1P2GU04QDRYRQ1 [TI]

汽车类 2 通道、1.65V 至 5.5V 反相器 | DRY | 6 | -40 to 125;
1P2GU04QDRYRQ1
型号: 1P2GU04QDRYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2 通道、1.65V 至 5.5V 反相器 | DRY | 6 | -40 to 125

光电二极管 逻辑集成电路
文件: 总26页 (文件大小:1523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
SN74LVC2GU04-Q1 Dual Unbuffered Inverter  
1 Features  
2 Applications  
1
AEC-Q100 Qualified for automotive applications:  
AV receivers  
Blu-ray players and home theaters  
DVD recorders and players  
Desktop or notebook PCs  
Digital radio or internet radio players  
Digital video cameras (DVC)  
Embedded PCs  
Device temperature grade 1: –40°C to +125°C,  
TA  
Supports 5-V VCC operation  
Inputs accept voltages to 5.5 V  
Max tpd of 3.7 ns at 3.3 V  
Low power consumption, 10-µA max ICC  
±24-mA Output drive at 3.3 V  
GPS: Personal navigation devices  
Mobile internet devices  
Network projector front-ends  
Portable media players  
Pro audio mixers  
Typical VOLP (output ground bounce)  
<0.8 V at VCC = 3.3 V, TA = 25°C  
Typical VOHV (output VOH undershoot)  
>2 V at VCC = 3.3 V, TA = 25°C  
Can be used as a down translator to translate  
inputs from a max of 5.5 V down  
to the VCC level  
Smoke detectors  
Solid-state drive (SSD): enterprise  
High-definition (HDTV)  
Tablets: enterprise  
Unbuffered outputs  
Audio docks: portable  
DLP front projection systems  
DVR and DVS  
Digital picture frame (DPF)  
Digital still cameras  
3 Description  
This dual inverter is designed for 1.65-V to 5.5-V VCC  
operation.  
The SN74LVC2GU04-Q1 device contains two  
inverters with unbuffered outputs and performs the  
Boolean function Y = A.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE  
SN74LVC2GU04QDRYRQ1 SON (6)  
1.45 mm × 1.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Logic Diagram (Positive Logic)  
1
6
1A  
1Y  
3
4
2A  
2Y  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application ................................................. 11  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ..................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Switching Characteristics.......................................... 7  
6.8 Operating Characteristics.......................................... 7  
6.9 Typical Characteristic................................................ 7  
Parameter Measurement Information .................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
9
10 Power Supply Recommendations ..................... 12  
11 Layout................................................................... 13  
11.1 Layout Guidelines ................................................. 13  
11.2 Layout Example .................................................... 13  
12 Device and Documentation Support ................. 14  
12.1 Receiving Notification of Documentation Updates 14  
12.2 Support Resources ............................................... 14  
12.3 Trademarks........................................................... 14  
12.4 Electrostatic Discharge Caution............................ 14  
12.5 Glossary................................................................ 14  
7
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 14  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2019  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
5 Pin Configuration and Functions  
DRY Package  
6-Pin SON  
Top View  
1A  
1Y  
1
2
3
6
5
4
GND  
2A  
VCC  
2Y  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
1A  
DRY Package(1)  
1
6
3
4
5
2
I
Input  
1Y  
O
I
Output  
Input  
2A  
2Y  
O
Output  
VCC  
GND  
Positive Supply  
Ground  
(1) See Package drawing at the end of the data sheet for dimensions  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.5  
–0.5  
MAX  
6.5  
UNIT  
V
VCC  
VI  
Supply voltage range  
Input voltage range(2)  
6.5  
V
VO  
IIK  
Voltage range applied to any output in the high or low state(2)(3)  
–0.5 VCC + 0.5  
V
Input clamp current  
VI < 0  
VO < 0  
–50  
–50  
mA  
mA  
mA  
mA  
°C  
IOK  
IO  
Output clamp current  
Continuous output current  
±50  
Continuous current through VCC or GND  
Operating free-air temperature  
Operating junction temperature  
Storage temperature  
±100  
TA  
–40  
–65  
125  
150  
150  
TJ  
°C  
Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The value of VCC is provided in the Recommended Operating Conditions table.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
6.2 ESD Ratings  
MAX UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level  
±2000  
V
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
6.3 Recommended Operating Conditions(1)  
MIN  
MAX UNIT  
VCC  
VIH  
VIL  
VI  
Supply voltage  
1.65  
5.5  
V
V
V
V
V
High-level input voltage  
Low-level input voltage  
Input voltage  
IO = –100 µA  
IO = 100 µA  
0.75 × VCC  
0.25 × VCC  
0
0
5.5  
VCC  
–4  
VO  
Output voltage  
VCC = 1.65 V  
VCC = 2.3 V  
–8  
IOH  
High-level output current  
Low-level output current  
–16  
–24  
–32  
4
mA  
mA  
VCC = 3 V  
VCC = 4.5 V  
VCC = 1.65 V  
VCC = 2.3 V  
8
IOL  
16  
VCC = 3 V  
24  
VCC = 4.5 V  
32  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
6.4 Thermal Information  
DRY  
THERMAL METRIC(1)  
UNIT  
°C/W  
(6 PINS)  
233.4  
144.6  
119.9  
15.8  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
119.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
–40°C to 85°C  
–40°C to 125°C  
MIN TYP(1)  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN  
VCC – 0.1  
1.2  
TYP(1)  
MAX  
MAX  
IOH = –100 µA  
1.65 V to 5.5 V  
1.65 V  
VCC – 0.1  
IOH = –4 mA  
IOH = –8 mA  
IOH = –16 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
1.2  
1.9  
2.4  
2.3  
3.8  
2.3 V  
1.9  
VOH  
VIL = 0 V  
V
2.4  
3 V  
2.3  
4.5 V  
1.65 V to 5.5 V  
1.65 V  
3.8  
0.1  
0.45  
0.3  
0.1  
0.45  
0.3  
IOL = 8 mA  
2.3 V  
VOL  
VIH = VCC  
V
IOL = 16 mA  
IOL = 24 mA  
IOL = 32 mA  
0.4  
0.4  
3 V  
0.55  
0.55  
±5  
0.55  
0.55  
±5  
4.5 V  
0 to 5.5 V  
1.65 V to 5.5 V  
3.3 V  
II  
A inputs  
VI = 5.5 V or GND  
VI = 5.5 V or GND,  
VI = VCC or GND  
µA  
µA  
pF  
ICC  
CI  
IO = 0  
10  
10  
7
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
6
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
6.6 Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted) (see Parameter Measurement Information)  
–40°C to 85°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN  
MAX  
5.5  
MIN  
MAX  
MIN  
MAX  
3.7  
MIN  
MAX  
tpd  
A
Y
1.2  
1
4
1.1  
1
3
ns  
6.7 Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted) (see Parameter Measurement Information)  
–40°C to 125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN  
MAX  
6.3  
MIN  
MAX  
4.5  
MIN  
MAX  
4.2  
MIN  
MAX  
3.5  
tpd  
A
Y
1.2  
1
1.1  
1
ns  
6.8 Operating Characteristics  
TA = 25°C  
VCC = 1.8 V  
VCC = 2.5 V VCC = 3.3 V VCC = 5 V  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
TYP  
TYP  
TYP  
Cpd  
Power dissipation capacitance  
f = 10 MHz  
7
7
8
23  
pF  
6.9 Typical Characteristic  
5
4
3
2
1
0
tpd(MAX)  
tpd(ns)  
tpd(MIN)  
1
2
3
4
5
6
V
CC (V)  
Figure 1. tpd vs VCC  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
7 Parameter Measurement Information  
VLOAD  
Open  
GND  
S1  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
Open  
VLOAD  
GND  
CL  
(see Note A)  
RL  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
V
D
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
5 V ± 0.5 V  
£2 ns  
£2 ns  
VCC/2  
VCC/2  
1.5 V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
30 pF  
30 pF  
50 pF  
50 pF  
1 kW  
0.15 V  
0.15 V  
0.3 V  
500 W  
500 W  
500 W  
£2.5 ns  
£2.5 ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
Data Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
VM  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VOL  
VM  
VM  
Output  
Output  
VOL + V  
D
(see Note B)  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – V  
D
VM  
VM  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 2. Load Circuit and Voltage Waveforms  
8
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
8 Detailed Description  
8.1 Overview  
The SN74LVC2GU04-Q1 device contains two inverters with unbuffered outputs with a maximum sink current of  
32 mA.  
8.2 Functional Block Diagram  
Logic Diagram (Positive Logic)  
1
6
1A  
1Y  
3
4
2A  
2Y  
8.3 Feature Description  
8.3.1 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high-drive capability of this device  
creates fast edges into light loads, so routing and load conditions must be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and  
damage due to overcurrent. The electrical and thermal limits defined in the Absolute Maximum Ratings must be  
followed at all times.  
8.3.2 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst-case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using Ohm's law (R = V ÷ I).  
Signals that are applied to the inputs need to have fast edge rates, as shown by Δt/Δv in the Recommended  
Operating Conditions, to avoid excessive current consumption and oscillations. If a slow or noisy input signal is  
required, a device with a Schmitt-trigger input should be used to condition the input signal prior to the standard  
CMOS input.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
Feature Description (continued)  
8.3.3 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as shown in Figure 3.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can  
cause damage to the device. The input negative-voltage and output voltage ratings  
may be exceeded if the input and output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 3. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.4 Over-voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.5 Unbuffered Logic  
A standard CMOS logic function typically consists of at least three stages: the input inverter, the logic function,  
and the output inverter. Some devices have multiple stages at the input or output for various reasons. An  
unbuffered CMOS logic function eliminates the extra input and output stages; the device only contains the  
required logic function which is directly driven from the inputs and directly drives the outputs.  
The unbuffered inverter is commonly used in oscillator circuits because it is less sensitive to parameter changes  
in the oscillator circuit due to having lower total gain than a buffered equivalent. To learn more about how to use  
an unbuffered inverter in an oscillator circuit, see Use of the CMOS Unbuffered Inverter in Oscillator Circuits.  
8.4 Device Functional Modes  
Table 1. Function Table (Each  
Inverter)  
INPUT  
A
OUTPUT  
Y
H
L
L
H
10  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The unbuffered inverter is commonly used in oscillator circuits because it is less sensitive to parameter changes  
in the oscillator circuit due to having lower total gain than a buffered equivalent. An example application circuit is  
shown in Figure 4. To learn more about how to use an unbuffered inverter in an oscillator circuit, refer to the Use  
of the CMOS Unbuffered Inverter in Oscillator Circuits application report.  
9.2 Typical Application  
RF ~2.2 M  
U
CL  
RS  
~1 kꢀ  
C1  
~32 pF  
C2  
~32 pF  
Crystal  
Figure 4. Typical Application Diagram  
9.2.1 Design Requirements  
This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it  
can drive currents that would exceed maximum limits. The high drive also creates fast edges into light loads, so  
routing and load conditions should be considered to prevent ringing.  
9.2.2 Detailed Design Procedure  
To learn more about how to use an unbuffered inverter in an oscillator circuit, refer to the Use of the CMOS  
Unbuffered Inverter in Oscillator Circuits application report.  
1. Recommended Input Conditions  
Specified high and low levels. See (VIH and VIL) in Recommended Operating Conditions.  
Inputs are overvoltage tolerant allowing them to go as high as (VI max) in Recommended Operating  
Conditions at any valid VCC  
.
2. Absolute Maximum Output Conditions  
Load currents must not exceed (IO max) per output and must not exceed (Continuous current through VCC  
or GND) total current for the part. These limits are located in Absolute Maximum Ratings.  
Outputs must not be pulled above the voltage rated in the Absolute Maximum Ratings.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
Typical Application (continued)  
9.2.3 Application Curve  
1600  
Icc 1.8V  
Icc 2.5V  
Icc 3.3V  
Icc 5V  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
20  
40  
Frequency - MHz  
60  
80  
D001  
Figure 5. ICC vs Frequency  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions table.  
The VCC pin must have a good bypass capacitor to prevent power disturbance. A 0.1-µF capacitor is  
recommended, and it is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1-µF and 1-  
µF capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin  
as possible for best results.  
12  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
Even low data rate digital signals can contain high-frequency signal components due to fast edge rates. When a  
printed-circuit board (PCB) trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs  
primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414  
times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance  
and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore  
some traces must turn corners.  
An example layout is given in Figure 6 for the DRY (SON) package. This example layout includes a 0402 (metric)  
capacitor and uses the measurements found in the example board layout appended to this end of this datasheet.  
A via of diameter 0.1 mm (3.973 mil) is placed directly in the center of the device. This via can be used to trace  
out the center pin connection through another board layer, or it can be left out of the layout  
11.2 Layout Example  
Bypass capacitor  
placed close to  
the device  
VCC  
GND  
0402  
0.1 F  
VCC  
2Y  
1Y  
1A  
2A  
Avoid 90°  
corners for  
signal lines  
GND  
GND  
Recommend GND pour for  
improved signal isolation,  
noise reduction,  
and thermal dissipation  
Figure 6. Layout example for DRY package  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: SN74LVC2GU04-Q1  
 
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
12 Device and Documentation Support  
12.1 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.2 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.3 Trademarks  
E2E is a trademark of Texas Instruments.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
14  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
PACKAGE OUTLINE  
DRY0006B  
USON - 0.55 mm max height  
S
C
A
L
E
8
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
1.5  
1.4  
C
0.55 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3X 0.6  
SYMM  
(0.127) TYP  
(0.05) TYP  
3
4
4X  
0.5  
SYMM  
2X  
1
6
1
0.25  
6X  
0.15  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.05  
0.35  
0.25  
6X  
4222207/B 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
SCES902 SEPTEMBER 2019  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRY0006B  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
6X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
LAND PATTERN EXAMPLE  
1:1 RATIO WITH PKG SOLDER PADS  
SCALE:40X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222207/B 02/2016  
NOTES: (continued)  
3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
16  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: SN74LVC2GU04-Q1  
SN74LVC2GU04-Q1  
www.ti.com  
SCES902 SEPTEMBER 2019  
EXAMPLE STENCIL DESIGN  
DRY0006B  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
6X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1 mm THICK STENCIL  
SCALE:40X  
4222207/B 02/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: SN74LVC2GU04-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
1P2GU04QDRYRQ1  
ACTIVE  
SON  
DRY  
6
5000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
FZ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LVC2GU04-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Catalog: SN74LVC2GU04  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
1P2GU04QDRYRQ1  
SON  
DRY  
6
5000  
180.0  
9.5  
1.2  
1.65  
0.7  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DRY  
SPQ  
Length (mm) Width (mm) Height (mm)  
189.0 185.0 36.0  
1P2GU04QDRYRQ1  
6
5000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRY 6  
USON - 0.6 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4207181/G  
PACKAGE OUTLINE  
DRY0006B  
USON - 0.55 mm max height  
S
C
A
L
E
8
.
5
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
PIN 1 INDEX AREA  
1.5  
1.4  
C
0.55 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3X 0.6  
SYMM  
(0.127) TYP  
(0.05) TYP  
3
4
4X  
0.5  
SYMM  
2X  
1
6
1
0.25  
6X  
0.15  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.05  
0.35  
0.25  
6X  
4222207/B 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRY0006B  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
6X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
LAND PATTERN EXAMPLE  
1:1 RATIO WITH PKG SOLDER PADS  
SCALE:40X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222207/B 02/2016  
NOTES: (continued)  
3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRY0006B  
USON - 0.55 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
6X (0.3)  
1
6
6X (0.2)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(0.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1 mm THICK STENCIL  
SCALE:40X  
4222207/B 02/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

1P503

Hybrid Couplers 3 dB, 90∑
ANAREN

1P503S

Hybrid Couplers 3 dB, 90∑
ANAREN

1P510

PICO XINGER 10dB DIRECTIONAL COUPLER
ANAREN

1P510S

Pico Xinger 10dB Directional Coupler
ANAREN

1P520

Pico Xinger 20dB Directional Coupler
ANAREN

1P520S

Pico Xinger 20dB Directional Coupler
ANAREN

1P603S

90 Degree Hybrid Coupler, 2300MHz Min, 2700MHz Max, 0.3dB Insertion Loss-Max, LEAD FREE, PICO PACKAGE-4
ANAREN

1P610

Pico Xinger 10dB Directional Coupler
ANAREN

1P610S

Pico Xinger 10dB Directional Coupler
ANAREN

1P620

Pico Xinger 20dB Directional Coupler
ANAREN

1P620S

Pico Xinger 20dB Directional Coupler
ANAREN

1PB4

Pushbutton Switch,
HONEYWELL