5962-9550404Q2A [TI]

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS; 高级LinCMOS轨到轨运算放大器
5962-9550404Q2A
型号: 5962-9550404Q2A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
高级LinCMOS轨到轨运算放大器

运算放大器 放大器电路
文件: 总55页 (文件大小:1181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
D
D
D
D
Output Swing Includes Both Supply Rails  
Low Noise . . . 12 nV/Hz Typ at f = 1 kHz  
Low Input Bias Current . . . 1 pA Typ  
D
D
Low Input Offset Voltage  
950 µV Max at T = 25°C (TLV226xA)  
A
Wide Supply Voltage Range  
2.7 V to 8 V  
Fully Specified for Both Single-Supply and  
Split-Supply Operation  
D
Macromodel Included  
D
Available in Q-Temp Automotive  
HighRel Automotive Applications  
Configuration Control / Print Support  
Qualification to Automotive Standards  
D
Low Power . . . 500 µA Max  
Common-Mode Input Voltage Range  
Includes Negative Rail  
D
description  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
The TLV2262 and TLV2264 are dual and quad low  
voltage operational amplifiers from Texas Instru-  
ments. Both devices exhibit rail-to-rail output  
performance for increased dynamic range in  
single or split supply applications. The TLV226x  
family offers a compromise between the micro-  
power TLV225x and the ac performance of the  
TLC227x. It has low supply current for battery-  
powered applications, while still having adequate  
ac performance for applications that demand it.  
This family is fully characterized at 3 V and 5 V and  
is optimized for low-voltage applications. The  
noise performance has been dramatically im-  
proved over previous generations of CMOS  
amplifiers. Figure 1 depicts the low level of noise  
voltage for this CMOS amplifier, which has only  
200 µA (typ) of supply current per amplifier.  
4
V
= 3 V  
DD  
3.5  
3
T
= 55°C  
A
2.5  
2
T
A
= 125°C  
T
A
= 25°C  
= 85°C  
1.5  
1
T
A
T
A
= 40°C  
0.5  
0
The TLV226x, exhibiting high input impedance  
and low noise, are excellent for small-signal  
conditioning for high-impedance sources, such as  
piezoelectric transducers. Because of the micro-  
power dissipation levels combined with 3-V  
0
500  
1000  
1500  
2000  
| I  
| − High-Level Output Current − µA  
OH  
Figure 1  
operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the  
rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with  
analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a  
maximum input offset voltage of 950 µV.  
The TLV2262/4 also makes great upgrades to the TLV2332/4 in standard designs. They offer increased output  
dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to  
be used in a wider range of applications. For applications that require higher output drive and wider input voltage  
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the  
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their  
small size and low power consumption, make them ideal for high density, battery-powered equipment.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinCMOS is a trademark of Texas Instruments.  
Copyright 2001, Texas Instruments Incorporated  
ꢑ ꢋ ꢤ ꢟ ꢞꢈ ꢣꢌ ꢡꢢ ꢌꢞ ꢠꢤ ꢦꢎ ꢊꢋ ꢡ ꢡꢞ ꢐꢔ ꢁꢕ ꢖꢓ ꢙ ꢕꢬꢭꢮ ꢬꢮꢆ ꢊꢦꢦ ꢤꢊ ꢟ ꢊ ꢠꢍ ꢡꢍꢟ ꢢ ꢊ ꢟ ꢍ ꢡꢍ ꢢꢡꢍ ꢈ  
ꢡ ꢍ ꢢ ꢡꢎ ꢋꢫ ꢞꢝ ꢊ ꢦꢦ ꢤꢊ ꢟ ꢊ ꢠ ꢍ ꢡ ꢍ ꢟ ꢢ ꢧ  
ꢣ ꢋꢦ ꢍꢢꢢ ꢞ ꢡꢨꢍ ꢟ ꢩꢎ ꢢꢍ ꢋ ꢞꢡꢍ ꢈꢧ ꢑ ꢋ ꢊꢦ ꢦ ꢞ ꢡꢨꢍ ꢟ ꢤꢟ ꢞ ꢈꢣꢌ ꢡꢢ ꢆ ꢤꢟ ꢞ ꢈꢣꢌ ꢡꢎꢞ ꢋ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CERAMIC  
FLATPACK  
(U)  
IO  
T
A
TSSOP  
(PW)  
AT 25°C  
(JG)  
(P)  
0°C to 70°C  
2.5 mV  
TLV2262CD  
TLV2262CP TLV2262CPWLE  
950 µV  
2.5 mV  
TLV2262AID  
TLV2262ID  
TLV2262AIP TLV2262AIPWLE  
40°C to 125°C  
TLV2262IP  
950 µV  
2.5 mV  
TLV2262AQD  
TLV2262QD  
40°C to 125°C  
55°C to 125°C  
950 µV  
2.5 mV  
TLV2262AMFK TLV2262AMJG  
TLV2262MFK TLV2262MJG  
TLV2262AMU  
TLV2262MU  
§
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262CDR).  
The PW package is available only left-end taped and reeled.  
Chips are tested at 25°C.  
TLV2264 AVAILABLE OPTIONS  
PACKAGED DEVICES  
V
max  
SMALL  
OUTLINE  
(D)  
CHIP  
CARRIER  
(FK)  
CERAMIC  
DIP  
PLASTIC  
DIP  
CERAMIC  
FLATPACK  
(W)  
IO  
T
A
TSSOP  
(PW)  
AT 25°C  
(J)  
(N)  
40°C to  
125°C  
950 µV  
2.5 mV  
TLV2264AID  
TLV2264ID  
TLV2264AIN  
TLV2264IN  
TLV2264AIPWLE  
40°C to  
125°C  
950 µV  
2.5 mV  
TLV2264AQD  
TLV2264QD  
55°C to  
125°C  
950 µV  
2.5 mV  
TLV2264AMFK  
TLV2264MFK  
TLV2264AMJ  
TLV2264MJ  
TLV2264AMW  
TLV2264MW  
§
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262IDR).  
The PW package is available only left-end taped and reeled.  
Chips are tested at 25°C.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262C, TLV2262AC  
TLV2262I, TLV2262AI  
TLV2262Q, TLV2262AQ  
D, P, OR PW PACKAGE  
(TOP VIEW)  
TLV2264I, TLV2264AI  
TLV2264Q, TLV2264AQ  
D, N, OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
1OUT  
1IN−  
1IN+  
V
DD+  
1
2
3
4
8
7
6
5
2OUT  
2IN−  
2IN+  
V
V
/GND  
DD+  
DD−  
V
/GND  
DD−  
2IN+  
2IN−  
2OUT  
3IN+  
3IN−  
3OUT  
8
TLV2262M, TLV2262AM  
JG PACKAGE  
(TOP VIEW)  
TLV2264M, TLV2264AM  
J OR W PACKAGE  
(TOP VIEW)  
1OUT  
V
DD+  
1
2
3
4
8
7
6
5
1IN−  
1IN+  
/GND  
2OUT  
2IN−  
2IN+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1OUT  
1IN−  
1IN+  
4OUT  
4IN−  
4IN+  
V
DD−  
TLV2662M, TLV2262AM  
U PACKAGE  
V
V
/GND  
DD+  
2IN+  
2IN−  
DD−  
3IN+  
3IN−  
3OUT  
(TOP VIEW)  
8
2OUT  
NC  
NC  
V
1
10  
9
1OUT  
1IN −  
1IN +  
/GND  
+
2
3
4
5
CC  
2OUT  
2IN −  
2IN +  
8
TLV2264M, TLV2264AM  
FK PACKAGE  
7
V
6
CC−  
(TOP VIEW)  
TLV2262M, TLV2262AM  
FK PACKAGE  
3
2
1
20 19  
18  
(TOP VIEW)  
4IN+  
1IN+  
NC  
4
5
6
7
8
NC  
V
17  
16  
15  
14  
/GND  
V
CC−  
CC+  
NC  
NC  
3
2
1
20 19  
18  
3IN+  
2IN+  
NC  
NC  
4
5
6
7
8
9 10 11 12 13  
2OUT  
NC  
1IN−  
NC  
17  
16  
15  
14  
2IN−  
NC  
1IN+  
NC  
9 10 11 12 13  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
Template Release Date: 7−11−94  
ꢀ ꢁꢂꢃ ꢃ ꢄꢅ ꢆ ꢯꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗꢓ ꢇꢀ ꢔ ꢑꢘ ꢇ ꢁꢯꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗ ꢓꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Input voltage range, V (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
V
ID  
DD  
−0.3 V to V  
I
DD−  
DD+  
Input current, I (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
O
Total current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
DD+  
DD−  
Total current out of V  
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
A
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C  
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C  
FK, J, JG, U, AND W packages . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to V  
.
DD −  
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought  
below V − 0.3 V.  
DD−  
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum  
dissipation rating is not exceeded.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 85°C  
T = 125°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
377 mW  
494 mW  
715 mW  
715 mW  
POWER RATING  
145 mW  
190 mW  
275 mW  
275 mW  
210 mW  
A
D−8  
D−14  
FK  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
9.2 mW/°C  
8.0 mW/°C  
4.2 mW/°C  
5.6 mW/°C  
5.5 mW/°C  
5.5 mW/°C  
950 mW  
1375 mW  
1375 mW  
1050 mW  
1150 mW  
1000 mW  
525 mW  
J
JG  
N
598 mW  
520 mW  
273 mW  
364 mW  
P
200 mW  
105 mW  
PW−8  
PW−14  
U
700 mW  
700 mW  
150 mW  
150 mW  
W
700 mW  
370 mW  
recommended operating conditions  
I SUFFIX  
Q SUFFIX  
M SUFFIX  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Supply voltage, V  
DD  
2.7  
16  
2.7  
16  
2.7  
16  
V
V
Input voltage range, V  
V
V
V
1.3  
1.3  
V
V
V
1.3  
1.3  
V
V
V
1.3  
1.3  
I
DD−  
DD+  
DD−  
DD+  
DD−  
DD+  
Common-mode input voltage, V  
IC  
V
V
V
V
DD−  
40  
DD+  
125  
DD−  
40  
DD+  
125  
DD−  
55  
DD+  
125  
Operating free-air temperature, T  
°C  
A
NOTE 1: All voltage values, except differential voltages, are with respect to V  
.
DD −  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262I electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2262I  
TLV2262AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
300 2500  
3000  
MIN  
TYP MAX  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.003  
0.003  
0.5  
µV/mo  
V
V
=
1.5 V,  
V
= 0,  
DD  
= 0,  
IC  
R
= 50 Ω  
S
O
25°C  
85°C  
0.5  
60  
150  
800  
60  
60  
150  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
25°C  
1
1
85°C  
150  
800  
150  
800  
pA  
V
IB  
Full range  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | 5 mV  
IO  
ICR  
OH  
OL  
S
0
to  
0
to  
Full range  
1.7  
1.7  
I
I
= 20 µA  
25°C  
25°C  
2.99  
2.99  
OH  
2.85  
2.85  
2.825  
2.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range 2.825  
V
25°C  
Full range  
25°C  
2.7  
I
= 400 µA  
= 1.5 V,  
OH  
2.65  
2.65  
V
I
I
= 50 µA  
10  
10  
IC  
IC  
OL  
25°C  
100  
100  
V
= 1.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
150  
300  
150  
300  
mV  
200  
100  
100  
200  
100  
100  
V
= 1.5 V,  
I
= 1 A  
IC  
OL  
Full range  
25°C  
60  
30  
60  
30  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
V
= 1.5 V,  
= 1 V to 2 V  
L
L
IC  
O
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
270  
75  
270  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 1.7 V,  
= 1.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
100  
Supply voltage rejection  
ratio (V /V  
DD IO  
V
DD  
V
IC  
= 2.7 V to 8 V,  
k
SVR  
)
= V  
/2,  
No load  
Full range  
DD  
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V (unless otherwise  
DD  
TLV2262I  
TLV2262AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
Full range  
400  
500  
500  
400  
500  
500  
I
Supply current  
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range is − 40°C to 125°C.  
TLV2262I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2262I  
TLV2262AI  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
0.35  
0.55  
0.35  
0.55  
25°C  
V
C
= 1.1 V to 1.9 V,  
R
= 50 k,  
L
O
L
SR  
Slew rate at unity gain  
Full  
range  
= 100 pF  
0.3  
0.3  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input noise  
voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1
0.6  
1
V
I
µV  
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 0.5 V to 2.5 V,  
A
= 1  
0.03%  
0.05%  
0.03%  
O
V
Total harmonic  
distortion plus noise  
f = 20 kHz,  
R
THD + N  
A
V
= 10  
0.05%  
0.67  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
0.67  
395  
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
395  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
5.6  
5.6  
Step = 1 V to 2 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
12.5  
12.5  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
55°  
55°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262I electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2262I  
TLV2262AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
300 2500  
3000  
MIN  
TYP MAX  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.003  
0.003  
0.5  
µV/mo  
V
V
=
2.5 V,  
V
= 0,  
DD  
= 0,  
IC  
R
= 50 Ω  
O
S
25°C  
85°C  
0.5  
60  
150  
800  
60  
60  
150  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
25°C  
1
1
85°C  
150  
800  
150  
800  
pA  
V
IB  
Full range  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
ICR  
OH  
OL  
0
to  
0
to  
Full range  
3.5  
3.5  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.82  
4.7  
4.85  
4.82  
4.7  
= 100 µA  
OH  
Full range  
25°C  
High-level output voltage  
Low-level output voltage  
V
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
Full range  
25°C  
4.6  
4.6  
V
I
I
= 50 µA  
0.01  
0.09  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 500 µA  
OL  
Full range  
25°C  
V
0.2  
170  
550  
0.2  
170  
550  
V
= 2.5 V,  
I
= 1 A  
IC  
OL  
Full range  
25°C  
0.3  
0.3  
80  
55  
80  
55  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
V
= 2.5 V,  
= 1 V to 4 V  
L
L
IC  
O
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
240  
83  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
V
= 0 to 2.7 V,  
= 2.5 V,  
IC  
O
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply voltage rejection  
V
= 4.4 V to 8 V,  
DD  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
DD  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2262I  
TLV2262AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
400  
500  
500  
400  
500  
500  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is − 40°C to 125°C.  
TLV2262I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2262I  
TLV2262AI  
TYP  
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
T
A
MIN  
TYP  
MAX MIN  
MAX  
0.35  
0.55  
0.35  
0.55  
25°C  
Slew rate at unity  
gain  
V
C
= 1.5 V to 3.5 V,  
R
= 50 k,  
L
O
L
SR  
Full  
range  
= 100 pF  
0.3  
0.3  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
0.03%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.71  
0.71  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
185  
6.4  
185  
6.4  
C = 100 pF  
L
A
V
= 1,  
To 0.1%  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264I electrical characteristics at specified free-air temperature, V  
noted)  
= 3 V (unless otherwise  
DD  
TLV2264I  
TLV2264AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
V
= 1.5 V,  
= 0,  
= 0,  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
DD  
IC  
O
25°C  
85°C  
60  
150  
800  
60  
60  
150  
800  
60  
R = 50 Ω  
S
I
I
Input offset current  
Input bias current  
pA  
IO  
Full range  
25°C  
1
1
85°C  
150  
800  
150  
800  
pA  
V
IB  
Full range  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | 5 mV  
IO  
ICR  
OH  
OL  
S
0
to  
0
to  
Full range  
1.7  
1.7  
I
I
= 20 µA  
25°C  
25°C  
2.99  
2.99  
OH  
2.85  
2.85  
2.825  
2.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range 2.825  
V
25°C  
Full range  
25°C  
2.7  
I
= 400 µA  
= 1.5 V,  
OH  
2.65  
2.65  
V
I
I
= 50 µA  
10  
10  
IC  
IC  
OL  
25°C  
100  
100  
V
= 1.5 V,  
= 500 µA  
OL  
Full range  
25°C  
150  
300  
150  
300  
Low-level output voltage  
mV  
200  
100  
100  
200  
100  
100  
V
= 1.5 V,  
I
= 1 A  
IC  
OL  
Full range  
25°C  
60  
30  
60  
30  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
L
L
V
V
= 1.5 V,  
= 1 to 2 V  
IC  
O
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
270  
75  
270  
77  
V
V
V
V
= 0 to 1.7 V,  
= 1.5 V,  
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode  
rejection ratio  
IC  
O
CMRR  
dB  
dB  
R
= 50 Ω  
S
= 2.7 V to 8 V,  
95  
100  
Supply voltage rejection  
DD  
k
SVR  
ratio (V  
DD  
/V )  
IO  
= V  
DD  
/2, No load  
Full range  
IC  
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 3 V (unless otherwise  
DD  
TLV2264I  
TLV2264AI  
UNIT  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.8  
1
1
0.8  
1
1
Supply current  
(four amplifiers)  
I
V
O
= 1.5 V,  
No load  
mA  
DD  
Full range  
Full range is − 40°C to 125°C.  
TLV2264I operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2264I  
TLV2264AI  
TYP  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
A
MIN  
TYP  
MAX MIN  
MAX  
25°C  
0.35  
0.55  
0.35  
0.55  
Slew rate at unity  
gain  
V
C
= 0.7 V to 1.7 V,  
R
= 50 k,  
L
O
L
SR  
Full  
range  
= 100 pF  
0.3  
0.3  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1
0.6  
1
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.03%  
0.05%  
0.03%  
0.05%  
O
V
f = 20 kHz,  
R
THD + N  
A
V
= 10  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
0.67  
395  
0.67  
395  
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
‡,  
A
= 1,  
O(PP)  
L
V
B
OM  
C = 100 pF  
L
= 50 kΩ  
A
= −1,  
V
To 0.1%  
5.6  
5.6  
Step = 1 V to 2 V,  
‡,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 kΩ  
= 100 pF  
L
L
To 0.01%  
12.5  
12.5  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
55°  
55°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is − 40°C to 125°C.  
Referenced to 1.5 V  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264I electrical characteristics at specified free-air temperature, V  
noted)  
= 5 V (unless otherwise  
DD  
TLV2264I  
TLV2264AI  
UNIT  
T
PARAMETER  
TEST CONDITIONS  
A
MIN  
TYP MAX  
300 2500  
3000  
MIN  
TYP MAX  
25°C  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 85°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
V
= 2.5 V,  
= 0,  
= 0,  
= 50 Ω  
25°C  
0.003  
0.003  
0.5  
µV/mo  
pA  
DD  
IC  
O
25°C  
85°C  
0.5  
60  
150  
800  
60  
60  
150  
800  
60  
R
S
I
I
Input offset current  
Input bias current  
IO  
Full range  
25°C  
1
1
85°C  
150  
800  
150  
800  
pA  
IB  
Full range  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
|V | 5 mV,  
IO  
R
= 50 Ω  
V
V
ICR  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.85  
4.82  
4.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range 4.82  
V
V
OH  
25°C  
Full range  
25°C  
4.7  
4.6  
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
4.6  
V
I
I
= 50 µA  
0.01  
0.09  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
V
OL  
0.2  
170  
550  
0.2  
170  
550  
V
IC  
= 2.5 V,  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
80  
55  
80  
55  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
= 10  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
240  
83  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
O
IC  
S
CMRR  
dB  
dB  
95  
95  
Supply voltage rejection  
V
= 4.4 V to 8 V,  
DD  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
V
IC  
= V /2, No load  
Full range  
DD  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264I electrical characteristics at specified free-air temperature, V  
noted) (continued)  
= 5 V (unless otherwise  
DD  
TLV2264I  
TLV2264AI  
UNIT  
T
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.8  
1
1
0.8  
1
1
Supply current  
(four amplifiers)  
I
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range  
Full range is − 40°C to 125°C.  
TLV2264I operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2264I  
TLV2264AI  
TYP  
T
PARAMETER  
TEST CONDITIONS  
UNIT  
V/µs  
A
MIN  
TYP  
MAX MIN  
MAX  
25°C  
0.35  
0.55  
0.35  
0.55  
Slew rate at unity  
gain  
V
O
= 1.4 V to 2.6 V,  
R
= 50 k,  
L
SR  
Full  
range  
C = 100 pF  
L
0.3  
0.3  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
0.03%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.71  
0.71  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 2 V,  
= 50 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
185  
6.4  
185  
6.4  
C = 100 pF  
L
A
V
= 1,  
To 0.1%  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is − 40°C to 125°C.  
Referenced to 2.5 V  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 3 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
2
950  
V
Input offset voltage  
µV  
IO  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
VIO  
2
µV/°C  
Input offset voltage  
long-term drift  
(see Note 4)  
V
V
=
1.5 V,  
V
= 0,  
DD  
= 0,  
IC  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
R
= 50 Ω  
S
O
25°C  
125°C  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
800  
800  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
|V | 5 mV  
IO  
V
V
ICR  
OH  
OL  
S
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
= 20 µA  
25°C  
25°C  
2.99  
2.99  
OH  
2.85  
2.82  
2.7  
2.85  
2.82  
2.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range  
25°C  
I
= 400 µA  
= 1.5 V,  
OH  
Full range  
25°C  
2.55  
2.55  
V
I
I
= 50 µA  
10  
10  
IC  
IC  
OL  
25°C  
100  
150  
165  
300  
300  
100  
150  
165  
300  
300  
V
= 1.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
mV  
200  
100  
100  
200  
100  
100  
V
IC  
= 1.5 V,  
I
= 1 A  
OL  
Full range  
25°C  
60  
25  
60  
25  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
270  
75  
270  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode  
rejection ratio  
V
IC  
V
O
= 0 to 1.7 V,  
= 1.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
100  
Supply voltage rejection  
V
DD  
V
IC  
= 2.7 V to 8 V,  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
= V  
/2,  
No load  
Full range  
DD  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 3 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
400 500  
25°C  
400  
500  
500  
I
Supply current  
V
O
= 1.5 V,  
No load  
µA  
DD  
Full range  
500  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
0.35  
0.55  
0.35  
0.55  
25°C  
V
C
= 0.5 V to 1.7 V,  
= 100 pF  
R
= 50 k,  
L
O
L
SR  
Slew rate at unity gain  
V/µs  
Full  
range  
0.25  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input noise  
voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input noise  
voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1
0.6  
1
V
I
µV  
N(PP)  
Equivalent input noise  
current  
25°C  
25°C  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
V
= 0.5 V to 2.5 V,  
A
= 1  
0.03%  
0.05%  
0.03%  
0.05%  
O
V
Total harmonic  
distortion plus noise  
f = 20 kHz,  
R
THD + N  
A
V
= 10  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
0.67  
395  
0.67  
395  
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 1 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
5.6  
5.6  
Step = 1 V to 2 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
12.5  
12.5  
Phase margin at unity  
gain  
φ
m
25°C  
25°C  
55°  
55°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
VIO  
2
2
µV/°C  
Input offset voltage  
long-term drift (see Note 4)  
V
V
=
2.5 V,  
V
= 0,  
DD  
= 0,  
IC  
R
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
= 50 Ω  
O
S
25°C  
125°C  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
800  
800  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
V
V
|V | 5 mV,  
IO  
R
= 50 Ω  
S
V
V
ICR  
OH  
OL  
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.85  
4.82  
4.7  
= 100 µA  
OH  
Full range 4.82  
High-level output voltage  
Low-level output voltage  
25°C  
Full range  
25°C  
4.7  
4.5  
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
4.5  
V
I
I
= 50 µA  
0.01  
0.01  
IC  
IC  
OL  
25°C  
0.09 0.15  
0.15  
0.09 0.15  
0.15  
V
= 2.5 V,  
= 500 µA  
OL  
Full range  
25°C  
V
0.2  
0.3  
0.3  
0.2  
0.3  
0.3  
V
IC  
= 2.5 V,  
I
= 1 A  
OL  
Full range  
25°C  
80  
50  
170  
80  
50  
170  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
550  
12  
550  
12  
= 1 MΩ  
r
r
Differential input resistance  
25°C  
10  
10  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
8
12  
8
25°C  
25°C  
25°C  
10  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
P package  
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
= 10  
240  
83  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
IC  
V
O
= 0 to 2.7 V,  
= 2.5 V,  
CMRR  
dB  
dB  
R
= 50 Ω  
S
95  
95  
Supply voltage rejection  
V
= 4.4 V to 8 V,  
DD  
k
SVR  
ratio (V  
DD  
/V  
IO  
)
V
IC  
= V  
/2,  
No load  
Full range  
DD  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 5 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
PARAMETER  
TEST CONDITIONS  
T
A
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
400 500  
500  
25°C  
400  
500  
500  
I
Supply current  
V
O
= 2.5 V,  
No load  
µA  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2262Q,  
TLV2262M  
TLV2262AQ,  
TLV2262AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
0.35  
0.55  
0.35  
0.55  
25°C  
Slew rate at unity  
gain  
V
C
= 0.5 V to 3.5 V,  
= 100 pF  
R
= 50 kΩ  
O
L
L
SR  
V/µs  
Full  
range  
0.25  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
0.03%  
O
V
f = 20 kHz,  
R
THD + N  
A
V
= 10  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
0.71  
185  
0.71  
185  
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
6.4  
6.4  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 3 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient  
of input offset voltage  
25°C  
to 125°C  
α
2
2
µV/°C  
VIO  
V
V
V
= 1.5 V,  
= 0,  
= 0,  
= 50 Ω  
DD  
IC  
O
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
R
S
25°C  
125°C  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
800  
800  
0
to  
2
0.3  
to  
2.2  
0
to  
2
0.3  
to  
2.2  
25°C  
Common-mode input  
voltage range  
V
V
V
R
= 50 Ω,  
S
|V | 5 mV  
IO  
V
V
ICR  
OH  
OL  
0
to  
1.7  
0
to  
1.7  
Full range  
I
I
= 20 µA  
25°C  
25°C  
2.99  
2.99  
OH  
2.85  
2.85  
2.82  
2.7  
= 100 µA  
High-level output  
voltage  
OH  
Full range 2.82  
25°C  
Full range  
25°C  
2.7  
2.6  
I
= 400 µA  
= 1.5 V,  
OH  
2.6  
V
I
I
= 50 µA  
10  
10  
IC  
IC  
OL  
25°C  
100  
150  
150  
300  
300  
100  
150  
150  
300  
300  
V
= 1.5 V,  
= 500 µA  
Low-level output  
voltage  
OL  
Full range  
25°C  
mV  
200  
100  
100  
200  
100  
100  
V
IC  
= 1.5 V,  
I
= 1 A  
OL  
Full range  
25°C  
60  
25  
60  
25  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 1.5 V,  
= 1 V to 2 V  
L
L
Full range  
25°C  
A
VD  
V/mV  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
= 10  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
270  
75  
270  
77  
25°C  
Full range  
25°C  
65  
60  
80  
80  
65  
60  
80  
80  
Common-mode rejection  
ratio  
V
R
= 0 to 1.7 V,  
= 50 Ω  
V
= 1.5 V,  
O
IC  
S
CMRR  
dB  
dB  
V
= 2.7 V to 8 V,  
95  
100  
Supply voltage rejection  
DD  
= V  
k
SVR  
ratio (V  
DD  
/V )  
IO  
V
IC  
/2,  
DD  
No load  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 3 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
0.8  
1
1
0.8  
1
1
Supply current (four  
amplifiers)  
I
V
O
= 1.5 V,  
No load  
mA  
DD  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, V  
= 3 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP  
MAX MIN  
TYP  
MAX  
25°C  
0.35  
0.55  
0.35  
0.55  
Slew rate at unity  
gain  
V
C
= 0.5 V to 1.7 V,  
= 100 pF  
R
= 50 k,  
L
O
L
SR  
V/µs  
Full  
range  
0.25  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
43  
12  
43  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.6  
1
0.6  
1
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.03%  
0.05%  
0.03%  
0.05%  
O
V
f = 20 kHz,  
THD + N  
A
V
= 10  
R
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 1 kHz,  
R
= 50 k,  
L
25°C  
25°C  
0.67  
0.67  
MHz  
kHz  
C
= 100 pF  
L
Maximum output-  
swing bandwidth  
V
R
= 1 V,  
= 50 k,  
A
V
= 1,  
O(PP)  
L
B
OM  
395  
5.6  
395  
5.6  
C = 100 pF  
L
A
V
= 1,  
To 0.1%  
Step = 1 V to 2 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
12.5  
12.5  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
55°  
55°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 1.5 V  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted)  
= 5 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
300 2500  
3000  
300  
950  
V
IO  
Input offset voltage  
µV  
Full range  
1500  
Temperature coefficient of  
input offset voltage  
25°C  
to 125°C  
α
2
2
µV/°C  
VIO  
V
V
V
= 2.5 V,  
= 0,  
= 0,  
= 50 Ω  
DD  
IC  
O
Input offset voltage  
long-term drift  
(see Note 4)  
25°C  
0.003  
0.5  
0.003  
0.5  
µV/mo  
R
S
25°C  
125°C  
25°C  
60  
800  
60  
60  
800  
60  
I
I
Input offset current  
Input bias current  
pA  
pA  
IO  
1
1
IB  
125°C  
800  
800  
0
to  
4
0.3  
to  
4.2  
0
to  
4
0.3  
to  
4.2  
25°C  
Common-mode input  
voltage range  
V
|V | 5 mV,  
IO  
R
= 50 Ω  
V
V
ICR  
S
0
to  
3.5  
0
to  
3.5  
Full range  
I
I
= 20 µA  
25°C  
25°C  
4.99  
4.94  
4.99  
4.94  
OH  
4.85  
4.85  
4.82  
4.7  
= 100 µA  
OH  
Full range 4.82  
V
V
High-level output voltage  
Low-level output voltage  
OH  
25°C  
Full range  
25°C  
4.7  
4.5  
4.85  
4.85  
I
= 400 µA  
= 2.5 V,  
OH  
4.5  
V
I
I
= 50 µA  
0.01  
0.09  
0.01  
0.09  
IC  
IC  
OL  
25°C  
0.15  
0.15  
0.3  
0.15  
0.15  
0.3  
V
= 2.5 V,  
= 500 µA  
OL  
Full range  
25°C  
V
OL  
0.2  
170  
550  
0.2  
170  
550  
V
IC  
= 2.5 V,  
I
= 1 A  
OL  
Full range  
25°C  
0.3  
0.3  
80  
50  
80  
50  
R
R
= 50 kΩ  
Large-signal differential  
voltage amplification  
V
IC  
V
O
= 2.5 V,  
= 1 V to 4 V  
L
L
Full range  
A
V/mV  
VD  
25°C  
= 1 MΩ  
Differential input  
resistance  
12  
10  
12  
10  
r
r
25°C  
25°C  
25°C  
25°C  
i(d)  
i(c)  
Common-mode input  
resistance  
12  
10  
12  
10  
Common-mode input  
capacitance  
c
z
f = 10 kHz,  
N package  
= 10  
8
8
pF  
i(c)  
o
Closed-loop output  
impedance  
f = 100 kHz,  
A
V
240  
83  
240  
83  
25°C  
Full range  
25°C  
70  
70  
80  
80  
70  
70  
80  
80  
Common-mode rejection  
ratio  
V
R
= 0 to 2.7 V,  
= 50 Ω  
V
= 2.5 V,  
O
IC  
S
CMRR  
dB  
dB  
V
= 4.4 V to 8 V,  
95  
95  
Supply voltage rejection  
DD  
= V  
k
SVR  
ratio (V  
DD  
/V )  
IO  
V
IC  
/2,  
DD  
No load  
Full range  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T = 150°C extrapolated  
A
to T = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.  
A
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, V  
(unless otherwise noted) (continued)  
= 5 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
T
A
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
MIN  
TYP MAX  
25°C  
Full range  
0.8  
1
1
0.8  
1
1
Supply current (four  
amplifiers)  
I
V
O
= 2.5 V,  
No load  
mA  
DD  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, V  
= 5 V  
DD  
TLV2264Q,  
TLV2264M  
TLV2264AQ,  
TLV2264AM  
PARAMETER  
TEST CONDITIONS  
UNIT  
T
A
MIN  
TYP MAX MIN  
TYP MAX  
25°C  
0.35  
0.55  
0.35  
0.25  
0.55  
Slew rate at unity  
gain  
V
C
= 0.5 V to 3.5 V,  
= 100 pF  
R
= 50 k,  
L
O
L
SR  
V/µs  
Full  
range  
0.25  
f = 10 Hz  
f = 1 kHz  
25°C  
25°C  
40  
12  
40  
12  
Equivalent input  
noise voltage  
nV/Hz  
V
n
Peak-to-peak  
equivalent input  
noise voltage  
f = 0.1 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
25°C  
25°C  
0.7  
1.3  
0.7  
1.3  
V
I
µV  
N(PP)  
Equivalent input  
noise current  
25°C  
25°C  
25°C  
25°C  
0.6  
0.6  
fA/Hz  
n
Total harmonic  
distortion plus  
noise  
V
= 0.5 V to 2.5 V,  
A
= 1  
0.017%  
0.03%  
0.017%  
O
V
f = 20 kHz,  
R
THD + N  
A
V
= 10  
0.03%  
0.71  
= 50 kΩ  
L
Gain-bandwidth  
product  
f = 50 kHz,  
R
= 50 k,  
L
0.71  
185  
MHz  
kHz  
C
= 100 pF  
L
Maximum  
output-swing  
bandwidth  
V
R
= 2 V,  
= 50 k,  
A
= 1,  
O(PP)  
L
V
B
OM  
185  
C = 100 pF  
L
A
= 1,  
V
To 0.1%  
6.4  
6.4  
Step = 0.5 V to 2.5 V,  
t
s
Settling time  
25°C  
µs  
R
C
= 50 k,  
= 100 pF  
L
L
To 0.01%  
14.1  
14.1  
Phase margin at  
unity gain  
φ
m
25°C  
25°C  
56°  
56°  
C = 100 pF  
L
R
= 50 k,  
L
Gain margin  
11  
11  
dB  
Full range is 40°C to 125°C for Q level part, 55°C to 125°C for M level part.  
Referenced to 2.5 V  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Distribution  
vs Common-mode voltage  
2 − 5  
6, 7  
V
IO  
Input offset voltage  
α
Input offset voltage temperature coefficient  
Input bias and input offset currents  
Distribution  
8 − 11  
12  
VIO  
I
/I  
vs Free-air temperature  
IB IO  
vs Supply voltage  
vs Free-air temperature  
13  
14  
V
I
Input voltage  
V
V
V
High-level output voltage  
vs High-level output current  
vs Low-level output current  
vs Frequency  
15, 18  
16, 17, 19  
20  
OH  
Low-level output voltage  
OL  
Maximum peak-to-peak output voltage  
O(PP)  
vs Supply voltage  
vs Free-air temperature  
21  
22  
I
Short-circuit output current  
OS  
V
Differential input voltage  
vs Output voltage  
vs Load resistance  
23, 24  
25  
ID  
A
VD  
Differential voltage amplification  
vs Frequency  
vs Free-air temperature  
26, 27  
28, 29  
A
Large-signal differential voltage amplification  
Output impedance  
VD  
z
vs Frequency  
30, 31  
o
vs Frequency  
vs Free-air temperature  
32  
33  
CMRR  
Common-mode rejection ratio  
vs Frequency  
vs Free-air temperature  
34, 35  
36, 37  
k
Supply-voltage rejection ratio  
Supply current  
SVR  
I
vs Free-air temperature  
38, 39  
DD  
vs Load capacitance  
vs Free-air temperature  
40  
41  
SR  
Slew rate  
V
O
V
O
V
O
V
O
V
n
Inverting large-signal pulse response  
Voltage-follower large-signal pulse response  
Inverting small-signal pulse response  
Voltage-follower small-signal pulse response  
Equivalent input noise voltage  
42, 43  
44, 45  
46, 47  
48, 49  
50, 51  
52  
vs Frequency  
Input noise voltage  
Over a 10-second period  
vs Frequency  
Integrated noise voltage  
53  
THD + N  
Total harmonic distortion plus noise  
vs Frequency  
54  
vs Supply voltage  
vs Free-air temperature  
55  
56  
Gain-bandwidth product  
Phase margin  
vs Frequency  
vs Load capacitance  
26, 27  
57  
φ
m
Gain margin  
vs Load capacitance  
vs Load capacitance  
vs Load capacitance  
58  
59  
60  
B
1
Unity-gain bandwidth  
Overestimation of phase margin  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2262  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2262  
INPUT OFFSET VOLTAGE  
15  
12  
9
15  
12  
9
841 Amplifiers From 2 Wafer Lots  
841 Amplifiers From 2 Wafer Lots  
V
T
=
2.5 V  
V
T
=
1.5 V  
DD  
DD  
= 25°C  
= 25°C  
A
A
6
3
0
6
3
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 2  
Figure 3  
DISTRIBUTION OF TLV2264  
INPUT OFFSET VOLTAGE  
DISTRIBUTION OF TLV2264  
INPUT OFFSET VOLTAGE  
20  
16  
12  
20  
16  
12  
2272 Amplifiers From 2 Wafer Lots  
1.5 V  
= 25°C  
2272 Amplifiers From 2 Wafer Lots  
2.5 V  
T = 25°C  
A
V
T
A
=
V
DD  
=
DD  
8
4
0
8
4
0
1.6  
0.8  
0
0.8  
1.6  
1.6  
0.8  
0
0.8  
1.6  
V
IO  
− Input Offset Voltage − mV  
V
IO  
− Input Offset Voltage − mV  
Figure 4  
Figure 5  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
INPUT OFFSET VOLTAGE  
vs  
INPUT OFFSET VOLTAGE  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
1
1
0.5  
0
V
R
T
A
= 3 V  
= 50 Ω  
= 25°C  
DD  
S
V
R
T
A
= 5 V  
= 50 Ω  
= 25°C  
DD  
S
0.5  
0
0.5  
0.5  
−1  
−1  
−1 −0.5  
0
0.5  
1
1.5  
2
2.5  
3
−1  
0
1
2
3
4
5
V
IC  
− Common-Mode Input Voltage − V  
V
IC  
− Common-Mode Input Voltage − V  
Figure 6  
Figure 7  
DISTRIBUTION OF TLV2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2262 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
128 Amplifiers From 2 Wafer Lots  
128 Amplifiers From 2 Wafer Lots  
V
=
2.5 V  
P Package  
= 25°C to 85°C  
V
=
1.5 V  
P Package  
= 25°C to 85°C  
DD  
DD  
T
T
A
A
0
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
− Temperature Coefficient − µV/°C  
α
− Temperature Coefficient − µV/°C  
VIO  
VIO  
Figure 8  
Figure 9  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
DISTRIBUTION OF TLV2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
DISTRIBUTION OF TLV2264 INPUT OFFSET  
VOLTAGE TEMPERATURE COEFFICIENT  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
128 Amplifiers From  
2 Wafer Lots  
128 Amplifiers From  
2 Wafer Lots  
V
=
1.5 V  
N Package  
= 25°C to 125°C  
DD  
V
=
2.5 V  
N Package  
= 25°C to 125°C  
DD  
T
A
T
A
5
0
5
0
−5 −4 −3 −2 −1  
0
1
2
3
4
5
−5 −4 −3 −2 −1  
0
1
2
3
4
5
α
− Temperature Coefficient  
α
VIO  
− Temperature Coefficient  
of Input Offset Voltage − µV/°C  
VIO  
of Input Offset Voltage − µV/°C  
Figure 10  
Figure 11  
INPUT BIAS AND INPUT OFFSET CURRENTS  
INPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
35  
30  
25  
2.5  
2
R = 50 Ω  
S
A
V
V
V
=
= 0  
2.5 V  
DD  
T
= 25°C  
IC  
O
= 0  
1.5  
1
R
= 50 Ω  
S
I
IB  
0.5  
0
20  
15  
| V | 5 mV  
IO  
0.5  
−1  
1.5  
−2  
I
IO  
10  
5
0
2.5  
25  
45  
65  
85  
105  
125  
1
1.5  
2
2.5  
3
3.5  
4
T
A
− Free-Air Temperature − °C  
|V  
DD  
| − Supply Voltage − V  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
INPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
5
4
3.5  
3
V
DD  
= 5 V  
V
DD  
= 3 V  
4
3
2
1
T
A
= 55°C  
2.5  
2
T
A
= 125°C  
| V | 5 mV  
IO  
T
= 25°C  
= 85°C  
A
1.5  
1
T
A
0
T
A
= 40°C  
0.5  
0
−1  
0
500  
1000  
1500  
2000  
55 35 15  
5
25  
45  
65 85 105 125  
T
A
− Free-Air Temperature − °C  
| I  
OH  
| − High-Level Output Current − µA  
Figure 14  
Figure 15  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
†‡  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
1.2  
1
1.4  
1.2  
1
V
T
A
= 3 V  
DD  
= 25°C  
V
V
= 3 V  
= 1.5 V  
DD  
IC  
T
A
= 125°C  
V
= 0  
IC  
0.8  
0.6  
0.4  
0.2  
0
T
= 85°C  
A
V
IC  
= 0.75 V  
0.8  
0.6  
T
A
= 25°C  
V
IC  
= 1.5 V  
T
= − 55°C  
A
0.4  
T
A
= − 40°C  
0.2  
0
0
1
2
3
4
5
0
1
2
3
4
5
I
− Low-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OL  
OL  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
†‡  
†‡  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
6
5
4
3
2
1.4  
1.2  
V
V
= 5 V  
= 2.5 V  
DD  
IC  
V
= 5 V  
DD  
T
A
= 55°C  
1
T
A
= 85°C  
T
= 40°C  
= 25°C  
0.8  
A
T
= 25°C  
A
T
A
0.6  
0.4  
0.2  
0
T
A
= 125°C  
T
A
= 125°C  
T
= 55°C  
A
T
A
= 85°C  
T
A
= 40°C  
1
0
0
500  
| I  
1000  
1500  
2000  
2500  
3000  
0
1
2
3
4
5
6
| − High-Level Output Current − µA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 18  
Figure 19  
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
5
12  
10  
V
T
= V /2  
= 25°C  
R = 10 kΩ  
IC  
A
DD  
V
DD  
= 5 V  
I
V
ID  
= 100 mV  
T
= 25°C  
A
4
8
6
3
2
V
DD  
= 3 V  
4
2
1
0
0
V
ID  
= 100 mV  
4
−2  
3
4
5
6
10  
10  
10  
10  
2
3
5
6
7
8
V
DD  
− Supply Voltage − V  
f − Frequency − Hz  
Figure 20  
Figure 21  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V = 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD DD  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT OUTPUT CURRENT  
DIFFERENTIAL INPUT VOLTAGE  
vs  
vs  
FREE-AIR TEMPERATURE  
OUTPUT VOLTAGE  
12  
10  
1000  
800  
V
V
= 2.5 V  
O
V
= 3 V  
DD  
R = 50 kΩ  
= 5 V  
DD  
I
V
T
= 1.5 V  
= 25°C  
IC  
V
ID  
= 100 mV  
600  
A
8
6
4
2
0
400  
200  
0
200  
400  
600  
800  
V
ID  
= 100 mV  
−2  
−4  
1000  
75 50 25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
T
A
− Free-Air Temperature − °C  
V
O
− Output Voltage − V  
Figure 22  
Figure 23  
DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL VOLTAGE AMPLIFICATION  
vs  
vs  
OUTPUT VOLTAGE  
LOAD RESISTANCE  
1000  
800  
1000  
100  
V
= 2 V  
V
V
R
= 5 V  
O(PP)  
DD  
IC  
L
= 2.5 V  
= 50 kΩ  
= 25°C  
T
A
= 25°C  
600  
T
A
V
DD  
= 5 V  
400  
200  
V
DD  
= 3 V  
0
200  
400  
600  
800  
10  
1
10  
1000  
3
4
5
6
10  
10  
10  
0
1
2
3
4
5
V
O
− Output Voltage − V  
R
L
− Load Resistance − kΩ  
Figure 24  
Figure 25  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
= 5 V  
DD  
C = 100 pF  
L
T
A
= 25°C  
40  
90°  
45°  
Phase Margin  
20  
0
Gain  
0°  
20  
40  
45°  
90°  
3
4
10  
5
10  
6
10  
7
10  
10  
f − Frequency − Hz  
Figure 26  
LARGE-SIGNAL DIFFERENTIAL VOLTAGE  
AMPLIFICATION AND PHASE MARGIN  
vs  
FREQUENCY  
80  
60  
180°  
135°  
V
C
T
A
= 3 V  
= 100 pF  
= 25°C  
DD  
L
40  
20  
90°  
45°  
Phase Margin  
Gain  
0
20  
40  
0°  
45°  
90°  
3
4
10  
5
10  
6
10  
7
10  
10  
f − Frequency − Hz  
Figure 27  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
LARGE-SIGNAL DIFFERENTIAL  
VOLTAGE AMPLIFICATION  
†‡  
†‡  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1000  
100  
10  
10000  
1000  
V
V
V
= 5 V  
= 2.5 V  
= 1 V to 4 V  
DD  
IC  
O
R
= 1 MΩ  
L
R
= 1 MΩ  
= 50 kΩ  
R
= 50 kΩ  
L
L
R
R
L
L
R
= 10 kΩ  
L
100  
10  
= 10 kΩ  
V
V
V
= 3 V  
= 1.5 V  
DD  
IC  
O
= 0.5 V to 2.5 V  
75 50 25  
0
25  
50  
75 100  
125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 28  
Figure 29  
OUTPUT IMPEDANCE  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
1000  
100  
10  
1000  
100  
10  
V
T
A
= 3 V  
= 25°C  
DD  
V
T
A
= 5 V  
= 25°C  
DD  
A
= 100  
V
A
= 100  
V
A
= 10  
= 1  
V
A
= 10  
= 1  
V
A
V
A
V
1
1
0.1  
0.1  
2
3
4
5
10  
10  
10  
10  
2
3
4
5
10  
10  
10  
10  
f− Frequency − Hz  
f− Frequency − Hz  
Figure 30  
Figure 31  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
†‡  
COMMON-MODE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
100  
80  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
V
= 5 V  
= 2.5 V  
T
A
= 25°C  
DD  
IC  
V
V
= 5 V  
= 1.5 V  
DD  
IC  
V
V
= 5 V  
DD  
60  
40  
20  
0
= 3 V  
DD  
4
5
6
10  
1
2
3
10  
10  
10  
10  
10  
− 75 − 50 − 25  
0
25 50  
75 100  
125  
f − Frequency − Hz  
T
− Free-Air Temperature − °C  
A
Figure 32  
Figure 33  
SUPPLY-VOLTAGE REJECTION RATIO  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
vs  
FREQUENCY  
FREQUENCY  
100  
80  
100  
80  
V
T
= 3 V  
V
T
= 5 V  
DD  
= 25°C  
DD  
= 25°C  
A
A
60  
60  
k
k
SVR+  
SVR+  
40  
40  
k
k
SVR−  
SVR−  
20  
0
20  
0
20  
20  
6
1
2
3
4
5
10  
6
1
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 34  
Figure 35  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
= 3 V, all loads are referenced to 1.5 V.  
DD  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
TLV2262  
TLV2264  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
SUPPLY-VOLTAGE REJECTION RATIO  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
110  
105  
110  
105  
V
V
= 2.7 V to 8 V  
DD  
= V = V /2  
DD  
V
V
= 2.7 V to 8 V  
DD  
= V = V /2  
DD  
IC  
O
IC  
O
100  
95  
100  
95  
90  
90  
75  
75 50 25  
0
25  
50  
75 100  
125  
50 25  
0
25  
50  
75 100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 36  
Figure 37  
TLV2264  
†‡  
TLV2262  
SUPPLY CURRENT  
†‡  
SUPPLY CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
1200  
600  
500  
1000  
V
V
= 5 V  
V
= 5 V  
DD  
DD  
= 2.5 V  
V
O
= 2.5 V  
O
800  
600  
400  
300  
V
V
= 3 V  
V
= 3 V  
DD  
DD  
= 1.5 V  
V
O
= 1.5 V  
O
400  
200  
75 50 25  
0
25  
50  
75 100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 38  
Figure 39  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢋꢌ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
†‡  
SLEW RATE  
vs  
SLEW RATE  
vs  
FREE-AIR TEMPERATURE  
LOAD CAPACITANCE  
1
1.2  
1
SR−  
0.8  
0.6  
SR−  
0.8  
0.6  
0.4  
0.2  
0
SR+  
SR+  
0.4  
V
= 5 V  
DD  
0.2  
0
R
C
A
= 50 kΩ  
= 100 pF  
= 1  
L
L
V
V
A
T
A
= 5 V  
DD  
= 1  
V
= 25°C  
75 50 25  
0
25  
50  
75 100  
125  
1
2
3
4
10  
10  
10  
10  
T
A
− Free-Air Temperature − °C  
C
− Load Capacitance − pF  
L
Figure 40  
Figure 41  
INVERTING LARGE-SIGNAL PULSE  
INVERTING LARGE-SIGNAL PULSE  
RESPONSE  
RESPONSE  
3
2.5  
2
5
4
V
= 3 V  
V
R
C
A
T
= 5 V  
DD  
DD  
R
C
A
T
= 50 kΩ  
= 100 pF  
= 1  
= 50 kΩ  
= 100 pF  
= 1  
L
L
V
L
L
V
= 25°C  
= 25°C  
A
A
3
2
1.5  
1
1
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 42  
Figure 43  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
= 3 V, all loads are referenced to 1.5 V.  
DD  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
VOLTAGE-FOLLOWER LARGE-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
3
2.5  
2
5
4
V
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
DD  
R
C
A
T
R
C
A
T
L
L
V
L
L
V
= 25°C  
= 25°C  
A
A
3
2
1.5  
1
1
0
0.5  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 44  
Figure 45  
INVERTING SMALL-SIGNAL  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
0.9  
2.65  
V
= 3 V  
DD  
V
R
C
= 5 V  
DD  
L
L
R
C
A
= 50 kΩ  
= 100 pF  
= − 1  
L
L
V
= 50 kΩ  
= 100 pF  
= 1  
2.6  
2.55  
2.5  
A
V
A
T
A
= 25°C  
0.85  
0.8  
T
= 25°C  
0.75  
0.7  
2.45  
2.4  
0.65  
0.6  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 46  
Figure 47  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢋꢌ  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
VOLTAGE-FOLLOWER SMALL-SIGNAL  
PULSE RESPONSE  
PULSE RESPONSE  
0.95  
0.9  
2.65  
2.6  
V
= 3 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
V
R
C
= 5 V  
= 50 kΩ  
= 100 pF  
= 1  
DD  
L
L
R
C
A
V
A
A
V
A
T
= 25°C  
T
= 25°C  
0.85  
0.8  
2.55  
2.5  
0.75  
0.7  
2.45  
2.4  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
t − Time − µs  
t − Time − µs  
Figure 48  
Figure 49  
EQUIVALENT INPUT NOISE VOLTAGE  
EQUIVALENT INPUT NOISE VOLTAGE  
vs  
vs  
FREQUENCY  
FREQUENCY  
60  
50  
60  
V
R
T
A
= 3 V  
= 20 Ω  
= 25°C  
DD  
S
V
R
S
T
A
= 5 V  
= 20 Ω  
= 25°C  
DD  
50  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
1
2
3
4
10  
10  
10  
10  
1
2
3
4
10  
10  
10  
10  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 50  
Figure 51  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V = 3 V, all loads are referenced to 1.5 V.  
DD  
35  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
INTEGRATED NOISE VOLTAGE  
vs  
INPUT NOISE VOLTAGE OVER  
FREQUENCY  
A 10-SECOND PERIOD  
100  
1000  
750  
Calculated Using Ideal Pass-Band Filter  
Lower Frequency = 1 Hz  
T
A
= 25°C  
500  
10  
250  
0
250  
500  
750  
1000  
1
V
= 5 V  
DD  
f = 0.1 Hz  
to 10 Hz  
T
A
= 25°C  
0.1  
1
2
3
4
5
0
2
4
6
8
10  
1
10  
10  
10  
10  
10  
t − Time − s  
f − Frequency − Hz  
Figure 52  
Figure 53  
TOTAL HARMONIC DISTORTION PLUS NOISE  
GAIN-BANDWIDTH PRODUCT  
vs  
vs  
FREQUENCY  
SUPPLY VOLTAGE  
−1  
10  
900  
860  
820  
A
= 100  
V
−2  
10  
A
A
= 10  
= 1  
V
V
780  
740  
700  
V
R
T
A
= 5 V  
= 50 kΩ  
= 25°C  
DD  
L
−3  
10  
10  
1
2
3
4
4
10  
10  
10  
10  
0
1
2
3
4
5
6
7
8
f − Frequency − Hz  
V
− Supply Voltage − V  
DD  
Figure 54  
Figure 55  
For all curves where V  
DD  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
36  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
PHASE MARGIN  
vs  
LOAD CAPACITANCE  
†‡  
GAIN-BANDWIDTH PRODUCT  
vs  
FREE-AIR TEMPERATURE  
75°  
60°  
45°  
1200  
V
= 5 V  
DD  
f = 10 kHz  
= 100 pF  
T
A
= 25°C  
C
L
R
= 100 Ω  
null  
1000  
800  
R
= 50 Ω  
null  
R
= 20 Ω  
= 10 Ω  
null  
30°  
R
null  
50 kΩ  
600  
400  
V
15°  
0°  
DD +  
DD −  
50 kΩ  
R
null  
V
+
I
C
L
R
= 0  
null  
V
/GND  
2
3
4
10  
10  
10  
10  
75 50 25  
0
25  
50  
75  
100  
125  
C
− Load Capacitance − pF  
L
T
A
− Free-Air Temperature − °C  
Figure 56  
Figure 57  
GAIN MARGIN  
vs  
LOAD CAPACITANCE  
UNITY-GAIN BANDWIDTH  
vs  
LOAD CAPACITANCE  
20  
15  
10  
1000  
R
A
T
A
= 50 kΩ  
= 1  
= 25°C  
L
V
T
A
= 25°C  
R
= 100 Ω  
null  
800  
600  
400  
200  
R
= 50 Ω  
null  
R
= 20 Ω  
null  
5
0
R
= 10 Ω  
null  
R
= 0  
null  
2
3
4
2
3
4
10  
10  
10  
10  
10  
10  
10  
10  
C
− Load Capacitance − pF  
C
− Load Capacitance − pF  
L
L
Figure 58  
Figure 59  
For all curves where V  
= 5 V, all loads are referenced to 2.5 V. For all curves where V  
= 3 V, all loads are referenced to 1.5 V.  
DD  
DD  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
37  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
TYPICAL CHARACTERISTICS  
OVERESTIMATION OF PHASE MARGIN  
vs  
LOAD CAPACITANCE  
14°  
T
A
= 25°C  
12°  
10°  
R
= 100 Ω  
null  
8°  
6°  
4°  
2°  
0
R
= 50 Ω  
null  
R
= 10 Ω  
null  
R
= 20 Ω  
null  
2
3
4
10  
10  
10  
10  
C
− Load Capacitance − pF  
L
See application information  
Figure 60  
38  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢋꢌ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
APPLICATION INFORMATION  
driving large capacitive loads  
The TLV226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 51  
and Figure 52 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase  
margins (R  
= 0).  
null  
A smaller series resistor (R ) at the output of the device (see Figure 61) improves the gain and phase margins  
null  
when driving large capacitive loads. Figure 51 and Figure 52 show the effects of adding series resistances of  
10 , 20 , 50 , and 100 . The addition of this series resistor has two effects: the first is that it adds a zero  
to the transfer function and the second is that it reduces the frequency of the pole associated with the output  
load in the transfer function.  
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To  
calculate the improvement in phase margin, equation (1) can be used.  
–1  
ǒ2 × π × UGBW × R  
LǓ  
(1)  
∆θ  
Where :  
+ tan  
× C  
m1  
null  
∆θ  
+ improvement in phase margin  
m1  
UGBW + unity-gain bandwidth frequency  
R
+ output series resistance  
+ load capacitance  
null  
C
L
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 53). To  
use equation 1, UGBW must be approximated from Figure 53.  
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The  
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing  
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load  
is reduced by the factor calculated in equation 2.  
1
F +  
(2)  
1 ) g × R  
m
null  
Where :  
F + factor reducing frequency of pole  
–3  
g
+ small-signal output transconductance (typically 4.83 × 10  
+ output series resistance  
mhos)  
m
R
null  
For the TLV226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value  
varies inversely with C : at C = 10 pF, use 70 MHz, at C = 1000 pF, use 700 kHz, and so on.  
L
L
L
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results  
in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3  
approximates the reduction in phase margin due to the movement of the pole associated with the load. The  
result of this equation can be subtracted from the result of the equation 1 to better approximate the improvement  
in phase margin.  
39  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃ ꢃꢄ ꢅ ꢆ ꢀ ꢁꢂꢃ ꢃꢄ ꢅ ꢇ  
ꢑꢖ ꢗ ꢓꢇꢀ ꢔ ꢑꢘ ꢇ ꢁ ꢇꢐ ꢖꢁ ꢔ ꢙꢔ ꢗꢓ ꢒ  
  
ꢓꢇ ꢔ ꢁꢕꢀꢑ ꢕꢓꢇꢔ ꢁ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
APPLICATION INFORMATION  
driving large capacitive loads (continued)  
ȱUGBW  
ȳ
UGBW  
–1  
–1ȧ  
ȧ
∆θ  
+ tan  
– tan ǒ Ǔ  
(3)  
m2  
P
ǒF×P  
Ǔ
2
Ȳ
2 ȴ  
Where :  
∆θ  
+ reduction in phase margin  
m2  
UGBW + unity-gain bandwidth frequency  
F + factor from equation (2)  
P
+ unadjusted pole (70 MHz @ 10 pF, 7 MHz @100 pF, etc.)  
2
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output  
series resistance to optimize the design of circuits driving large capacitive loads.  
50 kΩ  
V
DD+  
50 kΩ  
R
null  
V
I
+
C
L
V
DD−  
/GND  
Figure 61. Series-Resistance Circuit  
40  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢓꢇꢔ ꢁꢕ ꢀꢑ ꢕꢓ ꢇ ꢔꢁ  
ꢇꢈ  
ꢋꢌ  
  
ꢔꢑ  
SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001  
APPLICATION INFORMATION  
macromodel information  
Macromodel information provided was derived using Microsim Parts, the model generation software used  
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 62 are generated using  
the TLV226x typical electrical and operating characteristics at T = 25°C. Using this information, output  
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):  
D
D
D
D
D
D
Maximum positive output voltage swing  
Maximum negative output voltage swing  
Slew rate  
D
D
D
D
D
D
Unity-gain frequency  
Common-mode rejection ratio  
Phase margin  
Quiescent power dissipation  
Input bias current  
DC output resistance  
AC output resistance  
Short-circuit output current limit  
Open-loop voltage amplification  
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers,” IEEE  
Journal of Solid-State Circuits, SC-9, 353 (1974).  
99  
DLN  
3
EGND  
+
V
CC+  
92  
9
FB  
+
91  
90  
RSS  
ISS  
RO2  
+
+
VB  
DLP  
RP  
2
VLP  
VLN  
HLIM  
+
10  
+
VC  
IN −  
IN+  
R2  
C2  
J1  
J2  
7
DP  
6
53  
+
1
VLIM  
11  
DC  
12  
RD2  
GA  
GCM  
8
C1  
RD1  
60  
RO1  
+
DE  
VAD  
5
54  
V
CC−  
+
4
VE  
OUT  
.SUBCKT TLV226x 1 2 3 4 5  
RD1  
RD2  
R01  
R02  
RP  
RSS  
VAD  
VB  
VC  
VE  
60  
60  
8
11  
12  
5
15.92E3  
15.92E3  
135  
C1  
11  
6
12  
7
5.5E−12  
20.00E−12  
DX  
C2  
DC  
5
53  
5
7
99  
4
135  
DE  
54  
90  
92  
4
DX  
3
15.87E3  
18.18E6  
−.5  
DLP  
DLN  
DP  
91  
90  
3
DX  
10  
60  
9
99  
4
DX  
DX  
0
DC 0  
EGND  
FB  
99  
7
0
99  
POLY (2) (3,0) (4,0) 0 .5 .5  
POLY (5) VB VC VE VLP  
3
53  
4
DC .615  
DC .615  
DC 0  
54  
7
+ VLN 0 8.84E6 −10E6 10E6 10E6 −10E6  
VLIM  
VLP  
VLN  
8
GA  
6
0
6
11  
10  
12 62.83E−6  
99 12.34E−9  
91  
0
0
DC 1  
DC 5.1  
GCM  
ISS  
HLIM  
J1  
0
92  
3
10  
0
DC 11.05E−6  
VLIM 1K  
10 JX  
.MODEL DX D (IS=800.0E−18)  
90  
11  
12  
6
.MODEL JX PJF (IS=500.0E−15 BETA=325E−6  
2
1
+ VTO=−.08)  
.ENDS  
J2  
10 JX  
R2  
9
100.0E3  
Figure 62. Boyle Macromodel and Subcircuit  
PSpice and Parts are trademarks of MicroSim Corporation.  
41  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CFP  
Drawing  
5962-9550401Q2A  
5962-9550401QHA  
5962-9550401QPA  
5962-9550402Q2A  
5962-9550402QCA  
5962-9550402QDA  
5962-9550403Q2A  
5962-9550403QHA  
5962-9550403QPA  
5962-9550404Q2A  
5962-9550404QCA  
5962-9550404QDA  
TLV2262AID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
U
20  
10  
8
1
1
1
1
1
1
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
CDIP  
LCCC  
CDIP  
CFP  
JG  
FK  
J
20  
14  
14  
20  
10  
8
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
W
FK  
U
LCCC  
CFP  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
CDIP  
LCCC  
CDIP  
CFP  
JG  
FK  
J
20  
14  
14  
8
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
W
D
SOIC  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262AIDR  
TLV2262AIDRG4  
TLV2262AIP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLV2262AIPE4  
TLV2262AIPW  
TLV2262AIPWG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TSSOP  
TSSOP  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262AIPWLE  
TLV2262AIPWR  
OBSOLETE TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
ACTIVE  
TSSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262AIPWRG4  
ACTIVE  
TSSOP  
PW  
8
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262AMFKB  
TLV2262AMJGB  
TLV2262AMUB  
TLV2262AQD  
TLV2262AQDR  
TLV2262ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
JG  
U
20  
8
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
10  
8
1
SOIC  
SOIC  
SOIC  
D
75  
2500  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
D
8
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262IDG4  
TLV2262IDR  
TLV2262IDRG4  
TLV2262IP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
D
D
D
P
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Sep-2005  
Orderable Device  
TLV2262IPE4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
P
8
8
8
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-NC-NC-NC  
TLV2262IPW  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
150 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262IPWR  
TLV2262IPWRG4  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2262MFKB  
TLV2262MJGB  
TLV2262MUB  
TLV2262QD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
JG  
U
20  
8
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
10  
8
1
SOIC  
SOIC  
SOIC  
D
75  
2500  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
TLV2262QDR  
TLV2264AID  
D
8
D
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264AIDG4  
TLV2264AIDR  
TLV2264AIDRG4  
TLV2264AIN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TLV2264AINE4  
TLV2264AIPW  
TLV2264AIPWG4  
PDIP  
N
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TSSOP  
TSSOP  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264AIPWLE  
TLV2264AIPWR  
OBSOLETE TSSOP  
PW  
PW  
14  
14  
TBD  
Call TI  
Call TI  
ACTIVE  
TSSOP  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264AIPWRG4  
ACTIVE  
TSSOP  
PW  
14  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264AMFKB  
TLV2264AMJB  
TLV2264AMWB  
TLV2264AQD  
TLV2264AQDR  
TLV2264ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
14  
14  
14  
14  
14  
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
W
D
1
SOIC  
SOIC  
SOIC  
50  
2500  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
D
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264IDG4  
TLV2264IDR  
TLV2264IDRG4  
TLV2264IN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PDIP  
D
D
D
N
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Sep-2005  
Orderable Device  
TLV2264INE4  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
PDIP  
N
14  
14  
14  
14  
14  
25  
Pb-Free  
(RoHS)  
CU NIPD  
Level-NC-NC-NC  
TLV2264IPW  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264IPWG4  
TLV2264IPWR  
TLV2264IPWRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLV2264MFKB  
TLV2264MJ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CDIP  
CFP  
FK  
J
20  
14  
14  
14  
14  
14  
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
TLV2264MJB  
TLV2264MWB  
TLV2264QD  
TLV2264QDR  
J
1
W
D
D
1
SOIC  
SOIC  
50  
2500  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MCFP001A – JANUARY 1995 – REVISED DECEMBER 1995  
U (S-GDFP-F10)  
CERAMIC DUAL FLATPACK  
Base and Seating Plane  
0.250 (6,35)  
0.246 (6,10)  
0.045 (1,14)  
0.026 (0,66)  
0.008 (0,20)  
0.004 (0,10)  
0.080 (2,03)  
0.050 (1,27)  
0.300 (7,62) MAX  
0.019 (0,48)  
0.015 (0,38)  
1
10  
0.050 (1,27)  
0.280 (7,11)  
0.230 (5,84)  
5
6
4 Places  
0.005 (0,13) MIN  
0.350 (8,89)  
0.250 (6,35)  
0.350 (8,89)  
0.250 (6,35)  
4040179/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only.  
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

5962-9550404Q2X

Voltage-Feedback Operational Amplifier
ETC

5962-9550404QCA

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

5962-9550404QCX

Voltage-Feedback Operational Amplifier
ETC

5962-9550404QDA

Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
TI

5962-9550404QDX

Voltage-Feedback Operational Amplifier
ETC

5962-9550501HXA

Transceiver
ETC

5962-9550501HXC

Transceiver
ETC

5962-9550501HYA

Transceiver
ETC

5962-9550501HYC

Transceiver
ETC

5962-9550501HYX

MIL-STD-1553 Data Bus Transceiver, FP -22
ACTEL

5962-9550601MXA

FIFO, 4KX8, Synchronous, CMOS, CDIP28, 0.300 INCH, THIN, SIDE BRAZED, DIP-28
IDT

5962-9550601MXX

FIFO, 4KX8, Synchronous, CMOS, CDIP28, 0.300 INCH, THIN, SIDE BRAZED, DIP-28
IDT