ADS124S08IRHBT [TI]

适用于传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、12 通道 Δ-Σ ADC | RHB | 32 | -50 to 125;
ADS124S08IRHBT
型号: ADS124S08IRHBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于传感器测量且具有 PGA 和电压基准的 24 位、4kSPS、12 通道 Δ-Σ ADC | RHB | 32 | -50 to 125

传感器
文件: 总114页 (文件大小:3258K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
ADS124S0x具有 PGA 和电压基准的低功耗、低噪声、高集成度 6 通道及  
12 通道  
4kSPS24 Δ-Σ ADC  
1 特性  
3 说明  
1
低功耗:低至 280µA  
ADS124S06 ADS124S08 均为高精度 24 Δ-Σ 模  
数转换器 (ADC),兼具低功耗特性与多种集成 特性,  
能够降低系统成本并减少小型传感器信号测量 应用 中  
的组件数。  
低噪声可编程增益放大器 (PGA)19nVRMS(增益  
= 128 时)  
可编程增益:1 128  
可编程数据传输速率:2.5SPS 4kSPS  
这两款 ADC 均配有可配置的数字滤波器,能够在嘈杂  
的工业环境中提供低延迟转换结果和 50Hz 或  
60Hz 噪声抑制。可编程增益放大器 (PGA) 具备低噪  
声特性,并且可提供 1 128 的增益,能够为电阻桥  
或热电偶应用放大低幅值 信号,SN65HVD101 和  
'HVD102 采用 20 引脚 RGB 封装 (4 mm × 3.5 mm  
QFN)。此外,这两款器件还集成有一个低漂移 2.5V  
电压基准,减小了印刷电路板 (PCB) 面积。最后还有  
两个可编程的激励电流源 (IDAC),便于提供准确的电  
阻式温度检测器 (RTD) 偏置。  
采用低延迟数字滤波器,在  
20SPS 时实现 50Hz 60Hz 同步抑制  
具有 12 (ADS124S08) 6 (ADS124S06) 独  
立可选输入的模拟多路复用器  
两个匹配且可编程的传感器激励电流源:10μA 至  
2000µA  
内部基准:2.5V,最大漂移为 10ppm/°C  
内部振荡器:4.096MHz,精度为 1.5%  
内部温度传感器  
扩展型故障检测电路  
自偏移校准与系统校准  
输入多路复用器支持适用于 ADS124S08 12 路输入  
和适用于 ADS124S06 6 路输入。这些输入能够以  
任意组合形式连接到 ADC,从而提高设计灵活性。此  
外,这两款器件还 包含 传感器烧毁检测、热电偶电压  
偏置和系统监视等功能以及四个通用 I/O。  
4 个通用 I/O  
串行外设接口 (SPI) 兼容接口,可选用循环冗余校  
(CRC)  
模拟电源:单极(2.7V 5.25V)或双极 (±2.5V)  
数字电源:2.7V 3.6V  
这两款器件采用超薄四方扁平无引线 (VQFN)-32 或薄  
型四方扁平 (TQFP)-32 封装。  
工作温度:-50°C +125°C  
2 应用  
器件信息  
传感器和变送器:  
温度、压力、应力,流量  
订货编号  
ADS124S0x  
封装(引脚)  
TQFP (32)  
VQFN (32)  
封装尺寸  
5.0mm × 5.0mm  
5.0mm × 5.0mm  
可编程逻辑控制器 (PLC) 和分布式控制系统 (DCS)  
模拟输入模块  
温度控制器  
人工气候室,工业烘箱  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS660  
 
 
 
REFN0 REFP0 REFCOM REFOUT  
                                                                                                                                                                                                                                                                             
                                                                                                                                                                                                                                                                                
                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                                                                                     
DVDD IOVDD  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
功能方框图  
AVSS-SW  
AVDD  
Burnout  
Detect  
2.5-V  
Reference  
ADS124S06  
ADS124S08  
Reference  
Mux  
Excitation  
Current  
AINCOM  
AIN0  
Sources  
Reference  
Detection  
AIN1  
Reference  
Buffers  
AIN2  
VBIAS  
START/SYNC  
RESET  
CS  
AIN3  
AIN4  
Configurable  
Digital  
Filter  
Serial  
Interface  
and  
24-Bit û  
ADC  
Input  
Mux  
PGA  
AIN5  
SCLK  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8 / GPIO0  
AIN9 / GPIO1  
Control  
DIN  
PGA Rail  
Detection  
DOUT/DRDY  
DRDY  
System-, Self-  
Calibration  
Power Supplies  
AIN10 / GPIO2  
AIN11 / GPIO3  
Temperature  
Sensor  
4.096-MHz  
Oscillator  
CLK  
ADS124S08  
only  
Burnout  
Detect  
AVSS  
DGND  
Copyright © 2016, Texas Instruments Incorporated  
2
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
目录  
9.6 Register Map........................................................... 72  
10 Application and Implementation........................ 86  
10.1 Application Information.......................................... 86  
10.2 Typical Application ................................................ 91  
10.3 Do's and Don'ts..................................................... 95  
11 Power Supply Recommendations ..................... 98  
11.1 Power Supplies ..................................................... 98  
11.2 Power-Supply Sequencing.................................... 98  
11.3 Power-On Reset.................................................... 98  
11.4 Power-Supply Decoupling..................................... 98  
12 Layout................................................................... 99  
12.1 Layout Guidelines ................................................. 99  
12.2 Layout Example .................................................. 100  
13 器件和文档支持 ................................................... 101  
13.1 器件支持.............................................................. 101  
13.2 文档支持.............................................................. 101  
13.3 相关链接.............................................................. 101  
13.4 接收文档更新通知 ............................................... 101  
13.5 社区资源.............................................................. 101  
13.6 ..................................................................... 101  
13.7 静电放电警告....................................................... 101  
13.8 Glossary.............................................................. 101  
14 机械、封装和可订购信息..................................... 102  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 3  
Device Family Comparison Table ........................ 5  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ..................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 9  
7.6 Timing Characteristics............................................. 14  
7.7 Switching Characteristics........................................ 14  
7.8 Typical Characteristics............................................ 17  
Parameter Measurement Information ................ 24  
8.1 Noise Performance ................................................. 24  
Detailed Description ............................................ 29  
9.1 Overview ................................................................. 29  
9.2 Functional Block Diagram ....................................... 30  
9.3 Feature Description................................................. 31  
9.4 Device Functional Modes........................................ 58  
9.5 Programming........................................................... 62  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (November 2016) to Revision C  
Page  
Added note to Pin Configuration and Functions section ........................................................................................................ 5  
Added TQFP package to test conditions of first row and added second row to Internal Voltage Reference, Accuracy  
parameter ............................................................................................................................................................................. 11  
Changed typical specification of Reference noise parameter from 17.5 µVPP to 9 µVPP ..................................................... 11  
已更改 DRDY trace of START Command Timing Requirements figure............................................................................... 16  
已更改 Typical Characteristics section ................................................................................................................................. 17  
已更改 values in Table 1....................................................................................................................................................... 24  
已更改 values in Table 3....................................................................................................................................................... 25  
已添加 footnote 1 to Table 5................................................................................................................................................. 26  
已更改 values in Table 5....................................................................................................................................................... 26  
已添加 footnote 1 to Table 5 and Table 6 ........................................................................................................................... 26  
已更改 values in Table 7....................................................................................................................................................... 27  
已添加 last paragraph to PGA Input-Voltage Requirements section.................................................................................... 34  
已添加 when the internal reference voltage is enabled to fifth sentence of Internal Reference section.............................. 36  
已添加 last paragraph to Low-Latency Filter Frequency Response section ....................................................................... 38  
已更改 footnotes 1 and 3 of Table 13................................................................................................................................... 42  
已添加 link to ADS1x4S0x design calculator to Sinc3 Filter Frequency Response section ................................................. 43  
已更改 footnotes 1 and 3 of Table 15 .................................................................................................................................. 45  
已更改 footnotes 1 and 3 of Table 18................................................................................................................................... 48  
已更改 footnotes 1 and 3 of Table 19................................................................................................................................... 49  
已更改 IDAC routing description in IDAC Block Diagram figure........................................................................................... 50  
版权 © 2016–2017, Texas Instruments Incorporated  
3
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
修订历史记录 (接下页)  
已添加 last sentence to first paragraph of PGA Output Voltage Rail Monitors section ....................................................... 53  
已更改 third sentence in last paragraph of WREG section for clarity................................................................................... 68  
已添加 footnote 1 to GPIO Configuration Register section .................................................................................................. 85  
已更改 cross-reference in last paragraph of External Reference and Ratiometric Measurements section to point to  
the Typical Application section ............................................................................................................................................. 88  
已添加 last sentence to second paragraph of Unused Inputs and Outputs section............................................................. 89  
已添加 Send the RDATA command; to Pseudo Code Example section ............................................................................. 90  
已更改 Internal Reference block text to 2.5-V Reference and deleted connection dot from AVSS-SW pin in 3-Wire  
RTD Application figure.......................................................................................................................................................... 91  
已更改 3-Wire RTD Measurement with Lead-Wire Compensation section title to Register Settings................................... 94  
已添加 on all other analog inputs to first sentence of sixth bullet in Do's and Don'ts section.............................................. 96  
已更改 second sentence of Power-Supply Decoupling section for clarity............................................................................ 98  
已添加 器件支持 部分 ......................................................................................................................................................... 101  
Changes from Revision A (August 2016) to Revision B  
Page  
已发布为量产数................................................................................................................................................................... 1  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
5 Device Family Comparison Table  
PRODUCT  
ADS124S08  
ADS124S06  
ADS114S08  
ADS114S06  
RESOLUTION (Bits)  
NUMBER OF INPUTS  
12 analog inputs  
6 analog inputs  
24  
24  
16  
16  
12 analog inputs  
6 analog inputs  
6 Pin Configuration and Functions  
RHB Package  
32-Pin VQFN  
Top View  
PBS Package  
32-Pin TQFP  
Top View  
AINCOM  
AIN5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
REFCOM  
AINCOM  
AIN5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
REFCOM  
REFOUT  
REFOUT  
AIN4  
GPIO0/AIN8  
GPIO1/AIN9  
GPIO2/AIN10  
GPIO3/AIN11  
RESET  
AIN4  
GPIO0/AIN8  
GPIO1/AIN9  
GPIO2/AIN10  
GPIO3/AIN11  
RESET  
AIN3  
AIN3  
Thermal  
Pad  
AIN2  
AIN2  
AIN1  
AIN1  
AIN0  
AIN0  
START/SYNC  
CLK  
START/SYNC  
CLK  
Not to scale  
Not to scale  
NOTE: The analog input functions (AIN6–AIN11) are not available on pins 19 to 22, 31, and 32 for the ADS124S06.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Pin Functions  
PIN  
NO.  
NAME  
AINCOM  
AIN5  
FUNCTION  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Digital input  
Digital input  
Digital input  
Digital input  
Digital output  
Digital output  
Digital ground  
DESCRIPTION(1)  
1
2
3
4
5
6
7
8
9
Common analog input for single-ended measurements  
Analog input 5  
AIN4  
Analog input 4  
AIN3  
Analog input 3  
AIN2  
Analog input 2  
AIN1  
Analog input 1  
AIN0  
Analog input 0  
START/SYNC  
CS  
Start conversion  
Chip select; active low  
Serial data input  
10  
11  
12  
13  
14  
DIN  
SCLK  
Serial clock input  
DOUT/DRDY  
DRDY  
DGND  
Serial data output combined with data ready; active low  
Data ready; active low  
Digital ground  
Digital I/O power supply. In case IOVDD is not tied to DVDD, connect a 100-nF (or larger) capacitor to  
DGND.  
15  
IOVDD  
Digital supply  
16  
17  
18  
19  
20  
21  
22  
DVDD  
CLK  
Digital supply  
Digital input  
Digital core power supply. Connect a 100-nF (or larger) capacitor to DGND.  
External clock input. Connect to DGND to use the internal oscillator.  
Reset; active low  
General-purpose I/O(2); analog input 11 (ADS124S08 only)  
General-purpose I/O(2); analog input 10 (ADS124S08 only)  
General-purpose I/O(2); analog input 9 (ADS124S08 only)  
General-purpose I/O(2); analog input 8 (ADS124S08 only)  
RESET  
Digital input  
GPIO3/AIN11  
GPIO2/AIN10  
GPIO1/AIN9  
GPIO0/AIN8  
Analog input/output  
Analog input/output  
Analog input/output  
Analog input/output  
Positive voltage reference output. Connect a 1-µF to 47-µF capacitor to REFCOM if the internal  
voltage reference is enabled.  
23  
REFOUT  
Analog output  
24  
25  
26  
27  
28  
29  
30  
31  
32  
REFCOM  
NC  
Analog output  
Negative voltage reference output. Connect to AVSS.  
Leave unconnected or connect to AVSS  
AVDD  
Analog supply  
Analog supply  
Analog supply  
Analog input  
Analog input  
Analog input  
Analog input  
Positive analog power supply. Connect a 330-nF (or larger) capacitor to AVSS.  
Negative analog power supply  
AVSS  
AVSS-SW  
REFN0  
Negative analog power supply; low-side switch. Connect to AVSS.  
Negative external reference input 0  
REFP0  
Positive external reference input 0  
REFN1/AIN7  
REFP1/AIN6  
Thermal pad  
Negative external reference input 1; analog input 7 (ADS124S08 only)  
Positive external reference input 1; analog input 6 (ADS124S08 only)  
RHB package only. Thermal power pad. Connect to AVSS.  
(1) See the Unused Inputs and Outputs section for details on how to connect unused pins.  
(2) General-purpose inputs and outputs use logic levels based on the analog supply.  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
MAX  
5.5  
UNIT  
AVDD to AVSS  
AVSS to DGND  
Power-supply voltage  
–2.8  
0.3  
V
DVDD to DGND  
–0.3  
3.9  
IOVDD to DGND  
–0.3  
5.5  
Analog input voltage  
Digital input voltage  
AINx, GPIOx, REFPx, REFNx, REFCOM  
AVSS – 0.3  
AVDD + 0.3  
V
V
CS, SCLK, DIN, DOUT/DRDY, DRDY,  
START, RESET, CLK  
DGND – 0.3  
IOVDD + 0.3  
Continuous, AVSS-SW, REFN0, REFOUT  
Continuous, all other pins except power-supply pins  
Junction, TJ  
–100  
–10  
100  
10  
Input current  
Temperature  
mA  
°C  
150  
150  
Storage, Tstg  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
AVDD to AVSS  
2.7  
–2.625  
1.5  
5.25  
0.05  
5.25  
3.6  
Analog power supply  
AVSS to DGND  
AVDD to DGND  
DVDD to DGND  
IOVDD to DGND  
0
V
Digital core power supply  
Digital IO power supply  
2.7  
V
V
DVDD  
5.25  
ANALOG INPUTS(1)  
PGA bypassed  
AVSS – 0.05  
AVDD + 0.05  
AVSS + 0.15 +  
|VINMAX|·(Gain – 1) / 2  
AVDD – 0.15 –  
|VINMAX|·(Gain –1) / 2  
PGA enabled, gain = 1 to 16  
V(AINx)  
Absolute input voltage(2)  
Differential input voltage  
V
AVSS + 0.15 +  
AVDD – 0.15 –  
15.5·|VINMAX|  
PGA enabled, gain = 32 to 128  
VIN = VAINP – VAINN  
15.5·|VINMAX  
|
VIN  
–VREF / Gain  
VREF / Gain  
V
V
VOLTAGE REFERENCE INPUTS(3)  
Differential reference input  
voltage  
VREF  
VREF = V(REFPx) – V(REFNx)  
0.5  
AVDD – AVSS  
Negative reference buffer disabled  
Negative reference buffer enabled  
Positive reference buffer disabled  
Positive reference buffer enabled  
AVSS – 0.05  
AVSS  
V(REFPx) – 0.5  
V(REFPx) – 0.5  
AVDD + 0.05  
AVDD  
V
V
V
V
Absolute negative reference  
V(REFNx)  
voltage  
V(REFNx) + 0.5  
V(REFNx) + 0.5  
Absolute positive reference  
V(REFPx)  
voltage  
EXTERNAL CLOCK SOURCE(4)  
fCLK  
External clock frequency  
Duty cycle  
2
4.096  
50%  
4.5  
MHz  
40%  
60%  
GENERAL-PURPOSE INPUTS (GPIOs)  
Input voltage  
AVSS – 0.05  
DGND  
AVDD + 0.05  
IOVDD  
V
V
DIGITAL INPUTS (Other than GPIOs)  
Input voltage  
TEMPERATURE RANGE  
TA  
Operating ambient temperature  
–50  
125  
°C  
(1) AINP and AINN denote the positive and negative inputs of the PGA. Any of the available analog inputs (AINx) can be selected as either  
AINP or AINN by the input multiplexer.  
(2) VINMAX denotes the maximum differential input voltage, VIN, that is expected in the application. |VINMAX| can be smaller than VREF / Gain.  
(3) REFPx and REFNx denote one of the two available external differential reference input pairs.  
(4) An external clock is not required when the internal oscillator is used.  
7.4 Thermal Information  
ADS124S06, ADS124S08  
THERMAL METRIC(1)  
VQFN (RHB)  
32 PINS  
45.2  
TQFP (PBS)  
32 PINS  
75.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.3  
17.1  
15.8  
28.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
0.4  
ψJB  
15.7  
28.3  
RθJC(bot)  
2.3  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
7.5 Electrical Characteristics  
minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, all data rates, and global chop disabled (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
PGA bypassed,  
AVSS + 0.1 V V(AINx) AVDD – 0.1 V  
0.5  
0.1  
2
Absolute input current  
nA  
PGA enabled, all gains,  
–2  
2
V(AINx)MIN V(AINx) V(AINx)MAX  
PGA bypassed,  
AVSS + 0.1 V V(AINx) AVDD – 0.1 V  
Absolute input current drift  
Differential input current  
Differential input current drift  
pA/°C  
PGA enabled, all gains,  
2
V(AINx)MIN V(AINx) V(AINx)MAX  
PGA bypassed,  
VCM = AVDD / 2, –VREF VIN VREF  
1
nA/V  
nA  
PGA enabled, all gains,  
VCM = AVDD / 2, –VREF / Gain VIN VREF / Gain  
–1  
0.02  
3
1
PGA bypassed,  
VCM = AVDD / 2, –VREF VIN VREF  
pA/°C  
PGA enabled, all gains,  
VCM = AVDD / 2, –VREF / Gain VIN VREF / Gain  
1
PGA  
1, 2, 4, 8, 16,  
32, 64, 128  
Gain settings  
Startup time  
Enabling the PGA in conversion mode  
190  
µs  
SYSTEM PERFORMANCE  
Resolution (no missing codes)  
24  
Bits  
SPS  
2.5, 5, 10, 16.6,  
20, 50, 60, 100,  
200, 400, 800,  
DR  
INL  
Data rate  
1000, 2000, 4000  
PGA bypassed, VCM = AVDD / 2  
1
2
10  
15  
PGA enabled, gain = 1 to 8, VCM = AVDD / 2  
Integral nonlinearity (best fit)  
ppmFSR  
PGA enabled, gain = 16 to 128, VCM = AVDD / 2,  
TA = –40°C to +85°C  
3
15  
TA = 25°C, PGA bypassed  
–120  
–120 / Gain  
–15  
20  
20 / Gain  
2
120  
120 / Gain  
15  
TA = 25°C, PGA enabled, gain = 1 to 8  
TA = 25°C, PGA enabled, gain = 16 to 128  
TA = 25°C, PGA bypassed, after internal offset  
calibration  
On the order of noisePP at the  
set DR and gain  
VIO  
Input offset voltage  
µV  
TA = 25°C, PGA enabled, gain = 1 to 128, after  
internal offset calibration  
On the order of noisePP at the  
set DR and gain  
TA = 25°C, PGA bypassed, global chop enabled  
–2  
–2  
0.2  
0.2  
2
2
TA = 25°C, PGA enabled, gain = 1 to 128,  
global chop enabled  
TA = –40°C to +85°C, PGA bypassed  
TA = –40°C to +85°C, PGA enabled, gain = 1 to 128  
PGA bypassed  
–75  
–100  
–75  
10  
15  
10  
15  
15  
2
75  
100  
75  
Offset drift  
PGA enabled, gain = 1 to 8  
–200  
–150  
–10  
200  
150  
10  
nV/°C  
PGA enabled, gain = 16 to 128  
PGA bypassed, global chop enabled  
PGA enabled, gain = 1 to 128, global chop enabled  
–10  
2
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, all data rates, and global chop disabled (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SYSTEM PERFORMANCE (continued)  
TA = 25°C, PGA bypassed  
40  
40  
40  
0.5  
0.5  
0.5  
1
120  
120  
200  
1
Gain error(1)  
TA = 25°C, PGA enabled, gain = 1 to 32  
TA = 25°C, PGA enabled, gain = 64 and 128  
TA = –40°C to +85°C, PGA bypassed  
TA = –40°C to +85°C, PGA enabled, gain = 1 to 128  
PGA bypassed  
ppm  
2
Gain drift(1)  
ppm/°C  
nVRMS  
1
PGA enabled, gain = 1 to 128  
4
PGA enabled, gain = 128, DR = 2.5 SPS,  
sinc3 filter  
Noise (input-referred)(2)  
19  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 10 SPS,  
sinc3 filter  
88  
102  
79  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 10 SPS,  
sinc3 filter, external fCLK = 4.096 MHz  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS,  
low-latency filter  
fIN = 50 Hz or 60 Hz (±1 Hz), DR = 20 SPS,  
low-latency filter, external fCLK = 4.096 MHz  
95  
87  
NMRR Normal-mode rejection ratio(3)  
dB  
fIN = 50 Hz (±1 Hz), DR = 50 SPS, sinc3 filter  
fIN = 50 Hz (±1 Hz), DR = 50 SPS,  
sinc3 filter, external fCLK = 4.096 MHz  
101  
89  
fIN = 60 Hz (±1 Hz), DR = 60 SPS, sinc3 filter  
fIN = 60 Hz (±1 Hz), DR = 60 SPS,  
sinc3 filter, external fCLK = 4.096 MHz  
105  
110  
120  
At dc  
120  
130  
fCM = 50 Hz or 60 Hz (±1 Hz),  
DR = 2.5 SPS to 10 SPS, sinc3 filter  
CMRR Common-mode rejection ratio  
PSRR Power-supply rejection ratio  
dB  
dB  
fCM = 50 Hz or 60 Hz (±1 Hz),  
DR = 2.5 SPS, 5 SPS, 10 SPS, 20 SPS, low-latency  
filter  
115  
125  
AVDD at dc  
90  
100  
100  
105  
115  
115  
AVDD at 50 Hz or 60 Hz  
DVDD at dc  
(1) Excluding error of voltage reference.  
(2) See the Noise Performance section for more information.  
(3) See the 50-Hz and 60-Hz Line Cycle Rejection section for more information.  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, all data rates, and global chop disabled (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE REFERENCE INPUTS  
Reference buffers disabled, external VREF = 2.5 V,  
REFP1/REFN1 inputs  
-6  
4
5
6
µA/V  
nA  
Absolute input current  
Reference buffers enabled, external VREF = 2.5 V,  
REFP1/REFN1 inputs  
–15  
15  
INTERNAL VOLTAGE REFERENCE  
VREF  
Output voltage  
2.5  
±0.01%  
±0.01%  
2.5  
V
TA = 25°C, TQFP package  
TA = 25°C, VQFN package  
TA = –40°C to +85°C  
–0.05%  
–0.1%  
0.05%  
0.1%  
8
Accuracy  
Temperature drift  
ppm/°C  
mA  
TA = –50°C to +125°C  
3
10  
AVDD = 2.7 V to 3.3 V, sink and source  
AVDD = 3.3 V to 5.25 V, sink and source  
Sink and source  
–5  
5
Output current  
–10  
10  
Short-circuit current limit  
70  
85  
100  
mA  
dB  
PSRR Power-supply rejection ratio  
AVDD at dc  
AVDD = 2.7 V to 3.3 V,  
load current = –5 mA to 5 mA  
8
Load regulation  
µV/mA  
AVDD = 3.3 V to 5.25 V,  
load current = –10 mA to 10 mA  
8
Startup time  
Capacitive load stability  
Reference noise  
1-µF capacitor on REFOUT, 0.001% settling  
Capacitor on REFOUT  
5.9  
ms  
µF  
1
47  
f = 0.1 Hz to 10 Hz, 1-µF capacitor on REFOUT  
9
µVPP  
INTERNAL OSCILLATOR  
fCLK  
Frequency  
Accuracy  
4.096  
MHz  
–1.5%  
1.5%  
EXCITATION CURRENT SOURCES (IDACS)  
10, 50, 100,  
250, 500, 750,  
1000, 1500, 2000  
Current settings  
µA  
V
10 µA to 750 µA, 0.1% deviation  
AVSS  
AVSS  
–5%  
AVDD – 0.4  
AVDD – 0.6  
5%  
Compliance voltage(4)  
Accuracy (each IDAC)  
1 mA to 2 mA, 0.1% deviation  
TA = 25°C, 10 µA to 100 µA  
TA = 25°C, 250 µA to 2 mA  
TA = 25°C, 10 µA to 100 µA  
TA = 25°C, 250 µA to 750 µA  
TA = 25°C, 1 mA to 2 mA  
10 µA to 750 µA  
±0.7%  
±0.5%  
0.15%  
0.10%  
0.07%  
20  
–3%  
3%  
0.8%  
0.6%  
0.4%  
120  
Current mismatch between  
IDACs  
Temperature drift (each IDAC)  
ppm/°C  
1 mA to 2 mA  
10  
80  
10 µA to 100 µA  
3
25  
Temperature drift matching  
between IDACs  
ppm/°C  
µs  
250 µA to 2 mA  
2
15  
With internal reference already settled. From end of  
WREG command to current flowing out of pin.  
Startup time  
22  
(4) The IDAC current does not change by more than 0.1% from the nominal value when staying within the specified compliance voltage.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, all data rates, and global chop disabled (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BIAS VOLTAGE  
(AVDD + AVSS) / 2,  
(AVDD + AVSS) / 12  
VBIAS  
Output voltage settings  
Output impedance  
Startup time  
V
Ω
350  
2.8  
Combined capacitive load on all selected analog  
inputs CLOAD = 1 µF, 0.1% settling  
ms  
BURNOUT CURRENT SOURCES (BOCS)  
Current settings  
0.2, 1, 10  
±8%  
µA  
0.2 µA, sinking or sourcing  
1 µA, sinking or sourcing  
10 µA, sinking or sourcing  
Accuracy  
±4%  
±2%  
PGA RAIL DETECTION  
Positive rail threshold  
Negative rail threshold  
REFERENCE DETECTION  
Threshold 1  
Referred to the output of the PGA  
Referred to the output of the PGA  
AVDD – 0.15  
AVSS + 0.15  
V
V
0.3  
V
V
Threshold 2  
1/3·(AVDD – AVSS)  
Threshold 2 accuracy  
Pull-together resistance  
SUPPLY VOLTAGE MONITORS  
–3%  
±1%  
10  
3%  
MΩ  
(AVDD – AVSS) / 4 monitor  
DVDD / 4 monitor  
±1%  
±1%  
Accuracy  
TEMPERATURE SENSOR  
Output voltage  
TA = 25°C  
129  
403  
mV  
Temperature coefficient  
LOW-SIDE POWER SWITCH  
µV/°C  
RON  
On-resistance  
1
3
Ω
Current through switch  
75  
mA  
GENERAL-PURPOSE INPUT/OUTPUTS (GPIOs)  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
AVSS – 0.05  
0.7 AVDD  
AVSS  
0.3 AVDD  
AVDD + 0.05  
0.2 AVDD  
AVDD  
V
V
V
V
VIH  
VOL  
VOH  
IOL = 1 mA  
IOH = 1 mA  
0.8 AVDD  
DIGITAL INPUT/OUTPUTS  
VIL  
Logic input level, low  
Logic input level, high  
Logic output level, low  
Logic output level, high  
Input current  
DGND  
0.7 IOVDD  
DGND  
0.3 IOVDD  
IOVDD  
0.2 IOVDD  
IOVDD  
1
V
V
VIH  
VOL  
VOH  
IOL = 1 mA  
V
IOH = 1 mA  
0.8 IOVDD  
–1  
V
DGND VDigital Input IOVDD  
µA  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –50°C to +125°C; Typical specifications are at TA = 25°C;  
all specifications are at AVDD = 2.7 V to 5.25 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, all gains, internal reference, internal  
oscillator, all data rates, and global chop disabled (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG SUPPLY CURRENT (AVDD = 3.3 V, External Reference, Internal Reference Disabled, Reference Buffers Disabled, IDACs Disabled, VBIAS  
Disabled, Flags Disabled, Internal Oscillator, All Data Rates, VIN = 0 V)  
Power-down mode  
0.1  
70  
1.5  
Standby mode, PGA bypassed  
Conversion mode, PGA bypassed  
85  
Conversion mode, PGA enabled, gain = 1, 2  
Conversion mode, PGA enabled, gain = 4, 8  
Conversion mode, PGA enabled, gain = 16, 32  
Conversion mode, PGA enabled, gain = 64  
Conversion mode, PGA enabled, gain = 128  
120  
140  
165  
200  
250  
135  
155  
180  
IAVDD  
Analog supply current  
µA  
ADDITIONAL ANALOG SUPPLY CURRENTS PER FUNCTION (AVDD = 3.3 V)  
Internal 2.5-V reference, no external load  
Positive reference buffer  
185  
35  
25  
10  
20  
30  
40  
50  
65  
10  
280  
60  
Negative reference buffer  
40  
VBIAS buffer, no external load  
IDAC overhead, 10 µA to 250 µA  
35  
IAVDD  
Analog supply current  
µA  
IDAC overhead, 500 µA to 750 µA  
IDAC overhead, 1 mA  
IDAC overhead, 1.5 mA  
IDAC overhead, 2 mA  
PGA rail detection and reference detection circuit  
DIGITAL SUPPLY CURRENT (DVDD = IOVDD = 3.3 V, All Data Rates, SPI Not Active)  
Power-down mode, internal oscillator  
0.1  
185  
225  
195  
Standby mode, internal oscillator  
IDVDD  
IIOVDD  
+
Digital supply current  
µA  
Conversion mode, internal oscillator  
300  
Conversion mode, external fCLK = 4.096 MHz  
POWER DISSIPATION (AVDD = DVDD = IOVDD = 3.3 V, Internal Reference Enabled, Reference Buffers Disabled, IDACs Disabled, VBIAS Disabled,  
Flags Disabled, Internal Oscillator, All Data Rates, VIN = 0 V, SPI Not Active)  
PD  
Power dissipation  
Conversion mode, PGA enabled, gain = 1  
1.75  
mW  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
7.6 Timing Characteristics  
over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and  
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)  
MIN  
MAX  
UNIT(1)  
SERIAL INTERFACE  
td(CSSC)  
td(SCCS)  
tw(CSH)  
tc(SC)  
Delay time, first SCLK rising edge after CS falling edge  
Delay time, CS rising edge after final SCLK falling edge  
Pulse duration, CS high  
20  
20  
30  
100  
40  
40  
15  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK period  
tw(SCH)  
tw(SCL)  
tsu(DI)  
Pulse duration, SCLK high  
Pulse duration, SCLK low  
Setup time, DIN valid before SCLK falling edge  
Hold time, DIN valid after SCLK falling edge  
Delay time, between bytes or commands  
th(DI)  
td(CMD)  
RESET PIN  
tw(RSL)  
Pulse duration, RESET low  
4
tCLK  
tCLK  
Delay time, first SCLK rising edge after RESET rising edge (or 7th SCLK  
falling edge of RESET command)  
td(RSSC)  
4096  
START/SYNC PIN  
tw(STH) Pulse duration, START/SYNC high  
tw(STL)  
4
4
tCLK  
tCLK  
Pulse duration, START/SYNC low  
Setup time, START/SYNC falling edge (or 7th SCLK falling edge of STOP  
command) before DRDY falling edge to stop further conversions  
(continuous conversion mode)  
tsu(STDR)  
32  
tCLK  
READING CONVERSION DATA WITHOUT RDATA COMMAND  
th(SCDR)  
td(DRSC)  
(1) tCLK = 1 / fCLK  
Hold time, SCLK low before DRDY falling edge(2)  
Delay time, SCLK rising edge after DRDY falling edge(2)  
28  
4
tCLK  
tCLK  
.
(2) Only applicable when reading data without the RDATA command. All commands can be send without any SCLK to DRDY signal timing  
restrictions.  
7.7 Switching Characteristics  
over operating ambient temperature range, DVDD = 2.7 V to 3.6 V, IOVDD = DVDD to 5.25 V, and  
DOUT/DRDY load = 20 pF || 100 kΩ to DGND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT(1)  
Propagation delay time, CS falling edge to DOUT  
driven  
tp(CSDO)  
tp(SCDO)  
tp(CSDOZ)  
0
25  
ns  
Propagation delay time, SCLK rising edge to valid  
new DOUT  
3
0
30  
25  
ns  
ns  
Propagation delay time, CS rising edge to DOUT high  
impedance  
Propagation delay time, START/SYNC rising edge (or  
first SCLK rising edge of any command or data read)  
to DRDY rising edge  
tp(STDR)  
2
tCLK  
tw(DRH)  
tp(GPIO)  
Pulse duration, DRDY high  
24  
3
tCLK  
ns  
Propagation delay time, last SCLK falling edge of  
WREG command to GPIOx output valid  
100  
SPI timeout per 8 bit(2)  
215  
tCLK  
(1) tCLK = 1 / fCLK  
(2) The SPI interface resets when an entire byte is not sent within the specified timeout time.  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
tw(CSH)  
CS  
SCLK  
DIN  
ttd(CSSC)  
t
ttc(SC)  
t
tw(SCH)  
ttd(SCCS)t  
tsu(DI)  
th(DI)  
tw(SCL)  
NOTE: Single-byte communication is shown. Actual communication can be multiple bytes.  
1. Serial Interface Timing Requirements  
CS  
SCLK  
tp(CSDO)  
tp(SCDO)  
tp(CSDOZ)  
Hi-Z  
Hi-Z  
DOUT/DRDY  
NOTE: Single-byte communication is shown. Actual communication can be multiple bytes.  
2. Serial Interface Switching Characteristics  
tw(RSL)  
RESET  
SCLK  
DIN  
td(RSSC)  
RESET command  
New command  
3. RESET Pin and RESET Command Timing Requirements  
tw(STL)  
START/SYNC  
DRDY  
tw(STH)  
tp(STDR)  
tw(DRH)  
tp(STDR)  
tsu(STDR)  
4. START/SYNC Pin Timing Requirements  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
SCLK  
DIN  
START command  
STOP command  
tp(STDR)  
tp(STDR)  
DRDY  
tsu(STDR)  
5. START Command Timing Requirements  
th(SCDR)  
DRDY  
CS  
SCLK  
td(DRSC)  
DOUT/DRDY  
Data 1  
Data 2  
Data 3  
6. Read Data Direct (Without an RDATA Command) Timing Requirements  
SCLK  
DIN  
WREG  
01h  
01h  
01h  
GPIO0 set as output  
GPIO0 set high  
GPIO0 enabled  
Write two registers  
WREG GPIODAT  
GPIO0  
tp(GPIO)  
7. GPIO Switching Characteristics  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
7.8 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
2000  
1000  
0
2000  
1000  
0
-50èC  
25èC  
85èC  
125èC  
-50èC  
25èC  
85èC  
125èC  
-1000  
-2000  
-3000  
-4000  
-1000  
-2000  
-3000  
-4000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V(AINx) (V)  
V(AINx) (V)  
PGA bypassed, DR = 20 SPS, VIN = 0 V  
PGA bypassed, DR = 4 kSPS, VIN = 0 V  
8. Absolute Input Current vs Absolute Input Voltage  
9. Absolute Input Current vs Absolute Input Voltage  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
-50èC  
25èC  
85èC  
125èC  
-50èC  
25èC  
85èC  
125èC  
0
0
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V(AINx) (V)  
V(AINx) (V)  
PGA enabled, gain = 1, DR = 20 SPS, VIN = 0 V  
PGA enabled, gain = 1, DR = 4 kSPS, VIN = 0 V  
10. Absolute Input Current vs Absolute Input Voltage  
11. Absolute Input Current vs Absolute Input Voltage  
2000  
2000  
-50èC  
25èC  
85èC  
125èC  
-50èC  
25èC  
85èC  
125èC  
1500  
1000  
500  
1500  
1000  
500  
0
0
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
VIN (V)  
VIN (V)  
PGA bypassed, DR = 20 SPS, VCM = 1.65 V  
PGA bypassed, DR = 4 kSPS, VCM = 1.65 V  
12. Differential Input Current vs Differential Input Voltage  
13. Differential Input Current vs Differential Input Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
200  
150  
100  
50  
400  
300  
200  
100  
0
-50èC  
25èC  
85èC  
125èC  
-50èC  
25èC  
85èC  
125èC  
0
-50  
-100  
-200  
-300  
-400  
-100  
-150  
-200  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
VIN (V)  
VIN (V)  
PGA enabled, DR = 20 SPS, VCM = 1.65 V  
PGA enabled, DR = 4 kSPS, VCM = 1.65 V  
14. Differential Input Current vs Differential Input Voltage  
15. Differential Input Current vs Differential Input Voltage  
3
3
2
1
2
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
VIN (% of FSR)  
VIN (% of FSR)  
PGA enabled, gain = 1  
PGA bypassed, gain = 1  
16. INL vs Differential Input Voltage  
17. INL vs Differential Input Voltage  
16  
14  
12  
10  
8
10  
8
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
6
4
6
4
2
2
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
18. INL vs Temperature  
19. Offset Voltage vs Temperature  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
100  
2.5  
2.4995  
2.499  
50  
0
-50  
-100  
-150  
-200  
-250  
2.4985  
2.498  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
2.4975  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
28 units, TQFP package  
20. Gain Error vs Temperature  
21. Internal Reference Voltage vs Temperature  
2.5002  
2.5001  
2.5  
10  
8
6
4
2
0
2.4999  
2.4998  
2.4997  
-2  
-4  
-6  
-8  
-10  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
Time (1 s/div)  
AVDD (V)  
23. Internal Reference Voltage Noise  
22. Internal Reference Voltage vs AVDD  
250  
200  
150  
100  
50  
4.13  
4.12  
4.11  
4.1  
4.09  
4.08  
4.07  
4.06  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Internal Oscillator Frequency (MHz)  
28 units  
24. Internal Oscillator Frequency Histogram  
25. Internal Oscillator Frequency vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
0
-1  
-2  
-3  
-4  
-5  
0
-10  
-20  
-30  
-40  
-50  
10 µA  
50 µA  
100 µA  
250 µA  
500 µA  
750 µA  
1 mA  
1.5 mA  
2 mA  
10 µA  
50 µA  
100 µA  
250 µA  
500 µA  
750 µA  
1 mA  
1.5 mA  
2 mA  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3.1  
3.2  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
IDAC Output Voltage (V)  
IDAC Output Voltage (V)  
27. IDAC Accuracy vs Compliance Voltage  
26. IDAC Accuracy vs Compliance Voltage  
3
2
0.3  
0.25  
0.2  
10 mA  
750 mA  
50 mA  
1 mA  
100 mA  
250 mA  
500 mA  
1.5 mA  
2 mA  
1
0
0.15  
0.1  
-1  
-2  
-3  
10 mA  
750 mA  
1 mA  
1.5 mA  
2 mA  
50 mA  
100 mA  
250 mA  
500 mA  
0.05  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
IDAC output voltage = 1.65 V  
28. IDAC Accuracy vs Temperature  
29. IDAC Matching vs Temperature  
0.501  
0.5005  
0.5  
0.085  
0.084  
0.083  
0.082  
0.081  
0.08  
AVDD = 2.7 V  
AVDD = 5.25 V  
AVDD = 2.7 V  
AVDD = 5.25 V  
0.4995  
0.499  
0.4985  
0.498  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
30. VBIAS Voltage [(AVDD – AVSS) / 2] vs Temperature  
31. VBIAS Voltage [(AVDD – AVSS) / 12] vs Temperature  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
AVDD = 2.7 V  
AVDD = 5.25 V  
AVDD = 2.7 V  
AVDD = 5.25 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
32. PGA Rail Detection, PGAN_RAILP, PGAP_RAILP  
33. PGA Rail Detection, PGAN_RAILN, PGAP_RAILN  
Threshold From AVDD  
Threshold From AVSS  
0.335  
0.32  
AVDD = 2.7 V  
AVDD = 5.25 V  
AVDD = 2.7 V  
AVDD = 5.25 V  
0.31  
0.3  
0.3345  
0.334  
0.29  
0.28  
0.27  
0.3335  
0.333  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
Level 0 = 300 mV  
34. Reference Threshold Voltage, Level 0  
Level 1 = 1/3 · (AVDD – AVSS)  
35. Reference Threshold Voltage, Level 1  
180  
160  
140  
120  
100  
80  
1.8  
1.6  
1.4  
1.2  
1
AVDD = 2.7 V  
AVDD = 3.3 V  
AVDD = 5.25 V  
0.8  
0.6  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
36. Temperature Sensor Voltage vs Temperature  
37. Low-Side Switch RON vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
3.3  
3.2  
3.1  
3
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-50èC  
25èC  
85èC  
125èC  
2.9  
2.8  
2.7  
-50èC  
25èC  
85èC  
125èC  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Sourcing Current (mA)  
Sinking Current (mA)  
AVDD = 3.3 V  
AVDD = 3.3 V  
38. GPIO Pin Output Voltage vs Sourcing Current  
39. GPIO Pin Output Voltage vs Sinking Current  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.3  
-50èC  
25èC  
85èC  
125èC  
3.2  
3.1  
3
2.9  
2.8  
2.7  
-50èC  
25èC  
85èC  
125èC  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
Sourcing Current (mA)  
Sinking Current (mA)  
DVDD = 3.3 V  
DVDD = 3.3 V  
40. Digital Pin Output Voltage vs Sourcing Current  
41. Digital Pin Output Voltage vs Sinking Current  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
Standby mode  
PGA bypassed  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 128  
PGA bypassed  
Gain = 1  
Gain = 4  
Gain = 16  
Gain = 64  
Gain = 128  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
Temperature (èC)  
AVDD (V)  
Standby and conversion mode, external VREF  
Conversion mode, external VREF  
42. Analog Supply Current vs Temperature  
43. Analog Supply Current vs AVDD  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
at TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, DVDD = IOVDD = 3.3 V, using internal VREF = 2.5 V, internal 4.096-MHz oscillator,  
and PGA enabled (unless otherwise noted)  
1
0.8  
0.6  
0.4  
0.2  
0
260  
240  
220  
200  
180  
160  
140  
120  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
Power-down mode  
44. Analog Supply Current vs Temperature  
45. Internal Reference AVDD Current vs Temperature  
260  
260  
240  
220  
200  
180  
160  
140  
120  
240  
220  
200  
180  
160  
140  
120  
Standby mode  
Conversion mode  
-50  
-25  
0
25  
50  
75 100 125  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (èC)  
DVDD (V)  
Standby and conversion mode  
Conversion mode  
47. Digital Supply Current vs DVDD  
46. Digital Supply Current vs Temperature  
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Power-down mode  
48. Digital Supply Current vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Noise Performance  
Delta-sigma (ΔΣ) analog-to-digital converters (ADCs) are based on the principle of oversampling. The input  
signal of a ΔΣ ADC is sampled at a high frequency (modulator frequency) and subsequently filtered and  
decimated in the digital domain to yield a conversion result at the respective output data rate. The ratio between  
modulator frequency and output data rate is called the oversampling ratio (OSR). By increasing the OSR, and  
thus reducing the output data rate, the noise performance of the ADC can be optimized. In other words, the  
input-referred noise drops when reducing the output data rate because more samples of the internal modulator  
are averaged to yield one conversion result. Increasing the gain also reduces the input-referred noise, which is  
particularly useful when measuring low-level signals.  
1 to 4 summarize the device noise performance. 1 and 2 list the ADC measurement noise using the  
sinc3 digital filter at different data rates and different PGA settings, and 3 and 4 list the ADC measurement  
noise using the low-latency digital filter. Data are representative of typical noise performance at TA = 25°C using  
the internal 2.5-V reference. Data shown are based on 512 consecutive samples from a single device with inputs  
internally shorted. 1 and 3 list the input-referred root mean square noise in units of μVRMS for the conditions  
shown. Note that peak-to-peak (µVPP) values are shown in parentheses. 2 and 4 list the corresponding  
data in effective resolution calculated from μVRMS values using 公式 1. Noise-free resolution is calculated from  
µVPP values using 公式 2.  
The input-referred noise (1 and 3) only changes marginally when using an external low-noise reference,  
such as the REF5025. To calculate effective resolution and noise-free resolution when using a reference voltage  
other than 2.5 V, use 公式 1 and 公式 2:  
Effective Resolution = ln[(2 · VREF / Gain) / VRMS-Noise] / ln(2)  
Noise-Free Resolution= ln[(2 · VREF / Gain) / VPP-Noise] / ln(2)  
(1)  
(2)  
5 to 8 repeat the measurements of 1 to 4 but use the global chop feature of the device. The global  
chop feature averages two measurement of the ADC with the inputs swapped. This feature significantly reduces  
the input offset of the device, and reduces noise in the measurement.  
Noise performance with the PGA bypassed are identical to the noise performance of the device with gain = 1 in  
1 to 8.  
1. Noise in μVRMS (μVPP) with Sinc3 Filter,  
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Disabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
0.32 (1.8)  
0.40 (2.4)  
0.53 (3.0)  
0.76 (4.2)  
0.81 (4.8)  
1.3 (7.2)  
1.4 (8.0)  
1.8 (9.2)  
2.4 (13)  
3.6 (19)  
5.0 (29)  
6.0 (32)  
7.8 (45)  
15. (95)  
0.16 (0.89)  
0.21 (1.0)  
0.29 (1.6)  
0.36 (2.2)  
0.41 (2.4)  
0.62 (3.7)  
0.70 (4.5)  
0.91 (5.8)  
1.2 (7.7)  
1.8 (10)  
0.085 (0.45)  
0.11 (0.60)  
0.16 (0.89)  
0.20 (1.2)  
0.22 (1.4)  
0.33 (1.9)  
0.37 (2.4)  
0.49 (2.6)  
0.64 (4.0)  
0.87 (5.0)  
1.3 (7.8)  
0.049 (0.26)  
0.066 (0.37)  
0.088 (0.52)  
0.11 (0.67)  
0.12 (0.71)  
0.18 (1.2)  
0.21 (1.3)  
0.27 (1.8)  
0.39 (2.3)  
0.54 (3.4)  
0.76 (5.2)  
0.85 (5.2)  
1.2 (6.9)  
0.036 (0.20)  
0.040 (0.30)  
0.061 (0.39)  
0.077 (0.47)  
0.082 (0.48)  
0.13 (0.76)  
0.12 (0.71)  
0.17 (1.1)  
0.26 (1.6)  
0.34 (2.1)  
0.49 (2.7)  
0.56 (3.2)  
0.78 (4.5)  
1.2 (7.1)  
0.025 (0.14)  
0.033 (0.20)  
0.046 (0.25)  
0.060 (0.35)  
0.064 (0.44)  
0.11 (0.69)  
0.11 (0.87)  
0.14 (0.88)  
0.21 (1.3)  
0.28 (1.7)  
0.41 (2.5)  
0.42 (2.5)  
0.64 (4.0)  
0.87 (5.2)  
0.020 (0.13)  
0.029 (0.18)  
0.040 (0.24)  
0.052 (0.32)  
0.056 (0.37)  
0.091 (0.54)  
0.10 (0.67)  
0.12 (0.72)  
0.19 (1.1)  
0.019 (0.11)  
0.027 (0.16)  
0.036 (0.23)  
0.046 (0.30)  
0.048 (0.30)  
0.080 (0.53)  
0.089 (0.58)  
0.11 (0.52)  
0.15 (0.95)  
0.22 (1.3)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
0.25 (1.5)  
2.6 (16)  
0.37 (2.2)  
0.34 (2.0)  
2.9 (17)  
1.5 (10)  
0.41 (2.3)  
0.37 (2.2)  
4.2 (26)  
2.1 (14)  
0.57 (3.5)  
0.54 (2.8)  
7.3 (45)  
3.9 (25)  
2.0 (11)  
0.83 (5.1)  
0.80 (5.0)  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
2. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)  
with Sinc3 Filter at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,  
Global Chop Disabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
23.9 (21.4)  
23.6 (21.0)  
23.2 (20.7)  
22.6 (20.2)  
22.6 (20.0)  
21.9 (19.4)  
21.8 (19.2)  
21.4 (19.0)  
21.0 (18.6)  
20.4 (18.0)  
19.9 (17.4)  
19.7 (17.2)  
19.3 (16.8)  
18.4 (15.7)  
23.9 (21.4)  
23.5 (21.2)  
23.0 (20.5)  
22.7 (20.1)  
22.5 (20.0)  
21.9 (19.4)  
21.8 (19.1)  
21.4 (18.7)  
20.9 (18.3)  
20.4 (17.9)  
19.9 (17.2)  
19.7 (17.2)  
19.2 (16.6)  
18.4 (15.7)  
23.8 (21.4)  
23.4 (21.0)  
22.9 (20.4)  
22.6 (20.0)  
22.4 (19.8)  
21.9 (19.3)  
21.7 (19.0)  
21.3 (18.9)  
20.9 (18.2)  
20.5 (17.9)  
19.9 (17.3)  
19.6 (16.9)  
19.2 (16.5)  
18.3 (15.6)  
23.6 (21.2)  
23.2 (20.7)  
22.8 (20.2)  
22.4 (19.8)  
22.3 (19.8)  
21.7 (19.0)  
21.5 (18.8)  
21.1 (18.4)  
20.6 (18.1)  
20.2 (17.5)  
19.7 (16.9)  
19.5 (16.9)  
18.9 (16.5)  
18.3 (15.7)  
23.0 (20.5)  
22.9 (20.0)  
22.3 (19.6)  
22.0 (19.4)  
21.9 (19.3)  
21.2 (18.6)  
21.3 (18.8)  
20.8 (18.1)  
20.2 (17.6)  
19.8 (17.2)  
19.3 (16.8)  
19.1 (16.6)  
18.6 (16.1)  
18.0 (15.4)  
22.6 (20.2)  
22.2 (19.5)  
21.7 (19.2)  
21.3 (18.8)  
21.2 (18.4)  
20.5 (17.8)  
20.4 (17.5)  
20.1 (17.4)  
19.5 (16.9)  
19.1 (16.5)  
18.6 (16.0)  
18.5 (16.1)  
17.9 (15.3)  
17.5 (14.9)  
21.9 (19.1)  
21.4 (18.9)  
20.9 (18.4)  
20.5 (17.9)  
20.4 (17.7)  
19.7 (17.2)  
19.5 (16.8)  
19.3 (16.7)  
18.6 (16.1)  
18.2 (15.7)  
17.7 (15.1)  
17.6 (14.9)  
17.1 (14.4)  
16.5 (13.9)  
21.0 (18.4)  
20.5 (17.6)  
20.1 (17.3)  
19.7 (17.0)  
19.6 (17.0)  
18.9 (16.2)  
18.7 (16.0)  
18.4 (16.0)  
18.0 (15.3)  
17.4 (14.9)  
16.8 (14.3)  
16.7 (14.1)  
16.2 (13.8)  
15.6 (12.9)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
3. Noise in μVRMS (μVPP) with Low-Latency Filter,  
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Disabled, and Internal 2.5-V Reference  
DATA  
GAIN  
RATE  
(SPS)  
1
2
4
8
16  
32  
64  
128  
2.5  
5
0.46 (2.7)  
0.62 (3.9)  
0.94 (6.6)  
1.3 (8.0)  
1.2 (8.0)  
2.1 (13)  
2.3 (15)  
2.8 (18)  
4.6 (28)  
6.1 (31)  
8.6 (36)  
10 (50)  
0.24 (1.3)  
0.33 (1.6)  
0.47 (3.0)  
0.66 (3.9)  
0.65 (3.9)  
1.0 (6.6)  
1.2 (7.5)  
1.6 (10)  
2.2 (13)  
3.0 (19)  
4.3 (27)  
5.0 (29)  
11 (80)  
0.12 (0.82)  
0.18 (1.1)  
0.24 (1.4)  
0.32 (2.0)  
0.34 (1.9)  
0.54 (3.1)  
0.62 (3.7)  
0.83 (5.1)  
1.1 (6.9)  
1.6 (11)  
0.072 (0.41)  
0.10 (0.52)  
0.14 (0.78)  
0.18 (1.2)  
0.20 (1.2)  
0.30 (1.9)  
0.35 (2.2)  
0.45 (2.9)  
0.67 (4.1)  
0.92 (5.1)  
1.3 (8.0)  
0.051 (0.30)  
0.064 (0.37)  
0.09 (0.52)  
0.12 (0.69)  
0.13 (0.67)  
0.22 (1.3)  
0.22 (1.4)  
0.30 (1.7)  
0.42 (2.6)  
0.46 (2.6)  
0.81 (4.6)  
0.90 (5.4)  
1.6 (11)  
0.041 (0.27)  
0.053 (0.31)  
0.074 (0.44)  
0.10 (0.56)  
0.10 (0.64)  
0.16 (1.2)  
0.19 (1.1)  
0.23 (1.3)  
0.34 (2.0)  
0.48 (2.8)  
0.66 (4.0)  
0.79 (5.1)  
1.1 (6.7)  
0.037 (0.20)  
0.050 (0.33)  
0.065 (0.37)  
0.086 (0.55)  
0.093 (0.54)  
0.15 (0.90)  
0.16 (0.99)  
0.38 (2.6)  
0.29 (1.9)  
0.42 (2.9)  
0.58 (3.8)  
0.66 (4.3)  
1.1 (6.7)  
0.034 (0.19)  
0.046 (0.27)  
0.057 (0.35)  
0.079 (0.52)  
0.082 (0.51)  
0.13 (0.84)  
0.15 (0.90)  
0.20 (1.3)  
0.28 (1.7)  
0.39 (2.3)  
0.55 (3.2)  
0.59 (3.8)  
1.0 (6.6)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
2.3 (15)  
2.6 (15)  
1.4 (8.9)  
22 (83)  
5.5 (32)  
2.9 (17)  
103 (629)  
48 (404)  
24 (160)  
12 (70)  
6.4 (39)  
3.3 (21)  
3.6 (20)  
3.1 (19)  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
4. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)  
with Low-Latency Filter, at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,  
Global Chop Disabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
23.4 (20.8)  
22.9 (20.3)  
22.3 (19.5)  
21.9 (19.2)  
22.0 (19.2)  
21.2 (18.5)  
21.0 (18.3)  
20.8 (18.1)  
20.1 (17.4)  
19.6 (17.3)  
19.2 (17.1)  
19.0 (16.6)  
17.8 (15.9)  
15.6 (13.0)  
23.3 (20.8)  
22.8 (20.5)  
22.3 (19.7)  
21.9 (19.3)  
21.9 (19.3)  
21.2 (18.5)  
21.0 (18.4)  
20.6 (17.9)  
20.1 (17.6)  
19.7 (17.0)  
19.1 (16.5)  
18.9 (16.4)  
17.8 (14.9)  
15.7 (12.6)  
23.3 (20.5)  
22.7 (20.1)  
22.3 (19.8)  
21.9 (19.2)  
21.8 (19.3)  
21.1 (18.6)  
21.0 (18.4)  
20.5 (17.9)  
20.1 (17.5)  
19.6 (16.8)  
19.0 (16.4)  
18.9 (16.3)  
17.8 (15.3)  
15.7 (12.9)  
23.0 (20.5)  
22.6 (20.2)  
22.1 (19.6)  
21.7 (19.0)  
21.6 (19.0)  
21.0 (18.3)  
20.8 (18.1)  
20.4 (17.7)  
19.8 (17.2)  
19.4 (16.9)  
18.9 (16.3)  
18.7 (16.1)  
17.7 (15.2)  
15.7 (13.1)  
22.6 (20.0)  
22.2 (19.7)  
21.7 (19.2)  
21.3 (18.8)  
21.3 (18.8)  
20.5 (17.9)  
20.4 (17.7)  
20.0 (17.5)  
19.5 (16.9)  
19.4 (16.9)  
18.6 (16.0)  
18.4 (15.8)  
17.5 (14.8)  
15.6 (13.0)  
21.9 (19.1)  
21.5 (19.0)  
21.0 (18.4)  
20.5 (18.1)  
20.5 (17.9)  
19.9 (17.0)  
19.7 (17.1)  
19.4 (16.9)  
18.8 (16.2)  
18.3 (15.8)  
17.9 (15.2)  
17.6 (14.9)  
17.1 (14.5)  
15.5 (12.9)  
21.1 (18.6)  
20.6 (17.9)  
20.2 (17.8)  
19.8 (17.1)  
19.7 (17.2)  
19.0 (16.4)  
18.9 (16.3)  
17.6 (14.9)  
18.0 (15.3)  
17.5 (14.7)  
17.0 (14.3)  
16.8 (14.2)  
16.1 (13.5)  
14.4 (11.9)  
20.0 (17.6)  
19.7 (17.1)  
19.4 (16.7)  
18.9 (16.2)  
18.9 (16.2)  
18.2 (15.5)  
18.0 (15.4)  
17.6 (14.9)  
17.1 (14.5)  
16.6 (14.0)  
16.1 (13.6)  
16.0 (13.3)  
15.2 (12.5)  
13.6 (11.0)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
5. Noise in μVRMS (μVPP) with Sinc3 Filter,  
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Enabled, and Internal 2.5-V Reference  
DATA  
GAIN  
RATE  
(SPS)(1)  
1
2
4
8
16  
32  
64  
128  
2.5  
5
0.22 (1.2)  
0.31 (1.8)  
0.41 (2.4)  
0.54 (3.3)  
0.60 (3.3)  
0.91 (4.8)  
1.0 (5.7)  
1.2 (6.9)  
1.8 (10)  
2.5 (14)  
3.5 (21)  
3.9 (23)  
6.0 (35)  
10 (63)  
0.11 (0.60)  
0.15 (0.70)  
0.21 (1.2)  
0.28 (1.5)  
0.31 (1.8)  
0.49 (2.5)  
0.51 (3.1)  
0.63 (3.7)  
0.90 (4.9)  
1.2 (7.0)  
1.8 (11)  
0.063 (0.30)  
0.080 (0.52)  
0.12 (0.60)  
0.14 (0.80)  
0.16 (0.80)  
0.23 (1.3)  
0.26 (1.5)  
0.33 (1.7)  
0.48 (2.8)  
0.60 (3.4)  
1.0 (5.7)  
0.031 (0.19)  
0.049 (0.26)  
0.061 (0.37)  
0.080 (0.48)  
0.090 (0.56)  
0.14 (0.90)  
0.16 (0.90)  
0.19 (1.0)  
0.022 (0.15)  
0.032 (0.19)  
0.042 (0.24)  
0.052 (0.32)  
0.059 (0.34)  
0.090 (0.45)  
0.10 (0.54)  
0.13 (0.70)  
0.19 (1.1)  
0.017 (0.09)  
0.024 (0.15)  
0.031 (0.20)  
0.043 (0.26)  
0.046 (0.25)  
0.070 (0.41)  
0.090 (0.45)  
0.11 (0.59)  
0.15 (0.80)  
0.20 (1.1)  
0.014 (0.08)  
0.020 (0.12)  
0.029 (0.17)  
0.039 (0.23)  
0.043 (0.27)  
0.069 (0.36)  
0.070 (0.41)  
0.089 (0.52)  
0.14 (0.80)  
0.18 (1.0)  
0.013 (0.07)  
0.019 (0.11)  
0.027 (0.16)  
0.034 (0.20)  
0.037 (0.19)  
0.058 (0.33)  
0.067 (0.40)  
0.084 (0.49)  
0.12 (0.75)  
0.16 (0.90)  
0.23 (1.3)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
0.27 (1.4)  
0.39 (2.4)  
0.26 (1.6)  
0.55 (3.2)  
0.35 (2.1)  
0.29 (1.7)  
0.26 (1.4)  
2.1 (13)  
1.1 (6.0)  
0.65 (3.5)  
0.39 (2.3)  
0.32 (1.9)  
0.28 (1.6)  
0.26 (1.5)  
2.8 (16)  
1.6 (8.0)  
0.90 (5.0)  
0.59 (3.5)  
0.47 (2.5)  
0.39 (2.2)  
0.36 (2.1)  
5.3 (30)  
2.8 (16)  
1.4 (9.0)  
0.90 (5.0)  
0.67 (4.0)  
0.58 (3.3)  
0.54 (3.2)  
(1) The actual data conversion period changes with the sinc3 filter and global chop mode enabled; see 19 for details.  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
6. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)  
with Sinc3 Filter at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,  
Global Chop Enabled, and Internal 2.5-V Reference  
DATA  
RATE  
GAIN  
(SPS)(1)  
1
2
4
8
16  
32  
64  
128  
2.5  
5
24.4 (22.0)  
24.0 (21.4)  
23.5 (21.0)  
23.1 (20.5)  
23.0 (20.5)  
22.4 (20.0)  
22.3 (19.8)  
22.0 (19.5)  
21.4 (18.9)  
21.0 (18.5)  
20.4 (17.9)  
20.3 (17.7)  
19.7 (17.1)  
19.0 (16.3)  
24.5 (22.0)  
24.0 (21.7)  
23.5 (21.0)  
23.1 (20.7)  
22.9 (20.4)  
22.3 (19.9)  
22.2 (19.6)  
21.9 (19.4)  
21.5 (19.0)  
20.9 (18.4)  
20.4 (17.8)  
20.2 (17.6)  
19.8 (17.2)  
18.9 (16.4)  
24.2 (22.0)  
23.9 (21.2)  
23.3 (21.0)  
23.1 (20.5)  
22.9 (20.5)  
22.4 (19.8)  
22.2 (19.7)  
21.8 (19.5)  
21.3 (18.8)  
21.0 (18.5)  
20.3 (17.7)  
20.1 (17.7)  
19.6 (17.2)  
18.8 (16.2)  
24.3 (21.7)  
23.6 (21.2)  
23.3 (21.0)  
22.8 (20.5)  
22.7 (20.5)  
22.1 (19.8)  
21.9 (19.7)  
21.6 (19.5)  
21.1 (18.8)  
20.6 (18.5)  
20.1 (17.7)  
19.9 (17.7)  
19.4 (17.2)  
18.7 (16.2)  
23.7 (21.0)  
23.2 (20.7)  
22.8 (20.3)  
22.5 (19.9)  
22.3 (19.8)  
21.8 (19.4)  
21.6 (19.1)  
21.2 (18.7)  
20.7 (18.1)  
20.2 (17.6)  
19.8 (17.2)  
19.6 (17.0)  
19.0 (16.5)  
18.4 (15.9)  
23.1 (20.7)  
22.6 (20.0)  
22.2 (19.6)  
21.8 (19.2)  
21.7 (19.2)  
21.1 (18.5)  
20.8 (18.4)  
20.5 (18.0)  
20.0 (17.6)  
19.6 (17.1)  
19.0 (16.5)  
18.9 (16.3)  
18.3 (15.9)  
17.8 (15.3)  
22.4 (19.8)  
21.9 (19.4)  
21.4 (18.9)  
20.9 (18.4)  
20.8 (18.2)  
20.1 (17.7)  
20.0 (17.5)  
19.7 (17.2)  
19.1 (16.6)  
18.7 (16.1)  
18.2 (15.7)  
18.1 (15.6)  
17.6 (15.2)  
17.0 (14.5)  
21.5 (19.1)  
20.9 (18.5)  
20.5 (17.9)  
20.1 (17.6)  
20.0 (17.6)  
19.4 (16.8)  
19.2 (16.6)  
18.8 (16.3)  
18.3 (15.7)  
17.9 (15.4)  
17.4 (14.9)  
17.2 (14.7)  
16.7 (14.2)  
16.1 (13.6)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
(1) The actual data conversion period changes with the sinc3 filter and global chop mode enabled; see 19 for details.  
7. Noise in μVRMS (μVPP) with Low-Latency Filter,  
at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled, Global Chop Enabled, and Internal 2.5-V Reference  
DATA  
GAIN  
RATE  
(SPS)  
1
2
4
8
16  
32  
64  
128  
2.5  
5
0.34 (2.1)  
0.47 (2.7)  
0.63 (3.6)  
0.90 (4.5)  
0.90 (5.1)  
1.3 (8.0)  
1.7 (10)  
2.0 (12)  
3.0 (17)  
4.3 (22)  
6.2 (25)  
6.0 (38)  
15 (51)  
0.16 (0.90)  
0.22 (1.3)  
0.33 (1.8)  
0.43 (2.5)  
0.42 (2.5)  
0.80 (4.6)  
0.80 (4.3)  
1.1 (6.0)  
1.5 (8.0)  
2.3 (13)  
0.09 (0.52)  
0.12 (0.60)  
0.18 (1.0)  
0.24 (1.4)  
0.23 (1.4)  
0.39 (2.5)  
0.42 (2.8)  
0.55 (3.2)  
0.70 (4.1)  
1.1 (6.0)  
1.5 (9.0)  
1.8 (11)  
0.051 (0.26)  
0.076 (0.45)  
0.10 (0.56)  
0.14 (0.90)  
0.14 (0.90)  
0.23 (1.2)  
0.23 (1.4)  
0.34 (1.9)  
0.48 (2.9)  
0.64 (3.7)  
0.90 (5.0)  
1.1 (6.3)  
0.034 (0.17)  
0.038 (0.22)  
0.069 (0.37)  
0.090 (0.50)  
0.090 (0.63)  
0.14 (0.90)  
0.18 (1.0)  
0.21 (1.3)  
0.28 (1.7)  
0.44 (2.4)  
0.62 (3.4)  
0.66 (3.7)  
1.2 (7.0)  
0.027 (0.15)  
0.039 (0.23)  
0.051 (0.30)  
0.070 (0.40)  
0.070 (0.41)  
0.12 (0.70)  
0.13 (0.70)  
0.18 (1.1)  
0.26 (1.4)  
0.33 (1.9)  
0.49 (2.8)  
0.52 (2.8)  
0.90 (5.2)  
2.3 (15)  
0.024 (0.14)  
0.034 (0.20)  
0.045 (0.26)  
0.065 (0.38)  
0.070 (0.39)  
0.11 (0.61)  
0.12 (0.69)  
0.16 (0.90)  
0.23 (1.3)  
0.29 (1.8)  
0.45 (2.5)  
0.45 (2.7)  
0.80 (5.6)  
2.4 (13)  
0.021 (0.13)  
0.029 (0.19)  
0.041 (0.25)  
0.056 (0.35)  
0.059 (0.36)  
0.090 (0.50)  
0.11 (0.67)  
0.14 (0.80)  
0.19 (1.0)  
0.28 (1.7)  
0.40 (2.3)  
0.45 (2.5)  
0.70 (3.9)  
2.2 (12)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
3.1 (19)  
3.3 (19)  
8.0 (50)  
4.0 (23)  
2.2 (13)  
65 (275)  
35 (211)  
18 (116)  
9.0 (51)  
4.4 (24)  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
8. Effective Resolution from RMS Noise (Noise-Free Resolution from Peak-to-Peak Noise)  
with Low-Latency Filter, at AVDD = 3.3 V, AVSS = 0 V, PGA Enabled,  
Global Chop Enabled, and Internal 2.5-V Reference  
DATA  
RATE  
(SPS)  
GAIN  
1
2
4
8
16  
32  
64  
128  
2.5  
5
23.8 (21.2)  
23.3 (20.8)  
22.9 (20.4)  
22.4 (20.1)  
22.4 (19.9)  
21.8 (19.3)  
21.5 (19.0)  
21.2 (18.6)  
20.7 (18.2)  
20.1 (17.8)  
19.6 (17.6)  
19.6 (17.0)  
18.4 (16.6)  
16.2 (14.1)  
23.9 (21.4)  
23.4 (20.8)  
22.9 (20.4)  
22.5 (19.9)  
22.5 (19.9)  
21.7 (19.0)  
21.6 (19.1)  
21.1 (18.6)  
20.7 (18.2)  
20.1 (17.6)  
19.6 (17.0)  
19.5 (17.0)  
18.2 (15.6)  
16.1 (13.5)  
23.7 (21.2)  
23.3 (21.0)  
22.7 (20.3)  
22.3 (19.8)  
22.4 (19.8)  
21.6 (19.0)  
21.5 (18.8)  
21.1 (18.6)  
20.7 (18.2)  
20.1 (17.6)  
19.7 (17.1)  
19.4 (16.8)  
18.2 (15.7)  
16.1 (13.4)  
23.5 (21.2)  
23.0 (20.4)  
22.6 (20.1)  
22.1 (19.4)  
22.1 (19.4)  
21.4 (19.0)  
21.3 (18.8)  
20.8 (18.3)  
20.3 (17.7)  
19.9 (17.4)  
19.4 (16.8)  
19.1 (16.6)  
18.1 (15.6)  
16.1 (13.6)  
23.1 (20.8)  
23.0 (20.4)  
22.1 (19.7)  
21.8 (19.2)  
21.8 (18.9)  
21.0 (18.4)  
20.8 (18.3)  
20.5 (17.9)  
20.1 (17.5)  
19.4 (17.0)  
18.9 (16.5)  
18.9 (16.4)  
18.0 (15.4)  
16.1 (13.7)  
22.5 (20.0)  
21.9 (19.4)  
21.6 (19.9)  
21.1 (18.6)  
21.0 (18.6)  
20.4 (17.8)  
20.2 (17.7)  
19.7 (17.1)  
19.2 (16.8)  
18.8 (16.4)  
18.3 (15.8)  
18.2 (15.8)  
17.4 (14.9)  
16.1 (13.4)  
21.7 (19.1)  
21.1 (18.6)  
20.7 (18.2)  
20.2 (17.6)  
20.1 (17.8)  
19.4 (17.0)  
19.3 (16.8)  
18.9 (16.4)  
18.4 (15.9)  
18.0 (15.4)  
17.4 (14.9)  
17.4 (14.8)  
16.6 (13.8)  
15.0 (12.7)  
20.8 (18.2)  
20.4 (17.7)  
19.9 (17.2)  
19.4 (16.8)  
19.3 (16.7)  
18.7 (16.3)  
18.5 (15.8)  
18.1 (15.6)  
17.6 (15.2)  
17.1 (14.5)  
16.6 (14.0)  
16.4 (13.9)  
15.9 (13.3)  
14.1 (11.5)  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9 Detailed Description  
9.1 Overview  
The ADS124S06 and ADS124S08 are precision 24-bit, delta-sigma (ΔΣ) ADCs with an integrated analog front  
end (AFE) to simplify precision sensor connections. The ADC provides output data rates from 2.5 SPS to  
4000 SPS for flexibility in resolution and data rates over a wide range of applications. The low-noise and low-drift  
architecture make these devices suitable for precise measurement of low-voltage sensors, such as load cells and  
temperature sensors.  
The ADS124S0x incorporate several features that simplify precision sensor measurements. Key integrated  
features include:  
Low-noise, CMOS PGA with integrated signal fault detection  
Low-drift, 2.5-V voltage reference  
Two sets of buffered external reference inputs with reference voltage level detection  
Dual, matched, sensor-excitation current sources (IDACs)  
Internal 4.096-MHz oscillator  
Temperature sensor  
Four general-purpose input/output pins (GPIOs)  
A low-resistance switch (when connected to AVSS) can be used to disconnect bridge sensors to reduce  
current consumption  
As described in the Functional Block Diagram section, these devices provide 13 (ADS124S08) or 7  
(ADS124S06) analog inputs that are configurable as either single-ended inputs, differential inputs, or any  
combination of the two. Many of the analog inputs have additional features as programmed by the user. The  
analog inputs can be programmed to enable the following extended features:  
Two sensor excitation current sources: all analog input pins (and REFP1 and REFN1 on the ADS124S06)  
Sensor biasing voltage (VBIAS): pins AIN0, AIN1, AIN2, AIN3, AIN4, AIN5, AINCOM  
Four GPIO pins: AIN8, AIN9, AIN10, AIN11 (ADS124S08 only, the ADS124S06 has dedicated GPIOs)  
Sensor burn-out current sources: analog input pins selected for ADC input  
Following the input multiplexer (MUX), the ADC features a high input-impedance, low-noise, programmable gain  
amplifier (PGA), eliminating the need for an external amplifier. The PGA gain is programmable from 1 to 128 in  
binary steps. The PGA can be bypassed to allow the input range to extend 50 mV below ground or above  
supply. The PGA has output voltage monitors to verify the integrity of the conversion result.  
An inherently stable delta-sigma modulator measures the ratio of the input voltage to the reference voltage to  
provide the ADC result. The ADC operates with the internal 2.5-V reference, or with up to two external reference  
inputs. The external reference inputs can be continuously monitored for low (or missing) voltage. The REFOUT  
pin provides the buffered 2.5-V internal voltage reference output that can be used to bias external circuitry.  
The digital filter provides two filter modes, sinc3 and low-latency, allowing optimization of settling time and line-  
cycle rejection. The third-order sinc filter offers simultaneous 50-Hz and 60-Hz line-cycle rejection at data rates of  
2.5 SPS, 5 SPS, and 10 SPS, 50-Hz rejection at data rates of 16.6 SPS and 50 SPS, and 60-Hz rejection at data  
rates of 20 SPS and 60 SPS. The low-latency filter provides settled data with 50-Hz and 60-Hz line-cycle  
rejection at data rates of 2.5 SPS, 5 SPS, 10 SPS, and 20 SPS, 50-Hz rejection at data rates of 16.6 SPS and  
50 SPS, and 60-Hz rejection at a data rate of 60 SPS.  
Two programmable excitation current sources provide bias to resistive sensors [such as resistance temperature  
detectors (RTDs) or thermistors]. The ADC integrates several system monitors for read back, such as  
temperature sensor and supply monitors. Four GPIO pins are available as either dedicated pins (ADS124S06) or  
combined with analog input pins (ADS124S08).  
The ADS124S0x system clock is either provided by the internal low-drift, 4.096-MHz oscillator or an external  
clock source on the CLK input.  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
REFN0 REFP0 REFCOM REFOUT  
                                                                                                                                                                                                                   
                                                                                                                                                                                                                      
                                                                                                                                                                                                                        
                                                                                                                                                                                                                           
DVDD  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Overview (接下页)  
The SPI-compatible serial interface is used to read the conversion data and also to configure and control the  
ADC. The serial interface consists of four signals: CS, SCLK, DIN, and DOUT/DRDY. The conversion data are  
provided with an optional CRC code for improved data integrity. The dual function DOUT/DRDY output indicates  
when conversion data are ready and also provides the data output. The serial interface can be implemented with  
as little as three connections by tying CS low. Start ADC conversions with either the START/SYNC pin or with  
commands. The ADC can be programmed for a continuous conversion mode or to perform single-shot  
conversions.  
The AVDD analog supply operates with bipolar supplies from ±1.5 V to ±2.625 V or with a unipolar supply from  
2.7 V to 5.25 V. For unipolar-supply operation, use the VBIAS voltage to bias isolated (floating) sensors. The  
digital supplies operate with unipolar supplies only. The DVDD digital power supply operates from 2.7 V to 3.6 V  
and the IOVDD supply operates from DVDD to 5.25 V.  
9.2 Functional Block Diagram  
AVSS-SW  
AVDD  
IOVDD  
Burnout  
Detect  
2.5-V  
Reference  
ADS124S06  
ADS124S08  
Reference  
Mux  
Excitation  
Current  
AINCOM  
AIN0  
Sources  
Reference  
Detection  
AIN1  
Reference  
Buffers  
AIN2  
VBIAS  
START/SYNC  
RESET  
CS  
AIN3  
AIN4  
Configurable  
Serial  
Interface  
and  
24-Bit û  
ADC  
Input  
Mux  
Digital  
Filter  
PGA  
AIN5  
SCLK  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8 / GPIO0  
AIN9 / GPIO1  
Control  
DIN  
PGA Rail  
Detection  
DOUT/DRDY  
DRDY  
System-, Self-  
Calibration  
Power Supplies  
AIN10 / GPIO2  
AIN11 / GPIO3  
Temperature  
Sensor  
4.096-MHz  
Oscillator  
CLK  
ADS124S08  
only  
Burnout  
Detect  
AVSS  
DGND  
Copyright © 2016, Texas Instruments Incorporated  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3 Feature Description  
9.3.1 Multiplexer  
The ADS124S0x contains a flexible input multiplexer; see 49. Select any of the six (ADS124S06) or 12  
(ADS124S08) analog inputs as the positive or negative input for the PGA using the MUX_P[3:0] and MUX_N[3:0]  
bits in the input multiplexer register (02h). In addition, AINCOM can be selected as the positive or negative PGA  
input. AINCOM is treated as a regular analog input, as is AINx. Use AINCOM in single-ended measurement  
applications as the common input for the other analog inputs.  
The multiplexer also routes the excitation current sources to drive resistive sensors (bridges, RTDs, and  
thermistors) and can provide bias voltages for unbiased sensors (unbiased thermocouples for example) to analog  
input pins.  
The ADS124S0x also contain a set of system monitor functions measured through the multiplexer. The inputs  
can be shorted together at mid-supply [(AVDD + AVSS) / 2] to measure and calibrate the input offset of the  
analog front-end and the ADC. The system monitor also includes a temperature sensor that provides a  
measurement of the device temperature. The system monitor can also measure the analog and digital supplies,  
measuring [(AVDD – AVSS) / 4] for the analog supply or DVDD / 4 for the digital supply. Finally, the system  
monitor contains a set of burn-out current sources that pull the inputs to either supply if the sensor has burned  
out and has a high impedance so that the ADC measures a full-scale reading.  
The multiplexer implements a break-before-make circuit. When changing the multiplexer channels using the  
MUX_P[3:0] and MUX_N[3:0] bits, the device first disconnects the PGA inputs from the analog inputs and  
connects them to mid-supply for 2 · tCLK. In the next step, the PGA inputs connect to the selected new analog  
input channels. This break-before-make behavior ensures the ADC always starts from a known state and that the  
analog inputs are not momentarily shorted together.  
Electrostatic discharge (ESD) diodes to AVDD and AVSS protect the inputs. To prevent the ESD diodes from  
turning on, the absolute voltage on any input must stay within the range provided by 公式 3:  
AVSS – 0.3 V < V(AINx) < AVDD + 0.3 V  
(3)  
External Schottky clamp diodes or series resistors may be required to limit the input current to safe values (see  
the Absolute Maximum Ratings table). Overdriving an unselected input on the device can affect conversions  
taking place on other input pins.  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (接下页)  
AVDD  
AVDD  
IDAC1  
IDAC2  
(1)  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
VBIAS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
AVDD  
(AVDD + AVSS) / 2  
AINCOM  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AVDD  
AVDD  
Temperature  
Diode  
(2)  
(AVDD Þ AVSS) (5 / 8)  
(AVDD Þ AVSS) (3 / 8)  
(3)  
DVDD • (4 / 12)  
DVDD • (1 / 12)  
AVDD  
Burn-Out Current Source  
AINP  
To ADC  
PGA  
AINN  
Burn-Out Current Source  
AVSS  
ADS124S08 Only  
Copyright © 2016, Texas Instruments Incorporated  
(1) AINP and AINN are connected together to (AVDD + AVSS) / 2 for offset measurement.  
(2) Measurement for the analog supply equivalent to (AVDD – AVSS) / 4.  
(3) Measurement for the analog supply equivalent to DVDD / 4.  
49. Analog Input Multiplexer  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Feature Description (接下页)  
9.3.2 Low-Noise Programmable Gain Amplifier  
The ADS124S06 and ADS124S08 feature a low-drift, low-noise, high input impedance programmable gain  
amplifier (PGA). 50 shows a simplified diagram of the PGA. The PGA consists of two chopper-stabilized  
amplifiers (A1 and A2) and a resistor feedback network that sets the gain of the PGA. The PGA input is equipped  
with an electromagnetic interference (EMI) filter and an antialiasing filter on the output.  
250  
+
AINP  
A1  
RF  
16 pF  
2.5 k  
320 pF  
RG  
ADC  
RF  
A2  
2.5 kꢀ  
250 ꢀ  
+
AINN  
16 pF  
50. Simplified PGA Diagram  
The PGA can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128 using the GAIN[2:0] bits in the gain setting register  
(03h). Gain is changed inside the device using a variable resistor, RG. The differential full-scale input voltage  
range (FSR) of the PGA is defined by the gain setting and the reference voltage used, as shown in 公式 4:  
FSR = ±VREF / Gain  
(4)  
9 shows the corresponding full-scale ranges when using the internal 2.5-V reference.  
9. PGA Full-Scale Range  
GAIN SETTING  
FSR  
1
2
±2.5 V  
±1.25 V  
±0.625 V  
±0.313 V  
±0.156 V  
±0.078 V  
±0.039 V  
±0.020 V  
4
8
16  
32  
64  
128  
The PGA must be enabled with the PGA_EN[1:0] bits of the gain setting register (03h). Setting these bits to 00  
powers down and bypasses the PGA. A setting of 01 enables the PGA. The 10 and 11 settings are reserved and  
must not be written to the device.  
With the PGA enabled, gains 64 and 128 are established in the digital domain. When the device is set to 64 or  
128, the PGA is set to a gain of 32, and additional gain is established with digital scaling. The input-referred  
noise does still improve compared to the gain = 32 setting because the PGA is biased with a higher supply  
current to reduce noise.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
 
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.3.2.1 PGA Input-Voltage Requirements  
As with many amplifiers, the PGA has an absolute input voltage range requirement that cannot be exceeded.  
The maximum and minimum absolute input voltages are limited by the voltage swing capability of the PGA  
output. The specified minimum and maximum absolute input voltages (VAINP and VAINN) depend on the PGA gain,  
the maximum differential input voltage (VINMAX), and the tolerance of the analog power-supply voltages (AVDD  
and AVSS). Use the maximum voltage expected in the application for VINMAX. The absolute positive and negative  
input voltages must be within the specified range, as shown in 公式 5:  
AVSS + 0.15 V + |VINMAX| · (Gain – 1) / 2 < VAINP, VAINN < AVDD – 0.15 V – |VINMAX| · (Gain – 1) / 2  
where  
VAINP, VAINN = absolute input voltage  
VINMAX = VAINP – VAINN = maximum differential input voltage  
(5)  
As mentioned in the previous section, PGA gain settings of 64 and 128 are scaled in the digital domain and are  
not implemented with the amplifier. When using the PGA in gains of 64 and 128, set the gain in 公式 5 to 32 to  
calculate the absolute input voltage range.  
The relationship between the PGA input to the PGA output is shown graphically in 51. The PGA output  
voltages (VOUTP, VOUTN) depend on the PGA gain and the input voltage magnitudes. For linear operation, the  
PGA output voltages must not exceed AVDD – 0.15 V or AVSS + 0.15 V. Note that the diagram depicts a  
positive differential input voltage that results in a positive differential output voltage.  
PGA Input  
PGA Output  
AVDD  
AVDD œ 0.15 V  
VOUTP = VAINP + VIN (Gain œ 1) / 2  
VAINP  
VIN = VAINP œ VAINN  
VAINN  
VOUTN = VAINN œ VIN (Gain œ 1) / 2  
AVSS + 0.15 V  
AVSS  
51. PGA Input/Output Range  
Download the ADS1x4S0x design calculator from www.ti.com. This calculator can be used to determine the input  
voltage range of the PGA.  
9.3.2.2 PGA Rail Flags  
The PGA rail flags (FL_P_RAILP, FL_P_RAILN, FL_N_RAILP, and FL_N_RAILN) in the status register (01h)  
indicate if the positive or negative output of the PGA is closer to the analog supply rails than 150 mV. Enable the  
PGA output rail detection circuit using the FL_RAIL_EN bit in the excitation current register 1 (06h). A flag going  
high indicates that the PGA is operating outside the linear operating or absolute input voltage range. PGA rail  
flags are discussed in more detail in the PGA Output Voltage Rail Monitors section.  
9.3.2.3 Bypassing the PGA  
At a gain of 1, the device can be configured to disable and bypass the low-noise PGA. Disabling the PGA lowers  
the overall power consumption and also removes the restrictions of 公式 5 for the input voltage range. If the PGA  
is bypassed, the ADC absolute input voltage range extends beyond the AVDD and AVSS power supplies,  
allowing input voltages at or below ground. The absolute input voltage range when the PGA is bypassed is  
shown in 公式 6:  
AVSS – 0.05 V < VAINP, VAINN < AVDD + 0.05 V  
(6)  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
In order to measure single-ended signals that are referenced to AVSS (AINP = VIN, AINN = AVSS), the PGA must  
be bypassed. The PGA is bypassed and powered down by setting the PGA_EN[1:0] bits to 00 in the gain setting  
register (03h).  
For signal sources with high output impedance, external buffering may still be necessary. Note that active buffers  
introduce noise and also introduce offset and gain errors. Consider all of these factors in high-accuracy  
applications.  
9.3.3 Voltage Reference  
The devices require a reference voltage for operation. The ADS124S0x offers an integrated low-drift 2.5-V  
reference. For applications that require a different reference voltage value or a ratiometric measurement  
approach, the ADS124S08 offers two differential reference input pairs (REFP0, REFN0 and REFP1, REFN1).  
The differential reference inputs allow freedom in the reference common-mode voltage. REFP0 and REFN0 are  
dedicated reference inputs, whereas REFP1 and REFN1 are shared with inputs AIN6 and AIN7 (respectively) on  
the ADS124S08. The specified external reference voltage range is 0.5 V to AVDD. The reference voltage is  
shown in 公式 7, where V(REFPx) and V(REFNx) are the absolute positive and absolute negative reference voltages.  
VREF = V(REFPx) – V(REFNx)  
(7)  
The polarity of the reference voltage internal to the ADC must be positive. The magnitude of the reference  
voltage together with the PGA gain establishes the ADC full-scale differential input range as defined by  
FSR = ±VREF / Gain.  
52 shows the block diagram of the reference multiplexer. The ADC reference multiplexer selects between the  
internal reference and two external references (REF0 and REF1). The reference multiplexer is programmed with  
the REFSEL[1:0] bits in the reference control register (05h). By default, the external reference pair REFP0,  
REFN0 is selected.  
REFSEL[1:0] bits of REF register  
00 = REFP0, REFN0  
01 = REFP1, REFN1  
10 = Internal 2.5-V reference  
11 = Reserved  
00  
01  
10  
REFP0  
REFP1  
VREFP  
REFOUT  
Internal  
2.5 V  
Reference  
Reference  
Detection  
1 mF(1)  
VREFN  
00  
REFN0  
REFN1  
01  
10  
REFP_BUF bit of REF register  
0 = Enabled  
REFCOM  
1 = Disabled  
REFCON[1:0] bits of REF register  
00 = Internal reference off  
01 = Internal reference on;  
off in power-down mode  
10 = Internal reference always on  
11 = Reserved  
REFN_BUF bit of REF register  
0 = Enabled  
1 = Disabled  
ADC  
(1) The internal reference requires a minimum 1-µF capacitor connected from REFOUT to REFCOM.  
52. Reference Multiplexer Block Diagram  
The ADC also contains an integrated reference voltage monitor. This monitor provides continuous detection of a  
low or missing reference during the conversion cycle. The reference monitor flags (FL_REF_L0 and FL_REF_L1)  
are set in the STATUS byte and described in the Reference Monitor section.  
版权 © 2016–2017, Texas Instruments Incorporated  
35  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.3.3.1 Internal Reference  
The ADC integrates a precision, low-drift, 2.5-V reference. The internal reference is enabled by setting  
REFCON[1:0] to 10 (reference is always on) or 01 (reference is on, but powers down in power-down mode) in  
the reference control register (05h). By default, the internal voltage reference is powered down. To select the  
internal reference for use with the ADC, set the REFSEL[1:0] bits to 10. The REFOUT pin provides a buffered  
reference output voltage when the internal reference voltage is enabled. The negative reference output is the  
REFCOM pin, as shown in 52. Connect a capacitor in the range of 1 μF to 47 μF between REFOUT and  
REFCOM. Larger capacitor values help filter more noise at the expense of a longer reference start-up time.  
The capacitor is not required if the internal reference is not used. However, the internal reference must be  
powered on if using the IDACs.  
The internal reference requires a start-up time that must be accounted for before starting a conversion, as shown  
in 10.  
10. Internal Reference Settling Time  
REFOUT CAPACITOR  
SETTLING ERROR  
0.01%  
SETTLING TIME (ms)  
4.5  
5.9  
4.9  
6.3  
5.5  
7.0  
1 µF  
0.001%  
0.01%  
10 µF  
47 µF  
0.001%  
0.01%  
0.001%  
9.3.3.2 External Reference  
The ADS124S0x provides two external reference inputs selectable through the reference multiplexer. The  
reference inputs are differential with independent positive and negative inputs. REFP0 and REFN0 or REFP1  
and REFN1 can be selected as the ADC reference. REFP1 and REFN1 are shared inputs with analog pins AIN6  
and AIN7 in the ADS124S08.  
Without buffering, the reference input impedance is approximately 250 kΩ. The reference input current can lead  
to possible errors from either high reference source impedance or through reference input filtering. To reduce the  
input current, use either internal or external reference buffers. In most applications external reference buffering is  
not necessary.  
Connect a 100-nF bypass capacitor across the external reference input pins. Follow the specified absolute and  
differential reference voltage requirements.  
9.3.3.3 Reference Buffers  
The device has two individually selectable reference input buffers to lower the reference input current. Use the  
REFP_BUF and REFN_BUF bits in the reference control register (05h) to enable or disable the positive and  
negative reference buffers respectively. Note that these bits are active low. Writing a 1 to REFP_BUF or  
REFN_BUF disables the reference buffers.  
The reference buffers are recommended to be disabled when the internal reference is selected for  
measurements. When the external reference input is at the supply voltage (REFPx at AVDD or REFNx at AVSS),  
the reference buffer is recomended to be disabled.  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.4 Clock Source  
The ADS124S0x system clock is either provided by the internal low-drift 4.096-MHz oscillator or an external clock  
source on the CLK input. Use the CLK bit within the data rate register (04h) to select the internal  
4.096-MHz oscillator or an external clock source.  
The device defaults to using the internal oscillator. If the device is reset (from either the RESET pin, or the  
RESET command), then the clock source returns to using the internal oscillator even if an external clock is  
selected.  
9.3.5 Delta-Sigma Modulator  
A delta-sigma (ΔΣ) modulator is used in the devices to convert the analog input voltage into a pulse code  
modulated (PCM) data stream. The modulator runs at a modulator clock frequency of fMOD = fCLK / 16, where fCLK  
is either provided by the internal 4.096-MHz oscillator or the external clock source.  
9.3.6 Digital Filter  
The devices offer digital filter options for both filtering and decimation of the digital data stream coming from the  
delta-sigma modulator. The implementation of the digital filter is determined by the data rate and filter mode  
setting. 53 shows the digital filter implementation. Choose between a third-order sinc filter (sinc3) and a low-  
latency filter (low-latency filter with multiple components) using the FILTER bit in the data rate register (04h).  
fCLK = 4.096 MHz  
Sinc3 Filter  
4000, 2000, 1000, 800, 400, 200,  
fCLK / 16  
Sinc3  
100, 60, 50, 20, 16.6, 10, 5, 2.5 SPS  
Filter  
fMOD = 256 kHz  
Sinc1  
Filter  
Low-Latency Filter  
20, 10, 5, 2.5 SPS  
LL2  
Filter  
ADC  
ADC Data  
Output  
Sinc1  
Filter  
400, 200, 100, 60, 50, 16.6 SPS  
4000, 2000, 1000, 800 SPS  
LL1  
Filter  
FILTER Bit of  
DR[3:0] Bits of  
DATARATE Register  
DATARATE Register  
0 = Sinc3 Filter  
0000 = 2.5 SPS  
1000 = 200 SPS  
1001 = 400 SPS  
1010 = 800 SPS  
1011 = 1000 SPS  
1100 = 2000 SPS  
1101 = 4000 SPS  
1110 = 4000 SPS  
1111 = Reserved  
1 = Low-Latency filter  
0001 = 5 SPS  
0010 = 10 SPS  
0011 = 16.6 SPS  
0100 = 20 SPS  
0101 = 50 SPS  
0110 = 60 SPS  
0111 = 100 SPS  
NOTE: LL filter = low-latency filter.  
53. Digital Filter Architecture  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Regardless of the FILTER type setting, the oversampling ratio is the same for each given data rate, meaning that  
the device requires a set number of modulator clocks to output a single ADC conversion data. The output data  
rate is selected using the DR[3:0] bits in the data rate register and is shown in 11.  
11. ADC Data Rates and Digital Filter Oversampling Ratios  
NOMINAL DATA RATE  
(SPS)(1)  
DATA RATE REGISTER  
DR[3:0]  
OVERSAMPLING  
RATIO(2)  
2.5  
5
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
102400  
51200  
25600  
15360  
12800  
5120  
4264  
2560  
1280  
640  
10  
16.6  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
320  
256  
128  
64  
(1) Valid for the internal oscillator or an external 4.096-MHz clock.  
(2) The oversampling ratio is fMOD divided by the data rate; fMOD = fCLK / 16.  
9.3.6.1 Low-Latency Filter  
The low-latency filter is selected when the FILTER bit is set to 0 in the data rate register (04h). The filter is a  
finite impulse response (FIR) filter that provides settled data, given that the analog input signal has settled to the  
final value before the conversion is started. The low-latency filter is especially useful when multiple channels  
must be scanned in minimal time.  
9.3.6.1.1 Low-Latency Filter Frequency Response  
The low-latency filter provides many data rate options for rejecting 50-Hz and 60-Hz line cycle noise. At data  
rates of 2.5 SPS, 5 SPS, 10 SPS, and 20 SPS, the filter rejects both 50-Hz and 60-Hz line frequencies. At data  
rates of 16.6 SPS and 50 SPS, the filter has a notch at 50 Hz. At a 60-SPS data rate, the filter has a notch at  
60 Hz.  
For detailed frequency response plots showing line cycle noise rejection, download the ADS1x4S0x design  
calculator from www.ti.com.  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
54 to 68 show the frequency response of the low-latency filter for different data rates. 12 gives the  
bandwidth of the low-latency filter for each data rate.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
Frequency (Hz)  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
54. Low-Latency Filter Frequency Response,  
55. Low-Latency Filter Frequency Response,  
Data Rate = 2.5 SPS  
Data Rate = 5 SPS  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
20  
40  
60  
80  
100  
120  
140  
160  
Frequency (Hz)  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
56. Low-Latency Filter Frequency Response,  
57. Low-Latency Filter Frequency Response,  
Data Rate = 10 SPS  
Data Rate = 16.6 SPS  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80 100 120 140 160 180 200  
Frequency (Hz)  
40  
45  
50  
55  
60  
65  
70  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
58. Low-Latency Filter Frequency Response,  
59. Low-Latency Filter Frequency Response,  
Data Rate = 20 SPS  
Data Rate = 20 SPS, Zoomed to 50 Hz and 60 Hz  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
0
0
100  
200  
300  
400  
Frequency (Hz)  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
60. Low-Latency Filter Frequency Response,  
61. Low-Latency Filter Frequency Response,  
Data Rate = 50 SPS  
Data Rate = 60 SPS  
0
-20  
-40  
-60  
0
-20  
-40  
-60  
400  
800  
1200  
1600  
2000  
0
200  
400  
600  
800  
1000  
Frequency (Hz)  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
63. Low-Latency Filter Frequency Response,  
62. Low-Latency Filter Frequency Response,  
Data Rate = 200 SPS  
Data Rate = 100 SPS  
0
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-80  
0
500 1000 1500 2000 2500 3000 3500 4000  
Frequency (Hz)  
1000 2000 3000 4000 5000 6000 7000 8000  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
64. Low-Latency Filter Frequency Response,  
65. Low-Latency Filter Frequency Response,  
Data Rate = 400 SPS  
Data Rate = 800 SPS  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-100  
-80  
0
0
4000  
8000  
12000  
16000  
20000  
2000  
4000  
6000  
8000  
10000  
Frequency (Hz)  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
fCLK = 4.096 MHz, low-latency filter  
67. Low-Latency Filter Frequency Response,  
66. Low-Latency Filter Frequency Response,  
Data Rate = 2 kSPS  
Data Rate = 1 kSPS  
0
-20  
-40  
-60  
-80  
-100  
0
8000  
16000  
24000  
32000  
40000  
Frequency (Hz)  
fCLK = 4.096 MHz, low-latency filter  
68. Low-Latency Filter Frequency Response,  
Data Rate = 4 kSPS  
12. Low-Latency Filter Bandwidth  
NOMINAL DATA RATE (SPS)(1)  
–3-dB BANDWIDTH (Hz)(1)  
2.5  
5
1.1  
2.2  
10  
4.7  
16.6  
20  
7.4  
13.2  
22.1  
26.6  
44.4  
89.9  
190  
574  
718  
718  
718  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
版权 © 2016–2017, Texas Instruments Incorporated  
41  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
The low-latency filter notches and output data rate scale proportionally with the clock frequency. For example, a  
notch that appears at 20 Hz when using a 4.096-MHz clock appears at 10 Hz if a 2.048-MHz clock is used. Note  
that the internal oscillator can vary over temperature as specified in the Electrical Characteristics table. The data  
rate, conversion time, and filter notches consequently vary by the same percentage. Consider using an external  
precision clock source if a digital filter notch at a specific frequency with a tighter tolerance is required.  
9.3.6.1.2 Data Conversion Time for the Low-Latency Filter  
The amount of time required to receive data from the ADC depends on more than just the nominal data rate of  
the device. The data period also depends on the mode of operation and other configurations of the device. When  
the low-latency filter is enabled, the data settles in one data period. However, a small amount of latency exists to  
set up the device, calculate the conversion data from the modulator samples, and other overhead that adds time  
to the conversion. For this reason, the first conversion data takes longer than subsequent data conversions.  
13 shows the conversion times for the low-latency filter for each ADC data rate and various conversion  
modes.  
13. Data Conversion Time for the Low-Latency Filter  
FIRST DATA  
SECOND AND SUBSEQUENT  
CONVERSIONS FOR CONTINUOUS  
CONVERSION MODE  
FOR CONTINUOUS CONVERSION MODE  
NOMINAL  
DATA RATE(1)  
(SPS)  
OR SINGLE-SHOT CONVERSION MODE(2)  
NUMBER OF  
NUMBER OF  
ms(3)  
ms(4)  
tMOD PERIODS(3)  
tMOD PERIODS(4)  
2.5  
5
406.504  
206.504  
106.504  
60.254  
56.504  
20.156  
16.910  
10.156  
5.156  
104065  
52865  
27265  
15425  
14465  
5160  
4329  
2600  
1320  
680  
400  
200  
100  
60  
102400  
51200  
25600  
15360  
12800  
5120  
4264  
2560  
1280  
640  
10  
16.6  
20  
50  
50  
20  
60  
16.66  
10  
100  
200  
400  
800  
1000  
2000  
4000  
5
2.656  
2.5  
1.25  
1
1.406  
360  
320  
1.156  
296  
256  
0.656  
168  
0.5  
0.25  
128  
0.406  
104  
64  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
(2) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START command.  
(3) Time does not include the programmable delay set by the DELAY[2:0] bits in the gain setting register. The default setting is an additional  
14 · tMOD, where tMOD = tCLK · 16.  
(4) Subsequent readings in continuous conversion mode do not have the programmable delay time.  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.6.2 Sinc3 Filter  
The sinc3 digital filter is selected when the FILTER bit is set to 0 in the data rate register (04h). Compared to the  
low-latency filter, the sinc3 filter has improved noise performance but has a three-cycle latency in the data output.  
9.3.6.2.1 Sinc3 Filter Frequency Response  
The low-pass nature of the sinc3 filter establishes the overall frequency response. The frequency response is  
given by 公式 8:  
3
«
÷
16 pf OSR  
sin  
fCLK  
H(f)  
= HSinc3(f) =  
«
16 pf  
OSRì sin  
÷
fCLK ◊  
where  
f = signal frequency  
fCLK = ADC clock frequency  
OSR = oversampling ratio  
(8)  
The sinc3 filter offers simultaneous 50-Hz and 60-Hz line cycle rejection at data rates of 2.5 SPS, 5 SPS, and  
10 SPS. The sinc3 filter offers only 50-Hz rejection at data rates of 16.6 SPS and 50 SPS, and only 60-Hz  
rejection at data rates of 20 SPS and 60 SPS. The sinc3 digital filter response scales with the data rate and has  
notches at multiples of the data rate. 69 shows the sinc3 digital filter frequency response normalized to the  
data rate. As an example, 70 shows the frequency response when the data rate is set to 10 SPS, and 71  
illustrates a close-up of the filter rejection of 50-Hz and 60-Hz line frequencies. For more detailed frequency  
response plots, download the ADS1x4S0x design calculator from www.ti.com.  
14 gives the bandwidth of the sinc3 filter for each data rate.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Normalized Frequency  
Frequency (Hz)  
Frequency normalized to data rate, sinc3 filter  
fCLK = 4.096 MHz, sinc3 filter  
69. Sinc3 Filter Frequency Response,  
70. Sinc3 Filter Frequency Response,  
Normalized to Data Rate  
Data Rate = 10 SPS  
版权 © 2016–2017, Texas Instruments Incorporated  
43  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
40  
45  
50  
55  
60  
65  
70  
Frequency (Hz)  
fCLK = 4.096 MHz, sinc3 filter  
71. Sinc3 Filter Frequency Response,  
Data Rate = 10 SPS, Zoomed to 50 Hz and 60 Hz  
14. Sinc3 Filter –3-dB Bandwidth  
NOMINAL DATA RATE (SPS)(1)  
–3-dB BANDWIDTH (Hz)(1)  
2.5  
5
0.65  
1.3  
10  
2.6  
16.6  
20  
4.4  
5.2  
50  
13.1  
15.7  
26.2  
52.3  
105  
209  
262  
523  
1046  
60  
100  
200  
400  
800  
1000  
2000  
4000  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
As mentioned in the previous section, filter notches and output data rate scale proportionally with the clock  
frequency and the internal oscillator can change frequency with temperature.  
44  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.6.2.2 Data Conversion Time for the Sinc3 Filter  
Similar to the low-latency filter, the sinc3 filter requires different amounts of time to complete a conversion. By  
nature, the sinc3 filter normally takes three conversion to settle. In both single-shot conversion mode and  
continuous conversion mode, the first two conversions are suppressed so that only settled data are output by the  
ADC.  
15 shows the conversion times for the sinc3 filter for each ADC data rate and various conversion modes.  
15. Data Conversion Time for the Sinc3 Filter  
FIRST DATA FOR  
SECOND AND SUBSEQUENT  
CONVERSIONS FOR CONTINUOUS  
CONVERSION MODE  
CONTINUOUS CONVERSION MODE OR  
NOMINAL DATA RATE(1)  
(SPS)  
SINGLE-SHOT CONVERSION MODE(2)  
NUMBER OF  
NUMBER OF  
ms(3)  
ms(4)  
tMOD PERIODS(3)  
tMOD PERIODS(4)  
2.5  
5
1200.254  
600.254  
300.254  
180.254  
150.254  
60.254  
50.223  
30.254  
15.254  
7.754  
307265  
153665  
76865  
46145  
38465  
15425  
12857  
7745  
400  
200  
100  
60  
102400  
51200  
25600  
15360  
12800  
5120  
4264  
2560  
1280  
640  
10  
16.6  
20  
50  
50  
20  
60  
16.66  
10  
100  
200  
400  
800  
1000  
2000  
4000  
3905  
5
1985  
2.5  
1.25  
1
4.004  
1025  
320  
3.156  
808  
256  
1.656  
424  
0.5  
0.25  
128  
0.906  
232  
64  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
(2) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START command.  
(3) Time does not include the programmable delay set by the DELAY[2:0] bits in the gain setting register. The default setting is an additional  
14 · tMOD, where tMOD = tCLK · 16.  
(4) Subsequent readings in continuous conversion mode do not have the programmable delay time.  
9.3.6.3 Note on Conversion Time  
Each data period consists of time required for the modulator to sample the analog inputs. However, there is  
additional time required before the samples become an ADC conversion result. First, there is a programmable  
conversion delay (described in the Programmable Conversion Delay section) that is added before the conversion  
starts. This delay allows for additional settling time for input filtering on the analog inputs and for the antialiasing  
filter after the PGA. The default programmable conversion delay is 14 · tMOD. Also, overhead time is needed to  
convert the modulator samples into an ADC conversion result. This overhead time includes any necessary offset  
or gain compensation after the digital filter accumulates a data result.  
The first conversion when the device is in continuous conversion mode (just as in single-shot conversion mode)  
includes the programmable conversion delay, the modulator sampling time, and the overhead time. The second  
and subsequent conversions are the normal data period (period as given by the inverse of the data rate).  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
72 shows the time sequence for the ADC in both continuous conversion and single-shot conversion modes.  
The sequence is the same regardless of the filter setting. However, when the low-latency filter settles for each  
data, the sinc3 filter does not settle until the third data.  
Single-shot conversion mode: Low-Latency filter  
Conversion  
start(1)  
Data  
ready  
Programmable delay  
Modulator sampling  
ADC overhead  
Sampling for  
first data  
DRDY  
Single-shot conversion mode: Sinc3 Filter  
Conversion  
start(1)  
Data not  
settled  
Data not  
settled  
Filter settled  
First data ready(2)  
Sampling for  
first data.  
Sampling for  
second data.  
Sampling for  
third data.  
DRDY  
Continuous conversion mode: Low-Latency or Sinc3 Filter  
Conversion  
start(1)  
First  
Second  
data ready  
Third data  
ready  
Fourth data  
ready  
data ready(3)  
Sampling for  
first data.  
Sampling for  
second data.  
Sampling for  
third data.  
Continued  
sampling.  
Sampling for  
fourth data.  
Low-Latency Filter  
DRDY  
Sinc3 Filter  
DRDY  
(1) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START  
command.  
(2) In sinc3 filter mode, the first two data outputs are suppressed to allow for the measurement data to settle.  
(3) In sinc3 filter mode, there is no overhead time for the first two data, which are not available to be read.  
72. Single-Shot Conversion Mode and Continuous Conversion Mode Sequences  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.6.4 50-Hz and 60-Hz Line Cycle Rejection  
If the ADC connection leads are in close proximity to industrial motors and conductors, coupling of 50-Hz and  
60-Hz power line frequencies can occur. The coupled noise interferes with the signal voltage, and can lead to  
inaccurate or unstable conversions. The digital filter provides enhanced rejection of power-line-coupled noise for  
data rates of 60 SPS and less. Program the filter to tradeoff data rate and conversion latency versus the desired  
level of line cycle rejection. 16 and 17 summarize the ADC 50-Hz and 60-Hz line-cycle rejection based on  
±1-Hz and ±2-Hz tolerance of power-line to ADC clock frequency. The best possible power-line rejection is  
provided by using an accurate ADC clock.  
16. Low-Latency Filter, 50-Hz and 60-Hz Line Cycle Rejection  
LOW-LATENCY DIGITAL FILTER LINE CYCLE REJECTION (dB)  
DATA RATE (SPS)(1)  
50 Hz ± 1 Hz  
–113.7  
–111.9  
–111.5  
–33.8  
60 Hz ± 1 Hz  
–95.4  
50 Hz ± 2 Hz  
–97.7  
60 Hz ± 2 Hz  
–92.4  
2.5  
5
–95.4  
–87.6  
–81.8  
10  
–95.4  
–85.7  
–81.0  
16.6  
20  
–20.9  
–27.8  
–20.8  
–95.4  
–95.4  
–75.5  
–80.5  
50  
–33.8  
–15.5  
–27.6  
–15.1  
60  
–13.4  
–35.0  
–12.6  
–29.0  
(1) fCLK = 4.096 MHz.  
17. Sinc3 Filter, 50-Hz and 60-Hz Line Cycle Rejection  
SINC3 DIGITAL FILTER LINE CYCLE REJECTION (dB)  
DATA RATE (SPS)(1)  
50 Hz ± 1 Hz  
–108.7  
–103.2  
–101.8  
–101.6  
–53.5  
60 Hz ± 1 Hz  
–113.4  
–107.8  
–106.4  
–63.0  
50 Hz ± 2 Hz  
–107.2  
–90.1  
60 Hz ± 2 Hz  
–112.1  
–95.0  
2.5  
5
10  
–84.6  
–89.4  
16.6  
20  
–83.4  
–62.4  
–106.1  
–46.7  
–53.5  
–88.0  
50  
–101.4  
–40.3  
–82.9  
–45.3  
60  
–105.1  
–37.8  
–87.2  
(1) fCLK = 4.096 MHz.  
版权 © 2016–2017, Texas Instruments Incorporated  
47  
 
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.3.6.5 Global Chop Mode  
The device uses a very low-drift PGA and modulator in order to provide very low input voltage offset drift.  
However, a small amount of offset voltage drift sometimes remains in normal measurement. The ADC  
incorporates a global chop option to reduce the offset voltage and offset voltage drift to very low levels. When the  
global chop is enabled, the ADC performs two internal conversions to cancel the input offset voltage. The first  
conversion is taken with normal input polarity. The ADC reverses the internal input polarity for a second  
conversion. The average of the two conversions yields the final corrected result, removing the offset voltage. The  
global chop mode is enabled using the G_CHOP bit in the data rate register (04h). 73 shows a block diagram  
of the global chop implementation. The combined PGA and ADC internal offset voltage is modeled as VOFS  
.
G_CHOP bit of DATARATE register  
0 = Global chop off  
1 = Global chop on  
Chop Switch  
VOFS  
AIN0  
AINP  
AINN  
-
+
Digital  
Filter  
Chop  
C
A D  
Input  
MUX  
ADC  
Conversion Output  
PGA  
Control  
AINCOM  
73. ADC Global Chop Block Diagram  
The first conversion result is available after the ADC takes two separate conversions with settled data. When  
using the low-latency filter, data settles in a single conversion. When the global chop mode is enabled, the first  
conversion result appears after a time period of approximately two conversions. When using the sinc3 filter, data  
settles in three conversions. If the global chop mode is enabled, the first conversion result appears after a time  
period of approximately six conversions.  
In continuous conversion mode with the global chop mode enabled, subsequent conversions complete in half the  
time as the first conversion completed. Data for alternating inputs are pipelined so that averaging appears on  
each ADC data cycle. Conversion times using the global chop mode are given in 18 and 19.  
18. Data Conversion Time for Global Chop Mode Using the Low-Latency Filter  
FIRST DATA CONVERSION PERIOD  
FOR GLOBAL CHOP MODE(2)  
SECOND AND SUBSEQUENT CONVERSION  
PERIODS FOR GLOBAL CHOP MODE  
NOMINAL  
DATA RATE(1)  
(SPS)  
NUMBER OF  
NUMBER OF  
ms(3)  
ms(3)  
tMOD PERIODS(3)  
tMOD PERIODS(3)  
2.5  
5
813.008  
413.008  
213.008  
120.508  
113.008  
40.313  
33.820  
20.313  
10.313  
5.313  
208130  
105730  
54530  
30850  
28930  
10320  
8658  
5200  
2640  
1360  
720  
406.504  
206.504  
106.504  
60.254  
56.504  
20.156  
16.910  
10.156  
5.156  
104065  
52865  
27265  
15425  
14465  
5160  
4329  
2600  
1320  
680  
10  
16.66  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
2.656  
2.813  
1.406  
360  
2.313  
592  
1.156  
296  
1.313  
336  
0.656  
168  
0.813  
208  
0.406  
104  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
(2) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START command.  
(3) Time does not include the programmable delay set by the DELAY[2:0] bits in the gain setting register. Global chop mode requires two  
conversions, doubling the additional time. The default setting adds an extra 28 · tMOD (where tMOD = tCLK · 16) to this column.  
48  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
19. Data Conversion Time for Global Chop Mode Using the Sinc3 Filter  
FIRST DATA CONVERSION PERIOD  
FOR GLOBAL CHOP MODE(2)  
SECOND AND SUBSEQUENT CONVERSION  
PERIODS FOR GLOBAL CHOP MODE  
NOMINAL  
DATA RATE(1)  
(SPS)  
NUMBER OF tMOD  
NUMBER OF tMOD  
ms(3)  
ms(3)  
PERIODS(3)  
614530  
307330  
153730  
92290  
76930  
30850  
25714  
15490  
7810  
PERIODS(3)  
2.5  
5
2400.508  
1200.508  
600.508  
360.508  
300.508  
120.508  
100.445  
60.508  
30.508  
15.508  
8.008  
1200.254  
600.254  
300.254  
180.254  
150.254  
60.254  
50.223  
30.254  
15.254  
7.754  
307265  
153665  
76865  
46145  
38465  
15425  
12857  
7745  
10  
16.66  
20  
50  
60  
100  
200  
400  
800  
1000  
2000  
4000  
3905  
3970  
1985  
2050  
4.004  
1025  
6.313  
1616  
3.156  
808  
3.313  
848  
1.656  
424  
1.813  
464  
0.906  
232  
(1) Valid for the internal oscillator or an external 4.096-MHz clock. Scales proportional with fCLK  
.
(2) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START command.  
(3) Time does not include the programmable delay set by the DELAY[2:0] bits in the gain setting register. Global chop mode requires two  
conversions, doubling the additional time. The default setting adds an extra 28 · tMOD (where tMOD = tCLK · 16) to this column.  
In global chop mode, sequences are similar to taking consecutive single-shot conversions and swapping the  
input on each conversion. Output data are averaged using the last two data read operations by the ADC with the  
inputs swapped. 74 shows the time sequence for the ADC using global chop mode.  
Global chop enabled, continuous conversion mode: Low-Latency filter  
Conversion  
start(1)  
Inputs  
First  
data ready  
Second  
data ready  
Third  
data ready  
Programmable delay  
Modulator sampling  
ADC overhead  
Swapped(2)  
Sampling for  
positive input data  
Sampling for  
negative input data  
Averaged for  
first data  
Sampling for  
positive input data  
Sampling for  
negative input data  
Averaged for  
third data  
Additional  
sampling  
Averaged for  
second data(3)  
Global chop enabled, continuous conversion mode: Sinc3 Filter  
Data not  
settled  
Data not  
settled  
First  
data ready  
Second  
data ready  
Conversion  
start(1)  
Data not  
settled  
Inputs  
Data not  
settled  
swapped(2)  
Sampling for  
positive input data  
Sampling for  
negative input data  
Sampling for  
positive input data  
Continued  
sampling  
Sampling  
Sampling  
Sampling  
Sampling  
Averaged for  
first data  
Averaged for  
second data(3)  
(1) Conversions start at the rising edge of the START/SYNC pin or on the seventh SCLK falling edge for a START  
command.  
(2) When the first data are collected, the inputs are swapped.  
(3) Measurements are averaged after the inputs are swapped for each conversion.  
74. Global Chop Enabled Conversion Mode Sequences  
Because the digital filter must settle after reversing the inputs, the global chop mode data rate is less than the  
nominal data rate, depending on the digital filter and programmed settling delay. However, if the data rate in use  
has 50-Hz and 60-Hz frequency response notches, the null frequencies remain unchanged.  
版权 © 2016–2017, Texas Instruments Incorporated  
49  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
The global chop mode also reduces the ADC noise by a factor of 2 because two conversions are averaged. In  
some cases, the programmable conversion delay must be increased, DELAY[2:0] in the gain setting register  
(03h), to allow for settling of external components.  
9.3.7 Excitation Current Sources (IDACs)  
The ADS124S0x incorporates two integrated, matched current sources (IDAC1, IDAC2). The current sources  
provide excitation current to resistive temperature devices (RTDs), thermistors, diodes, and other resistive  
sensors that require constant current biasing. The current sources are programmable to output values between  
10 μA to 2000 μA using the IMAG[3:0] bits in the excitation current register 1 (06h). Each current source can be  
connected to any of the analog inputs AINx as well as the REFP1 and REFN1 inputs for the ADS124S06. Both  
current sources can also be connected to the same pin. The routing of the IDACs is configured by the  
I1MUX[3:0] and I2MUX[3:0] bits in the excitation current register 2 (07h). In three-wire RTD applications, the  
matched current sources can be used to cancel errors caused by sensor lead resistance (see the Typical  
Application section for more details). 75 details the IDAC connection through the input multiplexer.  
I1MUX[3:0] bits of the IDACMUX register.  
IDAC routing to AIN8 œ AIN11 is available  
only on the ADS124S08.  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AIN0  
AIN1  
AIN2  
AVDD  
AIN3  
AIN4  
AIN5  
AIN6/REFP1  
AIN7/REFN1  
AIN8  
AIN6 / REFP1  
AIN7 / REFN1  
AIN8  
IDAC1  
MUX  
IDAC1  
AIN9  
ADS124S08 AIN9  
IMAG[3:0] bits of the IDACMAG register.  
0000 = Off  
0001 = 10 µA  
AIN10  
Only  
AIN10  
AIN11  
AIN11  
AINCOM  
0010 = 50 µA  
AINCOM  
0011 = 100 µA  
0100 = 250 µA  
No Connection 1101-1111  
0101 = 500 µA  
0110 = 750 µA  
0111 = 1000 µA  
1000 = 1500 µA  
1001 = 2000 µA  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AVDD  
AIN6/REFP1  
AIN7/REFN1  
AIN8  
IDAC2  
MUX  
IDAC2  
AIN9  
AIN10  
AIN11  
AINCOM  
No Connection 1101-1111  
I2MUX[3:0] bits of the IDACMUX register.  
IDAC routing to AIN8 œ AIN11 is available  
only on the ADS124S08.  
Copyright © 2017, Texas Instruments Incorporated  
75. IDAC Block Diagram  
The internal reference must be enabled for IDAC operation. As a current source, the IDAC requires voltage  
headroom to the positive supply to operate. This voltage headroom is the compliance voltage. When driving  
resistive sensors and biasing resistors, take care not to exceed the compliance voltage of the IDACs, otherwise  
the specified accuracy of the IDAC current may not be met. For IDAC compliance voltage specifications, see the  
Electrical Characteristics table.  
50  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.8 Bias Voltage Generation  
The ADS124S0x provides an internal bias voltage generator, VBIAS, that can be set to two different levels,  
(AVDD + AVSS) / 2 and (AVDD + AVSS) / 12 by using the VB_LEVEL bit in the sensor biasing register (08h).  
The bias voltage is internally buffered and can be established on the analog inputs AIN0 to AIN5 and AINCOM  
using the VB_AINx bits in the sensor biasing register (08h). A typical use case for VBIAS is biasing unbiased  
thermocouples to within the common-mode voltage range of the PGA. A block diagram of the VBIAS voltage  
generator and connection diagram is shown in 76.  
AVDD  
AIN0  
AIN1  
AIN2  
AIN3  
VB_LEVEL bit of VBIAS register  
0 = (AVDD + AVSS) / 2  
1 = (AVDD + AVSS) / 12  
6R  
5R  
INPUT  
MUX  
AIN4  
(AVDD + AVSS) / 2  
AIN5  
AINCOM  
(AVDD + AVSS) / 12  
R
VB_AINx bits of VBIAS register  
0 = VBIAS not connected to AINx  
1 = VBIAS connected to AINx  
AVSS  
76. VBIAS Block Diagram  
The start-up time of the VBIAS voltage depends on the pin load capacitance. The total capacitance includes any  
capacitance connected from VBIAS to AVDD, AVSS, and ground. 20 lists the VBIAS voltage settling times for  
various external load capacitances. Ensure the VBIAS voltage is fully settled before starting a conversion.  
20. VBIAS Settling Time  
LOAD CAPACITANCE  
SETTLING TIME  
280 µs  
0.1 µF  
1 µF  
2.8 ms  
10 µF  
28 ms  
版权 © 2016–2017, Texas Instruments Incorporated  
51  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.3.9 System Monitor  
The ADS124S0x provides a set of system monitor functions. These functions measure the device temperature,  
analog power supply, digital power supply, or use current sources to detect sensor malfunction. System monitor  
functions are enabled through the SYS_MON[2:0] bits of the system control register (09h).  
9.3.9.1 Internal Temperature Sensor  
On-chip diodes provide temperature-sensing capability. Enable the internal temperature sensor by setting  
SYS_MON[2:0] = 010 in the system control register (09h). The temperature sensor outputs a voltage proportional  
to the device temperature as specified in the Electrical Characteristics table.  
When measuring the internal temperature sensor, the analog inputs are disconnected from the ADC and the  
output voltage of the temperature sensor is routed to the ADC for measurement using the selected PGA gain,  
data rate, and voltage reference. If enabled, PGA gain must be limited to 4 for the temperature sensor  
measurement to remain within the allowed absolute input voltage range of the PGA. As a result of the low device  
junction-to-PCB thermal resistance (RθJB), the internal device temperature closely tracks the printed circuit board  
(PCB) temperature.  
9.3.9.2 Power Supply Monitors  
The ADS124S0x provides a means for monitoring both the analog and digital power supply (AVDD and DVDD).  
The power-supply voltages are divided by a resistor network to reduce the voltages to within the ADC input  
range. The reduced power-supply voltage is routed to the ADC input multiplexer. The analog (VANLMON) and  
digital (VDIGMON) power-supply readings are scaled by 公式 9 and 公式 10, respectively:  
VANLMON = (AVDD – AVSS) / 4  
VDIGMON = (DVDD – DGND) / 4  
(9)  
(10)  
Enable the supply voltage monitors using the SYS_MON[2:0] bits in the system control register (09h). Setting  
SYS_MON[2:0] to 011 measures VANLMON, and setting SYS_MON[2:0] to 100 measures VDIGMON  
.
When the supply voltage monitor is enabled, the analog inputs are disconnected from the ADC and the PGA gain  
is set to 1, regardless of the GAIN[2:0] bit values in the gain setting register (03h). Supply voltage monitor  
measurements can be done with either the PGA enabled or PGA disabled via the PGA_EN[1:0] register. To  
obtain valid power supply monitor readings, the reference voltage must be larger than the power-supply  
measurements shown in 公式 9 and 公式 10.  
9.3.9.3 Burn-Out Current Sources  
To help detect a possible sensor malfunction, the ADS124S0x provides selectable current sources to function as  
burn-out current sources (BOCS) using the SYS_MON[2:0] bits in the system control register (09h). Current  
sources are set to values of 0.2 µA, 1 µA, and 10 µA with SYS_MON[2:0] settings of 101, 110, and 111,  
respectively.  
When enabled, one BOCS sources current to the selected positive analog input (AINP) and the other BOCS  
sinks current from the selected negative analog input (AINN). With an open-circuit in a burned out sensor, these  
BOCSs pull the positive input towards AVDD and the negative input towards AVSS, resulting in a full-scale  
reading. A full-scale reading can also indicate that the sensor is overloaded or that the reference voltage is  
absent. A near-zero reading can indicate a shorted sensor. Distinguishing a shorted sensor condition from a  
normal reading can be difficult, especially if an RC filter is used at the inputs. The voltage drop across the  
external filter resistance and the residual resistance of the multiplexer can cause the output to read a value  
higher than zero.  
The ADC readings of a functional sensor can be corrupted when the burn-out current sources are enabled. The  
burn-out current sources are recommended to be disabled when performing the precision measurement, and  
only enabling them to test for sensor fault conditions. If the global chop mode is enabled, disable this mode  
before making a measurement with the burn-out current sources.  
52  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.10 Status Register  
The ADS124S0x has a one-byte status register that contains flags to indicate if a fault condition has occurred.  
This byte can be read out from the status register (01h), or can be prepended to each data read as the first byte  
when reading data from the ADC. To prepend the STATUS byte to each conversion result, set the SENDSTAT  
bit to 1 in the system control register (09h).  
The STATUS byte data field and field description are found in 94 and 27. The following sections describe  
various flagged fault conditions that are indicated in the STATUS byte.  
Flags for the PGA output voltage rail monitors and reference monitor are set after each conversion. Reading the  
STATUS byte reads the flags latched during the last conversion cycle.  
9.3.10.1 POR Flag  
After the power supplies are turned on, the ADC remains in reset until DVDD, IOVDD, and the analog power  
supply (AVDD – AVSS) voltage exceed the respective power-on reset (POR) voltage thresholds. If a POR event  
has occurred, the FL_POR flag (bit 7 of the STATUS byte) is set. This flag indicates that a POR event has  
occurred and has not been cleared. This flag is cleared with a user register write to set the bit to 0. The power-on  
reset is described further in the Power-On Reset section.  
9.3.10.2 RDY Flag  
The RDY flag indicates that the device has started up and is ready to receive a configuration change. During a  
reset or POR event, the device is resetting the register map and may not be available. The RDY flag is shown  
with bit 6 of the STATUS byte.  
9.3.10.3 PGA Output Voltage Rail Monitors  
The PGA contains an integrated output-voltage monitor. If the level of the PGA output voltage exceeds  
AVDD – 0.15 V or drops below AVSS + 0.15 V, a flag is set to indicate that the output has gone beyond the  
output range of the PGA. Each PGA output VOUTN and VOUTP can trigger an overvoltage or undervoltage flag,  
giving a total of four flags. The PGA output voltage rail monitors are enabled with the FL_REF_EN bit of  
excitation current register 1. The PGA output voltage rail monitor block diagram is shown in 77. If the PGA is  
bypassed, then the rail monitor is still operational and is sensing the connection at the input of the ADC.  
The PGA output voltage rail monitors are:  
FL_P_RAILP (bit 5 of the STATUS byte): VOUTP has exceeded AVDD – 0.15 V  
FL_P_RAILN (bit 4 of the STATUS byte): VOUTP dropped below AVSS + 0.15 V  
FL_N_RAILP (bit 3 of the STATUS byte): VOUTN has exceeded AVDD – 0.15 V  
FL_N_RAILN (bit 2 of the STATUS byte): VOUTN dropped below AVSS + 0.15 V  
STATUS byte [5:2]  
FL_N_RAILP FL_N_RAILN  
FL_P_RAILP FL_P_RAILN  
VOUTP  
C
A D  
ADC  
PGA  
VOUTN  
AVDD œ 0.15 V  
Latch  
œ
S
Q
+
R
œ
S
R
Q
+
Supply Rail  
Comparators  
œ
S
R
Q
Q
+
œ
S
R
+
AVSS + 0.15 V  
Conversion  
Start Reset  
77. PGA Output Voltage Rail Monitors  
版权 © 2016–2017, Texas Instruments Incorporated  
53  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
78 shows an example of a PGA output voltage rail monitor overrange event and the respective behavior of the  
flags. A fault is latched during a conversion cycle. The flags are updated (set or cleared) only at the end of a  
conversion cycle.  
AVDD - 0.15 V  
AVSS + 0.15 V  
Flag latched during  
conversion cycle  
Conversions (DRDY)  
FL_P_RAILP bit  
FL_P_RAILN bit  
78. PGA Output Voltage Rail Monitor Timing  
9.3.10.4 Reference Monitor  
The user can select to continuously monitor the ADC reference inputs for a shorted or missing reference voltage.  
The reference detection circuit offers two thresholds, the first threshold is 300 mV and the second threshold is  
1/3 · (AVDD – AVSS). The reference detection circuit measures the differential reference voltage and sets a flag  
latched after each conversion in the STATUS byte if the voltage is below the threshold. A reference voltage less  
than 300 mV can indicate a potential short on the reference inputs or, in case of a ratiometric RTD measurement,  
a broken wire between the RTD and the reference resistor. A reference voltage between 300 mV and 1/3 ·  
(AVDD – AVSS) can indicate a broken sensor excitation wire in a 3-wire RTD setup.  
Additionally, a resistor of 10 MΩ can be connected between the selected REFPx and REFNx inputs. The resistor  
can be used to detect a floating reference input. With a floating input, the resistor pulls both reference inputs to  
the same potential so that the reference detection circuit can detect this condition. The pull-together reference  
resistor is not recommended to be continuously connected to active reference inputs. This resistor lowers the  
input impedance of the reference inputs and can contribute gain error to the measurement.  
The reference detection circuits must be enabled with the FL_REF_EN[1:0] bits of the reference control register  
(05h). The FL_REF_L0 flag (bit 0 of the STATUS byte) indicates if the reference voltage is lower than 0.3 V. The  
FL_REF_L1 flag (bit  
1 of the STATUS byte) indicates if the reference voltage is lower than  
1/3 · (AVDD – AVSS). A diagram of the reference detection circuit is shown in 79. A reference monitor fault is  
latched at each conversion cycle and the flags in the status register are updated at the falling edge of DRDY.  
FL_REF_EN[1:0] bits of REF register  
00 = Reference monitor off  
01 = 0.3 V threshold enabled  
10 = 1/3 (AVDD - AVSS) threshold enabled  
11 = 0.3 V threshold and 10-Mpull-together enabled  
FL_REF_L0 bit of  
STATUS register  
0 = no alarm  
0.3 V  
1 = alarm  
+
S
R
Q
Q
œ
FL_REF_L1 bit of  
STATUS register  
0 = no alarm  
REFPx  
1/3 (AVDD œ AVSS)  
1 = alarm  
+
+
S
R
œ
œ
10 M  
REFNx  
Conversion  
Start Reset  
79. Reference Monitor Block Diagram  
54  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.11 General-Purpose Inputs and Outputs (GPIOs)  
The ADS124S06 offers four dedicated general-purpose input and output (GPIO) pins, and the ADS124S08 offers  
four pins (AIN8 to AIN11) that serve a dual purpose as either analog inputs or GPIOs.  
Two registers control the function of the GPIO pins. Use the CON[3:0] bits of the GPIO configuration register  
(11h) to configure a pin as a GPIO pin. The upper four bits (DIR[3:0]) of the GPIO data register (10h) configure  
the GPIO pin as either an input or an output. The lower four bits (DAT[3:0]) of the GPIO data register contain the  
input or output GPIO data. If a GPIO pin is configured as an input, the respective DAT[x] bit reads the status of  
the pin; if a GPIO pin is configured as an output, write the output status to the respective DAT[x] bit. For more  
information about the use of GPIO pins, see the Configuration Registers section.  
80 shows a diagram of how these functions are combined onto a single pin. Note that when the pin is  
configured as a GPIO, the corresponding logic is powered from AVDD and AVSS. When the devices are  
operated with bipolar analog supplies, the GPIO outputs bipolar voltages. Care must be taken to not load the  
GPIO pins when used as outputs because large currents can cause droop or noise on the analog supplies. GPIO  
pins use Schmitt triggered inputs, with hysteresis to make the input more resistance to noise; see the Electrical  
Characteristics table for GPIO thresholds.  
AVDD  
CON[3:0] bits of GPIOCON register  
0 = no connect  
DAT[3:0] bits of GPIODAT register  
0 = VGPIO is low  
1 = connect  
1 = VGPIO is high  
GPIO  
1 of 4  
Write  
0
Read  
GPIO[0]  
GPIO[1]  
GPIO[2]  
0
1
AIN8  
AIN9  
AIN10  
AIN11  
GPIO Read Select  
GPIO[3]  
DIR[7:4] bits of GPIODAT register  
0 = Output  
1 = Input  
GPIO logic is powered from  
AVDD to AVSS  
AVSS  
80. GPIO Block Diagram  
For connections of unused GPIO pins, see the Unused Inputs and Outputs section.  
9.3.12 Low-Side Power Switch  
A low-side power switch with low on-resistance connected between REFN0 and AVSS-SW is integrated in the  
devices. This power switch can be used to reduce system power consumption in resistive bridge sensor  
applications by powering down the bridge circuit between conversions. When the PSW bit in the excitation  
current register 1 (06h) is set to 1, the switch closes. The switch automatically opens when the POWERDOWN  
command is issued. The switch is opened by setting the PSW bit to 0. By default, the switch is open. Connect  
AVSS-SW to AVSS.  
版权 © 2016–2017, Texas Instruments Incorporated  
55  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.3.13 Cyclic Redundancy Check (CRC)  
A cyclic redundancy check (CRC) is enabled by setting the CRC bit to 1 in the system control register (10h).  
When CRC mode is enabled, the 8-bit CRC is appended to the conversion result. The CRC is calculated for the  
24-bit conversion result and the STATUS byte when enabled.  
In CRC mode, the checksum byte is the 8-bit remainder of the bitwise exclusive-OR (XOR) of the data bytes by a  
CRC polynomial. For conversion data, use three data bytes. The CRC is based on the CRC-8-ATM (HEC)  
polynomial: X8 + X2 + X + 1.  
The nine binary coefficients of the polynomial are: 100000111. To calculate the CRC, divide (XOR operation) the  
data bytes (excluding the CRC) with the polynomial and compare the calculated CRC values to the ADC CRC  
value. If the values do not match, a data transmission error has occurred. In the event of a data transmission  
error, read the data again.  
The following list shows a general procedure to compute the CRC value:  
1. Left-shift the initial 24-bit data value (32-bit data when the STATUS byte is enabled) by 8 bits, with zeros  
padded to the right, creating a new 32-bit data value (the starting data value).  
2. Align the MSB of the CRC polynomial (100000111) to the left-most, logic-one value of the data.  
3. Perform an XOR operation on the data value with the aligned CRC polynomial. The XOR operation creates a  
new, shorter-length value. The bits of the data values that are not in alignment with the CRC polynomial drop  
down and append to the right of the new XOR result.  
4. When the XOR result is less than 100000000, the procedure ends, yielding the 8-bit CRC value. Otherwise,  
continue with the XOR operation shown in step 2, using the current data value. The number of loop iterations  
depends on the value of the initial data.  
9.3.14 Calibration  
The ADC incorporates offset and gain calibration commands, as well as user-offset and full-scale (gain)  
calibration registers to calibrate the ADC. The ADC calibration registers are 24 bits wide. Use calibration to  
correct internal ADC errors or overall system errors. Calibrate by sending calibration commands to the ADC, or  
by direct user calibration. In user calibration, the user calculates and writes the correction values to the  
calibration registers. The ADC performs self or system-offset calibration, or a system gain calibration. Perform  
offset calibration before system gain calibration. After power-on, wait for the power supplies and reference  
voltage to fully settle before calibrating.  
As shown in 81, the value of the offset calibration register is subtracted from the filter output and then  
multiplied by the full-scale register value divided by 400000h. The data are then clipped to a 24-bit value to  
provide the final output.  
AINP  
C A D  
+
Output Data  
Clipped to 24 bits  
Digital  
Filter  
Final  
Output  
ADC  
AINN  
-
1/400000h  
OFCAL[2:0] registers  
(register addresses = 0Ch, 0Bh, 0Ah)  
> 000000h: negative offset  
= 000000h: no offset  
< 000000h: positive offset  
FSCAL[2:0] registers  
(register addresses = 0Fh, 0Eh, 0Dh)  
< 400000h: Gain > 1  
= 400000h: Gain = 1  
> 400000h: Gain < 1  
81. ADC Calibration Block Diagram  
Calibration commands cannot be used when the device is in standby mode (when the START/SYNC pin is low,  
or when the STOP command is issued).  
56  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.3.14.1 Offset Calibration  
The offset calibration word is 24 bits, consisting of three 8-bit registers, as shown in the three registers starting  
with offset calibration register 1. The offset value is twos complement format with a maximum positive value  
equal to 7FFFFFh, and a maximum negative value equal to 800000h. This value is subtracted from each output  
reading as an offset correction. A register value equal to 000000h has no offset correction. If global chop mode is  
enabled, the offset calibration register is disabled. 21 shows example settings of the offset register.  
21. Offset Calibration Register Values  
OFC[2:0] REGISTER VALUE  
000001h  
OFFSET CALIBRATED OUTPUT CODE(1)  
FFFFFFh  
000000h  
000001h  
000000h  
FFFFFFh  
(1) Ideal output code with shorted input, excluding ADC noise and offset voltage error.  
The user can select how many samples (1, 4, 8, or 16) to average for self or system offset calibration using the  
CAL_SAMP[1:0] bits in the system control register (09h). Fewer readings shorten the calibration time but also  
provide less accuracy. Averaging more readings takes longer but yields a more accurate calibration result by  
reducing the noise level.  
Two commands can be used to perform offset calibration. SFOCAL is a self offset calibration that internally sets  
the input to mid-scale using the SYS_MON[2:0] = 001 setting and takes a measurement of the offset. SYOCAL is  
a system offset calibration where the user must input a null voltage to calibrate the system offset. After either  
command is issued, the OFC register is updated.  
After an offset calibration is performed, the device starts a new conversion and DRDY falls to indicate a new  
conversion has completed.  
9.3.14.2 Gain Calibration  
The full-scale (gain) calibration word is 24 bits consisting of three 8-bit registers, as shown in the three registers  
starting with gain calibration register 1. The gain calibration value is straight binary, normalized to a unity-gain  
correction factor at a register value equal to 400000h. 22 shows register values for selected gain factors. Do  
not exceed the PGA input range limits during gain calibration.  
22. Gain Calibration Register Values  
FSCAL[2:0] REGISTER VALUE  
GAIN FACTOR  
433333h  
400000h  
1.05  
1.00  
0.95  
3CCCCCh  
All gains of the ADS124S0x are factory trimmed to meet the gain error specified in the Electrical Characteristics  
table at TA = 25°C. When the gain drift of the devices over temperature is very low, there is typically no need for  
self gain calibration.  
The SYGCAL command initiates a system gain calibration, where the user sets the input to full-scale to remove  
gain error. After the SYGCAL is issued, the FSC register is updated. As with the offset calibration, the  
CAL_SAMP[1:0] bits determine the number of samples used for a gain calibration.  
As with an offset calibration, the device starts a new conversion after a gain calibration and DRDY falls to  
indicate a new conversion has completed.  
版权 © 2016–2017, Texas Instruments Incorporated  
57  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.4 Device Functional Modes  
The device operates in three different modes: power-down mode, standby mode, and conversion mode. 82  
shows a flow chart of the different operating modes and how the device transitions from one mode to another.  
Power-On Reset or  
Power-down  
RESET pin high or  
Mode(2)  
RESET command?(1)  
No  
Reset device to  
default settings  
WAKEUP  
Command?  
Yes  
Standby  
Mode  
Complete current  
conversion(4)  
No  
START/SYNC  
rising edge or START  
Command?  
Yes  
Yes  
START/SYNC  
pin low or STOP  
Command?  
No  
Conversion  
Mode  
Start new  
conversion  
1 = Single-Shot  
conversion mode  
0 = Continuous  
conversion mode  
Conversion  
mode selection(3)  
(1) Any reset (power-on, command, or pin), immediately resets the device.  
(2) A POWERDOWN command aborts an ongoing conversion and immediately puts the device into power-down mode.  
(3) The conversion mode is selected with the MODE bit in the data rate register.  
(4) The rising edge of the START/SYNC pin or the START command starts a new conversion without completing the  
current conversion.  
82. Operating Flow Chart  
9.4.1 Reset  
The ADS124S0x is reset in one of three ways:  
Power-on reset  
RESET pin  
RESET command  
When a reset occurs, the configuration registers reset to default values and the device enters standby mode. The  
device then waits for the rising edge of the START/SYNC pin or a START command to enter conversion mode.  
Note that if the device had been using an external clock, the reset sets the device to use the internal oscillator as  
a default configuration. See the Timing Characteristics section for reset timing information.  
58  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Device Functional Modes (接下页)  
9.4.1.1 Power-On Reset  
The ADS124S0x incorporates a power-on reset circuit that holds the device in reset until all supplies reach  
approximately 1.65 V. The power-on reset also ensures that the device starts operating in a known state in case  
a brown-out event occurs, when the supplies have dipped below the minimum operating voltages. When the  
device completes a POR sequence, the FL_POR flag in the status register is set high to indicate that a POR has  
occurred.  
Begin communications with the device 2.2 ms after the power supplies reach minimum operating voltages. The  
only exception is polling the status register for the RDY bit. If the user polls the RDY bit, then use an SCLK rate  
of half the maximum-specified SCLK rate to get a proper reading when the device is making internal  
configurations. This 2.2-ms POR time is required for the internal oscillator to start up and the device to properly  
set internal configurations. After the internal configurations are set, the device sets the RDY bit in the device  
status register (01h). When this bit is set to 0, user configurations can be programmed into the device. 83  
shows the power-on reset timing sequence for the device.  
VPOR  
DVDD, IOVDD  
VPOR  
All supplies reach  
AVDD - AVSS  
minimum operating voltage  
Internal  
Oscillator Startup  
Internal  
Configuration  
Standby  
Mode  
FL_POR bit of  
STATUS register is set to 1  
RDY bit of  
STATUS register is set to 0  
2.2 ms  
If polling for RDY during this period, SCLK  
must be less than half maximum rate  
83. Power-On Reset Timing Sequence  
9.4.1.2 RESET Pin  
Reset the ADC by taking the RESET pin low for a minimum of 4 · tCLK· cycles, and then returning the pin high.  
After the rising edge of the RESET pin, a delay time of td(RSSC) is required before sending the first serial interface  
command or starting a conversion. See the Timing Characteristics section for reset timing information.  
9.4.1.3 Reset by Command  
Reset the ADC by using the RESET command (06h or 07h). The command is decoded on the seventh SCLK  
falling edge. After sending the RESET command, a delay time of td(RSSC) is required before sending the first serial  
interface command or starting a conversion. See the Timing Characteristics section for reset timing information.  
9.4.2 Power-Down Mode  
Power-down mode is entered by sending the POWERDOWN command. In this mode, all analog and digital  
circuitry is powered down for lowest power consumption regardless of the register settings. Only the internal  
voltage reference can be configured to stay on during power-down mode in case a faster start-up time is  
required. All register values retain the current settings during power-down mode. The configuration registers can  
be read and written in power-down mode. A WAKEUP command must be issued in order to exit power-down  
mode and to enter standby mode.  
When the POWERDOWN command is issued, the device enters power-down mode 2 · tCLK after the seventh  
SCLK falling edge of the command. For lowest power consumption (on DVDD and IOVDD), stop the external  
clock when in power-down mode. The device does not gate the external clock when in power-down mode.  
Selecting the internal oscillator before sending the POWERDOWN command is recommended.  
版权 © 2016–2017, Texas Instruments Incorporated  
59  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
To release the device from POWERDOWN, issue the WAKEUP command to enter standby mode. The device  
then waits for the rising edge of the START/SYNC pin or a START command to go into conversion mode.  
When in power-down mode, the device responds to the RREG, RDATA, and WAKEUP commands. The WREG  
and RESET commands can also be sent, but are ignored until a WAKEUP command is sent and the internal  
oscillator resumes operation.  
9.4.3 Standby Mode  
The device powers up in standby mode and automatically enters this mode whenever there is no ongoing  
conversion. When the STOP command is sent (or the START/SYNC pin is taken low) in continuous conversion  
mode, or when a conversion completes in single-shot conversion mode, the device enters standby mode.  
Standby mode offers several different options and features to lower the power consumption:  
The PGA can be powered down by setting PGA_EN[1:0] to 00 in the gain setting register (03h).  
The internal voltage reference can be powered down by setting REFCON[1:0] to 00 in the reference control  
register (05h). This setting also turns off the IDACs.  
The digital filter is held in reset state.  
The clock to the modulator and digital core is gated to decrease dynamic switching losses.  
If powered down in standby mode, the PGA and internal reference can require extra time to power up. Extra  
delay may be required between power up of the PGA or the internal reference, and the start of conversions. In  
particular, the reference power up time is dependent on the capacitance between REFOUT and REFCOM.  
Calibration commands are not decoded when the device is in standby mode.  
9.4.4 Conversion Modes  
The ADS124S0x offers two conversion modes: continuous conversion and single-shot conversion mode.  
Continuous-conversion mode converts indefinitely until stopped by the user. Single-shot conversion mode  
performs one conversion after the START/SYNC pin is taken high or after the START command is sent. Use the  
MODE bit in the data rate register (04h) to program the conversion mode. 84 shows how the START/SYNC  
pin and the START command are used to control ADC conversions.  
(2)  
(1)  
(2)  
DRDY  
START/SYNC Pin  
SCLK  
START  
Command  
START(3)  
STOP  
DIN  
Conversion Mode  
Standby Mode  
Standby Mode  
(1) DRDY rises at the first SCLK rising edge or the rising edge of the START/SYNC pin.  
(2) START and STOP commands take effect 2 · tCLK after the seventh SCLK falling edge. The conversion starts 2 · tCLK  
after the START/SYNC rising edge.  
(3) To synchronize a conversion, the STOP command must be issued prior to the START command. STOP and START  
commands can be issued without a delay between the commands.  
84. Conversion Start and Stop Timing  
60  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Device Functional Modes (接下页)  
ADC conversions are controlled by the START/SYNC pin or by serial commands. For the device to start  
converting in continuous conversion or single-shot conversion mode, a START command must be sent or the  
START/SYNC pin must be taken high. If using commands to control conversions, keep the START/SYNC pin low  
to avoid possible contentions between the START/SYNC pin and commands.  
Conversions can be synchronized to perform a conversion at a particular time. To synchronize the conversion  
with the START/SYNC pin, take the pin low. The rising edge of the START/SYNC pin starts a new conversion.  
Similarly, a conversion can be synchronized using the START command. If the device is in standby mode, issue  
a START command. If the device is in conversion mode, issue a STOP command followed by a START  
command. The STOP and START commands can be consecutive. A new conversion starts on the seventh  
SCLK falling edge of the START command.  
9.4.4.1 Continuous Conversion Mode  
The device is configured for continuous conversion mode by setting the MODE bit to 0 in the data rate register  
(04h). A START command must be sent or the START/SYNC pin must be taken high for the device to start  
converting continuously. When controlling the device with commands, hold the START/SYNC pin low. Taking the  
START/SYNC pin low or sending the STOP command stops the device from converting after the currently  
ongoing conversion completes, indicated by the falling edge of DRDY. The device enters standby mode  
thereafter.  
For information on the exact timing of single-shot conversion mode data, see 13 and 15.  
9.4.4.2 Single-Shot Conversion Mode  
The device is configured for single-shot conversion mode by setting the MODE bit to 1 in the data rate register  
(04h). A START command must be sent or the START/SYNC pin must be taken high for the device to start a  
single conversion. After the conversion completes, the device enters standby mode again. To start a new  
conversion, the START command must be sent again or the START/SYNC pin must be taken low and then high  
again.  
When the device uses the sinc3 filter, ADC data requires three conversion cycles to settle. When the sinc3 filter is  
enabled, a single-shot conversion suppresses the first two ADC conversions and provides the third conversion as  
the output data so that the user receives settled data. Because three conversions are required for settled data,  
the conversion time in single-shot conversion mode is approximately three times the normal data period. When  
the device uses the low-latency filter, the ADC data settles in a single conversion. In single-shot conversion  
mode with the low-latency filter, the data period is closer to the normal data period.  
For information on the exact timing of single-shot conversion mode data, see 13 and 15.  
9.4.4.3 Programmable Conversion Delay  
When a new conversion is started, the ADC provides a delay before the actual start of the conversion. This timed  
delay is provided to allow for the integrated analog anti-alias filter to settle. In some cases more delay is required  
to allow for external settling effects. The delay time can be configured to automatically delay the start of a  
conversion after a START command is sent, the START/SYNC pin is taken high, or a WREG command is sent  
to change any configuration register from address 03h to 07h is issued (as described in the WREG section). The  
programmable conversion delay is intended to accommodate the analog settling time on the inputs (for example,  
when changing a multiplexer channel). Use the DELAY[2:0] bits in the gain setting register (03h) to program a  
delay time ranging from 1 · tMOD to 4096 · tMOD (where tMOD = 16 · tCLK). The default programmable conversion  
delay setting is 14 · tMOD  
.
版权 © 2016–2017, Texas Instruments Incorporated  
61  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.5 Programming  
9.5.1 Serial Interface  
The ADC has an SPI-compatible, bidirectional serial interface that is used to read the conversion data as well as  
to configure and control the ADC. Only SPI mode 1 (CPOL = 0, CPHA = 1) is supported. The serial interface  
consists of five control lines: CS, SCLK, DIN, DOUT/DRDY, and DRDY but can be used with only four or even  
three control signals. If the ADS124S08 or ADS124S06 is the only device connected to the SPI bus, then the CS  
input can be tied low so that only SCLK, DIN, and DOUT/DRDY are required to communicate with the device.  
9.5.1.1 Chip Select (CS)  
The CS pin is an active low input that enables the ADC serial interface for communication and is useful when  
multiple devices share the same serial bus. CS must be low during the entire data transaction. When CS is high,  
the serial interface is reset, SCLK input activity is ignored (blocking input commands), and the DOUT/DRDY  
output enters a high-impedance state. ADC conversions are not affected by the state of CS. In situations where  
multiple devices are present on the bus, the dedicated DRDY pin can provide an uninterrupted monitor of the  
conversion status and is not affected by CS. If the serial bus is not shared with another peripheral, CS can be  
tied to DGND to permanently enable the ADC interface and DOUT/DRDY can be used to indicate conversion  
status. These changes reduce the serial interface from five I/Os to three I/Os.  
9.5.1.2 Serial Clock (SCLK)  
The serial interface clock is a noise-filtered, Schmidt-triggered input used to clock data into and out of the ADC.  
Input data to the ADC are latched on the falling SCLK edge and output data from the ADC are updated on the  
rising SCLK edge. Return SCLK low after the data sequence is complete. Even though the SCLK input has  
hysteresis, keep SCLK as clean as possible to prevent unintentional SCLK transitions. Avoid ringing and voltage  
overshoot on the SCLK input. Place a series termination resistor at the SCLK drive pin to help reduce ringing.  
9.5.1.3 Serial Data Input (DIN)  
The serial data input pin (DIN) is used with SCLK to send data (commands and register data) to the device. The  
device latches data on DIN on the SCLK falling edge. The device never drives the DIN pin. During data  
readback, when no command is intended, keep DIN low.  
9.5.1.4 Serial Data Output and Data Ready (DOUT/DRDY)  
The DOUT/DRDY pin is a dual-function output. The pin functions as the digital data output and the ADC data-  
ready indication.  
First, this pin is used with SCLK to read conversion and register data from the device. Conversion or register  
data are shifted out on DOUT/DRDY on the SCLK rising edge. DOUT/DRDY goes to a high-impedance state  
when CS is high.  
Second, the DOUT/DRDY pin indicates availability of new conversion data. DOUT/DRDY transitions low at the  
same time that the DRDY pin goes low to indicate new conversion data are available. Both signals can be used  
to detect if new data are ready. However, because DOUT/DRDY is disabled when CS is high, use the dedicated  
DRDY pin when monitoring conversions on multiple devices on the SPI bus.  
62  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Programming (接下页)  
9.5.1.5 Data Ready (DRDY)  
The DRDY pin is an output that transitions low to indicate when conversion data are ready for retrieval. Initially,  
DRDY is high at power-on. When converting, the state of DRDY depends on whether the conversion data are  
retrieved or not. In continuous conversion mode after DRDY goes low, DRDY is driven high on the first SCLK  
rising edge. If data are not read, DRDY remains low and then pulses high 24 · tCLK before the next DRDY falling  
edge. The data must be retrieved before the next DRDY update, otherwise the data are overwritten by new data  
and any previous data are lost. 85 shows the DRDY operation without data retrieval. 86 shows the DRDY  
operation with data retrieval after each conversion completes.  
DRDY  
START/SYNC Pin  
SCLK  
START  
Command  
DIN  
START  
(1) DRDY returns high with the rising edge of the first SCLK after a data ready indication.  
85. DRDY Operation Without Data Retrieval  
DRDY  
START/SYNC Pin  
SCLK  
START  
Command  
START(1)  
DIN  
DOUT/DRDY  
Conversion  
Data 1  
Conversion  
Data 2  
Conversion  
Data 3  
(1) DRDY returns high with the rising edge of the first SCLK after a data ready indication.  
86. DRDY Operation With Data Retrieval  
9.5.1.6 Timeout  
The ADS124S0x offers a serial interface timeout feature that is used to recover communication when a serial  
interface transmission is interrupted. This feature is especially useful in applications where CS is permanently  
tied low and is not used to frame a communication sequence. The SPI interface resets when no valid 8 bits are  
received within 215 · tCLK. The timeout feature is enabled by setting the TIMEOUT bit to 1 in the system control  
register (09h).  
版权 © 2016–2017, Texas Instruments Incorporated  
63  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Programming (接下页)  
9.5.2 Data Format  
The devices provide 24 bits of data in binary twos complement format. The size of one code (LSB) is calculated  
using 公式 11.  
1 LSB = (2 · VREF / Gain) / 224 = +FS / 223  
(11)  
A positive full-scale input [VIN (+FS – 1 LSB) = (VREF / Gain – 1 LSB)] produces an output code of 7FFFFFh  
and a negative full-scale input (VIN –FS = –VREF / Gain) produces an output code of 800000h. The output clips  
at these codes for signals that exceed full-scale.  
23 summarizes the ideal output codes for different input signals.  
23. Ideal Output Code vs Input Signal  
INPUT SIGNAL,  
VIN = VAINP – VAINN  
FS (223 – 1) / 223  
FS / 223  
IDEAL OUTPUT CODE(1)  
7FFFFFh  
000001h  
0
000000h  
–FS / 223  
FFFFFFh  
–FS  
800000h  
(1) Excludes the effects of noise, INL, offset, and gain errors.  
Mapping of the analog input signal to the output codes is shown in 87.  
7FFFFFh  
7FFFFEh  
000001h  
000000h  
FFFFFFh  
800001h  
800000h  
¼
¼
-FS  
-FS  
0
FS  
Input Voltage VIN  
223 - 1  
223 - 1  
FS  
223  
223  
87. Code Transition Diagram  
64  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.5.3 Commands  
Commands are used to control the ADC, access the configuration registers, and retrieve data. Many of the  
commands are stand-alone (that is, single-byte). The register write and register read commands, however, are  
multibyte, consisting of two command bytes plus the register data byte or bytes. The commands are listed in 表  
24.  
24. Command Definitions  
FIRST  
COMMAND BYTE  
SECOND  
COMMAND BYTE  
COMMAND  
DESCRIPTION  
Control Commands  
NOP  
No operation  
0000 0000 (00h)  
WAKEUP  
Wake-up from power-down mode  
Enter power-down mode  
Reset the device  
0000 001x (02h, 03h)(1)  
0000 010x (04h, 05h)(1)  
0000 011x (06h, 07h)(1)  
0000 100x (08h, 09h)(1)  
0000 101x (0Ah, 0Bh)(1)  
POWERDOWN  
RESET  
START  
Start conversions  
STOP  
Stop conversions  
Calibration Commands  
SYOCAL  
System offset calibration  
System gain calibration  
Self offset calibration  
0001 0110 (16h)  
0001 0111 (17h)  
0001 1001 (19h)  
SYGCAL  
SFOCAL  
Data Read Command  
RDATA  
Read data by command  
0001 001x (12h / 13h)(1)  
Register Read and Write Commands  
RREG  
WREG  
Read nnnnn registers starting at address rrrrr  
Write nnnnn registers starting at address rrrrr  
001r rrrr(2)  
010r rrrr(2)  
000n nnnn(3)  
000n nnnn(3)  
(1) x = don't care.  
(2) r rrrr = starting register address.  
(3) n nnnn = number of registers to read or write – 1.  
Commands can be sent at any time, either during a conversion or when conversions are stopped. However, if  
register read or write commands are in progress when conversion data are ready, the ADC blocks loading of  
conversion data to the output shift register. The CS input pin can be taken high between commands; or held low  
between consecutive commands. CS must stay low for the entire command sequence. Complete the command,  
or terminate the command before completion by taking CS high. Only send the commands that are listed in 表  
24.  
9.5.3.1 NOP  
NOP is a no-operation command. The NOP command is used to clock out data without clocking in a command.  
9.5.3.2 WAKEUP  
Issue the WAKEUP command to exit power-down mode and to place the device into standby mode.  
When running off the external clock, the external clock must be running before sending the WAKEUP command,  
otherwise the command is not decoded.  
版权 © 2016–2017, Texas Instruments Incorporated  
65  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.5.3.3 POWERDOWN  
Sending the POWERDOWN command aborts a currently ongoing conversion and puts the device into power-  
down mode. The device goes into power-down mode 2 · tCLK after the seventh SCLK falling edge of the  
command.  
For lowest power consumption on DVDD and IOVDD, stop the external clock when in power-down mode. The  
device does not gate the external clock. When running off the external clock, provide at a minimum two  
additional tCLKs after the POWERDOWN command is issued, otherwise the device does not enter power-down  
mode. Because an external clock can be gated for lower power consumption, selecting the internal oscillator  
before sending the POWERDOWN command is recommended.  
During power-down mode, the only commands that are available are RREG, RDATA, and WAKEUP.  
9.5.3.4 RESET  
The RESET command resets the digital filter and sets all configuration register values to default settings. A  
RESET command also puts the device into standby mode. When in standby mode, the device waits for a rising  
edge on the START/SYNC pin or a START command to resume conversions. After sending the RESET  
command, a delay time of td(RSSC) is required before sending the first serial interface command or starting a  
conversion. See the Timing Characteristics section for reset timing information.  
Note that if the device had been using an external clock, the reset sets the device to use the internal oscillator as  
a default configuration.  
9.5.3.5 START  
When the device is configured for continuous conversion mode, issue the START command for the device to  
start converting. Every time a conversion completes, the device automatically starts a new conversion until the  
STOP command is sent.  
In single-shot conversion mode, the START command is used to start a single conversion. After the conversion  
completes, the device enters standby mode.  
Tie the START/SYNC pin low when the device is controlled through the START and STOP commands. The  
START command is not decoded if the START/SYNC pin is high. If the device is already in conversion mode, the  
command has no effect.  
9.5.3.6 STOP  
The STOP command is used in continuous conversion mode to stop the device from converting. The current  
conversion is allowed to complete. After DRDY transitions low, the device enters standby mode. The command  
has no effect in single-shot conversion mode.  
Hold the START/SYNC pin low when the device is controlled through START and STOP commands.  
9.5.3.7 SYOCAL  
The SYOCAL command initiates a system offset calibration. For a system offset calibration, the inputs must be  
externally shorted to a voltage within the input range, ideally near the mid-supply voltage of (AVDD + AVSS) / 2.  
The OFC registers are updated when the command completes. Calibration commands must be issued in  
conversion mode.  
9.5.3.8 SYGCAL  
The SYGCAL command initiates the system gain calibration. For a system gain calibration, the input must be  
externally set to full-scale. The FSC registers are updated after this operation. Calibration commands must be  
issued in conversion mode.  
9.5.3.9 SFOCAL  
The SFOCAL command initiates a self offset calibration. The device internally shorts the inputs to mid-supply  
and performs the calibration. The OFC registers are updated after this operation. Calibration commands must be  
issued in conversion mode.  
66  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.5.3.10 RDATA  
The RDATA command is used to read conversion data from the device at any time without concern of data  
corruption when the DRDY or DOUT/DRDY signal cannot be monitored. The conversion result is read from a  
buffer so that a new data conversion does not corrupt the conversion read.  
9.5.3.11 RREG  
Use the RREG command to read the device register data. Read the register data one register at a time, or read  
a block of register data. The starting register address can be any register in the register map. The RREG  
command consists of two bytes. The first byte specifies the starting register address: 001r rrrr, where r rrrr is the  
starting register address. The second command byte is the number of registers to read (minus 1): 000n nnnn,  
where n nnnn is the number of registers to read minus 1.  
After the read command is sent, the ADC responds with one or more register data bytes, most significant bit first.  
If the byte count exceeds the last register address, the ADC begins to output zero data. During the register read  
operation, any conversion data that becomes available is not loaded to the output shift register to avoid data  
contention. However, the conversion data can be retrieved later by the RDATA command. After the register read  
command has started, further commands are blocked until one of the following conditions are met:  
The read operation is completed  
The read operation is terminated by taking CS high  
The read operation is terminated by a serial interface timeout  
The ADC is reset by toggling the RESET pin  
88 depicts a two-register read operation example. As shown, the commands required to read data from two  
registers starting at register REF (address = 05h) are: command byte 1 = 25h and command byte 2 = 01h. Keep  
DIN low after the two command bytes are sent.  
(1)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DON‘T CARE  
DON‘T CARE  
REG DATA 1  
REG DATA 2  
DIN  
0010 0101  
0000 0001  
(1) CS can be set high or kept low between commands. If kept low, the command must be completed.  
88. Read Register Sequence  
版权 © 2016–2017, Texas Instruments Incorporated  
67  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.5.3.12 WREG  
Use the WREG command to write the device register data. The register data are written one register at a time or  
as a block of register data. The starting register address is any register in the register map.  
The WREG command consists of two bytes. The first byte specifies the starting register address: 010r rrrr, where  
r rrrr is the starting register address The second command byte is the number of registers to write (minus 1):  
000n nnnn, where n nnnn is the number of registers to write minus 1. The following byte (or bytes) is the register  
data, most significant bit first. If the byte count exceeds the last register address, the ADC ignores the data. After  
the register write command has started, further commands are blocked until one of the following conditions are  
met:  
The write operation is completed  
The write operation is terminated by taking CS high  
The write operation is terminated by a serial interface timeout  
The ADC is reset by toggling the RESET pin  
89 depicts a two-register write operation example. As shown, the required commands to write data to two  
registers starting at register REF (address = 05h) are: command byte 1 = 45h and command byte 2 = 01h.  
(1)  
CS  
1
9
17  
25  
SCLK  
DOUT/DRDY  
DIN  
DON‘T CARE  
DON‘T CARE  
DON‘T CARE  
DON‘T CARE  
0100 0101  
0000 0001  
REG DATA 1  
REG DATA 2  
(1) CS can be set high or kept low between commands. If kept low, the command must be completed.  
89. Write Register Sequence  
Writing new data to certain configuration registers resets the digital filter and starts a new conversion if a  
conversion is in progress. Writing to the following registers triggers a new conversion:  
Channel configuration register (02h)  
Gain setting register (03h)  
Data rate register (04h)  
Reference control register (05h), bits [5:0]  
Excitation current register 1 (06h), bits [3:0]  
Excitation current register 2 (07h)  
System control register (09h), bits [7:5]  
When the device is configured with WREG, the first data ready indication occurs after the new conversion  
completes with the new configuration settings. The previous conversion data are cleared at restart; therefore  
read the previous data before the register write operation. A WREG to the previously mentioned registers only  
starts a new conversion if the register data are new (differs from the previous register data) and if a conversion is  
in progress. If the device is in standby mode, the device sets the configuration according to the WREG data, but  
does not start a conversion until the START/SYNC pin is taken high or a START command is issued.  
68  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.5.4 Reading Data  
ADC data are read by two methods: read data direct or read data by command. The ADC writes new conversion  
data to the output shift register and the internal data-holding register. Data are read either from the output shift  
register (in direct mode) or read from the data-holding register (in command mode). Reading data from the data-  
holding register (command mode) does not require synchronizing the start of data readback to DRDY.  
9.5.4.1 Read Data Direct  
In this method of data retrieval, ADC conversion data are shifted out directly from the output shift register. No  
command is necessary. Read data direct requires that no serial activity occur from the falling edge of DRDY to  
the readback, or the data are invalid. The serial interface is full duplex in the read data direct mode; meaning that  
commands are decoded during the data readback. If no command is intended, keep DIN low during readback. If  
an input command is sent during readback, the ADC executes the command, and data corruption can result.  
Synchronize the data readback to DRDY or to DOUT/DRDY to make sure the data are read before the next  
DRDY update, or the old data are overwritten with new data.  
As shown in 90, the ADC data field is 3, 4, or 5 bytes long. The data field consists of an optional STATUS  
byte, three bytes of conversion data, and an optional CRC byte. After all bytes are read, the data-byte sequence  
(including the STATUS byte and CRC byte, if selected) is repeated when continued SCLKs are sent. The byte  
sequence repeats starting with the first byte. In order to help verify error-free communication, read the same data  
multiple times in each conversion interval or use the optional CRC byte.  
(1)  
DRDY  
CS (2)  
9
25  
41  
1
17  
33  
SCLK  
DIN  
HI-Z  
DOUT/DRDY  
Repeat  
CRC  
STATUS  
Data 1  
Data 2  
Data 3  
(3)  
Optional (4)  
Optional (4)  
Repeated Data (5)  
ADC Data Bytes  
SENDSTAT bit of SYS register  
0 = Disabled  
CRC bit of SYS register  
0 = Disabled  
1 = Enabled  
1 = Enabled  
(1) DRDY returns high on the first SCLK falling edge.  
(2) CS can be tied low. If CS is low, DOUT/DRDY asserts low at the same time as DRDY.  
(3) Complete data retrieval before new data are ready (28 · tCLK before the next falling edge of DOUT/DRDY and DRDY).  
(4) The STATUS and CRC bytes are optional.  
(5) The byte sequence, including selected optional bytes, repeats by continuing SCLK.  
90. Read Data Direct  
版权 © 2016–2017, Texas Instruments Incorporated  
69  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.5.4.2 Read Data by RDATA Command  
When the RDATA command is sent, the data are retrieved from the ADC data-holding register. Read data at any  
time without the risk of data corruption because the command method does not require synchronizing to DRDY.  
Polling of DRDY to determine when ADC data are ready can still be used.  
91 shows the read data by command sequence. The output data MSB begins on the first SCLK rising edge  
after the command. The output data field can be 3, 4, or 5 bytes long. The data field consists of an optional  
STATUS byte, three bytes of conversion data, and an optional CRC byte. An RDATA command must be sent for  
each read operation. The ADC does not respond to commands until the read operation is complete, or  
terminated by taking CS high.  
After all bytes are read, the data-byte sequence (including the STATUS byte and CRC byte, if selected) is  
repeated by continuing SCLK.  
(1)  
CS  
9
25  
41  
1
17  
33  
SCLK  
DIN  
RDATA  
HI-Z  
DOUT/DRDY  
(2)  
Don‘t Care  
STATUS  
Data 1  
Data 2  
Data 3  
CRC  
Optional(3)  
ADC Data Bytes  
Optional(3)  
SENDSTAT bit of SYS register  
0 = Disabled  
CRC bit of SYS register  
0 = Disabled  
1 = Enabled  
1 = Enabled  
(1) CS can be tied low. If CS is low, DOUT/DRDY asserts low with DRDY.  
(2) DOUT/DRDY is driven low with DRDY. If a read operation occurs after the DRDY falling edge, then DOUT/DRDY can  
be high or low.  
(3) The STATUS and CRC bytes are optional.  
91. Read Data by Command  
70  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.5.4.3 Sending Commands When Reading Data  
The device serial interface is capable of full-duplex operation when reading conversion data and not using the  
RDATA command. In full-duplex operation, commands are decoded at the same time that conversion data are  
read. Commands can be sent on any 8-bit data boundary during a data read operation. When a RREG or  
RDATA command is recognized, the current data read operation is aborted and the conversion data are  
corrupted, unless the command is sent when the last byte of the conversion result is retrieved. The device starts  
to output the requested data on DOUT/DRDY at the first SCLK rising edge after the command byte. To read data  
without interruption, keep DIN low when clocking out data.  
A WREG command can be sent without corrupting an ongoing read operation. Sending a WREG command  
when reading data minimizes the time between reading the data and setting the device configuration for the next  
conversion. 92 shows an example for sending a WREG command to write two configuration registers when  
reading conversion data by using read data direct mode. After the command is clocked in, the device resets the  
digital filter and starts converting with the new register settings as long as the device is in continuous conversion  
mode. The digital filter is reset and conversions are restarted after each data byte is received. In this example,  
the digital filter is reset when the first byte is received, decoding the input multiplexer and again when the PGA is  
set. The WREG command can be sent on any of the 8-bit boundaries. The example in 92 has the STATUS  
and CRC bytes disabled.  
DRDY  
CS (1)  
9
25  
1
17  
SCLK  
DIN  
0100 0010  
0000 0001  
0011 0010  
0000 1011  
WREG at 02h  
Data 1  
Two bytes  
Data 2  
AINP = AIN3,  
AINN = AIN2  
PGA enabled,  
Gain = 8  
HI-Z  
DOUT/DRDY  
Data 3  
Repeat Data 1  
ADC Data Bytes(2)  
(1) CS can be tied low. If CS is low, DOUT/DRDY asserts low at the same time as DRDY.  
(2) The output data buffer is cyclical and the original data byte is re-issued when the fourth DIN byte is clocked in.  
92. Issuing a WREG Command When Reading Back ADC Data  
9.5.5 Interfacing with Multiple Devices  
When connecting multiple devices to a single SPI bus, SCLK, DIN, and DOUT/DRDY can be safely shared by  
using a dedicated chip-select (CS) line for each SPI-enabled device. When CS transitions high for the respective  
device, DOUT/DRDY enters a tri-state mode. Therefore, DOUT/DRDY cannot be used to indicate when new data  
are available if CS is high. Only the dedicated DRDY pin indicates that new data are available because the  
DRDY pin is actively driven even when CS is high.  
In some cases, the DRDY pin cannot be interfaced to the microcontroller. This scenario can occur if there are  
insufficient GPIO channels available on the microcontroller or if the serial interface must be galvanically isolated  
and thus the amount of channels must be limited. In order to evaluate when a new conversion of one of the  
devices is ready, the microcontroller can periodically drop CS to the respective device and poll the state of the  
DOUT/DRDY pin.  
When CS goes low, the DOUT/DRDY pin immediately drives either high or low. If the DOUT/DRDY line drives  
low, new data are available. If the DOUT/DRDY line drives high, no new data are available. This procedure  
requires that DOUT/DRDY is forced high after reading each conversion result and before taking CS high. To  
make sure DOUT/DRDY is taken high, send a RREG command to read a register where the least significant bit  
is 1.  
版权 © 2016–2017, Texas Instruments Incorporated  
71  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Retrieving data using direct read mode requires knowledge of the DRDY falling edge timing to avoid data  
corruption. Use the RDATA command so that valid data can be retrieved from the device at any time without  
concern of data corruption by a new data ready.  
9.6 Register Map  
9.6.1 Configuration Registers  
The ADS124S0x register map consists of 18, 8-bit registers. These registers are used to configure and control  
the device to the desired mode of operation. Access the registers through the serial interface by using the RREG  
and WREG register commands. After power-on or reset, the registers default to the initial settings, as shown in  
the Default column of 25.  
Data can be written as a block to multiple registers using a single WREG command. If data are written as a  
block, the data of certain registers take effect immediately when data are shifted in. Writing new data to certain  
registers results in a restart of conversions that are in progress. The registers that result in a conversion restart  
are discussed in the WREG section.  
25. Configuration Register Map  
ADDR REGISTER  
DEFAULT  
xxh  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
ID  
RESERVED  
DEV_ID[2:0]  
STATUS  
INPMUX  
PGA  
80h  
01h  
00h  
14h  
10h  
00h  
FFh  
00h  
10h  
00h  
00h  
00h  
00h  
00h  
40h  
00h  
00h  
FL_POR  
RDY  
FL_P_RAILP FL_P_RAILN FL_N_RAILP FL_N_RAILN FL_REF_L1 FL_REF_L0  
MUXP[3:0] MUXN[3:0]  
GAIN[2:0]  
DELAY[2:0]  
CLK  
PGA_EN[1:0]  
FILTER  
DATARATE  
REF  
G_CHOP  
MODE  
REFP_BUF  
0
DR[3:0]  
FL_REF_EN[1:0]  
REFN_BUF  
0
REFSEL[1:0]  
REFCON[1:0]  
IDACMAG  
IDACMUX  
VBIAS  
FL_RAIL_EN  
PSW  
IMAG[3:0]  
I2MUX[3:0]  
I1MUX[3:0]  
VB_LEVEL  
VB_AINC  
VB_AIN5  
VB_AIN4  
VB_AIN3  
VB_AIN2  
TIMEOUT  
VB_AIN1  
CRC  
VB_AIN0  
SYS  
SYS_MON[2:0]  
CAL_SAMP[1:0]  
SENDSTAT  
OFCAL0  
OFCAL1  
OFCAL2  
FSCAL0  
FSCAL1  
FSCAL2  
GPIODAT  
GPIOCON  
OFC[7:0]  
OFC[15:8]  
OFC[23:16]  
FSC[7:0]  
FSC[15:8]  
FSC[23:16]  
DIR[3:0]  
DAT[3:0]  
CON[3:0]  
0
0
0
0
72  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.1 Device ID Register (address = 00h) [reset = xxh]  
93. Device ID (ID) Register  
7
6
5
4
3
2
1
0
RESERVED  
R-xxh  
DEV_ID[2:0]  
R-xh  
LEGEND: R = Read only; -n = value after reset; -x = variable  
26. Device ID (ID) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:3  
RESERVED  
R
xxh  
Values are subject to change without notice  
Device identifier  
Identifies the model of the device.  
000 : ADS124S08 (12 channels, 24 bits)  
001 : ADS124S06 (6 channels, 24 bits)  
010 : Reserved  
2:0  
DEV_ID[2:0]  
R
xh  
011 : Reserved  
100 : Reserved  
101 : Reserved  
110 : Reserved  
111 : Reserved  
版权 © 2016–2017, Texas Instruments Incorporated  
73  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.2 Device Status Register (address = 01h) [reset = 80h]  
94. Device Status (STATUS) Register  
7
6
5
4
3
2
1
0
FL_POR  
R/W-1h  
RDY  
R-0h  
FL_P_RAILP  
R-0h  
FL_P_RAILN  
R-0h  
FL_N_RAILP  
R-0h  
FL_N_RAILN  
R-0h  
FL_REF_L1  
R-0h  
FL_REF_L0  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. Device Status (STATUS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
POR flag  
Indicates a power-on reset (POR) event has occurred.  
7
FL_POR  
R/W  
1h  
0 : Register has been cleared and no POR event has occurred.  
1 : POR event occurred and has not been cleared. Flag must be cleared by  
user register write (default).  
Device ready flag  
Indicates the device has started up and is ready for communication.  
0 : ADC ready for communication (default)  
1 : ADC not ready  
Positive PGA output at positive rail flag(1)  
6
5
4
3
2
RDY  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Indicates the positive PGA output is within 150 mV of AVDD.  
0 : No error (default)  
1 : PGA positive output within 150 mV of AVDD  
Positive PGA output at negative rail flag(1)  
FL_P_RAILP  
FL_P_RAILN  
FL_N_RAILP  
FL_N_RAILN  
Indicates the positive PGA output is within 150 mV of AVSS.  
0 : No error (default)  
1 : PGA positive output within 150 mV of AVSS  
Negative PGA output at positive rail flag(1)  
Indicates the negative PGA output is within 150 mV of AVDD.  
0 : No error (default)  
1 : PGA negative output within 150 mV of AVDD  
Negative PGA output at negative rail flag(1)  
Indicates the negative PGA output is within 150 mV of AVSS.  
0 : No error (default)  
1 : PGA negative output within 150 mV of AVSS  
Reference voltage monitor flag, level 1(2)  
Indicates the external reference voltage is lower than 1/3 of the analog  
supply voltage. Can be used to detect an open-excitation lead in a 3-wire  
RTD application.  
0 : Differential reference voltage 1/3 · (AVDD – AVSS) (default)  
1 : Differential reference voltage < 1/3 · (AVDD – AVSS)  
1
0
FL_REF_L1  
FL_REF_L0  
R
R
0h  
0h  
Reference voltage monitor flag, level 0(2)  
Indicates the external reference voltage is lower than 0.3 V. Can be used to  
indicate a missing or floating external reference voltage.  
0 : Differential reference voltage 0.3 V (default)  
1 : Differential reference voltage < 0.3 V  
(1) The PGA rail monitors are enabled with the FL_RAIL_EN bit in excitation current register 1 (06h).  
(2) The reference monitors are enabled with the FL_REF_EN[1:0] bits of the reference control register (05h).  
74  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.3 Input Multiplexer Register (address = 02h) [reset = 01h]  
95. Input Multiplexer (INPMUX) Register  
7
6
5
4
3
2
1
0
MUXP[3:0]  
R/W-0h  
MUXN[3:0]  
R/W-1h  
LEGEND: R/W = Read/Write; -n = value after reset  
28. Input Multiplexer (INPMUX) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Positive ADC input selection  
Selects the ADC positive input channel.  
0000 : AIN0 (default)  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS124S08 only)  
0111 : AIN7 (ADS124S08 only)  
1000 : AIN8 (ADS124S08 only)  
1001 : AIN9 (ADS124S08 only)  
1010 : AIN10 (ADS124S08 only)  
1011 : AIN11 (ADS124S08 only)  
1100 : AINCOM  
7:4  
MUXP[3:0]  
R/W  
0h  
1101 : Reserved  
1110 : Reserved  
1111 : Reserved  
Negative ADC input selection  
Selects the ADC negative input channel.  
0000 : AIN0  
0001 : AIN1 (default)  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
0110 : AIN6 (ADS124S08 only)  
0111 : AIN7 (ADS124S08 only)  
1000 : AIN8 (ADS124S08 only)  
1001 : AIN9 (ADS124S08 only)  
1010 : AIN10 (ADS124S08 only)  
1011 : AIN11 (ADS124S08 only)  
1100 : AINCOM  
3:0  
MUXN[3:0]  
R/W  
1h  
1101 : Reserved  
1110 : Reserved  
1111 : Reserved  
版权 © 2016–2017, Texas Instruments Incorporated  
75  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.4 Gain Setting Register (address = 03h) [reset = 00h]  
96. Gain Setting (PGA) Register  
7
6
5
4
3
2
1
0
DELAY[2:0]  
R/W-0h  
PGA_EN[1:0]  
R/W-0h  
GAIN[2:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
29. Gain Setting (PGA) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Programmable conversion delay selection  
Sets the programmable conversion delay time for the first conversion after a  
WREG when a configuration change resets of the digital filter and triggers a  
new conversion(1)  
.
000 : 14 · tMOD (default)  
001 : 25 · tMOD  
010 : 64 · tMOD  
7:5  
DELAY[2:0]  
R/W  
0h  
011 : 256 · tMOD  
100 : 1024 · tMOD  
101 : 2048 · tMOD  
110 : 4096 · tMOD  
111 : 1 · tMOD  
PGA enable  
Enables or bypasses the PGA.  
00 : PGA is powered down and bypassed. Enables single-ended  
measurements with unipolar supply (Set gain = 1(2)) (default)  
01 : PGA enabled (gain = 1 to 128)  
10 : Reserved  
4:3  
PGA_EN[1:0]  
R/W  
0h  
11 : Reserved  
PGA gain selection  
Configures the PGA gain.  
000 : 1 (default)  
001 : 2  
010 : 4  
011 : 8  
2:0  
GAIN[2:0]  
R/W  
0h  
100 : 16  
101 : 32  
110 : 64  
111 : 128  
(1) For details on which bits and registers trigger a new conversion, see the WREG section.  
(2) When bypassing the PGA, the user must also set GAIN[2:0] to 000.  
76  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.5 Data Rate Register (address = 04h) [reset = 14h]  
97. Data Rate (DATARATE) Register  
7
6
5
4
3
2
1
0
G_CHOP  
R/W-0h  
CLK  
MODE  
R/W-0h  
FILTER  
R/W-1h  
DR[3:0]  
R/W-4h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
30. Data Rate (DATARATE) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Global chop enable  
Enables the global chop function. When enabled, the device automatically  
swaps the inputs and takes the average of two consecutive readings to  
7
G_CHOP  
R/W  
0h  
cancel the offset voltage.  
0 : Disabled (default)  
1 : Enabled  
Clock source selection  
Configures the clock source to use either the internal oscillator or an  
external clock.  
6
CLK  
R/W  
0h  
0 : Internal 4.096-MHz oscillator (default)  
1 : External clock  
Conversion mode selection  
Configures the ADC for either continuous conversion or single-shot  
conversion mode.  
0 : Continuous conversion mode (default)  
1 : Single-shot conversion mode  
5
4
MODE  
R/W  
R/W  
0h  
1h  
Digital filter selection  
Configures the ADC to use either the sinc3 or the low-latency filter.  
FILTER  
0 : Sinc3 filter  
1 : Low-latency filter (default)  
Data rate selection  
Configures the output data rate(1)  
0000 : 2.5 SPS  
.
0001 : 5 SPS  
0010 : 10 SPS  
0011 : 16.6 SPS  
0100 : 20 SPS (default)  
0101 : 50SPS  
0110 : 60 SPS  
3:0  
DR[3:0]  
R/W  
4h  
0111 : 100 SPS  
1000 : 200 SPS  
1001 : 400 SPS  
1010 : 800 SPS  
1011 : 1000 SPS  
1100 : 2000 SPS  
1101 : 4000 SPS  
1110 : 4000 SPS  
1111 : Reserved  
(1) Data rates of 60 Hz or less can offer line-cycle rejection; see the 50-Hz and 60-Hz Line Cycle Rejection section for more information.  
版权 © 2016–2017, Texas Instruments Incorporated  
77  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.6 Reference Control Register (address = 05h) [reset = 10h]  
98. Reference Control (REF) Register  
7
6
5
4
3
2
1
0
FL_REF_EN[1:0]  
R/W-0h  
REFP_BUF  
R/W-0h  
REFN_BUF  
R/W-1h  
REFSEL[1:0]  
R/W-0h  
REFCON[1:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
31. Reference Control (REF) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reference monitor configuration  
Enables and configures the reference monitor.  
00 : Disabled (default)  
01 : FL_REF_L0 monitor enabled, threshold 0.3 V  
7:6  
FL_REF_EN[1:0]  
R/W  
0h  
10 : FL_REF_L0 and FL_REF_L1 monitors enabled, thresholds 0.3 V and  
1/3 · (AVDD – AVSS)  
11 : FL_REF_L0 monitor and 10-MΩ pull-together enabled, threshold 0.3 V  
Positive reference buffer bypass  
Disables the positive reference buffer. Recommended when V(REFPx) is  
5
4
REFP_BUF  
REFN_BUF  
R/W  
R/W  
0h  
1h  
close to AVDD.  
0 : Enabled (default)  
1 : Disabled  
Negative reference buffer bypass  
Disables the negative reference buffer. Recommended when V(REFNx) is  
close to AVSS.  
0 : Enabled  
1 : Disabled (default)  
Reference input selection  
Selects the reference input source for the ADC.  
00 : REFP0, REFN0 (default)  
01 : REFP1, REFN1  
3:2  
1:0  
REFSEL[1:0]  
REFCON[1:0]  
R/W  
R/W  
0h  
0h  
10 : Internal 2.5-V reference(1)  
11 : Reserved  
Internal voltage reference configuration(2)  
Configures the behavior of the internal voltage reference.  
00 : Internal reference off (default)  
01 : Internal reference on, but powers down in power-down mode  
10 : Internal reference is always on, even in power-down mode  
11 : Reserved  
(1) Disable the reference buffers when the internal reference is selected for measurements.  
(2) The internal voltage reference must be turned on to use the IDACs.  
78  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.7 Excitation Current Register 1 (address = 06h) [reset = 00h]  
99. Excitation Current Register 1 (IDACMAG)  
7
6
5
0
4
0
3
2
1
0
FL_RAIL_EN  
R/W-0h  
PSW  
IMAG[3:0]  
R/W-0h  
R/W-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
32. Excitation Current Register 1 (IDACMAG) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
PGA output rail flag enable  
Enables the PGA output voltage rail monitor circuit.  
0 : Disabled (default)  
7
FL_RAIL_EN  
R/W  
0h  
1 : Enabled  
Low-side power switch  
Controls the low-side power switch. The low-side power switch opens  
automatically in power-down mode.  
0 : Open (default)  
6
PSW  
R/W  
R
0h  
0h  
1 : Closed  
Reserved  
5:4  
RESERVED  
Always write 0h  
IDAC magnitude selection  
Selects the value of the excitation current sources. Sets IDAC1 and IDAC2  
to the same value.  
0000 : Off (default)  
0001 : 10 µA  
0010 : 50 µA  
0011 : 100 µA  
0100 : 250 µA  
0101 : 500 µA  
0110 : 750 µA  
0111 : 1000 µA  
1000 : 1500 µA  
1001 : 2000 µA  
1010 - 1111 : Off  
3:0  
IMAG[3:0]  
R/W  
0h  
版权 © 2016–2017, Texas Instruments Incorporated  
79  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.8 Excitation Current Register 2 (address = 07h) [reset = FFh]  
100. Excitation Current Register 2 (IDACMUX)  
7
6
5
4
3
2
1
0
I2MUX[3:0]  
R/W-Fh  
I1MUX[3:0]  
R/W-Fh  
LEGEND: R/W = Read/Write; -n = value after reset  
33. Excitation Current Register 2 (IDACMUX) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
IDAC2 output channel selection  
Selects the output channel for IDAC2.  
0000 : AIN0  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
7:4  
I2MUX[3:0]  
R/W  
Fh  
0110 : AIN6 (ADS124S08), REFP1 (ADS124S06)  
0111 : AIN7 (ADS124S08), REFN1 (ADS124S06)  
1000 : AIN8 (ADS124S08 only)  
1001 : AIN9 (ADS124S08 only)  
1010 : AIN10 (ADS124S08 only)  
1011 : AIN11 (ADS124S08 only)  
1100 : AINCOM  
1101 - 1111 : Disconnected (default)  
IDAC1 output channel selection  
Selects the output channel for IDAC1.  
0000 : AIN0  
0001 : AIN1  
0010 : AIN2  
0011 : AIN3  
0100 : AIN4  
0101 : AIN5  
3:0  
I1MUX[3:0]  
R/W  
Fh  
0110 : AIN6 (ADS124S08 only), REFP1 (ADS124S06)  
0111 : AIN7 (ADS124S08 only), REFN1 (ADS124S06)  
1000 : AIN8 (ADS124S08 only)  
1001 : AIN9 (ADS124S08 only)  
1010 : AIN10 (ADS124S08 only)  
1011 : AIN11 (ADS124S08 only)  
1100 : AINCOM  
1101 - 1111 : Disconnected (default)  
80  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.9 Sensor Biasing Register (address = 08h) [reset = 00h]  
101. Sensor Biasing (VBIAS) Register  
7
6
5
4
3
2
1
0
VB_LEVEL  
R/W-0h  
VB_AINC  
R/W-0h  
VB_AIN5  
R/W-0h  
VB_AIN4  
R/W-0h  
VB_AIN3  
R/W-0h  
VB_AIN2  
R/W-0h  
VB_AIN1  
R/W-0h  
VB_AIN0  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
34. Sensor Biasing (VBIAS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
VBIAS level selection  
Sets the VBIAS output voltage level. VBIAS is disabled when not connected  
to any input.  
7
VB_LEVEL  
R/W  
0h  
0 : (AVDD + AVSS) / 2 (default)  
1 : (AVDD + AVSS) / 12  
AINCOM VBIAS selection(1)  
Enables VBIAS on the AINCOM pin.  
0 : VBIAS disconnected from AINCOM (default)  
1 : VBIAS connected to AINCOM  
AIN5 VBIAS selection(1)  
6
5
4
3
2
1
0
VB_AINC  
VB_AIN5  
VB_AIN4  
VB_AIN3  
VB_AIN2  
VB_AIN1  
VB_AIN0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Enables VBIAS on the AIN5 pin.  
0 : VBIAS disconnected from AIN5 (default)  
1 : VBIAS connected to AIN5  
AIN4 VBIAS selection(1)  
Enables VBIAS on the AIN4 pin.  
0 : VBIAS disconnected from AIN4 (default)  
1 : VBIAS connected to AIN4  
AIN3 VBIAS selection(1)  
Enables VBIAS on the AIN3 pin.  
0 : VBIAS disconnected from AIN3 (default)  
1 : VBIAS connected to AIN3  
AIN2 VBIAS selection(1)  
Enables VBIAS on the AIN2 pin.  
0 : VBIAS disconnected from AIN2 (default)  
1 : VBIAS connected to AIN2  
AIN1 VBIAS selection(1)  
Enables VBIAS on the AIN1 pin.  
0 : VBIAS disconnected from AIN1 (default)  
1 : VBIAS connected to AIN1  
AIN0 VBIAS selection(1)  
Enables VBIAS on the AIN0 pin.  
0 : VBIAS disconnected from AIN0 (default)  
1 : VBIAS connected to AIN0  
(1) The bias voltage can be selected for multiple analog inputs at the same time.  
版权 © 2016–2017, Texas Instruments Incorporated  
81  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.10 System Control Register (address = 09h) [reset = 10h]  
102. System Control (SYS) Register  
7
6
5
4
3
2
1
0
SYS_MON[2:0]  
R/W-0h  
CAL_SAMP[1:0]  
R/W-2h  
TIMEOUT  
R/W-0h  
CRC  
SENDSTAT  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
35. System Control (SYS) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
System monitor configuration(1)  
Enables a set of system monitor measurements using the ADC.  
000 : Disabled (default)  
001 : PGA inputs shorted to (AVDD + AVSS) / 2 and disconnected from  
AINx and the multiplexer; gain set by user  
010 : Internal temperature sensor measurement; PGA must be enabled  
7:5  
SYS_MON[2:0]  
R/W  
0h  
(PGA_EN[1:0] = 01); gain set by user(2)  
011 : (AVDD – AVSS) / 4 measurement; gain set to 1(3)  
100 : DVDD / 4 measurement; gain set to 1(3)  
101 : Burn-out current sources enabled, 0.2-µA setting  
110 : Burn-out current sources enabled, 1-µA setting  
111 : Burn-out current sources enabled, 10-µA setting  
Calibration sample size selection  
Configures the number of samples averaged for self and system offset and  
system gain calibration.  
00 : 1 sample  
4:3  
CAL_SAMP[1:0]  
R/W  
2h  
01 : 4 samples  
10 : 8 samples (default)  
11 : 16 samples  
SPI timeout enable  
Enables the SPI timeout function.  
0 : Disabled (default)  
1 : Enabled  
2
1
0
TIMEOUT  
CRC  
R/W  
R/W  
R/W  
0h  
0h  
0h  
CRC enable  
Enables the CRC byte appended to the conversion result. When enabled,  
CRC is calculated across the 24-bit conversion result (plus the STATUS  
byte if enabled).  
0 : Disabled (default)  
1 : Enabled  
STATUS byte enable  
Enables the STATUS byte prepended to the conversion result.  
0 : Disabled (default)  
1 : Enabled  
SENDSTAT  
(1) With system monitor functions enabled, the AINx multiplexer switches are open for the (AVDD + AVSS) / 2 measurement, the  
temperature sensor, and the supply monitors.  
(2) When using the internal temperature sensor, gain must be 4 or less to keep the measurement within the PGA input voltage range.  
(3) The PGA gain is automatically set to 1 when the supply monitors are enabled, regardless of the setting in GAIN[2:0].  
82  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.11 Offset Calibration Register 1 (address = 0Ah) [reset = 00h]  
103. Offset Calibration Register 1 (OFCAL0)  
7
6
5
4
3
2
1
0
OFC[7:0]  
R/W-00h  
LEGEND: R/W = Read/Write; -n = value after reset  
36. Offset Calibration Register 1 (OFCAL0) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[7:0]  
R/W  
00h  
Bits [7:0] of the offset calibration value.  
9.6.1.12 Offset Calibration Register 2 (address = 0Bh) [reset = 00h]  
104. Offset Calibration Register 2 (OFCAL1)  
7
6
5
4
3
2
1
0
OFC[15:8]  
R/W-00h  
LEGEND: R/W = Read/Write; -n = value after reset  
37. Offset Calibration Register 2 (OFCAL1) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[15:8]  
R/W  
00h  
Bits [15:8] of the offset calibration value.  
9.6.1.13 Offset Calibration Register 3 (address = 0Ch) [reset = 00h]  
105. Offset Calibration Register 3 (OFCAL2)  
7
6
5
4
3
2
1
0
OFC[23:16]  
R/W-00h  
LEGEND: R/W = Read/Write; -n = value after reset  
38. Offset Calibration Register 3 (OFCAL2) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
OFC[23:16]  
R/W  
00h  
Bits [23:16] of the offset calibration value.  
版权 © 2016–2017, Texas Instruments Incorporated  
83  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
9.6.1.14 Gain Calibration Register 1 (address = 0Dh) [reset = 00h]  
106. Gain Calibration Register 1 (FSCAL0)  
7
6
5
4
3
2
1
0
FSC[7:0]  
R/W-00h  
LEGEND: R/W = Read/Write; -n = value after reset  
39. Gain Calibration Register 1 (FSCAL0) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
FSC[7:0]  
R/W  
00h  
Bits [7:0] of the gain calibration value.  
9.6.1.15 Gain Calibration Register 2 (address = 0Eh) [reset = 00h]  
107. Gain Calibration Register 2 (FSCAL1)  
7
6
5
4
3
2
1
0
FSC[15:8]  
R/W-00h  
LEGEND: R/W = Read/Write; -n = value after reset  
40. Gain Calibration Register 2 (FSCAL1) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
FSC[15:8]  
R/W  
00h  
Bits [15:8] of the gain calibration value.  
9.6.1.16 Gain Calibration Register 3 (address = 0Fh) [reset = 40h]  
108. Gain Calibration Register 3 (FSCAL2)  
7
6
5
4
3
2
1
0
FSC[23:16]  
R/W-40h  
LEGEND: R/W = Read/Write; -n = value after reset  
41. Gain Calibration Register 3 (FSCAL2) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
FSC[23:16]  
R/W  
40h  
Bits [23:16] of the gain calibration value.  
84  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
9.6.1.17 GPIO Data Register (address = 10h) [reset = 00h]  
109. GPIO Data (GPIODAT) Register  
7
6
5
4
3
2
1
0
DIR[3:0]  
R/W-0h  
DAT[3:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
42. GPIO Data (GPIODAT) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
GPIO direction  
Configures the selected GPIO as an input or output.  
0 : GPIO[x] configured as output (default)  
1 : GPIO[x] configured as input  
7:4  
DIR[3:0]  
R/W  
0h  
GPIO data  
Contains the data of the GPIO inputs or outputs.  
0 : GPIO[x] is low (default)  
3:0  
DAT[3:0]  
R/W  
0h  
1 : GPIO[x] is high  
9.6.1.18 GPIO Configuration Register (address = 11h) [reset = 00h]  
110. GPIO Configuration Register  
7
0
6
0
5
0
4
0
3
2
1
0
CON[3:0]  
R/W-0h  
R-0h  
R-0h  
R-0h  
R-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
43. GPIO Configuration (GPIOCON) Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
7:4  
RESERVED  
R
0h  
Always write 0h  
GPIO pin configuration  
Configures the GPIO[x] pin as an analog input or GPIO. CON[x]  
corresponds to the GPIO[x] pin.  
3:0  
CON[3:0]  
R/W  
0h  
0 : GPIO[x] configured as analog input (default)(1)  
1 : GPIO[x] configured as GPIO  
(1) On the ADS124S06, the GPIO pins default as disabled. Set the CON[3:0] bits to enable the respective GPIO pins.  
版权 © 2016–2017, Texas Instruments Incorporated  
85  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ADS124S06 and ADS124S08 are precision, 24-bit, ΔΣ ADCs that offer many integrated features to simplify  
the measurement of the most common sensor types (including various types of temperature, flow, and bridge  
sensors). Primary considerations when designing an application with the ADS124S0x include analog input  
filtering, establishing an appropriate reference, and setting the absolute input voltage for the internal PGA.  
Connecting and configuring the serial interface appropriately is another concern. These considerations are  
discussed in the following sections.  
10.1.1 Serial Interface Connections  
The principle serial interface connections for the ADS124S0x are shown in 111.  
1 mF  
24  
23  
22  
21  
20  
19  
18  
17  
3.3 V  
47  
47 ꢀ  
47 ꢀ  
47 ꢀ  
GPIO  
NC 25  
DVDD  
IOVDD  
DGND  
DRDY  
16  
15  
14  
13  
12  
11  
10  
9
5 V  
26  
27  
28  
AVDD  
GPIO/IRQ  
MISO  
0.1 mF  
330 nF  
AVSS  
AVSS-SW  
SCLK  
Microcontroller  
with SPI  
47 ꢀ  
47 ꢀ  
47 ꢀ  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
MOSI  
GPIO  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
GPIO  
DVDD  
DVSS  
3.3 V  
CS  
1
2
3
4
5
6
7
8
0.1 mF  
111. Serial Interface Connections  
Most microcontroller SPI peripherals can interface with the ADS124S0x. The interface operates in SPI mode 1  
where CPOL = 0 and CPHA = 1. In SPI mode 1, SCLK idles low and data are launched or changed only on  
SCLK rising edges; data are latched or read by the master and slave on SCLK falling edges. Details of the SPI  
communication protocol employed by the devices are found in the Serial Interface section.  
Place 47-Ω resistors in series with all digital input and output pins (CS, SCLK, DIN, DOUT/DRDY, and DRDY).  
This resistance smooths sharp transitions, suppresses overshoot, and offers some overvoltage protection. Care  
must be taken to meet all SPI timing requirements because the additional resistors interact with the bus  
capacitances present on the digital signal lines.  
86  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Application Information (接下页)  
10.1.2 Analog Input Filtering  
Analog input filtering serves two purposes: first, to limit the effect of aliasing during the sampling process and  
second, to reduce external noise from being a part of the measurement.  
As with any sampled system, aliasing can occur if proper antialias filtering is not in place. Aliasing occurs when  
frequency components are present in the input signal that are higher than half the sampling frequency of the  
ADC (also known as the Nyquist frequency). These frequency components are folded back and show up in the  
actual frequency band of interest below half the sampling frequency. Note that inside a ΔΣ ADC, the input signal  
is oversampled at the modulator frequency, fMOD and not at the output data rate. The filter response of the digital  
filter repeats at multiples of fMOD, as shown in 112. Signals or noise up to a frequency where the filter  
response repeats are attenuated to a certain amount by the digital filter depending on the filter architecture. Any  
frequency components present in the input signal around the modulator frequency or multiples thereof are not  
attenuated and alias back into the band of interest, unless attenuated by an external analog filter.  
Magnitude  
Sensor  
Signal  
Unwanted  
Signals  
Unwanted  
Signals  
Output  
Data Rate  
fMOD/2  
fMOD  
Frequency  
Frequency  
Frequency  
Magnitude  
Digital Filter  
Aliasing of  
Unwanted Signals  
Output  
Data Rate  
fMOD/2  
fMOD  
Magnitude  
External  
Antialiasing Filter  
Roll-Off  
Output  
fMOD/2  
fMOD  
Data Rate  
112. Effect of Aliasing  
版权 © 2016–2017, Texas Instruments Incorporated  
87  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Application Information (接下页)  
Many sensor signals are inherently band limited; for example, the output of a thermocouple has a limited rate of  
change. In this case, the sensor signal does not alias back into the pass band when using a ΔΣ ADC. However,  
any noise pick-up along the sensor wiring or the application circuitry can potentially alias into the pass band.  
Power line-cycle frequency and harmonics are one common noise source. External noise can also be generated  
from electromagnetic interference (EMI) or radio frequency interference (RFI) sources, such as nearby motors  
and cellular phones. Another noise source typically exists on the printed circuit board (PCB) itself in the form of  
clocks and other digital signals. Analog input filtering helps remove unwanted signals from affecting the  
measurement result.  
A first-order resistor-capacitor (RC) filter is (in most cases) sufficient to either eliminate aliasing, or to reduce the  
effect of aliasing to a level below the noise floor of the sensor. Ideally, any signal beyond fMOD / 2 is attenuated to  
a level below the noise floor of the ADC. The digital filter of the ADS124S0x attenuates signals to a certain  
degree, as illustrated in the filter response plots in the Digital Filter section. In addition, noise components are  
usually smaller in magnitude than the actual sensor signal. Therefore, using a first-order RC filter with a cutoff  
frequency set at the output data rate or 10 times higher is generally a good starting point for a system design.  
Internal to the device, prior to the PGA inputs, is an EMI filter; see 50. The cutoff frequency of this filter is  
approximately 40 MHz and helps reject high-frequency interference.  
10.1.3 External Reference and Ratiometric Measurements  
The full-scale range of the ADS124S0x is defined by the reference voltage and the PGA gain  
(FSR = ±VREF / Gain). An external reference can be used instead of the integrated 2.5-V reference to adapt the  
FSR to the specific system needs. An external reference must be used if VIN > 2.5 V. For example, an external  
5-V reference and an AVDD = 5 V are required in order to measure a single-ended signal that can swing  
between 0 V and 5 V.  
The reference inputs of the device also allow the implementation of ratiometric measurements. In a ratiometric  
measurement, the same excitation source that is used to excite the sensor is also used to establish the reference  
for the ADC. As an example, a simple form of a ratiometric measurement uses the same current source to excite  
both the resistive sensor element (such as an RTD) and another resistive reference element that is in series with  
the element being measured. The voltage that develops across the reference element is used as the reference  
source for the ADC. Because current noise and drift are common to both the sensor measurement and the  
reference, these components cancel out in the ADC transfer function. The output code is only a ratio of the  
sensor element and the value of the reference resistor. The value of the excitation current source itself is not part  
of the ADC transfer function.  
The example in the Typical Application section describes a system that uses a ratiometric measurement. One  
excitation current source is used to drive a reference resistor and an RTD. The ADC measurement represents a  
ratiometric measurement between the RTD value and a known reference resistor value.  
10.1.4 Establishing a Proper Input Voltage  
The ADS124S0x can be used to measure various types of input signal configurations: single-ended, pseudo-  
differential, and fully-differential signals (which can be either unipolar or bipolar). However, configuring the device  
properly for the respective signal type is important.  
Signals where the negative analog input is fixed and referenced to analog ground (VAINN = 0 V) are commonly  
called single-ended signals. The input voltage of a single-ended signal consequently varies between 0 V and VIN.  
If the PGA is disabled and bypassed, the input voltage of the ADS124S08 can be as low as 50 mV below AVSS  
and as large as 50 mV above AVDD. Therefore, set the PGA_EN bits to 10 in the gain setting register (03h) to  
measure single-ended signals when a unipolar analog supply is used (AVSS = 0 V). Only a gain of 1 is possible  
in this configuration. Measuring a 0-mA to 20-mA or 4-mA to 20-mA signal across a load resistor of 100 Ω  
referenced to GND is a typical example. The ADS124S0x can directly measure the signal across the load  
resistor using a unipolar supply, the internal 2.5-V reference, and gain = 1 when the PGA is bypassed.  
If gain is needed to measure a single-ended signal, the PGA must be enabled. In this case, a bipolar supply is  
required for the ADS124S0x to meet the input voltage requirement of the PGA. Signals where the negative  
analog input (AINN) is fixed at a voltage other the 0 V are referred to as pseudo-differential signals. The input  
voltage of a pseudo-differential signal varies between VAINN and VAINN + VIN.  
88  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Application Information (接下页)  
Fully-differential signals in contrast are defined as signals having a constant common-mode voltage where the  
positive and negative analog inputs swing 180° out-of-phase but have the same amplitude.  
The ADS124S0x can measure pseudo-differential and fully-differential signals both with the PGA enabled or  
bypassed. However, the PGA must be enabled in order to measure any input with a gain greater than 1. The  
input voltage must meet the input and output voltage restrictions of the PGA, as explained in the PGA Input-  
Voltage Requirements section when the PGA is enabled. Setting the input voltage at or near (AVSS + AVDD) / 2  
in most cases satisfies the PGA input voltage requirements.  
Signals where both the positive and negative inputs are always 0 V are called unipolar signals. These signals  
can in general be measured with the ADS124S0x using a unipolar analog supply (AVSS = 0 V). As mentioned  
previously, the PGA must be bypassed in order to measure single-ended, unipolar signals when using a unipolar  
supply.  
A signal is called bipolar when either the positive or negative input can swing below 0 V. A bipolar analog supply  
(such as AVDD = 2.5 V, AVSS = –2.5 V) is required in order to measure bipolar signals with the ADS124S0x. A  
typical application task is measuring a single-ended, bipolar, ±10-V signal where AINN is fixed at 0 V and AINP  
swings between –10 V and 10 V. The ADS124S0x cannot directly measure this signal because the 10-V signal  
exceeds the analog power-supply limits. However, one possible solution is to use a bipolar analog supply (AVDD  
= 2.5 V, AVSS = –2.5 V), gain = 1, and a resistor divider in front of the ADS124S0x. The resistor divider must  
divide the voltage down to ±2.5 V to be able to measure the voltage using the internal 2.5-V reference.  
10.1.5 Unused Inputs and Outputs  
To minimize leakage currents on the analog inputs, leave unused analog and reference inputs floating, or  
connect the inputs to mid-supply or to AVDD. Connecting unused analog or reference inputs to AVSS is possible  
as well, but can yield higher leakage currents than the previously mentioned options. REFN0 is an exception; this  
pin can be accidently shorted to AVSS through the internal low-side switch. Leave the REFN0 pin floating when  
not in use or tie the pin to AVSS.  
GPIO pins operate on levels based on the analog supply. Do not float GPIO pins that are configured as digital  
inputs. Tie unused GPIO pins that are configured as digital inputs to the appropriate levels, AVDD or AVSS,  
including when in power-down mode. Tie unused GPIO output pins to AVSS through a pulldown resistor and set  
the output to 0 in the GPIO data register. For unused GPIO pins on the ADS124S06, leave the GPIOCON  
register set to the default register values and connect these GPIO pins in the same manner as for an unused  
analog input.  
Do not float unused digital inputs; excessive power-supply leakage current can result. Tie all unused digital  
inputs to the appropriate levels, IOVDD or DGND, even when in power-down mode. Connections for unused  
digital inputs are listed below.  
Tie the CS pin to DGND if CS is not used  
Tie the CLK pin to DGND if the internal oscillator is used  
Tie the START/SYNC pin to DGND to control conversions by commands  
Tie the RESET pin to IOVDD if the RESET pin is not used  
If the DRDY output is not used, leave the DRDY pin unconnected or tie the DRDY pin to IOVDD using a weak  
pullup resistor  
版权 © 2016–2017, Texas Instruments Incorporated  
89  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Application Information (接下页)  
10.1.6 Pseudo Code Example  
The following list shows a pseudo code sequence with the required steps to set up the device and the  
microcontroller that interfaces to the ADC in order to take subsequent readings from the ADS124S0x in  
continuous conversion mode. The dedicated DRDY pin is used to indicate availability of new conversion data.  
Power-up so that all supplies reach minimum operating levels;  
Delay for a minimum of 2.2 ms to allow power supplies to settle and power-up reset to complete;  
Configure the SPI interface of the microcontroller to SPI mode 1 (CPOL = 0, CPHA =1);  
If the CS pin is not tied low permanently, configure the microcontroller GPIO connected to CS as an  
output;  
Configure the microcontroller GPIO connected to the DRDY pin as a falling edge triggered interrupt  
input;  
Set CS to the device low;  
Delay for a minimum of td(CSSC)  
Send the RESET command (06h) to make sure the device is properly reset after power-up; //Optional  
Delay for a minimum of 4096 · tCLK  
;
;
Read the status register using the RREG command to check that the RDY bit is 0; //Optional  
Clear the FL_POR flag by writing 00h to the status register; //Optional  
Write the respective register configuration with the WREG command;  
For verification, read back all configuration registers with the RREG command;  
Send the START command (08h) to start converting in continuous conversion mode;  
Delay for a minimum of td(SCCS)  
;
Clear CS to high (resets the serial interface);  
Loop  
{
Wait for DRDY to transition low;  
Take CS low;  
Delay for a minimum of td(CSSC)  
;
Send the RDATA command;  
Send 24 SCLK rising edges to read out conversion data on DOUT/DRDY;  
Delay for a minimum of td(SCCS)  
;
Clear CS to high;  
}
Take CS low;  
Delay for a minimum of td(CSSC)  
Send the STOP command (0Ah) to stop conversions and put the device in standby mode;  
;
Delay for a minimum of td(SCCS)  
;
Clear CS to high;  
90  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
10.2 Typical Application  
113 shows a fault-protected, filtered, 3-wire RTD application circuit with hardware-based, lead-wire  
compensation. Two IDAC current sources provide the lead-wire compensation. One IDAC current source  
(IDAC1) provides excitation to the RTD element. The ADC reference voltage (pins AIN6 and AIN7) is derived  
from the voltage across resistor RREF sourcing the same IDAC1 current, providing ratiometric cancellation of  
current-source drift. The other current source (IDAC2) has the same current setting, providing cancellation of  
lead-wire resistance by generating a voltage drop across lead-wire resistance RLEAD2 equal to the voltage drop of  
RLEAD1. Because the RRTD voltage is measured differentially at ADC pins AIN1 and AIN2, the voltages across the  
lead wire resistance cancel. Resistor RBIAS level-shifts the RTD signal to within the ADC specified input range.  
The current sources are provided by two additional pins (AIN5 and AIN3) that connect to the RTD through  
blocking diodes. The additional pins are used to route the RTD excitation currents around the input filter  
resistors, avoiding the voltage drop otherwise caused by the filter resistors RF1 and RF4. The diodes protect the  
ADC inputs in the event of a miswired connection. The input filter resistors limit the input fault currents flowing  
into the ADC.  
5 V  
3.3 V  
0.1 mF  
330 nF  
AVDD  
DVDD  
IOVDD  
AVDD  
IDAC1  
IIDAC1  
AIN5  
(IDAC1)  
500 A  
ADS124S08  
CCM4  
RF4  
RF3  
AIN6  
REFOUT  
1 mF  
(REFP1)  
Reference  
Mux  
2.5-V  
Reference  
RREF  
CDIF2  
AIN7  
(REFN1)  
CCM3  
REFCOM  
Reference  
Detection  
Reference  
Buffers  
3-Wire RTD  
RLEAD1  
CCM2  
START/SYNC  
RESET  
CS  
RF2  
RF1  
AIN1  
(AINP)  
Serial  
Interface  
and  
Input  
Mux  
24-Bit  
ûADC  
Digital  
Filter  
CDIF1  
PGA  
RRTD  
DIN  
RLEAD2  
AIN2  
DOUT/DRDY  
SCLK  
DRDY  
Control  
(AINN)  
CCM1  
PGA Rail  
Detection  
AVDD  
IDAC2  
IIDAC2  
AIN3  
4.096-MHz  
Oscillator  
(IDAC2)  
CLK  
500 A  
AVSS-SW  
AVSS  
DGND  
RLEAD3  
IIDAC1 + IIDAC2  
Copyright © 2017, Texas Instruments Incorporated  
RBIAS  
113. 3-Wire RTD Application  
10.2.1 Design Requirements  
44 shows the design requirements of the 3-wire RTD application.  
44. Design Requirements  
DESIGN PARAMETER  
ADC supply voltage  
RTD sensor type  
VALUE  
4.75 V (minimum)  
3-wire Pt100  
20 Ω to 400 Ω  
0 Ω to 10 Ω  
1 mW  
RTD resistance range  
RTD lead resistance range  
RTD self heating  
Accuracy(1)  
±0.05 Ω  
(1) TA = 25°C. After offset and full-scale calibration.  
版权 © 2016–2017, Texas Instruments Incorporated  
91  
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
The key considerations in the design of a 3-wire RTD circuit are the accuracy, the lead wire compensation, and  
the sensor self-heating. As the design values of 45 show, several values of excitation currents are available.  
The resolution is expressed in units of noise-free resolution (NFR). Noise-free resolution is resolution with no  
code flicker. The selection of excitation currents trades off resolution against sensor self-heating. In general,  
measurement resolution improves with increasing excitation current. Increasing the excitation current beyond  
1000 µA results in no further improvement in resolution for this example circuit. The design procedure is based  
on a 500-µA excitation current, because this level of current results in very low sensor self-heating  
(0.4 mW).  
45. RTD Circuit Design Parameters  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
IIDAC  
(µA)  
NFR  
(bits)  
PRTD  
(mW)  
VRTD  
(V)  
Gain  
(V/V)  
VREFMIN  
(V)  
VREF  
(V)  
RREF  
(kΩ)  
VAINNLIM  
(V)  
VAINPLIM  
(V)  
RBIAS  
(kΩ)  
VRTDN  
(V)  
VRTDP  
(V)  
VIDAC1  
(V)  
50  
16.8  
17.8  
18.8  
19.1  
18.9  
19.3  
19.1  
18.3  
0.001  
0.004  
0.025  
0.100  
0.225  
0.400  
0.900  
1.600  
0.02  
0.04  
0.10  
0.20  
0.30  
0.40  
0.60  
0.80  
32  
32  
16  
8
0.64  
1.28  
1.60  
1.60  
1.20  
1.60  
1.20  
0.80  
0.70  
1.41  
1.76  
1.76  
1.32  
1.76  
1.32  
0.90  
18  
0.6  
0.9  
1.1  
1.0  
0.8  
0.9  
0.6  
0.3  
4.1  
3.8  
3.7  
3.8  
4.0  
3.9  
4.2  
4.5  
7.10  
5.10  
2.30  
1.10  
0.57  
0.50  
0.23  
0.10  
0.7  
1.0  
1.2  
1.1  
0.9  
1.0  
0.7  
0.4  
0.7  
1.1  
1.3  
1.3  
1.2  
1.4  
1.3  
1.2  
1.9  
2.8  
3.3  
3.4  
2.8  
3.5  
3.0  
2.4  
100  
14.1  
7.04  
3.52  
1.76  
1.76  
0.88  
0.45  
250  
500  
750  
4
1000  
1500  
2000  
4
2
1
(1) VREFMIN is the minimum reference voltage required by the design.  
(2) VREF is the design target reference voltage allowing for 10% overrange.  
(3) VAINNLIM is the absolute minimum input voltage required by the ADC.  
(4) VAINPLIM is the absolute maximum input voltage required by the ADC.  
(5) VRTDN is the design target negative input voltage.  
(6) VRTDP is the design target positive input voltage.  
(7) VIDAC1 is the design target IDAC1 loop voltage.  
Initially, RLEAD1 and RLEAD2 are considered to be 0 Ω. Route the IDAC1 current through the external reference  
resistor, RREF. IDAC1 generates the ADC reference voltage, VREF, across the reference resistor. This voltage is  
defined by 公式 12:  
VREF = IIDAC1 · RREF  
(12)  
Route the second current (IDAC2) to the second RTD lead.  
Program the IDAC value by using the IDACMAG register; however, only the IDAC1 current flows through the  
reference resistor and RTD. The IDAC1 current excites the RTD to produce a voltage proportional to the RTD  
resistance. The RTD voltage is defined by 公式 13:  
VRTD = RRTD · IIDAC1  
(13)  
The ADC amplifies the RTD signal voltage (VRTD) and measures the resulting voltage against the reference  
voltage to produce a proportional digital output code, as shown in 公式 14 through 公式 16.  
Code VRTD · Gain / VREF  
(14)  
(15)  
(16)  
Code (RRTD · IIDAC1) · Gain / (IIDAC1 · RREF  
)
Code (RRTD · Gain) / RREF  
As shown in 公式 16, the RTD measurement depends on the value of the RTD, the PGA gain, and the reference  
resistor RREF, but not on the IDAC1 value. Therefore, the absolute accuracy and temperature drift of the  
excitation current does not matter.  
The second excitation current (IDAC2) provides a second voltage drop across the second RTD lead resistance,  
RLEAD2. The second voltage drop compensates the voltage drop caused by IDAC1 and RLEAD1. The leads of a 3-  
wire RTD typically have the same length; therefore, the lead resistance is typically identical. Taking the lead  
resistance into account (RLEADx 0), the differential voltage (VIN) across ADC inputs AIN8 and AIN9 is shown in  
公式 17:  
VIN = IIDAC1 · (RRTD + RLEAD1) – IIDAC2 · RLEAD2  
(17)  
If RLEAD1 = RLEAD2 and IIDAC1 = IIDAC2, the expression for VIN reduces to 公式 18:  
VIN = IIDAC1 · RRTD  
(18)  
92  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
In other words, the measurement error resulting from the voltage drop across the RTD lead resistance is  
compensated as long as the lead resistance values and the IDAC values are matched.  
Using 公式 13, the value of RTD resistance (400 Ω, maximum) and the excitation current (500 µA) yields an RTD  
voltage of VRTD = 500 µA · 400 Ω = 0.2 V. Use the maximum gain of 8 in order to limit the corresponding loop  
voltage of IDAC1. Gain = 8 requires a minimum reference voltage VREFMIN = 0.2 V · 8 = 1.6 V. To provide margin  
for the ADC operating range, increase the target reference voltage by 10% (VREF = 1.6 V · 1.1 = 1.76 V).  
Calculate the value of the reference resistor, as shown in 公式 19:  
RREF = VREF / IIDAC1 = 1.76 V / 500 µA = 3.52 kΩ  
(19)  
For this example application, 3.5 kΩ is chosen for RREF. For best results, use a precision reference resistor RREF  
with a low temperature drift (< 10 ppm/°C). Any change in RREF is reflected in the measurement as a gain error.  
The next step in the design is determining the value of the RBIAS resistor, in order to level shift the RTD voltage to  
meet the ADC absolute input-voltage specification. The required level-shift voltage is determined by calculating  
the minimum absolute voltage (VAINNLIM) as shown in 公式 20:  
AVSS + 0.15 + VRTDMAX · (Gain – 1) / 2 VAINNLIM  
where  
VRTDMAX = maximum differential RTD voltage = 0.2 V  
Gain = 8  
AVSS = 0 V  
(20)  
The result of the equation requires a minimum absolute input voltage (VRTDN) > 0.85 V. Therefore, the RTD  
voltage must be level shifted by a minimum of 0.85 V. To meet this requirement, a target level-shift value of 1 V  
is chosen to provide extra margin. Calculate the value of RBIAS as shown in 公式 21:  
RBIAS= VAINN / (IIDAC1+ IIDAC2) = 1 V / ( 2 · 500 µA) = 1 kΩ  
(21)  
After the level-shift voltage is determined, verify that the positive RTD voltage (VRTDP) is less than the maximum  
absolute input voltage (VAINPLIM), as shown in 公式 22:  
VAINPLIM AVDD – 0.15 – VRTDMAX · (Gain – 1) / 2  
where  
VRTDMAX = maximum differential RTD voltage = 0.2 V  
Gain = 8  
AVDD = 4.75 V (minimum)  
(22)  
(23)  
Solving 公式 22 results in a required VRTDP of less than 3.9 V. Calculate the VRTDP input voltage by 公式 23:  
VAINP = VRTDN + IIDAC1 · (RRTD + RLEAD1) = 1 V + 500 µA · (400 Ω + 10 Ω) = 1.2 V  
Because 1.2 V is less than the 3.9-V maximum input voltage limit, the absolute positive and negative RTD  
voltages are within the ADC specified input range.  
The next step in the design is to verify that the IDACs have enough voltage headroom (compliance voltage) to  
operate. The loop voltage of the excitation current must be less than the supply voltage minus the specified IDAC  
compliance voltage. Calculate the voltage drop developed across each IDAC current path to AVSS. In this circuit,  
IDAC1 has the largest voltage drop developed across its current path. The IDAC1 calculation is sufficient to  
satisfy IDAC2 because the IDAC2 voltage drop is always less than IDAC1 voltage drop. The sum of voltages in  
the IDAC1 loop is shown in 公式 24:  
VIDAC1 = [(IIDAC1 + IIDAC2) · (RLEAD3 + RBIAS)] + [IIDAC1 · (RRTD + RLEAD1 + RREF)] + VD  
where  
VD = external blocking diode voltage  
(24)  
The equation results in a loop voltage of VIDAC1 = 3.0 V. The worst-case current source compliance voltage is:  
(AVDD – 0.4 V) = (4.75 V – 0.4 V) = 4.35 V. The VIDAC1 loop voltage is less than the specified current source  
compliance voltage (3.0 V < 4.35 V).  
Many applications benefit from using an analog filter at the inputs to remove noise and interference from the  
signal. Filter components are placed on the ADC inputs (RF1, RF2, CDIF1, CCM1, and CCM2), as well as on the  
reference inputs (RF3, RF4, CDIF2, CCM3, and CCM4). The filters remove both differential and common-mode noise.  
The application shows a differential input noise filter formed by RF1, RF2 and CDIF1, with additional differential  
mode capacitance provided by the common-mode filter capacitors, CCM1 and CCM2. Calculate the differential  
版权 © 2016–2017, Texas Instruments Incorporated  
93  
 
 
 
 
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
–3-dB cutoff frequency as shown in 公式 25:  
fDIF = 1 / [2π · (RF1 + RF2) · (CDIF1 + CCM1|| CCM2)]  
(25)  
The common-mode noise filter is formed by components RF1, RF2, CCM1, and CCM2. Calculate the common-mode  
signal –3-dB cutoff frequency, as shown in 公式 26:  
fCM = 1 / (2π · RF1 · CCM1) = 1 / (2π · RF2 · CCM2  
)
(26)  
Mismatches in the common-mode filter components convert common-mode noise into differential noise. To  
reduce the effect of mismatch, use a differential mode filter with a corner frequency that is at least 10 times lower  
than the common-mode filter corner frequency. The low-frequency differential filter removes the common-mode  
converted noise. The filter resistors (RFx) also serve as current-limiting resistors. These resistors limit the current  
into the analog inputs (AINx) of the device to safe levels when an overvoltage occurs on the inputs.  
Filter resistors lead to an offset voltage error due to the dc input current leakage flowing into and out of the  
device. Remove this voltage error by system offset calibration. Resistor values that are too large generate  
excess thermal noise and degrade the overall noise performance. The recommended range of the filter resistor  
values is 100 Ω to 10 kΩ. The properties of the capacitors are important because the capacitors are connected to  
the signal; use high-quality C0G ceramics or film-type capacitors.  
For consistent noise performance across the full range of RTD measurements, match the corner frequencies of  
the input and reference filter. See the RTD Ratiometric Measurements and Filtering Using the ADS1148 and  
ADS1248 Application Report (SBAA201) for detailed information on matching the input and reference filter.  
10.2.2.1 Register Settings  
The register settings for this design are shown in 46.  
46. Register Settings  
REGISTER  
02h  
NAME  
INPMUX  
PGA  
SETTING  
12h  
DESCRIPTION  
Select AINP = AIN1 and AINN = AIN2  
03h  
0Bh  
PGA enabled, PGA Gain = 8  
04h  
DATARATE  
14h  
Continuous conversion mode, low-latency filter, 20-SPS data rate  
Positive and negative reference buffers enabled, REFP1 and  
REFN1 reference inputs selected, internal reference always on  
05h  
REF  
06h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
IDACMAG  
IDACMUX  
VBIAS  
05h  
35h  
00h  
10h  
xxh  
xxh  
xxh  
xxh  
xxh  
xxh  
00h  
00h  
IDAC magnitude set to 500 µA  
IDAC2 set to AIN3, IDAC1 set to AIN5  
SYS  
OFCAL0(1)  
OFCAL1  
OFCAL2  
FSCAL0(1)  
FSCAL1  
FSCAL2  
GPIODAT  
GPIOCON  
(1) A two-point offset and gain calibration removes errors from the RREF tolerance. The results are used for the OFC and FSC registers.  
10.2.3 Application Curves  
To test the accuracy of the acquisition circuit, a series of calibrated high-precision discrete resistors are used as  
an input to the system. Measurements are taken at TA = 25°C. 114 displays the resistance measurement over  
an input span from 20 Ω to 400 Ω. Any offset error is generally attributed to the offset of the ADC, and the gain  
error can be attributed to the accuracy of the RREF resistor and the ADC. The RREF value is also calibrated to  
reduce the gain error contribution.  
94  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Precision temperature measurement applications are typically calibrated to remove the effects of gain and offset  
errors that generally dominate the total system error. The simplest calibration method is a linear, or two-point  
calibration that applies an equal and opposite gain and offset term to cancel the measured system gain and  
offset error. In this particular tested application, the gain and offset error was very small, and did not require  
additional calibration other than the self offset and gain calibration provided by the device. The resulting  
measured resistance error is shown in 115.  
The results in 115 are converted to temperature accuracy by dividing the results by the RTD sensitivity (α) at  
the measured resistance. Over the full resistance input range, the maximum total measured error is ±0.00929 Ω.  
公式 27 uses the measured resistance error and the RTD sensitivity at 0°C to calculate the measured  
temperature accuracy.  
Error (°C) = Error (Ω) / α@0°C = ±0.00929 Ω / 0.39083 Ω / °C = ±0.024°C  
(27)  
116 displays the calculated temperature accuracy of the circuit assuming a linear RTD resistance to  
temperature response. This figure does not include any linearity compensation of the RTD.  
0.002  
0
8000000  
6000000  
4000000  
2000000  
0
-0.002  
-0.004  
-0.006  
-0.008  
-0.01  
0
50  
100 150 200 250 300 350 400 450  
0
50  
100 150 200 250 300 350 400 450  
Resistance (W)  
Resistance (W)  
114. ADC Output Code vs Equivalent RTD Resistance  
115. Measured Resistance Error vs Equivalent RTD  
Resistance  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.025  
0
50  
100 150 200 250 300 350 400 450  
Resistance (W)  
116. Equivalent Temperature Error vs Equivalent RTD Resistance  
10.3 Do's and Don'ts  
Do partition the analog, digital, and power-supply circuitry into separate sections on the PCB.  
Do use a single ground plane for analog and digital grounds.  
Do place the analog components close to the ADC pins using short, direct connections.  
Do keep the SCLK pin free of glitches and noise.  
版权 © 2016–2017, Texas Instruments Incorporated  
95  
 
 
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
Do's and Don'ts (接下页)  
Do verify that the analog input voltages are within the specified PGA input voltage range under all input  
conditions.  
Do float unused analog input pins to minimize input leakage current on all other analog inputs. Connecting  
unused pins to AVDD is the next best option.  
Do provide current limiting to the analog inputs in case overvoltage faults occur.  
Do use a low-dropout linear regulator (LDO) to reduce ripple voltage generated by switch-mode power  
supplies. Reducing ripple is especially important for AVDD where the supply noise can affect the  
performance.  
Don't cross analog and digital signals.  
Don't allow the analog and digital power supply voltages to exceed 5.5 V under any condition, including  
during power-up and power-down.  
96  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
Do's and Don'ts (接下页)  
117 shows the do's and don'ts of the ADC circuit connections.  
INCORRECT  
CORRECT  
5 V  
5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINP  
AINN  
24-bit  
ûADC  
24-bit  
ûADC  
PGA  
PGA  
AINN  
AVSS  
0 V  
AVSS  
0 V  
0 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA bypassed  
CORRECT  
CORRECT  
5 V  
2.5 V  
AVDD  
AVDD  
Device  
Device  
AINP  
AINN  
AINP  
AINN  
24-bit  
ûADC  
24-bit  
ûADC  
PGA  
PGA  
PGA enabled  
2.5 V  
AVSS  
AVSS  
-2.5 V  
0 V  
0 V  
Single-ended input, PGA enabled  
Single-ended input, PGA enabled  
3.3 V  
5 V  
5 V  
3.3 V  
INCORRECT  
INCORRECT  
AVDD  
PGA  
DVDD  
AVDD  
PGA  
DVDD  
24-bit  
Device  
Device  
24-bit  
ûADC  
ûADC  
AVSS  
DGND  
AVSS  
DGND  
Inductive supply or ground connections  
AGND/DGND isolation  
CORRECT  
3.3 V  
3.3 V  
5 V  
2.5 V  
CORRECT  
AVDD  
PGA  
DVDD  
24-bit  
AVDD  
DVDD  
Device  
Device  
24-bit  
ûADC  
PGA  
ûADC  
AVSS  
DGND  
AVSS  
-2.5 V  
DGND  
Low impedance AGND/DGND connection  
Low impedance AGND/DGND connection  
117. Do's and Don'ts Circuit Connections  
版权 © 2016–2017, Texas Instruments Incorporated  
97  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Supplies  
The ADS124S0x requires three power supplies: analog (AVDD, AVSS), digital core (DVDD, DGND), and digital  
I/O (IOVDD, DGND). The analog power supply can be bipolar (for example, AVDD = 2.5 V, AVSS = –2.5 V) or  
unipolar (for example, AVDD = 3.3 V, AVSS = 0 V) and is independent of the digital power supplies. DVDD is  
used to power the digital circuits of the devices. IOVDD sets the digital I/O levels (with the exception of the GPIO  
levels that are set by the analog supply of AVDD and AVSS). IOVDD must be equal to or larger than DVDD.  
11.2 Power-Supply Sequencing  
AVDD and DVDD may be powered up in any order. However, IOVDD is recommended to be powered up before  
or at the same time as DVDD. If DVDD comes up before IOVDD, a reset of the device using the RESET pin or  
the RESET command may be required.  
11.3 Power-On Reset  
An internal POR is released after all three supplies exceed approximately 1.65 V. Each supply has an individual  
POR circuit. A brownout condition on any of the three supplies triggers a reset of the complete device.  
11.4 Power-Supply Decoupling  
Good power-supply decoupling is important to achieve best performance. AVDD must be decoupled with at least  
a 330-nF capacitor to AVSS. DVDD and IOVDD (when not connected to DVDD) must be decoupled with at least  
a 0.1-μF capacitor to DGND. 118 and 119 show typical power-supply decoupling examples for unipolar and  
bipolar analog supplies, respectively. Place the bypass capacitors as close to the power-supply pins of the  
device as possible using low-impedance connections. Use multi-layer ceramic chip capacitors (MLCCs) that offer  
low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling  
purposes. To reduce inductance on the supply pins, avoid the use of vias for connecting the capacitors to the  
supply pins. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to  
ground planes. Connect analog and digital grounds together as close to the device as possible.  
1 mF  
1 mF  
œ2.5 V  
24  
23  
22  
21  
20  
19  
18  
17  
24  
23  
22  
21  
20  
19  
18  
17  
3.3 V  
3.3 V  
NC 25  
26  
DVDD  
IOVDD  
DGND  
16  
15  
14  
13  
12  
11  
10  
9
NC 25  
DVDD  
IOVDD  
DGND  
16  
15  
14  
13  
12  
11  
10  
9
+2.5 V  
5 V  
AVDD  
26  
27  
28  
AVDD  
0.1 mF  
0.1 mF  
330 nF  
330 nF  
27  
28  
AVSS  
AVSS  
AVSS-SW  
DRDY  
AVSS-SW  
DRDY  
œ2.5 V  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
REFN0 29  
REFP0 30  
DOUT/DRDY  
SCLK  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
REFN1/AIN7 31  
REFP1/AIN6 32  
DIN  
CS  
CS  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
119. Bipolar Analog Power Supply  
118. Unipolar Analog Power Supply  
98  
版权 © 2016–2017, Texas Instruments Incorporated  
 
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
12 Layout  
12.1 Layout Guidelines  
Employing best design practices is recommended when laying out a printed-circuit board (PCB) for both analog  
and digital components. This recommendation generally means that the layout separates analog components  
[such as ADCs, amplifiers, references, digital-to-analog converters (DACs), and analog MUXs] from digital  
components [such as microcontrollers, complex programmable logic devices (CPLDs), field-programmable gate  
arrays (FPGAs), radio frequency (RF) transceivers, universal serial bus (USB) transceivers, and switching  
regulators]. An example of good component placement is shown in 120. Although 120 provides a good  
example of component placement, the best placement for each application is unique to the geometries,  
components, and PCB fabrication capabilities employed. That is, there is no single layout that is perfect for every  
design and careful consideration must always be used when designing with any analog component.  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
Supply  
Generation  
Signal  
Conditioning  
(RC Filters  
and  
Interface  
Transceiver  
Device  
Microcontroller  
Connector  
or Antenna  
Amplifiers)  
Ground Fill or  
Ground Plane  
Ground Fill or  
Ground Plane  
120. System Component Placement  
The following basic recommendations for layout of the ADS124S0x help achieve the best possible performance  
of the ADC. A good design can be ruined with a bad circuit layout.  
Separate analog and digital signals. To start, partition the board into analog and digital sections where the  
layout permits. Route digital lines away from analog lines. This prevents digital noise from coupling back into  
analog signals.  
The ground plane can be split into an analog plane (AGND) and digital plane (DGND), but this (splitting) is  
not necessary. Place digital signals over the digital plane, and analog signals over the analog plane. As a  
final step in the layout, the split between the analog and digital grounds must be connected to together at the  
ADC.  
Fill void areas on signal layers with ground fill.  
Provide good ground return paths. Signal return currents will flow on the path of least impedance. If the  
ground plane is cut or has other traces that block the current from flowing right next to the signal trace,  
another path must be found to return to the source and complete the circuit. If forced into a larger path, the  
chance that the signal radiates increases. Sensitive signals are more susceptible to EMI interference.  
Use bypass capacitors on supplies to reduce high-frequency noise. Do not place vias between bypass  
capacitors and the active device. Placing the bypass capacitors on the same layer as close to the active  
device yields the best results.  
Consider the resistance and inductance of the routing. Often, traces for the inputs have resistances that react  
with the input bias current and cause an added error voltage. Reducing the loop area enclosed by the source  
signal and the return current reduces the inductance in the path. Reducing the inductance reduces the EMI  
pickup and reduces the high-frequency impedance at the input of the device.  
Watch for parasitic thermocouples in the layout. Dissimilar metals going from each analog input to the sensor  
can create a parasitic themocouple that can add an offset to the measurement. Differential inputs must be  
matched for both the inputs going to the measurement source.  
Analog inputs with differential connections must have a capacitor placed differentially across the inputs. Best  
input combinations for differential measurements use adjacent analog input lines (such as AIN0, AIN1 and  
AIN2, AIN3). The differential capacitors must be of high quality. The best ceramic chip capacitors are C0G  
(NPO) that have stable properties and low noise characteristics.  
版权 © 2016–2017, Texas Instruments Incorporated  
99  
 
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
12.2 Layout Example  
Reference  
input  
Differential  
input or  
Reference  
input  
Internal plane connected to GND  
(DGND = AVSS)  
Via connection to power plane  
AIN5  
Differential  
input  
AIN8  
Differential  
input  
AIN4  
AIN9  
1: AINCOM  
2: AIN5  
24: REFCOM  
23: REFOUT  
AIN3  
22: GPIO0/  
AIN8  
3: AIN4  
Differential  
input  
21: GPIO1/  
AIN9  
4: AIN3  
20: GPIO2/  
AIN10  
5: AIN2  
AIN2  
19: GPIO3/  
AIN11  
6: AIN1  
AIN10  
7: AIN0  
18: RESET  
17: CLK  
Differential  
input  
8: START  
AIN11  
AIN1  
Differential  
input  
AIN0  
Digital  
connections  
121. ADS124S0x Layout Example  
100  
版权 © 2016–2017, Texas Instruments Incorporated  
ADS124S06, ADS124S08  
www.ti.com.cn  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
ADS1x4S0x 设计计算器  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
REF50xx 低噪声、极低漂移、高精度电压基准》  
《使用 ADS1148 ADS1248 进行 RTD 比例测量和滤波的应用报告》  
3 线 RTD 测量系统参考设计(–200°C 850°C)》  
13.3 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可通过快速访问立刻订  
购。  
47. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
ADS124S06  
ADS124S08  
13.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可收到任意产  
品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
13.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
101  
ADS124S06, ADS124S08  
ZHCSFP3C AUGUST 2016REVISED JUNE 2017  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
102  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS124S06IPBS  
ADS124S06IPBSR  
ADS124S06IRHBR  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
VQFN  
PBS  
PBS  
RHB  
32  
32  
32  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-50 to 125  
-50 to 125  
-50 to 125  
124S06  
1000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
124S06  
ADS  
124S06  
ADS124S06IRHBT  
ACTIVE  
VQFN  
RHB  
32  
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-50 to 125  
ADS  
124S06  
ADS124S08IPBS  
ADS124S08IPBSR  
ADS124S08IRHBR  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
VQFN  
PBS  
PBS  
RHB  
32  
32  
32  
NIPDAU  
NIPDAU  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-50 to 125  
-50 to 125  
-50 to 125  
124S08  
1000 RoHS & Green  
3000 RoHS & Green  
124S08  
ADS  
124S08  
ADS124S08IRHBT  
ACTIVE  
VQFN  
RHB  
32  
250  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-50 to 125  
ADS  
124S08  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADS124S06IPBSR  
ADS124S06IRHBR  
ADS124S06IRHBT  
ADS124S08IPBSR  
ADS124S08IRHBR  
ADS124S08IRHBT  
TQFP  
VQFN  
VQFN  
TQFP  
VQFN  
VQFN  
PBS  
RHB  
RHB  
PBS  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
1000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
16.4  
12.4  
12.4  
16.4  
12.4  
12.4  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
7.2  
5.3  
5.3  
1.5  
1.1  
1.1  
1.5  
1.1  
1.1  
12.0  
8.0  
16.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
8.0  
1000  
3000  
250  
12.0  
8.0  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADS124S06IPBSR  
ADS124S06IRHBR  
ADS124S06IRHBT  
ADS124S08IPBSR  
ADS124S08IRHBR  
ADS124S08IRHBT  
TQFP  
VQFN  
VQFN  
TQFP  
VQFN  
VQFN  
PBS  
RHB  
RHB  
PBS  
RHB  
RHB  
32  
32  
32  
32  
32  
32  
1000  
3000  
250  
350.0  
346.0  
210.0  
350.0  
346.0  
210.0  
350.0  
346.0  
185.0  
350.0  
346.0  
185.0  
43.0  
33.0  
35.0  
43.0  
33.0  
35.0  
1000  
3000  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS124S06IPBS  
ADS124S08IPBS  
PBS  
PBS  
TQFP  
TQFP  
32  
32  
250  
250  
10 X 25  
10 X 25  
150  
150  
315 135.9 7620 12.2  
315 135.9 7620 12.2  
11.1 11.25  
11.1 11.25  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
A
5.1  
4.9  
B
5.1  
4.9  
PIN 1 INDEX AREA  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
ꢀꢀꢀꢁꢂꢃ“ꢄꢂꢃ  
9
16  
28X 0.5  
8
17  
SYMM  
33  
2X  
3.5  
1
24  
0.3  
0.2  
32X  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
0.05  
C A B  
C
0.5  
0.3  
32X  
4223725/A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
2.1)  
(
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.8)  
ꢅ‘ꢄꢂꢁꢆ  
VIA TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.8)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED  
METAL  
OPENING  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223725/A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHB0032M  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.8)  
4X ( 0.94)  
32  
25  
32X (0.6)  
32X (0.25)  
1
24  
28X (0.5)  
33  
SYMM  
(4.8)  
2X  
(0.57)  
METAL  
TYP  
8
17  
(R0.05) TYP  
9
16  
2X (0.57)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4223725/A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY