do not allow the analog power supply voltages (AVDD – AVSS) to exceed 3.6 V under any conditions,  
including during power-up and power-down when the negative charge pump is enabled.  
Do not allow the analog power supply voltages (AVDD – AVSS) to exceed 6 V under any conditions,  
including during power-up and power-down when the negative charge pump is disabled.  
Do not allow the digital supply voltage to exceed 3.9 V under any conditions, including during power-up and  
power-down.  
Figure 104 and Figure 105 illustrate correct and incorrect ADC circuit connections.  
76  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Do's and Don'ts (continued)  
3.3 V  
3.3 V  
2.5 V  
5 V  
CORRECT  
CORRECT  
AVDD  
IOVDD  
Device  
AVDD  
IOVDD  
Device  
24-Bit  
ûADC  
24-Bit  
ûADC  
AVSS  
-2.5 V  
GND  
AVSS  
GND  
Low-impedance supply connections.  
Low-impedance supply connections.  
3.3 V  
3.3 V  
5 V  
5 V  
INCORRECT  
INCORRECT  
AVDD  
IOVDD  
AVDD  
IOVDD  
Device  
Device  
24-Bit  
ûADC  
24-Bit  
ûADC  
AVSS  
GND  
AVSS  
GND  
Inductive supply or ground connections.  
AGND, DGND isolation.  
INCORRECT  
Device  
CORRECT  
Device  
5 V  
5 V  
AVDD  
AVDD  
24-Bit  
ûADC  
24-Bit  
ûADC  
VNCPEN = 1  
VNCPEN = 0  
AVSS  
AVSS  
Charge pump enabled with unipolar analog supply,  
AVDD > 3.6 V.  
Charge pump disabled with unipolar analog supply,  
AVDD > 3.6 V.  
CORRECT  
3.3 V  
AVDD  
Device  
24-Bit  
ûADC  
VNCPEN = 1  
AVSS  
Charge pump enabled with unipolar analog supply,  
AVDD < 3.6 V.  
Figure 104. Correct and Incorrect Circuit Connections  
Copyright © 2016–2018, Texas Instruments Incorporated  
77  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
Do's and Don'ts (continued)  
INCORRECT  
Device  
CORRECT  
Device  
2.5 V  
2.5 V  
AVDD  
AVDD  
24-Bit  
24-Bit  
ûADC  
ûADC  
VNCPEN = 1  
VNCPEN = 0  
AVSS  
-2.5 V  
AVSS  
-2.5 V  
Charge pump is enabled with a bipolar analog supply.  
Charge pump is disabled with a bipolar analog supply.  
INCORRECT  
CORRECT  
3.3 V  
3.3 V  
AVDD  
Device  
AVDD  
Device  
AINxP  
AINxN  
AIN1P  
AIN1N  
24-Bit  
ûADC  
24-Bit  
ûADC  
+
+
-1 V  
-1 V  
VNCPEN = 0  
VNCPEN = 1  
AVSS  
AVSS  
œ
œ
Input swings below ground, charge pump is disabled.  
Input swings below ground, charge pump is enabled.  
Figure 105. Correct and Incorrect Circuit Connections, Continued  
10.4 Initialization Set Up  
Figure 106 illustrates a general procedure to configure the ADS131A0x to collect data.  
78  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
Initialization Set Up (continued)  
Power Off  
// Pull up, pull down or float the M0 pin  
Set M0 mode pin  
// Analog and Digital supply can come up together  
// RESET can come up with Power Supply  
Power up  
Analog + Digital Supply  
SET  
RESET = 1  
N
// Monitor serial output for 0xFF02 (ADS131A02) or 0xFF04  
(ADS131A04)  
Wait  
Receive READY Word?  
Y
// Send UNLOCK command 0x0655  
// Receive Command Status Response 0x0655  
Unlock Device  
// Configure Int/Ext reference, CLK dividers, OSR, comparator  
threshold, negative charge pump, and power mode setting  
Configure Device  
Write Registers  
// Use the WREG or WREGS commands  
// Verify registers are written successfully  
// Device Data Frame or Data Rate may change if coresponding  
register is changed  
Receive Command Status  
Response  
Y
Write another register?  
N
// Write 0Fh to the ADC_ENA register to enable ADCs  
Enable ADCs  
Wakeup Device  
Lock Registers  
// Send WAKEUP command 0x0033  
// Start conversions  
// Send LOCK command 0x0555  
// Use DRDY indicator to indicate new data is available  
Capture Data  
Figure 106. ADS131A0x Configuration Sequence  
Copyright © 2016–2018, Texas Instruments Incorporated  
79  
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
11 Power Supply Recommendations  
The device requires two power supplies: analog (AVDD, AVSS) and digital (IOVDD, GND). The analog power  
supply can be bipolar (for example, AVDD = 2.5 V, AVSS = –2.5 V), unipolar (for example, AVDD = 5 V, AVSS =  
0 V), or unipolar using the negative charge pump (for example, AVDD = 3.3 V, AVSS = VNCP), and is  
independent of the digital power supply. The digital supply range sets the digital I/O levels.  
11.1 Negative Charge Pump  
An optional negative charge pump is available to power AVSS with an operating voltage of –1.95 V. Enabling the  
negative charge pump allows for input signals below analog ground when using a unipolar analog supply (for  
example, AVDD = 3.3 V, AVSS = 0 V). The VNCPEN bit in the A_SYS_CFG register must be set high by the  
user to enable the negative charge pump. The VNCP pin outputs the nominal –1.95-V negative charge pump  
output and requires a capacitor to AVSS in the range of 220 pF to 470 pF. The charge pump operates at a  
switching frequency of 2fMOD. The minimum ADC absolute input voltage range is –1.5 V with the negative charge  
pump enabled. The maximum analog supply limit (AVDD – AVSS) is restricted to 3.6 V maximum. Exceeding this  
limit can permanently damage the device.  
The negative charge pump is internally activated when the VNCPEN bit is set to 1 and the device is in wake-up  
mode with all ADC channels enabled (ADC_ENA = 0Fh).  
Connect VNCP directly to AVSS when not using the negative charge pump.  
11.2 Internal Digital LDO  
The ADS131A0x digital core voltage operates from 1.8 V, created from an internal LDO from IOVDD. The CAP  
pin outputs the LDO voltage created from the IOVDD supply and requires an external bypass capacitor. When  
operating from VIOVDD > 2 V, place a 1-µF capacitor on the CAP pin to GND. If VIOVDD 2 V, tie the CAP pin  
directly to the IOVDD pin and decouple both pins using a 1-µF capacitor to GND.  
11.3 Power-Supply Sequencing  
The power supplies can be sequenced in any order but the analog or digital inputs must never exceed the  
respective analog or digital power-supply voltage limits.  
80  
Copyright © 2016–2018, Texas Instruments Incorporated  
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
11.4 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve optimum performance. AVDD, AVSS (when using a  
bipolar supply), and IOVDD must be decoupled with at least a 1-µF capacitor, as shown in Figure 107,  
Figure 108, and Figure 109. A 270-nF capacitor is required on the VNCP pin when using the negative charge  
pump. Place the bypass capacitors as close to the power-supply pins of the device as possible with low-  
impedance connections. Using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series  
resistance (ESR) and inductance (ESL) characteristics are recommended for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins can offer superior noise immunity. The use of multiple vias in parallel lowers the  
overall inductance and is beneficial for connections to ground planes. The analog and digital ground are  
recommended to be connected together as close to the device as possible.  
2.5 V 3.3 V  
5 V  
3.3 V  
1 mF  
1 mF  
1 mF  
1 mF  
1 mF  
-2.5 V  
1 mF  
AVDD IOVDD  
RESV CAP1  
AVDD IOVDD  
RESV CAP1  
CAP2  
CAP2  
10 pF  
REFEXT  
REFEXT  
10 pF  
TI Device  
TI Device  
1 mF  
-2.5 V  
1 mF  
-2.5 V  
1 mF  
REFP  
REFP  
1 mF  
REFN  
GND  
REFN  
GND  
AVSS  
-2.5 V  
VNCP  
AVSS  
VNCP  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
Figure 108. Unipolar Analog Power Supply  
Figure 107. Bipolar Analog Power Supply  
3.3 V  
3.3 V  
1 mF  
1 mF  
1 mF  
AVDD  
IOVDD  
RESV CAP1  
CAP2  
10 pF  
REFEXT  
TI Device  
1 mF  
REFP  
1 mF  
REFN  
GND  
AVSS  
VNCP  
270 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 109. Unipolar Analog Power Supply with Negative Charge Pump Enabled  
Copyright © 2016–2018, Texas Instruments Incorporated  
81  
 
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Use a low-impedance connection for ground so that return currents flow undisturbed back to the respective  
sources. For best performance, dedicate an entire PCB layer to a ground plane and do not route any other signal  
traces on this layer. Keep connections to the ground plane as short and direct as possible. When using vias to  
connect to the ground layer, use multiple vias in parallel to reduce impedance to ground. Figure 110 shows the  
proper component placement for the system.  
A mixed-signal layout sometimes incorporates separate analog and digital ground planes that are tied together at  
one location; however, separating the ground planes is not necessary when analog, digital, and power-supply  
components are properly placed. Proper placement of components partitions the analog, digital, and power-  
supply circuitry into different PCB regions to prevent digital return currents from coupling into sensitive analog  
circuitry. If ground plane separation is necessary, then make the connection at the ADC. Connecting individual  
ground planes at multiple locations creates ground loops, and is not recommended. A single ground plane for the  
analog and digital grounds avoids ground loops.  
Bypass the supply pins with a low-ESR ceramic capacitor. The placement of the bypass capacitors must be as  
close as possible to the supply pins using short, direct traces. For optimum performance, the ground-side  
connections of the bypass capacitors must also be made with low-impedance connections. The supply current  
flows through the bypass capacitor pin first and then to the supply pin to make the bypassing most effective (also  
known as a Kelvin connection). If multiple ADCs are on the same PCB, use wide power-supply traces or  
dedicated power-supply planes to minimize the potential of crosstalk between ADCs.  
If external filtering is used for the analog inputs, use C0G-type ceramic capacitors when possible. C0G  
capacitors have stable properties and low-noise characteristics. Ideally, route differential signals as pairs to  
minimize the loop area between the traces. Route digital circuit traces (such as clock signals) away from all  
analog pins. Note that the internal reference output return shares the same pin as the AVSS power supply. To  
minimize coupling between the power-supply trace and reference return trace, route the two traces separately;  
ideally, as a star connection at the AVSS pin.  
Treat the AVSS pin as a sensitive analog signal and connect directly to the supply ground with proper shielding.  
Leakage currents between the PCB traces can exceed the input bias current of the ADS131A0x if shielding is not  
implemented. Keep digital signals as far as possible from the analog input signals on the PCB.  
The SCLK input of the serial interface must be free from noise and glitches when this device is configured in a  
slave mode. This configuration is especially true when SCLK is used as the master clock for this device. Even  
with relatively slow SCLK frequencies, short digital signal rise and fall times can cause excessive ringing and  
noise. For best performance, keep the digital signal traces short, using termination resistors as needed, and  
make sure all digital signals are routed directly above the ground plane with minimal use of vias.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC Filters  
and  
Interface  
Transceiver  
Device  
Microcontroller  
Connector  
or Antenna  
Amplifiers)  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Figure 110. System Component Placement  
82  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
ADS131A02, ADS131A04  
www.ti.com.cn  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
12.2 Layout Example  
Figure 111 is an example layout of the ADS131A0x. This example shows the device supplied with a bipolar  
supply, though the layout can be replicated for a unipolar case. In general, analog signals and planes are  
partitioned to the left and digital signals and planes to the right.  
+3.3 V  
Via to corresponding  
voltage plane or pour  
Via to ground plane  
or pour  
+3.3 V  
24: NC  
23: CS  
1: AIN1N  
2: AIN1P  
3: AIN2N  
4: AIN2P  
5: AIN3N  
22: SCLK  
21:DOUT  
Device  
20:DIN  
6: AIN3P  
7: AIN4N  
8: AIN4P  
19: DRDY  
18: DONE  
17: RESET  
Long digital input lines  
terminated with resistors to  
prevent reflection  
+3.3 V  
Inputs filtered with  
differential capacitors  
-2.5 V  
+2.5 V  
-2.5 V  
Reference, CAP, and power  
supply decoupling capacitors  
close to pins  
-2.5 V  
Figure 111. ADS131A0x Layout Example  
版权 © 2016–2018, Texas Instruments Incorporated  
83  
 
ADS131A02, ADS131A04  
ZHCSEV8D MARCH 2016REVISED JANUARY 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档  
请参阅如下相关文档:  
REF50xx 低噪声、极低漂移、高精度电压基准》(文献编号:SBOS410)  
THS4531A 超低功耗、轨到轨输出、全差分放大器》 (文献编号:SLOS823)  
REF60xx 集成 ADC 驱动器缓冲器的高精度电压基准》(文献编号:SBOS708)  
13.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
35. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
ADS131A02  
ADS131A04  
13.3 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
84  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS131A02IPBS  
ADS131A02IPBSR  
ADS131A04IPBS  
ADS131A04IPBSR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
TQFP  
TQFP  
PBS  
PBS  
PBS  
PBS  
32  
32  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
131A02  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
131A02  
131A04  
131A04  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS131A02IPBSR  
ADS131A04IPBSR  
TQFP  
TQFP  
PBS  
PBS  
32  
32  
1000  
1000  
330.0  
330.0  
16.4  
16.4  
7.2  
7.2  
7.2  
7.2  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS131A02IPBSR  
ADS131A04IPBSR  
TQFP  
TQFP  
PBS  
PBS  
32  
32  
1000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS131A02IPBS  
ADS131A04IPBS  
PBS  
PBS  
TQFP  
TQFP  
32  
32  
250  
250  
10 X 25  
10 X 25  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADS131A04IPBSR

24 位 128kSPS 4 通道同步采样 Δ-Σ ADC | PBS | 32 | -40 to 125
TI

ADS131B02-Q1

汽车类 24 位 32kSPS 双通道同步采样 Δ-Σ ADC
TI

ADS131B02QPWRQ1

汽车类 24 位 32kSPS 双通道同步采样 Δ-Σ ADC | PW | 20 | -40 to 125
TI

ADS131B04-Q1

汽车类 24 位 32kSPS 4 通道同步采样 Δ-Σ ADC
TI

ADS131B04QPWRQ1

汽车类 24 位 32kSPS 4 通道同步采样 Δ-Σ ADC | PW | 20 | -40 to 125
TI

ADS131B23

24 位、64kSPS、三通道同步采样 Δ-Σ ADC
TI

ADS131B23PHPR

24 位、64kSPS、三通道同步采样 Δ-Σ ADC | PHP | 48 | -40 to 125
TI

ADS131B26-Q1

用于检测电流和电压的汽车类、六个 ADC 通道、高压 SPI 电池包监视器
TI

ADS131E04

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04IPAG

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04IPAGR

Analog Front-End for Power Monitoring, Control, and Protection
TI

ADS131E04_14

Analog Front-End for Power Monitoring, Control, and Protection
TI