ADS1241E/1K [TI]

24-Bit ANALOG-TO-DIGITAL CONVERTER; 24位模拟数字转换器
ADS1241E/1K
型号: ADS1241E/1K
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24-Bit ANALOG-TO-DIGITAL CONVERTER
24位模拟数字转换器

转换器
文件: 总23页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A
ADS1240  
ADS1241  
D
S
1
2
4
0
A
D
S
1
2
4
1
SBAS173C – JUNE 2001 – REVISED NOVEMBER 2003  
24-Bit  
ANALOG-TO-DIGITAL CONVERTER  
DESCRIPTION  
FEATURES  
24 BITS NO MISSING CODES  
The ADS1240 and ADS1241 are precision, wide dynamic range,  
delta-sigma, Analog-to-Digital (A/D) converters with 24-bit resolution  
operating from 2.7V to 5.25V power supplies. The delta-sigma A/D  
converter provides up to 24 bits of no missing code performance and  
effective resolution of 21 bits.  
SIMULTANEOUS 50Hz AND 60Hz REJECTION  
(–90dB MINIMUM)  
0.0015% INL  
21 BITS EFFECTIVE RESOLUTION  
The input channels are multiplexed. Internal buffering can be  
selected to provide very high input impedance for direct connection  
to transducers or low-level voltage signals. Burnout current sources  
are provided that allow for detection of an open or shorted sensor.  
An 8-bit Digital-to-Analog (D/A) converter provides an offset cor-  
rection with a range of 50% of the Full-Scale Range (FSR).  
(PGA = 1), 19 BITS (PGA = 128)  
PGA GAINS FROM 1 TO 128  
SINGLE CYCLE SETTLING  
PROGRAMMABLE DATA OUTPUT RATES  
EXTERNAL DIFFERENTIAL REFERENCE  
OF 0.1V TO 5V  
The Programmable Gain Amplifier (PGA) provides selectable gains of  
1 to 128, with an effective resolution of 19 bits at a gain of 128. The  
A/D conversion is accomplished with a 2nd-order delta-sigma modu-  
lator and programmable Finite-Impulse Response (FIR) filter that  
provides a simultaneous 50Hz and 60Hz notch. The reference input  
is differential and can be used for ratiometric conversion.  
ON-CHIP CALIBRATION  
SPI™ COMPATIBLE  
2.7V TO 5.25V SUPPLY RANGE  
600µW POWER CONSUMPTION  
UP TO EIGHT INPUT CHANNELS  
UP TO EIGHT DATA I/O  
The serial interface is SPI compatible. Up to eight bits of data  
I/O are also provided that can be used for input or output. The  
ADS1240 and ADS1241 are designed for high-resolution measure-  
ment applications in smart transmitters, industrial process control,  
weigh scales, chromatography, and portable instrumentation.  
APPLICATIONS  
INDUSTRIAL PROCESS CONTROL  
WEIGH SCALES  
AVDD AGND  
VREF+ VREF–  
XIN  
XOUT  
LIQUID/GAS CHROMATOGRAPHY  
AVDD  
BLOOD ANALYSIS  
Clock Generator  
SMART TRANSMITTERS  
PORTABLE INSTRUMENTATION  
2µA  
Offset  
DAC  
AIN0/D0  
AIN1/D1  
AIN2/D2  
AIN3/D3  
AIN4/D4  
AIN5/D5  
AIN6/D6  
AIN7/D7  
AINCOM  
A = 1:128  
PGA  
2nd-Order  
Modulator  
Digital  
Filter  
MUX  
+
Controller  
Registers  
BUF  
POL  
SCLK  
DIN  
Serial Interface  
ADS1241  
Only  
DOUT  
CS  
2µA  
AGND  
BUFEN  
DVDD  
DGND  
PDWN DSYNC  
RESET DRDY  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2001-2003, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
AVDD to DGND ...................................................................... –0.3V to +6V  
DVDD to DGND ...................................................................... –0.3V to +6V  
Input Current ............................................................... 100mA, Momentary  
DGND to AGND ....................................................................0.3V to 0.3V  
Input Current ................................................................. 10mA, Continuous  
A
IN .................................................................AGND –0.5V to AVDD + 0.5V  
Digital Input Voltage to DGND ................................. –0.3V to DVDD + 0.3V  
Digital Output Voltage to DGND .............................. –0.3V to DVDD + 0.3V  
Maximum Junction Temperature ................................................... +150°C  
Operating Temperature Range ......................................... –40°C to +85°C  
Storage Temperature Range .......................................... –60°C to +150°C  
Lead Temperature (soldering, 10s) .............................................. +300°C  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
NOTE: (1) Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods may degrade  
device reliability.  
EVALUATION MODULE ORDERING INFORMATION  
PRODUCT  
DESCRIPTION  
ADS1241EVM  
ADS1240 and ADS1241 Evaluation Module  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR(1)  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
ADS1240  
SSOP-24  
DB  
–40°C to +85°C  
ADS1240E  
ADS1240E  
Rails, 60  
"
"
"
"
"
ADS1240E/1K  
Tape and Reel, 1000  
ADS1241  
SSOP-28  
DB  
–40°C to +85°C  
ADS1241E  
ADS1241E  
Rails, 48  
"
"
"
"
"
ADS1241E/1K  
Tape and Reel, 1000  
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.  
DIGITAL CHARACTERISTICS: 40°C to +85°C, DVDD 2.7V to 5.25V  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Input/Output  
Logic Family  
CMOS  
Logic Level: VIH  
0.8 • DVDD  
DGND  
DVDD – 0.4  
DGND  
DVDD  
0.2 • DVDD  
V
V
V
VIL  
VOH  
VOL  
IOH = 1mA  
IOL = 1mA  
VI = DVDD  
VI = 0  
DGND + 0.4  
10  
V
Input Leakage: IIH  
IIL  
Master Clock Rate: fOSC  
Master Clock Period: tOSC  
µA  
µA  
MHz  
ns  
–10  
1
200  
5
1000  
1/fOSC  
ADS1240, 1241  
2
SBAS173C  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 5V  
All specifications TMIN to TMAX, AVDD = +5V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, fDATA = 15Hz, and VREF = +2.5V, unless otherwise specified.  
ADS1240  
ADS1241  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 AIN7, AINCOM  
)
Analog Input Range  
Buffer OFF  
Buffer ON  
AGND – 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD – 1.5  
V
V
Full-Scale Input Range  
(In+) – (In–), See Block Diagram, RANGE = 0  
RANGE = 1  
±VREF /PGA  
±VREF /(2 • PGA)  
V
V
Differential Input Impedance  
Buffer OFF  
Buffer ON  
5/PGA  
5
MΩ  
GΩ  
Bandwidth  
fDATA = 3.75Hz  
fDATA = 7.50Hz  
fDATA = 15.00Hz  
–3dB  
–3dB  
–3dB  
1.65  
3.44  
14.6  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
1
128  
9
5
2
pF  
pA  
µA  
Modulator OFF, T = 25°C  
OFFSET DAC  
Offset DAC Range  
RANGE = 0  
RANGE = 1  
±VREF /(2 • PGA)  
±VREF /(4 • PGA)  
V
V
Offset Monotonicity  
Offset DAC Gain Error  
Offset DAC Gain Error Drift  
8
Bits  
%
ppm/°C  
±10  
1
SYSTEM PERFORMANCE  
Resolution  
Integral Nonlinearity  
Offset Error(1)  
Offset Drift(1)  
Gain Error  
Gain Error Drift(1)  
Common-Mode Rejection  
No Missing Codes  
End Point Fit  
24  
Bits  
% of FS  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
dB  
±0.0015  
7.5  
0.02  
0.005  
0.5  
at DC  
100  
f
CM = 60Hz, fDATA = 15Hz  
130  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 15Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 15Hz  
SIG = 60Hz, fDATA = 15Hz  
Output Noise  
Power-Supply Rejection  
See Typical Characteristics  
95  
(2)  
at DC, dB = –20 log(VOUT /VDD  
)
80  
dB  
VOLTAGE REFERENCE INPUT  
VREF  
Reference Input Range  
VREF (REF IN+) – (REF IN–), RANGE = 0  
REF IN+, REF IN–  
RANGE = 1  
0.1  
0
0.1  
2.5  
2.6  
AVDD  
AVDD  
V
V
V
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
at DC  
120  
120  
1.3  
dB  
dB  
µA  
fVREFCM = 60Hz, fDATA = 15Hz  
VREF = 2.5V  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
Analog Current  
AVDD  
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
4.75  
5.25  
V
1
nA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
nA  
120  
400  
160  
760  
80  
60  
230  
0.5  
250  
675  
300  
1275  
125  
PGA = 128, Buffer ON  
Normal Mode, DVDD = 5V  
SLEEP Mode, DVDD = 5V  
Read Data Continuous Mode, DVDD = 5V  
PDWN  
Digital Current  
Power Dissipation  
PGA = 1, Buffer OFF, DVDD = 5V  
1.1  
1.9  
mW  
NOTES: (1) Calibration can minimize these errors to the level of the noise.  
(2) VOUT is a change in digital result.  
(3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1240, 1241  
3
SBAS173C  
www.ti.com  
ELECTRICAL CHARACTERISTICS: AVDD = 3V  
All specifications –40°C to +85°C, AVDD = +3V, DVDD = +2.7V to 5.25V, fMOD = 19.2kHz, PGA = 1, Buffer ON, fDATA = 15Hz, and VREF = +1.25V, unless otherwise specified.  
ADS1240  
ADS1241  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN0 AIN7, AINCOM  
)
Analog Input Range  
Buffer OFF  
Buffer ON  
AGND – 0.1  
AGND + 0.05  
AVDD + 0.1  
AVDD – 1.5  
V
V
Full-Scale Input Voltage Range  
(In+) – (In–) See Block Diagram, RANGE = 0  
RANGE = 1  
±VREF /PGA  
±VREF /(2 • PGA)  
V
V
Input Impedance  
Differential  
Buffer OFF  
Buffer ON  
5/PGA  
5
MΩ  
GΩ  
Bandwidth  
fDATA = 3.75Hz  
fDATA = 7.50Hz  
fDATA = 15.00Hz  
–3dB  
–3dB  
–3dB  
1.65  
3.44  
14.6  
Hz  
Hz  
Hz  
Programmable Gain Amplifier  
Input Capacitance  
Input Leakage Current  
Burnout Current Sources  
User-Selectable Gain Ranges  
1
128  
9
5
2
pF  
pA  
µA  
Modulator OFF, T = 25°C  
OFFSET DAC  
Offset DAC Range  
RANGE = 0  
RANGE = 1  
±VREF /(2 • PGA)  
±VREF /(4 • PGA)  
V
V
Offset DAC Monotonicity  
Offset DAC Gain Error  
8
Bits  
%
±10  
Offset DAC Gain Error Drift  
2
ppm/°C  
SYSTEM PERFORMANCE  
Resolution  
Integral Nonlinearity  
Offset Error(1)  
Offset Drift(1)  
Gain Error  
Gain Error Drift(1)  
Common-Mode Rejection  
No Missing Codes  
End Point Fit  
24  
Bits  
% of FS  
ppm of FS  
ppm of FS/°C  
%
ppm/°C  
dB  
±0.0015  
15  
0.04  
0.01  
1.0  
at DC  
100  
f
CM = 60Hz, fDATA = 15Hz  
130  
120  
100  
100  
dB  
dB  
dB  
dB  
fCM = 50Hz, fDATA = 15Hz  
Normal-Mode Rejection  
f
f
SIG = 50Hz, fDATA = 15Hz  
SIG = 60Hz, fDATA = 15Hz  
Output Noise  
Power-Supply Rejection  
See Typical Characteristics  
90  
(2)  
at DC, dB = –20 log(VOUT /VDD  
)
75  
dB  
VOLTAGE REFERENCE INPUT  
VREF  
Reference Input Range  
VREF (REF IN+) – (REF IN–), RANGE = 0  
REF IN+, REF IN–  
0.1  
0
0.1  
1.25  
2.5  
1.30  
AVDD  
2.6  
V
V
V
RANGE = 1  
Common-Mode Rejection  
Common-Mode Rejection  
Bias Current(3)  
at DC  
120  
120  
0.65  
dB  
dB  
µA  
fVREFCM = 60Hz, fDATA = 15Hz  
VREF = 1.25  
POWER-SUPPLY REQUIREMENTS  
Power-Supply Voltage  
Analog Current  
AVDD  
PDWN = 0, or SLEEP  
PGA = 1, Buffer OFF  
PGA = 128, Buffer OFF  
PGA = 1, Buffer ON  
2.7  
3.3  
V
nA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
nA  
mW  
1
107  
355  
118  
483  
50  
225  
600  
275  
1225  
100  
PGA = 128, Buffer ON  
Normal Mode, DVDD = 3V  
SLEEP Mode, DVDD = 3V  
Read Data Continuous Mode, DVDD = 3V  
PDWN = 0  
Digital Current  
40  
113  
0.5  
0.6  
Power Dissipation  
PGA = 1, Buffer OFF, DVDD = 3V  
1.2  
NOTES: (1) Calibration can minimize these errors to the level of the noise.  
(2) VOUT is a change in digital result.  
(3) 12pF switched capacitor at fSAMP clock frequency.  
ADS1240, 1241  
4
SBAS173C  
www.ti.com  
PIN CONFIGURATION (ADS1240)  
PIN CONFIGURATION (ADS1241)  
Top View  
SSOP  
Top View  
SSOP  
DVDD  
DGND  
XIN  
1
2
3
4
5
6
7
8
9
28 BUFEN  
27 DRDY  
26 SCLK  
25 DOUT  
24 DIN  
DVDD  
DGND  
XIN  
1
2
3
4
5
6
7
8
9
24 BUFEN  
23 DRDY  
22 SCLK  
21 DOUT  
20 DIN  
XOUT  
XOUT  
RESET  
DSYNC  
PDWN  
DGND  
VREF+  
RESET  
DSYNC  
PDWN  
DGND  
VREF+  
23 CS  
19 CS  
22 POL  
ADS1240  
ADS1241  
18 POL  
21 AVDD  
20 AGND  
19 AINCOM  
18 AIN3/D3  
17 AIN2/D2  
17 AVDD  
16 AGND  
15 AINCOM  
14 AIN3/D3  
VREF10  
AIN0/D0 11  
AIN1/D1 12  
VREF10  
AIN0/D0 11  
AIN1/D1 12  
13  
AIN2/D2  
AIN4/D4 13  
16  
AIN7/D7  
AIN5/D5 14  
15 AIN6/D6  
PIN DESCRIPTIONS (ADS1241)  
PIN DESCRIPTIONS (ADS1240)  
PIN  
PIN  
NUMBER  
NAME  
DESCRIPTION  
NUMBER  
NAME  
DESCRIPTION  
1
2
3
4
5
6
7
DVDD  
DGND  
XIN  
Digital Power Supply  
Digital Ground  
Clock Input  
Clock Output, used with external crystals.  
Active LOW, resets the entire device.  
Active LOW, Synchronization Control  
Active LOW, Power Down. The power down func-  
tion shuts down the analog and digital circuits.  
Digital Ground  
1
2
3
4
5
6
7
DVDD  
DGND  
XIN  
Digital Power Supply  
Digital Ground  
Clock Input  
XOUT  
XOUT  
Clock Output, used with external crystals.  
Active LOW, resets the entire device.  
Active LOW, Synchronization Control  
RESET  
DSYNC  
PDWN  
RESET  
DSYNC  
PDWN  
Active LOW, Power Down. The power down func-  
tion shuts down the analog and digital circuits.  
8
DGND  
VREF+  
VREF–  
AIN0/D0  
AIN1/D1  
AIN4/D4  
AIN5/D5  
9
Positive Differential Reference Input  
Negative Differential Reference Input  
Analog Input 0 / Data I/O 0  
Analog Input 1 / Data I/O 1  
Analog Input 4 / Data I/O 4  
Analog Input 5 / Data I/O 5  
Analog Input 6 / Data I/O 6  
Analog Input 7 / Data I/O 7  
Analog Input 2 / Data I/O 2  
Analog Input 3 / Data I/O 3  
Analog Input Common, connect to AGND if unused.  
Analog Ground  
8
DGND  
VREF+  
VREF–  
Digital Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
9
Positive Differential Reference Input  
Negative Differential Reference Input  
Analog Input 0 / Data I/O 0  
Analog Input 1 / Data I/O 1  
Analog Input 2 / Data I/O 2  
Analog Input 3 / Data I/O 3  
Analog Input Common, connect to AGND if unused.  
Analog Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
A
A
IN0/D0  
IN1/D1  
A
IN6/D6  
AIN2/D2  
IN3/D3  
AIN7/D7  
AIN2/D2  
AIN3/D3  
AINCOM  
AGND  
AVDD  
POL  
CS  
DIN  
DOUT  
A
AINCOM  
AGND  
AVDD  
POL  
Analog Power Supply  
Analog Power Supply  
Serial Clock Polarity  
Active LOW, Chip Select  
Serial Data Input, Schmitt Trigger  
Serial Data Output  
Serial Clock, Schmitt Trigger  
Active LOW, Data Ready  
Buffer Enable  
Serial Clock Polarity  
CS  
Active LOW, Chip Select  
Serial Data Input, Schmitt Trigger  
Serial Data Output  
DIN  
DOUT  
SCLK  
DRDY  
BUFEN  
Serial Clock, Schmitt Trigger  
Active LOW, Data Ready  
Buffer Enable  
SCLK  
DRDY  
BUFEN  
ADS1240, 1241  
5
SBAS173C  
www.ti.com  
TIMING DIAGRAMS  
CS  
t3  
t1  
t2  
t10  
SCLK  
(POL = 0)  
SCLK  
(POL = 1)  
t2  
t4  
t5  
t6  
t11  
DIN  
MSB  
LSB  
t7  
t8  
t9  
(Command or Command and Data)  
MSB(1)  
LSB(1)  
DOUT  
NOTE: (1) Bit order = 0.  
ADS1240 or ADS1241  
Resets On  
SCLK Reset Waveform  
Falling Edge  
300 tOSC < t12 < 500 tOSC  
t13 : > 5 tOSC  
t13  
t13  
550 tOSC < t14 < 750 tOSC  
SCLK  
1050 tOSC < t15 < 1250 tOSC  
t12  
t14  
t15  
DIAGRAM 1.  
t16  
tDATA  
DRDY  
RESET, DSYNC, PDWN  
t17  
t18  
SCLK  
t19  
DIAGRAM 2.  
TIMING CHARACTERISTICS TABLES  
SPEC  
DESCRIPTION  
MIN  
MAX  
UNITS  
t1  
SCLK Period  
4
tOSC Periods  
3
DRDY Periods  
t2  
t3  
t4  
t5  
t6  
SCLK Pulse Width, HIGH and LOW  
CS low to first SCLK Edge; Setup Time(2)  
DIN Valid to SCLK Edge; Setup Time  
Valid DIN to SCLK Edge; Hold Time  
200  
0
ns  
ns  
ns  
ns  
50  
50  
Delay between last SCLK edge for DIN and first SCLK edge for DOUT  
:
RDATA, RDATAC, RREG, WREG  
SCLK Edge to Valid New DOUT  
50  
tOSC Periods  
ns  
(1)  
t7  
50  
10  
(1)  
t8  
SCLK Edge to DOUT, Hold Time  
0
6
ns  
t9  
Last SCLK Edge to DOUT Tri-State  
tOSC Periods  
NOTE: DOUT goes tri-state immediately when CS goes HIGH.  
CS LOW time after final SCLK edge.  
t10  
t11  
0
ns  
Final SCLK edge of one command until first edge SCLK  
of next command:  
RREG, WREG, DSYNC, SLEEP, RDATA, RDATAC, STOPC  
SELFGCAL, SELFOCAL, SYSOCAL, SYSGCAL  
SELFCAL  
4
2
4
16  
4
tOSC Periods  
DRDY Periods  
DRDY Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
tOSC Periods  
RESET (also SCLK Reset or RESET Pin)  
Pulse Width  
Allowed analog input change for next valid conversion.  
DOR update, DOR data not valid.  
First SCLK after DRDY goes LOW:  
RDATAC Mode  
t16  
t17  
t18  
t19  
5000  
4
10  
0
tOSC Periods  
tOSC Periods  
Any other mode  
NOTES: (1) Load = 20pF 10kto DGND.  
(2) CS may be tied LOW.  
ADS1240, 1241  
6
SBAS173C  
www.ti.com  
TYPICAL CHARACTERISTICS  
All specifications, AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, fDATA = 15Hz, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
EFFECTIVE NUMBER OF BITS vs PGA SETTING  
EFFECTIVE NUMBER OF BITS vs PGA SETTING  
DR = 10  
22  
21  
20  
19  
18  
17  
16  
15  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
DR = 10  
DR = 01  
DR = 01  
DR = 00  
DR = 00  
Buffer ON  
Buffer OFF  
1
2
4
8
16  
32  
64  
128  
1
2
4
8
16  
32  
64  
128  
PGA Setting  
PGA Setting  
EFFECTIVE NUMBER OF BITS vs PGA SETTING  
NOISE vs INPUT SIGNAL  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
DR = 10  
DR = 01  
DR = 00  
Buffer OFF, VREF = 1.25V  
2.5  
1.5  
0.5  
0.5  
1.5  
2.5  
1
2
4
8
16  
32  
64  
128  
VIN (V)  
PGA Setting  
COMMON-MODE REJECTION RATIO  
vs FREQUENCY  
POWER SUPPLY REJECTION RATIO  
vs FREQUENCY  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
Buffer ON  
10  
Buffer ON  
10  
0
0
1
100  
1k  
10k  
100k  
1
100  
1k  
10k  
100k  
Frequency of Power Supply (Hz)  
Frequency of Power Supply (Hz)  
ADS1240, 1241  
7
SBAS173C  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
All specifications, AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, fDATA = 15Hz, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
GAIN vs TEMPERATURE  
OFFSET vs TEMPERATURE  
(Cal at 25°C)  
(Cal at 25°C)  
1.00010  
1.00006  
1.00002  
0.99998  
0.99994  
0.99990  
0.99986  
50  
0
PGA16  
PGA1  
50  
PGA64  
100  
150  
200  
PGA128  
50  
30  
10  
10  
30  
50  
70  
90  
50  
30  
10  
10  
30  
50  
70  
90  
Temperature (°C)  
Temperature (°C)  
ANALOG CURRENT vs TEMPERATURE  
AVDD = 5  
INTEGRAL NONLINEARITY vs INPUT SIGNAL  
10  
8
150  
140  
130  
120  
110  
100  
90  
40°C  
6
4
+85°C  
2
0
AVDD = 3  
2  
4  
6  
8  
10  
80  
+25°C  
70  
Buffer OFF  
60  
50  
2.5 2.0 1.5 1.0 0.5  
0
0.5 1.0 1.5 2.0 2.5  
50  
30  
10  
10  
30  
50  
70  
90  
VIN (V)  
Temperature (°C)  
ANALOG CURRENT vs PGA  
DIGITAL CURRENT vs SUPPLY  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
AVDD = 5V, Buffer = ON  
Buffer = OFF  
Normal  
2.45MHz  
SLEEP  
4.91MHz  
Normal  
4.91MHz  
AVDD = 3V, Buffer = ON  
Buffer = OFF  
SLEEP  
2.45MHz  
Power Down  
3.5  
0
1
2
4
8
16  
32  
64  
128  
3.0  
4.0  
4.5  
5.0  
PGA Setting  
V
DD (V)  
ADS1240, 1241  
8
SBAS173C  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
All specifications, AVDD = +5V, DVDD = +5V, fOSC = 2.4576MHz, PGA = 1, fDATA = 15Hz, and VREF (REF IN+) (REF IN) = +2.5V, unless otherwise specified.  
OFFSET DAC  
OFFSET vs TEMPERATURE  
NOISE HISTOGRAM  
(Cal at 25°C)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
200  
170  
140  
110  
80  
10k Readings  
IN = 0V  
V
50  
20  
10  
40  
70  
100  
0
50  
30  
10  
10  
30  
50  
70  
90  
3.5 3.0 2.5 2.0 1.5 1 0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Temperature (°C)  
ppm of FS  
OFFSET DAC  
GAIN vs TEMPERATURE  
(Cal at 25°C)  
OFFSET DAC  
NOISE vs SETTING  
1.00020  
1.00016  
1.00012  
1.00008  
1.00004  
1.00000  
0.99996  
0.99992  
0.99988  
0.99984  
0.99980  
0.99976  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
30  
10  
10  
30  
50  
70  
90  
128 96  
64 32  
0
32  
64  
96  
128  
Temperature (°C)  
Offset DAC Setting  
ADS1240, 1241  
9
SBAS173C  
www.ti.com  
channel. With this method, it is possible to have up to eight  
single-ended input channels or four independent differential  
input channels for the ADS1241, and four single-ended input  
channels or two independent differential input channels for  
the ADS1240. Note that AINCOM can be treated as an input  
channel.  
OVERVIEW  
INPUT MULTIPLEXER  
The input multiplexer provides for any combination of differ-  
ential inputs to be selected on any of the input channels, as  
shown in Figure 1. For example, if AIN0 is selected as the  
positive differential input channel, any other channel can be  
selected as the negative terminal for the differential input  
The ADS1240 and ADS1241 feature a single-cycle settling  
digital filter that provides valid data on the first conversion  
after a new channel selection. In order to minimize the  
settling error, synchronize MUX changes to the conversion  
beginning, which is indicated by the falling edge of DRDY. In  
other words, issuing a MUX change through the WREG  
command immediately after DRDY goes LOW minimizes the  
settling error. Increasing the time between the conversion  
beginning (DRDY goes LOW) and the MUX change com-  
mand (tDELAY) results in a settling error in the conversion  
data, as shown in Figure 2.  
A
IN0/D0  
AIN1/D1  
AIN2/D2  
AIN3/D3  
AIN4/D4  
AIN5/D5  
AIN6/D6  
AIN7/D7  
AINCOM  
AVDD  
Burnout Current Source  
BURNOUT CURRENT SOURCES  
The Burnout Current Sources can be used to detect sensor  
short-circuit or open-circuit conditions. Setting the Burnout  
Current Sources (BOCS) bit in the SETUP register activates  
two 2µA current sources called burnout current sources. One  
of the current sources is connected to the converters nega-  
tive input and the other is connected to the converters  
positive input.  
Input  
Buffer  
Burnout Current Source  
AGND  
Figure 3 shows the situation for an open-circuit sensor. This  
is a potential failure mode for many kinds of remotely con-  
nected sensors. The current source on the positive input acts  
as a pull-up, causing the positive input to go to the positive  
analog supply, and the current source on the negative input  
acts as a pull-down, causing the negative input to go to  
ground. The ADS1240/41 therefore outputs full-scale (7FFFFF  
Hex).  
ADS1241  
Only  
FIGURE 1. Input Multiplexer Configuration.  
New Conversion Begins,  
Complete Previous Conversion  
Previous Conversion Data  
New Conversion Complete  
DRDY  
tDELAY  
SCLK  
(POL = 0)  
DIN  
MSB  
LSB  
SETTLING ERROR vs DELAY TIME  
CLK = 2.4576MHz  
f
10.000000  
1.000000  
0.100000  
0.010000  
0.001000  
0.000100  
0.000010  
0.000001  
0
2
4
6
8
10  
12  
14  
16  
Delay Time, tDELAY (ms)  
FIGURE 2. Input Multiplexer Configuration.  
10  
ADS1240, 1241  
SBAS173C  
www.ti.com  
The buffer draws additional current when activated. The  
current required by the buffer depends on the PGA setting.  
When the PGA is set to 1, the buffer uses approximately  
50µA; when the PGA is set to 128, the buffer uses approxi-  
AVDD  
2µA  
mately 500µA.  
AVDD  
PGA  
ADC  
OPEN CIRCUIT  
CODE = 0x7FFFFFH  
The Programmable Gain Amplifier (PGA) can be set to gains  
of 1, 2, 4, 8, 16, 32, 64, or 128. Using the PGA can improve the  
effective resolution of the A/D converter. For instance, with a  
PGA of 1 on a 5V full-scale signal, the A/D converter can  
resolve down to 1µV. With a PGA of 128 and a full-scale signal  
of 39mV, the A/D converter can resolve down to 75nV. AVDD  
0V  
2µA  
current increases with PGA settings higher than 4.  
FIGURE 3. Burnout detection while sensor is open-circuited.  
OFFSET DAC  
Figure 4 shows a short-circuited sensor. Since the inputs are  
shorted and at the same potential, the ADS1240/41 signal  
outputs are approximately zero. (Note that the code for  
shorted inputs is not exactly zero due to internal series  
The input to the PGA can be shifted by half the full-scale input  
range of the PGA using the Offset DAC (ODAC) register. The  
ODAC register is an 8-bit value; the MSB is the sign and the  
seven LSBs provide the magnitude of the offset. Using the  
offset DAC does not reduce the performance of the A/D  
converter. For more details on the ODAC, please refer to TI  
application report SBAA077.  
resistance, low-level noise and other error sources.)  
AVDD  
MODULATOR  
2µA  
The modulator is a single-loop second-order system. The  
modulator runs at a clock speed (fMOD) that is derived from  
the external clock (fOSC). The frequency division is deter-  
mined by the SPEED bit in the SETUP register, as shown in  
Table I.  
AVDD/2  
SHORT  
CIRCUIT  
ADC  
CODE  
0
AVDD/2  
2µA  
SPEED  
BIT  
DR BITS  
01  
1st NOTCH  
FREQ.  
fOSC  
fMOD  
00  
10  
2.4576MHz  
0
1
0
1
19,200Hz 15Hz 7.5Hz 3.75Hz  
9,600Hz 7.5Hz 3.75Hz 1.875Hz  
50/60Hz  
25/30Hz  
100/120Hz  
50/60Hz  
4.9152MHz  
38,400Hz 30Hz  
15Hz  
7.5Hz  
19,200Hz 15Hz 7.5Hz 3.75Hz  
FIGURE 4. Burnout detection while sensor is short-circuited.  
TABLE I. Output Configuration.  
INPUT BUFFER  
CALIBRATION  
The input impedance of the ADS1240/41 without the buffer  
enabled is approximately 5M/PGA. For systems requiring  
very high input impedance, the ADS1240/41 provides a  
chopper-stabilized differential FET-input voltage buffer. When  
activated, the buffer raises the ADS1240/41 input impedance  
to approximately 5G.  
The offset and gain errors can be minimized with calibration.  
The ADS1240 and ADS1241 support both self and system  
calibration.  
Self-calibration of the ADS1240 and ADS1241 corrects inter-  
nal offset and gain errors and is handled by three commands:  
SELFCAL, SELFGAL, and SLEFOCAL. The SELFCAL com-  
mand performs both an offset and gain calibration. SELFGCAL  
performs a gain calibration and SELFOCAL performs an  
offset calibration, each of which takes two tDATA periods to  
complete. During self-calibration, the ADC inputs are discon-  
nected internally from the input pins. The PGA must be set to  
1 prior to issuing a SELFCAL or SELFGCAL command. Any  
PGA is allowed when issuing a SELFOCAL command. For  
example, if using PGA = 64, first set PGA = 1 and issue  
The buffers input range is approximately 50mV to AVDD  
1.5V. The buffers linearity will degrade beyond this range.  
Differential signals should be adjusted so that both signals  
are within the buffers input range.  
The buffer can be enabled using the BUFEN pin or the  
BUFEN bit in the ACR register. The buffer is on when the  
BUFEN pin is high and the BUFEN bit is set to one. If the  
BUFEN pin is low, the buffer is disabled. If the BUFEN bit is  
set to zero, the buffer is also disabled.  
ADS1240, 1241  
11  
SBAS173C  
www.ti.com  
SELFGCAL. Afterwards set PGA = 64 and issue SELFOCAL.  
For operation with a reference voltage greater than (AVDD  
1.5) volts, the buffer must also be turned off during gain self-  
calibration to avoid exceeding the buffer input range.  
XIN  
C1  
C2  
Crystal  
System calibration corrects both internal and external offset  
and gain errors. While performing system calibration, the  
appropriate signal must be applied to the inputs. The system  
offset calibration command (SYSOCAL) requires a zero input  
differential signal (see Table IV, page 18). It then computes  
the offset that nullifies the offset in the system. The system  
gain calibration command (SYSGCAL) requires a positive  
full-scale input signal. It then computes a value to nullify the  
gain error in the system. Each of these calibrations takes two  
XOUT  
FIGURE 5. Crystal Connection.  
CLOCK  
PART  
NUMBER  
SOURCE FREQUENCY  
C1  
C2  
t
DATA periods to complete. System gain calibration is recom-  
Crystal  
Crystal  
Crystal  
Crystal  
2.4576  
4.9152  
4.9152  
4.9152  
0-20pF 0-20pF ECS, ECSD 2.45 - 32  
0-20pF 0-20pF  
0-20pF 0-20pF  
ECS, ECSL 4.91  
ECS, ECSD 4.91  
mended for the best gain calibration at higher PGAs.  
Calibration should be performed after power on, a change in  
temperature, or a change of the PGA. The RANGE bit (ACR bit  
2) must be zero during calibration.  
0-20pF 0-20pF CTS, MP 042 4M9182  
TABLE II. Recommended Crystals.  
Calibration removes the effects of the ODAC; therefore, dis-  
able the ODAC during calibration, and enable again after  
calibration is complete.  
DIGITAL FILTER  
The ADS1240 and ADS1241 have a 1279 tap linear phase  
Finite Impulse Response (FIR) digital filter that a user can  
configure for various output data rates. When a 2.4576MHz  
crystal is used, the device can be programmed for an output  
data rate of 15Hz, 7.5Hz, or 3.75Hz. Under these conditions,  
the digital filter rejects both 50Hz and 60Hz interference. Figure  
6 shows the digital filter frequency response for data output  
rates of 15Hz, 7.5Hz, and 3.75Hz.  
At the completion of calibration, the DRDY signal goes low,  
indicating the calibration is finished. The first data after  
calibration should be discarded since it may be corrupt from  
calibration data remaining in the filter. The second data is  
always valid.  
EXTERNAL VOLTAGE REFERENCE  
If a different data output rate is desired, a different crystal  
frequency can be used. However, the rejection frequencies  
shift accordingly. For example, a 3.6864MHz master clock with  
the default register condition has:  
The ADS1240 and ADS1241 require an external voltage  
reference. The selection for the voltage reference value is  
made through the ACR register.  
The external voltage reference is differential and is repre-  
sented by the voltage difference between the pins: +VREF  
and VREF. The absolute voltage on either pin, +VREF or  
VREF, can range from AGND to AVDD. However, the follow-  
ing limitations apply:  
(3.6864MHz/2.4576MHz) 15Hz = 22.5Hz data output rate  
and the first and second notch is:  
1.5 (50Hz and 60Hz) = 75Hz and 90Hz  
For AVDD = 5.0V and RANGE = 0 in the ACR, the differential  
DATA I/O INTERFACE  
V
REF must not exceed 2.5V.  
For AVDD = 5.0V and RANGE = 1 in the ACR, the differential  
REF must not exceed 5V.  
For AVDD = 3.0V and RANGE = 0 in the ACR, the differential  
REF must not exceed 1.25V.  
The ADS1240 has four pins and the ADS1241 has eight pins  
that serve a dual purpose as both analog inputs and data  
I/O. These pins are powered from AVDD and are configured  
through the IOCON, DIR, and DIO registers. These pins  
can be individually configured as either analog inputs or data  
I/O. See Figure 7 (page 14) for the equivalent schematic of  
an Analog/Data I/O pin.  
V
V
For AVDD = 3.0V and RANGE = 1 in the ACR, the differential  
VREF must not exceed 2.5V.  
The IOCON register defines the pin as either an analog input  
or data I/O. The power-up state is an analog input. If the pin  
is configured as an analog input in the IOCON register, the  
DIR and DIO registers have no effect on the state of the pin.  
CLOCK GENERATOR  
The clock source for the ADS1240 and ADS1241 can be  
provided from a crystal, oscillator, or external clock. When the  
clock source is a crystal, external capacitors must be provided  
to ensure start-up and stable clock frequency. This is shown in  
both Figure 5 and Table II. XOUT is only for use with external  
crystals and it should not be used as a clock driver for external  
If the pin is configured as data I/O in the IOCON register,  
then DIR and DIO are used to control the state of the pin.  
The DIR register controls the direction of the data pin, either  
as an input or output. If the pin is configured as an input in  
the DIR register, then the corresponding DIO register bit  
reflects the state of the pin. Make sure the pin is driven to a  
circuitry.  
ADS1240, 1241  
12  
SBAS173C  
www.ti.com  
ADS1240 AND ADS1241  
FILTER RESPONSE WHEN fDATA = 15Hz  
FREQUENCY RESPONSE FROM 45Hz to 65Hz  
WHEN fDATA = 15Hz  
0
20  
40  
50  
60  
40  
70  
60  
80  
80  
90  
100  
120  
140  
160  
180  
100  
110  
120  
130  
140  
0
20  
40 60  
80 100 120 140 160 180 200  
Frequency (Hz)  
45  
50  
55  
60  
65  
Frequency (Hz)  
FREQUENCY RESPONSE FROM 45Hz to 65Hz  
WHEN fDATA = 7.5Hz  
ADS1240 AND ADS1241  
FILTER RESPONSE WHEN fDATA = 7.5Hz  
40  
50  
0
20  
60  
40  
70  
60  
80  
80  
90  
100  
120  
140  
160  
180  
100  
110  
120  
130  
140  
0
20  
40 60  
80 100 120 140 160 180 200  
Frequency (Hz)  
45  
50  
55  
60  
65  
Frequency (Hz)  
ADS1240 AND ADS1241  
FILTER RESPONSE WHEN fDATA = 3.75Hz  
FREQUENCY RESPONSE FROM 45Hz to 65Hz  
WHEN fDATA = 3.75Hz  
0
20  
40  
50  
60  
40  
70  
60  
80  
80  
90  
100  
120  
140  
160  
180  
100  
110  
120  
130  
140  
0
20  
40 60  
80 100 120 140 160 180 200  
Frequency (Hz)  
45  
50  
55  
60  
65  
Frequency (Hz)  
f
OSC = 2.4576MHz, SPEED = 0 or fOSC = 4.9152MHz, SPEED = 1  
ATTENUATION  
DATA  
3dB  
OUTPUT RATE  
BANDWIDTH  
fIN = 50 ± 0.3Hz  
fIN = 60 ± 0.3Hz  
fIN = 50 ± 1Hz  
fIN = 60 ± 1Hz  
15Hz  
7.5Hz  
3.75Hz  
14.6Hz  
3.44Hz  
1.65Hz  
80.8dB  
85.9dB  
93.8dB  
87.3dB  
87.4dB  
88.6dB  
68.5dB  
71.5dB  
86.8dB  
76.1dB  
76.2dB  
77.3dB  
FIGURE 6. Filter Frequency Responses.  
ADS1240, 1241  
13  
SBAS173C  
www.ti.com  
logic one or zero when configured as an input to prevent  
excess current dissipation. If the pin is configured as an  
output in the DIR register, then the corresponding DIO  
register bit value determines the state of the output pin  
(0 = AGND, 1 = AVDD).  
Data Continuous Mode (RDATAC) command should not be  
issued when DIN and DOUT are connected. While in RDATAC  
mode, DIN looks for the STOPC or RESET command. If  
either of these 8-bit bytes appear on DOUT (which is con-  
nected to DIN), the RDATAC mode ends.  
It is still possible to perform A/D conversions on a pin  
configured as data I/O. This may be useful as a test mode,  
where the data I/O pin is driven and an A/D conversion is  
done on the pin.  
DATA READY DRDY PIN  
The DRDY line is used as a status signal to indicate when  
data is ready to be read from the internal data register.  
DRDY goes LOW when a new data word is available in the  
DOR register. It is reset HIGH when a read operation from  
the data register is complete. It also goes HIGH prior to the  
updating of the output register to indicate when not to read  
from the device to ensure that a data read is not attempted  
while the register is being updated.  
IOCON  
DIR  
DIO WRITE  
AINx/Dx  
The status of DRDY can also be obtained by interrogating bit  
7 of the ACR register (address 2H). The serial interface can  
operate in 3-wire mode by tying the CS input LOW. In this  
case, the SCLK, DIN, and DOUT lines are used to communi-  
cate with the ADS1240 and ADS1241. This scheme is  
suitable for interfacing to microcontrollers. If CS is required  
as a decoding signal, it can be generated from a port bit of  
the microcontroller.  
To Analog Mux  
DIO READ  
FIGURE 7. Analog/Data Interface Pin.  
SERIAL PERIPHERAL INTERFACE  
The Serial Peripheral Interface (SPI) allows a controller to  
communicate synchronously with the ADS1240 and ADS1241.  
The ADS1240 and ADS1241 operate in slave-only mode.  
The serial interface is a standard four-wire SPI (CS, SCLK,  
DIN and DOUT) interface that supports both serial clock  
polarities (POL pin).  
DSYNC OPERATION  
Synchronization can be achieved either through the DSYNC  
pin or the DSYNC command. When the DSYNC pin is used,  
the digital circuitry is reset on the falling edge of DSYNC  
While DSYNC is LOW, the serial interface is deactivated.  
Reset is released when DSYNC is taken HIGH. Synchroni-  
zation occurs on the next rising edge of the system clock  
after DSYNC is taken HIGH.  
.
Chip Select (CS  
)
The chip select (CS) input must be externally asserted  
before communicating with the ADS1240 or ADS1241. CS  
must stay LOW for the duration of the communication.  
Whenever CS goes HIGH, the serial interface is reset. CS  
may be hard-wired LOW.  
When the DSYNC command is sent, the digital filter is reset  
on the edge of the last SCLK of the DSYNC command. The  
modulator is held in RESET until the next edge of SCLK is  
detected. Synchronization occurs on the next rising edge of  
the system clock after the first SCLK following the DSYNC  
command.  
Serial Clock (SCLK)  
The serial clock (SCLK) features a Schmitt-triggered input  
and is used to clock DIN and DOUT data. Make sure to have  
a clean SCLK to prevent accidental double-shifting of the  
data. If SCLK is not toggled within 3 DRDY pulses, the serial  
interface resets on the next SCLK pulse and starts a new  
communication cycle. A special pattern on SCLK resets the  
entire chip; see the RESET section for additional information.  
POWER-UPSUPPLY VOLTAGE RAMP RATE  
The power-on reset circuitry was designed to accommodate  
digital supply ramp rates as slow as 1V/10ms. To ensure  
proper operation, the power supply should ramp monotoni-  
cally.  
Clock Polarity (POL)  
The clock polarity input (POL) controls the polarity of SCLK.  
When POL is LOW, data is clocked on the falling edge of  
SCLK and SCLK should be idled LOW. Likewise, when POL  
is HIGH, the data is clocked on the rising edge of SCLK and  
SCLK should be idled HIGH.  
RESET  
The user can reset the registers to their default values in  
three different ways: by asserting the RESET pin; by issuing  
the RESET command; or by applying a special waveform on  
the SCLK (the SCLK Reset Waveform, as shown in the  
Timing Diagram). Note: if both POL and SCLK pins are held  
high, applying the SCLK Reset Waveform to the CS pin also  
resets the part.  
Data Input (DIN) and Data Output (DOUT  
)
The data input (DIN) and data output (DOUT) receive and send  
data from the ADS1240 and ADS1241. DOUT is high imped-  
ance when not in use to allow DIN and DOUT to be connected  
together and driven by a bidirectional bus. Note: the Read  
ADS1240, 1241  
14  
SBAS173C  
www.ti.com  
tion needed to configure the part, such as data format,  
multiplexer settings, calibration settings, data rate, etc. The  
set of the 16 registers are shown in Table III.  
ADS1240 AND ADS1241  
REGISTER  
The operation of the device is set up through individual  
registers. Collectively, the registers contain all the informa-  
ADDRESS  
REGISTER  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
SETUP  
MUX  
ID  
ID  
ID  
ID  
BOCS  
NSEL3  
BIT ORDER  
OSET3  
DIO_3  
PGA2  
NSEL2  
RANGE  
OSET2  
DIO_2  
DIR_2  
IO2  
PGA1  
NSEL1  
DR1  
PGA0  
NSEL0  
DR0  
PSEL3  
DRDY  
SIGN  
PSEL2  
U/B  
PSEL1  
SPEED  
OSET5  
DIO_5  
DIR_5  
IO5  
PSEL0  
BUFEN  
OSET4  
DIO_4  
DIR_4  
IO4  
ACR  
ODAC  
DIO  
OSET6  
DIO_6  
DIR_6  
IO6  
OSET1  
DIO_1  
DIR_1  
IO1  
OSET0  
DIO_0  
DIR_0  
IO0  
DIO_7  
DIR_7  
IO7  
DIR  
DIR_3  
IOCON  
OCR0  
OCR1  
OCR2  
FSR0  
FSR1  
FSR2  
DOR2  
DOR1  
DOR0  
IO3  
OCR07  
OCR15  
OCR23  
FSR07  
FSR15  
FSR23  
DOR23  
DOR15  
DOR07  
OCR06  
OCR14  
OCR22  
FSR06  
FSR14  
FSR22  
DOR22  
DOR14  
DOR16  
OCR05  
OCR13  
OCR21  
FSR05  
FSR13  
FSR21  
DOR21  
DOR13  
FSR21  
OCR04  
OCR12  
OCR20  
FSR04  
FSR12  
FSR20  
DOR20  
DOR12  
DOR04  
OCR03  
OCR11  
OCR19  
FSR03  
FSR11  
FSR19  
DOR19  
DOR11  
DOR03  
OCR02  
OCR10  
OCR18  
FSR02  
FSR10  
FSR18  
DOR18  
DOR10  
DOR02  
OCR01  
OCR09  
OCR17  
FSR01  
FSR09  
FSR17  
DOR17  
DOR09  
DOR01  
OCR00  
OCR08  
OCR16  
FSR00  
FSR08  
FSR16  
DOR16  
DOR08  
DOR00  
TABLE III. Registers.  
DETAILED REGISTER DEFINITIONS  
SETUP (Address 00H) Setup Register  
Reset Value = iiii0000  
MUX (Address 01H) Multiplexer Control Register  
Reset Value = 01H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
NSEL1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSEL3  
PSEL2  
PSEL1  
PSEL0  
NSEL3  
NSEL2  
NSEL0  
ID  
ID  
ID  
ID  
BOCS  
PGA2  
PGA1  
PGA0  
bit 7-4 PSEL3: PSEL2: PSEL1: PSEL0: Positive Channel  
bit 7-4 Factory Programmed Bits  
bit 3 BOCS: Burnout Current Source  
Select  
0000 = AIN0 (default)  
0001 = AIN1  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4  
0101 = AIN5  
0110 = AIN6  
0111 = AIN7  
0 = Disabled (default)  
1 = Enabled  
bit 2-0 PGA2: PGA1: PGA0: Programmable Gain Amplifier  
Gain Selection  
000 = 1 (default)  
001 = 2  
010 = 4  
011 = 8  
100 = 16  
101 = 32  
110 = 64  
111 = 128  
1xxx = AINCOM (except when xxx = 111)  
1111 = Reserved  
bit 3-0 NSEL3: NSEL2: NSEL1: NSEL0: Negative Channel  
Select  
0000 = AIN0  
0001 = AIN1 (default)  
0010 = AIN2  
0011 = AIN3  
0100 = AIN4  
0101 = AIN5  
0110 = AIN6  
0111 = AIN7  
1xxx = AINCOM (except when xxx = 111)  
1111 = Reserved  
ADS1240, 1241  
15  
SBAS173C  
www.ti.com  
ACR (Address 02H) Analog Control Register  
ODAC (Address 03 ) Offset DAC  
Reset Value = X0H  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
DR1  
bit 0  
DR0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRDY  
U/B  
SPEED  
BUFEN BIT ORDER RANGE  
SIGN  
OSET6  
OSET5  
OSET4  
OSET3  
OSET2  
OSET1  
OSET0  
bit 7  
DRDY: Data Ready (Read Only)  
This bit duplicates the state of the DRDY pin.  
U/ : Data Format  
bit 7  
Sign  
0 = Positive  
1 = Negative  
bit 6  
B
0 = Bipolar (default)  
1 = Unipolar  
VREF  
OSET[6 : 0]  
127  
Offset =  
RANGE = 0  
RANGE = 1  
2 PGA  
U/B  
ANALOG INPUT  
DIGITAL OUTPUT (Hex)  
+FSR  
Zero  
0x7FFFFF  
0x000000  
0x800000  
0xFFFFFF  
0x000000  
0x000000  
VREF  
OSET[6 : 0]  
127  
0
Offset =  
4 PGA  
FSR  
+FSR  
Zero  
1
NOTE: The offset DAC must be enabled after calibration or the calibration  
nullifies the effects.  
FSR  
bit 5  
bit 4  
bit 3  
SPEED: Modulator Clock Speed  
0 = fMOD = fOSC/128 (default)  
1 = fMOD = fOSC/256  
DIO (Address 04H) Data I/O  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BUFEN: Buffer Enable  
0 = Buffer Disabled (default)  
1 = Buffer Enabled  
DIO 7  
DIO 6  
DIO 5  
DIO 4  
DIO 3  
DIO 2  
DIO 1  
DIO 0  
If the IOCON register is configured for data, a value written  
to this register appears on the data I/O pins if the pin is  
configured as an output in the DIR register. Reading this  
register returns the value of the data I/O pins.  
BIT ORDER: Data Output Bit Order  
0 = Most Significant Bit Transmitted First (default)  
1 = Least Significant Bit Transmitted First  
This configuration bit controls only the bit order  
within the byte of data that is shifted out. Data is  
always shifted out of the part most significant byte  
first. Data is always shifted into the part most  
significant bit first.  
Bit 4 to bit 7 is not used in ADS1240.  
DIR (Address 05H) Direction Control for Data I/O  
Reset Value = FFH  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 2  
RANGE: Range Select  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
0 = Full-Scale Input Range equal to ±VREF  
(default).  
1 = Full-Scale Input Range equal to ±1/2 VREF  
Each bit controls whether the corresponding data I/O pin is  
an output (= 0) or input (= 1). The default power-up state is  
as inputs.  
NOTE: This allows reference voltages as high as  
AVDD, but even with a 5V reference voltage the  
calibration must be performed with this bit set to 0.  
Bit 4 to bit 7 is not used in ADS1240.  
bit 1-0 DR1: DR0: Data Rate  
(fOSC = 2.4576MHz, SPEED = 0)  
IOCON (Address 06H) I/O Configuration Register  
Reset Value = 00H  
00 = 15Hz (default)  
01 = 7.5Hz  
10 = 3.75Hz  
bit 7  
bit 6  
bit 5  
bit 4  
IO4  
bit 3  
IO3  
bit 2  
IO2  
bit 1  
IO1  
bit 0  
IO0  
IO7  
IO6  
IO5  
11 = Reserved  
bit 7-0 IO7: IO0: Data I/O Configuration  
0 = Analog (default)  
1 = Data  
Configuring the pin as a data I/O pin allows it to be controlled  
through the DIO and DIR registers.  
Bit 4 to bit 7 is not used in ADS1240.  
OCR0 (Address 07H) Offset Calibration Coefficient  
(Least Significant Byte)  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR07  
OCR06  
OCR05  
OCR04  
OCR03  
OCR02  
OCR01  
OCR00  
ADS1240, 1241  
16  
SBAS173C  
www.ti.com  
OCR1 (Address 08H) Offset Calibration Coefficient  
(Middle Byte)  
FSR2 (Address 0CH) Full-Scale Register  
(Most Significant Byte)  
Reset Value = 00H  
Reset Value = 55H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OCR15  
OCR14  
OCR13  
OCR12  
OCR11  
OCR10  
OCR09  
OCR08  
FSR23  
FSR22  
FSR21  
FSR20  
FSR19  
FSR18  
FSR17  
FSR16  
OCR2 (Address 09H) Offset Calibration Coefficient  
(Most Significant Byte)  
Reset Value = 00H  
DOR2 (Address 0DH) Data Output Register  
(Most Significant Byte) (Read Only)  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DOR23  
DOR22  
DOR21  
DOR20  
DOR19  
DOR18  
DOR17  
DOR16  
OCR23  
OCR22  
OCR21  
OCR20  
OCR19  
OCR18  
OCR17  
OCR16  
FSR0 (Address 0AH) Full-Scale Register  
(Least Significant Byte)  
DOR1 (Address 0EH) Data Output Register  
(Middle Byte) (Read Only)  
Reset Value = 59H  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR07  
FSR06  
FSR05  
FSR04  
FSR03  
FSR02  
FSR01  
FSR00  
DOR15  
DOR14  
DOR13  
DOR12  
DOR11  
DOR10  
DOR09  
DOR08  
FSR1 (Address 0BH) Full-Scale Register  
(Middle Byte)  
Reset Value = 55H  
DOR0 (Address 0FH) Data Output Register  
(Least Significant Byte) (Read Only)  
Reset Value = 00H  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FSR15  
FSR14  
FSR13  
FSR12  
FSR11  
FSR10  
FSR09  
FSR08  
DOR07  
DOR06  
DOR05  
DOR04  
DOR03  
DOR02  
DOR01  
DOR00  
ADS1240, 1241  
17  
SBAS173C  
www.ti.com  
ADS1240 AND ADS1241 CONTROL COMMAND DEFINITIONS  
The commands listed in Table IV control the operations of  
the ADS1240 and ADS1241. Some of the commands are  
stand-alone commands (e.g., RESET) while others require  
additional bytes (e.g., WREG requires the count and data  
bytes).  
Operands:  
n = count (0 to 127)  
r = register (0 to 15)  
x = dont care  
COMMANDS  
DESCRIPTION  
OP CODE  
2nd COMMAND BYTE  
RDATA  
RDATAC  
STOPC  
RREG  
WREG  
SELFCAL  
SELFOCAL  
SELFGCAL  
SYSOCAL  
SYSGCAL  
WAKEUP  
DSYNC  
Read Data  
Read Data Continuously  
Stop Read Data Continuously  
Read from REG rrrr”  
Write to REG rrrr”  
Offset and Gain Self Cal  
Self Offset Cal  
Self Gain Cal  
Sys Offset Cal  
Sys GainCal  
Wakup from SLEEP Mode  
Sync DRDY  
0000 0001 (01H)  
0000 0011 (03H)  
0000 1111 (0FH)  
0001 r r r r (1xH)  
0101 r r r r (5xH)  
1111 0000 (F0H)  
1111 0001 (F1H)  
1111 0010 (F2H)  
1111 0011 (F3H)  
1111 0100 (F4H)  
1111 1011 (FBH)  
1111 1100 (FCH)  
1111 1101 (FDH)  
1111 1110 (FEH)  
xxxx_nnnn (# of regs-1)  
xxxx_nnnn (# of regs-1)  
SLEEP  
RESET  
Put in SLEEP Mode  
Reset to Power-Up Values  
NOTE: The received data format is always MSB First; the data out format is set by the BIT ORDER bit in the ACR register.  
TABLE IV. Command Summary.  
RDATARead Data  
RDATACRead Data Continuous  
Description:Readthemostrecentconversionresultfromthe  
Data Output Register (DOR). This is a 24-bit value.  
Description: Read Data Continuous mode enables the con-  
tinuous output of new data on each DRDY. This command  
eliminates the need to send the Read Data Command on each  
DRDY. This mode may be terminated by either the STOPC  
command or the RESET command. Wait at least 10 fOSC after  
DRDY falls before reading.  
Operands: None  
Bytes:  
1
Encoding: 0000 0001  
Data Transfer Sequence:  
Operands: None  
Bytes:  
1
Encoding: 0000 0011  
0000 0001  
• • •(1)  
xxxx xxxx  
MSB  
xxxx xxxx  
Mid-Byte  
xxxx xxxx  
LSB  
DIN  
Data Transfer Sequence:  
Command terminated when uuuu uuuuequals STOPC or  
RESET.  
DOUT  
DRDY  
NOTE: (1) For wait time, refer to timing specification.  
DIN  
0000 0011  
• • •(1)  
uuuu uuuu  
MSB  
uuuu uuuu  
Mid-Byte  
uuuu uuuu  
LSB  
• • •  
DOUT  
DRDY  
DOUT  
• • •  
MSB  
Mid-Byte  
LSB  
NOTE: (1) For wait time, refer to timing specification.  
ADS1240, 1241  
18  
SBAS173C  
www.ti.com  
STOPCStop Continuous  
SELFCALOffset and Gain Self Calibration  
Description: Ends the continuous data output mode. Issue  
after DRDY goes LOW.  
Description: Starts the process of self calibration. The Offset  
Calibration Register (OCR) and the Full-Scale Register (FSR)  
are updated with new values after this operation.  
Operands: None  
Bytes:  
1
Operands: None  
Encoding: 0000 1111  
Bytes:  
1
Data Transfer Sequence:  
Encoding: 1111 0000  
Data Transfer Sequence:  
DRDY  
1111 0000  
DIN  
xxx  
0000 1111  
DIN  
SELFOCALOffset Self Calibration  
RREGRead from Registers  
Description: Starts the process of self-calibration for offset.  
The Offset Calibration Register (OCR) is updated after this  
operation.  
Description: Output the data from up to 16 registers starting  
with the register address specified as part of the instruction.  
The number of registers read will be one plus the second byte  
count. If the count exceeds the remaining registers, the ad-  
dresses wrap back to the beginning.  
Operands: None  
Bytes:  
1
Operands: r, n  
Encoding: 1111 0001  
Bytes:  
2
Data Transfer Sequence:  
Encoding: 0001 rrrr xxxx nnnn  
Data Transfer Sequence:  
Read Two Registers Starting from Register 01H (MUX)  
1111 0001  
DIN  
0001 0001  
0000 0001  
• • •(1)  
xxxx xxxx  
MUX  
xxxx xxxx  
ACR  
DIN  
SELFGCALGain Self Calibration  
Description: Starts the process of self-calibration for gain.  
TheFull-ScaleRegister(FSR)isupdatedwithnewvaluesafter  
this operation.  
DOUT  
NOTE: (1) For wait time, refer to timing specification.  
Operands: None  
Bytes:  
1
WREGWrite to Registers  
Encoding: 1111 0010  
Description: Write to the registers starting with the register  
address specified as part of the instruction. The number of  
registers that will be written is one plus the value of the second  
byte.  
Data Transfer Sequence:  
1111 0010  
DIN  
Operands: r, n  
Bytes:  
2
Encoding: 0101 rrrr xxxx nnnn  
Data Transfer Sequence:  
Write Two Registers Starting from 04H (DIO)  
DIN  
0101 0100  
xxxx 0001  
Data for DIO  
Data for DIR  
ADS1240, 1241  
19  
SBAS173C  
www.ti.com  
DSYNCSync DRDY  
SYSOCALSystem Offset Calibration  
Description: Synchronizes the ADS1240 and ADS1241 to an  
external event.  
Description: Initiates a system offset calibration. The input  
should be set to 0V, and the ADS1240 and ADS1241 compute  
the OCR value that compensates for offset errors. The Offset  
CalibrationRegister(OCR)isupdatedafterthisoperation. The  
user must apply a zero input signal to the appropriate analog  
inputs. The OCR register is automatically updated afterwards.  
Operands: None  
Bytes:  
1
Encoding: 1111 1100  
Data Transfer Sequence:  
Operands: None  
Bytes:  
1
1111 1100  
DIN  
Encoding: 1111 0011  
Data Transfer Sequence:  
SLEEPSleep Mode  
1111 0011  
DIN  
Description: Puts the ADS1240 and ADS1241 into a low  
power sleep mode. To exit sleep mode, issue the WAKEUP  
command.  
SYSGCALSystem Gain Calibration  
Operands: None  
Description: Starts the system gain calibration process. For  
a system gain calibration, the input should be set to the  
reference voltage and the ADS1240 and ADS1241 compute  
the FSR value that will compensate for gain errors. The FSR  
is updated after this operation. To initiate a system gain  
calibration, the user must apply a full-scale input signal to the  
appropriate analog inputs. FCR register is updated automati-  
cally.  
Bytes:  
1
Encoding: 1111 1101  
Data Transfer Sequence:  
1111 1101  
DIN  
RESETReset to Default Values  
Operands: None  
Description: Restore the registers to their power-up values.  
This command stops the Read Continuous mode.  
Bytes:  
1
Encoding: 1111 0100  
Operands: None  
Data Transfer Sequence:  
Bytes:  
1
Encoding: 1111 1110  
1111 0100  
DIN  
Data Transfer Sequence:  
1111 1110  
DIN  
WAKEUP  
Description:WakestheADS1240andADS1241fromSLEEP  
mode.  
Operands: None  
Bytes:  
1
Encoding: 1111 1011  
Data Transfer Sequence:  
1111 1011  
DIN  
ADS1240, 1241  
20  
SBAS173C  
www.ti.com  
ADS1240.  
APPLICATION EXAMPLES  
GENERAL-PURPOSE WEIGH SCALE  
HIGH PRECISION WEIGH SCALE  
Figure 8 shows a typical schematic of a general-purpose  
weigh scale application using the ADS1240. In this example,  
the internal PGA is set to either 64 or 128 (depending on the  
maximum output voltage of the load cell) so that the load cell  
output can be directly applied to the differential inputs of  
Figure 9 shows the typical schematic of a high-precision  
weigh scale application using the ADS1240. The front-end  
differential amplifier helps maximize the dynamic range.  
2.7V ~ 5.25V  
2.7V ~ 5.25V  
EMI Filter  
AVDD  
VREF+  
DVDD  
VDD  
EMI Filter  
AIN0  
DRDY  
Load Cell  
SCLK  
DOUT  
DOUT  
CS  
MSP430x4xx  
or other µP  
SPI  
ADS1240  
EMI Filter  
AIN1  
MCLK  
GND  
XIN  
XOUT  
VREF–  
AGND  
DGND  
EMI Filter  
FIGURE 8. Schematic of a General-Purpose Weigh Scale.  
2.7V ~ 5.25V  
EMI Filter  
2.7V ~ 5.25V  
AVDD  
VREF+  
DVDD  
VDD  
EMI Filter  
RI  
OPA2335  
AIN0  
Load Cell  
RF  
DRDY  
SCLK  
DOUT  
DIN  
MSP430x4xx  
or other µP  
ADS1240  
ADS1241  
CI  
SPI  
RG  
RF  
CS  
RI  
OPA2335  
EMI Filter  
EMI Filter  
AIN1  
MCLK  
XIN  
XOUT  
VREF–  
AGND  
DGND  
GND  
G = 1 + 2 RF/RG  
FIGURE 9. Block Diagram for a High-Precision Weigh Scale.  
ADS1240, 1241  
21  
SBAS173C  
www.ti.com  
fOSC  
fOSC  
128 2SPEED  
fMOD  
=
=
mfactor  
DEFINITION OF TERMS  
An attempt has been made to be consistent with the termi-  
nology used in this data sheet. In that regard, the definition  
of each term is given as follows:  
fSAMPthe frequency, or switching speed, of the input sam-  
PGA SETTING  
SAMPLING FREQUENCY  
fOSC  
1, 2, 4, 8  
f SAMP  
f SAMP  
f SAMP  
=
=
=
mfactor  
Analog Input Voltagethe voltage at any one analog input  
relative to AGND.  
fOSC 2  
16  
32  
mfactor  
Analog Input Differential Voltagegiven by the following  
equation: (IN+) (IN). Thus, a positive digital output is  
produced whenever the analog input differential voltage is  
positive, while a negative digital output is produced whenever  
the differential is negative.  
fOSC 4  
mfactor  
fOSC 8  
64, 128  
f SAMP  
=
mfactor  
For example, when the converter is configured with a 2.5V  
reference and placed in a gain setting of 1, the positive  
full-scale output is produced when the analog input differen-  
tial is 2.5V. The negative full-scale output is produced when  
the differential is 2.5V. In each case, the actual input  
voltages must remain within the AGND to AVDD range.  
pling capacitor. The value is given by one of the following  
equations:  
f
DATAthe frequency of the digital output data produced by  
the ADS1240 and ADS1241, fDATA is also referred to as the  
Data Rate.  
Conversion Cyclethe term conversion cycle usually refers  
to a discrete A/D conversion operation, such as that per-  
formed by a successive approximation converter. As used  
here, a conversion cycle refers to the tDATA time period.  
Full-Scale Range (FSR)as with most A/D converters, the  
full-scale range of the ADS1240 and ADS1241 is defined as  
the input, that produces the positive full-scale digital output  
minus the input, that produces the negative full-scale digital  
output.  
Data RateThe rate at which conversions are completed.  
See definition for fDATA  
.
For example, when the converter is configured with a 2.5V  
reference and is placed in a gain setting of 2, the full-scale  
range is: [1.25V (positive full-scale) minus 1.25V (negative  
full-scale)] = 2.5V.  
fOSC  
fDATA  
=
128 2SPEED 1280 2DR  
SPEED = 0, 1  
DR = 0, 1, 2  
Least Significant Bit (LSB) Weightthis is the theoretical  
amount of voltage that the differential voltage at the analog  
input has to change in order to observe a change in the  
output data of one least significant bit. It is computed as  
follows:  
fOSCthe frequency of the crystal oscillator or CMOS com-  
patible input signal at the XIN input of the ADS1240 and  
ADS1241.  
f
MODthe frequency or speed at which the modulator of the  
FullScale Range  
LSB Weight =  
ADS1240 and ADS1241 is running. This depends on the  
SPEED bit as given by the following equation:  
2N 1  
where N is the number of bits in the digital output.  
t
DATAthe inverse of fDATA, or the period between each data  
SPEED = 0  
SPEED = 1  
output.  
mfactor  
128  
256  
5V SUPPLY ANALOG INPUT(1)  
GENERAL EQUATIONS  
DIFFERENTIAL  
FULL-SCALE RANGE INPUT VOLTAGES(2)  
PGA OFFSET  
RANGE  
FULL-SCALE  
RANGE  
DIFFERENTIAL  
INPUT VOLTAGES(2)  
PGA SHIFT  
RANGE  
GAIN SETTING  
2 VREF  
±VREF  
±VREF  
1
2
5V  
±2.5V  
±1.25V  
±0.625V  
2.5V  
±1.25V  
PGA  
PGA  
2 PGA  
4
1.25V  
±0.625V  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
±19.531mV  
±9.766mV  
RANGE = 0  
8
0.625V  
±312.5mV  
±156.25mV  
±78.125mV  
±39.0625mV  
±19.531mV  
16  
32  
64  
128  
312.5mV  
156.25mV  
78.125mV  
39.0625mV  
VREF  
PGA  
±V  
±V  
REF  
REF  
2 PGA  
4 PGA  
RANGE = 1  
NOTES: (1) With a 2.5V reference. (2) Refer to electrical specification for analog input voltage range.  
TABLE VI. Full-Scale Range versus PGA Setting.  
ADS1240, 1241  
22  
SBAS173C  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

ADS1241EVM

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242IPWR

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242IPWRG4

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242IPWT

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242IPWTG4

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1242_14

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1243

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1243-HT

24-BIT ANALOG-TO-DIGITAL CONVERTER
TI

ADS1243IPWR

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1243IPWRG4

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI

ADS1243IPWT

24-Bit ANALOG-TO-DIGITAL CONVERTER
TI