ADS1284IRHFT [TI]

用于地震监测和地球空间探测且具有 PGA 和低功耗模式的超高分辨率 4kSPS 2 通道 ADC | RHF | 24 | -40 to 85;
ADS1284IRHFT
型号: ADS1284IRHFT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于地震监测和地球空间探测且具有 PGA 和低功耗模式的超高分辨率 4kSPS 2 通道 ADC | RHF | 24 | -40 to 85

转换器
文件: 总67页 (文件大小:2289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
ADS1284 高分辨率模数转换器  
1 特性  
3 说明  
1
可选择工作模式  
低功耗模式:  
ADS1284 是一款高性能、单芯片模数转换器 (ADC)。  
该器件包括一个低噪声可编程增益放大器 (PGA)Δ-Σ  
调制器和数字滤波器。该 ADC 支持两种运行模式,可  
在功耗与分辨率之间实现最佳平衡。  
12mWPGA = 124 8)  
127dB SNR250 SPSPGA = 1)  
高分辨率模式:  
双通道多路复用器具有用于信号测量和 ADC 信号测试  
的输入。具有使输入电路短路和测试内部噪声的模式。  
PGA 具有高输入阻抗和低噪声,可与地震检波器和水  
听器传感器直接连接。  
18mWPGA = 124 8)  
130dB SNR250 SPSPGA = 1)  
THD–122dB  
CMRR110dB  
四阶固有稳定性调制器可提供出色的低噪声和线性性  
能。调制器输出由片上数字滤波器进行过滤和抽取,以  
生成 ADC 转换结果。  
双通道多路复用器  
固有稳定性调制器  
快速响应超范围检测器  
灵活的数字滤波器:  
数字滤波器提供 250 4000 SPS 的数据速率。高通  
滤波器 (HPF) 具有可编程转角频率。片上增益和偏移  
调节寄存器支持系统校准。  
正弦 + 有限脉冲响应 (FIR) + 无限脉冲响应  
(IIR)(可选)  
线性或最小相位选项  
可编程高通滤波器  
同步输入控制 ADC 转换的时序。关断输入使 ADC 进  
入关断模式。  
偏移和增益校准  
ADS1284 采用紧凑的 24 引线 5mm x 4mm VQFN 封  
装,完整额定工作温度为 –40°C +85°C,最大工作  
温度范围为 –50°C +125°C。  
SYNC 输入  
模拟电源:5V ±2.5V  
数字电源:1.8V 3.3V  
器件信息  
2 应用  
器件型号  
ADS1284  
封装  
VQFN (24)  
封装尺寸(标称值)  
能量勘探  
5.00mm × 4.00mm  
地震监测  
(1) 要了解所有可用封装,请参阅数据表末尾的封装选项附录。  
高精度仪器  
简化原理图  
AVDD  
VREFN  
DVDD  
VREFP  
ADS1284  
CLK  
CS  
Input 1  
Input 2  
SCLK  
DOUT  
Serial  
Interface  
4th-Order  
ûModulator  
Programmable  
Digital Filter  
Calibration  
PGA  
DIN  
VCOM  
DRDY  
SYNC  
RESET  
PWDN  
Over-Range  
Control  
AVSS  
DGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBAS943  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 33  
8.5 Programming........................................................... 45  
8.6 Register Maps......................................................... 49  
Application and Implementation ........................ 53  
9.1 Application Information............................................ 53  
9.2 Typical Applications ................................................ 53  
9.3 Initialization Set Up ................................................. 56  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings .................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements............................................... 8  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 15  
7.1 Noise Performance ................................................. 15  
Detailed Description ............................................ 17  
9
10 器件和文档支持 ..................................................... 57  
10.1 接收文档更新通知 ................................................. 57  
10.2 社区资源................................................................ 57  
10.3 ....................................................................... 57  
10.4 静电放电警告......................................................... 57  
10.5 Glossary................................................................ 57  
11 机械、封装和可订购信息....................................... 58  
7
8
4 修订历史记录  
Changes from Original (September 2018) to Revision A  
Page  
已更改 将文档更改为面向 Web 的完整发布........................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RHF Package  
5-mm × 4-mm 24-Pin VQFN  
Top View  
DRDY  
DOUT  
DIN  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
RESET  
PWDN  
VREFP  
VREFN  
AVSS  
Thermal  
Pad  
CS  
SYNC  
MFLAG  
DGND  
AVDD  
AINN1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AINN1  
AINN2  
AINP1  
AINP2  
AVDD  
AVSS  
BYPAS  
CAPN  
CAPP  
CLK  
NO.  
13  
11  
12  
10  
14  
15  
22  
8
Analog input  
Analog input  
Analog input  
Analog input  
Analog supply  
Analog supply  
Analog  
Negative analog input 1  
Negative analog input 2  
Positive analog input 1  
Positive analog input 2  
Positive analog power supply  
Negative analog power supply  
1.8-V sub-regulator output: connect 1-μF capacitor to DGND  
PGA output: connect 10-nF capacitor from CAPP to CAPN  
PGA output: connect 10-nF capacitor from CAPP to CAPN  
Master clock input (4.096 MHz)  
Analog  
9
Analog  
23  
4
Digital input  
Digital input  
Ground  
CS  
Serial interface chip select, active low  
Digital ground (tie to digital ground plane)  
Digital ground (tie to digital ground plane)  
Serial interface data input  
DGND  
DGND  
DIN  
7
21  
3
Ground  
Digital input  
Digital output  
Digital output  
Digital supply  
Digital output  
Digital input  
Digital input  
Digital input  
Digital input  
Analog input  
Analog input  
DOUT  
DRDY  
DVDD  
MFLAG  
PWDN  
RESET  
SCLK  
SYNC  
VREFN  
VREFP  
2
Serial Interface data output  
1
Data ready output: active low  
20  
6
Digital power supply. If DVDD < 2.25 V, connect DVDD and BYPAS pins together.  
Modulator overrange flag: 0 = normal, 1 = modulator overrange  
Power-down input, active low  
18  
19  
24  
5
Reset input, active low  
Serial interface shift clock input  
Synchronize input, rising edge active  
Negative reference input  
16  
17  
Positive reference input  
Do not electrically connect the thermal pad. The thermal pad must be soldered to PCB.  
Thermal pad vias are optional and can be removed.  
Thermal pad  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted).  
MIN  
–0.3  
MAX  
UNIT  
V
AVDD to AVSS  
5.5  
AVSS to DGND  
–2.8  
0.3  
3.9  
V
DVDD to DGND  
–0.3  
V
Analog input voltage  
Digital input voltage to DGND  
Input current, continuous  
Operating temperature  
Junction temperature  
Storage temperature, Tstg  
AVSS – 0.3  
–0.3  
AVDD + 0.3  
DVDD + 0.3  
10  
V
V
–10  
mA  
°C  
°C  
°C  
–50  
125  
150  
–60  
150  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVSS  
AVDD  
DVDD  
Negative analog supply (relative to DGND)  
–2.6  
AVSS + 4.75  
1.65  
0
AVSS + 5.25  
3.6  
V
V
V
Positive analog supply (relative to AVSS)  
Digital supply (relative to DGND)  
ANALOG INPUTS  
FSR  
Full-scale input voltage range (VIN = AINP – AINN)  
±VREF / (2 × PGA)  
V
Calibration margin(1)  
106  
%FSR  
AINP or  
AINN  
Absolute input voltage range  
AVSS + 0.7  
AVDD – 1.25  
V
VOLTAGE REFERENCE INPUTS  
Reference input voltage (VREF = VREFP – VREFN)  
Negative reference input  
Positive reference input  
1
AVSS – 0.1  
VREFN + 1  
5
AVDD – AVSS + 0.2  
VREFP – 1  
V
V
V
VREFN  
VREFP  
AVDD + 0.1  
DIGITAL INPUTS  
VIH  
High-level input voltage  
0.8 × DVDD  
DVDD  
0.2 × DVDD  
4.096  
V
VIL  
Low-level input voltage  
Clock input  
DGND  
1
V
fCLK  
fSCLK  
MHz  
MHz  
Serial clock rate  
fCLK / 2  
TEMPERATURE  
Specified temperature  
–40  
85  
°C  
(1) Calibration margin is the maximum allowable input voltage after user calibration of offset and gain errors.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
6.4 Thermal Information  
ADS1284  
THERMAL METRIC(1)  
RHF (VQFN)  
24 PINS  
30.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.5  
8.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.6  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, High-Resolution and Low-Power modes,  
Offset enabled (75 mV), Chop enable, and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
ANALOG INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-power mode  
7.5  
5
PGA input voltage noise density  
Differential input impedance(1)  
nV/Hz  
GΩ  
High-resolution mode  
CHOP enabled  
1
CHOP disabled  
100  
1
Common-mode input impedance  
Input bias current  
GΩ  
nA  
dB  
IIB  
1
Crosstalk  
f = 31.25 Hz  
Each switch  
–135  
30  
Mux switch on-resistance  
PGA OUTPUT (CAPP, CAPN)  
Absolute output range  
AVSS + 0.4  
AVDD – 0.4  
100  
V
PGA output impedance  
Differential  
600  
±10%  
10  
Output impedance tolerance  
External bypass capacitance  
nF  
Low-power mode  
110  
55  
Modulator input impedance  
kΩ  
High-resolution mode  
AC PERFORMANCE  
Low-power mode  
High-resolution mode  
Low-power mode  
PGA = 1, 2, 4, 8, 16  
PGA = 32  
117  
120  
121  
124  
SNR  
Signal-to-noise ratio(2)  
dB  
dB  
–122  
–117  
–114  
-114  
-108  
PGA = 64  
THD  
Total harmonic distortion(3)  
Spurious-free dynamic range  
High-resolution mode  
PGA = 1, 2, 4, 8, 16  
PGA = 32  
-122  
-117  
-114  
123  
-114  
-110  
dB  
dB  
PGA = 64  
SFDR  
(1) PGA chop mode is controlled by register setting.  
(2) Inputs shorted; see Table 1 through Table 4 for more details.  
(3) Input signal = 31.25 Hz, –0.5 dBFS.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, High-Resolution and Low-Power modes,  
Offset enabled (75 mV), Chop enable, and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
DC PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Resolution  
31  
250  
Bits  
FIR filter mode  
4000  
128,000  
±200  
fDATA  
Data rate  
SPS  
Sinc filter mode  
Offset disabled  
8000  
±50  
300  
µV  
Offset and Chop disabled  
75 mV offset  
Offset(4)  
70 / PGA  
95 / PGA  
75 / PGA  
100 / PGA  
1
80 / PGA  
mV  
μV  
100 mV offset  
105 / PGA  
Offset after calibration(5)  
Offset drift  
0.03  
μV/°C  
CHOP disabled  
0.5  
Low-power mode  
High-resolution mode  
-1%  
-0.5%  
–1.0%  
0.0002%  
2
0%  
Gain error(6)  
–1.5%  
–0.5%  
Gain error after calibration(5)  
Gain drift  
PGA = 1  
ppm/°C  
PGA = 16  
9
Gain matching(7)  
0.3%  
110  
0.8%  
(8)  
CMR  
PSR  
Common-mode rejection  
fCM = 60 Hz, 1.25 VPP  
95  
80  
90  
dB  
dB  
AVDD, AVSS  
DVDD  
90  
fPS = 60 Hz,  
Power-supply rejection  
(8)  
100 mVPP  
115  
VOLTAGE REFERENCE INPUTS  
Low-power mode  
170  
85  
Reference input impedance  
kΩ  
High -resolution mode  
DIGITAL FILTER RESPONSE  
Pass-band ripple  
±0.003  
10  
dB  
Hz  
Hz  
Hz  
dB  
Hz  
Pass band (–0.01dB)  
Bandwidth (–3dB)  
0.375 × fDATA  
0.413 × fDATA  
High-pass filter corner  
Stop band attenuation(9)  
Stop band  
0.1  
135  
0.500 × fDATA  
5 / fDATA  
Minimum phase filter(10)  
Linear phase filter  
Group delay  
s
s
31 / fDATA  
62 / fDATA  
62 / fDATA  
Minimum phase filter  
Linear phase filter  
Settling time (latency)  
(4) Offset specification is input referred. The offset scales by the reference voltage (VREF).  
(5) Calibration accuracy is on the level of noise reduced by four (calibration averages 16 readings).  
(6) The PGA output impedance and the modulator input impedance results in systematic gain error.  
(7) Gain match relative to gain = 1.  
(8) fCM is the input common-mode frequency. fPS is the power-supply frequency.  
(9) Input frequencies in the range of N · fCLK / 1024 ± fDATA / 2 (where N = 1, 2, 3...) can intermodulate with the modulator chopper clock  
(and N multiples). At these frequencies, intermodulation = –120 dB, typ.  
(10) At dc; see Figure 50.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Electrical Characteristics (continued)  
maximum and minimum specifications over –40°C to +85°C; typical specifications at 25°C, AVDD = 2.5 V, AVSS = –2.5 V,  
fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, High-Resolution and Low-Power modes,  
Offset enabled (75 mV), Chop enable, and fDATA = 1000 SPS (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS/OUTPUTS  
VOH  
VOL  
Ilkg  
High-level output voltage  
Low-level output voltage  
Input leakage  
IOH = 1 mA  
0.8 × DVDD  
V
V
IOL = 1 mA  
0.2 × DVDD  
±10  
0 < VDIGITAL IN < DVDD  
μA  
POWER SUPPLY  
Low-power mode  
PGA = 1, 2, 4, 8  
PGA = 16, 32, 64  
High-resolution mode  
PGA = 1, 2, 4, 8  
PGA = 16, 32, 64  
Standby mode  
2
3.4  
3.8  
mA  
2.5  
IAVDD  
IAVSS  
Analog supply current  
3.2  
4
5.5  
6
mA  
μA  
1
15  
15  
0.7  
0.8  
50  
15  
Power-down mode  
Low-power mode  
High-resolution mode  
Standby mode  
Power-down mode(11)  
Low-power mode  
PGA = 1, 2, 4, 8  
PGA = 16, 32, 64  
High-resolution mode  
PGA = 1, 2, 4, 8  
PGA = 16, 32, 64  
Standby mode  
1
0.5  
0.6  
25  
1
mA  
μA  
IDVDD  
Digital supply current  
12  
14  
20  
22  
mW  
PD  
Power dissipation  
18  
22  
90  
10  
30  
33  
mW  
250  
125  
μW  
Power-down mode  
(11) CLK input stopped.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
6.6 Timing Requirements  
at TA = –40°C to +85°C and DVDD = 1.65 V to 3.6 V (unless otherwise noted)  
MIN  
40  
MAX  
UNIT  
ns  
tCSSC  
tSCLK  
tSPWH, L  
tDIST  
CS low to SCLK high: setup time  
SCLK period  
SCLK pulse duration, high and low(1)  
DIN valid to SCLK high: setup time  
Valid DIN to SCLK high: hold time  
CS high pulse  
2
16  
10  
1 / fCLK  
1 / fCLK  
ns  
0.8  
50  
tDIHD  
50  
ns  
tCSH  
100  
24  
ns  
tSCCS  
SCLK high to CS high  
1/fCLK  
(1) Holding SCLK low for 64 DRDY falling edges resets the serial interface.  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
60  
UNIT  
CS low to DOUT driven: propagation  
delay  
tCSDOD  
tDOPD  
ns  
SCLK low to valid new DOUT:  
propagation delay  
Load on DOUT = 20 pF || 100 kΩ  
100  
ns  
SCLK low to DOUT invalid: hold  
time  
tDOHD  
0
ns  
ns  
tCSDOZ  
CS high to DOUT tristate  
40  
tSPWH  
tSCLK  
tCSH  
CS  
tSPWL  
tCSSC  
tSCCS  
SCLK  
tDIST  
B7  
DIN  
B6  
tDIHD  
B5  
B4  
B3  
B2  
B1  
B0  
tDOPD  
DOUT  
B7  
tDOHD  
tCSDOD  
tCSDOZ  
Figure 1. Serial Interface Timing Diagram  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
6.8 Typical Characteristics  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1, High-Resolution  
Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
0
0
Low-Power Mode  
8192-Point FFT  
Shorted Input  
PGA = 1  
8192-Point FFT  
Shorted Input  
PGA = 1  
-20  
-40  
œ20  
œ40  
SNR = 123.7 dB  
SNR = 121.1 dB  
-60  
œ60  
-80  
œ80  
-100  
-120  
-140  
-160  
-180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
0
50 100 150 200 250 300 350 400 450 500  
D027  
Frequency (Hz)  
C002  
Figure 3. Output Spectrum (Low-Power mode)  
Figure 2. Output Spectrum  
0
0
-20  
8192-Point FFT  
Shorted Input  
PGA = 8  
Low-Power Mode  
8192-Point FFT  
Shorted Input  
PGA = 8  
œ20  
œ40  
-40  
SNR = 121.1 dB  
SNR = 118.5 dB  
œ60  
-60  
œ80  
-80  
œ100  
œ120  
œ140  
œ160  
œ180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C003  
D028  
Figure 4. Output Spectrum  
Figure 5. Output Spectrum (Low-Power Mode)  
0
œ20  
0
-20  
Low-Power Mode  
8192-Point FFT  
Shorted Input  
PGA = 1  
CHOP Disabled  
SNR = 120.9 dB  
8192-Point FFT  
Shorted Input  
PGA = 1  
CHOP DIsabled  
SNR = 123.5 dB  
œ40  
-40  
œ60  
-60  
œ80  
-80  
œ100  
œ120  
œ140  
œ160  
œ180  
-100  
-120  
-140  
-160  
-180  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C004  
D029  
Figure 6. Output Spectrum  
Figure 7. Output Spectrum (Low-Power Mode)  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
High-Resolution Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
0
0
8192-Point FFT  
Shorted Input  
PGA = 8  
CHOP Disabled  
SNR = 117.5 dB  
Low-Power Mode  
8192-Point FFT  
Shorted Input  
PGA = 8  
CHOP Disabled  
SNR = 116.3 dB  
œ20  
-20  
œ40  
-40  
œ60  
-60  
œ80  
-80  
œ100  
œ120  
œ140  
œ160  
œ180  
-100  
-120  
-140  
-160  
-180  
0
0
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C005  
D030  
Figure 8. Output Spectrum  
Figure 9. Output Spectrum (Low-Power Mode)  
0
œ20  
0
-20  
Low-Power Mode  
8192-Point FFT  
VIN = 31.25 Hz, -0.5 dBFS  
PGA = 1  
8192-Point FFT  
V IN = 31.25 Hz, -0.5 dBFS  
PGA = 1  
œ40  
-40  
THD = -124 dB  
THD = -122 dB  
œ60  
-60  
œ80  
-80  
œ100  
œ120  
œ140  
œ160  
œ180  
-100  
-120  
-140  
-160  
-180  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C002  
D031  
Figure 10. Output Spectrum  
Figure 11. Output Spectrum (Low-Power Mode)  
0
œ20  
0
-20  
Low-Power Mode  
8192-Point FFT  
VIN = 31.25 Hz, -0.5 dBFS  
PGA = 8  
8192-Point FFT  
V IN = 31.25 Hz, -0.5 dBFS  
PGA = 8  
œ40  
-40  
THD = -125 dB  
THD = -122 dB  
œ60  
-60  
œ80  
-80  
œ100  
œ120  
œ140  
œ160  
œ180  
-100  
-120  
-140  
-160  
-180  
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C002  
D0312  
Figure 12. Output Spectrum  
Figure 13. Output Spectrum (Low-Power Mode)  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
High-Resolution Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
0
0
8192-Point FFT  
V IN = 31.25 Hz, -20 dBFS  
PGA = 1  
8192-Point FFT  
V IN = 31.25 Hz, -20 dBFS  
PGA = 8  
œ20  
œ20  
œ40  
œ40  
THD = -122 dB  
THD = -121 dB  
œ60  
œ60  
œ80  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
œ100  
œ120  
œ140  
œ160  
œ180  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Frequency (Hz)  
Frequency (Hz)  
C002  
C002  
Figure 14. Output Spectrum  
Figure 15. Output Spectrum  
œ100  
œ105  
œ110  
œ115  
œ120  
œ125  
œ130  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
PGA = 1  
PGA = 1  
VIN = 31.25 Hz, -0.5 dBFS  
Low-Power Mode  
PGA = 4  
PGA = 4  
PGA = 16  
PGA = 64  
VIN = 31.25 Hz, -0.5 dBFS  
PGA = 16  
PGA = 64  
œ55 œ35 œ15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (°C)  
C007  
D025  
Figure 16. THD vs Temperature  
Figure 17. THD vs Temperature (Low-Power Mode)  
140  
œ100  
œ105  
œ110  
œ115  
œ120  
œ125  
œ130  
PGA = 1  
V IN = -0.5 dBFS  
PGA = 4  
PGA = 16  
PGA = 64  
130  
120  
110  
100  
90  
80  
PGA = 1  
PGA = 8  
70  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Signal Frequency (Hz)  
10  
100  
1000  
10000  
100000  
1000000  
Common Mode Frequency (Hz)  
C002  
C007  
Figure 18. THD vs Signal Frequency  
Figure 19. CMR vs Common-Mode Frequency  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
High-Resolution Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
30 Units  
OFFSET Enabled  
PGA = 1  
60  
40  
DVDD  
AVDD  
AVSS  
20  
0
10  
100  
1000  
10000  
100000  
1000000  
Power Supply Frequency (Hz)  
C007  
Offset (mV)  
C010  
C010  
C010  
Figure 20. PSR vs Power-Supply Frequency  
Figure 21. Offset-Voltage Histogram  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PGA = 1  
PGA = 8  
30 Units  
PGA = 1  
30 units based on  
20 C intervals  
over the range  
-40C to +85 C  
Offset Drift (nV/°C)  
Gain Error (%)  
C010  
Figure 22. Offset-Voltage Drift Histogram  
Figure 23. Gain-Error Histogram  
150  
140  
130  
120  
110  
100  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30 units based on 20C intervals  
over the range -40°C to +85°C  
PGA = 1,2,4  
PGA = 16  
Worst case gain match  
30 units, relative PGA = 1  
over -40 °C to +85°C range  
PGA = 8,32,64  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain Drift (ppm/°C)  
Gain Match (%)  
C010  
Figure 24. Gain-Error Drift Histogram  
Figure 25. Gain-Match Histogram  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
High-Resolution Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
125  
120  
115  
110  
105  
100  
95  
125  
120  
115  
110  
105  
100  
95  
PGA = 1  
PGA = 4  
PGA = 16  
PGA = 64  
PGA = 1  
PGA = 4  
PGA = 16  
PGA = 64  
Low-Power Mode  
Shorted Input  
Shorted Input  
85 105 125  
90  
90  
-55  
œ55 œ35 œ15  
5
25  
45  
65  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (°C)  
C008  
D026  
Figure 26. SNR vs Temperature  
Figure 27. SNR vs Temperature (Low-Power Mode)  
0
œ20  
25  
8192-Point FFT (IN1)  
IN1: Shorted  
IN2: 31.25 Hz, -0.5 dBFS  
PGA = 8  
20  
15  
10  
5
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
High-Resolution Mode, PGA = 1, 2, 4, 8  
High-Resolution Mode, PGA = 16, 32, 64  
Low-Power Mode, PGA = 1, 2, 4, 8  
Low-Power Mode, PGA = 16, 32, 64  
0
0
50 100 150 200 250 300 350 400 450 500  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Frequency (Hz)  
C005  
D009  
Figure 28. Crosstalk Output Spectrum  
Figure 29. Power vs Temperature  
2.0  
1.5  
2.0  
1.5  
P Input, T = 25°C  
P Input, T = 25°C  
CHOP Enabled  
PGA = 1  
CHOP Disabled  
PGA = 1  
N Input, T = 25°C  
P Input, T = 85°C  
N Input, T = 85°C  
N Input, T = 25°C  
P Input, T = 85°C  
N Input, T = 85°C  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ0.5  
œ1.0  
œ1.5  
œ2.0  
œ2.5 œ2.0 œ1.5 œ1.0 œ0.5 0.0 0.5 1.0 1.5 2.0 2.5  
œ2.5 œ2.0 œ1.5 œ1.0 œ0.5 0.0 0.5 1.0 1.5 2.0 2.5  
Differential Input Voltage (V)  
Differential Input Voltage (V)  
C002  
C002  
Figure 30. Input Bias Current vs Input Voltage  
Figure 31. Input Bias Current vs Input Voltage  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At +25°C, AVDD = 2.5 V, AVSS = –2.5 V, fCLK = 4.096 MHz, VREFP = 2.5 V, VREFN = –2.5 V, DVDD = 3.3 V, PGA = 1,  
High-Resolution Mode, OFFSET enabled, CHOP enabled, and fDATA = 1000 SPS (unless otherwise noted).  
86  
84  
82  
80  
78  
76  
74  
72  
180  
176  
172  
168  
164  
160  
156  
152  
ã High-Resolution Mode  
Low-Power Modeç  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
D024  
Figure 32. Reference Input Impedance vs Temperature  
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
7 Parameter Measurement Information  
7.1 Noise Performance  
The ADS1284 offers outstanding signal-to-noise ratio (SNR). SNR depends on data rate, gain and mode of  
operation (high resolution or low power). As the bandwidth is reduced by decreasing the data rate, SNR  
improves correspondingly. Similarly, as gain is increased, the input-referred noise decreases. The low power  
mode decreases the oversampling ratio of the modulator and reduces the bias current of the PGA. As a  
consequence, low-power mode reduces the operating power but also results in increased conversion noise. The  
ADC incorporates a chop mode to remove 1/f noise from the PGA. Chop mode results in increased input current  
and as a result, chop mode may not be compatible with certain types of hydrophone sensors.  
Input-referred noise is related to SNR by Equation 1:  
FSRRMS  
SNR = 20log  
NRMS  
where  
FSRRMS = Full-scale range RMS = VREF / (2 × 2 × PGA)  
NRMS = Noise (RMS, input-referred)  
(1)  
Table 1 summarizes SNR and input-referred noise performance in low-power mode (chop enabled). Table 2  
summarizes SNR and input-referred noise performance in low-power mode (chop disabled).  
Table 1. Low-Power Mode SNR (dB) and Input Referred Noise (µVRMS), Chop Enabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
1
2
4
8
16  
32  
64  
250  
500  
127  
124  
121  
118  
115  
127  
124  
121  
118  
114  
126  
123  
120  
117  
114  
124  
121  
118  
115  
112  
122  
119  
116  
113  
110  
116  
113  
110  
107  
104  
111  
108  
105  
102  
99  
0.79  
1.13  
1.60  
2.27  
3.27  
0.41  
0.58  
0.82  
1.16  
1.68  
0.22  
0.31  
0.44  
0.63  
0.90  
0.14  
0.19  
0.27  
0.39  
0.56  
0.09  
0.13  
0.18  
0.26  
0.37  
0.09  
0.12  
0.17  
0.24  
0.34  
0.08  
0.11  
0.16  
0.22  
0.32  
1000  
2000  
4000  
(1) Typical values at TA = 25°C. SNR data rounded to the nearest dB. Measurement bandwidth: 0.1 Hz to 0.413 × data rate.  
Table 2. Low-Power Mode SNR (dB) and Input Referred Noise (µVRMS), Chop Disabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
102  
101  
100  
99  
1
2
4
8
16  
32  
64  
250  
500  
127  
124  
121  
118  
115  
126  
123  
120  
118  
114  
122  
121  
119  
116  
114  
119  
117  
116  
114  
111  
114  
113  
112  
110  
108  
107  
107  
106  
104  
102  
0.82  
1.16  
1.61  
2.28  
3.29  
0.47  
0.63  
0.85  
1.19  
1.70  
0.34  
0.38  
0.50  
0.68  
0.94  
0.25  
0.30  
0.37  
0.47  
0.62  
0.22  
0.25  
0.29  
0.35  
0.43  
0.24  
0.25  
0.29  
0.35  
0.43  
0.23  
0.25  
0.27  
0.32  
0.40  
1000  
2000  
4000  
97  
(1) Typical values at TA = 25°C. SNR data rounded to the nearest dB. Measurement bandwidth: 0.1 Hz to 0.413 × data rate.  
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 3 summarizes SNR and input-referred noise performance in high-resolution mode (chop enabled). Table 4  
summarizes SNR and input-referred noise performance in high-resolution mode (chop disabled).  
Table 3. High-Resolution Mode SNR (dB) and Input Referred Noise (µVRMS), Chop Enabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
1
2
4
8
16  
32  
64  
250  
500  
130  
127  
124  
121  
117  
129  
126  
123  
120  
117  
129  
126  
123  
120  
117  
127  
124  
121  
118  
115  
125  
122  
119  
116  
113  
119  
116  
113  
110  
107  
114  
111  
108  
105  
102  
0.59  
0.84  
1.19  
1.68  
2.40  
0.30  
0.43  
0.60  
0.86  
1.22  
0.16  
0.23  
0.32  
0.46  
0.66  
0.10  
0.14  
0.20  
0.28  
0.40  
0.07  
0.09  
0.13  
0.18  
0.26  
0.06  
0.09  
0.12  
0.17  
0.25  
0.06  
0.08  
0.11  
0.16  
0.23  
1000  
2000  
4000  
(1) Typical values at TA = 25°C. SNR data rounded to the nearest dB. Measurement bandwidth: 0.1 Hz to 0.413 × data rate.  
Table 4. High-Resolution Mode SNR (dB) and Input Noise (µVRMS), Chop Disabled  
PGA (SNR, dB)(1)  
PGA (Input-Referred Noise, µV RMS)  
DATA RATE  
(SPS)  
1
2
4
8
16  
32  
64  
1
2
4
8
16  
32  
64  
250  
500  
129  
126  
123  
120  
117  
128  
125  
123  
120  
117  
125  
123  
121  
119  
116  
120  
119  
117  
116  
114  
116  
114  
114  
112  
111  
110  
108  
108  
107  
105  
104  
103  
102  
101  
99  
0.63  
0.87  
1.20  
1.69  
2.41  
0.37  
0.47  
0.65  
0.91  
1.24  
0.26  
0.31  
0.39  
0.51  
0.70  
0.21  
0.25  
0.30  
0.37  
0.46  
0.18  
0.21  
0.22  
0.26  
0.33  
0.17  
0.21  
0.22  
0.25  
0.31  
0.18  
0.20  
0.22  
0.25  
0.30  
1000  
2000  
4000  
(1) Typical values at TA = 25°C. SNR data rounded to the nearest dB. Measurement bandwidth: 0.1 Hz to 0.413 × data rate.  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8 Detailed Description  
8.1 Overview  
The ADS1284 is a high-performance analog-to-digital converter (ADC) designed for energy exploration, seismic  
monitoring, laboratory instrumentation, and other exacting performance applications. The converter provides 31-  
bit resolution in data rates from 250 SPS to 4000 SPS. See the Functional Block Diagram section for a block  
diagram of the ADS1284.  
The ADS1284 provides two modes of operation, high resolution and low power. The modes offer a tradeoff  
between power consumption and SNR performance. For most ADC configurations, low-power mode reduces  
power consumption 6 mW but results in an average 3 dB decrease of SNR. The operating mode is programmed  
by the MODE register bit (see Figure 71).  
The two-channel, differential-input multiplexer allows several measurement configurations:  
1. Input 1 (AINP1 - AINN1)  
2. Input 2 (AINP2 - AINN2)  
3. All inputs disconnected. PGA internally shorted to VCOM via 400-Ω resistors for ADC noise test.  
4. Input 1 and input 2 connected together to the PGA for measurement  
5. PGA inputs connected to AINN2 for common-mode test.  
The input multiplexer is followed by a continuous-time PGA featuring very low noise. The gain of the PGA is  
programmed by register settings (gains 1 to 64). A external 10-nF C0G capacitor connected to CAPP and CAPN  
provides the ADC antialias filter.  
The inherently-stable, fourth-order, delta-sigma modulator measures the differential input signal (VIN = AINP –  
AINN) against the differential reference (VREF = (VREFP – VREFN) / 2) to yield differential input voltage range =  
±2.5 V (PGA = 1). A digital output (MFLAG) indicates the modulator is in overload as a result of an overdrive  
condition. The modulator digital output data is routed to the digital filter to provide the conversion output data.  
The digital filter consists of a variable decimation rate, fifth-order sinc filter, followed by a variable phase, fixed-  
decimation, finite-impulse response (FIR) low-pass filter with programmable phase. The last filter stage is an  
adjustable high-pass filter for dc and low frequency signal removal. The output of the digital filter can be taken  
from the sinc or the FIR filter stages, with the option of the FIR plus high-pass filter stages.  
Gain and offset registers scale the output of the digital filter to produce the final output conversion data. The  
scaling feature can be used for calibration and sensor gain matching.  
The SYNC input resets the operation of both the digital filter and the modulator, synchronizing the conversions of  
multiple ADCs to an external timing event. The SYNC input supports a continuous input mode that accepts an  
external data frame clock that is locked to the conversion rate. Automatic synchronization occurs when the  
periods are mismatched.  
The RESET input resets the register settings and also restarts the conversion process.  
The PWDN input sets the device into power down. Note that register settings are not retained in PWDN mode.  
Use the STANDBY command for software power down (the quiescent current in standby mode is slightly higher).  
Noise-immune Schmitt-trigger and clock-qualified inputs (RESET and SYNC) increase reliability in high-noise  
environments. The SPI™-compatible serial interface is used to read conversion data, in addition to reading from  
and writing to the configuration registers.  
The device supports either unipolar (+5 V) or bipolar (±2.5 V) supply operation. The digital supply range 1.8 V to  
3.3 V.  
An internal subregulator powers the digital core from the DVDD supply. BYPAS (pin 28), is the subregulator  
output and requires a 1-μF capacitor for noise reduction. Note that the regulated output voltage on BYPAS is not  
available to drive external circuitry.  
Copyright © 2018–2019, Texas Instruments Incorporated  
17  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.2 Functional Block Diagram  
AVDD  
BYPAS DVDD  
CLK  
+1.8 V  
(Digital core)  
LDO  
AINP2  
AINN2  
AINP1  
AINN1  
300  
300  
W
W
CS  
4th-Order  
û  
Modulator  
SCLK  
DIN  
Programmable  
Digital Filter  
Serial  
PGA  
Calibration  
Interface  
DOUT  
Overrange  
Detection  
DRDY  
SYNC  
400  
400 Ω  
Control  
RESET  
PWDN  
AVDD + AVSS  
2
AVSS  
MFLAG  
DGND  
8.3 Feature Description  
8.3.1 Analog Inputs and Multiplexer  
A diagram of the input multiplexer is shown in Figure 33.  
AVDD  
S1  
S2  
AINP1  
ESD Diodes  
AINP2  
(+)  
400W  
S3  
S7  
AVSS  
To PGA  
AVDD + AVSS  
AVDD  
2
400W  
S4  
S5  
S6  
AINN1  
AINN2  
(-)  
ESD Diodes  
AVSS  
Figure 33. Analog Inputs and Multiplexer  
ESD diodes protect the multiplexer inputs. If either input is taken below AVSS – 0.3 V, or above AVDD + 0.3 V,  
the ESD protection diodes can turn on. If these conditions are possible, use external clamp diodes, series  
resistors, or both to limit the input current to safe values (see the Absolute Maximum Ratings table).  
18  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Feature Description (continued)  
Overdriving one unused input can affect the conversions of the other input. If an overdriven input interacts with  
the measured input, clamp the overdriven signal with external Schottky diodes.  
The specified input operating range of the PGA is shown in Equation 2:  
AVSS + 0.7V < (AINN or AINP) < AVDD - 1.25V  
(2)  
For best operation, maintain absolute input levels (input signal level and common-mode level) within these limits.  
The multiplexer connects one of the two external differential inputs to the preamplifier inputs, in addition to  
internal connections for various self-test modes. Table 5 summarizes the multiplexer configurations for Figure 33.  
Table 5. Multiplexer Modes  
MUX[2:0]  
000  
SWITCHES  
S1, S5  
DESCRIPTION  
AINP1 and AINN1 connected to preamplifier  
001  
S2, S6  
AINP2 and AINN2 connected to preamplifier  
010  
S3, S4  
Preamplifier inputs shorted together through 400-internal resistors  
AINP1, AINN1 and AINP2, AINN2 connected together and to the preamplifier  
External short, preamplifier inputs shorted to AINN2 (common-mode test)  
011  
S1, S5, S2, S6  
S6, S7  
100  
The typical value of multiplexer on-resistance is 30 (each switch). When the multiplexer is used to drive an  
external load connected to one channel by a signal generator connected to the other channel, on-resistance and  
on-resistance variation can lead to measurement errors. Figure 34 shows THD versus load resistance and  
amplitude (PGA gain). In this configuration, THD performance improves when used with high-impedance loads  
and low amplitude drive signals. The data are measured with the circuit from Figure 35 with the channel  
connected to each other for measurement (MUX[2:0] = 011).  
0
PGA = 1  
PGA = 2  
PGA = 4  
PGA = 8  
-20  
-40  
PGA = 16  
PGA = 32  
PGA = 64  
-60  
-80  
-100  
-120  
-140  
0.1k  
1k  
10k  
100k  
1M  
10M  
RLOAD (W)  
Figure 34. THD vs External Load and Signal Magnitude (PGA); See Figure 35  
500 Ω  
Input 1  
Test Signal  
500 W  
Input 2  
RLOAD  
Figure 35. Driving an External Load Through the Multiplexer  
Copyright © 2018–2019, Texas Instruments Incorporated  
19  
 
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.3.2 Programmable Gain Amplifier (PGA)  
The PGA of the ADS1284 is a low-noise, continuous-time, differential-in and differential-out CMOS amplifier. The  
gain is set by register bits PGA[2:0], programmable from 1 to 64. The PGA differentially drives the modulator of  
the ADC through 300-internal resistors. The effect of the internal resistors and the modulator input impedance  
results in gain error that changes with operating mode (see Electrical Characteristics). A PGA output filter  
capacitor (10-nF C0G or film dielectric) must be connected to CAPP and CAPN in order to filter modulator  
sampling glitches. The external capacitor also serves as the antialias filter. The corner frequency of the filter is  
given in Equation 3:  
1
fP =  
6.3 ´ 600 ´ C  
(3)  
The PGA incorporates chopper stabilization. As shown in Figure 36, amplifiers A1 and A2 are chopper stabilized  
to remove the offset, offset drift, and 1/f noise. Chopper stabilization (or chopping) moves the offset and noise to  
fCLK / 1024 (4 kHz, fCLK = 4.096 MHz ), which is located safely out of the pass-band frequency range. Chopping  
can be disabled by setting the CHOP bit = 0. When chopping is disabled, the PGA input impedance increases  
(see Differential Input Impedance parameter in the Electrical Characteristics). As shown in Figure 37, chopper  
stabilization provides flat noise density, leaving the noise spectrum white. However, if chopper stabilization is  
disabled, the PGA input noise results in a rising 1/f noise profile. The effect of 1/f noise to the conversion data is  
most noticeable at high PGA gain setting.  
AVDD  
MUX (+)  
300W  
A1  
CAPP  
CHOP  
Gain Control  
10nF  
PGA[2:0] Bits  
(55kW, typ  
Modulator  
Effective  
Impedance  
)
CAPN  
300W  
A2  
MUX (-)  
Chopping Control CHOP Bit  
AVSS  
(1) Modulator impedance depends on operating mode. High-resolution mode modulator impedance is 55 kΩ. Low-power  
mode modulator impedance is 110 kΩ.  
Figure 36. PGA Block Diagram  
100  
PGA CHOP Off  
10  
PGA CHOP On  
1
1
10  
100  
Frequency (Hz)  
1k  
Figure 37. PGA Noise (High-resolution Mode)  
20  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
As a result of charges stored on stray capacitance of the input chopping switches, low-level transient currents  
flow through the inputs when chopper stabilization is enabled. The average value of the transient currents results  
in an effective input impedance. The effective input impedance depends on the PGA gain, as shown in Table 6.  
Despite the relatively high input impedance, evaluate applications that use high-impedance sensors or high-  
impedance termination resistors. In some cases, ADC performance may be improved by disabling chopper  
stabilization.Table 6 shows the PGA differential input impedance with chopper stabilization enabled.  
Table 6. Differential Input Impedance (CHOP Enabled)  
PGA  
1
DIFFERENTIAL INPUT IMPEDANCE (G)  
7
7
2
4
4
8
3
16  
32  
64  
2
1
0.5  
The PGA provides programmable gains from 1 to 64. Table 7 shows the register bit setting for the PGA and  
resulting full-scale differential range.  
Table 7. PGA Gain Settings  
DIFFERENTIAL INPUT RANGE  
PGA[2:0]  
000  
GAIN  
1
(V)(1)  
±2.5  
001  
2
±1.25  
010  
4
±0.625  
±0.312  
±0.156  
±0.078  
±0.039  
011  
8
100  
16  
32  
64  
101  
110  
(1) VREF = 5 V. The input range scales with VREF  
.
The specified range of the PGA output is shown in Equation 4:  
AVSS + 0.4V < (CAPN or CAPP) < AVDD - 0.4V  
(4)  
For best performance, maintain PGA output levels (signal plus common mode voltage) within these limits.  
Copyright © 2018–2019, Texas Instruments Incorporated  
21  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3 Analog-to-Digital Converter (ADC)  
The ADC of the ADS1284 consists of two sections to yield the conversion data result: a low-noise modulator and  
a programmable digital filter.  
8.3.3.1 Modulator  
The low-noise modulator is an inherently-stable, fourth-order, ΔΣ, 2 + 2 pipelined structure, as Figure 38 shows.  
The modulator shifts the quantization noise to a higher frequency (out of the passband), where the noise is  
removed by the digital filter. The modulator data can either be completely filtered by the on-chip digital filter or  
partially filtered by use of the sinc filter section alone. Partial filtering provided by the sinc filter section is intended  
for use with an external FIR filter.  
fCLK/4  
fMOD =  
1st-Stage  
(2nd-Order û)  
Analog  
Signal  
Digital  
Filter  
Math  
Block  
2nd-Stage  
(2nd-Order  
û)  
Figure 38. ADS1284 Fourth-Order Modulator  
Modulator performance is optimized for input signal frequencies over the range dc to 2 kHz. As Figure 39 shows,  
the effect of PGA and modulator chop result in spectral artifacts occurring at the chop frequency (4 kHz) and  
harmonics related of the chop frequency. When using the sinc filter output in conjunction with an external post-  
decimation filter, design the external filter to suppress the modulator chopping artifacts.  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
œ180  
0
4000 8000 12000 16000 20000 24000 28000 32000  
Frequency (Hz)  
C001  
Figure 39. Sinc Output FFT (64 kSPS)  
8.3.3.1.1 Modulator Overrange  
The modulator is inherently stable, and therefore, has predictable recovery behavior resulting from an input  
overdrive condition. The modulator does not exhibit self-reset cycles, which often results in an unstable output  
data stream. The ADS1284 modulator outputs a data stream with 90% duty cycle of ones-to-zeroes density with  
the positive full-scale input signal applied (10% duty cycle with the negative full-scale signal). If the input is  
overdriven to exceed 10% or 90% modulation, but not saturated, the modulator remains stable and continues to  
output the 1s density data stream. The digital filter may or may not clip the output codes to +FS or –FS,  
depending on the duration of the overdrive. When the input returns to the normal range from a long-duration  
overdrive (worst case), the modulator returns immediately to the normal range, but the group delay of the digital  
filter delays the return of the conversion data to within the linear range (31 readings for linear phase FIR). An  
additional 31 readings (62 total) are required for completely settled data.  
22  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
If the inputs are overdriven sufficiently to drive the modulator to full duty cycle (that is, all 1s or all 0s), the  
modulator is saturated. The digital output code may clip to +FS or –FS, again depending on the duration of the  
overdrive. A small-duration overdrive may not always clip the output code. When the input returns to the normal  
range, the modulator requires up to 12 modulator clock cycles (fMOD) to exit saturation and return to linear  
operation. The digital filter requires an additional 62 conversions for fully-settled data (linear-phase FIR).  
In the extreme case of input overrange (where either overdriven input exceeds the voltage of the analog supply  
voltage plus the input protection diode drop), the protection diodes begin to conduct, thus clipping the input  
signal. When the input overdrive is removed, the diodes recover quickly. Make sure to limit the input current to 10  
mA (continuous duty) if an overvoltage input signals are possible.  
8.3.3.1.2 Modulator Input Impedance  
The modulator samples the buffered input voltage through an internal capacitor to perform the ADC conversion.  
The charging of the input sampling capacitor draws a transient current from the PGA output. Use the average  
value of the current to calculate an effective input impedance, as shown in Equation 5:  
REFF = 1 / (fMOD × CS)  
where  
fMOD = Modulator sample frequency = CLK / 4 ( CLK / 8 for low-power mode)  
CS = Input sampling capacitor = 17 pF (typ)  
(5)  
The resulting modulator input impedance is 55 k(110 kΩ low-power mode). The modulator input impedance  
and the PGA output resistors result in systematic gain errors. The modulator sampling capacitor and PGA output  
resistors can each vary up to ±20% over production lots, affecting the nominal gain error.  
8.3.3.1.3 Modulator Overrange Detection (MFLAG)  
The ADS1284 has a fast-responding, overrange detection that indicates when the differential input exceeds  
100% or –100% full-scale. The threshold tolerance is ±2.5%.The MFLAG output pin asserts high when in an  
overrange condition. As Figure 40 and Figure 41 illustrate, the absolute differential input is compared to 100% of  
range. The output of the comparator is sampled at the rate of fMOD / 2, yielding the MFLAG output. The minimum  
detectable MFLAG pulse duration is fMOD / 2.  
AINP  
å
IABSI  
P
100% FS  
AINN  
Q
MFLAG  
Pin  
fMOD/2  
Figure 40. Modulator Overrange Block Diagram  
+100  
(AINP - AINN)  
0
Time  
-100  
MFLAG  
Pin  
Figure 41. Modulator Overrange Flag Operation  
Copyright © 2018–2019, Texas Instruments Incorporated  
23  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.3.3.1.4 Offset  
The modulator can produce low-level idle tones that appear in the conversion data when there is no signal input  
or when low-level signal inputs are present to the ADC. The ADC provides an optional dc offset voltage designed  
to shift the idle tones to the stop band of digital filter response, where the idle tones are reduced. The internal  
offset is applied at the modulator input; therefore, the offset voltage is independent of PGA gain. Two offset  
voltage options are provided, 75 mV and 100 mV. The 75-mV offset is more effective to reduce idle tones under  
various gain, data rate, and chop mode settings.  
The offset is enabled by the OFFSET1 and OFFSET0 bits (default is off). The offset voltage reduces the total  
available input range 4% (3% for the 75 mV value) before the onset of clipped conversion results. To restore the  
full range of the ADC, calibrate the offset voltage by the digital offset calibration register (OFC[2:0]). See Offset  
and Full-Scale Calibration Registers and Calibration Commands (OFSCAL and GANCAL) sections for details.  
8.3.3.1.5 Voltage Reference Inputs (VREFP, VREFN)  
The voltage reference of the ADS1284 is the differential voltage applied between pins VREFP and VREFN:  
VREF = VREFP – VREFN  
(6)  
The reference inputs use a structure similar to that of the analog inputs with the circuitry of the reference inputs  
shown in Figure 42. The average load presented by the switched-capacitor reference input can be modeled with  
an effective differential impedance of:  
REFF = tSAMPLE / CIN (tSAMPLE = 1 / fMOD).  
(7)  
Note that the effective impedance of the reference inputs loads the external reference.  
AVDD  
fMOD = fCLK/4  
ESD  
Diodes  
1
REFF  
=
f
MOD x 11.5 pF  
VREFP  
VREFN  
REFF : 85 kΩ  
11.5pF  
ESD  
Diodes  
AVSS  
REFF shown for high-resolution mode operation. REFF for low-power mode operation is 170 kΩ  
Figure 42. Simplified Reference Input Circuit  
Place a 0.1-µF ceramic capacitor directly between the ADC VREFP and VREFN pins. Multiple ADC applications  
can share a single voltage reference, but must have individual capacitors placed at each ADC.  
The ADS1284 reference inputs are protected by ESD diodes. In order to prevent these diodes from turning on,  
the voltage on either input must stay within the range shown in Equation 8:  
AVSS - 300mV < (VREFP or VREFN) < AVDD + 300mV  
(8)  
The minimum operational input range for VREFN is AVSS – 0.1 V, and the maximum operational range for  
VREFP is AVDD + 0.1 V.  
To achieve the best ADC performance, use a low-noise 5-V voltage reference. A 4.096-V or 4.5-V reference  
voltage can be used; however, these lower reference voltages reduce the signal input range and corresponding  
decrease SNR. Noise and drift on the reference degrade overall system performance. To achieve optimum  
performance, give attention to the circuitry providing the reference voltage including possible use of noise  
filtering. See the Application Information section for reference recommendations.  
24  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.3.3.2 Digital Filter  
The digital filter receives the modulator output data stream and decimates and filters the data. By adjusting the  
amount of filtering, tradeoffs can be made between resolution and data rate: filter more for higher resolution, filter  
less for higher data rate.  
The digital filter is comprised of three filter sections: a variable-decimation, fifth-order sinc filter; a fixed-  
decimation FIR, low-pass filter (LPF) with selectable phase; and a programmable, first-order, high-pass filter  
(HPF), as shown in Figure 43.  
Filter Mode  
(Register Select)  
Filter  
MUX  
To Output Register  
Sinc Filter  
(Decimate by  
8 to 128)  
Coefficient Filter  
(FIR)  
(Decimate by 32)  
High-Pass Filter  
(IIR)  
Code  
Clip  
CAL  
Block  
From Modulator  
Figure 43. Digital Filter and Output Code Processing  
The output can be taken from one of the three filter sections, as Figure 43 shows. For partial filtering of the  
conversion data, select the sinc filter mode. The sinc filter mode is intended for use in conjunction with an  
external FIR filter. For complete on-chip filtering, select the sinc + FIR mode. With sinc + FIR filter mode active,  
the HPF can be included to remove dc and low frequencies from the data. Table 8 shows the filter mode options.  
Table 8. Digital Filter Selection  
FILTR[1:0] BITS  
DIGITAL FILTER MODE  
Reserved (not used)  
Sinc  
00  
01  
10  
11  
Sinc + FIR  
Sinc + FIR + HPF  
8.3.3.2.1 Sinc Filter Section (sinx / x)  
The sinc filter is a variable decimation rate, fifth-order, low-pass filter. Data are supplied to this section of the filter  
from the modulator at the rate of fMOD = fCLK / 4 (high-resolution mode) or fMOD = fCLK / 8 (low-power mode). The  
sinc filter attenuates high-frequency noise produced by the modulator and also reduces the data rate (decimation  
ratio) in proportion to the amount of filtering. The decimation ratio of the sinc filter effects the overall data rate of  
the converter. The sinc and sinc + FIR filter mode data rates are programmed by the DR[2:0] register bits. The  
sinc filter mode data rates are shown in Table 9.  
Table 9. Sinc Filter Mode Data Rates  
DECIMATION RATIO (N)  
DR[2:0] REGISTER  
HIGH-RESOLUTION MODE  
LOW-POWER MODE  
DATA RATE (SPS)  
8,000  
000  
001  
010  
011  
100  
128  
64  
32  
16  
8
64  
32  
16  
8
16,000  
32,000  
64,000  
4
128,000  
Copyright © 2018–2019, Texas Instruments Incorporated  
25  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Equation 9 shows the scaled Z-domain transfer function of the sinc filter.  
5
-N  
1 - Z  
-1  
N(1 - Z )  
H(Z) =  
where  
N = decimation ratio  
(9)  
Equation 10 shows the frequency domain transfer function of the sinc filter.  
5
pN ´ f  
sin  
fMOD  
½H(f)½ =  
p ´ f  
N sin  
fMOD  
where  
N = decimation ratio (see Table 9)  
fMOD = fCLK /4 (high-resolution mode) or fCLK / 8 (low-power mode)  
(10)  
The sinc filter has notches (or zeros) that occur at the output data rate and multiples thereof. At these  
frequencies, the filter has zero gain. Figure 44 shows the frequency response of the sinc filter and Figure 45  
shows the roll-off of the sinc filter.  
0
-20  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-40  
-60  
-80  
-100  
-120  
-140  
0
1
2
3
4
5
0
0.05  
0.10  
0.15  
0.20  
Normalized Frequency (fIN/fDATA  
)
Normalized Frequency (fIN/fDATA  
)
Figure 44. Sinc Filter Frequency Response  
Figure 45. Sinc Filter Roll-Off  
8.3.3.2.2 FIR Section  
The second section of the digital filter is an FIR low-pass filter. Data are supplied to this section from the sinc  
filter. The FIR stage is segmented into four subsections, as shown in Figure 46.  
FIR Stage 1  
Decimate by 2  
FIR Stage 2  
Decimate by 2  
FIR Stage 3  
Decimate by 4  
FIR Stage 4  
Decimate by 2  
Sinc  
Filter  
Output  
Coefficients  
Linear  
Minimum  
PHASE Select  
Figure 46. FIR Filter  
26  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
The first two subsections are half-band filters with fixed decimation ratios of two. The third subsection of the FIR  
filter decimates by four (fixed), and the fourth subsection decimates by two (fixed). The overall decimation ratio of  
the entire FIR section is 32. Two coefficient sets are used for the third and fourth subsections, sets for linear  
phase mode and minimum phase mode (programmable). Table 10 lists the data rate programming and overall  
decimation ratio of the FIR stage. See Table 11 for the FIR filter coefficients.  
Table 10. FIR Filter Data Rates  
OVERALL DECIMATION RATIO (COMBINED SINC + FIR)  
DR[2:0]  
REGISTER  
000  
HIGH-RESOLUTION MODE  
LOW-POWER MODE  
FIR DATA RATE (SPS)  
4096  
2048  
1024  
512  
2048  
1024  
512  
250  
500  
001  
010  
1000  
2000  
4000  
011  
256  
100  
256  
128  
Table 11. FIR Stage Coefficients  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b0  
b1  
3
0
–10944  
0
0
819  
–132  
–432  
11767  
133882  
0
8211  
b2  
–25  
0
103807  
0
–73  
44880  
–75  
769961  
b3  
–874  
174712  
2481  
2940447  
8262605  
17902757  
30428735  
40215494  
39260213  
23325925  
–1757787  
–21028126  
–21293602  
–3886901  
14396783  
16314388  
1518875  
–12979500  
–11506007  
2769794  
12195551  
6103823  
–6709466  
–9882714  
–353347  
8629331  
5597927  
–4389168  
–7594158  
–428064  
b4  
150  
256  
150  
0
–507903  
0
–4648  
536821  
6692  
b5  
–16147  
–41280  
–80934  
–120064  
–118690  
–18203  
224751  
580196  
893263  
891396  
293598  
–987253  
–2635779  
–3860322  
–3572512  
–822573  
4669054  
12153698  
19911100  
25779390  
27966862  
25779390  
19911100  
12153698  
4669054  
1372637  
3012996  
5788605  
9852286  
14957445  
20301435  
24569234  
26260385  
24247577  
18356231  
9668991  
327749  
7419  
b6  
2512192  
4194304  
2512192  
0
–266  
b7  
–10663  
–8280  
10620  
22008  
348  
b8  
–25  
0
b9  
b10  
b11  
b12  
b13  
b14  
b15  
b16  
b17  
b18  
b19  
b20  
b21  
b22  
b23  
b24  
b25  
b26  
b27  
b28  
b29  
3
–507903  
0
103807  
0
–34123  
–25549  
33460  
61387  
–7546  
–94192  
–50629  
101135  
134826  
–56626  
–220104  
–56082  
263758  
231231  
–215231  
–430178  
34715  
580424  
–10944  
–7171917  
–10926627  
–10379094  
–6505618  
–1333678  
2972773  
5006366  
4566808  
2505652  
126331  
–1496514  
–1933830  
–1410695  
Copyright © 2018–2019, Texas Instruments Incorporated  
27  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 11. FIR Stage Coefficients (continued)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b30  
b31  
b32  
b33  
b34  
b35  
b36  
b37  
b38  
b39  
b40  
b41  
b42  
b43  
b44  
b45  
b46  
b47  
b48  
b49  
b50  
b51  
b52  
b53  
b54  
b55  
b56  
b57  
b58  
b59  
b60  
b61  
b62  
b63  
b64  
b65  
b66  
b67  
b68  
b69  
b70  
b71  
b72  
b73  
b74  
–822573  
–3572512  
–3860322  
–2635779  
–987253  
293598  
891396  
893263  
580196  
224751  
–18203  
–118690  
–120064  
–80934  
–41280  
–16147  
–4648  
–502731  
245330  
565174  
492084  
231656  
–9196  
–125456  
–122207  
–61813  
–4445  
22484  
22245  
10775  
940  
283878  
–588382  
–693209  
366118  
6566217  
4024593  
–3679749  
–5572954  
332589  
1084786  
132893  
5136333  
2351253  
–3357202  
–3767666  
1087392  
3847821  
919792  
–1300087  
–878642  
1162189  
1741565  
–522533  
–2490395  
–688945  
2811738  
2425494  
–2338095  
–4511116  
641555  
–2918303  
–2193542  
1493873  
2595051  
–79991  
–2953  
–2599  
–1052  
–43  
–874  
–2260106  
–963855  
1482337  
1480417  
–586408  
–1497356  
–168417  
1166800  
644405  
–73  
214  
6661730  
2950811  
–8538057  
–10537298  
9818477  
41426374  
56835776  
41426374  
9818477  
–10537298  
–8538057  
2950811  
6661730  
641555  
0
132  
0
33  
0
0
–675082  
–806095  
211391  
740896  
141976  
–527673  
–327618  
278227  
–4511116  
–2338095  
2425494  
2811738  
–688945  
–2490395  
–522533  
1741565  
1162189  
–878642  
–1300087  
132893  
363809  
–70646  
–304819  
–63159  
205798  
124363  
–107173  
–131357  
31104  
107182  
1084786  
15644  
28  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Table 11. FIR Stage Coefficients (continued)  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SCALING = 1 / 134217728  
SCALING = 1 / 134217728  
LINEAR PHASE  
SCALING =  
1 / 512  
LINEAR PHASE  
SCALING =  
1 / 8388608  
LINEAR  
PHASE  
MINIMUM  
PHASE  
LINEAR  
PHASE  
MINIMUM  
PHASE  
COEFFICIENT  
b75  
366118  
–693209  
–588382  
283878  
580424  
34715  
–430178  
–215231  
231231  
263758  
–56082  
–220104  
–56626  
134826  
101135  
–50629  
–94192  
–7546  
61387  
33460  
–25549  
–34123  
348  
–71728  
–36319  
38331  
38783  
–13557  
–31453  
–1230  
20983  
7729  
–11463  
–8791  
4659  
7126  
–732  
–4687  
–976  
2551  
1339  
–1103  
–1085  
314  
b76  
b77  
b78  
b79  
b80  
b81  
b82  
b83  
b84  
b85  
b86  
b87  
b88  
b89  
b90  
b91  
b92  
b93  
b94  
b95  
b96  
681  
b97  
16  
b98  
22008  
10620  
–8280  
–10663  
–266  
–349  
–96  
b99  
b100  
b101  
b102  
b103  
b104  
b105  
b106  
b107  
b108  
b109  
144  
78  
–46  
7419  
–42  
6692  
9
2481  
16  
–75  
0
–432  
–4  
–132  
0
0
0
Copyright © 2018–2019, Texas Instruments Incorporated  
29  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
As shown in Figure 47, the frequency response of the FIR filter is minimum ripple, flat to 0.375 of the data rate  
(±0.003 dB pass-band ripple until 0.375 · fDATA) and is fully attenuated at the Nyquist frequency. Figure 48 shows  
the transition from pass band to stop band.  
2.0  
1.5  
20  
0
-20  
1.0  
-40  
0.5  
-60  
0
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-160  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Normalized Input Frequency (fIN/fDATA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Normalized Input Frequency (fIN/fDATA  
)
)
Figure 48. FIR Transition Band Magnitude Response  
Figure 47. FIR Pass-Band Magnitude Response  
Although not shown in Figure 48, the pass-band response repeats at multiples of the modulator frequency (N ·  
fMOD – f0 and N · fMOD + f0, where N = 1, 2, and so on, and f0 = pass band). These image frequencies, if present  
in the signal and not filtered before the analog-to-digital conversion process, fold back (or alias) into the pass  
band and cause errors. A low-pass signal filter reduces the amplitude of the aliasing frequencies. Often, the RC  
low-pass filter provided by the PGA output resistance and the external capacitor connected to CAPP and CAPN  
provide sufficient anti-alias attenuation.  
8.3.3.2.3 Group Delay and Step Response  
The FIR block is implemented as a multistage FIR structure with selectable linear or minimum phase response.  
The pass band, transition band, and stop band responses of the filters are nearly identical but differ in the  
respective phase responses.  
8.3.3.2.3.1 Linear Phase Response  
Linear phase filters exhibit constant delay time versus input frequency (that is, constant group delay). Linear  
phase filters have the property that the time delay is constant from any instant of the input signal to the same  
instant of the output data, and is independent of the signal frequency. This filter behavior results in essentially  
zero phase error when analyzing multi-tone signals. However, the group delay is longer than the minimum phase  
filter, as shown in Figure 49.  
1.4  
Minimum Phase Filter  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Linear Phase Filter  
0
-0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
Time Index (1/fDATA  
)
Figure 49. FIR Step Response  
30  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.3.3.2.3.2 Minimum Phase Response  
The minimum phase filter provides a short delay from the arrival of an input signal to the output of conversion  
data, but the phase relationship is not constant versus frequency, as shown in Figure 50. The filter phase is  
selected by the PHS bit, as Table 12 shows.  
35  
Linear Phase Filter  
30  
25  
20  
15  
10  
Minimum Phase Filter  
5
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
Figure 50. FIR Group Delay (fDATA = 500Hz)  
Table 12. FIR Filter Phase Selection  
PHS BIT  
FILTER PHASE  
Linear  
0
1
Minimum  
8.3.3.2.4 HPF Section  
The last section of the digital filter is a first-order HPF implemented as an IIR structure. This filter stage blocks dc  
signals, and rolls-off low frequency components below the cutoff frequency. The transfer function for the filter is  
shown in Equation 11:  
2 - a  
-1  
1 - Z  
HPF(Z) =  
´
-1  
2
1 - bZ  
where  
b is calculated as shown in Equation 12  
(11)  
(12)  
1 + (1 - a)2  
b =  
2
The high-pass corner frequency is programmed by registers HPF[1:0], in hexadecimal. Equation 13 is used to set  
the high-pass corner frequency. Table 13 lists example values for the high-pass filter.  
cos wN + sin wN - 1  
HPF[1:0] = 65,536 1 -  
1 - 2  
cos wN  
where  
HPF[1:0] = High-pass filter register value (converted to hexadecimal)  
ωN = 2πfHP / fDATA (normalized frequency, radians)  
fHP = High-pass corner frequency (Hz)  
fDATA = Data rate (Hz)  
(13)  
Copyright © 2018–2019, Texas Instruments Incorporated  
31  
 
 
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 13. High-Pass Filter Value Examples  
fHP (Hz)  
0.5  
DATA RATE (SPS)  
HPF[1:0]  
0337h  
250  
500  
1.0  
0337h  
1.0  
1000  
019Ah  
The HPF causes a small gain error, in which case the magnitude of the error depends on the ratio of fHP / fDATA  
.
For many common values of (fHP / fDATA), the gain error is negligible. Figure 51 shows the gain error of the HPF.  
0
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
0.0001  
0.001  
0.01  
0.1  
Frequency Ratio (fHP/fDATA  
)
Figure 51. HPF Gain Error  
The gain error factor is calculated in Equation 14:  
cos wN + sin wN - 1  
1 +  
1 - 2  
cos wN  
HPF Gain =  
cos wN + sin wN - 1  
cos wN  
2 -  
(14)  
Figure 52 shows the first-order amplitude and phase response of the HPF. In the case of applying step inputs  
(changing gains or inputs) or synchronizing, make sure to take the settling time of the filter into account.  
0
90  
75  
60  
45  
30  
-7.5  
-15.0  
-22.5  
-30.0  
-37.5  
-45.0  
Amplitude  
Phase  
15  
0
0.01  
0.1  
1
10  
100  
Normalized Frequency (f/fC)  
Figure 52. HPF Amplitude and Phase Response  
32  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4 Device Functional Modes  
8.4.1 Synchronization (SYNC PIN and SYNC Command)  
The ADS1284 can be synchronized to an external event, as well as synchronizing multiple ADS1284 devices  
together if the synchronization pulse is applied simultaneously.  
The ADS1284 has two methods of synchronization: the SYNC input pin and the SYNC command. In addition,  
there are two synchronization modes: pulse-sync and continuous-sync. In pulse-sync mode, the ADS1284  
synchronizes unconditionally at each synchronization event. In continuous-sync mode, the first synchronization is  
unconditional, thereafter the ADC re-synchronizes only when the next SYNC pin edge does not occur at an  
integer multiple of the data rate. Typically, a synchronization clock is applied to the SYNC pin with a period equal  
to an integer multiple of the data rate. When the periods of the SYNC input and the DRDY output do not match  
due to system glitch or clock noise event, the ADC re-synchronizes.  
8.4.1.1 Pulse-Sync Mode  
In pulse-sync mode, the ADS1284 unconditionally synchronizes by stopping and restarting the conversion  
process. Synchronization is possible by pin or command in this mode. At synchronization, the device resets the  
internal filter memory, DRDY goes high, and after the digital filter has settled, new conversion data are available  
as shown in Figure 53 and Table 14 (Pulse-sync mode).  
tCSDL  
CLK  
tDR  
SYNC  
tSPWH  
tSPWL  
New Data Ready  
DRDY  
(Pulse-sync mode)  
DOUT  
(Pulse-sync mode)  
New Data Ready  
DRDY  
(Continuous-sync mode)  
DOUT  
(Continuous-sync mode)  
Figure 53. Pulse-Sync and Continuous-Sync Timing With Single Synchronization  
Table 14. Pulse-Sync Timing for Figure 53 and Figure 54  
PARAMETER  
CLK rising edge to SYNC rising edge(1)  
SYNC clock period(2)  
MIN  
30  
1
MAX  
–30  
UNIT  
ns  
tCSDL  
tSYNC  
Infinite  
n / fDATA  
1 / fCLK  
tSPWH, L  
SYNC pulse width, high or low  
Time for data ready (SINC filter)  
Time for data ready (FIR filter)  
2
See Table 15  
tDR  
62.98046875 / fDATA + 468 / fCLK  
(1) CLK rising edge to SYNC rising edge timing must not occur within the specified time window.  
(2) Continuous-sync mode; a free-running clock applied to the SYNC input without causing resynchronization. See Figure 54  
Copyright © 2018–2019, Texas Instruments Incorporated  
33  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Table 15. tDR Time for Data Ready (Sinc Filter)  
fDATA (kSPS)  
fCLK CYCLES(1)  
128  
64  
32  
16  
8
440  
616  
968  
1672  
2824  
(1) For SYNC and WAKEUP commands, number of fCLK cycles from next rising CLK edge directly after  
eighth rising SCLK edge to DRDY falling edge. For WAKEUP command only, subtract two fCLK cycles.  
Table 15 is referenced by Table 14 and Table 17.  
Observe the timing restriction of SYNC rising edge to CLK rising edge as shown in Figure 53 and Table 14.  
Synchronization occurs on the next rising CLK edge after the rising edge of the SYNC, or after the eighth rising  
SCLK edge when synchronized by command. To synchronize multiple ADCs by the sync command, broadcast  
the command to the ADCs simultaneously.  
8.4.1.2 Continuous-Sync Mode  
In continuous-sync mode, either a single synchronization pulse or a continuous synchronization clock may be  
applied. Use the SYNC pin in this mode. When a single sync pulse is applied (rising edge), the device  
resynchronizes the same way as pulse-sync mode. ADC re-synchronization occurs only when the time between  
SYNC rising edges is not an integer multiple of the conversion period. When resynchronization occurs, DRDY  
continues to toggle at the period of the date rate, and the DOUT output is held low until data are ready (63 DRDY  
periods later). At the 63rd reading, conversion data are valid, as shown in Figure 53.  
If an additional pulse is applied to the SYNC pin, the elapsed time from the previous pulse must be an integral  
multiple of the output data rate otherwise re-synchronization results.  
If a synchronization clock is applied to the SYNC pin, the device resynchronizes only under the condition tSYNC  
N / fDATA, where N = 1, 2, 3, and so on. When re-synchronized, DRDY continues to strobe, but the data on DOUT  
is held low until new data are valid after filter reset. If the period of the synchronizing clock matches an integral  
multiple of the data rate, the ADC does not re-synchronize. Note that the phase of the applied clock and output  
data rate (DRDY) is not aligned because of the initial delay of DRDY after the SYNC clock is first applied.  
Figure 54 shows the timing for continuous-sync mode.  
tCSDL  
CLK  
tSPWH  
SYNC  
tSPWL  
tSYNC  
DRDY  
1/fDATA  
Figure 54. Continuous-Sync Timing With SYNC Clock  
Apply the synchronization clock after the continuous-sync mode is programmed. The first rising edge of SYNC  
then results in synchronization. Note that subsequent writes to any ADC register results in re-synchronization at  
the time of the register write operation. The re-synchronization leads to loss of the previous synchronization.  
Send the STANDBY command followed by the WAKEUP command to re-establish the previous synchronization.  
Re-synchronization occurs is valid as long as the time between the STANDBY and WAKEUP commands is not a  
multiple integer of the conversion period by at least one clock cycle.  
34  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4.2 Reset (RESET Pin and Reset Command)  
Reset the ADC in three ways: cycle the power supplies, toggle the RESET pin low, or send a RESET command.  
When using the RESET pin, take it low and hold for at least 2 / fCLK to force a reset. The ADS1284 is held in  
reset until the pin is released. By reset command, reset takes effect on the next rising edge of fCLK after the  
eighth rising edge of SCLK of the command. In order to make certain that the RESET command functions, the  
SPI interface may need to be reset; see the Serial Interface section.  
When the ADS1284 is reset, registers are set to default and the conversions are synchronized on the next rising  
edge of CLK. New conversion data are available, as shown in Figure 55 and Table 16.  
Settled  
Data  
DRDY  
tDR  
tCRHD  
System Clock  
(fCLK)  
tRCSU  
tRST  
RESET Pin  
or  
RESET Command  
Figure 55. Reset Timing  
Table 16. Reset Timing for Figure 55  
PARAMETER  
MIN  
UNIT  
ns  
tCRHD  
tRCSU  
tRST  
CLK to RESET hold time  
RESET to CLK setup time  
RESET low  
10  
10  
ns  
2
1 / fCLK  
s
tDR  
Time for data ready  
62.98046875 / fDATA + 468 / fCLK  
8.4.3 Master Clock Input (CLK)  
The ADS1284 requires a clock for operation. The specified clock frequency is 4.096 MHz and is applied to the  
CLK pin. The ADC data rates scale with clock frequency, however there is no benefit in noise reduction by  
reducing clock frequency; select a slower data to reduce noise.  
As with any high-speed data converter, a high-quality, low-jitter clock is essential for optimum performance.  
Crystal clock oscillators are the recommended clock source. Make sure to avoid excess ringing on the clock  
input; keep the clock trace as short as possible and use a 50-series resistor close to the clock source.  
Copyright © 2018–2019, Texas Instruments Incorporated  
35  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.4.4 Power-Down (PWDN Pin and STANDBY Command)  
Power-down the ADS1284 in two ways: take the PWDN pin low, or send a STANDBY command. When the  
PWDN pin is pulled low, the internal circuitry is disabled to minimize power and the contents of the register  
settings are reset.  
When in the power-down state, the device outputs remain active and the device inputs must not float. When the  
STANDBY command is sent, the SPI port and the configuration registers are kept active. Figure 56 and Table 17  
show the timing. Standby mode is cancelled when CS is taken high.  
PWDN Pin  
Wakeup  
Command  
DRDY  
tDR  
Figure 56. PWDN Pin and Wake-Up Command Timing  
(Table 17 shows tDR  
)
Table 17. Power-On, PWDN Pin, and Wake-Up Command Timing for New Data  
PARAMETER  
FILTER MODE  
See Table 15  
SINC(1)  
Time for data ready 216 CLK cycles after power-on;  
and new data ready after PWDN pin or WAKEUP command  
tDR  
62.98046875 / fDATA + 468 / fCLK  
FIR  
(2)  
(1) Supply power-on and PWDN pin default is 1000 SPS FIR.  
(2) Subtract two CLK cycles for the WAKEUP command. The WAKEUP command is timed from the next rising edge of CLK to after the  
eighth rising edge of SCLK during command to DRDY falling.  
8.4.5 Power-On Sequence  
The ADS1284 has three power supplies: AVDD, AVSS, and DVDD. Figure 57 shows the power-on sequence of  
the ADS1284. The power supplies can be sequenced in any order. The supplies [the difference of AVDD –  
AVSS, and DVDD] generate signals that are ANDed together to generate reset. After the supplies have crossed  
the power-on reset thresholds, 216 fCLK cycles are counted before releasing the internal reset. After the internal  
reset is released, new conversion data are available, as shown in Figure 57 and Table 17.  
3.5V nom  
AVDD - AVSS  
1V nom  
DVDD  
CLK  
16  
2
fCLK  
Internal Reset  
DRDY  
tDR  
Figure 57. Power-On Sequence  
36  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4.6 DVDD Power Supply  
The DVDD supply operates over the range of 1.65 V to 3.6 V. If operating DVDD at less than 2.25 V, connect the  
DVDD pin directly to the BYPAS pin. Figure 58 shows the required connection if DVDD < 2.25 V. Otherwise if  
operating DVDD > 2.25 V, do not connect the pins together.  
1.65 V to 3.6 V  
DVDD  
1 µF  
Connect DVDD to BYPAS if DVDD is < 2.25 V.  
Otherwise, do not connect these pins together.  
BYPAS  
1 µF  
Figure 58. DVDD Power  
8.4.7 Serial Interface  
A serial interface is used to read both the conversion data and to access the configuration registers. The  
interface is SPI-compatible and consists of four signals: CS, SCLK, DIN, and DOUT. Up to 15 ADCs converting  
at 4 kSPS can share a common serial bus when operating SCLK at 2.048 MHz.  
8.4.7.1 Chip Select (CS)  
Chip select (CS) is an active-low input that enables the ADC serial interface for data transfer. CS low enables  
communication. CS high disables communication. When communication is disabled, DOUT (output data pin) is  
high impedance (tristate mode). Additionally, SCLK activity is ignored, and data transfers or commands in  
progress are reset. CS must remain low for the duration of the data transfer with the ADC. CS can be tied low,  
which permanently enables the ADC serial interface. When CS goes high, the ADC idle mode (STANDBY) and  
stop read data continuous (SDATAC) modes are cancelled. See the SDATAC Requirements section for more  
information about SDATAC mode.  
8.4.7.2 Serial Clock (SCLK)  
The serial clock (SCLK) is a digital input that is used to clock data into (DIN) and out of (DOUT) the ADC. SCLK  
is a Schmitt-trigger input that has a high degree of noise immunity. However, keep the SCLK signal as clean as  
possible to prevent possible glitches from inadvertently shifting the data. Data are shifted into DIN on the rising  
edge of SCLK and data are shifted out of DOUT on the falling edge of SCLK. Keep SCLK low when not active.  
SCLK is ignored when CS is high.  
8.4.7.3 Data Input (DIN)  
The data input pin (DIN) is used to input register data and commands to the ADS1284. Keep DIN low when  
reading conversion data in the read-data-continuous mode (except when issuing a SDATAC command). Data on  
DIN are shifted into the converter on the rising edge of SCLK.  
8.4.7.4 Data Output (DOUT)  
The data output pin (DOUT) is used to output data from the ADS1284. Data are shifted out on the falling edge of  
SCLK. When CS is high, the DOUT pin is in tristate.  
Copyright © 2018–2019, Texas Instruments Incorporated  
37  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.4.7.5 Serial Port Auto Timeout  
The serial interface is reset each time CS is taken high. However, for applications that tie CS low, the serial port  
cannot be reset by taking CS high. The ADS1284 provides a feature that automatically recovers the interface  
when a transmission is stopped or interrupted, or if a noise glitch appears on SCLK. To reset the serial interface  
remotely, hold SCLK low for 64 DRDY cycles. The reset of the serial interface results in termination of data  
transfer or commands in progress. After serial interface reset occurs, the next SCLK pulse starts a new  
communication cycle. To prevent remote reset of the interface, pulse SCLK at least once for every 64 DRDY  
pulses.  
8.4.7.6 Data Ready (DRDY)  
DRDY is an output that is driven low when new conversion data are ready fir retrieval, as shown in Figure 59.  
When reading data in continuous mode, the read operation must be completed before four CLK periods before  
the next falling DRDY goes low again, or the data are overwritten with new conversion data. When reading data  
in command mode, the read operation can overlap the occurrence of the next DRDY without data corruption.  
DRDY  
DOUT  
SCLK  
Bit 31  
Bit 30  
Bit 29  
Figure 59. DRDY With Data Retrieval  
DRDY resets high on the first falling edge of SCLK. Figure 59 and Figure 60 show the function of DRDY with and  
without data readback, respectively.  
If data are not retrieved (no SCLK provided), DRDY pulses high for four fCLK periods during the update time, as  
shown in Figure 60.  
DRDY remains active when CS is high.  
Data Updating  
4/fCLK  
DRDY  
Figure 60. DRDY With No Data Retrieval  
38  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4.8 Data Format  
The ADS1284 output data is 32-bits in binary twos complement format, as shown in Table 18. The LSB of the  
data is a redundant sign bit: 0 for positive numbers and 1 for negative numbers. However, when the output is  
clipped to +FS, the LSB = 1, and when the output is clipped to –FS, the LSB = 0. If desired, the data readback  
can be stopped at 24 bits. Note that in sinc-filter mode, the output data are scaled by ½.  
Table 18. Ideal Output Code Versus Input Signal  
32-BIT IDEAL OUTPUT CODE(1)  
INPUT SIGNAL VIN  
(AINP – AINN)  
FIR FILTER  
SINC FILTER(2)  
VREF  
(3)  
>
7FFFFFFFh  
See note  
2 x PGA  
VREF  
2 x PGA  
7FFFFFFEh  
3FFFFFFFh  
VREF  
2PGA ´ (230 - 1)  
00000002h  
00000000h  
FFFFFFFFh  
00000001h  
00000000h  
FFFFFFFFh  
0
-VREF  
2PGA ´ (230 - 1)  
230  
-VREF  
´
80000001h  
80000000h  
C0000000h  
230 - 1  
2PGA  
230  
-VREF  
(3)  
<
´
See note  
230 - 1  
2PGA  
(1) Excludes effects of noise, linearity, offset, and gain errors.  
(2) Due to the reduction in oversampling ratio (OSR) related to high data rates, full 32-bit resolution is not be available in sinc filter mode.  
(3) In sinc-filter mode, the output does not clip at corresponding positive or negative code when the full-scale range is exceeded.  
Copyright © 2018–2019, Texas Instruments Incorporated  
39  
 
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.4.9 Reading Data  
The ADS1284 provides two modes to read conversion data: read-data-continuous mode and read-data-by-  
command mode.  
8.4.9.1 Read-Data-Continuous Mode  
In the read-data-continuous mode, conversion data are read from the ADC without need for the read command.  
This mode is the default mode at power-on. This mode is also enabled by the RDATAC command. When DRDY  
goes low, indicating that new data are available, the MSB of data is placed on DOUT, as shown in Figure 61.  
The data are read (latched) by the user on the rising edges of SCLK. At the first falling edge of SCLK, DRDY  
returns high. After 32 bits of data have been read, further SCLK transitions cause DOUT to go low. If desired, the  
read operation may be stopped at 24 bits. The entire data shift operation must be completed within four CLK  
periods before DRDY falls again or the data may be corrupted.  
When a SDATAC command is issued, the DRDY output is blocked but the ADS1284 continues conversions. In  
stop continuous mode, the data is read by command.  
CS(1)  
DRDY  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 25 26 27 28 29 30 31 32  
SCLK  
DOUT(2)  
DIN  
Data Byte 1 (MSB)  
tDDPD  
Data Byte 2 (MSB - 1)  
Data Byte 4 (LSB)  
(1) DOUT is in tristate when CS is high. CS can be tied low. See Figure 1 for CS low to valid DOUT propagation time.  
Figure 61. Read Data Continuous  
Table 19. Timing Data for Figure 61  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tDDPD  
DRDY to valid MSB on DOUT propagation delay(1)  
100  
ns  
(1) DOUT is in tristate when CS is high. Load on DOUT = 20 pF || 100 k.  
8.4.9.2 Read-Data-By-Command Mode  
Read-data-continuous mode is stopped by the SDATAC command and then places the ADC into read-data-by-  
command mode. In read-data-by-command mode, an RDATA command is sent to the device in order to read  
each new conversion data (as shown in Figure 62). When the read data command is received (on the eighth  
SCLK rising edge), data are available to read only when DRDY subsequently goes low (tDR). When DRDY goes  
low, conversion data appear on DOUT. The data may be read on the rising edge of SCLK.  
CS(1)  
DRDY  
tDR  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 33 34 35 36 37 38 39 40  
SCLK  
DOUT(2)  
DIN  
Don't Care  
Command Byte (0001 0010)  
Data Byte 1 (MSB)  
tDDPD  
Date Byte 4 (LSB)  
(1) DOUT is in tristate when CS is high.CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 62. Read Data By Command, RDATA (tDDPD timing is given in Table 19)  
Table 20. Read Data Timing for Figure 62  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
tDR  
Time for new data after data read command  
0
1
fDATA  
40  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4.10 One-Shot Operation  
The ADS1284 can perform very power-efficient, one-shot conversions using the STANDBY command while  
under software control. Figure 63 shows this sequence. First, issue the STANDBY command to set the standby  
mode.  
When ready to make a measurement, issue the WAKEUP command. When DRDY goes low, the fully-settled  
conversion data are ready and can be read directly in read-data-continuous mode. Afterwards, issue another  
STANDBY command. When ready for the next measurement, repeat the cycle starting with another WAKEUP  
command.  
ADC Status  
Standby  
Performing One-Shot Conversion  
Standby  
CS  
DRDY  
(1)  
STANDBY  
WAKEUP  
DIN  
STANDBY  
DOUT  
Settled  
Data  
See Figure 56 and Table 17 for time to new data.  
Figure 63. One-Shot Conversions Using the STANDBY Command  
8.4.11 Offset and Full-Scale Calibration Registers  
The conversion data can be scaled for offset and gain before yielding the final output code. As shown in  
Figure 64, the output of the digital filter is first subtracted by the offset register (OFC) and then multiplied by the  
full-scale register (FSC). Equation 15 shows the scaling:  
FSC[2:0]  
Final Output Data = (Input - OFC[2:0]) ´  
400000h  
(15)  
The values of the offset and full-scale registers are set by writing to them directly, or they are set automatically  
by the calibration commands.  
The offset and full-scale calibrations apply to specific PGA settings. When the PGA is changed, these registers  
generally require recalculation. Calibration is bypassed in the sinc filter mode.  
AINP  
AINN  
+
Output Data  
Clipped to 32 Bits  
Digital  
Filter  
´
Final Output  
S
Modulator  
-
OFC  
Register  
FSC Register  
400000h  
Figure 64. Calibration Block Diagram  
Copyright © 2018–2019, Texas Instruments Incorporated  
41  
 
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.4.11.1 OFC[2:0] Registers  
The 24-bit offset calibration word is composed of three 8-bit registers, as shown in Table 21. The offset register  
is left-justified to align with the 32 bits of conversion data. The offset is in twos complement format with a  
maximum positive value of 7FFFFFh and a maximum negative value of 800000h. This value is subtracted from  
the conversion data. A register value of 00000h has no offset correction (default value).  
Table 21. Offset Calibration Word  
REGISTER  
OFC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
OFC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
OFC2  
MSB  
B23 (MSB)  
B17  
B16  
Although the offset calibration register value can correct offsets ranging from –FS to +FS (as shown in Table 22),  
in order to avoid input overload, do not exceed the maximum input voltage range of 106% FSR (including  
calibration).  
Table 22. Offset Calibration Values  
OFC REGISTER  
7FFFFFh  
FINAL OUTPUT CODE(1)  
80000000h  
000001h  
FFFFFF00h  
000000h  
00000000h  
FFFFFFh  
800000h  
00000100h  
7FFFFF00h  
(1) Full 32-bit final output code with zero code input.  
8.4.11.2 FSC[2:0] Registers  
The full-scale calibration is a 24-bit word, composed of three 8-bit registers, as shown in Table 23. The full-scale  
calibration value is 24-bit, straight offset binary, normalized to 1.0 at code 400000h.  
Table 23. Full-Scale Calibration Word  
REGISTER  
FSC0  
BYTE  
LSB  
BIT ORDER  
B7  
B15  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0 (LSB)  
B8  
FSC1  
MID  
B14  
B22  
B13  
B21  
B12  
B20  
B11  
B19  
B10  
B18  
FSC2  
MSB  
B23 (MSB)  
B17  
B16  
Table 24 summarizes the scaling of the full-scale register. A register value of 400000h (default value) has no  
gain correction (gain = 1). Although the full-scale calibration register value corrects gain errors above one (gain  
correction < 1), the full-scale range of the analog inputs must not exceed 106% FSR (including calibration) in  
order to avoid input overload.  
Table 24. Full-Scale Calibration Register Values  
FSC REGISTER  
800000h  
GAIN CORRECTION  
2.0  
1.0  
0.5  
0
400000h  
200000h  
000000h  
42  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.4.12 Calibration Commands (OFSCAL and GANCAL)  
Use the calibration commands (OFSCAL or GANCAL) to calibrate the conversion data. The values of the offset  
and gain calibration registers are internally written to perform calibration. The appropriate input signals must be  
applied to the ADS1284 inputs before sending the commands. Use slower data rates to achieve more consistent  
calibration results; this effect is a byproduct of the lower noise that these data rates provide. Also, if calibrating at  
power-on, be sure the reference voltage is fully settled.  
Figure 65 shows the calibration command sequence. After the analog input voltage (and reference) have  
stabilized, send the SDATAC command, followed by the SYNC and RDATAC commands. DRDY goes low after  
64 data periods. After DRDY goes low, send the SDATAC command, then the calibrate command (OFSCAL or  
GANCAL), followed by the RDATAC command. After 16 data periods, calibration is complete and conversion  
data can be read at this time. The SYNC input must remain high during the calibration sequence.  
VIN  
Fully stable input and reference voltage.  
OFSCAL or  
Commands  
SDATAC  
SYNC  
RDATAC  
SDATAC  
RDATAC  
GANCAL  
Calibration  
Complete  
16 Data  
Periods  
DRDY  
SYNC  
64 Data Periods  
Figure 65. Offset and Gain Calibration Timing  
The calibration commands apply to specific PGA settings. If the PGA is changed, recalibration is necessary.  
Calibration is bypassed in the sinc filter mode.  
8.4.12.1 OFSCAL Command  
The OFSCAL command performs an offset calibration. Before sending the OFSCAL command sequence  
(Figure 65), a zero input signal must be applied to the ADS1284 and the inputs allowed to stabilize. When the  
command sequence (Figure 65) is sent, the ADS1284 averages 16 readings, and then writes this value to the  
OFC register. The contents of the OFC register can be subsequently read or written. During offset calibration, the  
full-scale correction is bypassed. Use the OFSCAL command to calibrate the optional 100-mV offset.  
8.4.12.2 GANCAL Command  
The GANCAL command performs a gain calibration. Before sending the GANCAL command sequence  
(Figure 65), a dc input must be applied (typically full-scale input, but not to exceed 106% full-scale). After the  
signal has stabilized, the command sequence can be sent. The ADS1284 averages 16 readings, then computes  
a gain value that scales the applied calibration voltage to full-scale. The gain value is written to the FSC register,  
where the contents are subsequently read or written.  
Copyright © 2018–2019, Texas Instruments Incorporated  
43  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.4.13 User Calibration  
System calibration of the ADS1284 can be performed without using the calibration commands. This procedure  
requires the calibration values to be externally calculated and then written to the calibration registers. The steps  
for this procedure are:  
1. Set the OFSCAL[2:0] register = 0h, and GANCAL[2:0] = 400000h. These values set the offset and gain  
registers to 0 and 1, respectively.  
2. Apply a zero differential input to the input of the system. Wait for the system to settle and then average the  
output readings. Higher numbers of averaged readings result in more consistent calibration. Write the  
averaged value to the OFC register.  
3. Apply a differential dc signal, or an ac signal (typically full-scale, but do not exceed 106% FSR). Wait for the  
system to settle and then average the output readings.  
The value written to the FSC registers is calculated by Equation 16 or Equation 17.  
DC-signal calibration is shown in Equation 16. The expected output code is based on 31-bit output data.  
Expected Output Code  
FSC[2:0] = 400000h ´  
Actual Output Code  
(16)  
For ac-signal calibration, use an RMS value of collected data, as shown in Equation 17:  
Expected RMS Value  
FSC[2:0] = 400000h ´  
Actual RMS Value  
(17)  
44  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.5 Programming  
8.5.1 Commands  
The commands listed in Table 25 control the operation of the ADS1284. Most commands are stand-alone (that  
is, one byte in length); the register read and write commands are two bytes long in addition to the actual register  
data bytes.  
Table 25. Command Descriptions  
COMMAND  
WAKEUP  
STANDBY  
SYNC  
TYPE  
Control  
Control  
Control  
Control  
Control  
Control  
Data  
DESCRIPTION  
Wake-up from standby mode  
1st COMMAND BYTE(1)(2)  
0000 000X (00h or 01h)  
0000 001X (02h or 03h)  
0000 010X (04h or 5h)  
0000 011X (06h or 07h)  
0001 0000 (10h)  
2nd COMMAND BYTE(3)  
Enter standby mode  
Synchronize the analog-to-digital conversion  
Reset registers to default values  
Enter read data continuous mode  
Stop read data continuous mode  
Read data by command(4)  
RESET  
RDATAC  
SDATAC  
RDATA  
0001 0001 (11h)  
0001 0010 (12h)  
RREG  
Register  
Register  
Read nnnnn register(s) at address rrrrr(4)  
001r rrrr (20h + 000r rrrr)  
010r rrrr (40h + 000r rrrr)  
0110 0000 (60h)  
000n nnnn (00h + n nnnn)  
000n nnnn (00h + n nnnn)  
WREG  
Write nnnnn register(s) at address rrrrr  
OFSCAL  
GANCAL  
Calibration Offset calibration  
Calibration Gain calibration  
0110 0001 (61h)  
(1) X = don't care.  
(2) rrrrr = starting address for register read and write commands.  
(3) nnnnn = number of registers to be read from or written to – 1. For example, to read from or write to three registers, set nnnnn = 2  
(00010).  
(4) Required to cancel read-data-continuous mode before sending a command.  
CS must remain low for duration of the command-byte sequence. A delay of 24 fCLK cycles between commands  
and between bytes within a command is required, starting from the last SCLK rising edge of one command to the  
first SCLK rising edge of the following command. The required delay is shown in Figure 66.  
CS  
Command  
Byte  
Command  
Byte  
DIN  
SCLK  
(1)  
(1)  
tSCLKDLY  
tSCLKDLY  
(1) tSCLKDLY = 24 / fCLK (min).  
Figure 66. Consecutive Commands  
8.5.1.1 SDATAC Requirements  
In read-data-continuous mode, the ADS1284 places conversion data on the DOUT pin as SCLK is applied. As a  
result of the potential conflict between conversion data and register data placed on DOUT resulting from a RREG  
or RDATA operation, it is necessary to send a stop-read-data-continuous (SDATAC) command before a RREG  
or RDATA command. The SDATAC command disables the direct output of conversion data on the DOUT pin.  
CS = 1 cancels SDATAC mode; therefore, keep CS held low after sending the SDATAC command to the next  
RREG or RDATA command.  
Copyright © 2018–2019, Texas Instruments Incorporated  
45  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.5.1.2 WAKEUP: Wake-Up From Standby Mode  
The WAKEUP command is used to exit the standby mode. After sending this command, the time for the first data  
to be ready is illustrated in Figure 56 and Table 18. Sending this command during normal operation has no  
effect; for example, reading data by the read-data-continuous mode with DIN held low.  
8.5.1.3 STANDBY: Standby Mode  
The STANDBY command places the ADS1284 into standby mode. In standby, the device enters a reduced  
power state where a low quiescent current remains to keep the register settings and serial interface active. The  
ADC remains in standby mode until CS is taken high or the WAKEUP command is sent. For complete device  
shutdown, take the PWDN pin low (register settings are not saved). The operation of standby mode is shown in  
Figure 67.  
0000 001X  
(STANDBY)  
0000 000X  
(WAKEUP)  
DIN  
SCLK  
Operating  
Standby Mode  
Operating  
Figure 67. STANDBY Command Sequence  
8.5.1.4 SYNC: Synchronize the Analog-to-Digital Conversion  
The SYNC command synchronizes the analog-to-digital conversion. Upon receiving the command, the reading in  
progress is cancelled and the conversion process is restarted. In order to synchronize multiple ADS1284s, the  
command must be sent simultaneously to all devices. The SYNC pin must be held high during this command.  
8.5.1.5 RESET: Reset the Device  
The RESET command resets the registers to default values, enables read-data-continuous mode, and restarts  
the conversion process. The RESET command is functionally equivalent to taking the RESET pin low. See  
Figure 55 for the RESET command timing.  
8.5.1.6 RDATAC: Read Data Continuous  
The RDATAC command enables read-data-continuous mode (default mode). In this mode, conversion data is  
read from the device directly without the need to supply a data read command. Each time DRDY falls low, new  
data are available to read. See the Read-Data-Continuous Mode section for more details.  
8.5.1.7 SDATAC: Stop Read Data Continuous  
The SDATAC command stops read-data-continuous mode. Exit read-data-continuous mode before sending  
register and data read commands. The SDATAC command suppresses the DRDY output, but the ADS1284  
continues conversions. Take CS high to cancel SDATAC mode.  
46  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.5.1.8 RDATA: Read Data by Command  
The RDATA command reads the conversion data. See the Read-Data-By-Command Mode section for more  
details.  
8.5.1.9 RREG: Read Register Data  
The RREG command is used to read single- or multiple-register data. The command consists of a two-byte  
opcode argument, followed by the output of register data. The first byte of the opcode includes the starting  
address, and the second byte specifies the number of registers to read minus one.  
First command byte: 001r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to read minus one.  
Starting with the 16th falling edge of SCLK, the register data appear on DOUT. Read the data on the 17th SCLK  
rising edge.  
The RREG command is illustrated in Figure 68.  
A delay of 24 fCLK cycles is required between each byte transaction.  
CS(1)  
tDLY  
tDLY  
tDLY  
25 26  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
Command Byte 1  
Command Byte 2  
DOUT(2)  
Don't Care  
Register Data 5  
Register Data 6  
Example: Read six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0010 0101  
Command Byte 2 = 0000 0101  
(1) DOUT is in tristate when CS is high. CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 68. Read Register Data (Table 26 shows tDLY  
)
Table 26. tDRY Value  
PARAMETER  
MIN  
tDLY  
24 / fCLK  
Copyright © 2018–2019, Texas Instruments Incorporated  
47  
 
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.5.1.10 WREG: Write to Register  
The WREG command writes single- or multiple-register data. The command consists of a two-byte op-code  
argument followed by the input of register data. The first byte of the op-code contains the starting address and  
the second byte specifies the number of registers to write minus one.  
First command byte: 010r rrrr, where rrrrr is the starting address of the first register.  
Second command byte: 000n nnnn, where nnnnn is the number of registers to write minus one.  
Data byte(s): one or more register data bytes, depending on the number of registers specified.  
Figure 69 illustrates the WREG command.  
A delay of 24 fCLK cycles is required between each byte transaction.  
CS(1)  
tDLY  
tDLY  
tDLY  
25 26  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
17 18 19 20 21 22 23 24  
SCLK  
DIN  
Register Data 6  
Command Byte 1  
Command Byte 2  
Register Data 5  
Example: Write six registers, starting at register 05h (OFC0)  
Command Byte 1 = 0100 0101  
Command Byte 2 = 0000 0101  
(1) CS can be tied low. See Figure 1 for CS low to SCLK rising edge time.  
Figure 69. Write Register Data (Table 26 shows tDLY  
)
8.5.1.11 OFSCAL: Offset Calibration  
The OFSCAL command performs an offset calibration. The inputs to the converter (or the inputs to the external  
preamplifier) should be zeroed and allowed to stabilize before sending this command. The offset calibration  
register updates after this operation. See the Calibration Commands section for more details.  
8.5.1.12 GANCAL: Gain Calibration  
The GANCAL command performs a gain calibration. The inputs to the converter should have a stable dc input  
(typically full-scale, but not to exceed 106% full-scale). The gain calibration register updates after this operation.  
See the Calibration Commands section for more details.  
48  
Copyright © 2018–2019, Texas Instruments Incorporated  
 
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.6 Register Maps  
Collectively, the registers contain all the information needed to configure the device, such as data rate, filter  
selection, calibration, and more. The registers are accessed by the RREG and WREG commands. The registers  
can be accessed individually or as a block of registers by sending or receiving consecutive bytes. After a register  
write operation, the ADC resets, resulting in an interruption of 63 readings.  
Table 27. Register Map  
RESET  
ADDRESS  
00h  
REGISTER  
ID_CFG  
CONFIG0  
CONFIG1  
HPF0  
VALUE  
X0h  
52h  
08h  
32h  
03h  
00h  
00h  
00h  
00h  
00h  
40h  
BIT 7  
ID3  
BIT 6  
ID2  
BIT 5  
ID1  
BIT 4  
ID0  
BIT 3  
0
BIT 2  
0
BIT 1  
OFFSET1  
FILTR1  
PGA1  
BIT 0  
OFFSET0  
FILTR0  
PGA0  
01h  
SYNC  
0
MODE  
MUX2  
HPF06  
HPF14  
OFC06  
OFC14  
OFC22  
FSC06  
FSC14  
FSC22  
DR2  
DR1  
DR0  
PHASE  
PGA2  
HPF02  
HPF10  
OFC02  
OFC10  
OFC18  
FSC02  
FSC10  
FSC18  
02h  
MUX1  
HPF05  
HPF13  
OFC05  
OFC13  
OFC21  
FSC05  
FSC13  
FSC21  
MUX0  
HPF04  
HPF12  
OFC04  
OFC12  
OFC20  
FSC04  
FSC12  
FSC20  
CHOP  
HPF03  
HPF11  
OFC03  
OFC11  
OFC19  
FSC03  
FSC11  
FSC19  
03h  
HPF07  
HPF15  
OFC07  
OFC15  
OFC23  
FSC07  
FSC15  
FSC23  
HPF01  
HPF09  
OFC01  
OFC09  
OFC17  
FSC01  
FSC09  
FSC17  
HPF00  
HPF08  
OFC00  
OFC08  
OFC16  
FSC00  
FSC08  
FSC16  
04h  
HPF1  
05h  
OFC0  
06h  
OFC1  
07h  
OFC2  
08h  
FSC0  
09h  
FSC1  
0Ah  
FSC2  
8.6.1 Register Descriptions  
8.6.1.1 ID_CFG: ID_Configuration Register (address = 00h) [reset =x0h]  
Figure 70. ID_CFG Register  
7
6
5
4
3
0
2
0
1
0
ID3  
R-xh  
ID2  
R-xh  
ID1  
R-xh  
ID0  
R-xh  
OFFSET1  
R/W-0h  
OFFSET0  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7:4]  
ID[3:0]  
Factory-programmed identification bits (read-only). The ID bits are subject to change  
without notification.  
Bit[3:2]  
Bit[1:0]  
Reserved  
Always write 00  
OFFSET[1:0] (see Offset section)  
00: Offset disabled (default)  
01: Reserved  
10: Offset = 100/PGA mV  
11: Offset = 75/PGA mV  
Copyright © 2018–2019, Texas Instruments Incorporated  
49  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.2 CONFIG0: Configuration Register 0 (address = 01h) [reset = 52h]  
Figure 71. CONFIG0 Register  
7
6
5
4
3
2
1
0
SYNC  
R/W-0h  
MODE  
R/W-1h  
DR2  
DR1  
DR0  
PHASE  
R/W-0h  
FILTR1  
R/W -1h  
FILTR0  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7]  
SYNC  
Synchronization mode bit.  
0: Pulse-sync mode (default)  
1: Continuous-sync mode  
Bit[6]  
MODE  
Mode Control  
0: Low-power mode  
1: High-resolution mode (default)  
Bit[5:3]  
DR[2:0]  
Data rate select bits.  
000: 250 SPS  
001: 500 SPS  
010: 1000 SPS (default)  
011: 2000 SPS  
100: 4000 SPS  
Bit[2]  
PHASE  
FIR phase response bit.  
0: Linear phase (default)  
1: Minimum phase  
Bit[1:0]  
FILTR[1:0]  
Digital filter configuration bits.  
00: Reserved  
01: Sinc filter block only  
10: Sinc + LPF filter blocks (default)  
11: Sinc + LPF + HPF filter blocks  
50  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
8.6.1.3 CONFIG1: Configuration Register 1 (address = 02h) [reset = 08h]  
Figure 72. CONFIG1 Register  
7
0
6
5
4
3
2
1
0
MUX2  
R/W-0h  
MUX1  
R/W-0h  
MUX0  
R/W-0h  
CHOP  
R/W-1h  
PGA2  
R/W-0h  
PGA1  
R/W-0h  
PGA0  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit[7]  
Reserved  
Always write 0  
MUX[2:0]  
Bit[6:4]  
MUX select bits.  
000: AINP1 and AINN1 (default)  
001: AINP2 and AINN2  
010: Internal short through 400-resistor  
011: AINP1 and AINN1 connected to AINP2 and AINN2  
100: External short to AINN2  
Bit[3]  
CHOP  
PGA chopping enable bit.  
0: PGA chopping disabled  
1: PGA chopping enabled (default)  
Bit[2:0]  
PGA[2:0]  
PGA gain select bits.  
000: G = 1 (default)  
001: G = 2  
010: G = 4  
011: G = 8  
100: G = 16  
101: G = 32  
110: G = 64  
8.6.1.4 HPF0 and HPF1 Registers  
These two bytes (high-byte and low-byte, respectively) set the corner frequency of the high-pass filter.  
8.6.1.4.1 HPF0: High-Pass Filter Corner Frequency, Low Byte (address = 03h) [reset = 32h]  
Figure 73. HPF0 Register  
7
6
5
4
3
2
1
0
HPF07  
R/W-0h  
HPF06  
R/W-0h  
HPF05  
R/W-1h  
HPF04  
R/W-1h  
HPF03  
R/W-0h  
HPF02  
R/W-0h  
HPF01  
R/W-1h  
HPF00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.4.2 HPF1: High-Pass Filter Corner Frequency, High Byte (address = 04h) [reset = 03h]  
Figure 74. HPF1 Register  
7
6
5
4
3
2
1
0
HPF15  
R/W-0h  
HPF14  
R/W-0h  
HPF13  
R/W-0h  
HPF12  
R/W-0h  
HPF11  
R/W-0h  
HPF10  
R/W-0h  
HPF09  
R/W-1h  
HPF08  
1R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2018–2019, Texas Instruments Incorporated  
51  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
8.6.1.5 OFC0, OFC1, OFC2 Registers  
These three bytes set the offset calibration value.  
8.6.1.5.1 OFC0: Offset Calibration, Low Byte (address = 05h) [reset = 00h]  
Figure 75. OFC0 Register  
7
6
5
4
3
2
1
0
OFC07  
R/W-0h  
OFC06  
R/W-0h  
OFC05  
R/W-0h  
OFC04  
R/W-0h  
OFC03  
R/W-0h  
OFC02  
R/W-0h  
OFC01  
R/W-0h  
OFC00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.5.2 OFC1: Offset Calibration, Mid Byte (address = 06h) [reset = 00h]  
Figure 76. OFC1 Register  
7
6
5
4
3
2
1
0
OFC15  
R/W-0h  
OFC14  
R/W-0h  
OFC13  
R/W-0h  
OFC12  
R/W-0h  
OFC11  
R/W-0h  
OFC10  
R/W-0h  
OFC09  
R/W-0h  
OFC08  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.5.3 OFC2: Offset Calibration, High Byte (address = 07h) [reset = 00h]  
Figure 77. OFC2 Register  
7
6
5
4
3
2
1
0
OFC23  
R/W-0h  
OFC22  
R/W-0h  
OFC21  
R/W-0h  
OFC20  
R/W-0h  
OFC19  
R/W-0h  
OFC18  
R/W-0h  
OFC17  
R/W-0h  
OFC16  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6 FSC0, FSC1, FSC2 Registers  
These three bytes set the full-scale calibration value.  
8.6.1.6.1 FSC0: Full-Scale Calibration, Low Byte (address = 08h) [reset = 00h]  
Figure 78. FSC0 Register  
7
6
5
4
3
2
1
0
FSC07  
R/W-0h  
FSC06  
R/W-0h  
FSC05  
R/W-0h  
FSC04  
R/W-0h  
FSC03  
R/W-0h  
FSC02  
R/W-0h  
FSC01  
R/W-0h  
FSC00  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6.2 FSC1: Full-Scale Calibration, Mid Byte (address = 09h) [reset = 00h]  
Figure 79. FSC1 Register  
7
6
5
4
3
2
1
0
FSC15  
R/W-0h  
FSC14  
R/W-0h  
FSC13  
R/W-0h  
FSC12  
R/W-0h  
FSC11  
R/W-0h  
FSC10  
R/W-0h  
FSC09  
R/W-0h  
FSC08  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.1.6.3 FSC2: Full-Scale Calibration, High Byte (address = 0Ah) [reset = 40h]  
Figure 80. FSC2 Register  
7
6
5
4
3
2
1
0
FSC23  
R/W-0h  
FSC22  
R/W-1h  
FSC21  
R/W-0h  
FSC20  
R/W-0h  
FSC19  
R/W-0h  
FSC18  
R/W-0h  
FSC17  
R/W-0h  
FSC16  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
52  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ADS1284 is a very high-resolution ADC with two modes of operation that provide tradeoffs between power  
consumption and SNR performance. Optimal performance requires giving special attention to the support  
circuitry and printed circuit board (PCB) design. Locate noisy digital components (such as microcontrollers,  
oscillators, and so on) in an area of the PCB away from the converter and front-end components. Keep the digital  
current path short and separate from sensitive analog components by placing the digital components close to the  
power-entry point.  
9.2 Typical Applications  
9.2.1 Geophone Interface  
A typical geophone front-end application is shown in Figure 81. The application diagram shows the ADS1284  
operation with dual ±2.5-V analog supplies. The ADS1284 can also operate with a single 5-V analog supply.  
+2.5V  
-
2.5V  
1 mF  
AVDD  
AVSS  
AINP2  
AINN2  
Test  
Signal  
+2.5V  
(1)  
R1  
R3  
100  
100 Ω  
AINP1  
AINN1  
C2  
R5  
C4  
10nF  
C0G  
1 nF, C0G  
20 kΩ  
Geophone  
R6  
R2  
R4  
C3  
20 k100 Ω  
100 Ω  
1 nF, C0G  
ADC  
-2.5V  
CAPP  
CAPN  
C6  
10 nF  
C0G  
+3.3V  
R7  
1 kΩ  
(2)  
1 mF  
VREFP  
VREFN  
REF5050  
+
NR  
C5  
100 mF  
C7  
0.1 mF  
1 mF  
1 mF  
DGND  
-
2.5V  
(1) Optional external diode clamps.  
(2) Optional reference noise filter.  
Figure 81. Geophone Interface Application  
Copyright © 2018–2019, Texas Instruments Incorporated  
53  
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (continued)  
The geophone input signal is filtered by both a differential filter (components C4 and R1 to R4) and by common-  
mode filters (components C2, C3 and R1, R2). The differential filter removes high-frequency normal-mode  
components from the input signal. The common-mode filters remove high-frequency components that are  
common to both input leads. The input filters are not required for all applications; check the system requirements  
for each application.  
Resistors R5 and R6 bias the signal input to the midsupply point (ground). For single-supply operation, set the  
bias to a low impedance midsupply point (AVDD / 2 = 2.5 V).  
Optional diode clamps protect the ADS1284 inputs from high-level voltage transients and overloads. The diodes  
provide additional protection if possible high-level input transients and surges exceed the ADC internal ESD  
diode rating.  
The REF5050 5-V reference provides the reference to the ADC. An optional filter network ®7 and C5) reduces  
the in-band reference noise for improved dynamic performance. However, the RC filter network increases the  
filter settling-time (from seconds to possibly minutes) depending on the dielectric absorption properties of  
capacitor C5. Capacitor C7 is mandatory and provides high-frequency bypassing of the reference inputs; place C7  
as close as possible to the ADS1284 pins. Resistor R7 (1 k) results in a 1% systematic gain error. Multiple  
ADCs can share a single reference, but if shared, use independent reference filters for each ADC.  
As an alternative, the REF5045 (4.5 V) reference can be used. The REF5045 reference has the advantage of  
operating directly from the 5-V (total) power supply; however, the 4.5-V reference reduces signal range by 10%  
and results in a 1-dB loss of SNR.  
Capacitor C6 (10 nF) filters the PGA output glitches caused by sampling of the modulator. This capacitor also  
forms an antialias filter with a low-pass cutoff frequency of 26 kHz.  
54  
Copyright © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
Typical Applications (continued)  
9.2.2 Digital Interface  
Figure 82 shows the digital connection to a controller (field programmable gate array or microcontroller). In this  
example, two ADCs are shown connected to one controller. The ADCs share the same serial interface (SCLK,  
DIN, and DOUT). The ADC is selected for communication by strobing each CS low. The DRDY output from both  
ADCs can be used; however, when the devices are synchronized, the DRDY output from only one device is  
sufficient.  
Clock  
ADC #1  
Controller  
47  
(1)  
+3.3V  
DVDD  
CLK  
CLK (input)  
47 Ω  
47 Ω  
RESET (output)  
1 µF  
1 µF  
RESET  
SYNC  
SYNC (output)  
SS1 (output)  
47 Ω  
47 Ω  
47 Ω  
BYPAS  
CS  
SCLK (output)  
SCLK  
DIN  
DOUT  
MOSI (output)  
MISO (input)  
47 Ω  
47 Ω  
47 Ω  
MFLAG  
MFLAG1 (input)  
MFLAG2 (input)  
DGND  
ADC #2  
47 Ω  
47 Ω  
SS2 (output)  
DRDY (input)  
(1)  
DVDD  
CLK  
RESET  
SYNC  
+3.3V  
1 µF  
1 µF  
BYPAS  
CS  
SCLK  
DIN  
DOUT  
MFLAG  
DRDY  
DGND  
(1) For DVDD < 2.25 V, tie DVDD and BYPASS together. see the DVDD Power Supply section.  
Figure 82. Controller Interface with Dual ADCs  
The modulator overrange flag (MFLAG) from each device ties to the controller input. For synchronization,  
connect all ADCs to the same SYNC signal. For reset, either connect all ADCs to the same RESET signal or  
connect the ADCs to individual RESET signals.  
Avoid ringing on the digital inputs to the ADCs. Place 47-resistors in series with the digital traces to help  
reduce ringing by controlling impedances. Place the resistors at the source (driver) end of the trace. Do not float  
unused digital inputs; tie them to DVDD or GND.  
Copyright © 2018–2019, Texas Instruments Incorporated  
55  
 
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
9.3 Initialization Set Up  
After reset or power-on, configure the registers using the following procedure:  
1. Reset the serial interface. Before using the serial interface, it may be necessary to recover the serial  
interface (undefined I/O power-up sequencing may cause a false SCLK to occur). To reset the interface,  
toggle the CS pin high then low, or toggle the RESET pin high then low, or when in read-data-continuous  
mode, hold SCLK low for 64 DRDY periods.  
2. Configure the registers. The registers are configured by either writing to them individually or as a group,  
and can be configured in either mode. To cancel read-data-continuous mode, send the SDATAC command  
before register read and write operations .  
3. Verify register data. For verification of device communications, read back the register.  
4. Set the data mode. After register configuration, configure the device for read-data-continuous mode by  
executing the RDATAC command, or configure for read-data-by-command mode (set in step 2, by the  
SDATAC command).  
5. Synchronize readings. Whenever SYNC is high, the ADS1284 freely runs the data conversions. To  
resynchronize the conversions in pulse-sync mode, take SYNC low and then high. In continuous-sync mode,  
apply the synchronizing clock to the SYNC pin with a clock period equal to multiples of the ADC conversion  
period.  
6. Read data. If read-data-continuous mode is active, the data are read directly after DRDY falls by applying  
SCLK pulses. If the read-data-continuous mode is inactive, the data can only be read by executing the  
RDATA command. The RDATA command must be sent in this mode to read each conversion result.  
56  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
10 器件和文档支持  
10.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
10.3 商标  
E2E is a trademark of Texas Instruments.  
SPI is a trademark of Motorola Inc.  
All other trademarks are the property of their respective owners.  
10.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2018–2019, Texas Instruments Incorporated  
57  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
58  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
59  
ADS1284  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
www.ti.com.cn  
60  
版权 © 2018–2019, Texas Instruments Incorporated  
ADS1284  
www.ti.com.cn  
ZHCSIU4A SEPTEMBER 2018REVISED AUGUST 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
61  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS1284IRHFR  
ADS1284IRHFT  
ACTIVE  
VQFN  
VQFN  
RHF  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
ADS  
1284  
ACTIVE  
RHF  
NIPDAU  
ADS  
1284  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RHF0024A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
5.1  
4.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.65 0.1  
2X 2  
(0.1) TYP  
12  
EXPOSED  
8
THERMAL PAD  
20X 0.5  
7
13  
3.65 0.1  
2X  
3
25  
SYMM  
SEE TERMINAL  
DETAIL  
19  
1
0.30  
0.18  
24X  
0.1  
C B A  
PIN 1 ID  
(OPTIONAL)  
24  
20  
SYMM  
0.05  
0.5  
0.3  
24X  
4219064 /A 04/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.65)  
SYMM  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(3.65)  
(1.575)  
20X (0.5)  
25  
SYMM  
(4.8)  
(0.62)  
TYP  
(R0.05)  
TYP  
13  
7
(
0.2) TYP  
VIA  
8
12  
(1.025)  
TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219064 /A 04/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0024A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.17)  
(0.685) TYP  
20  
24  
24X (0.6)  
1
19  
24X (0.24)  
(1.24)  
TYP  
20X (0.5)  
SYMM  
(4.8)  
25  
6X (1.04)  
13  
(R0.05) TYP  
7
METAL  
TYP  
12  
8
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219064 /A 04/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY