28529-DSH-001-K [TE]

Inverse Multiplexing for ATM (IMA) Family;
28529-DSH-001-K
型号: 28529-DSH-001-K
厂家: TE CONNECTIVITY    TE CONNECTIVITY
描述:

Inverse Multiplexing for ATM (IMA) Family

ATM 异步传输模式
文件: 总309页 (文件大小:2612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28525/9 Data Sheet  
Inverse Multiplexing for ATM (IMA) Family  
The M2852x family of devices provides system designers with a complete integrated IMA solution for up to 32 ports.  
All devices include a Transmission Convergence block to perform cell delineation, 512 K internal RAM to meet ATM  
forum requirements for differential delay compensation and a dual mode (UTOPIA or Serial) PHY layer interface.  
Source code for all required software functions is available from Mindspeed. The M28529 supports 32 IMA groups  
with 1-32 links per group.  
The TC block is capable of bit level cell delineation, which allows for direct connection DSL serial data streams  
without a frame sync pulse. Individual ports can be operated in a 'pass thru' mode without the IMA overhead.  
The M28529 provides direct connection to 32 serial/interleaved highway links or a PHY side UTOPIA bus. In  
addition, an external memory bus allows the differential delay memory to access up to 2 Mbytes of external  
RAM.The M28529 supports both version 1.0 and 1.1 of IMA standard AF-PHY-0086.001  
Distinguishing Features  
• Complete IMA solution in a single package  
• 16 port, M28525  
• 32 port, M28529  
• Field tested software available  
• Up to 32 IMA groups with 1-32 links/group  
• Supports 50 ms (beyond the IMA standard requirements for 25 ms)  
differential delay with 512K Internal memory  
• Memory expandable to 2 M bytes via external bus  
• UTOPIA level 2 interfaces  
• Glueless serial and interleaved highway interfaces to Mindspeed  
Framers  
• Octet or Bit level cell delineation  
• Variable link data rates (64K–8.192 Mb/s)  
Functional Block Diagram  
E xte rn a l M e m o ry  
In te rfa c e  
M 2 8 5 2 9  
T C B lo c k  
C e ll  
p ro c e s s o r  
L in e in t e rf a c e  
0
C e ll  
p ro c e s s o r  
L in e in t e rf a c e  
1
I M A  
B lo c k  
I n t e rn a l  
5 1 2 K x 8  
S R A M  
0
1
e
x
tm  
e m s e l p in  
Di if f e r e n t ia l D e la y  
m
e m o ry in t e rf a c e  
R x lo c k a n d  
B
P a s s t h ro u g h  
C e ll  
L in e in t e r f a c e 3 0  
L in e in t e r f a c e 3 1  
p ro c e s s o r  
I M A  
E n g in e  
C e ll  
p ro c e s s o r  
T
x
B
lo c k a n d  
P a s s t h ro u g h  
TC  
C o u n te r s  
T C S ta tu s  
R e g is te r s  
T C C o n tr o l  
R e g is te r s  
O
n e S e c  
M ic r o  
I n t e r f a c e  
M
ic r o  
IM  
A
c lo c ks  
J T A G  
C lo c ks  
* N o t e : T h e M 2 8 5 2 5 o n ly s u p p o rt s 1 6 T C P o rt s  
®
28529-DSH-001-K  
Mindspeed Technologies  
September 2007  
Mindspeed Proprietary and Confidential  
Ordering Information  
Manufacturing Part  
Number  
Operating  
Temperature  
Model Number  
Product Revision  
Package  
M28525  
M28525G*  
M28529  
M28525-12  
M28525G-12  
M28529-12  
M28529G-12  
B
B
B
B
27mm PBGA, 484 pins  
27mm PBGA, 484 pins  
27mm PBGA, 484 pins  
27mm PBGA, 484 pins  
–40 °C to 85 °C  
–40 °C to 85 °C  
–40 °C to 85 °C  
–40 °C to 85 °C  
M28529G*  
*The G in the part number indicates that this is an RoHS compliant package. Refer to www.mindspeed.com for additional information.  
Revision History  
Revision  
Level  
Date  
Description  
A
B
C
D
E
F
Advance  
Advance  
April 2003  
May 2003  
Advance A version  
Advance B version  
Advance C version  
Advance D version  
Advance E version  
Preliminary F version  
Preliminary G version  
Released H version  
Advance  
July 2003  
Advance  
August 2003  
October 2003  
February 2004  
May 2004  
Advance  
Preliminary  
Preliminary  
Released  
Released  
G
H
I
July 2004  
September 2004 Released I version.  
Added note to IMA_FE_TX_LNKn_GRP_ID, IMA_FE_TX_LNKn_CFG and  
ATM Cell Capture registers to indicate conditions under which these  
registers will be undefined.  
J
Released  
Released  
August 2006  
Changes made to explain limitations in Dual-Clav mode, like, only addresses  
0 through 0xF are supported and that multiple M28529 devices cannot  
share the Utopia bus with an ATM-layer device.  
K
September 2007 Clarified configuration of pass-through operation. Corrected minumum  
parameter for “disable from atmutxclk rise edge.” Other misc. corrections.  
®
28529-DSH-001-K  
Mindspeed Technologies  
ii  
Mindspeed Proprietary and Confidential  
Table of Contents  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii  
Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi  
1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
1.1.1  
1.1.2  
Introduction to IMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Introduction To Inverse Multiplexing for ATM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
1.1.2.1  
1.1.2.2  
1.1.2.3  
1.1.2.4  
1.1.2.5  
IMA Framing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
IMA Control Protocol Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Link State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Transmit Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Differential Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.1.3  
Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.1.3.1  
1.1.3.2  
1.1.3.3  
1.1.3.4  
1.1.3.5  
1.1.3.6  
Software Subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Configuration (CF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Diagnostics (DG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Failure Monitoring (FM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Performance Monitoring (PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Group State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.2.1  
1.2.2  
1.2.3  
1.2.4  
IMA Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Diagnostics/Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Cell Delineation Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
1.2.4.1  
1.2.4.2  
1.2.4.3  
1.2.4.4  
Microprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
ATM Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
PHY Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Counters/Status Register Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.3 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.4.1  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
®
28529-DSH-001-K  
Mindspeed Technologies  
iii  
Mindspeed Proprietary and Confidential  
Table of Contents  
1.4.2  
1.4.3  
DSLAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Wireless NodeB/RNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.5 Pin Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.5.1  
1.5.2  
1.5.3  
Pin Diagram and Definitions (UTOPIA-to-Serial Configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Pin Diagram and Definitions (UTOPIA-to-UTOPIA Configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Interleaved Highway Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
1.6 Stand Alone Cell Delineation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
1.7 Source Loopbacks (UTOPIA-to-Serial Configuration Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
1.7.1  
1.7.2  
Source Loopback Mode 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Source Loopback Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
1.8  
Far-End Line Loopback (Serial Configuration Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
1.9 IMA Line Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
1.10 IMA System Loopbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
1.10.1 IMA System Loopback 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
1.10.2 IMA System Loopback 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
1.11 Reference Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
1.12 IMA Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
1.12.1 IMA Link Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
1.12.2 Clock Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
1.12.2.1 Aggregate Cell Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
1.12.2.2 Serial Clock Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
1.12.2.3 Clock Generator Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
1.12.3 Summary Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
1.12.4 Typical Clock Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
1.12.4.1 Serial Mode (using internal TC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
1.12.4.2 UTOPIA Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
1.12.5 IMA Internal Timing Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
1.12.5.1 T1/E1 Using Internal Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
1.12.5.2 DSL/T1/E1 Using UTOPIA-to-UTOPIA Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
1.13 UTOPIA Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
1.13.1 General UTOPIA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
1.13.2 UTOPIA 8-bit and 16-bit Bus Widths (PHY and ATM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
1.13.3 UTOPIA Interface Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
1.13.3.1 IMA UTOPIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
1.13.3.2 TC Block UTOPIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
1.13.3.3 PHY-Side UTOPIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
1.13.4 Dual Clav/Enb Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
1.14 Transmission Convergence Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
1.14.1 ATM Cell Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
1.14.1.1 HEC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
1.14.2 ATM Cell Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
1.14.2.1 Cell Delineation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
1.14.2.2 Cell Delineation Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
1.14.2.3 Cell Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
1.14.2.4 Cell Scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
®
28529-DSH-001-K  
Mindspeed Technologies  
iv  
Mindspeed Proprietary and Confidential  
Table of Contents  
1.14.2.5 Framing Modes (UTOPIA-to-Serial Configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
1.15 General Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
1.15.1 Micro Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
1.15.1.1 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
1.15.1.2 Counters (TC Block Only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
2.0 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
2.1 Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
2.2 TC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
0x00—SUMINT (Summary Interrupt Indication Status Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
0x01—ENSUMINT (Summary Interrupt Control Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
0x04—PMODE (Port Mode Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
0x05—IOMODE (Input/Output Mode Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
0x08—CGEN (Cell Generation Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
0x09—HDRFIELD (Header Field Control Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
0x0A—IDLPAY (Transmit Idle Cell Payload Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
0x0B—ERRPAT (Error Pattern Control Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
0x0C—CVAL (Cell Validation Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
2.2.10 0x0D—UTOP1 (UTOPIA Control Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
2.2.11 0x0E—UTOP2 (UTOPIA Control Register 2) (TC Block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
2.2.12 0x0F—UDF2 (UDF2 Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
2.2.13 0x10—TXHDR1 (Transmit Cell Header Control Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
2.2.14 0x11—TXHDR2 (Transmit Cell Header Control Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
2.2.15 0x12—TXHDR3 (Transmit Cell Header Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
2.2.16 0x13—TXHDR4 (Transmit Cell Header Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
2.2.17 0x14—TXIDL1 (Transmit Idle Cell Header Control Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
2.2.18 0x15—TXIDL2 (Transmit Idle Cell Header Control Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
2.2.19 0x16—TXIDL3 (Transmit Idle Cell Header Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
2.2.20 0x17—TXIDL4 (Transmit Idle Cell Header Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
2.2.21 0x18—RXHDR1 (Receive Cell Header Control Register 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
2.2.22 0x19—RXHDR2 (Receive Cell Header Control Register 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
2.2.23 0x1A—RXHDR3 (Receive Cell Header Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
2.2.24 0x1B—RXHDR4 (Receive Cell Header Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
2.2.25 0x1C—RXMSK1 (Receive Cell Mask Control Register 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
2.2.26 0x1D—RXMSK2 (Receive Cell Mask Control Register 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
2.2.27 0x1E—RXMSK3 (Receive Cell Mask Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
2.2.28 0x1F—RXMSK4 (Receive Cell Mask Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
2.2.29 0x20—RXIDL1 (Receive Idle Cell Header Control Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
2.2.30 0x21—RXIDL2 (Receive Idle Cell Header Control Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
2.2.31 0x22—RXIDL3 (Receive Idle Cell Header Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
2.2.32 0x23—RXIDL4 (Receive Idle Cell Header Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
2.2.33 0x24—IDLMSK1 (Receive Idle Cell Mask Control Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
2.2.34 0x25—IDLMSK2 (Receive Idle Cell Mask Control Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
2.2.35 0x26—IDLMSK3 (Receive Idle Cell Mask Control Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
2.2.36 0x27—IDLMSK4 (Receive Idle Cell Mask Control Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
2.2.37 0x28—ENCELLT (Transmit Cell Interrupt Control Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
2.2.38 0x29—ENCELLR (Receive Cell Interrupt Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
2.2.39 0x2C—TXCELLINT (Transmit Cell Interrupt Indication Status Register) . . . . . . . . . . . . . . . . . . . . . . . .171  
®
28529-DSH-001-K  
Mindspeed Technologies  
v
Mindspeed Proprietary and Confidential  
Table of Contents  
2.2.40 0x2D—RXCELLINT (Receive Cell Interrupt Indication Status Register) . . . . . . . . . . . . . . . . . . . . . . . . .172  
2.2.41 0x2E—TXCELL (Transmit Cell Status Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
2.2.42 0x2F—RXCELL (Receive Cell Status Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
2.2.43 0x30—IDLCNTL (Idle Cell Receive Counter [Low Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
2.2.44 0x31—IDLCNTH (Idle Cell Receive Counter [High Byte]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
2.2.45 0x33—LOCDCNT (LOCD Event Counter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
2.2.46 0x34—TXCNTL (Transmitted Cell Counter [Low Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
2.2.47 0x35—TXCNTH (Transmitted Cell Counter [High Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
2.2.48 0x37—CORRCNT (Corrected HEC Error Counter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
2.2.49 0x38—RXCNTL (Received Cell Counter [Low Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176  
2.2.50 0x39—RXCNTH (Received Cell Counter [High Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
2.2.51 0x3B—UNCCNT (Uncorrected HEC Error Counter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
2.2.52 0x3C—NONCNTL (Non-matching Cell Counter [Low Byte]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
2.2.53 0x3D—NONCNTH (Non-matching Cell Counter [High Byte]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
2.3 General Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
0xF00—GENCTRL (General Device Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
0xF01—PARTNUM (Part and Version Number Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
0xF02—PHYINTFC (PHY-side Interface Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
0xF03—ATMINTFC (ATM-side Interface Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
0xF04—STATOUT (Output Status Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
0xF05—SUMPORT0 (Summary Port Interrupt Status Register for TC ports 0-7) . . . . . . . . . . . . . . . . .181  
0xF06—ENSUMPORT0 (Summary Port Interrupt Control Register for TC Ports 0-7) . . . . . . . . . . . . . .181  
0xF07—SUMPORT1 (Summary Port Interrupt Status Register for TC ports 8-15) . . . . . . . . . . . . . . . .182  
0xF08—ENSUMPORT1 (Summary Port Interrupt Control Register for TC Ports 8-15) . . . . . . . . . . . . .182  
2.3.10 0xF09—SUMPORT2 (Summary Port Interrupt Status Register for TC ports 16-23) . . . . . . . . . . . . . . .183  
2.3.11 0xF0A—ENSUMPORT2 (Summary Port Interrupt Control Register for TC Ports 16-23) . . . . . . . . . . . .183  
2.3.12 0xF0B—SUMPORT3 (Summary Port Interrupt Status Register for TC ports 24-31) . . . . . . . . . . . . . . .184  
2.3.13 0xF0C—ENSUMPORT3 (Summary Port Interrupt Control Register for TC Ports 24-31) . . . . . . . . . . . .184  
2.3.14 0xF0F—SCRATCH (Scratch Pad Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
2.3.15 0xF10—TCCTRL0 (TC Control Register for TC ports 0-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
2.3.16 0xF11—TCCTRL1 (TC Control Register for TC ports 4-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
2.3.17 0xF12—TCCTRL2 (TC Control Register for TC ports 8-11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
2.3.18 0xF13—TCCTRL3 (TC Control Register for TC ports 12-15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
2.3.19 0xF14—TCCTRL4 (TC Control Register for TC ports 16-19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
2.3.20 0xF15—TCCTRL5 (TC Control Register for TC ports 20-23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
2.3.21 0xF16—TCCTRL6 (TC Control Register for TC ports 24-27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
2.3.22 0xF17—TCCTRL7 (TC Control Register for TC ports 28-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
2.3.23 0xF18—ONESECINT (One Second Interrupt Status Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
2.3.24 0xF19—ONESECINT (One Second Interrupt Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
2.4 IMA Subsystem Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
2.4.1  
2.4.2  
2.4.3  
2.4.4  
2.4.5  
2.4.6  
2.4.7  
2.4.8  
2.4.9  
0x800—IMA_VER_1_CONFIG (IMA Type and Version Code I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
0x801—IMA_VER_2_CONFIG (IMA Version Codes II and III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
0x802—IMA_SUBSYS_CONFIG (IMA Configuration Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
0x803—IMA_MISC_STATUS (IMA Miscellaneous Status) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
0x804—IMA_MISC_CONFIG (IMA Miscellaneous Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
0x805—IMA_MEM_LOW_TEST (IMA Memory Test Address (Bits 0–7)) . . . . . . . . . . . . . . . . . . . . . . .191  
0x806—IMA_MEM_HI_TEST (IMA Memory Test Address (Bits 8–15)) . . . . . . . . . . . . . . . . . . . . . . . .192  
0x807—IMA_MEM_TEST_CTL (IMA Memory Test Control / Address MSBs) . . . . . . . . . . . . . . . . . . . .192  
0x808—IMA_MEM_TEST_DATA (IMA Memory Test Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
®
28529-DSH-001-K  
Mindspeed Technologies  
vi  
Mindspeed Proprietary and Confidential  
Table of Contents  
2.4.10 0x809—IMA_LNK_DIAG_CTL (IMA Link Diagnostic Control Register) . . . . . . . . . . . . . . . . . . . . . . . . .192  
2.4.11 0x80A—IMA_LNK_DIFF_DEL (IMA Link Differential Delay Write Counter) . . . . . . . . . . . . . . . . . . . . . .192  
2.4.12 0x80B—IMA_RCV_LNK_ANOMALIES (IMA Receive Link Anomalies). . . . . . . . . . . . . . . . . . . . . . . . . .193  
2.4.13 0x80C—IMA _PHY_LOOPBACK (IMA Phy Side UTOPIA Loopback) . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
2.4.14 0x80E—IMA_DIAG_XOR_BIT (IMA Diagnostic Bit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
2.4.15 0x80F—IMA_DIAG (IMA Diagnostic Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
2.4.16 0x810—IMA_TIM_REF_MUX_CTL_ADDR (IMA Timing Reference Multiplexer Control Address). . . . .195  
2.4.17 0x811—IMA_TIM_REF_MUX_CTL_DATA (IMA Timing Reference Multiplexer Control Data) . . . . . . . .196  
2.4.18 0x812—IMA_RX_PERSIST_CONFIG (IMA Receive Persistence Configuration) . . . . . . . . . . . . . . . . . .197  
2.4.19 0x813—IMA_ATM_UTOPIA_BUS_CTL (IMA ATM UTOPIA Bus Control) . . . . . . . . . . . . . . . . . . . . . . .197  
2.4.20 0x814—IMA_DIFF_DELAY_ADDR (IMA Differential Delay Control Address). . . . . . . . . . . . . . . . . . . . .198  
2.4.21 0x815—IMA_DIFF_DELAY_DATA (IMA Differential Delay Control Data) . . . . . . . . . . . . . . . . . . . . . . . .198  
2.4.22 0x816—IMA_DSL_CLOCK_GEN_ADDR (IMA DSL Clock Generator Control) . . . . . . . . . . . . . . . . . . . .199  
2.4.23 0x817—IMA_DSL_CLOCK_GEN_DATA (IMA_DSL Clock Generator Data) . . . . . . . . . . . . . . . . . . . . . .200  
2.4.24 0x818—IMA_RX_TRANS_TABLE (IMA Receive Translation Table Address). . . . . . . . . . . . . . . . . . . . .201  
2.4.25 0x819—IMA_RX_ATM_TRANS_TABLE (IMA Receive ATM Translation Table Internal Channel). . . . . .202  
2.4.26 0x81B—IMA_TX_TRANS_TABLE (IMA Transmit Translation Table Address) . . . . . . . . . . . . . . . . . . . .203  
2.4.27 0x81C—IMA_TX_ATM_TRANS_TABLE (Transmit ATM Translation Table Internal Channel) . . . . . . . .203  
2.5 IMA Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
2.5.7  
2.5.8  
2.5.9  
0x81F—IMA_GRP_1TO4_SEM (Group Table Control I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
0x91F—IMA_GRP_5TO8_SEM (Group Table Control II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
0xA1F—IMA_GRP_9TO12_SEM (Group Table Control III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
0xB1F—IMA_GRP_13TO16_SEM (Group Table Control IV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
0xC1F—IMA_GRP_17TO20_SEM (Group Table Control V (M28529 Only)) . . . . . . . . . . . . . . . . . . . . .206  
0xC9F—IMA_GRP_21TO24_SEM (Group Table Control V (M28529 Only)) . . . . . . . . . . . . . . . . . . . . .207  
0xD1F—IMA_GRP_25TO28_SEM (Group Table Control V (M28529 Only)) . . . . . . . . . . . . . . . . . . . . .207  
0xD9F—IMA_GRP_29TO32_SEM (Group Table Control V (M28529 Only)) . . . . . . . . . . . . . . . . . . . . .208  
IMA_TX_GRPn_RX_TEST_PATTERN (Transmit Group Rx Test Pattern) . . . . . . . . . . . . . . . . . . . . . . . .208  
2.5.10 IMA_TX_GRPn_CTL (Transmit Group Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
2.5.11 IMA_TX_GRPn_FIRST_PHY_ADDR (Transmit First PHY Address) . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
2.5.12 IMA_TX_GRPn_ID (Transmit Group ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
2.5.13 IMA_TX_GRPn_STAT_CTL (Transmit Group Status and Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
2.5.14 IMA_TX_GRPn_TIMING_INFO (Transmit Timing Information) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
2.5.15 IMA_TX_GRPn_TEST_CTL (Transmit Test Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
2.5.16 IMA_TX_GRPn_TX_TEST_PATTERN (Transmit Group Tx Test Pattern) . . . . . . . . . . . . . . . . . . . . . . . .215  
2.5.17 IMA_TX_ATMn_CELL_COUNT_LSB (Transmit Cell Count LSBs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
2.5.18 IMA_TX_ATMn_CELL_COUNT_MSB (Transmit Cell Count MSBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
2.5.19 IMA_RX_ATMn_CELL_COUNT_LSB (Receive Cell Count LSBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
2.5.20 IMA_RX_ATMn_CELL_COUNT_MSB (Receive Cell Count MSBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
2.5.21 IMA_RX_GRPn_CFG (Receive Group Status and Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
2.5.22 IMA_RX_GRPn_CTL (Receive Group Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
2.5.23 IMA_RX_GRPn_FIRST_PHY_ADDR (Receive First PHY Address). . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
2.5.24 IMA_RX_GRPn_ID (Expected Receive Group ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
2.5.25 IMA_RX_GRPn_RX_TEST_PATTERN (Receive Group Rx Test Pattern). . . . . . . . . . . . . . . . . . . . . . . . .224  
2.5.26 IMA_RX_GRPn_STAT_CTL_CHANGE (Receive Group Status & Control Change Indication). . . . . . . . .225  
2.5.27 IMA_RX_GRPn_ACTUAL_GRP_ID (Actual Receive Group ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
2.5.28 IMA_RX_GRPn_STAT_CTL (Receive Group Status and Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
2.5.29 IMA_RX_GRPn_TIMING_INFO (Receive Timing Information) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228  
2.5.30 IMA_RX_GRPn_TEST_CTL (Receive Test Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
®
28529-DSH-001-K  
Mindspeed Technologies  
vii  
Mindspeed Proprietary and Confidential  
Table of Contents  
2.5.31 IMA_RX_GRPn_TX_TEST_PATTERN (Receive Group Tx Test Pattern) . . . . . . . . . . . . . . . . . . . . . . . . .230  
2.6 IMA Link Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
2.6.9  
0x81E—IMA_LNK_SEM (Link Table Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
IMA_TX_LNKn_CTL (Transmit Link Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
IMA_TX_LNKn_STATE (Transmit Link Status Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
IMA_TX_LNKn_ID (Transmit Link ID Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
IMA_RX_LNKn_CTL (Receive Link Control Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
IMA_RX_LNKn_STATE (Receive Link Status Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
IMA_RX_LNKn_DEFECT (Receive Link Defects Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
IMA_FE_TX_LNKn_CFG (FE Transmit Configuration Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
IMA_FE_LNKn_STATE (FE Link Status Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
2.6.10 IMA_RX_LNKn_ID (Receive Link ID Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
2.6.11 IMA_RX_LNKn_IV_CNT (IMA Violation Counter Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
2.6.12 IMA_RX_LNKn_OIF_CNT (Out-of-IMA Frame Counter Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
2.6.13 IMA_FE_TX_LNKn_GRP_ID (FE Transmit Group ID Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
2.7 ATM Cell Capture Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
2.7.1  
2.7.2  
2.7.3  
2.7.4  
0xE00-0xE2F—CELL_CAP_PAYLDn (Capture Payload Contents Register) . . . . . . . . . . . . . . . . . . . . . .244  
0xE30—CAP_FAC (Capture Facility Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
0xE31—CAP_CNTL (Capture Control Register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
0xE32—CAP_STAT (Capture Status Register). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
3.0 Product Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
3.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
3.3 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
3.4 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Microprocessor Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
PHY-side Interface Timing (Serial Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
Fractional T1/E1 Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
PHY-side Interface Mode (Interleaved Highway) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
PHY-Side Interface Timing (UTOPIA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
UTOPIA Interface Timing (ATM-Side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
External Memory Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
3.4.10 One-second Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
3.5 Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
3.5.1  
Mechanical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
3.6 Interface Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
4.0 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
4.1 IMA Version 1.1 PICS Proforma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
Symbols and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
IMA PICS Proforma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
4.1.5.1  
Global Statement of Conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
®
28529-DSH-001-K  
Mindspeed Technologies  
viii  
Mindspeed Proprietary and Confidential  
Table of Contents  
4.1.5.2  
4.1.5.3  
Instructions for Completing the PICS Proforma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
IMA Protocol Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
4.1.6  
PICS Proforma References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
4.2 Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
4.3 Power Sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
®
28529-DSH-001-K  
Mindspeed Technologies  
ix  
Mindspeed Proprietary and Confidential  
List of Figures  
Figure 1-1. M28525/9 Block Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Figure 1-2. IMA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Figure 1-3. IMA Frame; Length = 16; Number of links = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Figure 1-4. M2852x Connected to a CX28398 Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Figure 1-5. M28529 in DSLAM applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Figure 1-6. M28529 in NodeB/RNC Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Figure 1-7. M28529 Logic Diagram (UTOPIA-to-Serial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Figure 1-8. M28529 UTOPIA-to-Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Figure 1-9. M28529 Logic Diagram (UTOPIA-to-UTOPIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Figure 1-10. IMA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Figure 1-11. Non-IMA Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Figure 1-12. Source Loopback Diagram (For simplicity the diagram shows the TC Block Only.) . . . . . . . . . . . . . . . . . . . . . . . .66  
Figure 1-13. Far-End Line Loopback (This only shows the TC Block.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Figure 1-14. IMA Line Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Figure 1-15. IMA System Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Figure 1-16. M28529 Clock Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Figure 1-17. Typical T1/E1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Figure 1-18. Serial DSL Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Figure 1-19. T1/E1 Configurations (UTOPIA Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Figure 1-20. DSL Configurations (UTOPIA Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Figure 1-21. T1/E1 using Internal Serial ports; IMA_SysClk equals 24x line rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Figure 1-22. T1/E1 using Internal Serial ports; IMA_RefClk equals line rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Figure 1-23. DSL—UTOPIA-to-UTOPIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Figure 1-24. ATM Layer UTOPIA Interface Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Figure 1-25. M28529 Multiple UTOPIA Control Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Figure 1-26. Details of the TC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Figure 1-27. Cell Delineation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Figure 1-28. Header Error Check Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Figure 1-29. CN8370 Interface Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Figure 1-30. CN8370 Interface - T1 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
Figure 1-31. CN8370 Interface - E1 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Figure 1-32. Fractional T1 Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
®
28529-DSH-001-K  
Mindspeed Technologies  
ix  
Mindspeed Proprietary and Confidential  
List of Figures  
Figure 1-33. Fractional E1 Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Figure 1-34. DSL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Figure 1-35. General Purpose Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
Figure 1-36. Interfacing Interleaved Highway to CX2839x (Frame Sync Provided by CX2389x) . . . . . . . . . . . . . . . . . . . . . . .101  
Figure 1-37. Interfacing Interleaved Highway to CX2839x (Frame Sync Externally Provided) . . . . . . . . . . . . . . . . . . . . . . . . .102  
Figure 1-38. Combined Datastreams on the Interleaved Highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Figure 1-39. Full T1 Interleaved Highway Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Figure 1-40. Full E1 Interleaved Highway Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Figure 1-41. Interleaved Highway Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Figure 1-42. Interrupt Indication Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Figure 1-43. Interrupt Indication Diagram (TC Block) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Figure 3-1. Input Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
Figure 3-2. Output Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
Figure 3-3. Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Figure 3-4. Microprocessor Timing —Asynchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Figure 3-5. Microprocessor Timing —Asynchronous Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
Figure 3-6. Microprocessor Timing —Synchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
Figure 3-7. Microprocessor Timing —Synchronous Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Figure 3-8. PHY-side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 0, TxDatShft = 0) . . . . . . . . . . . . . . . . . . . . . . .254  
Figure 3-9. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 1, TxDatShft = 0) . . . . . . . . . . . . . . . . . . . . . . .254  
Figure 3-10. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 0, TxDatShft = 1) . . . . . . . . . . . . . . . . . . . . . . .255  
Figure 3-11. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 1, TxDatShft = 1) . . . . . . . . . . . . . . . . . . . . . . .255  
Figure 3-12. PHY-side Serial T1/E1/DSL Mode Receive Timing (Positive Clock Edge Timing- RxClkPol = 0) . . . . . . . . . . . . .256  
Figure 3-13. PHY-side Serial T1/E1/DSL Mode Receive Timing (Negative Clock Edge Timing- RxClkPol = 1) . . . . . . . . . . . . .256  
Figure 3-14. Fractional T1/E1 Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Figure 3-15. Fractional T1/E1 Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Figure 3-16. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 0, IHTxDatShftx = 0)) . . . . . . . . . . . . . . .259  
Figure 3-17. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 1, IHTxDatShftx = 0) . . . . . . . . . . . . . . .259  
Figure 3-18. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 0, IHTxDatShftx = 1) . . . . . . . . . . . . . . .260  
Figure 3-19. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 1, IHTxDatShftx = 1) . . . . . . . . . . . . . . .260  
Figure 3-20. PHY-side Interleaved Highway Mode Receive Timing (Positive Edge - IHRxClkPolx = 0) . . . . . . . . . . . . . . . . . .261  
Figure 3-21. PHY-side Interleaved Highway Mode Receive Timing (Negative Edge - IHRxClkPolx = 1) . . . . . . . . . . . . . . . . . .261  
Figure 3-22. PHY-side UTOPIA Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Figure 3-23. PHY-side UTOPIA Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
Figure 3-24. ATM-side UTOPIA Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Figure 3-25. ATM-side UTOPIA Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Figure 3-26. External Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
Figure 3-27. JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
Figure 3-28. One-second Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Figure 3-29. M28525/9 Mechanical Drawing (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
®
28529-DSH-001-K  
Mindspeed Technologies  
x
Mindspeed Proprietary and Confidential  
List of Figures  
Figure 3-30. M28525/9 Mechanical Drawing (Top and Side Views) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
Figure 3-31. M28529 Pinout Diagram, UTOPIA-to-Serial (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
Figure 3-32. M28525 Pinout Diagram Utopia-to-Serial (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
Figure 3-33. M28525/9 Pinout Diagram UTOPIA-to-UTOPIA (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274  
®
28529-DSH-001-K  
Mindspeed Technologies  
xi  
Mindspeed Proprietary and Confidential  
List of Tables  
Table 1-1. IMA Overhead Cell Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Table 1-2. IMA Overhead Filler Cell Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 1-3. Link States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Table 1-4. Memory Requirements for Differential Delay (in bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 1-5. Software Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 1-6. Group State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Table 1-7. Available Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 1-8. M28529 UTOPIA-to-Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 1-9. M28529 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 1-10. UTOPIA-to-UTOPIA Configuration Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 1-11. M2852x Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 1-12. Serial Stream Muxing into Interleaved Highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Table 1-13. M28529 Interleaved Highway Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table 1-14. Interleaved Highway Port 0 - 3 Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table 1-15. Interleaved Highway Port 4 - 7 Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 1-16. No Connects Per Interleaved Highway Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 1-17. Cell Delineation Configuration Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table 1-18. Reference Clock Configurations / Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Table 1-19. IMA Block Clock Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Table 1-20. Link Rate Resolution for Variable Rate Applications (direct serial clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table 1-21. Link Rate Resolution for Variable Rate Applications (internal bit rate generator) . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table 1-22. Maximum Aggregate Bandwidth Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Table 1-23. IMA Serial Clock Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Table 1-24. IMA Reference Clock Summary Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Table 1-25. Device Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Table 1-26. Control Bit Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Table 1-27. Cell Screening—Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Table 1-28. Cell Screening—Accept/Reject Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Table 2-1. Address Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Table 2-2. Device Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Table 2-3. Port Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Table 2-4. Cell Transmit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
®
28529-DSH-001-K  
Mindspeed Technologies  
xi  
Mindspeed Proprietary and Confidential  
List of Tables  
Table 2-5. Cell Receive Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Table 2-6. UTOPIA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Table 2-7. Status and Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Table 2-8. Status and Interrupt Registers (Offset Registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Table 2-9. Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Table 2-10. IMA Control and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Table 3-1. Absolute Maximum Ratings (General) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
Table 3-2. Absolute Maximum Ratings (M28525/M28529) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
Table 3-3. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
Table 3-4. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
Table 3-5. Power Characteristics (M28529) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
Table 3-6. Reset Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
Table 3-7. Microprocessor Timing Parameters - Asynchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
Table 3-8. Microprocessor Timing Parameters - Asynchronous Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
Table 3-9. Microprocessor Timing Parameters - Synchronous Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
Table 3-10. Microprocessor Timing Parameters - Synchronous Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
Table 3-11. PHY-side Serial T1/E1/DSL Mode Transmit Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Table 3-12. PHY-side Serial T1/E1/DSL Mode Receive Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Table 3-13. Fractional T1/E1 Transmit Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Table 3-14. Fractional T1/E1 Receive Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
Table 3-15. PHY-side Interleaved Highway Mode Transmit Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Table 3-16. PHY-side Interleaved Highway Mode Receive Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Table 3-17. PHY-side UTOPIA Transmit Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Table 3-18. PHY-side UTOPIA Receive Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
Table 3-19. ATM-side UTOPIA Transmit Timing Parameters (IMA Enabled - 16 Bit Mode) . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Table 3-20. ATM-side UTOPIA Transmit Timing Parameters (IMA Bypassed - 8/16 Bit Mode, IMA  
Enabled - 8 Bit Mode) 265  
Table 3-21. ATM-side UTOPIA Receive Timing Parameters (IMA Enabled - 16 Bit Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Table 3-22. ATM-side UTOPIA Receive Timing Parameters (IMA Bypassed - 8/16 Bit Mode, IMA  
Enabled - 8 Bit Mode) 266  
Table 3-23. External Memory Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
Table 3-24. JTAG Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Table 3-25. One Second Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Table 4-1. Basic IMA Protocol (BIP) Definition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
Table 4-2. QoS Requirements Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
Table 4-3. CTC and ITC Operation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
Table 4-4. IMA Data Cell (IDC) Rate Implementation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
Table 4-5. Link Differential Delay (LDD) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
Table 4-6. IMA Interface Operation (IIO) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
Table 4-7. IMA Frame Synchronization (IFS) Mechanism Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
®
28529-DSH-001-K  
Mindspeed Technologies  
xii  
Mindspeed Proprietary and Confidential  
List of Tables  
Table 4-8. IMA Interface OAM Operation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
Table 4-9. Test Pattern Procedure (TPP) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
Table 4-10. IMA Interaction with Plane Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
Table 4-11. Management Information Base (MIB) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
®
28529-DSH-001-K  
Mindspeed Technologies  
xiii  
Mindspeed Proprietary and Confidential  
1.0 Functional Description  
1.1  
Overview  
1.1.1  
Introduction to IMA  
This chapter provides a basic introduction to IMA. It will introduce common terminology, the IMA frame format and  
IMA Cell structure. It will also address one of the challenges of IMA: differential delay between links. For detailed  
coverage of these topics the reader should refer to the ATM forum's standard for IMA.  
The M2852x is composed of the following major functional blocks as shown in Figure 1-1.  
Figure 1-1. M28525/9 Block Diagram Example  
E
xte rn a l M e m o ry  
In te rfa c e  
M 2 8 5 2 9  
T C B lo c k  
C e ll  
p ro c e s s o r  
L in e in t e rf a c e  
0
C e ll  
p r o c e s s o r  
L in e in t e rf a c e  
1
I M A  
B lo c k  
I n t e rn a l  
5 1 2 K x 8  
S R A M  
0
1
e
x
tm  
e m s e l p in  
Di if f e re n t ia l D e la y  
m
e m o ry in t e r f a c e  
R x B lo c k a n d  
P
a s s t h r o u g h  
C e ll  
L in e in t e r f a c e 3 0  
L in e in t e r f a c e 3 1  
p r o c e s s o r  
I M A  
E n g in e  
C e ll  
p r o c e s s o r  
T
x
B lo c k a n d  
P
a s s t h r o u g h  
TC  
C o u n te r s  
T C S ta tu s  
R e g is te r s  
T C C o n tr o l  
R e g is te r s  
O
n e S e c  
M ic r o  
I n t e rf a c e  
M
ic r o  
IM  
A
c lo c ks  
J T A G  
C lo c ks  
* N o t e : T h e M 2 8 5 2 5 o n ly s u p p o r t s 1 6 T C P o r t s  
1.1.2  
Introduction To Inverse Multiplexing for ATM  
Bandwidth, or the lack thereof, has always been the main challenge of telecommunications. While numerous  
standards for high speed connections have been around for years, the cost of these higher speed connections  
often prohibit users from deploying them. For example, users who need a data rate higher than the standard T1,  
(1.544 Mbps) must pay for an entire DS3 (44 Mbps). Often the extra cost cannot be justified.  
®
28529-DSH-001-K  
Mindspeed Technologies  
1
Mindspeed Proprietary and Confidential  
Functional Description  
IMA solves this problem by allowing users to purchase bandwidth in smaller increments and combine these smaller  
'pipes' into one high speed connection. An example is given in Figure 1-2 where 3 T1 lines are combined into one  
4.6 Mbps data link.  
At first glance, the concept of IMA is deceptively simple: spread the ATM cells out evenly over the available  
individual lines. However, many serious technical issues must be dealt with and a wide range of functions must be  
supported. These include IMA framing, differential delay accommodation, link/group state machines, IMA clocking,  
and maintenance. Several terms must be defined:  
IMA Engine  
Link  
The logic that performs the actual IMA function. This sits between the ATM layer and the individual links (see  
Figure 1-2). An IMA engine can control multiple independent groups.  
Refers to an individual physical connection such as a T1 or DSL line. Each link has an individual UTOPIA address or  
serial connection to the IMA engine.  
Group  
An IMA group is composed of links. A group appears as a single UTOPIA address to the ATM layer. Thus an IMA-4  
group would have 4 individual links.  
Group State Machine  
The operation of the IMA group is governed by the Group State Machine (GSM), the Group Traffic State Machine  
(GTSM), and the Link Addition and Slow Recovery (LASR) procedure. These three processes ensure reliable  
transmission and reception of ATM layer cells across all links in the Active state. This includes the negotiation of  
group parameters (i.e., symmetry and M values), the bringing up of the IMA group, and the graceful addition/  
recovery and deletion of links to and from the group. For the M28529, this function is performed in the host software.  
The software itself is available from Mindspeed.  
Link State Machine  
A Link State Machine (LSM) is defined for the transmit and receive directions of each IMA link. The IMA protocol is  
defined to allow symmetric or asymmetric cell rate transfer over the IMA virtual link. It allows for smooth  
introduction of each link in the group. It also allows graceful handling of error conditions and removal of a link. This  
function is performed internally by the M28529.  
Figure 1-2. IMA Overview  
3 - T1 1.544 Mb/s  
3
2
1
3
2
1
3
2
1
4.5 Mb/s  
4.5 Mb/s  
500027_053  
1.1.2.1  
IMA Framing  
The IMA protocol employs a simple frame structure as shown in Figure 1-3. It consists of a single IMA overhead  
cell (ICP) and M – 1 ATM layer cells, where M is the IMA frame length. Valid frame lengths are 32, 64, 128 (default),  
or 256. This example shows a group composed of three links and an IMA frame length of 16. (An invalid frame  
length of 16 is used for brevity, the default frame length is 128.)  
®
28529-DSH-001-K  
Mindspeed Technologies  
2
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-3. IMA Frame; Length = 16; Number of links = 3  
Incoming data from the ATM layer (which doesn't  
know that the data is being split into frames)  
ATM ATM  
ATM  
34  
ATM ATM  
ATM ATM ATM ATM  
ATM ATM  
ATM  
x
...  
36  
35  
33  
32  
5
4
3
2
1
0
This cell was in the  
previous frame  
This cell will be in  
the next frame  
Delay between the cells arrival at  
the IMA device results in Filler  
cells being inserted  
Data output into an IMA frame  
1 IMA frame  
M = 16  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
ATM ATM ATM  
31 28 25  
ATM ATM ATM ATM  
21 19 17 14  
ATM ATM  
11  
ATM  
3
ICP  
3
F
F
F
F
F
Link 0  
Link 1  
8
This link selected as the Timing Reference  
Link, (TRL), thus first ICP starts at 0.  
ATM ATM ATM ATM ATM ATM  
34 32 29 26 23 22  
ATM ATM ATM ICP ATM ATM ATM  
18 15 13  
ATM  
0
F
F
3
9
6
4
Always at least 1 ICP cell per frame  
ATM ATM ATM ATM  
33 30 27 24  
ATM ICP ATM  
20 16  
ATM ATM ATM ATM ATM ATM  
12 10  
F
F
F
Link 2  
3
7
5
2
1
ATM payload;  
cell x in the sequence  
IMA control Protocol Cell  
IFSN = n  
ATM  
x
ICP  
n
F
Filler cell  
500027_067  
Since the ATM layer data rate is often less than the bandwidth available across the links in the IMA group, the IMA  
engine generates IMA Filler cells when no ATM layer cells are available. (The IMA Filler cells perform the same  
basic function as Idle cells in a non-IMA ATM system and are discarded by the IMA receiver.)  
The IMA frame rate is intentionally set slightly below the available payload bandwidth of the IMA link. To allow for  
timing differences between the links in a group, the IMA standard requires that the system insert an extra ICP cell  
every 2049 cells. This cell is called the SICP cell and is inserted immediately after the normal ICP cell for that link  
and results in the frame being M+1 cells long. Information in the ICP cell payload signals the insertion of these cells  
so that the receiver does not lose framing and can identify and discard these cells. For further details consult the  
IMA standard.  
One link in each group is designated the Timing Reference Link (TRL). All timing issues for the group are relative to  
this link.  
®
28529-DSH-001-K  
Mindspeed Technologies  
3
Mindspeed Proprietary and Confidential  
Functional Description  
1.1.2.2  
IMA Control Protocol Cells  
The IMA Standard defines three types of IMA cells: IMA Control Protocol (ICP) cells, Filler cells, and ATM layer  
cells. ICP cells are the IMA overhead cells that carry the IMA control and status information between both ends of  
the link, assuring synchronization and configuration. The purpose of filler cells is rate decoupling; they are inserted  
into the IMA stream if no ATM layer cells are available.  
Standard ATM 'idle' cells are never transmitted over an IMA link.  
NOTE:  
ATM layer cells are the data “payload” carried by the IMA group. These are the standard ATM cells being sent from  
the ATM layer.  
Table 1-1 describes the IMA Overhead Cell definition, and Table 1-2 lists format of the IMA Overhead Stuff Cell.  
Table 1-1.  
Octet  
IMA Overhead Cell Definition (1 of 3)  
Field  
Description  
1-5  
ATM Cell Header  
OAM cell type: Octet 1 = 0000 0000  
Octet 2 = 0000 0000  
Octet 3 = 0000 0000  
Octet 4 = 0000 1011  
Octet 5 = 0110 0100 (valid HEC with Coset)  
OAM type field:  
6
7
IMA Label  
Cell ID  
0000 0001—IMA Version 1.0  
0000 0011—IMA Version 1.1  
Bit 7 Set to 1 for ICP cell  
Bits 6–5 Unused and set to 0  
Link ID  
Bits 4–0 Logical ID for physical link range (0... 31)  
8
9
Frame Sequence Number  
ICP Cell Offset  
Cyclical counter: 0 to 255  
Indicates position of ICP cell within the IMA frame of size M cells. Range: (0... M – 1)  
Stuff Indication code for link on which ICP cell is being sent  
10  
Link Stuff Indication (LSI)  
Bits 7–3 Unused and set to 0  
Bits 2–0 111: no imminent stuff (default)  
100: stuff event in 4 ICP cell locations (optional)  
011: stuff event in 3 ICP cell locations (optional)  
010: stuff event in 2 ICP cell locations (optional)  
001: stuff event at the next ICP cell location (mandatory)  
000: This is one out of the 2 ICP cells comprising the stuff event (mandatory)  
11  
12  
Status / Control Change  
Indication (SCCI)  
Status and Control Change Indication: 0 to 255 and cycling (count to be incremented every time there is  
a change to octets 12 to 49).  
IMA ID  
Logical IMA group ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
4
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-1.  
Octet  
IMA Overhead Cell Definition (2 of 3)  
Field  
Description  
13  
Group Status & Control  
Bits 7–4 Group Status  
0000: Start-up  
0001: Start-up-Ack  
0010: Config-Aborted: Unsupported M  
0011: Config-Aborted: Incompatible Symmetry  
0100: Config-Aborted: Unsupported IMA version  
01xx: Available for other Config Abort reasons  
1000: Insufficient-Links  
1001: Blocked  
1010: Operational  
Bits 3–2 Others: Reserved  
Symmetry of Group  
00: Symmetrical configuration and operation  
01: Symmetrical configuration and asymmetric operation  
10: Asymmetrical configuration and operation  
Bits 1–0 11: Reserved  
IMA Frame Length  
00: M=32  
01: M=64  
10: M=128  
11: M=256  
14  
15  
Transmit Timing Information Transmit Clock Information  
Bits 7–6 Unused, set to 00  
Bit 5 Transmit Clock Mode (0: ITC mode, 1: CTC mode)  
Bits 4–0 Tx LID of the timing reference link (TRL)—Range: 0 to 31  
Test Pattern Command  
Tx Test Control  
Bits 7–6 Unused, set to 00  
Bit 5 Test Link Command (0: inactive, 1: active)  
Bits 4–0 Tx LID of test link—Range: 0 to 31  
16  
17  
Tx Test Pattern  
Rx Test Pattern  
Value from 0 to 255  
Value from 0 to 255  
®
28529-DSH-001-K  
Mindspeed Technologies  
5
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-1.  
Octet  
IMA Overhead Cell Definition (3 of 3)  
Field  
Description  
18  
Link 0 Information  
Link State Machine and Defect Information for link with LID = 0  
Bits 7–5 Transmit LSM state  
Bits 4–2 Receive LSM state  
Bits 1–0 Rx Link defect status  
00: no errors  
01: Physical Link defect (e.g., LOS, OOF/LOF, LCD)  
10: LIF  
11: LODS  
19–49  
50  
Link 1–31 Info  
Unused  
Status and control of link with LID in the range 1–31  
Set to 0x6A (as defined in ITU-T I.432)  
51  
End-to-end channel  
CRC Error Control  
Proprietary channel (set to 0 if unused). The M2852x does not support this octet.  
52–53  
Bits 15-10 Reserved field for future use—default value is all zeros  
Bits 9-0 CRC-10 as defined in ITU-T Recommendation I.610  
Table 1-2.  
Octet  
IMA Overhead Filler Cell Format  
Field  
Description  
1–5  
ATM Cell Header  
OAM cell type: Octet 1 = 0000 0000  
Octet 2 = 0000 0000  
Octet 3 = 0000 0000  
Octet 4 = 0000 1011  
Octet 5 = 0110 0100 (valid HEC)  
6
7
IMA Label  
OAM type field:  
0000 0001—IMA Version 1.0  
0000 0011—IMA Version 1.1  
Cell ID  
Link ID  
Bit 7 Set to 0 for IMA Filler cell  
Bits 6–0 Unused and set to 0  
8–51  
Unused  
Set to 0x6A (as defined in ITU-T I.432)  
52–53  
CRC Error Control  
Bits 15-10 Reserved field for future use—default value is all zeros  
Bits 9-0 CRC-10 as defined in ITU-T Recommendation I.610  
®
28529-DSH-001-K  
Mindspeed Technologies  
6
Mindspeed Proprietary and Confidential  
Functional Description  
1.1.2.3  
Link State Machine  
Management of the individual links is performed by two state machines: the Transmit Link State Machine and the  
Receive Link State Machine. Four possible states are available for each link as shown in Table 1-3.  
Table 1-3.  
Link States  
State  
Description  
Not in Group  
Unusable  
Usable  
this link has not been added to an IMA group  
the link is in a group but cannot be used due to line fault etc.  
assigned to a group and ready but is waiting for the other end  
fully configured and carrying traffic  
Active  
The Link State Machines are responsible for handling the transition from one state to another. All functions of the  
LSM's are performed internally by the M2852x. Further details are covered in Section 1.12 and in the ATM  
standard on IMA.  
1.1.2.4  
Transmit Clocks  
The IMA standard provides two options regarding the transmit clocks. The default mode, and most common IMA  
application, is Common Transmit Clock (CTC) mode, where all links in the IMA group are generated from the same  
source. Thus they are in phase and have the same rate of SICP insertion (1/2049) as the designated TRL link.  
The Independent Transmit Clock (ITC) mode is available as an optional feature of the IMA protocol (of course, it is  
fully supported by the M2852x family). In this mode, each link runs off of an independent clock at the nominal line  
rate. To support these asynchronous links within an IMA group, the rate of SICP insertion is allowed to vary on the  
non-TRL links.  
The IMA group frame rate for each IMA group must be re-created at the receive end. This regeneration is  
necessary to implement the IMA Data Cell Clock and smoothing buffer functionality of the IMA protocol. One  
method for generating the Receive IMA group frame rate is to use the line or payload clock recovered from the  
receive TRL physical port interface. This clock is a frequency locked reference of the far-end Transmit IMA group  
frame rate. Equivalently, the rate of cell transfers (i.e., payload bandwidth) from the TRL link can be used as the  
reference for generating the Receive IMA group frame rate. Both methods are available for use by the M2852x  
device, depending on the application and configuration.  
1.1.2.5  
Differential Delay  
When dealing with multiple facilities, there is no guarantee that the individual links within a group will take the same  
physical path between the terminating equipment. This variation is referred to as Differential Delay. The ATM Forum  
specification requires an IMA implementation to absorb a minimum of 25 ms of differential delay between the links.  
Each link requires 8 K of memory for every 27.5 ms of delay (at E1; 8 K provides for 34.375 ms at T1 rates). The  
M28525/9 provides 512K bytes of on-board memory for the buffering necessary to re-align the links within an IMA  
group. This is sufficient to support the 50 ms of delay (at E1 rates) for 32 IMA ports. In addition, an external  
memory bus allows this to be expanded to 2 MB, which supports up to 200 ms of delay. Table 1-4 shows the  
memory requirements for differential delay.  
®
28529-DSH-001-K  
Mindspeed Technologies  
7
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-4.  
Memory Requirements for Differential Delay (in bytes)  
E1  
T1  
27.5 ms  
55 ms  
110 ms  
220 ms  
275 ms  
Number of links  
34.375 ms  
68.75 ms  
137.5 ms  
1
2
8 K  
16 K  
32 K  
64 K  
128 K  
256 K  
16 K  
32 K  
32 K  
64 K  
64 K  
128 K  
256 K  
512 K  
1024 K  
2048 K  
4
64 K  
128 K  
256 K  
512 K  
1024 K  
8
128 K  
256 K  
512 K  
16  
32  
General Note: Shaded areas can be supported by internal memory. Internal memory is disabled when the external bus is used.  
The magnitude of the differential delay can be quite large when dealing with T1/E1 links; whereas DSL links  
generally follow the same path and have nearly identical delays.  
1.1.3  
Software Overview  
Mindspeed’s software supports both TC and IMA; however, this section only describes IMA  
software support.  
NOTE:  
All IMA devices require a software driver to interface to the system host. Since the GSM's primary function only  
occurs during startup; the M2852x family relies on the IMA driver to perform these functions. This allows for  
maximum flexibility; simpler device design and requires very little overhead from the host.  
Mindspeed provides a complete IMA and device driver in ANSI C to simplify system development. This software  
has been field tested and can be ported to virtually all systems. This is also covered in chapter 3, the IMA engine  
and the M28529TAP IMA Software Programming Guide.  
Table 1-5 summarizes the API of the M28525/9 software. All functions require a pointer to the structure IMA_DEV.  
The additional parameters for each function are listed in the following sections. The functions named IMA_xxxx()  
are function calls to the M28525/9. The functions named USER_xxxx() are user defined functions called by the  
M28525/9. The pointers to the user defined functions are passed to M28525/9 during initialization as fields in the  
DRV initialization structure or after initialization using the IMA_subsys_set() function.  
Table 1-5.  
Class  
Software Function Summary (1 of 2)  
Function  
Short Description  
Initialization  
IMA_init_default ()  
IMA_init ()  
Initializes the fields of the M28525/9 initialization structure to default values.  
This function initializes the IMA software driver and the IMA device.  
Interrupts  
IMA_tick ()  
This function polls the error counters and failure monitoring registers of the IMA device  
and must be called at a regular periodic interval.  
IMA_intr ()  
This function should be called when the device interrupt line has been asserted.  
®
28529-DSH-001-K  
Mindspeed Technologies  
8
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-5.  
Class  
Software Function Summary (2 of 2)  
Function  
Short Description  
IMA Subsystem  
IMA_read ()  
This function provides a direct interface to read the registers within the IMA device.  
This function provides a direct interface to write the registers within the IMA device.  
This function provides a direct interface to set the M28525/9 Subsystem parameters.  
IMA_write ()  
IMA_subsys_set ()  
IMA_subsys_get ()  
This function provides a direct interface to retrieve the M28525/9 Subsystem  
parameters.  
IMA_test ()  
This function executes a specified IMA diagnostic test.  
IMA_facility_set()  
IMA_facility_get()  
IMA_group_set ()  
IMA_group_get ()  
IMA_group_FM_status ()  
This function provides a direct interface to set the M28525/9 Facility parameters.  
This function provides a direct interface to retrieve the M28525/9 Facility parameters.  
This function provides a direct interface to set the M28525/9 Group parameters.  
This function provides a direct interface to retrieve the M28525/9 Group parameters.  
Group  
Interface  
This function retrieves the current state of the parameters monitored by the Facility  
Monitoring subsystem for the IMA Group layer.  
IMA_group_PM_preset ()  
IMA_group_PM_status ()  
This function allows the user to initialize the IMA Group PM statistics to arbitrary values  
for the current interval of the 15 minute accumulation period.  
This function retrieves the states (from either the current or previous 15 minute  
accumulation interval) of the IMA Group Performance Monitoring parameters.  
Link  
Interface  
IMA_link_set ()  
This function provides a direct interface to set the M28525/9 Link parameters.  
This function provides a direct interface to retrieve the M28525/9 Link parameters.  
IMA_link_get ()  
IMA_link_FM_status ()  
This function retrieves the current state of the parameters monitored by the Facility  
Monitoring subsystem for the IMA Link layer.  
IMA_link_PM_preset ()  
IMA_link_PM_status ()  
IMA_phy_link_set ()  
This function allows the user to initialize the IMA Link PM statistics to arbitrary values for  
the current interval of the 15 minute accumulation period.  
This function retrieves the states (from either the current or previous 15 minute  
accumulation interval) of the IMA Link Performance Monitoring parameters.  
PHY  
Interface  
This function provides a direct interface to set the M28525/9 Link parameters, per  
facility.  
IMA_phy_link_get ()  
This function provides a direct interface to retrieve the M28525/9 Link parameters, per  
facility.  
IMA_phy_link_FM_status ()  
IMA_phy_link_PM_preset ()  
IMA_phy_link_PM_status ()  
This function retrieves the current state of the parameters monitored by the Failure  
Monitoring subsystem for the IMA Link layer, per facility.  
This function allows the user to initialize the IMA Group PM statistics to arbitrary values  
for the current interval of the 15 minute accumulation period.  
This function retrieves the states (from either the current or previous 15 minute  
accumulation interval) of the IMA Link Performance Monitoring parameters, per facility.  
Monitor  
IMA_mon()  
This function is called to control the M28525/9 debugger.  
User Defined  
*USER_intr_disable()  
This is an application defined function that disables interrupts from the IMA hardware  
device.  
*USER_intr_enable()  
* USER_event ()  
This is an application defined function that enables interrupts from the IMA hardware  
device.  
This is an application defined function that accepts asynchronous event messages from  
the M28525/9 software.  
®
28529-DSH-001-K  
Mindspeed Technologies  
9
Mindspeed Proprietary and Confidential  
Functional Description  
1.1.3.1  
Software Subsystems  
The internal architecture of the M28529TAP software is composed of five logical subsystems: Configuration (CF),  
Diagnostics (DG), IMA Group (GRP), Failure Monitoring (FM), and Performance Monitoring (PM).  
The following sections summarize the interfaces of the M28525/9 IMA software device driver. It is important to point  
out that the M28525/9 products can be configured to run in different operating environments. As such, not all the  
interfaces described below are used in a given application.  
1.1.3.2  
Configuration (CF)  
The CF subsystem is responsible for setting the operating parameters of the IMA device that are associated with  
the IMA Link and IMA Group termination entities. Additionally, some of the application specific configurations of the  
device are set by this subsystem. The default value for each parameter is used to initialize and set the operating  
mode of the device.  
1.1.3.3  
Diagnostics (DG)  
The DG subsystem performs control and testing functions on the IMA device and its environment. One role of the  
DG subsystem is configuration, very similar to the CF subsystem but with different parameters. Similar in function  
to the Configuration subsystem, the default value for each DG parameter is used to initialize and set the operating  
mode of the device. The DG subsystem parameters are typically exercised only during test or maintenance  
conditions, and may affect ATM transmission through the device.  
1.1.3.4  
Failure Monitoring (FM)  
The Failure Monitoring (FM) subroutine is responsible for monitoring the IMA links and groups for defects and  
anomalies and integrating the defects into failures. The primary role performed by this subsystem is alarm  
integration. The M28529TAP program is aware of changes in the state of the underlying defects and anomalies  
through periodic polling. The user has control over which Failure indicators are monitored and the length of both  
the activation and decay times.  
Upon initializing the M28529TAP, the Failure indications required by the ATM MIB are enabled and the activation  
and decay times are set at 2.5 and 10 seconds, respectively.  
1.1.3.5  
Performance Monitoring (PM)  
This is the set of functions and capabilities necessary for a Network Element (NE) to gather, store, and report  
performance data associated with its monitored digital transmission entities. In contrast with alarm/status  
indications, performance parameters are quantitative, not binary, in nature. These performance parameters are  
gathered over programmable, predetermined accumulation periods. The M28529TAP calculates these statistics  
over 15 minute intervals. The PM data is available to the application grouped in a structure encompassing one of  
the two accumulation sets: the current 15 minute interval or the previous 15 minute interval. The PM subsystem  
uses the raw anomaly and defect information obtained by the FM subsystem to calculate its performance statistics.  
Upon initialization, the PM subsystem is basically disabled: none of the monitored statistics are calculated.  
1.1.3.6  
Group State Machine  
Overall management of each Group is the responsibility of the Group State Machine. This actually involves three  
interrelated processes: the Group State Machine (GSM), the Group Traffic State Machine (GTSM), and the Link  
Addition and Slow Recovery (LASR) procedure. These three processes are used to ensure reliable transmission  
and reception of ATM layer cells across all links in the Active state. This includes the negotiation of group  
parameters (i.e., symmetry and M values), the bringing up of the IMA group, and the graceful addition/recovery and  
®
28529-DSH-001-K  
Mindspeed Technologies  
10  
Mindspeed Proprietary and Confidential  
Functional Description  
deletion of links to and from the group. The seven possible states are shown in Table 1-6. Again, this will be  
covered in more detail in Chapter 1.12 and in the ATM standard on IMA.  
Table 1-6.  
State  
Group State Machine  
Description  
Not Configured  
Start up  
No groups configured  
Waiting to establish communications with the other end  
Start up Ack  
Config Aborted  
Insufficient links  
Blocked  
Start Up acknowledge; has recognized the far end and waiting to enter the Insufficient links state  
Results when the Far End doesn’t comply with the requested configuration parameters  
Both ends have accepted the group parameters and are waiting for the LSM to provide active links  
The host controller has inhibited the group (probably for maintenance reasons)  
Fully operational and able to pass data  
Operational  
1.2  
Features  
1.2.1  
IMA Features  
Complete IMA solution in a single package  
16 port, M28525  
32 port, M28529  
Field proven design  
All software available  
Supports variable link data rates (64K–8.192 Mb/s)  
Supports fractional T1/E1 per AF-PHY-0130.00  
512 K Internal memory  
Supports 50 ms (beyond the IMA standard requirements for 25 ms) differential delay with 512K Internal  
memory  
Connects directly to the Mindspeed SARs for inexpensive CPE solutions  
M28525 supports 16 facilities  
Up to 16 independent groups:  
Each group can have up to 16 links.  
M28529 supports 32 facilities  
Up to 32 independent groups:  
Each group can have up to 32 links.  
Memory expandable to 2 M bytes via external bus  
Supports IMA versions 1.0 and 1.1  
®
28529-DSH-001-K  
Mindspeed Technologies  
11  
Mindspeed Proprietary and Confidential  
Functional Description  
1.2.2  
Diagnostics/Loopbacks  
Source Loopback  
Far End Line Loopback  
IMA Line Loopback  
IMA System Loopback  
ICP Cell Access  
IEEE 1149.1 JTAG Interface  
1.2.3  
Cell Delineation Section  
Supports ATM cell interface for:  
Circuit-based physical layer  
Cell-based physical layer  
Performs single-bit HEC correction and single- or multiple-bit detection  
Inserts headers and generates HEC  
Direct connection to external Mindspeed components for:  
T1/E1  
xDSL  
General purpose mode  
Byte-level or bit-level cell delineation  
1.2.4  
Control and Status  
1.2.4.1  
Microprocessor Interface  
Asynchronous SRAM-like interface mode  
8-bit data bus  
Open-drain interrupt output  
Open-drain ready output  
Up to 66 MHz operation  
All control registers are read/write  
1.2.4.2  
ATM Interface  
ATM-side UTOPIA Interface:  
8/16-bit UTOPIA Level 2 Slave  
Up to 50 MHz operation  
Support for dual Clav and Enable signals  
Supports 32 ATM addresses  
®
28529-DSH-001-K  
Mindspeed Technologies  
12  
Mindspeed Proprietary and Confidential  
Functional Description  
1.2.4.3  
PHY Interfaces  
PHY-side UTOPIA Interface:  
8/16-bit UTOPIA Level 2 Master  
Supports 32 ports via dual CLAV and Enable lines  
Serial Interface  
Interleaved Highway  
Up to 33 MHz operation  
1.2.4.4  
Counters/Status Register Section  
Summary interrupt indications  
Configuration of interrupt enables  
One-second counter latching  
Counters for:  
LOCD events  
Corrected HEC errors  
Uncorrected HEC errors  
Transmitted cells  
Matching received cells  
Non-matching received cells  
Idle cell receive  
1.3  
General Description  
The M2852x family of devices provides system designers with a complete integrated IMA solution for up to 32  
ports. All devices include a Transmission Convergence block to perform cell delineation, 512 K internal RAM to  
meet ATM forum requirements for differential delay compensation and a dual mode (UTOPIA or Serial) PHY layer  
interface. Source code for all required software functions is available from Mindspeed. The M28529 supports 32  
IMA groups with 1-32 links per group.  
The TC block is capable of bit level cell delineation, which allows for direct connection DSL serial data streams  
without a frame sync pulse. Individual ports can be operated in a 'pass thru' mode without the IMA overhead.  
The M28529 provides direct connection to 32 serial/interleaved highway links or a PHY side UTOPIA bus. In  
addition, an external memory bus allows the differential delay memory to access up to 2 Mbytes of external  
RAM.The M28529 supports both version 1.0 and 1.1 of IMA standard AF-PHY-0086.001  
®
28529-DSH-001-K  
Mindspeed Technologies  
13  
Mindspeed Proprietary and Confidential  
Functional Description  
1.4  
Applications  
1.4.1  
Overview  
The M2852x is typically used with line framer devices like the CX28398 T1/E1 octal framer or the M28985  
ZipWireMulti™ Octal G.shdsl Transceiver with Embedded Microprocessor. Figure 1-4 illustrates a typical application.  
Figure 1-4. M2852x Connected to a CX28398 Transceiver  
C X28380  
Q uad LIU  
M 28259  
C X28398  
LIU  
LIU  
LIU  
LIU  
1
2
3
4
P ort  
P ort  
P ort  
P ort  
P ort  
0
1
2
3
4
TX1  
R X1  
TX2  
R X2  
TX3  
R X3  
TX4  
R X4  
O ctal T1/E 1  
Fram er  
C X28380  
Q uad LIU  
LIU  
LIU  
LIU  
LIU  
5
6
7
8
P ort  
P ort  
P ort  
5
6
7
TX5  
R X5  
TX6  
R X6  
TX7  
R X7  
TX8  
R X8  
C X28398  
C X28380  
Q uad LIU  
LIU  
8
P ort  
P ort  
8
9
TX9  
R X9  
LIU 10  
LIU 11  
LIU 12  
TX10  
R X10  
TX11  
R X11  
P ort 10  
P ort 11  
P ort 12  
TX12  
R X12  
O ctal T1/E 1  
Fram er  
C X28380  
Q uad LIU  
LIU 13  
LIU 14  
LIU 15  
LIU 16  
P ort 13  
P ort 14  
P ort 15  
TX13  
R X13  
U TO P IA  
Level  
B us  
2
TX14  
R X14  
TX15  
R X15  
TX16  
R X16  
A TM S witch or  
S A R  
IM A  
P rocessor  
CX28380  
Q uad LIU  
C X28398  
LIU 17  
LIU 18  
LIU 19  
LIU 20  
P ort 16  
P ort 17  
P ort 18  
P ort 19  
P ort 20  
TX17  
RX17  
TX18  
RX18  
TX19  
RX19  
TX20  
RX20  
O ctal T1/E 1  
Fram er  
CX28380  
Q uad LIU  
LIU 21  
LIU 22  
LIU 23  
LIU 24  
P ort 21  
P ort 22  
P ort 23  
TX21  
RX21  
TX22  
RX22  
TX23  
RX23  
TX24  
RX24  
C X28398  
CX28380  
Q uad LIU  
LIU 25  
LIU 26  
LIU 27  
LIU 28  
P ort 24  
P ort 25  
P ort 26  
P ort 27  
P ort 28  
TX25  
RX25  
TX26  
RX26  
TX27  
RX27  
TX28  
RX28  
O ctal T1/E 1  
Fram er  
CX28380  
Q uad LIU  
LIU 29  
P ort 29  
P ort 30  
P ort 31  
TX29  
RX29  
LIU 30  
LIU 31  
LIU 32  
TX30  
RX30  
TX31  
RX31  
TX32  
RX32  
M icroprocessor B us  
®
28529-DSH-001-K  
Mindspeed Technologies  
14  
Mindspeed Proprietary and Confidential  
Functional Description  
1.4.2  
DSLAM  
Digital Subscriber Line Access Multiplexers (DSLAM) and Broadband Loop Carriers (BLC) are being deployed to  
provide broadband services to business and residential customers. Although DSL and T1/E1 services delivers  
higher speeds than traditional dial-up connections, customers are increasingly finding the need for higher  
bandwidth than is available through a single DSL or T1/E1 line. The IMA protocol helps bridge the gap between  
lower cost xDSL solutions and higher cost lines such as T3. IMA allows customers to scale their bandwidth needs  
in T1/E1 or xDSL link increments, so they do not have to pay for more than they can use.  
Figure 1-5 shows a typical example of how IMA can be used to meet the evolving needs of customers. The DSLAM  
can use the M28529 32-port IMA controller with the octal M28985 DSL modem chip for the customer access side.  
The CX28225 4-port IMA can be used in the DSL CPE equipment to complete the solution for providing flexible  
bandwidth scaling.  
On the network side, DSLAMs generally need to backhaul customer traffic to the ATM backbone. This can be done  
by bonding multiple T1s together using IMA. This line card is also shown in Figure 1-4. The M28529 can be used  
once again with Mindspeed's CX28395 16-port framers and CX28380 quad LIUs. A similar line card is needed at  
the ATM/Multiservice Switch.  
Figure 1-5. M28529 in DSLAM applications  
CPE  
CO/Street Cabinet  
DSLAM  
CO  
ATM Switch  
nxT1/E1  
links  
Splitter-less ADSL  
Modem (UADSL, G.Lite)  
M28529  
ATM  
CX28395  
Framer  
LIU  
CX28380  
x8  
IMA  
Layer  
M28529  
IMA  
Controller  
ATM  
Layer  
Device  
Controller  
Device  
CX28985  
0  
0  
0  
DSL  
Utopia  
Serial  
Serial  
Utopia  
Utopia  
DSLAM Uplink card or ATM Switch card  
DSLAM Access line card  
1.4.3  
Wireless NodeB/RNC  
Wireless Base Transceiver Stations (BTS) and NodeB equipment for 3G based networks have a need to send  
customer's compressed voice/data from the base station to the Radio Network Controller (RNC). Many times, high  
speed fiber links are not available where the equipment is deployed. By using IMA to bond multiple T1 or E1 links  
together, the traffic can be backhauled effectively and efficiently.  
Figure 1-6 illustrates the NodeB/RNC example. The NodeB can either use a CX28229 for 8-ports or the M28529  
for 16 to 32-port applications. The CX28398 framer and CX28380 complete the line card. The RNC can aggregate  
traffic from multiple base sites, so the M28529 can be used here. Again, the CX28395 16-port framer and CX8380  
quad LIUs can be used to complete the line card solution.  
®
28529-DSH-001-K  
Mindspeed Technologies  
15  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-6. M28529 in NodeB/RNC Application  
NodeB  
RNC  
8xT1/E1  
links  
RF  
Subsystem  
M28529  
ATM  
Layer  
IMA  
CX28395  
Framer  
LIU  
CX28380  
x8  
Device  
r  
Controller  
LIU
ATM  
CX28229  
CX28398  
Framer  
Serial  
Serial  
32-port solution  
Utopia  
CX28380
0  
IMA  
Layer  
x2  
Controller  
Device  
Utopia  
Serial  
Serial  
1.5  
Pin Definitions  
Two versions of Mindspeed's IMA solution are available: M28525 and the M28529. All use the same software  
drivers and are basically pin compatible. Table 1-7 provides a quick comparison of the two devices.  
Table 1-7.  
Device  
Available Parts  
Internal memory  
External memory  
interface  
UTOPIA addresses  
(PHY side)  
Serial ports  
(1)  
M28525  
M28529  
Footnote:  
512 Kbytes  
512 Kbytes  
2 Mbyte  
0–15, 31 (NULL)  
16  
32  
(1)  
(2)  
2 Mbyte  
0–31  
(1) Internal memory is disabled when the external bus is used.  
(2) Normally, 0x1F is the NULL address; however, the M28529 can be configured to treat it as a valid port address.  
The following three configurations are available:  
*
*
UTOPIA-to-Serial  
UTOPIA-to-UTOPIA  
UTOPIA-to-Interleaved Highway*  
Note: Interleaved Highway can be mixed with serial mode on a per group of four channel basis. Interleaved  
Highway mode is enabled by setting the EnIHx (x = 0 to 7) bit in the appropriate TCCTRLx (x = 0 to 7) register.  
®
28529-DSH-001-K  
Mindspeed Technologies  
16  
Mindspeed Proprietary and Confidential  
Functional Description  
1.5.1  
Pin Diagram and Definitions (UTOPIA-to-Serial Configuration)  
Figure 1-7 illustrates a pinout diagram for the M28529 when operating in UTOPIA-to-Serial mode. It is a single  
CMOS integrated circuit packaged in a 484-pin PBGA. All unused input pins should be connected to ground or  
power. Unused outputs and bi-directional pins should be left unconnected.  
UTOPIA-to-Serial configuration is selected by tying the PhyIntFcSel pin high.  
NOTE:  
Figure 1-8 is a block diagram of an 32 link IMA solution using the device in the UTOPIA-to-serial mode to take  
advantage of the internal serial ports. Cell Delineation is performed internally and the M2852x interfaces directly to  
the framers. These framers could be T1/E1 or DSL. Further details can be found in the Mindspeed reference  
design available online. Configuration information is shown in Table 1-8.  
®
28529-DSH-001-K  
Mindspeed Technologies  
17  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-7. M28529 Logic Diagram (UTOPIA-to-Serial)  
Reset I  
Reset*  
Reset  
One Second  
Interface  
8kHzIn Clock I  
8kHzin*  
I/O One Second Input/Output  
OneSecIO  
I Transmit Clock  
O Transmit Data  
I/O Transmit DataMarker  
SPRxClk[0]  
SPRxData[0]  
SPRxSync[0]  
Receive Clock I  
Receive Data I  
Receive Data Marker I  
SPTxClk[0]  
SPTxData[0]  
SPTxSync[0]  
Line Interface  
Port 0  
Receive Clock I  
Receive Data I  
Receive Data Marker I  
SPTxClk[31]  
SPTxData[31]  
SPTxSync[31]  
I Transmit Clock  
O Transmit Data  
I/OTransmit Data Marker  
SPRxClk[31]  
SPRxData[31]  
SPRxSync[31]  
Line Interface  
Port 31  
Microprocessor  
Interface  
PHY Interface Select I  
Sync/Async Mode Select I  
Microprocessor Clock I  
ChipSelect I  
PhyIntFcSel(1)  
MSyncMode  
MicroClk  
StatOut [1:0]  
O Status Output  
*
MCS  
MicroInt*  
MRdy  
MicroData[7:0]  
O Summary Interrupt  
O Ready  
I/O Microprocessor Data Bus  
Address Strobe, Write Control I  
Write/Read Read Control I  
Address Bus I  
MAS*, MWr  
MW/R, MRd  
MicroAddr[11:0]  
*
JTAGInterface  
*
Test Reset I  
Test Clock I  
Test Mode Select I  
Test Data Input I  
Test Enable I  
TRST  
TCK  
TMS  
TDI  
TestEnable  
TestMode  
TDO  
OTest Data Output  
Test Mode I  
atmUTxClAv[1:0]  
atmUTxSOC  
atmUTxPrty  
atmUTxData[15:0]  
OATMTransmit Cell Available  
I ATM Transmit Start Of Cell  
I ATM Transmit Parity  
ATMUTOPIATransmit  
Interface  
ATMTransmit Clock I  
ATMTransmit Enable I  
ATM Transmit Address Bus I  
atmUTxCLK  
atmUTxENB[1:0]*  
atmUTxAddr[4:0]  
I ATMTransmit DataBus  
OATMReceiveCell Available  
O ATM Receive Start Of Cell  
O ATM Receive Parity  
atmURxClAv[1:0]  
atmURxSOC  
atmURxPrty  
atmURxData[15:0]  
ATM UTOPIA Receive  
Interface  
ATM Receive Clock I  
ATMReceive Enable I  
ATMReceive Address Bus I  
atmURxCLK  
atmURxENB[1:0]*  
atmURxAddr[4:0]  
O ATM Receive Data Bus  
IMA Clocks  
IMA_SysClk  
IMA_RefClk  
IMA System Clock I  
IMA Reference Clock I  
TxTRL[1:0]  
O Transmit Reference Clock  
External Memory  
Interface  
MemAddr[19:0]  
O Memory Address Bus  
O Chip Enable  
OOutput Enable  
O Write Enable  
*
MemCtrl_CE  
*
MemCtrl_OE  
Memory Data Bus I/O  
MemData[15:0]  
ExtMemSel  
*
MemCtrl_WE  
MemCtrl_Clk  
O SRAM Clock  
External Memory Select I  
O Address Enable  
MemCtrl_ADSC*  
(1)Pulled High  
®
28529-DSH-001-K  
Mindspeed Technologies  
18  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-8. M28529 UTOPIA-to-Serial Mode  
Extended Memory  
M2852x  
TC Block  
cell processor  
Line interface 0  
Line interface 1  
cell processor  
IMA Block  
Internal  
512Kx8  
SRAM  
0
1
extmemsel pin  
Differential Delay  
memory interface  
Rx Block and  
Passthrough  
cell processor Line interface 30  
cell processor Line interface 31  
IMA  
Engine  
Tx Block and  
Passthrough  
TC  
Counters  
TC Status  
Registers  
TC Control  
Registers  
OneSec  
Micro  
Clocks  
IMA clocks  
JTAG  
Micro interface  
500027_069  
Table 1-8.  
M28529 UTOPIA-to-Serial Mode  
ATMMux [7,6]  
(ATMINTFC, 0xF03)  
PhyIntFcSel  
(Pin AD24)  
Description  
01  
High  
IMA UTOPIA using Internal TC block; UTOPIA-to-Serial mode using 32 internal serial  
ports.  
General Note: External memory could be used if desired (M28525/9).  
®
28529-DSH-001-K  
Mindspeed Technologies  
19  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (1 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
StatOut[0]  
Status Output  
AB24  
AD26  
AE24  
O
General purpose output pins under software control.  
StatOut[1]  
MSyncMode  
Microprocessor  
Synchronous/  
Asynchronous Bus Mode  
Select  
I/PD  
Selects synchronous or asynchronous bus mode, which  
determines the functions of two pins, MW/R,MRd* (pin W4) and  
MAS*,MWr* (pin Y2). A logic 1 selects the synchronous bus  
mode. In this mode, these pins are defined as follows: MW/R (W4)  
and MAS* (Y2). A logic 0 selects the asynchronous SRAM-type  
bus mode. In this mode, the pins are defined as follows: MRd*  
(W4) and MWr* (Y2).  
Reset*  
Device Reset  
T4  
I/PU  
When asserted low, resets the device. The microprocessor clock  
must be present before reset is released. If configuring the device  
for pass-through operation, a minimum delay of 25 uS for  
IMA_Sysclk of 66 MHz or 33us for IMA_Sysclk of 50 MHz is  
required from the release of reset to the first access of the  
IMA_RX_TRANS_TABLE register or the  
IMA_RX_ATM_TRANS_TABLE register (0x818/0x819).  
8kHzIn  
8 kHz Input  
AD25  
AE26  
I
A clock input used to derive OneSecIO. Typically operates at a  
frequency of 8 kHz.  
OneSecIO  
One-Second Input/Output  
I/O  
Software can configure this pin as an output that equals the input  
from the 8kHzIn divided by 8000. When configured as an input,  
status registers and counters may be latched on the rising edge of  
this input. See Bit 0 of the Genctrl register (0xF00).  
MW/R, MRd*  
Microprocessor Write/  
Read  
W4  
I
When MSyncMode is asserted high, this pin is a read/write control  
pin. In this mode, when MW/R is asserted high, a write access is  
enabled and the MicroData[7:0] pin values will be written to the  
memory location indicated by the MicroAddr[11:0] pins. Also,  
when MW/R is asserted low in this mode, a read access is enabled  
and the memory location indicated by the MicroAddr[11:0] pins is  
read. Its value is placed on the MicroData[7:0] pins. Both read and  
write accesses assume the device is chip selected (MCS* = 0), the  
address is valid (MAS* = 0), and the device is not being reset  
(Reset* = 1).  
When MSyncMode is asserted low, this pin is a read control pin. In  
this mode, when MRd* is asserted low, a read access is enabled  
and the memory location indicated by the MicroAddr[11:0] pins is  
read. Its value is placed on the MicroData[7:0] pins.  
MCS*  
Microprocessor Chip  
Select  
V1  
I
When asserted low, the device is selected for read and write  
accesses. When asserted high, the device will not respond to input  
signal transitions on MicroClk, MW/R, MRd*, or MAS*, MWr*.  
Additionally, when MCS* is asserted high, the MicroData[7:0] pins  
are in a high-impedance state but the MicroInt* pin remains  
operational.  
®
28529-DSH-001-K  
Mindspeed Technologies  
20  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (2 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MAS*, MWr*  
Microprocessor Address  
Strobe  
Y2  
I
When MSyncMode is asserted high, this pin is an address strobe  
pin. When the MAS* pin is asserted low, it indicates a valid  
address, MicroAddr[11:0]. This signal is used to qualify read and  
write accesses.  
When MSyncMode is asserted low, this pin is a write control pin.  
When MWr* is asserted low, a write access is enabled and the  
MicroData[7:0] pin values will be written to the memory location  
indicated by the MicroAddr[11:0] pins. The write access assumes  
the device is chip selected (MCS* = 0), a read access is not being  
requested (MRd* = 1), and the device is not being reset (Reset* =  
1).  
MicroAddr[0]  
MicroAddr[1]  
MicroAddr[2]  
MicroAddr[3]  
MicroAddr[4]  
MicroAddr[5]  
MicroAddr[6]  
MicroAddr[7]  
MicroAddr[8]  
MicroAddr[9]  
MicroAddr[10]  
MicroAddr[11]  
MicroData[0]  
MicroData[1]  
MicroData[2]  
MicroData[3]  
MicroData[4]  
MicroData[5]  
MicroData[6]  
MicroData[7]  
MicroInt*  
Microprocessor Address  
Bus  
U2  
T3  
I
These 12 bits are an address input for identifying the register to  
access.  
U1  
T2  
R4  
T1  
R3  
R2  
P4  
R1  
P3  
P2  
W3  
V4  
Y1  
W2  
V3  
U4  
W1  
V2  
AA1  
Microprocessor Data Bus  
I/O  
A bi-directional data bus for reading and writing data to internal  
registers.  
Microprocessor Interrupt  
Request  
O
When active low, the device needs servicing. It remains active until  
the pending interrupt is processed by the Interrupt Service  
Routine. This pin is an open drain output for an OR logic  
implementation. An external pull-up resistor is required for this  
pin.  
®
28529-DSH-001-K  
Mindspeed Technologies  
21  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (3 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MRdy  
Microprocessor Ready  
Y3  
O
When active high, the current read or write transaction has been  
completed. For a read transaction, the data is ready to be  
transferred to the microprocessor. For a write transaction, the data  
provided by the microprocessor has been written. This pin is an  
open drain output for an external wired OR logic implementation.  
An external pull-up resistor is required for this pin.  
MicroClk  
Microprocessor Clock  
R5  
I
In asynchronous mode the microprocessor clock signal input can  
be clocked up to 66 MHz. In synchronous mode this pin can be  
clocked up to 25 MHz. The device samples the microprocessor  
interface pins (MCS*, MW/R, MAS*, MicroAddr[11:0], and  
Microdata[7:0]) on the rising edge of this signal. The  
microprocessor interface output pins (Microdata[7:0], MicroInt*)  
are clocked on the rising edge of MicroClk. Note that this clock is  
required for both synchronous and asynchronous operations. See  
note in Section 1.15.1.  
ExtMemSel  
External Memory Enable  
AC26  
I/PD  
When this pin is pulled high, it enables the external differential  
delay SRAM bus.  
MemData[0]  
MemData[1]  
MemData[2]  
MemData[3]  
MemData[4]  
MemData[5]  
MemData[6]  
MemData[7]  
MemData[8]  
MemData[9]  
MemData[10]  
MemData[11]  
MemData[12]  
MemData[13]  
MemData[14]  
MemData[15]  
Differential Delay Memory  
Data Bus  
M26  
N24  
N25  
N26  
P26  
P25  
P24  
P23  
R26  
P22  
R24  
T26  
R23  
T25  
T24  
U26  
I/O/PD Differential delay SRAM Data Bus. ATM cells extracted from the  
Receive data stream are stored in the SRAM for the purpose of  
differential delay compensation.  
This bus is enabled by pulling the ExtMemSel pin high.  
®
28529-DSH-001-K  
Mindspeed Technologies  
22  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (4 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MemAddr[0]  
Differential Delay Memory  
Address Bus  
U25  
T23  
O
Receive SRAM Address Bus  
This signal is enabled by pulling the ExtMemSel pin high.  
MemAddr[1]  
MemAddr[2]  
MemAddr[3]  
MemAddr[4]  
MemAddr[5]  
MemAddr[6]  
MemAddr[7]  
MemAddr[8]  
MemAddr[9]  
MemAddr[10]  
MemAddr[11]  
MemAddr[12]  
MemAddr[13]  
MemAddr[14]  
MemAddr[15]  
MemAddr[16]  
MemAddr[17]  
MemAddr[18]  
MemAddr[19]  
MemCtrl_CE*  
V26  
U24  
V25  
W26  
U23  
V24  
W25  
Y26  
V23  
W24  
Y25  
AA26  
W23  
Y24  
AA25  
Y23  
AB26  
AA24  
N23  
Chip Enable  
O
O
O
O
O
Receive SRAM Device Select (active low) control signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
Receive SRAM Device Output (active low) control signal.  
MemCtrl_OE*  
MemCtrl_WE*  
MemCtrl_CLK  
MemCtrl_ADSC*  
Output Enable  
Write Enable  
SRAM Clock  
Address Enable  
M25  
M24  
AB25  
L26  
This signal is enabled by pulling the ExtMemSel pin high.  
Receive SRAM write enable (active low) control signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
Receive SRAM clock signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
Receive SRAM address enable (active low) address strobe.  
This signal is enabled by pulling the ExtMemSel pin high.  
®
28529-DSH-001-K  
Mindspeed Technologies  
23  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (5 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
TRST*  
Test Reset  
C5  
I/PU  
When asserted, the internal boundary-scan logic is reset. This pin  
has a pull-up resistor.  
TCK  
Test Clock  
A2  
D5  
I/PU  
I/PU  
Samples the value of TMS and TDI on its rising edge to control the  
boundary scan operations.  
TMS  
Test Mode Select  
Controls the boundary-scan Test Access Port (TAP) controller  
operation. This pin has a pull-up resistor.  
TDI  
Test Data Input  
C4  
I/PU  
O
The serial test data input. This pin has a pull-up resistor.  
The serial test data output.  
TDO  
Test Data Output  
C3  
TestEnable[0]  
TestEnable[1]  
ScanEnable  
Tristate  
AF26  
AC22  
AD23  
AE25  
AD24  
I/PD  
Factory test use only, tie to VSS.  
I/PD  
I /PD  
I/PU  
Factory test use only, tie to VSS.  
Tristate  
When this pin is high, all outputs are tristate.  
PhyIntFcSel  
PHY Interface Select  
If this pin is tied low, the PHY UTOPIA Interface mode is selected.  
If this pin is tied high, the PHY Serial mode is selected (as shown  
in this table).  
IMA_SysClk  
IMA_RefClk  
IMA Subsystem Clock  
E18  
E16  
I/PU  
Most of the IMA logic circuits use this clock (or a derivative of it).  
It can also be used as a T1/E1 reference clock. Refer to  
Section 1.12.  
IMA Subsystem Clock  
I/PU  
O
If Ref_Xclk is to be used as a reference clock, set the frequency as  
shown in Section 1.12.  
TxTRL[0]  
TxTRL[1]  
Transmit Reference Clock  
A19  
B19  
Transmit Reference Clocks.  
®
28529-DSH-001-K  
Mindspeed Technologies  
24  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (6 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPRxSync[0]  
Frame Sync Input  
B17  
A17  
C16  
B16  
C11  
B10  
D11  
A9  
I/PD  
When the PHY serial interface is enabled, this is the frame sync  
input.  
Note that ports 16-31 are no connects in the M28525.  
SPRxSync[1]  
SPRxSync[2]  
SPRxSync[3]  
SPRxSync[4]  
SPRxSync[5]  
SPRxSync[6]  
SPRxSync[7]  
SPRxSync[8]  
SPRxSync[9]  
SPRxSync[10]  
SPRxSync[11]  
SPRxSync[12]  
SPRxSync[13]  
SPRxSync[14]  
SPRxSync[15]  
SPRxSync[16]  
SPRxSync[17]  
SPRxSync[18]  
SPRxSync[19]  
SPRxSync[20]  
SPRxSync[21]  
SPRxSync[22]  
SPRxSync[23]  
SPRxSync[24]  
SPRxSync[25]  
SPRxSync[26]  
SPRxSync[27]  
SPRxSync[28]  
SPRxSync[29]  
SPRxSync[30]  
SPRxSync[31]  
(1)  
B4  
D6  
A3  
D3  
H1  
K4  
J3  
J2  
Y4  
AA3  
AD1  
AC2  
AE6  
AD7  
AC8  
AF6  
AF12  
AC13  
AD13  
AE13  
AD18  
AE19  
AF20  
AD19  
®
28529-DSH-001-K  
Mindspeed Technologies  
25  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (7 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPRxClk[0]  
Receive Line Clock Input  
B18  
C17  
A18  
D16  
A11  
D12  
B11  
A10  
B5  
I/PD  
When the PHY serial interface is enabled, this is the receive line  
clock input.  
Note that ports 16–31 are no-connects in the M28525.  
SPRxClk[1]  
SPRxClk[2]  
SPRxClk[3]  
SPRxClk[4]  
SPRxClk[5]  
SPRxClk[6]  
SPRxClk[7]  
SPRxClk[8]  
SPRxClk[9]  
SPRxClk[10]  
SPRxClk[11]  
SPRxClk[12]  
SPRxClk[13]  
SPRxClk[14]  
SPRxClk[15]  
SPRxClk[16]  
SPRxClk[17]  
SPRxClk[18]  
SPRxClk[19]  
SPRxClk[20]  
SPRxClk[21]  
SPRxClk[22]  
SPRxClk[23]  
SPRxClk[24]  
SPRxClk[25]  
SPRxClk[26]  
SPRxClk[27]  
SPRxClk[28]  
SPRxClk[29]  
SPRxClk[30]  
SPRxClk[31]  
(1)  
D7  
C6  
B3  
G1  
J4  
H3  
H2  
AA2  
AB1  
AC1  
AB2  
AE5  
AD6  
AC7  
AF5  
AC12  
AF11  
AD12  
AE12  
AD17  
AE18  
AF18  
AF19  
®
28529-DSH-001-K  
Mindspeed Technologies  
26  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (8 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPRxData[0]  
Receive Line Data Input  
D15  
A16  
C15  
B15  
C10  
B9  
I/PD  
When the PHY serial interface is enabled, this is the receive line  
data input.  
Note that ports 16–31 are no-connects in the M28525.  
SPRxData[1]  
SPRxData[2]  
SPRxData[3]  
SPRxData[4]  
SPRxData[5]  
SPRxData[6]  
SPRxData[7]  
SPRxData[8]  
SPRxData[9]  
SPRxData[10]  
SPRxData[11]  
SPRxData[12]  
SPRxData[13]  
SPRxData[14]  
SPRxData[15]  
SPRxData[16]  
SPRxData[17]  
SPRxData[18]  
SPRxData[19]  
SPRxData[20]  
SPRxData[21]  
SPRxData[22]  
SPRxData[23]  
SPRxData[24]  
SPRxData[25]  
SPRxData[26]  
SPRxData[27]  
SPRxData[28]  
SPRxData[29]  
SPRxData[30]  
SPRxData[31]  
(1)  
A8  
D10  
C2  
E4  
C1  
D2  
J1  
K3  
L4  
K2  
AA4  
AB3  
AE1  
AD2  
AE7  
AD8  
AC9  
AF7  
AF13  
AF14  
AC14  
AD14  
AC18  
AE20  
AF21  
AD20  
®
28529-DSH-001-K  
Mindspeed Technologies  
27  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (9 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPTxSync[0]  
Frame Sync Input/ Output  
A14  
A13  
B13  
C13  
C8  
I/O  
When the PHY serial interface is enabled, this is the frame sync.  
SPTxSync is input only for all port modes except DSL mode. In  
DSL Mode, SPTxSync is output only.  
SPTxSync[1]  
SPTxSync[2]  
SPTxSync[3]  
SPTxSync[4]  
SPTxSync[5]  
SPTxSync[6]  
SPTxSync[7]  
SPTxSync[8]  
SPTxSync[9]  
SPTxSync[10]  
SPTxSync[11]  
SPTxSync[12]  
SPTxSync[13]  
SPTxSync[14]  
SPTxSync[15]  
SPTxSync[16]  
SPTxSync[17]  
SPTxSync[18]  
SPTxSync[19]  
SPTxSync[20]  
SPTxSync[21]  
SPTxSync[22]  
SPTxSync[23]  
SPTxSync[24]  
SPTxSync[25]  
SPTxSync[26]  
SPTxSync[27]  
SPTxSync[28]  
SPTxSync[29]  
SPTxSync[30]  
SPTxSync[31]  
(1)  
Note that ports 16–31 are no-connects in the M28525.  
Caution: Some of the SPTxSync pins become outputs when the  
device is configured for UTOPIA-UTOPIA mode. The designer is  
cautioned to ensure that PhyIntFcSel never gets configured low.  
B7  
A6  
C7  
G4  
F3  
E1  
F2  
L1  
M3  
N5  
M1  
AC4  
AD4  
AF2  
AF3  
AE9  
AD10  
AF9  
AC11  
AD15  
AF16  
AE16  
AC16  
AE22  
AC20  
AD21  
AF24  
®
28529-DSH-001-K  
Mindspeed Technologies  
28  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (10 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPTxData[0]  
Transmit Line Data Output  
D13  
A12  
E13  
C12  
D8  
O
When the PHY serial interface is enabled, this is the transmit line  
data output.  
Note that ports 16–31 are no-connects in the M28525.  
SPTxData[1]  
SPTxData[2]  
SPTxData[3]  
SPTxData[4]  
SPTxData[5]  
SPTxData[6]  
SPTxData[7]  
SPTxData[8]  
SPTxData[9]  
SPTxData[10]  
SPTxData[11]  
SPTxData[12]  
SPTxData[13]  
SPTxData[14]  
SPTxData[15]  
SPTxData[16]  
SPTxData[17]  
SPTxData[18]  
SPTxData[19]  
SPTxData[20]  
SPTxData[21]  
SPTxData[22]  
SPTxData[23]  
SPTxData[24]  
SPTxData[25]  
SPTxData[26]  
SPTxData[27]  
SPTxData[28]  
SPTxData[29]  
SPTxData[30]  
SPTxData[31]  
(1)  
B6  
A5  
A4  
H4  
G3  
F1  
G2  
N4  
N3  
N1  
P1  
AD5  
AC6  
AE4  
AF4  
AE10  
AF10  
AD11  
AE11  
AD16  
AE17  
AF17  
AC17  
AE23  
AC21  
AD22  
AF25  
®
28529-DSH-001-K  
Mindspeed Technologies  
29  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (11 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
SPTxClk[0]  
Transmit Line Clock Input  
A15  
D14  
C14  
B14  
C9  
I/PD  
When the PHY serial interface is enabled, this is the transmit line  
clock input.  
Note that ports 16–31 are no-connects in the M28525.  
SPTxClk[1]  
SPTxClk[2]  
SPTxClk[3]  
SPTxClk[4]  
SPTxClk[5]  
SPTxClk[6]  
SPTxClk[7]  
SPTxClk[8]  
SPTxClk[9]  
SPTxClk[10]  
SPTxClk[11]  
SPTxClk[12]  
SPTxClk[13]  
SPTxClk[14]  
SPTxClk[15]  
SPTxClk[16]  
SPTxClk[17]  
SPTxClk[18]  
SPTxClk[19]  
SPTxClk[20]  
SPTxClk[21]  
SPTxClk[22]  
SPTxClk[23]  
SPTxClk[24]  
SPTxClk[25]  
SPTxClk[26]  
SPTxClk[27]  
SPTxClk[28]  
SPTxClk[29]  
SPTxClk[30]  
SPTxClk[31]  
(1)  
B8  
A7  
D9  
F4  
E3  
D1  
E2  
K1  
L3  
L2  
M4  
AC3  
AB4  
AF1  
AE2  
AE8  
AD9  
AC10  
AF8  
AF15  
AE14  
AC15  
AB14  
AC19  
AE21  
AF22  
AF23  
®
28529-DSH-001-K  
Mindspeed Technologies  
30  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (12 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmUTxAddr[0]  
atmUTxAddr[1]  
atmUTxAddr[2]  
atmUTxAddr[3]  
atmUTxAddr[4]  
atmUTxData[0]  
atmUTxData[1]  
atmUTxData[2]  
atmUTxData[3]  
atmUTxData[4]  
atmUTxData[5]  
atmUTxData[6]  
atmUTxData[7]  
atmUTxData[8]  
atmUTxData[9]  
atmUTxData[10]  
atmUTxData[11]  
atmUTxData[12]  
atmUTxData[13]  
atmUTxData[14]  
atmUTxData[15]  
atmUTxPrty  
ATM UTOPIA Transmit  
Address  
L23  
K25  
L24  
K26  
L25  
E26  
F25  
H23  
G24  
F26  
G25  
H24  
J23  
G26  
H25  
J24  
K23  
H26  
J25  
K24  
J26  
D26  
I
Transmit ATM Cell Bus address.  
ATM UTOPIA Transmit  
Data  
I
Transmit direction ATM side cell data.  
I
I
I
I
I
I
I
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I
ATM UTOPIA Transmit  
Parity  
Parity status signal. In 8 bit UTOPIA mode, a parity calculation is  
performed over atmUTxData[7:0] for each clock cycle of  
atmUTxClk. Odd parity is used. In 16 bit UTOPIA mode, this signal  
is the parity of atmUTxData[15:0]. This signal is optional.  
®
28529-DSH-001-K  
Mindspeed Technologies  
31  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (13 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmUTxClAv[0]  
atmUTxClAv[1]  
ATM UTOPIA Transmit  
Cell Available  
G23  
E25  
O/TS  
Cell Available signals for transmit ATM cells (active high). When  
atmUTxClAv[1] or atmUTxClAv[0] is active one or more complete  
cells can be transferred from the ATM layer.  
Only atmUTxClAv[0] is used (atmUTxClAv[1] is ignored) when the  
DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is the most common configuration.  
atmUTxSOC  
ATM UTOPIA Transmit  
Start of Cell  
F24  
I
Start of Cell synchronization signal for transmit ATM cells (active  
high). Indicates that the first byte/word of the 53 byte cell is being  
placed on the atmUTxData bus.  
atmUTxEnb[0]*  
atmUTxEnb[1]*  
ATM UTOPIA Transmit  
Enable  
D25  
C26  
I/PU  
Data transfer enable(s) for transmit ATM cells (active low).  
Indicates that the first byte/word of the 53 byte cell is being placed  
on the atmUTxData bus.  
Only atmUTxEnb[0] is used (atmUTxEnb[1] will be ignored) when  
the DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is most common configuration. When using single  
clav mode (DualClavEnb bit is set to 0), atmUTxEnb[1] must be  
pulled up.  
atmUTxClk  
atmURxSOC  
atmURxClk  
ATM UTOPIA Transmit  
Clock  
M23  
C19  
F23  
I
Clock signal used for transfer of transmit ATM cells from the ATM  
Layer. The maximum clock rate is 50 MHz (Note: 33 MHz in TC  
Only mode).  
ATM UTOPIA Receive  
Start of Cell  
O/TS  
I
Start of Cell synchronization signal for receive ATM cells (active  
high). Indicates that the first byte/word of the 53 byte cell is being  
placed on the atmURxData bus.  
ATM UTOPIA Receive  
Clock  
Clock signal used for transfer of receive ATM cells from the ATM  
Layer. The maximum clock rate is 50 MHz. (Note: 33 MHz in TC  
Only mode).  
atmURxClav[0]  
atmURxClav[1]  
ATM UTOPIA Receive Cell  
Available  
B20  
A21  
O/TS  
Cell Available signals for receive ATM cells (active high). When  
atmURxClAv[1] or atmURxClaAv[0] is active, one or more  
complete cells can be transferred to the ATM Layer.  
Only atmURxClAv[0] is used (atmURxClAv[1] is ignored) when the  
DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is the most common configuration.  
atmURxEnb[0]*  
atmURxEnb[1]*  
ATM UTOPIA Receive  
Enable  
A20  
D18  
I/PU  
Enable Data transfer and output enable for receive ATM cells  
(active low). When using single Clav mode (DualClavEnb, bit4 in  
ATMINTFC register 0xF03, is set low), only atmURxEnb[0] is used  
and atmURxEnb[1] is not used but must be pulled up. This is most  
common configuration.  
®
28529-DSH-001-K  
Mindspeed Technologies  
32  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (14 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmURxData[0]  
atmURxData[1]  
atmURxData[2]  
atmURxData[3]  
atmURxData[4]  
atmURxData[5]  
atmURxData[6]  
atmURxData[7]  
atmURxData[8]  
atmURxData[9]  
atmURxData[10]  
atmURxData[11]  
atmURxData[12]  
atmURxData[13]  
atmURxData[14]  
atmURxData[15]  
atmURxPrty  
ATM UTOPIA Receive  
Data  
C20  
B21  
A22  
D20  
C21  
B22  
A23  
A24  
D21  
C22  
B23  
B24  
C23  
D22  
B25  
A26  
D19  
O/TS  
Receive direction ATM side cell data.  
ATM UTOPIA Receive  
Parity  
O/TS  
I
Parity status signal. In 8 bit UTOPIA mode, a parity calculation is  
performed over atmURxData[7:0] for each clock cycle of  
atmURxClk. Odd parity is used. In 16 bit UTOPIA mode, this signal  
is the parity of atmURxData[15:0]. This signal is optional.  
atmURxAddr[0]  
atmURxAddr[1]  
atmURxAddr[2]  
atmURxAddr[3]  
atmURxAddr[4]  
ATM UTOPIA Receive  
Address  
E23  
D24  
C25  
B26  
E24  
Receive ATM Cell Bus address. This address determines the  
source channel of the Receive ATM cells output from the IMA  
subsystem and also selects the channel sourcing the atmURxClAv  
signal. All 5 bits are not required in every application.  
®
28529-DSH-001-K  
Mindspeed Technologies  
33  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (15 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VDD18  
Supply Voltage (1.8 V)  
E9  
E10  
E17  
J5  
Power supply connections. (1.8 V)  
J22  
K5  
K10  
K11  
K16  
K17  
K22  
L10  
L17  
T10  
T17  
U5  
U10  
U11  
U16  
U17  
U22  
V5  
V22  
AB9  
AB10  
AB17  
AB18  
®
28529-DSH-001-K  
Mindspeed Technologies  
34  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (16 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VDD33  
Supply Voltage (3.3 V)  
C18  
C24  
E7  
Power supply connections. (3.3 V)  
E8  
E11  
E12  
E15  
E19  
E20  
G5  
G22  
H5  
H22  
K12  
K15  
L5  
L22  
M2  
M5  
M10  
M17  
M22  
R10  
R17  
R22  
T5  
VDD33 (Continued)  
Supply Voltage (3.3 V)  
(Continued)  
T22  
U3  
Power supply connections. (3.3 V)  
U12  
U15  
W5  
W22  
Y5  
Y22  
AB7  
AB8  
AB11  
AB12  
AB15  
AB16  
AB19  
AB20  
AE3  
®
28529-DSH-001-K  
Mindspeed Technologies  
35  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (17 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VSS  
Ground  
A1  
B2  
Ground connections.  
B12  
D17  
D23  
E5  
E6  
E14  
E21  
E22  
F5  
F22  
K13  
K14  
L11  
L12  
L13  
L14  
L15  
L16  
M11  
M12  
M13  
M14  
M15  
M16  
®
28529-DSH-001-K  
Mindspeed Technologies  
36  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (18 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VSS  
(Continued)  
Ground  
(Continued)  
N2  
Ground connections.  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N22  
P5  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
R11  
R12  
R13  
R14  
R15  
R16  
R25  
T11  
T12  
®
28529-DSH-001-K  
Mindspeed Technologies  
37  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-9.  
M28529 Pin Descriptions (19 of 19)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VSS  
(Continued)  
Ground  
(Continued)  
T13  
T14  
Ground connections.  
T15  
T16  
U13  
U14  
AA5  
AA22  
AB5  
AB6  
AB13  
AB21  
AB22  
AC24  
AD3  
AE15  
VGG  
Electrostatic Discharge  
(ESD) Supply Voltage  
AC23  
D4  
Provides ESD protection when interfacing with 5 V systems. If  
using this device in a system with 5 V logic, this pin must be  
connected to 5 V. If using 3.3 V system, connect to 3.3 V.  
Spare Pins  
A25  
B1  
Spare (unused) pins on the package. Reserved for future use and  
should be left unconnected.  
AA23  
AB23  
AC05  
AC25  
Footnote:  
(1) All unused inputs should be tied to ground or left unconnected. All unused outputs or bidirectional pins should be left unconnected.  
1.5.2  
Pin Diagram and Definitions (UTOPIA-to-UTOPIA Configuration)  
Figures 1-9 and 1-10 illustrate the logic and block diagrams of the M2852x’s functional modules. Pin descriptions  
are listed in Table 1-11.  
Figure 3-33 is the pinout diagram for the M28529 when operating in the UTOPIA-to-UTOPIA mode. It is a single  
CMOS integrated circuit packaged in a 484-pin PBGA. All unused input pins should be connected to ground or  
power. Unused output and bidirectional pins should be left unconnected.  
UTOPIA-to-UTOPIA configuration is selected by tying the PhyIntFcSel pin low.  
NOTE:  
When using the M28525/9 in Utopia to Utopia configuration, in addition to the standard Utopia Level 2  
specification definitions, the device uses the PHY side RX and TX CLAV signals for the following purpose:  
- The PHY TX CLAV signals are used to determine the stuffing rate for SICP cells. The M28525/9 will monitor  
the CLAV signal to determine the fullness of the downstream device's Utopia FIFO.  
- For applications where timing is not available from the RX_TRLs (such as DSL), the M28525/9 can be  
configured to use the PHY RX CLAV signals to generate a clock that approximates the payload timing. As such,  
the expectation is the RX CLAV signals from the TC/PHY layer approximates an ideal PHY layer device in the  
sense that cell boundary times present on the receive physical bus are reproduced with a fixed offset in time to  
the cells available on the PHY Utopia bus.  
Contact Mindspeed applications engineering for more details.  
®
28529-DSH-001-K  
Mindspeed Technologies  
38  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-9. M28529 Logic Diagram (UTOPIA-to-UTOPIA)  
Reset I  
Reset*  
Reset  
One Second  
Interface  
8kHzIn Clock I  
8kHzin*  
I/O One Second Input/Output  
OneSecIO  
PHY UTOPIA Transmit  
Interface  
phyUTxClAv[1:0]  
phyUTxSOC  
phyUTxData[15:0]  
phyUTxPrty  
I PHY Transmit Cell Available  
O PHY Transmit Start of Cell  
O PHY Transmit Data Bus  
O PHY Transmit Parity  
phyUTxClk  
phyUTxEnb[1:0]*  
phyUTxAddr[4:0]  
PHY Transmit Clock O  
PHY Transmit Enable O  
PHY Transmit Address Bus O  
phyURxClAv[1:0]  
phyURxSOC  
phyURxData[15:0]  
phyURxPrty  
PHY UTOPIA Receive  
Interface  
I PHY Receive Cell Available  
I PHY Receive Start of Cell  
I PHY Receive Data Bus  
phyURxClk  
phyURxEnb[1:0]*  
phyURxAddr[4:0]  
PHY Receive Clock O  
PHY Receive Enable O  
PHY Receive Address Bus O  
I PHY Receive Parity  
StatOut [1:0]  
MicroInt*  
MRdy  
MicroData[7:0]  
O Status Output  
O Summary Interrupt  
O Ready  
I/O Microprocessor Data Bus  
PHY Interface Select I  
Sync/Async Mode Select I  
Microprocessor Clock I  
Chip Select I  
PhyIntFcSel(1)  
MSyncMode  
MicroClk  
Microprocessor  
Interface  
*
MCS  
Address Strobe, Write Control I  
Write/Read Read Control I  
Address Bus I  
MAS*, MWr  
MW/R, MRd  
MicroAddr[11:0]  
*
*
TRST  
TCK  
Test Reset I  
Test Clock I  
TDO  
O Test Data Output  
Test Mode Select I  
Test Data Input I  
Test Enable I  
TMS  
TDI  
TestEnable  
TestMode  
JTAGInterface  
Test Mode I  
ATMUTOPIATransmit  
Interface  
atmUTxClAv[1:0]  
atmUTxSOC  
O ATM Transmit Cell Available  
I ATM Transmit Start Of Cell  
I ATM Transmit Parity  
ATM Transmit Clock I  
ATM Transmit Enable I  
ATMTransmit Address Bus I  
atmUTxCLK  
atmUTxENB[1:0]*  
atmUTxAddr[4:0]  
atmUTxPrty  
atmUTxData[15:0]  
I ATM Transmit Data Bus  
OATMReceiveCell Available  
O ATM Receive Start Of Cell  
O ATM Receive Parity  
atmURxClAv[1:0]  
atmURxSOC  
atmURxPrty  
atmURxData[15:0]  
ATM UTOPIA Receive  
Interface  
ATM Receive Clock I  
ATM Receive Enable I  
ATM Receive Address Bus I  
atmURxCLK  
atmURxENB[1:0]*  
atmURxAddr[4:0]  
O ATM Receive Data Bus  
IMA_SysClk  
IMA_RefClk  
IMA Clocks  
IMA System Clock I  
IMA Reference Clock I  
TxTRL[1:0]  
O Transmit Reference Clock  
External Memory  
Interfac e  
MemAddr[19:0]  
O Memory Address Bus  
O Chip Enable  
O Output Enable  
O Write Enable  
Memory Data Bus I/O  
MemData[15:0]  
ExtMemSel  
*
MemCtrl_CE  
*
MemCtrl_OE  
*
MemCtrl_WE  
External Memory Select I  
MemCtrl_Clk  
O SRAM Clock  
O Address Enable  
MemCtrl_ADSC*  
(1)Pulled High  
®
28529-DSH-001-K  
Mindspeed Technologies  
39  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-10. IMA Block Diagram  
and Passthrough  
and Passthrough  
Table 1-10. UTOPIA-to-UTOPIA Configuration Information  
ATMMux [7,6]  
(ATMINTFC, 0xF03)  
PhyIntFcSel  
(Pin AD24)  
Description  
01  
Low  
IMA UTOPIA using the PHY Side UTOPIA; Internal TC block and serial ports not used.  
General Note: Use of external memory is optional.  
®
28529-DSH-001-K  
Mindspeed Technologies  
40  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (1 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
StatOut[0]  
Status Output  
AB24  
AD26  
AE24  
O
General purpose output pins under software control.  
StatOut[1]  
MSyncMode  
Microprocessor  
Synchronous/  
Asynchronous Bus Mode  
Select  
I/PD  
Selects synchronous or asynchronous bus mode, which  
determines the functions of two pins, MW/R, MRd* (pin W4) and  
MAS*,MWr* (pin Y2). A logic 1 selects the synchronous bus  
mode. In this mode, these pins are defined as follows: MW/R (W4)  
and MAS* (Y2). A logic 0 selects the asynchronous SRAM-type  
bus mode. In this mode, the pins are defined as follows: MRd*  
(W4) and MWr* (Y2).  
Reset*  
Device Reset  
T4  
I/PU  
When asserted low, resets the device. The microprocessor clock  
must be present before reset is released. If configuring the device  
for pass-through operation, a minimum delay of 25 uS for  
IMA_Sysclk of 66 MHz or 33 uS for IMA_Sysclk of 50 MHz is  
required from the release of reset to the first access of the  
IMA_RX_TRANS_TABLE register or the  
IMA_RX_ATM_TRANS_TABLE register (0x818/0x819).  
8kHzIn  
8 kHz Input  
AD25  
AE26  
I
A clock input used to derive OneSecIO. Typically operates at a  
frequency of 8 kHz.  
OneSecIO  
One-Second Input/Output  
I/O  
Software can configure this pin as an output that equals the input  
from the 8kHzIn divided by 8000. When configured as an input,  
status registers and counters may be latched on the rising edge of  
this input. See Bit 0 of the Genctrl register (0xF00).  
MW/R, MRd*  
Microprocessor Write/  
Read  
W4  
I
When MSyncMode is asserted high, this pin is a read/write control  
pin. In this mode, when MW/R is asserted high, a write access is  
enabled and the MicroData[7:0] pin values will be written to the  
memory location indicated by the MicroAddr[11:0] pins. Also,  
when MW/R is asserted low in this mode, a read access is enabled  
and the memory location indicated by the MicroAddr[11:0] pins is  
read. Its value is placed on the MicroData[7:0] pins. Both read and  
write accesses assume the device is chip selected (MCS* = 0), the  
address is valid (MAS* = 0), and the device is not being reset  
(Reset* = 1).  
When MSyncMode is asserted low, this pin is a read control pin. In  
this mode, when MRd* is asserted low, a read access is enabled  
and the memory location indicated by the MicroAddr[11:0] pins is  
read. Its value is placed on the MicroData[7:0] pins.  
MCS*  
Microprocessor Chip  
Select  
V1  
I
When asserted low, the device is selected for read and write  
accesses. When asserted high, the device will not respond to input  
signal transitions on MicroClk, MW/R, MRd*, or MAS*, MWr*.  
Additionally, when MCS* is asserted high, the MicroData[7:0] pins  
are in a high-impedance state but the MicroInt* pin remains  
operational.  
®
28529-DSH-001-K  
Mindspeed Technologies  
41  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (2 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MAS*, MWr*  
Microprocessor Address  
Strobe  
Y2  
I
When MSyncMode is asserted high, this pin is an address strobe  
pin. When the MAS* pin is asserted low, it indicates a valid  
address, MicroAddr[11:0]. This signal is used to qualify read and  
write accesses.  
When MSyncMode is asserted low, this pin is a write control pin.  
When MWr* is asserted low, a write access is enabled and the  
MicroData[7:0] pin values will be written to the memory location  
indicated by the MicroAddr[11:0] pins. The write access assumes  
the device is chip selected (MCS* = 0), a read access is not being  
requested (MRd* = 1), and the device is not being reset (Reset* =  
1).  
MicroAddr[0]  
MicroAddr[1]  
MicroAddr[2]  
MicroAddr[3]  
MicroAddr[4]  
MicroAddr[5]  
MicroAddr[6]  
MicroAddr[7]  
MicroAddr[8]  
MicroAddr[9]  
MicroAddr[10]  
MicroAddr[11]  
MicroData[0]  
MicroData[1]  
MicroData[2]  
MicroData[3]  
MicroData[4]  
MicroData[5]  
MicroData[6]  
MicroData[7]  
MicroInt*  
Microprocessor Address  
Bus  
U2  
T3  
I
These 12 bits are an address input for identifying the register to  
access.  
U1  
T2  
R4  
T1  
R3  
R2  
P4  
R1  
P3  
P2  
W3  
V4  
Y1  
W2  
V3  
U4  
W1  
V2  
AA1  
Microprocessor Data Bus  
I/O  
A bi-directional data bus for reading and writing data to internal  
registers.  
Microprocessor Interrupt  
Request  
O
When active low, the device needs servicing. It remains active until  
the pending interrupt is processed by the Interrupt Service  
Routine. This pin is an open drain output for an external wired OR  
logic implementation. An external pull-up resistor is required for  
this pin.  
®
28529-DSH-001-K  
Mindspeed Technologies  
42  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (3 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MRdy  
Microprocessor Ready  
Y3  
O
When active high, the current read or write transaction has been  
completed. For a read transaction, the data is ready to be  
transferred to the microprocessor. For a write transaction, the data  
provided by the microprocessor has been written. This pin is an  
open drain output for an external wired OR logic implementation.  
An external pull-up resistor is required for this pin.  
MicroClk  
Microprocessor Clock  
R5  
I
In asynchronous mode the microprocessor clock signal input can  
be clocked up to 66 MHz. In synchronous mode this pin can be  
clocked up to 25 MHz. The device samples the microprocessor  
interface pins (MCS*, MW/R, MRd*, MAS*, MicroAddr[11:0], and  
MicroData[7:0]) on the rising edge of this signal. The  
microprocessor interface output pins (MicroData[7:0], MicroInt*)  
are clocked on the rising edge of MicroClk. Note that this clock is  
required for both synchronous and asynchronous operations. See  
note in Section 1.15.1.  
ExtMemSel  
External Memory Enable  
AC26  
I/PD  
When this pin is pulled high, it enables the external differential  
delay SRAM bus.  
MemData[0]  
MemData[1]  
MemData[2]  
MemData[3]  
MemData[4]  
MemData[5]  
MemData[6]  
MemData[7]  
MemData[8]  
MemData[9]  
MemData[10]  
MemData[11]  
MemData[12]  
MemData[13]  
MemData[14]  
MemData[15]  
Differential Delay  
Memory Data Bus  
M26  
N24  
N25  
N26  
P26  
P25  
P24  
P23  
R26  
P22  
R24  
T26  
R23  
T25  
T24  
U26  
I/O/PD Differential delay SRAM Data Bus. ATM cells extracted from the  
Receive data stream are stored in the SRAM for the purpose of  
differential delay compensation.  
®
28529-DSH-001-K  
Mindspeed Technologies  
43  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (4 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
MemAddr[0]  
Differential Delay  
Memory Address Bus  
U25  
T23  
O
Receive SRAM Address Bus.  
These signals are enabled by tying the ExtMemSel pin high.  
MemAddr[1]  
MemAddr[2]  
MemAddr[3]  
MemAddr[4]  
MemAddr[5]  
MemAddr[6]  
MemAddr[7]  
MemAddr[8]  
MemAddr[9]  
MemAddr[10]  
MemAddr[11]  
MemAddr[12]  
MemAddr[13]  
MemAddr[14]  
MemAddr[15]  
MemAddr[16]  
MemAddr[17]  
MemAddr[18]  
MemAddr[19]  
MemCtrl_CE*  
V26  
U24  
V25  
W26  
U23  
V24  
W25  
Y26  
V23  
W24  
Y25  
AA26  
W23  
Y24  
AA25  
Y23  
AB26  
AA24  
N23  
Chip Enable  
O
O
Receive SRAM Device Select (active low) control signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
MemCtrl_OE*  
MemCtrl_WE*  
MemCtrl_CLK  
MemCtrl_ADSC*  
TRST*  
Output Enable  
Write Enable  
SRAM Clock  
Address Enable  
Test Reset  
M25  
M24  
AB25  
L26  
C5  
Receive SRAM Device Output (active low) control signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
O
Receive SRAM write enable (active low) control signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
O
Receive SRAM clock signal.  
This signal is enabled by pulling the ExtMemSel pin high.  
O
Receive SRAM address enable (active low) address strobe.  
This signal is enabled by pulling the ExtMemSel pin high.  
I/PU  
I/PU  
I/PU  
When asserted, the internal boundary-scan logic is reset. This pin  
has a pull-up resistor.  
TCK  
Test Clock  
A2  
Samples the value of TMS and TDI on its rising edge to control the  
boundary scan operations.  
TMS  
Test Mode Select  
D5  
Controls the boundary-scan Test Access Port (TAP) controller  
operation. This pin has a pull-up resistor.  
TDI  
Test Data Input  
C4  
C3  
I/PU  
O
The serial test data input. This pin has a pull-up resistor.  
The serial test data output.  
TDO  
Test Data Output  
®
28529-DSH-001-K  
Mindspeed Technologies  
44  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (5 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
TestEnable[0]  
AF26  
AC22  
AD23  
AE25  
AD24  
I/PD  
Factory test use only, tie to VSS.  
TestEnable[1]  
ScanEnable  
Tristate  
I/PD  
I/PD  
I/PU  
Factory test use only, tie to VSS  
Tristate  
When this pin is high, all outputs are tristate.  
PhyIntFcSel  
PHY Interface Select  
If this pin is tied low, the PHY UTOPIA Interface mode is selected.  
This table shows pin configurations with this pin tied low.  
If this pin is tied high, the PHY Serial mode is selected.  
phyURxClk  
UTOPIA Receive Clock  
AF9  
AF16  
AD15  
O
O
IMA_SysClk/2  
phyURxEnb[0]*  
phyURxEnb[1]*  
PHY UTOPIA Receive  
Enable  
Data transfer and output enable for Receive PHY cells (active low).  
To support multiple PHY devices, separate enable signals are  
provided. Depending on the software configuration, some of the  
enable signals may not be available and will be replaced by  
additional PHY cell bus address bits. When the PHY Size (bits 4  
and 5) of register 0x804 are set to 2 (single clav), phyURxEnb[1]  
must be pulled up.  
phyURxAddr[0]  
phyURxAddr[1]  
phyURxAddr[2]  
phyURxAddr[3]  
phyURxAddr[4]  
PHY UTOPIA Receive  
Address  
AE11  
AD11  
AF10  
AE10  
AC11  
O
Receive PHY Cell Bus address. The following limitations apply:  
Device  
Addresses  
M28525  
M28529  
0–15, 31  
0–31  
phyURxClAv[0]  
phyURxClAv[1]  
PHY UTOPIA Receive Cell  
Available  
AF19  
AF18  
I/PD  
I/PD  
Cell Available signals for Receive PHY interfaces. phyURxClAv[n] is  
active when one or more complete cells can be transferred. To  
support different PHY devices, separate cell available signals are  
provided. This allows expansion to 32 points.  
®
28529-DSH-001-K  
Mindspeed Technologies  
45  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (6 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
phyURxData[0]  
phyURxData[1]  
phyURxData[2]  
phyURxData[3]  
phyURxData[4]  
phyURxData[5]  
phyURxData[6]  
phyURxData[7]  
phyURxData[8]  
phyURxData[9]  
phyURxData[10]  
phyURxData[11]  
phyURxData[12]  
phyURxData[13]  
phyURxData[14]  
phyURxData[15]  
phyURxSOC  
PHY UTOPIA Receive  
Data  
AB14  
AC15  
AE14  
AF15  
AD14  
AC14  
AF14  
AF13  
AE13  
AD13  
AC13  
AF12  
AE12  
AD12  
AF11  
AC12  
AD17  
I/PD  
Received 16 bit PHY Cell Data. All received cells are passed to the  
internal IMA processor.  
PHY UTOPIA Start of Cell  
I/PD  
Start of Cell synchronization signal for Receive PHY cells (active  
high). Indicates that the first byte of the cell is being placed on the  
PhyURxData[7:0] bus.  
phyURxPrty  
PHY UTOPIA Receive  
Parity  
AE18  
I/PD  
O
Odd parity calculated over phyURxData[15:0] pins in 16-bit mode  
and over phyURxData[7:0] pins in 8-bit mode.  
phyUTxAddr[0]  
phyUTxAddr[1]  
phyUTxAddr[2]  
phyUTxAddr[3]  
phyUTxAddr[4]  
PHY UTOPIA Transmit  
Address  
G2  
F1  
Transmit PHY Cell Bus address. The following limitations apply:  
Device  
Addresses  
G3  
H4  
F2  
M28525  
M28529  
0–15, 31  
0–31  
phyUTxClAv[0]  
phyUTxClAv[1]  
PHY UTOPIA Transmit  
Cell Available  
E2  
I/PD  
O
Cell Available signals for Transmit ATM cells. When phyUTxClAv[n]  
is active high, the PHY has space available for one or more  
complete cells. To support different PHY devices, separate cell  
available signals are provided.  
D1  
phyUTxClk  
PHY UTOPIA Transmit  
Clock  
G4  
IMA_SysClk divided by two.  
®
28529-DSH-001-K  
Mindspeed Technologies  
46  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (7 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
phyUTxData[0]  
phyUTxData[1]  
phyUTxData[2]  
phyUTxData[3]  
phyUTxData[4]  
phyUTxData[5]  
phyUTxData[6]  
phyUTxData[7]  
phyUTxData[8]  
phyUTxData[9]  
phyUTxData[10]  
phyUTxData[11]  
phyUTxData[12]  
phyUTxData[13]  
phyUTxData[14]  
phyUTxData[15]  
phyUTxEnb[0]*  
phyUTxEnb[1]*  
PHY UTOPIA Transmit  
Data  
AF4  
AE4  
AC6  
AD5  
AF3  
AF2  
AD4  
AC4  
P1  
O
8 bit PHY Cell Data to be sent out the PHY facility.  
8 bit UTOPIA interface used to transmit data to the external TC  
devices.  
N1  
N3  
N4  
M1  
N5  
M3  
L1  
PHY UTOPIA Transmit  
Enable  
E1  
O
O
Data transfer enable for Transmit PHY cells (active low signal). To  
support different PHY devices, separate enable signals are  
provided. When the PHY Size (bits 4 and 5) of register 0x804 are  
set to 2 (single clav), phyUTxEnb[1] must be pulled up.  
F3  
phyUTxSOC  
PHY UTOPIA Transmit  
Start of Cell  
AE9  
Start of Cell synchronization signal for Transmit PHY cells (active  
high). Indicates that the first byte of a cell is being placed on the  
phyUTxData[7:0] bus.  
phyUTxPrty  
IMA_SysClk  
IMA_RefClk  
PHY UTOPIA Transmit  
Parity  
AD10  
E18  
O
Odd parity calculated over phyUTxData[15:0] pins in 16-bit mode  
and over phyUTxData[7:0] pins in 8-bit mode.  
IMA Subsystem Clock  
I/PU  
I/PU  
O
Most of the IMA logic circuits use this clock (or a derivative of it). It  
can also be used as a T1/E1 reference clock. Refer to Section 1.12.  
IMA Reference Clock  
E16  
If this is to be used as a reference clock, set the frequency as  
shown in Section 1.12.  
TxTRL[0]  
TxTRL[1]  
Transmit Reference  
Clocks  
A19  
B19  
Transmit Reference Clocks.  
®
28529-DSH-001-K  
Mindspeed Technologies  
47  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (8 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmUTxAddr[0]  
atmUTxAddr[1]  
atmUTxAddr[2]  
atmUTxAddr[3]  
atmUTxAddr[4]  
atmUTxData[0]  
atmUTxData[1]  
atmUTxData[2]  
atmUTxData[3]  
atmUTxData[4]  
atmUTxData[5]  
atmUTxData[6]  
atmUTxData[7]  
atmUTxData[8]  
atmUTxData[9]  
atmUTxData[10]  
atmUTxData[11]  
atmUTxData[12]  
atmUTxData[13]  
atmUTxData[14]  
atmUTxData[15]  
atmUTxPrty  
ATM UTOPIA Transmit  
Address  
L23  
K25  
L24  
K26  
L25  
E26  
F25  
H23  
G24  
F26  
G25  
H24  
J23  
G26  
H25  
J24  
K23  
H26  
J25  
K24  
J26  
D26  
I
Transmit ATM Cell Bus address.  
ATM UTOPIA Transmit  
Data  
I
Transmit direction ATM side cell data.  
I
I
I
I
I
I
I
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I
ATM UTOPIA Transmit  
Parity  
Parity status signal. In 8 bit UTOPIA mode, a parity calculation is  
performed over atmUTxData[7:0] for each clock cycle of  
atmUTxClk. Odd parity is used. In 16 bit UTOPIA mode, this signal  
is the parity of atmUTxData[15:0]. This signal is optional.  
®
28529-DSH-001-K  
Mindspeed Technologies  
48  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (9 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmUTxClAv[0]  
atmUTxClav[1]  
ATM UTOPIA Transmit  
Cell Available  
G23  
E25  
O/TS  
Cell Available signals for transmit ATM cells (active high). When  
atmUTxClAv[1] or atmUTxClAv[0] is active one or more complete  
cells can be transferred from the ATM layer.  
Only atmUTxClAv[0] is used (atmUTxClAv[1] is ignored) when the  
DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is the most common configuration.  
atmUTxSOC  
ATM UTOPIA Transmit  
Start of Cell  
F24  
I
Start of Cell synchronization signal for transmit ATM cells (active  
high). Indicates that the first byte/word of the 53 byte cell is being  
placed on the atmUTxData bus.  
atmUTxEnb[0]*  
atmUTxEnb[1]*  
ATM UTOPIA Transmit  
Enable  
D25  
C26  
I/PU  
I/PU  
Enable Data transfer enable(s) for transmit ATM cells (active low).  
Indicates that the first byte/word of the 53 byte cell is being placed  
on the atmUTxData bus.  
When using single Clav mode (DualClavEnb, bit4 in ATMINTFC  
register 0xF03, is set low), only atmUTxEnb[0] is used and  
atmUTxEnb[1] is not used but must be pulled up. This is most  
common configuration.  
atmUTxClk  
atmURxSOC  
atmURxClk  
ATM UTOPIA Transmit  
Clock  
M23  
C19  
F23  
I
Clock signal used for transfer of transmit ATM cells from the ATM  
Layer. The maximum clock rate is 50 MHz. (Note: 33 MHz for TC  
Only mode.)  
ATM UTOPIA Receive  
Start of Cell  
O/TS  
I
Start of Cell synchronization signal for receive ATM cells (active  
high). Indicates that the first byte/word of the 53 byte cell is being  
placed on the atmURxData bus.  
ATM UTOPIA Receive  
Clock  
Clock signal used for transfer of receive ATM cells from the ATM  
Layer. The maximum clock rate 50 MHz. (Note: 33 MHz for TC Only  
mode.)  
atmURxClAv[0]  
atmURxClAv[1]  
ATM UTOPIA Receive Cell  
Available  
B20  
A21  
O/TS  
Cell Available signals for receive ATM cells (active high). When  
atmURxClAv[1] or atmURxClaAv[0] is active, one or more  
complete cells can be transferred to the ATM Layer.  
Only atmURxClAv[0] is used (atmURxClAv[1] is ignored) when the  
DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is the most common configuration.  
atmURxEnb[0]*  
atmURxEnb[1]*  
ATM UTOPIA Receive  
Enable  
A20  
D18  
I/PU  
I/PU  
Data transfer and output enable for receive ATM cells (active low).  
Only atmURxEnb[0] is used (atmURxEnb[1] will be ignored) when  
the DualClavEnb (bit 4) is low (default) in the ATMINTFC register  
0xF03. This is most common configuration. When using single  
clav mode (DualClavEnb bit is set to 0), atmURxEnb[1] must be  
pulled up.  
®
28529-DSH-001-K  
Mindspeed Technologies  
49  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (10 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
atmURxData[0]  
atmURxData[1]  
atmURxData[2]  
atmURxData[3]  
atmURxData[4]  
atmURxData[5]  
atmURxData[6]  
atmURxData[7]  
atmURxData[8]  
atmURxData[9]  
atmURxData[10]  
atmURxData[11]  
atmURxData[12]  
atmURxData[13]  
atmURxData[14]  
atmURxData[15]  
atmURxPrty  
ATM UTOPIA Receive  
Data  
C20  
B21  
A22  
D20  
C21  
B22  
A23  
A24  
D21  
C22  
B23  
B24  
C23  
D22  
B25  
A26  
D19  
O/TS  
Receive direction ATM side cell data.  
ATM UTOPIA Receive  
Parity  
O/TS  
I
Parity status signal. In 8 bit UTOPIA mode, a parity calculation is  
performed over atmURxData[7:0] for each clock cycle of  
atmUTxClk. Odd parity is used. In 16 bit UTOPIA mode, this signal  
is the parity of atmURxData[15:0]. This signal is optional.  
atmURxAddr[0]  
atmURxAddr[1]  
atmURxAddr[2]  
atmURxAddr[3]  
atmURxAddr[4]  
ATM UTOPIA Receive  
Address  
E23  
D24  
C25  
B26  
E24  
Receive ATM Cell Bus address. This address determines the source  
channel of the Receive ATM cells output from the IMA subsystem  
and also selects the channel sourcing the atmURxClAv signal.  
®
28529-DSH-001-K  
Mindspeed Technologies  
50  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (11 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VDD18  
Supply Voltage  
(1.8 V)  
E9  
E10  
E17  
J5  
Power supply connections. (1.8 V)  
J22  
K5  
K10  
K11  
K16  
K17  
K22  
L10  
L17  
T10  
T17  
U5  
U10  
U11  
U16  
U17  
U22  
V5  
V22  
AB9  
AB10  
AB17  
AB18  
®
28529-DSH-001-K  
Mindspeed Technologies  
51  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (12 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VDD33  
Supply Voltage  
(3.3 V)  
C18  
C24  
E7  
Power supply connections. (3.3 V)  
E8  
E11  
E12  
E15  
E19  
E20  
G5  
G22  
H5  
H22  
K12  
K15  
L5  
L22  
M2  
M5  
M10  
M17  
M22  
R17  
R10  
R22  
T5  
VDD33  
(Continued)  
Supply Voltage  
(3.3 V)  
(Continued)  
T22  
U12  
U15  
W5  
Power supply connections. (3.3 V)  
(Continued)  
W22  
Y5  
Y22  
AB7  
AB8  
AB11  
AB12  
AB15  
AB16  
AB19  
AB20  
AE3  
U3  
®
28529-DSH-001-K  
Mindspeed Technologies  
52  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (13 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VSS  
Ground  
A1  
B2  
Ground connections.  
B12  
D17  
D23  
E5  
E6  
E14  
E21  
E22  
F5  
F22  
K13  
K14  
L11  
L12  
L13  
L14  
L15  
L16  
M11  
M12  
M13  
M14  
M15  
M16  
®
28529-DSH-001-K  
Mindspeed Technologies  
53  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (14 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
VSS  
Ground  
N2  
Ground connections.  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N22  
P5  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
R11  
R12  
R13  
R14  
R15  
R16  
R25  
T11  
T12  
VSS  
(Continued)  
Ground  
(Continued)  
T13  
T14  
Ground connections.  
(Continued)  
T15  
T16  
U13  
U14  
AA5  
AA22  
AB5  
AB6  
AB13  
AB21  
AB22  
AC24  
AD3  
AE15  
VGG  
Electrostatic Discharge  
(ESD) Supply Voltage  
AC23  
D4  
Provides ESD protection when interfacing with 5 V systems. If  
using this device in a system with 5 V logic, this pin must be  
connected to 5 V. If using 3.3 V system, connect to 3.3 V.  
®
28529-DSH-001-K  
Mindspeed Technologies  
54  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (15 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
Unused Inputs  
A3  
A7  
Unused Inputs with internal pulldown  
A8  
A9  
A10  
A11  
A15  
A16  
A17  
A18  
B3  
B4  
B5  
B8  
B9  
B10  
B11  
B14  
B15  
B16  
B17  
B18  
C1  
C2  
C6  
C9  
C10  
C11  
C14  
C15  
C16  
C17  
D2  
D3  
D6  
D7  
D9  
D10  
D11  
D12  
D14  
D15  
D16  
E3  
E4  
F4  
G1  
H1  
H2  
H3  
J1  
J2  
®
28529-DSH-001-K  
Mindspeed Technologies  
55  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (16 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
Unused Input  
J3  
J4  
Unused Inputs with Internal Pulldown  
K1  
K2  
K3  
K4  
L2  
L3  
L4  
M4  
Y4  
AA2  
AA3  
AA4  
AB1  
AB2  
AB3  
AB4  
AC1  
AC2  
AC3  
AC7  
AC8  
AC9  
AC10  
AC18  
AC19  
®
28529-DSH-001-K  
Mindspeed Technologies  
56  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (17 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
Unused Input  
AD1  
AD2  
AD6  
AD7  
AD8  
AD9  
AD18  
AD19  
AD20  
AE1  
Unused Inputs with Internal Pulldown  
AE2  
AE5  
AE6  
AE7  
AE8  
AE19  
AE20  
AE21  
AF1  
AF5  
AF6  
AF7  
AF8  
AF20  
AF21  
AF22  
AF23  
®
28529-DSH-001-K  
Mindspeed Technologies  
57  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-11. M2852x Pin Descriptions (18 of 18)  
Pin Label  
Signal Name  
No.  
I/O  
Description  
Unused I/O  
A6  
A13  
A14  
AC16  
AC20  
AD21  
AE16  
AE22  
AF24  
B7  
Unused I/O with pulldown (outputs in tristate)  
B13  
C7  
C8  
Note: Leave unconnected.  
Unused Outputs (tristate)  
C13  
Unused Outputs  
A12  
AC17  
AC21  
AD16  
AD22  
AE17  
AE23  
AF17  
AF25  
B6  
C12  
D13  
Note: Leave unconnected.  
D8  
E13  
Spare  
A25  
B1  
Spare (unused) pins on the package. Reserved for future use and  
should be left unconnected.  
AA23  
AB23  
AC5  
AC25  
®
28529-DSH-001-K  
Mindspeed Technologies  
58  
Mindspeed Proprietary and Confidential  
Functional Description  
1.5.3  
Interleaved Highway Configuration  
Four serial data streams can be combined together into one serial data stream using an Interleaved Highway  
Interface. For more information on the operation of the Interleaved Highway, refer to Section 1.14.2.5.5. The  
Interleaved Highway interface can be enabled on a per highway basis. When an Interleaved Highway is enabled  
the pinout of the group of four muxed serial streams, see Table 1-12 for the grouping, changes to the pinout  
desribed in Table 1-14, Table 1-15 and Table 1-16. Table 1-13 desribes the functionality of each of the interleaved  
highway interface pins.  
Table 1-12. Serial Stream Muxing into Interleaved Highway  
Interleaved  
Highway  
Interleaved  
Highway  
Serial Stream  
Serial Stream  
0
1
2
3
0
1
4
5
6
7
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
®
28529-DSH-001-K  
Mindspeed Technologies  
59  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-13. M28529 Interleaved Highway Pin Descriptions  
Pin Label  
Signal Name  
I/O  
Description  
IHRxSync[x]  
Interleaved Highway Receive Frame Sync Input  
I/PD  
When the Interleaved Highway interface is enabled, this  
is the frame sync input.  
IHRxClk[x]  
IHRxInDo[x]  
IHRxData[x]  
IHTxSync[x]  
IHTxClk[x]  
Interleaved Highway Transmit Clock Input  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
I/PD  
O
When the Interleaved Highway interface is enabled, this  
is the receive line clock input.  
Interleaved Highway Receive Timeslot  
Indicator Input  
When the Interleaved Highway interface is enabled, this  
is the receive timeslot indicator input.  
Interleaved Highway Receive Data Input  
When the Interleaved Highway interface is enabled, this  
is the receive line data input.  
Interleaved Highway Transmit Frame Sync  
Input/Output  
When the Interleaved Highway interface is enabled, this  
is the frame sync.  
Interleaved Highway Transmit Clock Input  
When the Interleaved Highway interface is enabled, this  
is the transmit line clock input.  
IHTxInDo[x]  
IHTxData[x]  
Interleaved Highway Transmit Timeslot  
Indicator Input  
When the Interleaved Highway interface is enabled, this  
is the transmit timeslot indicator input.  
Interleaved Highway Transmit Data Output  
When the Interleaved Highway interface is enabled, this  
is the transmit line data output  
Table 1-14. Interleaved Highway Port 0 - 3 Pinouts  
Interleaved Highway 0 Interleaved Highway 1  
Interleaved Highway 2  
Interleaved Highway 3  
Pin Label  
No.  
Pin Label  
No.  
Pin Label  
No.  
Pin Label  
No.  
IHRxSync[0]  
B17  
B18  
A17  
D15  
A14  
D13  
A13  
A15  
IHRxSync[1]  
C11  
A11  
B10  
C10  
C8  
IHRxSync[2]  
B4  
B5  
D6  
C2  
G4  
H4  
F3  
IHRxSync[3]  
H1  
G1  
K4  
J1  
IHRxClk[0]  
IHRxInDo[0]  
IHRxData[0]  
IHTxSync[0]  
IHTxData[0]  
IHTxInDo[0]  
IHTxClk[0]  
IHRxClk[1]  
IHRxInDo[1]  
IHRxData[1]  
IHTxSync[1]  
IHTxData[1]  
IHTxInDo[1]  
IHTxClk[1]  
IHRxClk[2]  
IHRxInDo[2]  
IHRxData[2]  
IHTxSync[2]  
IHTxData[2]  
IHTxInDo[2]  
IHTxClk[2]  
IHRxClk[3]  
IHRxInDo[3]  
IHRxData[3]  
IHTxSync[3]  
IHTxData[3]  
IHTxInDo[3]  
IHTxClk[3]  
L1  
N4  
M3  
K1  
D8  
B7  
C9  
F4  
®
28529-DSH-001-K  
Mindspeed Technologies  
60  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-15. Interleaved Highway Port 4 - 7 Pinouts  
Interleaved Highway 4 Interleaved Highway 5  
Interleaved Highway 6  
Pin Label No.  
Interleaved Highway 7  
Pin Label  
No.  
Pin Label  
No.  
Pin Label  
No.  
IHRxSync[4]  
Y4  
IHRxSync[5]  
AE6  
AE5  
IHRxSync[6]  
AF12  
AC12  
AC13  
AF13  
AD15  
AD16  
AF16  
AF15  
IHRxSync[7]  
AD18  
AD17  
AE19  
AC18  
AE22  
AE23  
AC20  
AC19  
IHRxClk[4]  
AA2  
AA3  
AA4  
AC4  
AD5  
AD4  
AC3  
IHRxClk[5]  
IHRxInDo[5]  
IHRxData[5]  
IHTxSync[5]  
IHTxData[5]  
IHTxInDo[5]  
IHTxClk[5]  
IHRxClk[6]  
IHRxInDo[6]  
IHRxData[6]  
IHTxSync[6]  
IHTxData[6]  
IHTxInDo[6]  
IHTxClk[6]  
IHRxClk[7]  
IHRxInDo[7]  
IHRxData[7]  
IHTxSync[7]  
IHTxData[7]  
IHTxInDo[7]  
IHTxClk[7]  
IHRxInDo[4]  
IHRxData[4]  
IHTxSync[4]  
IHTxData[4]  
IHTxInDo[4]  
IHTxClk[4]  
AD7  
AE7  
AE9  
AE10  
AD10  
AE8  
General Note:  
1. Interleaved Highway serial port 4-7 pins are no connects on the M28525.  
The interleaved highway can be selected on a per group of 4 channel basis. When interleaved highway mode is  
selected, the following serial mode pins, as identified in Table 1-16 become unused.  
Table 1-16. No Connects Per Interleaved Highway Group (1 of 4)  
Highway 0  
A16  
A18  
B14  
B15  
B16  
C14  
C15  
C16  
C17  
D14  
D16  
Input No Connects With Pulldown  
B13  
C13  
Unused I/O (Pulled Down/Outputs tristate)  
Note: Leave unconnected.  
A12  
C12  
E13  
Unused Outputs (tristate)  
Note: Leave unconnected.  
®
28529-DSH-001-K  
Mindspeed Technologies  
61  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-16. No Connects Per Interleaved Highway Group (2 of 4)  
Highway 1  
Highway 2  
Highway 3  
A7  
A8  
A9  
A10  
B8  
B9  
B11  
D9  
D10  
D11  
D12  
Unused Input (Pulled Down)  
A6  
C7  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
A4  
A5  
B6  
Unused Output (tristate)  
Note: Leave unconnected.  
A3  
B3  
C1  
C6  
D1  
D2  
D3  
D7  
E2  
E3  
E4  
Unused Input (Pulled Down)  
E1  
F2  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
F1  
G2  
G3  
Unused Output (tristate)  
Note: Leave unconnected.  
H2  
H3  
J2  
Unused Input (Pulled Down)  
J3  
J4  
K2  
K3  
L2  
L3  
L4  
M4  
M1  
N5  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
N1  
N3  
P1  
Unused Output (tristate)  
Note: Leave unconnected.  
®
28529-DSH-001-K  
Mindspeed Technologies  
62  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-16. No Connects Per Interleaved Highway Group (3 of 4)  
Highway 4  
Highway 5  
Highway 6  
AB1  
AB2  
AB3  
AB4  
AC1  
AC2  
AD1  
AD2  
AE1  
AE2  
AF1  
Unused Input (Pulled Down)  
AF2  
AF3  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
AC6  
AE4  
AF4  
Unused Output (tristate)  
Note: Leave unconnected.  
AC7  
AC8  
AC9  
AC10  
AD6  
AD8  
AD9  
AF5  
Unused Input (Pulled Down)  
AF6  
AF7  
AF8  
AC11  
AF9  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
AD11  
AE11  
AF10  
Unused Output (tristate)  
Note: Leave unconnected.  
AB14  
AC14  
AC15  
AD12  
AD13  
AD14  
AE12  
AE13  
AE14  
AF11  
AF14  
Unused Input (Pulled Down)  
AC16  
AE16  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
AC17  
AE17  
AF17  
Unused Output (tristate)  
Note: Leave unconnected.  
®
28529-DSH-001-K  
Mindspeed Technologies  
63  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-16. No Connects Per Interleaved Highway Group (4 of 4)  
Highway 7  
AD19  
AD20  
AE18  
AE20  
AE21  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
Unused Input (Pulled Down)  
AD21  
AF24  
Unused I/O (Pulled down/Outputs tristate)  
Note: Leave unconnected.  
AC21  
AD22  
AF25  
Unused Output (tristate)  
Note: Leave unconnected.  
®
28529-DSH-001-K  
Mindspeed Technologies  
64  
Mindspeed Proprietary and Confidential  
Functional Description  
1.6  
Stand Alone Cell Delineation  
Figure 1-11 is an example of a non-IMA application. The M28529 is being used as a stand alone Cell Delineator.  
Cell Delineation is performed internally and the M2852x interfaces directly to the framers. These framers could be  
T1/E1 or DSL.  
There may be applications that require the flexibility of the M28529 in a non-IMA mode.  
This mode is also useful for troubleshoot during development since the IMA block is  
bypassed. Configuration information is shown in Table 1-17.  
NOTE:  
Figure 1-11. Non-IMA Application  
Table 1-17. Cell Delineation Configuration Information  
ATMMux [7,6]  
(ATMINTFC, 0xF03)  
PhyIntFcSel  
(Pin AD24)  
Description  
10  
High  
TC Block Direct; Device used as Stand-alone cell delineator with 32 serial ports; IMA block not  
used.  
®
28529-DSH-001-K  
Mindspeed Technologies  
65  
Mindspeed Proprietary and Confidential  
Functional Description  
1.7  
Source Loopbacks (UTOPIA-to-Serial Configuration Only)  
Source loopback checks that the host (the ATM layer) is communicating with the PHY. It is enabled and disabled in  
bit 5 of the PMODE register (0x04). When source loopback is enabled for a given port, all data transmitted by the  
M2852x on that port is also looped back through the Receive Line Interface. Data from the framer interface is  
ignored.  
There are two different modes of source loopback, source loopback mode 0 and source loopback mode 1. The  
loopbacks work in TC enabled modes.  
1.7.1  
Source Loopback Mode 0  
During source loopback mode 0, the port is automatically placed in General Purpose mode and an internal clock  
(IMA_SysClk/2 for IMA mode, atmUTxClk for TC Only mode) is used as the clock to loop back cells. As a result of  
the automatic mode switch and clock used, the data on the Tx serial lines will be corrupted.  
1.7.2  
Source Loopback Mode 1  
During source loopback mode 1, the port is not placed in General Purpose mode (the serial framing remains as  
configured) and the SPTxCLK and SPTxSync device input signals are routed along with the SPTxDATA to the TC  
receive port circuit.  
Figure 1-12. Source Loopback Diagram (For simplicity the diagram shows the TC Block Only.)  
UTOPIA  
Level 2  
Framer  
(Line)  
Interface  
Interface  
Host  
atmUTxClk  
Interface  
Transmit  
UTOPIA  
Level 2  
atmUTxClAv  
atmUTxEnb*  
atmUTxSOC  
SPTxClk  
4-cell  
FIFO  
ATMCell Transmitter  
TC Transmit Port  
SPTxSync  
* See Note  
atmUTxData[15:0]  
atmUTxPrty  
SPTxData  
atmUTxAddr[4:0]  
atmURxClk  
atmURxClAv  
atmURxEnb*  
ATM Cell Receiver  
4-cell  
FIFO  
TC Receive Port  
Host  
Cell Validation  
VPI/VCI Screening  
Cell  
Alignment  
atmURxSOC  
atmURxData[15:0]  
atmURxPrty  
Interface  
Receive  
UTOPIA  
Level 2  
Loopback  
Control  
atmURxAddr[4:0]  
This segment is replicated for ports 0-31  
* SPTxData will be corrupted in in Source Loopback mode 0  
®
28529-DSH-001-K  
Mindspeed Technologies  
66  
Mindspeed Proprietary and Confidential  
Functional Description  
1.8  
Far-End Line Loopback (Serial Configuration Only)  
Far-End Line loopback verifies Line interface is communicating with the PHY. It is enabled by bit 4 of the PMODE  
register (0x04). When line loopback is enabled for a given port, all data received by the M2852x on that port is  
processed by the Receive Line Interface and transmitted out the line interface. Data from the Transmit UTOPIA bus  
is ignored.  
NOTE:  
SPTxClk, SPRxClk, SPTxSync, and SPRxSync must be present for  
the loopback mode to function properly for a given port.  
Figure 1-13. Far-End Line Loopback (This only shows the TC Block.)  
Framer  
(Line)  
UTOPIA  
Level 2  
Interface  
Interface  
IMA  
Interface  
Transmit  
UTOPIA  
Level 2  
atmUTxClk  
atmUTxClAv  
atmUTxEnb*  
atmUTxSOC  
SPTxClk  
SPTxSync  
TC Transmit Port  
4-cell  
FIFO  
ATM Cell Transmitter  
atmUTxData[15:0]  
atmUTxPrty  
SPTxData  
atmUTxAddr[4:0]  
atmURxClk  
atmURxClAv  
atmURxEnb*  
SPRxClk  
4-cell  
FIFO  
ATM Cell Receiver  
TC Receive Port  
SPRxSync  
SPRxData  
SPRxHold  
IMA  
atmURxSOC  
atmURxData[15:0]  
atmURxPrty  
Cell  
Cell Validation  
Loopback  
Control  
Interface  
Receive  
UTOPIA  
Level 2  
Alignment VPI/VCI Screening  
This segment is replicated for Ports 0 - 7  
atmURxAddr[4:0]  
General Note:  
Configuring a port for line loopback mode disables all UTOPIA signals for that port.  
500027_058  
®
28529-DSH-001-K  
Mindspeed Technologies  
67  
Mindspeed Proprietary and Confidential  
Functional Description  
1.9  
IMA Line Loopback  
IMA line loopback is provided as shown in Figure 1-14. This loopback occurs in the PHY layer UTOPIA interface of  
the IMA block. The loopback is functional both when the serial/interleaved (TC enabled) is selected and when the  
PHY side UTOPIA interface (TC bypass) is selected. When this loopback is selected, incoming receive data  
continues through the IMA processor and is looped back out of the transmit interface.  
Figure 1-14. IMA Line Loopback  
EXT RAM  
INTERFACE  
External Memory  
Interface Pins  
TC PORTS  
Cell processor  
Cell processor  
Line interface 0  
Line interface 1  
IMA  
Internal  
512Kx8  
SRAM  
ATM-SIDE  
INTERFACE  
0
1
extmemsel pin  
iDifferential Delay  
memory interface  
PHY-SIDE  
INTERFACE  
Rx Block and  
Passthrough  
Cell processor Line interface 30  
Cell processor Line interface 31  
IMA  
Engine  
Tx Block and  
Passthrough  
TC  
Counters  
TC Status  
Registers  
TC Control  
Registers  
OneSec  
Micro  
Clocks  
Micro  
Interface Pins  
IMA clocks  
JTAG  
JTAG  
INTERFACE  
MICRO  
INTERFACE  
1.10  
IMA System Loopbacks  
IMA system loopback is provided as shown in Figure 1-15. This loopback occurs in the PHY layer UTOPIA  
interface in the IMA block. When this loopback is selected, incoming transmit system data is looped back after IMA  
processing and continues out the PHY side interface. The loopback is functional regardless of which PHY side  
interface mode is selected. There are two different modes of system loopback, IMA System Loopback 0 and IMA  
System loopback 1.  
1.10.1  
IMA System Loopback 0  
During IMA System Loopback 0, data is looped back at the PHY Layer UL2 Interface. The TxClav signals from the  
PHY (TC or External) are used for handshaking and data is passed through the TC Block to the serial interface (if  
the TC block is enabled) or is routed to the PHY side UTOPIA Interface (if the TC block is disabled).  
®
28529-DSH-001-K  
Mindspeed Technologies  
68  
Mindspeed Proprietary and Confidential  
Functional Description  
1.10.2  
IMA System Loopback 1  
During IMA System loopback 1, data is looped back at the PHY Layer UL2 Interface, but the TxCLAV signals are  
ignored from the PHY layer. Data is not passed through the TC Block during this mode.  
Figure 1-15. IMA System Loopback  
During IMA System Loopback 0 data will flow  
through the TC block to the serial interface if  
EXT RAM  
INTERFACE  
enabled.  
External  
Memory  
Interface Pins  
TC PORTS  
Cell  
processor  
Line interface  
0
Cell  
processor  
Line interface  
1
IMA  
Internal  
512Kx8  
SRAM  
ATM-SIDE  
INTERFACE  
0
1
extmemsel  
pin  
iDifferential Delay  
memory interface  
PHY-SIDE  
INTERFACE  
Rx Block and Passthrough  
Cell  
processor  
Line interface  
30  
IMA  
Engine  
Cell  
processor  
Line interface  
31  
Tx Block and Passthrough  
T
CouCnter  
s
TC  
TC  
Status  
Control  
Registers  
Registers  
OneSe  
c
Micro  
Clocks  
Micro  
Interface Pins  
JTA  
G
IMA clocks  
Duing IMA System loopback 0, if  
UTOPIA-UTOPIA mode is selected,  
the TxClav signals will be used for  
handshaking and data will flow to the  
PHY side UTOPIA interface.  
JTAG  
INTERFACE  
MICRO  
INTERFACE  
1.11  
Reference Designs  
Please contact Mindspeed for information on reference designs and schematic examples.  
1.12  
IMA Clocks  
IMA frame rates must be locked to the PHY payload rates (the bandwidth reserved for ATM cells) used by those  
PHY ports designated as IMA timing reference links. This applies to both the Transmit and Receive directions. IMA  
frame rates can be derived from a number of sources:  
IMA_SysClk  
Fixed Divide-By-24 or  
Programmable divider  
IMA_RefClk  
®
28529-DSH-001-K  
Mindspeed Technologies  
69  
Mindspeed Proprietary and Confidential  
Functional Description  
Line rate clock input or  
Programmable divider  
SPRxClk or IHRxClk  
PHY Line/Payload rate clock  
Rx PHY side cell stream  
PHY payload rate derived (synthesized) from cell transfer rate across PHY side UTOPIA interface  
It should be noted that the IMA frame rates can not be directly derived from the SPTxClk[31:0] inputs.  
In a typical application (see Case 1 in Table 1-18), the Tx direction is referenced from local clock sources whereas  
the Rx direction is slaved to the FE Tx. It is also quite common (Case 2 in Table 1-18) for the Tx direction to be  
slaved to the FE Tx, often using the same source as the Rx direction. In some rarer applications, (Case 3 in  
Table 1-18) both the Tx and Rx directions are referenced from local clock sources.  
Table 1-18. Reference Clock Configurations / Sources  
Tx Direction  
Possible Sources  
Rx Direction  
Case  
Configuration  
Configuration  
Sources  
1
Master / Internal  
IMA_SysClk  
IMA_RefClk  
Slave / External  
SPRxClk or IHRxClk  
Rx Cell stream  
(1)  
IMA_SysClk or IMA_RefClk  
2
Slave / External  
Master / Internal  
SPRxClk or IHRxClk  
Rx Cell stream  
IMA_SysClk or IMA_RefClk  
Slave / External  
Master / Internal  
SPRxClk or IHRxClk  
Rx Cell stream  
IMA_SysClk or IMA_RefClk  
(2)  
3
IMA_SysClk  
IMA_RefClk  
IMA_SysClk  
IMA_RefClk  
Footnotes:  
(1) These sources provide a “last resort” clock in case no valid timing can be derived from Rx side sources.  
(2) This case assumes the FE Tx is loop timed to the NE Tx; this will limit applications. It is also applicable in loopback testing.  
Internally the IMA engine generates a Transmit Data Cell Rate clock (Tx IDCR) to match the exact cell rate of each  
group in the transmit side of the IMA device. The IMA engine also generates a Receive Data Cell Rate clock (Rx  
IDCR) to match receive cell rate for each group and operates the Receive Cell Smoothing buffer. There is a Tx  
IDCR and Rx IDCR for each of the 32 groups that the M28529 supports.  
The M28529 also provides two clock outputs: Tx_TRL[1] and Tx_TRL[0]. These can be used to output one of the  
reference clock inputs or generate an 8 KHz reference that is phase locked to IMA_SysClk or IMA_RefClk  
(whichever is used as a timing reference).  
Figure 1-16 shows the details of the M28529's IMA clock block from Figure 1-1. This block is responsible for  
generating all clocks required by the IMA engine. It can be further divided into 8 sections, as shown in Table 1-19:  
®
28529-DSH-001-K  
Mindspeed Technologies  
70  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-19. IMA Block Clock Sections  
Clock Section  
Description  
Serial Port Synchronizer  
IMA_SysClk Dividers  
This block contains a transition detector and a synchronizer. It synchronizes the clocks from the TC block Serial ports to  
the IMA_SysClk divided by 16 and the rate multiplier (RM). It handles all 32 internal serial ports independently. The rate  
multiplier is configured to values 1, 2, or 4 based on the range of the link rate.  
This block contains two dividers: a divide by 16, a divide by 24, and divide by rate multiplier (RM). The divide_16 is  
used to synchronize external clocks to internal logic. The divide_24 allows the IMA_SysClk to be used to generate both  
the Rx IDCR and the Tx IDCR clocks (provided that IMA_SysClk is 24 times the bit rate).  
IMA_RefClk Synchronizer  
This block contains a transition detector and a synchronizer. It synchronizes the IMA_RefClk to the IMA_SysClk divided  
by 16 and the RM factor.  
IDCR Source Mux  
Rx IDCR Clock  
This software controlled mux selects which clock sources are feed to the appropriate IDCR clock dividers.  
This block divides the bit rate clock down to a link cell data rate clock based on the values of frame length (M), number  
of links in the group (N), frame payload (P) and frame bit (F), then adjusts based on the rate multiplier (RM). (The 2048/  
2049 factor results from the IMA standards requirement of inserting a stuff event every 2048 cells.) This block can  
generate 16 independent Rx IDCR clock outputs (one per group).  
Tx IDCR Clock  
This block divides the bit rate clock down to a Link cell data rate clock based on the values of frame length (M), number  
of links in the group (N), frame payload (P) and frame bit (F), then adjusts based on the rate multiplier (RM). (The 2048/  
2049 factor results from the IMA standards requirement of inserting a stuff event every 2048 cells.) This block can  
generate 16 independent Rx IDCR clock outputs (one per group).  
Bit Rate Clock Generator  
This block generates a clock that represents the link data rate. It can generate 16 independent Tx and 16 independent Rx  
clocks. In normal operation, all parameters are configured automatically by the software driver. It contains the following  
blocks:  
• Pre-scaler—This block divides the selected input (either IMA_RefClk or IMA_SysClk) by the factor of Pnum divided  
by Pden.  
• Synchronizer—Synchronizes the Pre-Scaler output to the internal logic using the IMA_SysClk divided by 16 and the  
RM factor.  
• Numerically Controlled Oscillator—This clock circuit generates the link bit rate.  
Digital Phase Locked Loop This block generates a bit rate clock that is phase locked to the PHY side RxClAv signal. It can monitor all 32 ports on  
the bus. Any port can be selected as the group timing reference.  
®
28529-DSH-001-K  
Mindspeed Technologies  
71  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-16. M28529 Clock Diagram  
IDCR Clk Mux  
Rx Mux  
Note 1  
Tx Mux  
Note 1  
®
28529-DSH-001-K  
Mindspeed Technologies  
72  
Mindspeed Proprietary and Confidential  
Functional Description  
1.12.1  
IMA Link Rates  
In addition to supporting standard T1/E1 bit rates, the M2852x devices support fractional T1/E1 and DSL rates  
from 64 kbps to more than 8.192 Mbps. The actual nominal link rate must be configured through software  
parameters. Section 1.12.2.2 discusses the input clock requirements. When operating the device with only a single  
link rate used for all IMA groups, any link rate within the specified range is possible. A reference clock synchronous  
with that link rate must be provided to the device.  
For multi-rate applications, internal timing generators (includes the synthesizers) within the device must be  
supplied a reference clock with sufficient accuracy and resolution to generate the required bit rates. The following  
relationship between link rate and IMA_SysClk frequency exists:  
Table 1-20. Link Rate Resolution for Variable Rate Applications (direct serial clock)  
IMA_SysClk/16 < Link Rate <  
Link Rate < IMA_SysClk/16  
Link Rate > IMA_SysClk/8  
IMA_SysClk/8  
Link Rate  
n x 8 kbps  
n x 16 kbps  
n x 32 kbps  
As an example, if IMA_SysClk is 49.152 MHz, the link rate boundaries occur at 3.072 Mbps and 6.144 Mbps. The  
maximum IMA link rate is given by IMA_SysClk/4, or 12.288 Mbps.  
When using the internal bit rate clock generator, the resolution boundaries and maximum link rate are a function of  
the “intermediate” frequency (output of the Prescalar) selected. The “intermediate” frequency is a function of the  
frequency of the input reference clock (IMA_SysClk or IMA_RefClk) and the resolution of the prescalar (8 bits).  
This “intermediate” frequency (INT_FREQ) is limited to IMA_SysClk/16 due to internal synchronization. At this  
limit, the values of Table 1-21 apply. But it is also likely that the “intermediate” frequency will be lower than  
IMA_SysClk/16 and the following applies:  
Table 1-21. Link Rate Resolution for Variable Rate Applications (internal bit rate generator)  
Link Rate < INT_FREQ  
INT_FREQ < Link Rate < INT_FREQ/2  
Link Rate > INT_FREQ/2  
Link Rate  
n x 8 kbps  
n x 16 kbps  
n x 32 kbps  
Returning to the example of IMA_SysClk = 49.152 MHz, if INT_FREQ = 2.56 MHz, then the rate boundaries occur  
at 2.56 Mbps and 5.12 Mbps, with a maximum link rate of 10.24 Mbps.  
1.12.2  
Clock Input Requirements  
The system designer must select the frequencies of IMA_SysClk and IMA_RefClk such that the IMA core can  
process the aggregate cell bandwidth (BW), sample the serial clocks, and the IMA frame rates can be derived.  
1.12.2.1  
Aggregate Cell Bandwidth  
The maximum aggregate cell bandwidth requirement (rule of thumb) is a function of the frequency of IMA_SysClk  
and the number of active IMA groups. The following are empirically determined limits when operating with 1 or  
more IMA groups:  
32 IMA groups:  
Maximum Aggregate BW (Mbps) < Frequency of IMA_SysClk (MHz) * (20 / 9).  
16 IMA groups  
Maximum Aggregate BW (Mbps) < Frequency of IMA_SysClk (MHz) * (24 / 9).  
®
28529-DSH-001-K  
Mindspeed Technologies  
73  
Mindspeed Proprietary and Confidential  
Functional Description  
1 IMA group  
Maximum Aggregate BW (Mbps) < Frequency of IMA_SysClk (MHz) * (28 / 9).  
If only pass-throughs are enabled, then the aggregate cell bandwidth limitation is:  
Maximum Aggregate BW (Mbps) < Frequency of IMA_SysClk (MHz) * (16 / 5)  
Table 1-22 list some examples.  
Table 1-22. Maximum Aggregate Bandwidth Examples  
IMA_SysClk  
# ports  
# groups  
Maximum BW (Mbps)  
49.152 MHz  
1-32  
1-32  
1-32  
1-32  
1-32  
1-32  
1-32  
1-32  
0
1
157.3  
152.9  
131.1  
109.2  
211.2  
205.3  
176.0  
146.7  
16  
32  
0
66 MHz  
1
16  
32  
As an example, setting IMA_SysClk = 49.152 MHz constrains the Maximum Aggregate BW to be less than 152.9  
Mbps for configurations with at least 1 IMA group. For a 32 port application, depending on the number of active IMA  
groups, this implies a maximum aggregate BW in the range of 109.2 - 152.9 Mbps with an average link BW in the  
range of 3.41 - 4.78 Mbps.  
As another example, for a 16 port application, with 16 IMA groups, the average link BW would be limited to 8.192  
Mbps (131.1 Mbps / 16). This average link rate would increase if less than 16 IMA groups were active.  
1.12.2.2  
Serial Clock Sampling  
IMA_SysClk is also used to sample the serial receive clocks (SPRxClk) and IMA_RefClk. These sampled signals  
are used for IMA frame rate generation. When operating with the Interleaved Highway interface enabled, the 4x  
input clock (IHRxClk) is first divided by 4 before being distributed to the IMA block where it is sampled. If the serial  
interface is operating in fractional T1/E1 mode, either directly or using the Interleaved Highway interface, the  
resulting “gated” clock being routed over to the IMA core is not used.  
The requirements of the SPRxClk, IHRxClk, and IMA_RefClk inputs are summarized below:  
®
28529-DSH-001-K  
Mindspeed Technologies  
74  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-23. IMA Serial Clock Requirements  
Interface  
Clock Period (1)  
IMA Link Rate  
Maximum (2)  
Signal  
Mode  
Maximum  
Minimum  
SPRxClk  
T1/E1/DSL  
FT1/FE1  
T1/E1  
256 / IMA_SysClk  
N/A  
4 / IMA_SysClk  
N/A  
Min (4 / IMA_SysClk, INT_FREQ / 4)  
INT_FREQ / 4  
IHRxClk  
N/A, f = 8.192 MHz  
1.920 Mbps  
N/A  
N/A  
2.048 Mbps  
FT1/FE1  
All  
IMA_RefClk (3)  
256 / IMA_SysClk  
16 / IMA_SysClk  
IMA_SysClk / 16  
Footnotes:  
(1) Clock period is shown since the sampling circuit is sensitive to the interval between rising edges of the clock signal.  
(2) Limit is a function of whether bit rate generator is used. If not used, then IMA_SysClk caps the link rate. If used, the intermediate  
frequency (INT_FREQ) determines the maximum link rate with the requirement that INT_FREQ IMA_SysClk / 16.  
(3) IMA_RefClk used as a line rate reference; In this case, IMA_RefClk is not used as a reference for the internal bit rate generator.  
1.12.2.3  
Clock Generator Reference  
The internal clock generators and synthesizers operate in the IMA_SysClk domain but are referenced from either  
the IMA_SysClk or IMA_RefClk input. Due to internal synchronization circuitry, the following restriction applies to  
the IMA_RefClk input when it is used as a reference for these generators:  
Frequency of IMA_RefClk > Frequency of IMA_SysClk / 16  
1.12.3  
Summary Examples  
The preceding sections listed many constraints on the IMA_SysClk and IMA_RefClk inputs. Table 1-24 provides  
some simplified (and conservative) examples for these two clock signals.  
®
28529-DSH-001-K  
Mindspeed Technologies  
75  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-24. IMA Reference Clock Summary Examples  
PHY Interface  
IMA_SysClk  
Requirements  
IMA_RefClk  
Type  
Mode  
# Ports  
Ref?(1)  
Ref?  
Requirements  
T1/E1  
Serial  
32  
Yes  
T1: 37.056 MHz  
E1: 49.152 MHz  
Opt.  
T1: 1.544 MHz  
E1: 2.048 MHz  
(2)  
(3)  
No  
T1: 36.23 MHz (typical LIU)  
Yes  
N/A  
T1: 1.544 or 1.536 MHz  
E1: 48.06 MHz (typical LIU)  
E1: 2.048 or 1.920 MHz  
(4)  
DSL  
Serial  
24  
> 24  
24  
> 24  
24  
> 24  
24  
> 24  
Yes  
n x 8 kHz, 40.96 MHz  
n x 8 kHz, 49.152 MHz  
40.96 MHz  
No  
Yes  
No  
Yes  
N/A  
Yes  
n x 8 kHz, 4.64 MHz  
49.152 MHz  
T1/E1/  
DSL  
UTOPIA  
n x 8 kHz, 40.96 MHz  
n x 8 kHz, 49.152 MHz  
40.96 MHz  
n x 8 kHz, 4.64 MHz  
49.152 MHz  
Footnotes:  
(1) Indicates whether the clock signal is used as a timing reference.  
(2) Frequency determined based on sampling SPRxCLk as described in Section 1.12.2.2.  
(3) A line or payload rate clock signal may be used. A payload rate can only be used if all possible references (e.g., SPRxClk) are also payload  
rate clocks.  
(4) 40.96 MHz is selected as a minimum frequency for G.shdsl applications.  
1.12.4  
Typical Clock Configurations  
1.12.4.1  
Serial Mode (using internal TC)  
Figure 1-17 and Figure 1-18 show simplified applications that utilize the serial interfaces and internal TC block of  
the M28529 device. The block labeled “clock selection” in each figure may take on many forms depending on the  
clock configuration / sources and specific capabilities of the LIU and Framer devices used in a given system  
application.  
1.12.4.1.1  
T1/E1 Configurations  
In the most common T1/E1 application (shown in Figure 1-17), T1/E1 line rate clocks and IMA_SysClk are used to  
provide timing references. The M28529 device has internal dividers that generate the proper PHY payload rates  
(1.536 Mbps / 1.920 Mbps) necessary for IMA frame generation. Since the line rate clocks are accessible within the  
M28529 device and all facilities operate at the same nominal rate, although they may be asynchronous, no  
programmable clock dividers or synthesizers tend to be used in these applications. Asynchronous facilities are  
allowed in Independent Transmit Clock (ITC) mode and are accommodated using the IMA stuffing mechanism.  
®
28529-DSH-001-K  
Mindspeed Technologies  
76  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-17. Typical T1/E1 Configurations  
Clock  
1x Clock  
Source  
Selection  
1.544 MHz (T1)  
or  
1.544 MHz (T1)  
or  
2.048 MHz (E1)  
2.048 MHz (E1)  
Tx_TRL[1:0] IMA_RefClk  
24x  
Oscillator  
SPRxClk[0]  
SPTxClk[0]  
T1/E1  
32  
LIU  
Framer  
IMA_SysClk  
37.056 MHz (T1)  
or  
49.152 MHz (E1)  
M28529  
32  
SPRxClk[31]  
SPTxClk[31]  
T1/E1  
LIU  
Framer  
In the fractional T1/E1 application, the n x 64 kbps link rates are usually supported by relying on the programmable  
dividers and clock synthesizers within the M28529 device rather than reliance on the serial clocks themselves. The  
clock reference for these dividers and synthesizers is either IMA_SysClk or IMA_RefClk. Whichever input is being  
used, it must be an integer multiple of 8 kHz. For IMA_SysClk, the same 24x frequency as shown in Figure 1-17  
can be used but any frequency in the range of 33 - 66 MHz is permissible, subject to the restrictions discussed in  
Section 1.12.2.  
1.12.4.1.2  
DSL Configurations  
The DSL application is similar to the fractional T1/E1 in the sense that the serial clocks are not often used directly  
as timing references. The link rates are usually set within the DSL transceiver as a programmable derivative of the  
“system clock” provided to that device. In some cases, an 8 kHz Network Timing Reference (NTR) signal affects  
the generated rate.  
For the IMA frame rates to be locked when operating in the “Master / Internal” configuration, the M28529 and the  
DSL transceivers must have clocks that are derived from the same source. Often, this is a simple matter of  
connecting the DSL System Clock to the IMA_RefClk pin or using the IMA_SysClk signal as the source of the DSL  
System Clock. The “Slave / External” configuration usually relies on the clock synthesizers.  
®
28529-DSH-001-K  
Mindspeed Technologies  
77  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-18. Serial DSL Configurations  
Local  
DSL Clock  
Oscillator  
Clock  
Selection  
NTR Source  
DSL System  
Clock  
8 kHz  
NTR  
Tx_TRL[0] IMA_RefClk  
DSL  
SPRxClk[0] IMA_SysClk  
SPTxClk[0]  
I/F  
DSP  
Framer  
33 - 66 MHz  
32  
32  
M28529  
NTR  
DSL  
SPRxClk[31]  
SPTxClk[31]  
I/F  
DSP  
Framer  
1.12.4.2  
UTOPIA Mode  
The UTOPIA mode applications are similar to the serial mode but the serial clocks are not typically used (or always  
available). In UTOPIA mode, the M28529 device only has the SPRxClk[23:0] inputs available for those applications  
that can take advantage of them. As noted, these aren’t typically used.  
1.12.4.2.1  
T1/E1 Configurations  
The T1/E1 UTOPIA application is shown in Figure 1-19. It is similar to Figure 1-17 with the TC blocks external to  
the M28529 device. Since the device does not provide 32 serial clocks, the IMA function most often is configured to  
use its internal clock synthesizers when operating in the “Slave / External” configuration. This approach is used  
when operating in fractional T1/E1 applications.  
®
28529-DSH-001-K  
Mindspeed Technologies  
78  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-19. T1/E1 Configurations (UTOPIA Mode)  
Clock  
1x Clock  
Source  
Selection  
1.544 MHz (T1)  
or  
1.544 MHz (T1)  
or  
2.048 MHz (E1)  
2.048 MHz (E1)  
Tx_TRL[1:0] IMA_RefClk  
SPRxClk[0]  
24x  
Oscillator  
T1/E1  
LIU  
LIU  
Framer  
Framer  
TC  
TC  
IMA_SysClk  
37.056 MHz (T1)  
or  
M28529  
49.152 MHz (E1)  
SPRxClk[23]  
T1/E1  
1.12.4.2.2  
DSL Configurations  
Since the serial clocks are not typically used as timing references when operating in DSL applications, the UTOPIA  
mode configurations are similar to the Serial mode configurations. Figure 1-20 shows the DSL UTOPIA application.  
Figure 1-20. DSL Configurations (UTOPIA Mode)  
Local  
DSL Clock  
Oscillator  
Clock  
Selection  
NTR Source  
8 kHz  
DSL System  
Clock  
NTR  
Tx_TRL[0] IMA_RefClk  
33 - 66 MHz  
IMA_SysClk  
PHY Rx UTOPIA  
DSL  
I/F  
DSP  
Framer  
TC  
M28529  
32  
32  
NTR  
DSL  
I/F  
DSP  
Framer  
TC  
Phy Tx UTOPIA  
®
28529-DSH-001-K  
Mindspeed Technologies  
79  
Mindspeed Proprietary and Confidential  
Functional Description  
The solution for high port count and variable rate DSL applications is to use internal counters and frequency  
synthesizers referenced from a common (n x y kHz) clock input with feedback from the cell available signal from the  
PHY side UTOPIA bus.  
For low port count, single rate applications that take advantage of the embedded ATM Cell Processor, the use of  
receive bit clock inputs is the most straight-forward solution.  
1.12.5  
IMA Internal Timing Examples  
T1/E1 Using Internal Serial Ports  
1.12.5.1  
1.12.5.1.1  
Using IMA_SysClk as the Transmit Clock  
Figure 1-21 illustrates T1/E1 with internal serial ports, using IMA_SysClk equal to 24 times the line rate. This is one  
of the simplest implementations of IMA when a clock equal to 24 times the line rate is available. Several issues are  
worth noting:  
The IMA_RefClk input is unused and should be tied to ground. The M28529 is deriving all required clocks from  
the Serial port clocks and the IMA_SysClk.  
The IMA_SysClk is used to synchronize the SPRxClk inputs to internal logic (via the divide by 16 block).  
The SPRxClk is being used to generate the Rx IDCR clock. Also note that the receive clock from any link within  
a group could be used to generate the Rx IDCR for that group.  
The IMA_SysClk is being used to derive the TX IDCR clock.  
The device is configured using a software driver. The following code is an example of calls to the driver:  
IMA_LINK_TYPE = IMA_DS1  
IMA_DSL_USE_REF_CLK2 = IMA_INACTIVE  
IMA_DSL_REF_GENERATOR = IMA_INACTIVE  
IMA_ALT_RX_TRL = IMA_INACTIVE  
IMA_GRP_TX_TRL_SRC = IMA_REF_XCLK (grp#)  
IMA_GRP_RX_TRL_SRC = IMA_RX_TRL_(x) (grp#)  
®
28529-DSH-001-K  
Mindspeed Technologies  
80  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-21. T1/E1 using Internal Serial ports; IMA_SysClk equals 24x line rate  
TxClav Transition  
up/down adjust  
n*8kHz  
Phase  
NCO  
Comparator  
1
RM  
RM  
424  
Transition  
Detector  
1
RM  
SPRxClk 0  
Synchronizer  
ref  
IMA_RefClk  
NOT USED;  
tie to ground  
n*8kHz  
NCO  
Note 2  
1
RM  
Pre-Scaler  
Synchronizer  
ref  
IMA_SysClk  
24 x line rate  
/16  
/24  
n*8kHz  
NCO  
Note 2  
ref  
Synchronizer  
1
RM  
Transition  
Detector  
General Notes:  
1. SPRxCLK 1-31 are identical but not shown for clarity  
2. RM - Rate Multiplier.  
1.12.5.1.2  
Using IMA_RefClk as the Transmit Clock  
Figure 1-22 illustrates T1/E1 with internal serial ports, using IMA_RefClk. There are several important differences  
from the first example:  
In this case, IMA_SysClk is only used by internal logic. It must be greater than or equal to 22 times the line rate  
to ensure that internal logic can keep up with the data.  
Again, the SPRxClk is used to generate the RxIDCR clock.  
The TX IDCR clocks are generated from the IMA_RefClk. Thus IMA_RefClk must equal 1.544, 1.536, 2.028, or  
1.920 MHz depending of the frame format used.  
The device is configured using a software driver. The following code is an example of calls to the driver:  
®
28529-DSH-001-K  
Mindspeed Technologies  
81  
Mindspeed Proprietary and Confidential  
Functional Description  
IMA_LINK_TYPE = IMA_DS1  
IMA_DSL_USE_REF_CLK2 = IMA_INACTIVE  
IMA_DSL_REF_GENERATOR = IMA_INACTIVE  
IMA_ALT_RX_TRL = IMA_INACTIVE  
IMA_GRP_TX_TRL_SRC = IMA_REF_CLK1 (grp#)  
IMA_GRP_RX_TRL_SRC = IMA_RX_TRL_(x) (grp#)  
Figure 1-22. T1/E1 using Internal Serial ports; IMA_RefClk equals line rate  
TxClav Transition  
up/down adjust  
n*8kHz  
NCO  
Phase  
Comparator  
1
RM  
RM  
424  
IDCR Clk Mux  
Transition  
Detector  
1
RM  
SPRxClk 0  
Synchronizer  
rreeff  
IMA_RefClk  
n*8kHz  
NCO  
Note 2  
1
RM  
Pre-Scaler  
Synchronizer  
ref  
IMA_SysClk  
24 x line rate  
/16  
/24  
n*8kHz  
NCO  
Note 2  
ref  
Synchronizer  
1
RM  
Transition  
Detector  
General Notes:  
1. SPRxCLK 1-31 are identical but not shown for clarity  
2. RM - Rate Multiplier.  
1.12.5.2  
DSL/T1/E1 Using UTOPIA-to-UTOPIA Interfaces  
Figure 1-23 illustrates the configuration most commonly used with applications that require more the TC block to be  
external. Up to 32 links and 32 groups can be supported using external Cell Delineators. For the discussion below,  
assume the link rates are less than 3.072 Mbps.  
®
28529-DSH-001-K  
Mindspeed Technologies  
82  
Mindspeed Proprietary and Confidential  
Functional Description  
The Rx IDCR clock is synthesized using the RxClAv input from the PHY side UTPOIA bus. This is performed  
on a per group basis; that is, one link in each group is selected (via software) to provide the Rx IDCR for that  
group.  
IMA_SysClk must be greater than or equal to 40.96 MHz (less than 24 ports) and be greater than or equal to  
49.152 MHz if there are more than 24 ports.  
Either IMA_SysClk or IMA_RefClk can be used as the Tx IDCR clock:  
IMA_SysClk may be used if it is an 8 kHz multiple of the bit rate.  
IMA_RefClk may be used if it is an 8 kHz multiple of the bit rate and greater than or equal to 4.64 MHz.  
The device is configured using a software driver. The following code is an example of calls to the driver:  
IMA_LINK_TYPE = IMA_VAR_RATE  
IMA_DSL_REF_CLK_FREQUENCY = 40960000  
IMA_DSL_USE_REF_CLK2 = IMA_INACTIVE  
IMA_DSL_REF_GENERATOR = IMA_ACTIVE  
IMA_ALT_RX_TRL = IMA_ACTIVE  
IMA_GRP_LINK_BANDWIDTH = 2304 (grp#)  
IMA_GRP_CLK_REF_FACTOR = IMA_NO_DIV (grp#)  
IMA_GRP_TX_TRL_SRC = IMA_REF_XCLK (grp#)  
IMA_GRP_RX_TRL_SRC = IMA_RX_TRL_(x) (grp#)  
®
28529-DSH-001-K  
Mindspeed Technologies  
83  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-23. DSL—UTOPIA-to-UTOPIA  
TxClav Transition  
up/down adjust  
n*8kHz  
NCO  
Phase  
Comparator  
1
RM  
RM  
424  
Transition  
1
RM  
SPRxClk 0  
Detector  
Synchronizer  
ref  
IMA_RefClk  
n*8kHz  
NCO  
Note 2  
1
RM  
Pre-Scaler  
Synchronizer  
ref  
IMA_SysClk  
24 x line rate  
/16  
/24  
n*8kHz  
NCO  
Note 2  
ref  
Synchronizer  
1
RM  
Transition  
Detector  
General Notes:  
1. SPRxCLK 1-31 are identical but not shown for clarity  
2. NCO - Numerically controlled oscillator; controlled by parameters in Register 816 and 817.  
2. RM - Rate Multiplier.  
1.13  
UTOPIA Interfaces  
The M2852x supports multi-PHY operation as described in the UTOPIA Level specification (AF-PHY-0039.000, see  
www.atmforum.com). This standard allows up to 31 ports to be interfaced to both the ATM and PHY side interfaces.  
The interfaces use either 8-bit or 16-bit wide data buses, and cell-level handshaking.  
Each of the M2852x's UTOPIA blocks have two sections, transmit and receive. For the ATM interface, on the  
transmit side, ATM cell data is placed in the transmit FIFOs where it can then be passed to the ATM cell processing  
block. On the receive side of the UTOPIA interface, incoming cells are placed in the receive FIFO until sent. Both  
FIFOs on the ATM side are 4 cells deep.  
®
28529-DSH-001-K  
Mindspeed Technologies  
84  
Mindspeed Proprietary and Confidential  
Functional Description  
With regard to IMA, each IMA group is considered one logical port and will only take up one UTOPIA address. For  
example, a group with 8 T1 links could be assigned to address 0; the IMA engine handles the translation between  
the ATM layer and the physical links. In addition, each pass-though connection also requires one address.  
NOTE:  
By convention, data being transferred from the PHY to the ATM layer  
is considered received data, while data from the ATM layer to the  
PHY is called transmitted data.  
To provide maximum flexibility for system design the M28529 has 3 UTOPIA Level 2 interface modes. This allows  
the M28529 to be used in either UTOPIA-to-UTOPIA or UTOPIA-to-Serial IMA applications or it can function as a  
stand-alone cell delineator block. These interfaces are shown in Figure 1-26 and described below.  
1. IMA direct—This interface allows the ATM layer to interface directly to the IMA engine. This would be the  
normal mode for all IMA applications. It is controlled by registers in the IMA section.  
2. TC block direct—This interface is selected when the IMA engine is disabled and the device is being used as a  
stand-alone cell delineator. It may also be invoked during troubleshooting to verify serial port operation without  
having to run the IMA drivers. It is configured by registers in the TC section.  
3. PHY side UTOPIA—This interface is selected when the TC block is disabled and the designer wishes to  
interface to a device via an UTOPIA interface. This allows the M28529 IMA engine to address up to 32 ports on  
the line side.  
1.13.1  
General UTOPIA Operation  
Three primary functions are performed by the UTOPIA controller: polling, selection, and data transfer. These  
functions are basically the same for both the transmit and receive sides of the UTOPIA bus. The following example  
describes the transmit functions. Refer to Figure 1-24.  
The ATM layer UTOPIA controller polls the connected PHY ports by transmitting the port addresses on the  
UTxAddr lines. If a port is ready to transfer data, it asserts UTxClAv. Note that the process of polling a port does  
NOT result in that port being selected to transfer data! Polling allows the controller to determine which port is ready  
for data; it must then select that port before sending data. It does so by reasserting the desired address and then  
asserting UtxEnb*. The PHY will then be ready to transfer data on the UTxData lines. UTxEnb* is deasserted when  
the transfer is completed. Polling can continue during the data transfer process but not during port selection. It  
operates independently of the state of UTxEnb*.  
To pause the data transfer, UTxEnb* can be deasserted. To continue the transfer, the controller must reselect the  
port by transmitting its address one clock cycle before asserting UTxEnb*. The controller must ensure that the cell  
transfer from this port has been completed, to avoid a start-of-cell error.  
On the ATM side, the UTOPIA interface is a slave. On the PHY side, the UTOPIA interface is a master.  
1.13.2  
UTOPIA 8-bit and 16-bit Bus Widths (PHY and ATM)  
The ATM side UTOPIA interface on the M2852x devices have two bus width options, 8-bit or 16-bit, depending on  
the selection of AtmBusWidth, bit 5, of the ATMINTFC register (0xF03). The PHY side UTOPIA interface also has  
two bus width options 8-bit or 16-bit, depending on the selection of PHYBusWidth, bit 5, of the PHYINTFC register  
(0xF02).  
The protocols and timing are the same in both modes, except that 8-bit mode uses only the lower half of the data  
bus (TxData[7:0] and RxData[7:0]) and odd parity is only generated or checked over those bits. The ATM-Side  
UTOPIA Level 2 interface operates up to 50 MHz in 16 bit mode (Note: 33 MHz for TC Mode Only) and 33 MHz in  
8 bit mode. The PHY-Side UTOPIA interface operates at half the IMA_Sysclk rate (IMA_SysClk/2)  
®
28529-DSH-001-K  
Mindspeed Technologies  
85  
Mindspeed Proprietary and Confidential  
Functional Description  
In 8-bit mode, each ATM cell consists of 53 bytes. The first five bytes are used for header information. The  
remaining bytes are used for payload.  
In 16-bit mode, the cell consists of 54 bytes. The first five bytes contain header information. The sixth byte, UDF2,  
is required to maintain alignment but is not read by the M2852x. The remaining bytes are used for payload.  
1.13.3  
UTOPIA Interface Blocks  
1.13.3.1  
IMA UTOPIA  
This is the normal interface for IMA applications and is selected as shown in Table 1-25.  
It is intended to interface to a single ATM Layer device and appear as a multi-port PHY device. Figure 1-24  
illustrates the connections to/from the ATM Layer device. The number of “ports” or channels on the IMA Subsystem  
is the sum of the number of configured IMA groups plus the number of pass-through facilities. The IMA M28529  
requires a unique UTOPIA address for each channel (IMA group or pass-through). There are no restrictions placed  
on the address assignment and not all 32 locations are normally used.  
In IMA UTOPIA mode, the UTOPIA interface can operate with single Clav/Enb or Dual Clav/Enb handshaking. The  
default configuration is for single Clav/Enb handshaking (See register 0xF03 ATMINTFC for more information).  
When operated in single Clav/Enb mode, the UTOPIA bus address 0x1F can be configured as a valid port address  
and not a null address, note this is nonstandard from the UTOPIA specification and must be supported by  
connective devices.  
When using dual Clav/Enb mode, Clav0/Enb0 are assigned to addresses 0x0 - 0xF while Clav1/Enb1are assigned  
to addresses 0x10 - 0x1F. Note that only the first 4 bits[3:0] of the 5 bit address bus are used internally, bit 4 is  
ignored. For example, if Clav is supposed to be active for addresses 0x1 and 0x11, polling with address 0x1 on the  
address bus will cause Clav0 to be asserted and Clav1 to be asserted.  
Dual Clav/Enb does not allow multiple M28529 devices to interface with a single ATM Layer  
device on the ATM-side UTOPIA Interface. Multiple M28529 devices cannot share one  
Utopia bus with an ATM-layer device.  
NOTE:  
If only one channel is programmed, (a single IMA group and no pass-through facilities), then the M28529 can be  
compatible with UTOPIA Level 1 by fixing the address lines to a specific value and setting the IMA group’s ATM  
address (through the software driver) to that value.  
The M28529 provides numerous options to match non-standard UTOPIA controllers. See the  
IMA_ATM_UTOPIA_BUS_CTL register, 0x813, for more information.  
In single Clav mode, address 0x1F can be assigned as a valid port address to enable 32  
unique addresses.  
NOTE:  
The behavior of Clav when a port is not selected can be set to either driven low or tri-state.  
See the IMA_ATM_UTOPIA_BUS_CTL register, 0x813, bit 1.  
®
28529-DSH-001-K  
Mindspeed Technologies  
86  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-24. ATM Layer UTOPIA Interface Connections  
atmUTOPIA Tx data/  
address bus  
atmUTxClav_0  
atmUTxEnb_0  
ATM Layer  
Device  
PHY Layer  
Utopia Bus  
M28529  
atmUTxClav_1  
atmUTxEnb_1  
Note: Only Transmit side drawn for Clarity  
1.13.3.2  
TC Block UTOPIA  
This interface is selected when using the device as a stand-alone cell delineator. See Table 1-25 and Section 1.6. It  
interfaces to the ATM layer as a normal UTOPIA Level 2 interface with the following enhancements.  
UDF2 Programmability  
The user can program the contents of the UDF2 byte when operating in 16-bit UTOPIA mode. By default, the  
contents of the UDF2 byte on the receive interface will match the default value of the UTOPIA port address. This  
can be changed by writing the desired value to the corresponding UDF2 control register, 0x0F. Bus width is  
controlled by bit 5 of the ATMINTFC register.  
Port Number Assignment  
The UTOPIA address for each port is stored in bits 0–4 of the UTOP2 register (0x0E). The default for this value is  
the port number. For example, the UTOP2 register for port 4 (0x10E [with the offset]) defaults to 04 hex. However,  
the value can be changed to any value from 00–1E hex by programming the register to accommodate multiple  
devices on the same UTOPIA bus. The value 1F hex is reserved for the null address. The UTOPIA address should  
be changed only when the device or port is in the reset state.  
HEC Override  
In normal operation, the HEC is calculated by the TC layer and put in byte 5, UDF1. This may be overridden by  
setting bit 7 of the CGEN register (0x08) to a 1. In this case, data inserted by the ATM layer into byte 5 is  
transmitted unchanged by the device.  
Table 1-25. Device Configuration Options  
ATMMux [7,6]  
(ATMINTFC, 0xF03)  
PhyIntFcSel  
(Pin AD24)  
Description  
01  
01  
10  
Low  
High  
High  
IMA UTOPIA using the PHY Side UTOPIA; UTOPIA-to-UTOPIA; TC block/serial ports not  
used.  
IMA UTOPIA using Internal TC block;  
UTOPIA-to-Serial mode; 32 internal serial ports  
TC only; Device used as Stand-alone cell delineator with 32 serial ports; IMA block not  
used.  
®
28529-DSH-001-K  
Mindspeed Technologies  
87  
Mindspeed Proprietary and Confidential  
Functional Description  
In TC Block UTOPIA mode, both Single and Dual Clav/Enb modes are supported, however the Single Clav/Enb  
mode only supports 31 addresses. UTOPIA address 0x1F is a null address. In dual Clav/Enb mode, the device can  
respond as 32 unique phy devices (by sharing the same address but using different Clav/Enb’s), however address  
0x1F is still a null address.  
1.13.3.3  
PHY-Side UTOPIA  
An ATM forum compliant UTOPIA interface is provided for interfacing to PHY layer devices. Several unique features  
should be noted:  
1. It is only UTOPIA level 2.  
2. This bus supports 8-bit and 16-bit wide data paths.  
3. The UTOPIA interface has a second set of control lines (Dual Clav/Enb), which allow up to 32 ATM devices to  
be connected to the bus. These can be connected as shown in Figure 1-25. This effectively provides two buses  
with up to 16 devices each, all sharing common address and data lines but with separate control lines.  
(Remember, UTOPIA uses address 0x1F as the null address thus limiting the bus to 31 ports. However, the  
standard also allows for multiple ClAv and Enable lines.)  
4. When using only a single Clav/Enb the device can be programmed to recognize null address 0x1F as a valid  
address. Note that the TC block does not support 0x1F as an address. Thus when using the Utopia-Serial  
configuration, dual Clav/Enb must be used if 32 ports are desired.  
Figure 1-25. M28529 Multiple UTOPIA Control Lines  
IMA Link  
Number  
1
CX28985  
UTOPIA Port 07  
8
UTOPIA data/  
9
address bus  
phyUTxClav_0  
CX28985  
UTOPIA Port 815  
ATM Layer  
phyUTxEnb_0  
M28529  
UTOPIA bus  
phyUTxClav_1  
phyUTxEnb_1  
16  
17  
CX28985  
UTOPIA Port 07  
24  
25  
CX28985  
UTOPIA Port 815  
32  
General Note:  
Only the Transmit side is shown for clarity. The Receive side is identical.  
500027_056  
®
28529-DSH-001-K  
Mindspeed Technologies  
88  
Mindspeed Proprietary and Confidential  
Functional Description  
1.13.4  
Dual Clav/Enb Operation  
The UTOPIA level 2 specification allows for 31 unique addresses 0-30 to be assigned to devices on the UTOPIA  
bus. UTOPIA address 31 is a Null address. While both the ATM and PHY side Utopia support the null address  
assigned as a valid address, many connecting devices may not support this. To alleviate this, the dual Clav/Enb  
mode is available to support all 32 ports. When using Dual Clav/Enb, the UTOPIA port will respond to either Clav0/  
Enb0 or Clav1/Enb1 depending on the port. For the ATM side, Clav0/Enb0 is assigned to port 0 - 15 and Clav1/  
Enb1 is assigned to port 16-32. Enabling of dual Clav/Enb mode for the ATM side is set in the ATMMINTFC 0xF03  
register. For the PHY side, assignment of ports to Clav/Enb is configurable in the IMA_MISC_CONFIG register  
0x804.  
1.14  
Transmission Convergence Block  
The M2852x’s ATM Transmission Convergence (TC) block is responsible for recovering cell alignment using the  
HEC octet, performing detection/correction, and descrambling the payload octets. The resulting ATM cells are then  
passed to the ATM layer via the UTOPIA interface. Simultaneously, the ATM transmitter block is receiving data from  
the ATM layer, optionally inserting header fields, optionally calculating the HEC, and sending the cells to the  
framers. If no data is being received from the ATM layer, the cell processor generates idle cells based on the data  
programmed into the associated registers.  
When operating in the UTOPIA-to-UTOPIA mode, the ATM Cell processor block is disabled.  
NOTE:  
1.14.1  
ATM Cell Transmitter  
The ATM cell transmitter controls the generation and formatting of 53-octet ATM cells that are sent to the Framer  
(Line) Transmit Ports. This block formats an octet stream containing ATM data cells from the ATM layer device  
when those cells are available. All 53 octets of the data cells may be obtained from the external data source and  
formatted into the outgoing octet stream.  
This block calculates the HEC octet in the outgoing cell from the header field. The calculated HEC octet can be  
inserted in place of the incoming data octet by writing DisHEC (bit 7) in the CGEN register (0x08) to a logic 0. For  
testing purposes, this HEC octet can be corrupted by XORing the calculated value with a specific error pattern  
input set in the ERRPAT register (0x0B). This HEC error is achieved by writing ErrHEC (bit 4) in the CGEN register  
(0x08) to a logic 1. The remaining 48-octet payload field of the outgoing cell is obtained from the external data  
source. The payload can be scrambled.  
When there is no data from the ATM layer device, the TC Block inserts idle cells automatically in the outgoing octet  
stream. The 4-octet header field for these idle cells comes from the TXIDL1–4 registers (0x14–17). The HEC octet  
is calculated and inserted automatically. The payload field is filled with the octet contained in the IDLPAY register  
(0x0A).  
In normal operation, the 4-octet header field in the outgoing cell is passed on from the ATM layer device. Header  
patterns can be modified in the TXHDR1–4 registers (0x10–13) and inserted into outgoing cells in place of header  
bytes received from the ATM layer. Whether the original header cells or replacement cells are sent is controlled by  
bits 0–4 in the HDRFIELD (0x09) register.  
1.14.1.1  
HEC Generation  
In normal operation, the M2852x calculates the HEC for the four header bytes of each cell coming from the ATM  
layer. It then adds the HEC coset (55 hex, by ATM standards) and inserts the result in octet 5 of the outgoing cell.  
HEC calculation can be disabled by setting bit 7 of CGEN (0x08) to a 1. When HEC is disabled, the M2852x leaves  
the contents of the HEC field unchanged and transmits whatever data is placed in that field by the ATM layer.  
®
28529-DSH-001-K  
Mindspeed Technologies  
89  
Mindspeed Proprietary and Confidential  
Functional Description  
The HEC coset is used to maintain a value other than zero in the HEC field. If the first four bytes in the header are  
zero, the HEC derived from these bytes is also zero. When this occurs and there are strings of zeros in the data,  
the receiver cannot determine cell boundaries. Therefore, it is recommended that the value 55 hex be added to the  
HEC before transmission. To enable the HEC coset on the transmit side, set bit 6 in register CGEN (0x08) to one.  
To enable the receive HEC coset, set bit 5 in register CVAL (0x0C) to one.  
1.14.2  
ATM Cell Receiver  
The ATM cell receiver performs cell delineation on incoming data cells by searching for the position of a valid HEC  
field within the cell. The HEC coset can be either active or inactive; this is determined in bit 5 in the CVAL (0x0C)  
register.  
Figure 1-26. Details of the TC Block  
MicroData[7:0]  
MicroAddr[10:0]  
Control Lines  
MicroInt*  
StatOut[0:1]  
Microprocessor  
Framer  
(Line)  
UTOPIA  
Level 2  
Interrupt Control  
Interface  
Interface  
Interface  
IMA  
Status and Control  
Transmit  
UTOPIA  
Level 2  
atmUTxClk  
atmUTxClAv  
atmUTxEnb*  
atmUTxSOC  
SPTxClk  
SPTxSync  
TC Transmit Port  
4-cell  
FIFO  
ATM Cell Transmitter  
atmUTxData[15:0]  
atmUTxPrty  
SPTxData  
atmUTxAddr[4:0]  
atmURxClk  
atmURxClAv  
atmURxEnb*  
SPRxClkI  
SPRxSync  
SPRxData  
4-cell  
FIFO  
ATM Cell Receiver  
TC Receive Port  
IMA  
atmURxSOC  
atmURxData[15:0]  
atmURxPrty  
Cell  
Cell Validation  
Loopback  
Control  
Receive  
UTOPIA  
Level 2  
Alignment VPI/VCI Screening  
This segment is replicated for Ports 0 - 7  
atmURxAddr[4:0]  
JTAG Controller  
One Second Interface  
8kHzIn  
TCK  
TMS  
TDO  
OneSecIO  
TRST*  
TDI  
500027_063  
1.14.2.1  
Cell Delineation  
The ATM block receives octets from the framers and recovers ATM cells by means of cell delineation. Cell  
delineation is achieved by aligning ATM cell boundaries using the HEC algorithm. Four consecutive bytes are  
chosen and the HEC value is calculated. The result is compared with the value of the following byte. This “hunt” is  
continued by shifting this four-byte window, one byte at a time, until the calculated HEC value equals the received  
HEC value. When this occurs, a pre-sync state is declared and the next 48 bytes are assumed to be payload. The  
ATM block calculates HEC on the four bytes following this payload, assuming that a new cell has begun. If seven  
®
28529-DSH-001-K  
Mindspeed Technologies  
90  
Mindspeed Proprietary and Confidential  
Functional Description  
consecutive header blocks are found, synchronization is declared. If any HEC calculation fails in the pre-sync state,  
the process begins again (see Figure 1-27). Synchronization will be held until seven consecutive incorrect HECs  
are received. At this time, the “hunt” state is reinitiated.  
Figure 1-27. Cell Delineation Process  
1 Correct HEC  
Pre-Sync  
1 Errored HEC  
6 Correct HECs  
Hunt  
7 Errored HECs  
Sync  
500027_006  
During the sync state of cell delineation, cells are passed to the UTOPIA interface if the HEC is valid. If a single-bit  
error in the header is detected, the error is corrected (optionally), and the cell is passed to the UTOPIA interface. If  
HEC checking is enabled and HEC correcting is disabled (bit 3 in the CVAL register [0x0C]), cells with single-bit  
HEC errors are discarded. If a multi-bit error is detected, the cell is dropped. Once either type of error is noted, all  
subsequent errored cells are dropped until a valid cell is received. This rule applies even for single-bit errors that  
could be corrected. Once a valid cell is detected, the process begins again. (See Figure 1-28.)  
When loss-of-cell delineation (LOCD) occurs, an interrupt is generated and the M2852x automatically enters the  
“hunt” mode. However, the cell is still being scrambled by the far-end transmitter, leaving only the headers (or just  
the HEC byte in Distributed Sample Scrambler [DSS]) unscrambled. This means that the only repetitive byte  
patterns in the data stream that meet the cell delineation criteria are valid headers (or just the HEC bytes in DSS).  
®
28529-DSH-001-K  
Mindspeed Technologies  
91  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-28. Header Error Check Process  
Cell Delineation in Sync State  
Errors Detected  
(Drop Cell)  
No Errors Detected  
(Pass Cell)  
No Errors Detected (Pass Cell)  
Detection  
Mode  
Apparent Single-bit Error  
(Correct Error and Pass Cell)  
Correction  
Mode  
Apparent Multi-bit Error (Drop Cell)  
500027_007  
When the M2852x is in general purpose mode, a synchronization pulse from the framer interface is not always  
available. In this mode, the M2852x performs a bit serial search to find byte and cell alignment. The M2852x  
selects a starting window of 32 sequential bits and calculates the HEC over this window. This HEC is then  
compared to the next eight incoming bits. If they do not match, the M2852x shifts the 32-bit window by 1 bit and  
recalculates the HEC until a valid HEC position is found. Once byte-alignment is achieved, cell delineation is  
performed.  
1.14.2.2  
Cell Delineation Control Modes  
The M28529 contains two independent “HEC Check” state machines. The Cell Delineator (CD) State Machine is  
used to find Cell Delineation and, conversely, to declare loss of cell delineation (LOCD). The other is the Cell Valid  
(CV) State Machine, which is used to validate the cells to pass to the UTOPIA FIFOs.  
These state machines are controlled by two register bits, (CVAL register, 0x0C), that allow the M28529 to be  
programmed for special applications. Table 1-26 shows the control bits function.  
®
28529-DSH-001-K  
Mindspeed Technologies  
92  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-26. Control Bit Functions  
DisLOCD  
DisHECChk  
Description  
Normal operation; used for standard ATM traffic.  
0
0
Cells are output to the UTOPIA FIFO only after cell delineation is found. Only cells with valid HECs are  
passed (this includes cells with single bit errors that have been corrected).  
0
1
1
Ignore HEC Errors Mode; used for IMA applications.  
The Cell Delineator state machine is active and looking for valid ATM cells. It will follow the ATM Forum’s  
Cell Delineation process. However, since the Cell Valid State machine is turned off, the M28529 will pass  
all cells, including those with HEC errors, to the UTOPIA FIFOs.  
The M28529 will not transfer cells during LOCD.  
0
1
The cell delineation function is disabled and every 53 bytes of incoming data is treated as a ‘cell’. How-  
ever, since the CV machine is still active, only cells with valid HECs will be output. As a result, almost all  
data will be dropped. Occasionally, random data will have what appears to be a valid HEC and will be out-  
put. Mindspeed is not aware of any use for this mode.  
1
Raw Data mode; allows the M28529 to be used as a generic ‘serial to parallel’ convertor.  
All data received will be passed across the UTOPIA bus in blocks of 53 bytes. No attempt is made to find  
ATM cells.  
General Note:  
1. The HEC Error Correction circuit is independent of the DisHECChk control bit. The M28529 will correct single bit errors even when the  
DisHECChk is enabled (assuming that the EnHECCor bit is set to 1).  
1.14.2.3  
Cell Screening  
The M2852x provides two optional types of cell screening. The first type, idle cell rejection, prevents idle cells from  
being passed on. The second type, user traffic screening, compares incoming bits to the values in the receive cell  
header registers. Cells are rejected or accepted based on the bit patterns of their headers.  
Idle cell rejection is enabled in bit 6 of the CVAL register (0x0C). If this bit is set to 1, all incoming cells that match  
the contents of the Receive Idle Cell Header Control Registers, RXIDL1–4 (0x20–23), are rejected. Individual bits  
in the Receive Idle Cell Mask Control Registers, IDLMSK1–4 (0x24–27), can be set to 1 or Don’t Care, causing the  
corresponding bits of the incoming cell to be treated as matching, regardless of their value. If idle cell rejection is  
disabled, cells pass directly to user traffic screening.  
User traffic cell screening is similar to idle cell screening in that the incoming cells are compared to the Receive  
Cell Header Control Registers, RXHDR1–4 (0x18–1B). Individual bits in the Receive Cell Mask Control Registers,  
RXMSK1–4 (0x1C–1F), can be set to 1 or Don’t Care, causing the corresponding bits of the incoming cell to be  
treated as matching, regardless of their values. The RejHdr bit (bit 7) in the CVAL register (0x0C) determines  
whether matching cells are rejected or accepted. If it is set to 0, matching cells are accepted. If it is set to 1,  
matching cells are rejected. See Table 1-27 and Table 1-28.  
®
28529-DSH-001-K  
Mindspeed Technologies  
93  
Mindspeed Proprietary and Confidential  
Functional Description  
Table 1-27. Cell Screening—Matching  
Receive Cell Mask Bit Receive Cell Header Bit  
Incoming Bit  
Result  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
Match  
Fail  
Fail  
Match  
Match  
Table 1-28. Cell Screening—Accept/Reject Cell  
Cell  
Reject Header  
Result  
Match  
Match  
Fail  
0
1
0
1
Accept Cell  
Reject Cell  
Reject Cell  
Accept Cell  
Fail  
1.14.2.4  
Cell Scrambler  
The ATM standard requires cell scrambling to ensure that only valid headers are found in the cell delineation  
process. Scrambling randomizes any repeated patterns or other data strings that could be mistaken for valid  
headers. The M2852x supports two types of scrambling as defined by ITU-T I.432:  
1. Self Synchronizing Scrambler (SSS)  
2. Distributed Sample Scrambler (DSS). Typically, SSS is used and is, therefore, the M2852x’s default method.  
However, xDSL in asynchronous format generally use DSS.  
If both SSS and DSS are enabled, SSS overrides DSS.  
NOTE:  
1.14.2.4.1  
SSS Scrambling  
43  
SSS scrambling uses the polynomial × + 1 to scramble the payload, leaving the five header bytes untouched. It  
can be enabled in EnTxCellScr, bit 5, of the CGEN register (0x08).  
Descrambling uses the same polynomial to recover the 48-byte cell payload. It can be enabled in EnRxCellScr, bit  
4, of the CVAL register (0x0C).  
1.14.2.4.2  
DSS Scrambling  
31  
28  
DSS scrambling uses the × + × + 1 polynomial to scramble the entire cell, except the HEC byte. HEC is  
calculated after the first four bytes of the header have been scrambled. DSS scrambling is enabled in EnTxDSSScr,  
bit 1, of the CGEN register (0x08).  
Descrambling uses the first six bits of the HEC for alignment. Once alignment is found, all eight bits of the HEC are  
sampled. Descrambling uses the same polynomial to recover the 48-byte cell payload. It is enabled in  
EnRxDSSScr, bit 0, of the CGEN register (0x08). If DSS descrambling fails, the M2852x defaults to unscrambled  
mode.  
®
28529-DSH-001-K  
Mindspeed Technologies  
94  
Mindspeed Proprietary and Confidential  
Functional Description  
DSS Scrambling is only supported in General Purpose Mode.  
NOTE:  
1.14.2.5  
Framing Modes (UTOPIA-to-Serial Configuration)  
The M2852x’s 32 serial ports can be individually configured for the major framing modes: T1/E1, fractional T1/E1  
and DSL. A general purpose framing mode provides an interface to customized framers and each of the 32 ports  
can be configured for a different mode. The M2852x also supports an Interleaved Highway mode where a  
combination of four T1, E1, Fractional T1 or Fractional E1’s can be transported over a higher bandwith 8.192 MHz  
Interface.  
1.14.2.5.1  
T1/E1 Interface  
This describes the timing requirements of the M28529 when operating in T1 or E1 mode. Connection to a CN8370  
T1/E1 framer is used as an example, as illustrated in Figure 1-29. The M28529 receives a T1/E1 data stream from  
the external framer, ignores the T1/E1 overhead, extracts the ATM cells, and passes the ATM cells to the ATM layer  
device. In the transmit direction, the M28529 inserts 0’s in the overhead bit locations and fills the rest of the frame  
with ATM cells from the UTOPIA bus.  
For the E1 mode, the ATM cells are mapped into time slots 1–15 and 17–31 as described in Recommendation  
G.804. For the T1 mode, the ATM cells are mapped into time slots 1–24.  
Figure 1-29. CN8370 Interface Diagram  
CN8370  
M28529  
Tx Frame Marker  
Serial Data  
SPTxSync  
TFSYNC  
TPCMI  
SPTxData  
Transmit Framer  
Rx Frame Marker  
Serial Data  
Clock  
SPRxSync  
RFSYNC  
RPCMO  
SPRxData  
RSBCKI, TSBCKI  
Receive Framer  
SPTxClk, SPRxClk  
Clock Source  
The 8370 is a single port transceiver which is shown here for simplicity.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
95  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-30. CN8370 Interface - T1 Timing Diagram  
1.544 MHz Clock  
Tx Framer Marker  
TS24  
TS1  
LSB  
0
F
MSB  
Tx Serial Data  
T1 Mod Count  
192  
Rx Framer Marker  
TS1  
TS24  
LSB  
0
F
MSB  
Rx Serial Data  
T1 Mod Count  
192  
General Notes:  
In T1, ATM Cells are mapped into time slots 1-24  
®
28529-DSH-001-K  
Mindspeed Technologies  
96  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-31. CN8370 Interface - E1 Timing Diagram  
2.048 MHz Clock  
Tx Framer Marker  
TS0  
TS31  
LSB  
0
MSB  
255  
Tx Serial Data  
T1 Mod Count  
Rx Framer Marker  
TS0  
TS31  
LSB  
0
MSB  
255  
Rx Serial Data  
T1 Mod Count  
General Notes:  
In E1 mode, ATM Cells are mapped inot time slots 1-15 and 17-31 as described in recommendation G.804.  
1.14.2.5.2  
Fractional T1/E1 Interface  
The purpose of the fractional T1/E1 logic is to gate off the serial clocks during inactive timeslots. The fractional T1/  
E1 logic is enabled on a link-by-link basis when in serial mode or on all four links when the interleaved highway  
mode is enabled.  
Figure 1-32 shows an example of fractional T1 timing. In this mode, the clock frequency is 1.544 MHz and the sync  
input is used to indicate active data timeslots. The clocks are gapped internally in the M28525/9 during inactive  
timeslots. ATM cell bytes are continuously mapped into active timeslots.  
®
28529-DSH-001-K  
Mindspeed Technologies  
97  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-32. Fractional T1 Timing.  
sprxclk (1.544 MHz)  
sprxsync  
sprxdata  
sptxclk (1.544 MHz)  
sptxsync  
TS24  
TS24  
F
TS1  
TS2 (inactive)  
TS3  
TS3  
sptxdata  
TS2  
Figure 1-33 shows an example of fractional E1 timing. In Fractional E1 mode, the clock frequency is 2.048 MHz,  
and the sync inputs are used to indicate active data timeslots. The clocks are gapped internally in the M28525/9  
during inactive timeslots. ATM cell bytes are continuously mapped into active timeslots.  
Figure 1-33. Fractional E1 Timing.  
sprxclk (2.048 MHz)  
sprxsync  
sprxdata  
sptxclk (2.048 MHz)  
sptxsync  
TS31  
TS31  
TS0 (overhead)  
TS1 (inactive)  
TS2  
TS3  
TS3  
sptxdata  
TS1  
To enable fractional T1/E1 on a link, the appropriate EnFrac bits must be set in the TC  
Control Registers, (TCCTRL0-TCCTRL7). The PhyType[2:0] bits in the Port Mode Control  
register for the link should also be configured to be in xDSL framing mode (PMODE[2:0] =  
110). CGEN[3] (DSLSyncPol) must also be set to 1.  
NOTE:  
1.14.2.5.3  
DSL Mode Interface  
In DSL mode, the clock frequency can be up to 8.192 MHz. On the receive side, the sync input signals tell the TC  
Port receiver to ignore the corresponding bits on the data bus. This can be used to mask out overhead bits. Other  
than such overhead bits, the receive data stream should contain only serialized ATM cells. On the transmit side,  
sync is an output and is used to indicate the start of cell – the MSB of the first byte of the cell. Only serialized ATM  
data cells are present in the transmit data stream  
The M2852x has a DSL mode interface as illustrated in Figure 1-34. This mode allows connection with framers that  
require frame synchronization. The M2852x receives a data stream from the external framer, performs bit level cell  
®
28529-DSH-001-K  
Mindspeed Technologies  
98  
Mindspeed Proprietary and Confidential  
Functional Description  
delineation, and passes the ATM cells to the ATM layer device. In this mode, the framer must ensure that only ATM  
cells are present in the receive data stream. The M2852x performs the inverse process on transmitted data.  
Figure 1-34. DSL Mode  
DSL Modem  
TxData  
M28529  
SPTxData  
Tx Serial Data  
Tx Sync  
TxSync  
SPTxSync  
SPRxSync  
(1)  
PORT X  
Rx Sync  
Rx Serial Data  
RxData  
SPRxData  
Tx Clock  
Rx Clock  
TxClk  
RxClk  
SPTxClk  
SPRxClk  
Transparent CellTransport  
Bit Clock  
SPTxSync  
MSB  
Tx Serial Data  
(1)  
Rx Serial Data  
OH  
SPRxSync  
General Notes:  
1. RxData is ignored when SPRxSync is asserted based on it's programmable active level. This may be used to mask  
overhead bits in the receive data stream. Polarity is shown as active low in above figure.  
2. TxSync indicates the Start of Cell.  
3. Tx and Rx are asynchronous.  
500027_014  
1.14.2.5.4  
General Purpose Mode Interface  
The M2852x has a general purpose mode interface as illustrated in Figure 1-35. This mode allows connection with  
framers that do not provide frame synchronization. The M2852x receives a data stream from the external framer,  
performs bit level cell delineation, and passes the ATM cells to the ATM layer device. In this mode, the framer must  
ensure that only ATM cells are present in the receive data stream. The M2852x performs the inverse process on  
transmitted data.  
®
28529-DSH-001-K  
Mindspeed Technologies  
99  
Mindspeed Proprietary and Confidential  
Functional Description  
In general purpose framing mode, there is no frame synchronization or overhead bit indicators – the sync inputs  
should be held high. The receive data streams should contain only serialized ATM cells. The transmit data will only  
contained serialized ATM cells.  
Figure 1-35. General Purpose Mode  
Bt8970  
M28529  
SPTxData  
Tx Serial Data  
+3.3 V  
TSER  
SPTxSync  
SPRxSync  
PORT X  
Rx Serial Data  
Clock  
RSER  
BClk  
SPRxData  
SPTxClk  
SPRxClk  
Transparent CellTransport  
(1)  
400 – 1168k clock  
MSB  
Tx Serial Data  
Rx Serial Data  
MSB  
General Notes:  
1. In general purpose mode, the SPTxSync and SPRxSync pins must be held in the active state (active state depends on  
the sync polarity - TxSyncPol and RxSyncPol bits are set in the IOMODE register).  
2. Diagram shows default values for TxClkPol and RxClkPol (IOMODE register).  
500027_014a  
1.14.2.5.5  
Interleaved Highway Interface  
The M2852x has interleaved highway interfaces (8-M28529, 4-M28525) as illustrated in Figure 1-36 and Figure 1-  
37. Four serial data streams can be combined together into one serial data stream using an Interleaved Highway  
interface. This interface is designed to communicate with Mindspeed's CX2839x framer devices, running in  
internally multiplexed mode.  
®
28529-DSH-001-K  
Mindspeed Technologies  
100  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-36. Interfacing Interleaved Highway to CX2839x (Frame Sync Provided by CX2389x)  
RINDO  
RFSYNC  
RPCMO  
RSBCKI  
IHRxINDo  
IHRxSync  
IHRxData  
IHRxClk  
CX2839x  
M28529  
TXINDO  
TFSYNC  
TPCMI  
IHTxInDo  
IHTxSync  
IHTxData  
IHTxClk  
TSBCKI  
Note: Device Configured for Internally  
Multiplexed Mode  
8.152 MHz Receive Clock  
8.152 MHzTransmit Clock  
®
28529-DSH-001-K  
Mindspeed Technologies  
101  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-37. Interfacing Interleaved Highway to CX2839x (Frame Sync Externally Provided)  
RINDO  
RFSYNC  
RPCMO  
RSBCKI  
IHRxINDo  
IHRxSync  
IHRxData  
IHRxClk  
CX2839x  
M28529  
TXINDO  
TFSYNC  
TPCMI  
IHTxInDo  
IHTxSync  
IHTxData  
IHTxClk  
TSBCKI  
Note: Device Configured for Internally  
Multiplexed Mode  
8.152 MHz Receive Clock  
8.152 MHz Transmit Clock  
Receive Frame Sync  
Transmit Frame Sync  
Each Interleaved highway interface carries four separate T1, E1, Fractional T1, or Fractional E1 style data streams  
(32 8-bit timeslots per frame). The data streams are interleaved one timeslot at a time. T1 links are supported over  
the Interleaved Highway interface, by mapping the 24 T1 timeslots (numbered 1-24) into the corresponding E1  
timeslots. The remaining E1 timeslots, 0 and 25-31 are unused.  
The interleaved highway mode can be selected on a per group of four link basis where the groups are as follows:  
Interleaved highway 0: Serial streams 0-3  
Interleaved highway 1: Serial streams 4-7  
Interleaved highway 2: Serial streams 8-11  
Interleaved highway 3: Serial streams 12-15  
Interleaved highway 4: Serial streams 16-19  
Interleaved highway 5: Serial streams 20-23  
Interleaved highway 6: Serial streams 24-27  
Interleaved highway 7: Serial streams 28-31  
Input pins IHRxSync and IHTxSync are provided to indicate the first bit (MSB) of the first timeslot of the first data  
stream, in the receive and transmit directions respectively. The streams are multiplexed in order of the lowest  
numbered stream to highest number.  
®
28529-DSH-001-K  
Mindspeed Technologies  
102  
Mindspeed Proprietary and Confidential  
Functional Description  
Fractional T1/E1 is also supported over the Interleaved Highway interface. Two extra signals, IHRxInDo and  
IHTxInDo, are used to indicate which timeslots are active on each of the data streams. These signals should be  
high for active timeslots.  
Active timeslots in each case are as follows (timeslot 0 is always inactive as it is used for overhead in E1 frames,  
and has no corresponding timeslot in T1 frames):  
Full T1: timeslots 1-24 are used.  
Full E1: timeslots 1-15 and 17-31 are used.  
Fractional T1: subset of timeslots 1-24 is used.  
Fractional E1: subset of timeslots 1-15 and 17-31 are used.  
The Fractional T1/E1 logic is automatically enabled when using the Interleaved Highway interface, to provide the  
necessary internal clock gating. Figure 1-38 shows how the datastreams are combined on the interleave highway.  
In this example time slots 31A and TS0B are inactive as indicated by IHRxInDo being low. If for example Figure 1-  
38 represented Interleaved highway 5, the streams would be grouped as follows: A = Stream 20, B = Stream 21, C  
= Stream 22, D = Stream 23.  
Figure 1-38. Combined Datastreams on the Interleaved Highway  
IHRxClk  
IHRxData  
IHRxInDo  
IHRxSync  
TS31A TS31B TS31C TS31D TS0A TS0B TS0C TS0D  
Figure 1-39. Full T1 Interleaved Highway Frame  
IHRxData  
15  
D
0
A
0
B
0
C
0
D
1
A
1
B
1
C
1
D
2
A
2
B
2
C
2
D
3
A
3
B
3
C
3
D
4
A
4
B
4
C
4
D
5
A
5
B
5
C
5
D
6
A
6
B
6
C
6
D
7
A
7
B
7
C
7
D
8
A
8
B
8
C
8
D
9
A
9
B
9
C
9
D
10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15  
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
IHRxInDo  
IHRxSync  
IHRxData  
(Continued)  
16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28 29 29 29 29 30 30 30 30 31 31 31 31  
A
B
C
D
A
B
A
A
B
A
C
D
A
B
C
D
A
B
C
D
A
B
C
D
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
C
D
A
B
C
A
B
C
D
IHRxInDo  
(Continued)  
IHRxSync  
(Continued)  
Note: Only the transmt frame structure is shown, but the receive frame structure is identical  
®
28529-DSH-001-K  
Mindspeed Technologies  
103  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-40. Full E1 Interleaved Highway Frame  
1
C
1
D
2
A
2
B
2
C
2
D
3
A
3
B
3
C
3
D
4
A
4
B
4
C
4
D
5
A
5
B
5
C
5
D
6
A
6
B
6
C
6
D
7
A
7
B
7
C
7
D
8
A
8
B
8
C
8
D
9
A
9
B
9
C
9
D
10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15  
15  
D
0
A
0
B
0
C
0
D
1
A
1
B
IHRxData  
IHRxInDo  
IHRxSync  
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A B C  
IHRxData  
(Continued)  
16 16 16 16 17 17  
21  
A
29 29  
A B  
D C  
30  
A
17 17 18 18 18 18 19 19 19 19 20 20 20 20  
21 21 21 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27 28 28 28 28  
29 29 30 30 30  
31 31 31 31  
A B C D  
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
IHRxInDo  
(Continued)  
IHRxSync  
(Continued)  
Note: Only the transmt frame structure is shown, but the receive frame structure is identical  
The TC Processors belonging to the Interleaved Highway group should be configured in  
xDSL mode, by setting PhyType to 110 in the Port Mode Control Registers (PMODE[2:0])  
0x04, as this is required when using the Fractional T1/E1 logic. Also, the IOMODE registers  
0x05 should be set to their default values. This is because the clock polarities in Interleaved  
Highway mode are controlled via the TCCTRL registers. Also the Internal sync inputs to the  
TC processor are tied low (inactive state when IOMODE[6] and IOMODE[4] are set to  
default values in xDSL mode) so that they have no effect  
NOTE:  
The T1/E1 streams must be locked to the 8.192 MHz clock rate.  
NOTE:  
Figure 1-41 is a block diagram showing how four serial links are combined.  
®
28529-DSH-001-K  
Mindspeed Technologies  
104  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-41. Interleaved Highway Mux  
Interleaved Highway Group  
TC cell  
processor  
Line interface  
n
TC cell  
processor  
Line interface  
n+1  
4 x 1  
Mux  
TC cell  
processor  
Line interface  
n+2  
Line interface  
n+3  
TC cell  
processor  
1.15  
General Issues  
1.15.1  
Micro Interface  
The microprocessor interface transfers control and status information in 8-bit data transfers between the external  
microprocessor and M2852x by means of write and/or read access to internal registers. This interface allows the  
microprocessor to configure the M2852x by writing various control registers. These control registers can also be  
read for configuration confirmation. This interface also provides the ability to read the device’s current condition via  
its status registers and counters. Summary status is available for rapid interrupt identification.  
The microprocessor interface can operate in either an asynchronous mode or a synchronous mode. The  
MSyncMode (pin AE24) determines which mode is active.  
In the synchronous mode, the timing of these signals is synchronized to MicroClk, which is intended to be directly  
driven by the external microprocessor.  
The MicroClk is required for both modes. In asynchronous mode, a MicroClk frequency of  
up to 66MHz, must be present but can be asynchronous to the other microprocessor  
signals. In synchronous mode, MicroClk is limited to 25MHz.  
NOTE:  
1.15.1.1  
Resets  
There are four software controlled reset functions, two at the device level and two at the port level. The two levels  
allow a user to reset either the entire M2852x with one command or only a port within the device. The two logic  
resets allow the user to keep the device or port in a reset state while the control registers are being programmed.  
When the reset bit is deasserted, all changes to the registers take place simultaneously.  
®
28529-DSH-001-K  
Mindspeed Technologies  
105  
Mindspeed Proprietary and Confidential  
Functional Description  
At the device level, the software-controlled DevMstRst, bit 7, in the GENCTRL register (0x0F00), restarts all device  
functions and sets the control and status registers, including IMA, to their default values except this bit  
(DevMstRst). The DevLgcRst, bit 6, in the GENCTRL register (0x0F00) restarts all device functions in the TC block  
but leaves all control registers unaffected. During a device logic reset the IMA core is held in a complete reset  
state.  
If configuring the device for pass-through operation, a minimum delay of 25 uS for  
IMA_Sysclk of 66 MHz or 33 uS for IMA_Sysclk of 50 MHz is required from the release of  
device reset (DevMstRst) to the first access of the IMA_RX_TRANS_TABLE register or  
IMA_RX_ATM_TRANS_TABLE register (0x818/0x819).  
NOTE:  
At the port level, the PrtMstRst, bit 7, in the PMODE register (0x04), restarts all port functions and sets the  
registers for the associated port to their default values except this bit (PrtMstRst). The PrtLgcRst, bit 6, in the  
PMODE register (0x04) restarts all functions but leaves the port control registers unaffected.  
1.15.1.2  
Counters (TC Block Only)  
The M2852x counters record events within the TC block. Two types of events are recorded: error events, such as  
Section BIP errors, and transmission events, such as transmitted ATM cells.  
Counters comprised of more than one register must be accessed by reading the least significant byte (LSB) first.  
This guarantees that the value contained in each component register accurately reflects the composite counter  
value at the time the LSB was read, because the counter may be updated while the component registers are being  
read.  
Each counter is large enough to accommodate the maximum number of events that may occur within a one-second  
interval. The counters are cleared after being read. Therefore, if the counters are read every second, the  
application will receive an accurate recording of all events.  
1.15.1.2.1  
One-second Latching  
The M2852x’s implementation of one-second latching ensures the integrity of the statistics being gathered by the  
network management software. Internal statistics counters can be latched at one-second intervals, which are  
synchronized to the OneSecIO pin (pin AE26). Therefore, the data read from the statistic counters represents the  
same one second of real-time data, independent of network management software timing.  
The M2852x implements one-second latching for both status signals and counter values. When the EnStatLat (bit  
5) in the GENCTRL register (0xF00) is written to a logical 1, a read from any of the status registers returns the  
state of the device at the time of the previous OneSecIO (pin AE26) assertion. When the EnCntrLat (bit 4) in the  
GENCTRL register (0xF00) is written to a logical 1, a read from any of the counters returns the state of the device  
at the time of the previous OneSecIO (pin AE26) assertion. Every second, the counter is read, moved to the latch,  
and the counter is cleared. The latch is cleared when read.  
Software can configure the OneSecIO pin as an output that equals the input from the 8kHzIn divided by 8000.  
When configured as an input, status registers and counters may be latched on the rising edge of this input. See Bit  
0 of the GENCTRL register (0xF00).  
When latching is disabled and a counter is wider than one byte, the LSB should be read first  
to retain the values of the other bytes for a subsequent read.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
106  
Mindspeed Proprietary and Confidential  
Functional Description  
1.15.1.2.2  
Interrupts  
The M2852x’s interrupt indications can be classified as either single- or dual-event; a single-event interrupt is  
triggered by a status assertion; a dual-event interrupt is triggered by either a status assertion or deassertion. Both  
types of interrupts are further described in the following examples.  
Single-event interrupt: When a parity error occurs on the UTOPIA transmit data bus, an interrupt is generated on  
ParErrInt, bit 7, in the TXCELLINT register (0x2C). This bit is cleared when read.  
Dual-event interrupt: When LOCD occurs, bit 7 of the corresponding RXCELLINT register (0x0D) is set to 1. This  
bit is cleared when the register is read. Once cell delineation is recovered, bit 7 is set to 1 again, generating  
another interrupt.  
All interrupt bits have a corresponding enable bit. This allows software to disable or mask interrupts as required.  
The IMA block does not generate interrupts.  
NOTE:  
The M2852x uses three levels of interrupt indications. The first level consists of receive or transmit interrupt  
indications, which correspond to specific events on a specific port. The second level summarizes first level  
interrupts and indicates framer and one-second interrupts for each port. The third level indicates which port  
generated an interrupt.  
The first level interrupt indications are located in registers TXCELLINT and RXCELLINT for each port. Each  
interrupt bit in these registers can be disabled in the corresponding ENCELLR or ENCELLT register, respectively.  
The result is then ORed into the appropriate bit in the port’s SUMINT register.  
The second level consists of summary interrupt indications, located in the SUMINT register. It also includes the  
OneSecInt and the ExInt indications. Each interrupt bit in these registers can be disabled in the corresponding  
ENSUMINT register. The result is then ORed into the appropriate bit in the SUMPORT register.  
The third level contains the overall interrupt indications for each port in the SUMPORT register. These bits can be  
disabled in the ENSUMPORT register. The result is ORed to the MicroInt* pin. The MicroInt* pin can be enabled or  
disabled by setting the EnIntPin (bit 3) in the GENCTRL register (0x0F00).  
Figure 1-42 illustrates the flow chart of the interrupt generation process and Figure 1-43 illustrates the registers  
involved in the interrupt generation process.  
®
28529-DSH-001-K  
Mindspeed Technologies  
107  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-42. Interrupt Indication Flow Chart  
TXCELLINT or RXCELLINT Event Occurs  
Return  
Individual  
Interrupt  
Indication  
Enabled  
?
No  
Yes  
Set Individual Interrupt Indication Bit  
SUMINT  
No  
Interrupt  
Indication  
Enabled  
?
OneSecInt or ExInt Event Occurs  
Yes  
Set SUMINT Interrupt Indication Bit  
SUMPORT  
No  
Port  
Indication  
Enabled  
?
Yes  
Set SUMPORT Interrupt Indication Bit  
Interrupt  
No  
Pin  
(MInt*)  
Enabled  
?
Yes  
Set Interrupt Pin (MInt*)  
500027_015  
®
28529-DSH-001-K  
Mindspeed Technologies  
108  
Mindspeed Proprietary and Confidential  
Functional Description  
Figure 1-43. Interrupt Indication Diagram (TC Block)  
SUMPORT3 (0xF0B)  
PortInt31  
7
6
5
4
3
2
1
0
PortInt24  
Input to Latch Enabled by  
ENSUMPORT3 (0xF0C)  
TXCELLINT (0x1EC)  
ParErrInt  
SOCErrInt  
TxOvflInt  
7
6
5
4
3
SUMINT (0x1C0)  
MicroInt  
RxOvflInt  
CellSentInt  
Resvd  
Resvd  
Resvd  
Resvd  
Resvd  
7
6
5
4
3
2
1
0
Resvd  
Resvd  
Resvd  
Resvd  
TxCellInt  
RxCellInt  
2
1
0
RXCELLINT (0x1ED)  
LOCDInt  
HECDetInt  
HECCorrInt  
7
6
5
4
3
2
1
0
SUMPORT0 (0xF05)  
7
6
5
4
3
2
1
0
Input to Latch Enabled by  
ENSUMINT  
Resvd  
CellRcvInt  
IdleRcvInt  
NonMatchInt  
NonZerGFCInt  
Input to Latch Enabled by  
ENSUMPORT0 (0xF06)  
TXCELLINT (0x02C)  
ParErrInt  
7
6
5
4
3
SOCErrInt  
TxOvflInt  
RxOvflInt  
CellSentInt  
Resvd  
SUMINT (0x000)  
Resvd  
Resvd  
Resvd  
Resvd  
7
6
5
4
3
2
1
0
2
1
0
OneSecInt  
Resvd  
Resvd  
Resvd  
Resvd  
TxCellInt  
RxCellInt  
Input to Latch Enabled by  
ENONESECINT (0xF19)  
RXCELLINT (0x02D)  
LOCDInt  
HECDetInt  
HECCorrInt  
7
6
5
4
3
Input to Latch Enabled by  
ENSUMINT  
Resvd  
CellRcvInt  
IdleRcvInt  
NonMatchInt  
NonZerGFCInt  
2
1
0
®
28529-DSH-001-K  
Mindspeed Technologies  
109  
Mindspeed Proprietary and Confidential  
Functional Description  
1.15.1.2.3  
Interrupt Servicing  
When an interrupt occurs on the MicroInt* pin (pin AA1), it could have been generated by any of 385 events. The  
M2852x’s interrupt indication structure ensures that no more than a maximum of seven register reads are needed  
to determine the source of an interrupt. The interrupt is traced back to its source using the following steps:  
1. Read the SUMPORT0-3 registers and the ONESECINT register to see which port(s) shows an interrupt and/or  
whether there was a one second interrupt.  
2. Read the appropriate SUMINT register to see which bit(s) shows an interrupt.  
Bit 0, RxCellInt, reflects activity in the RXCELLINT register.  
Bit 1, TxCellInt, reflects activity in the TXCELLINT register.  
Bits 2–7 are reserved.  
3. If necessary, read the appropriate TXCELLINT or RXCELLINT register.  
All Level 1 bits are cleared when the register is read. Once the register is read, ALL bits in that register are reset to  
their default values. Therefore, interrupt service routines must be designed to handle multiple interrupts in the  
same registers. In Level 2, OneSecInt and ExInt are cleared when the register is read. However, the TxCellInt and  
RxCellInt bits are cleared only when the corresponding Level 1 register is read and cleared. Level 3 bits are cleared  
when the entire corresponding Level 2 register has been read and cleared.  
®
28529-DSH-001-K  
Mindspeed Technologies  
110  
Mindspeed Proprietary and Confidential  
2.0 Registers  
2.1  
Address Map  
The M2852x registers control and observe the device’s operations. Table 2-1 lists the address ranges that  
represent a device control and status range. The registers in each port range are replicated for the other ports.  
Table 2-2 lists the device-level control and status registers. Table 2-3 lists the port-level control and status registers.  
All registers are 8 bits wide. All control registers can be read to verify contents.  
Control bits that do not have a documented function are reserved and must be written to a  
logical 0.  
NOTE:  
Table 2-1.  
Address Ranges (1 of 2)  
Port Offset  
Address Range (Hex)  
Port Base Address  
(Hex)  
Description  
0000–003F  
0040–007F  
0080–00BF  
00C0–00FF  
0100–013F  
0140–017F  
0180–01BF  
01C0–01FF  
0200-023F  
0240-027F  
0280-02BF  
02C0-02FF  
0300-033F  
0340-037F  
0380-03BF  
03C0-03FF  
0400-043F  
0440-047F  
0480-04BF  
Port 0 Control and Status Registers  
Port 1 Control and Status Registers  
Port 2 Control and Status Registers  
Port 3 Control and Status Registers  
Port 4 Control and Status Registers  
Port 5 Control and Status Registers  
Port 6 Control and Status Registers  
Port 7 Control and Status Registers  
Port 8 Control and Status Registers  
Port 9 Control and Status Registers  
Port 10 Control and Status Registers  
Port 11 Control and Status Registers  
Port 12 Control and Status Registers  
Port 13 Control and Status Registers  
Port 14 Control and Status Registers  
Port 15 Control and Status Registers  
Port 16 Control and Status Registers  
Port 17 Control and Status Registers  
Port 18 Control and Status Registers  
0000  
0040  
0080  
00C0  
0100  
0140  
0180  
01C0  
0200  
0240  
0280  
02C0  
0300  
0340  
0380  
03C0  
0400  
0440  
0480  
®
28529-DSH-001-K  
Mindspeed Technologies  
111  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-1.  
Address Ranges (2 of 2)  
Port Offset  
Address Range (Hex)  
Port Base Address  
(Hex)  
Description  
04C0-04FF  
0500-053F  
0540-057F  
0580-05BF  
05C0-05FF  
0600-063F  
0640-067F  
0680-06BF  
06C0-06FF  
0700-073F  
0740-077F  
0780-07BF  
07C0-07FF  
0800-0EFF  
0F00-0FFF  
Port 19 Control and Status Registers  
Port 20 Control and Status Registers  
Port 21 Control and Status Registers  
Port 22 Control and Status Registers  
Port 23 Control and Status Registers  
Port 24 Control and Status Registers  
Port 25 Control and Status Registers  
Port 26 Control and Status Registers  
Port 27 Control and Status Registers  
Port 28 Control and Status Registers  
Port 29 Control and Status Registers  
Port 30 Control and Status Registers  
Port 31 Control and Status Registers  
IMA Control and Status Registers  
Device Control and Status Registers  
04C0  
0500  
0540  
0580  
05C0  
0600  
0640  
0680  
06C0  
0700  
0740  
0780  
07C0  
The device level registers in Table 2-2 provide control for the device’s major operating modes, as well as status and  
control for summary interrupts.  
Table 2-2.  
Device Control and Status Registers (1 of 2)  
OneSec  
Latching  
Page  
Number  
Address  
Name  
Type  
Description  
0x0F00  
0x0F01  
0x0F02  
0x0F03  
0x0F04  
0x0F05  
0x0F06  
0x0F07  
0x0F08  
0x0F09  
0x0F0A  
0x0F0B  
0x0F0C  
0x0F0D  
GENCTRL  
R/W  
R/W  
R/W  
R/W  
R
General Device Control Register  
page 179  
page 179  
page 180  
page 180  
page 180  
page 181  
page 181  
page 182  
page 182  
page 183  
page 183  
page 184  
page 184  
PARTNUM  
PHYINTFC  
Part and Version Number  
PHY-side Interface Control Register  
ATMINTFC  
STATOUT  
ATM-side Interface Control Register  
Output Status Control Register  
SUMPORT0  
ENSUMPORT0  
SUMPORT1  
ENSUMPORT1  
SUMPORT2  
ENSUMPORT2  
SUMPORT3  
ENSUMPORT3  
R/W  
R
Summary Interrupt Status Register (TC Ports 0-7)  
Summary Interrupt Control Register (TC Ports 0-7)  
Summary Interrupt Status Register (TC Ports 8-15)  
Summary Interrupt Control Register (TC Ports 8-15)  
Summary Interrupt Status Register (TC Ports 16-23)  
Summary Interrupt Control Register (TC Ports 16-23)  
Summary Interrupt Status Register (TC Ports 24-31)  
Summary Interrupt Control Register (TC Ports 24-31)  
Reserved, set register to all 0’s  
R/W  
R
R/W  
R
R/W  
R
®
28529-DSH-001-K  
Mindspeed Technologies  
112  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-2.  
Device Control and Status Registers (2 of 2)  
OneSec  
Latching  
Page  
Number  
Address  
Name  
Type  
Description  
0x0F0E  
0x0F0F  
0x0F10  
0x0F11  
0x0F12  
0x0F13  
0x0F14  
0x0F15  
0x0F16  
0x0F17  
0x0F18  
0x0F19  
Reserved, set register to all 0’s  
SCRATCH  
TCCTRL0  
TCCTRL1  
TCCTRL2  
TCCTRL3  
TCCTRL4  
TCCTRL5  
TCCTRL6  
TCCTRL7  
ONESECINT  
ENONESECINT  
Scratch Pad Register  
page 184  
page 185  
page 185  
page 186  
page 186  
page 187  
page 187  
page 188  
page 188  
page 188  
page 189  
TC Control Register for TC Ports 0-3  
TC Control Register for TC Ports 4-7  
TC Control Register for TC Ports 8-11  
TC Control Register for TC Ports 12-15  
TC Control Register for TC Ports 16-19  
TC Control Register for TC Ports 20-23  
TC Control Register for TC Ports 24-27  
TC Control Register for TC Ports 28-31  
One Second Interrupt Status Register  
One Second Interrupt Control Register  
The registers listed in Table 2-3 are replicated for each port. Two methods can be used to determine the exact  
address of a specific register in a specific port. All numbers are in hexadecimal.  
1. Add the port offset address to the port base address as shown in Table 2-1. For example:  
For Port 3, IOMODE register 0xC0 (Port 3 base address) + 0x05 (port offset address) = 0xC5  
2. Use the following formula:  
0x40 (port register map size) × n (port number) + port offset address = exact register address  
Table 2-3.  
Port Control and Status Registers (1 of 3)  
Port Offset  
Address  
One-second  
Latching  
Page  
Number  
Name  
Type  
Description  
0x00  
0x01  
0x02  
SUMINT  
R
Summary Interrupt Indication Status Register  
Summary Interrupt Control Register  
Reserved, set to a logical 0  
page 150  
page 151  
ENSUMINT  
R/W  
0x03  
Reserved, set to a logical 0  
PMODE  
IOMODE  
CGEN  
0x04  
0x05  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Port Mode Control Register  
page 152  
page 153  
page 154  
page 155  
page 155  
page 156  
page 156  
page 157  
page 157  
Input/Output Mode Control Register  
Cell Generation Control Register  
Header Field Control Register  
Transmit Idle Cell Payload Control Register  
Error Pattern Control Register  
Cell Validation Control Register  
UTOPIA Control Register 1  
HDRFIELD  
IDLPAY  
ERRPAT  
CVAL  
UTOP1  
UTOP2  
UTOPIA Control Register 2  
®
28529-DSH-001-K  
Mindspeed Technologies  
113  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-3.  
Port Control and Status Registers (2 of 3)  
Port Offset  
Address  
One-second  
Latching  
Page  
Number  
Name  
Type  
Description (Continued)  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
UDF2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UDF2 Control Register  
page 158  
page 158  
page 159  
page 159  
page 160  
page 160  
page 161  
page 161  
page 162  
page 162  
page 163  
page 163  
page 164  
page 164  
page 165  
page 165  
page 166  
page 166  
page 167  
page 167  
page 168  
page 168  
page 169  
page 169  
page 170  
page 170  
page 171  
TXHDR1  
TXHDR2  
TXHDR3  
TXHDR4  
TXIDL1  
Transmit Cell Header Control Register 1  
Transmit Cell Header Control Register 2  
Transmit Cell Header Control Register 3  
Transmit Cell Header Control Register 4  
Transmit Idle Cell Header Control Register 1  
Transmit Idle Cell Header Control Register 2  
Transmit Idle Cell Header Control Register 3  
Transmit Idle Cell Header Control Register 4  
Receive Cell Header Control Register 1  
Receive Cell Header Control Register 2  
Receive Cell Header Control Register 3  
Receive Cell Header Control Register 4  
Receive Cell Mask Control Register 1  
Receive Cell Mask Control Register 2  
Receive Cell Mask Control Register 3  
Receive Cell Mask Control Register 4  
Receive Idle Cell Header Control Register 1  
Receive Idle Cell Header Control Register 2  
Receive Idle Cell Header Control Register 3  
Receive Idle Cell Header Control Register 4  
Receive Idle Cell Mask Control Register 1  
Receive Idle Cell Mask Control Register 2  
Receive Idle Cell Mask Control Register 3  
Receive Idle Cell Mask Control Register 4  
Transmit Cell Interrupt Control Register  
Receive Cell Interrupt Control Register  
Reserved, set to a logical 0  
TXIDL2  
TXIDL3  
TXIDL4  
RXHDR1  
RXHDR2  
RXHDR3  
RXHDR4  
RXMSK1  
RXMSK2  
RXMSK3  
RXMSK4  
RXIDL1  
RXIDL2  
RXIDL3  
RXIDL4  
IDLMSK1  
IDLMSK2  
IDLMSK3  
IDLMSK4  
ENCELLT  
ENCELLR  
0x2B  
Reserved, set to a logical 0  
TXCELLINT  
RXCELLINT  
TXCELL  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
R
R
R
R
R
R
Transmit Cell Interrupt Indication Control Register  
Receive Cell Interrupt Indication Control Register  
Transmit Cell Status Control Register  
Receive Cell Status Control Register  
page 171  
page 172  
page 172  
page 173  
page 173  
page 174  
(1)  
(1)  
(2)  
(2)  
RXCELL  
IDLCNTL  
IDLCNTH  
Idle Cell Receive Counter (low byte)  
Idle Cell Receive Counter (high byte)  
®
28529-DSH-001-K  
Mindspeed Technologies  
114  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-3.  
Port Control and Status Registers (3 of 3)  
Port Offset  
Address  
One-second  
Latching  
Page  
Number  
Name  
Type  
Description (Continued)  
0x33  
0x34  
0x35  
0x37  
0x38  
0x39  
0x3B  
0x3C  
0x3D  
0x3E  
LOCDCNT  
R
R
R
R
R
R
R
R
R
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
LOCD Event Counter  
page 174  
page 175  
page 175  
page 176  
page 176  
page 177  
page 177  
page 178  
page 178  
TXCNTL  
Transmitted Cell Counter (low byte)  
Transmitted Cell Counter (high byte)  
Corrected HEC Error Counter  
TXCNTH  
CORRCNT  
RXCNTL  
RXCNTH  
UNCCNT  
NONCNTL  
NONCNTH  
Received Cell Counter (low byte)  
Received Cell Counter (high byte)  
Uncorrected HEC Error Counter  
Non-Matching Cell Counter (low byte)  
Non-Matching Cell Counter (high byte)  
Reserved, set to a logical 0  
0x3F  
Reserved, set to a logical 0  
Footnote:  
(1) One-second latching is enabled by setting EnStatLat (bit 5) in the GENCTRL register (0xF00) to a logical 1.  
(2) One-second latching is enabled by setting EnCntrLat (bit 4) in the MODE register (0xF00) to a logical 1.  
Table 2-4 lists the control registers used for transmission of traffic.  
Table 2-4.  
Cell Transmit Registers  
Port Offset  
Address  
Page  
Number  
Name  
Description  
0x08  
0x09  
0x0A  
0x0B  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
CGEN  
Cell Generation Control Register  
Header Field Control Register  
page 154  
page 155  
page 155  
page 156  
page 158  
page 159  
page 159  
page 160  
page 160  
page 161  
page 161  
page 162  
HDRFIELD  
IDLPAY  
ERRPAT  
TXHDR1  
TXHDR2  
TXHDR3  
TXHDR4  
TXIDL1  
TXIDL2  
TXIDL3  
TXIDL4  
Transmit Idle Cell Payload Control Register  
Error Pattern Control Register  
Transmit Cell Header Control Register 1  
Transmit Cell Header Control Register 2  
Transmit Cell Header Control Register 3  
Transmit Cell Header Control Register 4  
Transmit Idle Cell Header Control Register 1  
Transmit Idle Cell Header Control Register 2  
Transmit Idle Cell Header Control Register 3  
Transmit Idle Cell Header Control Register 4  
Table 2-5 lists the control registers used for reception of traffic.  
®
28529-DSH-001-K  
Mindspeed Technologies  
115  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-5.  
Cell Receive Registers  
Port Offset  
Address  
Page  
Number  
Name  
Description  
0x0C  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
CVAL  
Cell Validation Control Register  
page 156  
page 162  
page 163  
page 163  
page 164  
page 164  
page 165  
page 165  
page 166  
page 166  
page 167  
page 167  
page 168  
page 168  
page 169  
page 169  
page 170  
RXHDR1  
RXHDR2  
RXHDR3  
RXHDR4  
RXMSK1  
RXMSK2  
RXMSK3  
RXMSK4  
RXIDL1  
Receive Cell Header Control Register 1  
Receive Cell Header Control Register 2  
Receive Cell Header Control Register 3  
Receive Cell Header Control Register 4  
Receive Cell Mask Control Register 1  
Receive Cell Mask Control Register 2  
Receive Cell Mask Control Register 3  
Receive Cell Mask Control Register 4  
Receive Idle Cell Header Control Register 1  
Receive Idle Cell Header Control Register 2  
Receive Idle Cell Header Control Register 3  
Receive Idle Cell Header Control Register 4  
Receive Idle Cell Mask Control Register 1  
Receive Idle Cell Mask Control Register 2  
Receive Idle Cell Mask Control Register 3  
Receive Idle Cell Mask Control Register 4  
RXIDL2  
RXIDL3  
RXIDL4  
IDLMSK1  
IDLMSK2  
IDLMSK3  
IDLMSK4  
Table 2-6 lists the control registers for the UTOPIA operations.  
Table 2-6.  
UTOPIA Registers  
Port Offset  
Address  
Page  
Number  
Name  
Description  
0x0D  
0x0E  
UTOP1  
UTOP2  
UTOPIA Control Register 1  
UTOPIA Control Register 2  
page 157  
page 157  
®
28529-DSH-001-K  
Mindspeed Technologies  
116  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-7 and Table 2-8 list interrupt enables, interrupt indications, and status information.  
Table 2-7.  
Status and Interrupt Registers  
Page  
Number  
Port Address  
Name  
Description  
0xF05  
0xF06  
0xF07  
0xF08  
0xF09  
0xF0A  
0xF0B  
0xF0C  
SUMPORT0  
Summary Port Interrupt Status Register 0  
Summary Port Interrupt Control Register 0  
page 181  
page 181  
page 182  
page 182  
page 183  
page 183  
page 184  
page 184  
ENSUMPORT0  
SUMPORT1  
Summary Port Interrupt Status Register 1  
Summary Port Interrupt Control Register 1  
Summary Port Interrupt Status Register 2  
Summary Port Interrupt Control Register 2  
Summary Port Interrupt Status Register 3  
Summary Port Interrupt Control Register 3  
ENSUMPORT1  
SUMPORT2  
ENSUMPORT2  
SUMPORT3  
ENSUMPORT3  
Table 2-8.  
Status and Interrupt Registers (Offset Registers)  
Name Description  
Port Offset  
Address  
Page  
Number  
0x00  
0x01  
0x28  
0x29  
0x2C  
0x2D  
0x2E  
0x2F  
SUMINT  
Summary Interrupt Indication Status Register  
Summary Interrupt Control Register  
Transmit Cell Interrupt Control Register  
Receive Cell Interrupt Control Register)  
Transmit Cell Interrupt Indication Status Register  
Receive Cell Interrupt Indication Status Register  
Transmit Cell Status Register  
page 150  
page 151  
page 170  
page 171  
page 171  
page 172  
page 172  
page 173  
ENSUMINT  
ENCELLT  
ENCELLR  
TXCELLINT  
RXCELLINT  
TXCELL  
RXCELL  
Receive Cell Status Register  
®
28529-DSH-001-K  
Mindspeed Technologies  
117  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-9 lists the M2852x’s counters. When the counters fill, they saturate and do not roll over. The counts have  
been sized to ensure against saturation within a one-second interval. Therefore, when one-second latching is  
enabled, the counters are read and cleared before they can saturate. All counters are cleared when read.  
Table 2-9.  
Counters  
Port Offset  
Address  
Page  
Number  
Name  
Description  
0x30  
0x31  
0x33  
0x34  
0x35  
0x37  
0x38  
0x39  
0x3B  
0x3C  
0x3D  
IDLCNTL  
IDLCNTH  
LOCDCNT  
TXCNTL  
Idle Cell Receive Counter [Low Byte]  
Idle Cell Receive Counter [High Byte]  
LOCD Event Counter  
page 173  
page 174  
page 174  
page 175  
page 175  
page 176  
page 176  
page 177  
page 177  
page 178  
page 178  
Transmitted Cell Counter [Low Byte]  
Transmitted Cell Counter [High Byte]  
Corrected HEC Error Counter  
TXCNTH  
CORRCNT  
RXCNTL  
RXCNTH  
UNCCNT  
NONCNTL  
NONCNTH  
Received Cell Counter [Low Byte]  
Received Cell Counter [High Byte]  
Uncorrected HEC Error Counter  
Non-matching Cell Counter [Low Byte]  
Non-matching Cell Counter [High Byte]  
Table 2-10 lists IMA control and status information.  
Table 2-10. IMA Control and Status Registers (1 of 33)  
Page  
Number  
Address  
Name  
Description  
0x800  
0x801  
0x802  
0x803  
0x804  
0x805  
0x806  
0x807  
0x808  
0x809  
0x80a  
0x80b  
0x80c  
0x80e  
0x80f  
0x810  
IMA_VER_1_CONFIG  
IMA_VER_2_CONFIG  
Device Version I  
page 189  
page 189  
page 190  
page 190  
page 191  
page 191  
page 192  
page 192  
page 192  
page 192  
page 192  
page 193  
page 194  
page 194  
page 194  
page 195  
Device Version II  
IMA_SUBSYS_CONFIG  
IMA_MISC_STATUS  
Configuration Control  
Miscellaneous Status  
Miscellaneous Control  
Memory Test Address  
Memory Test Address  
Memory Test Control  
Memory Test Data  
IMA_MISC_CONFIG  
IMA_MEM_LOW_TEST  
IMA_MEM_HI_TEST  
IMA_MEM_TEST_CTL  
IMA_MEM_TEST_DATA  
IMA_LNK_DIAG_CTL  
IMA_LNK_DIFF_DEL  
IMA_RCV_LNK_ANOMALIES  
IMA_PHY_LOOPBACK  
IMA_DIAG_XOR_BIT  
IMA_DIAG  
Link Diagnostic Control  
Link Differential Delay  
Receive Link Anomalies  
IMA Phy Side UTOPIA Loopback  
Address Diagnostic  
Diagnostic Register  
IMA_TIM_REF_MUX_CTL_ADDR  
TRL Control Address  
®
28529-DSH-001-K  
Mindspeed Technologies  
118  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (2 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x811  
0x812  
0x813  
0x814  
0x815  
0x816  
0x817  
0x818  
0x819  
0x81b  
0x81c  
0x81e  
0x81f  
0x91f  
0xa1f  
0xb1f  
0xc1f  
0xc9f  
0xd1f  
0xd9f  
IMA_TIM_REF_MUX_CTL_DATA  
IMA_RX_PERSIST_CONFIG  
IMA_ATM_UTOPIA_BUS_CTL  
IMA_DIFF_DELAY_ADDR  
IMA_DIFF_DELAY_DATA  
IMA_DSL_CLOCK_GEN_ADDR  
IMA_DSL_CLOCK_GEN_DATA  
IMA_RX_TRANS_TABLE  
IMA_RX_ATM_TRANS_TABLE  
IMA_TX_TRANS_TABLE  
IMA_TX_ATM_TRANS_TABLE  
IMA_LNK_SEM  
TRL Control Data  
page 196  
page 197  
page 197  
page 198  
page 198  
page 199  
page 200  
page 201  
page 202  
page 203  
page 203  
page 230  
page 204  
page 204  
page 205  
page 206  
page 206  
page 207  
page 207  
page 208  
Receive Persistence  
ATM UTOPIA Control  
Diff. Delay Control Address  
Diff. Delay Control Data  
DSL Clock Generator Control Address  
DSL Clock Generator Control Data  
Receive Translation Table Address  
Receive Translation Table Internal Channel  
Transmit Translation Table Address  
Transmit Translation Table Internal Channel  
Link Table Control  
IMA_GRP_1TO4_SEM  
Groups 1–4 Table Control  
IMA_GRP_5TO8_SEM  
Groups 5–8 Table Control  
IMA_GRP_9TO12_SEM  
IMA_GRP_13TO16_SEM  
IMA_GRP_17TO20_SEM  
IMA_GRP_21TO24_SEM  
IMA_GRP_25TO28_SEM  
IMA_GRP_29TO32_SEM  
Groups 9–12 Table Control  
Groups 13–16 Table Control  
Groups 17–20 Table Control  
Groups 21–24 Table Control  
Groups 25–28 Table Control  
Groups 29–32 Table Control  
Transmit Groups 1–4 Configuration Tables  
0x820  
0x821  
0x822  
0x823  
0x824  
0x825  
0x826  
0x827  
0x828  
0x829  
0x82a  
0x82b  
0x82c  
0x82d  
IMA_TX_GRP1_RX_TEST_PATTERN  
IMA_TX_GRP1_CTL  
Tx GRP 1 Rx Test Pattern  
Tx GRP 1 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
IMA_TX_GRP1_FIRST_PHY_ADDR  
IMA_TX_GRP1_ID  
Tx GRP 1 First Link Address  
Tx GRP 1 Tx Group ID  
Tx GRP 1 Status / Control  
Tx GRP 1 Timing Control  
Tx GRP 1 Test Control  
Tx GRP 1 Tx Test Pattern  
Tx GRP 2 Rx Test Pattern  
Tx GRP 2 Control  
IMA_TX_GRP1_STAT_CTL  
IMA_TX_GRP1_TIMING_INFO  
IMA_TX_GRP1_TEST_CTL  
IMA_TX_GRP1_TX_TEST_PATTERN  
IMA_TX_GRP2_RX_TEST_PATTERN  
IMA_TX_GRP2_CTL  
IMA_TX_GRP2_FIRST_PHY_ADDR  
IMA_TX_GRP2_ID  
Tx GRP 2 First Link Address  
Tx GRP 2 Tx Group ID  
Tx GRP 2 Status / Control  
Tx GRP 2 Timing Control  
IMA_TX_GRP2_STAT_CTL  
IMA_TX_GRP2_TIMING_INFO  
®
28529-DSH-001-K  
Mindspeed Technologies  
119  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (3 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x82e  
0x82f  
0x830  
0x831  
0x832  
0x833  
0x834  
0x835  
0x836  
0x837  
0x838  
0x839  
0x83a  
0x83b  
0x83c  
0x83d  
0x83e  
0x83f  
IMA_TX_GRP2_TEST_CTL  
Tx GRP 2 Test Control  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP2_TX_TEST_PATTERN  
IMA_TX_GRP3_RX_TEST_PATTERN  
IMA_TX_GRP3_CTL  
Tx GRP 2 Tx Test Pattern  
Tx GRP 3 Rx Test Pattern  
Tx GRP 3 Control  
IMA_TX_GRP3_FIRST_PHY_ADDR  
IMA_TX_GRP3_ID  
Tx GRP 3 First Link Address  
Tx GRP 3 Tx Group ID  
Tx GRP 3 Status / Control  
Tx GRP 3 Timing Control  
Tx GRP 3 Test Control  
Tx GRP 3 Tx Test Pattern  
Tx GRP 4 Rx Test Pattern  
Tx GRP 4 Control  
IMA_TX_GRP3_STAT_CTL  
IMA_TX_GRP3_TIMING_INFO  
IMA_TX_GRP3_TEST_CTL  
IMA_TX_GRP3_TX_TEST_PATTERN  
IMA_TX_GRP4_RX_TEST_PATTERN  
IMA_TX_GRP4_CTL  
IMA_TX_GRP4_FIRST_PHY_ADDR  
IMA_TX_GRP4_ID  
Tx GRP 4 First Link Address  
Tx GRP 4 Tx Group ID  
Tx GRP 4 Status / Control  
Tx GRP 4 Timing Control  
Tx GRP 4 Test Control  
Tx GRP 4 Tx Test Pattern  
IMA_TX_GRP4_STAT_CTL  
IMA_TX_GRP4_TIMING_INFO  
IMA_TX_GRP4_TEST_CTL  
IMA_TX_GRP4_TX_TEST_PATTERN  
Tx UTOPIA Addresses 0 - 3 Cell Counters  
0x840  
0x841  
0x842  
0x843  
0x844  
0x845  
0x846  
0x847  
IMA_TX_ATM0_CELL_COUNT_LSB  
IMA_TX_ATM0_CELL_COUNT_MSB  
IMA_TX_ATM1_CELL_COUNT_LSB  
IMA_TX_ATM1_CELL_COUNT_MSB  
IMA_TX_ATM2_CELL_COUNT_LSB  
IMA_TX_ATM2_CELL_COUNT_MSB  
IMA_TX_ATM3_CELL_COUNT_LSB  
IMA_TX_ATM3_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x00 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x00 Cell Count MSBs  
Transmit UTOPIA Address 0x01 Cell Count LSBs  
Transmit UTOPIA Address 0x01 Cell Count MSBs  
Transmit UTOPIA Address 0x02 Cell Count LSBs  
Transmit UTOPIA Address 0x02 Cell Count MSBs  
Transmit UTOPIA Address 0x03 Cell Count LSBs  
Transmit UTOPIA Address 0x03 Cell Count MSBs  
Rx UTOPIA Addresses 0 - 3 Cell Counters  
0x850  
0x851  
0x852  
0x853  
0x854  
0x855  
0x856  
0x857  
IMA_RX_ATM0_CELL_COUNT_LSB  
IMA_RX_ATM0_CELL_COUNT_MSB  
IMA_RX_ATM1_CELL_COUNT_LSB  
IMA_RX_ATM1_CELL_COUNT_MSB  
IMA_RX_ATM2_CELL_COUNT_LSB  
IMA_RX_ATM2_CELL_COUNT_MSB  
IMA_RX_ATM3_CELL_COUNT_LSB  
IMA_RX_ATM3_CELL_COUNT_MSB  
Receive UTOPIA Address 0x00 Cell Count LSBs  
Receive UTOPIA Address 0x00 Cell Count MSBs  
Receive UTOPIA Address 0x01 Cell Count LSBs  
Receive UTOPIA Address 0x01 Cell Count MSBs  
Receive UTOPIA Address 0x02 Cell Count LSBs  
Receive UTOPIA Address 0x02 Cell Count MSBs  
Receive UTOPIA Address 0x03 Cell Count LSBs  
Receive UTOPIA Address 0x03 Cell Count MSBs  
page 218  
®
28529-DSH-001-K  
Mindspeed Technologies  
120  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (4 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Port 0–7 Control and Status  
0x860  
0x861  
0x862  
0x863  
0x864  
0x865  
0x866  
0x867  
IMA_TX_LNK0_CTL  
IMA_TX_LNK1_CTL  
IMA_TX_LNK2_CTL  
IMA_TX_LNK3_CTL  
IMA_TX_LNK4_CTL  
IMA_TX_LNK5_CTL  
IMA_TX_LNK6_CTL  
IMA_TX_LNK7_CTL  
Tx Link 0 Control  
Tx Link 1 Control  
Tx Link 2 Control  
Tx Link 3 Control  
Tx Link 4 Control  
Tx Link 5 Control  
Tx Link 6 Control  
Tx Link 7 Control  
page 232  
page 233  
page 234  
page 235  
page 236  
0x868  
0x869  
0x86a  
0x86b  
0x86c  
0x86d  
0x86e  
0x86f  
IMA_TX_LNK0_STATE  
IMA_TX_LNK1_STATE  
IMA_TX_LNK2_STATE  
IMA_TX_LNK3_STATE  
IMA_TX_LNK4_STATE  
IMA_TX_LNK5_STATE  
IMA_TX_LNK6_STATE  
IMA_TX_LNK7_STATE  
Tx Link 0 Status  
Tx Link 1 Status  
Tx Link 2 Status  
Tx Link 3 Status  
Tx Link 4 Status  
Tx Link 5 Status  
Tx Link 6 Status  
Tx Link 7 Status  
0x870  
0x871  
0x872  
0x873  
0x874  
0x875  
0x876  
0x877  
IMA_TX_LNK0_ID  
IMA_TX_LNK1_ID  
IMA_TX_LNK2_ID  
IMA_TX_LNK3_ID  
IMA_TX_LNK4_ID  
IMA_TX_LNK5_ID  
IMA_TX_LNK6_ID  
IMA_TX_LNK7_ID  
Tx Link 0 Assigned LID  
Tx Link 1 Assigned LID  
Tx Link 2 Assigned LID  
Tx Link 3 Assigned LID  
Tx Link 4 Assigned LID  
Tx Link 5 Assigned LID  
Tx Link 6 Assigned LID  
Tx Link 7 Assigned LID  
0x880  
0x881  
0x882  
0x883  
0x884  
0x885  
0x886  
0x887  
IMA_RX_LNK0_CTL  
IMA_RX_LNK1_CTL  
IMA_RX_LNK2_CTL  
IMA_RX_LNK3_CTL  
IMA_RX_LNK4_CTL  
IMA_RX_LNK5_CTL  
IMA_RX_LNK6_CTL  
IMA_RX_LNK7_CTL  
Rx Link 0 Control  
Rx Link 1 Control  
Rx Link 2 Control  
Rx Link 3 Control  
Rx Link 4 Control  
Rx Link 5 Control  
Rx Link 6 Control  
Rx Link 7 Control  
0x888  
0x889  
0x88a  
0x88b  
0x88c  
0x88d  
0x88e  
0x88f  
IMA_RX_LNK0_STATE  
IMA_RX_LNK1_STATE  
IMA_RX_LNK2_STATE  
IMA_RX_LNK3_STATE  
IMA_RX_LNK4_STATE  
IMA_RX_LNK5_STATE  
IMA_RX_LNK6_STATE  
IMA_RX_LNK7_STATE  
Rx Link 0 Status  
Rx Link 1 Status  
Rx Link 2 Status  
Rx Link 3 Status  
Rx Link 4 Status  
Rx Link 5 Status  
Rx Link 6 Status  
Rx Link 7 Status  
®
28529-DSH-001-K  
Mindspeed Technologies  
121  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (5 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x890  
0x891  
0x892  
0x893  
0x894  
0x895  
0x896  
0x897  
IMA_RX_LNK0_DEFECT  
Rx Link 0 Defects  
Rx Link 1 Defects  
Rx Link 2 Defects  
Rx Link 3 Defects  
Rx Link 4 Defects  
Rx Link 5 Defects  
Rx Link 6 Defects  
Rx Link 7 Defects  
page 237  
page 238  
page 239  
page 240  
page 241  
page 242  
IMA_RX_LNK1_DEFECT  
IMA_RX_LNK2_DEFECT  
IMA_RX_LNK3_DEFECT  
IMA_RX_LNK4_DEFECT  
IMA_RX_LNK5_DEFECT  
IMA_RX_LNK6_DEFECT  
IMA_RX_LNK7_DEFECT  
0x898  
0x899  
0x89a  
0x89b  
0x89c  
0x89d  
0x89e  
0x89f  
IMA_FE_TX_LNK0_CFG  
IMA_FE_TX_LNK1_CFG  
IMA_FE_TX_LNK2_CFG  
IMA_FE_TX_LNK3_CFG  
IMA_FE_TX_LNK4_CFG  
IMA_FE_TX_LNK5_CFG  
IMA_FE_TX_LNK6_CFG  
IMA_FE_TX_LNK7_CFG  
FE Tx Link 0 Link Config  
FE Tx Link 1 Link Config  
FE Tx Link 2 Link Config  
FE Tx Link 3 Link Config  
FE Tx Link 4 Link Config  
FE Tx Link 5 Link Config  
FE Tx Link 6 Link Config  
FE Tx Link 7 Link Config  
0x8a0  
0x8a1  
0x8a2  
0x8a3  
0x8a4  
0x8a5  
0x8a6  
0x8a7  
IMA_FE_LNK0_STATE  
IMA_FE_LNK1_STATE  
IMA_FE_LNK2_STATE  
IMA_FE_LNK3_STATE  
IMA_FE_LNK4_STATE  
IMA_FE_LNK5_STATE  
IMA_FE_LNK6_STATE  
IMA_FE_LNK7_STATE  
Rx Link 0 FE Status  
Rx Link 1 FE Status  
Rx Link 2 FE Status  
Rx Link 3 FE Status  
Rx Link 4 FE Status  
Rx Link 5 FE Status  
Rx Link 6 FE Status  
Rx Link 7 FE Status  
0x8a8  
0x8a9  
0x8aa  
0x8ab  
0x8ac  
0x8ad  
0x8ae  
0x8af  
IMA_RX_LNK0_ID  
IMA_RX_LNK1_ID  
IMA_RX_LNK2_ID  
IMA_RX_LNK3_ID  
IMA_RX_LNK4_ID  
IMA_RX_LNK5_ID  
IMA_RX_LNK6_ID  
IMA_RX_LNK7_ID  
Rx Link 0 Assigned LID  
Rx Link 1 Assigned LID  
Rx Link 2 Assigned LID  
Rx Link 3 Assigned LID  
Rx Link 4 Assigned LID  
Rx Link 5 Assigned LID  
Rx Link 6 Assigned LID  
Rx Link 7 Assigned LID  
0x8b0  
0x8b1  
0x8b2  
0x8b3  
0x8b4  
0x8b5  
0x8b6  
0x8b7  
IMA_RX_LNK0_IV_CNT  
IMA_RX_LNK1_IV_CNT  
IMA_RX_LNK2_IV_CNT  
IMA_RX_LNK3_IV_CNT  
IMA_RX_LNK4_IV_CNT  
IMA_RX_LNK5_IV_CNT  
IMA_RX_LNK6_IV_CNT  
IMA_RX_LNK7_IV_CNT  
Rx Link 0 IV-IMA Counter  
Rx Link 1 IV-IMA Counter  
Rx Link 2 IV-IMA Counter  
Rx Link 3 IV-IMA Counter  
Rx Link 4 IV-IMA Counter  
Rx Link 5 IV-IMA Counter  
Rx Link 6 IV-IMA Counter  
Rx Link 7 IV-IMA Counter  
0x8b8  
0x8b9  
0x8ba  
0x8bb  
0x8bc  
0x8bd  
0x8be  
0x8bf  
IMA_RX_LNK0_OIF_CNT  
IMA_RX_LNK1_OIF_CNT  
IMA_RX_LNK2_OIF_CNT  
IMA_RX_LNK3_OIF_CNT  
IMA_RX_LNK4_OIF_CNT  
IMA_RX_LNK5_OIF_CNT  
IMA_RX_LNK6_OIF_CNT  
IMA_RX_LNK7_OIF_CNT  
Rx Link 0 OIF-IMA Counter  
Rx Link 1 OIF-IMA Counter  
Rx Link 2 OIF-IMA Counter  
Rx Link 3 OIF-IMA Counter  
Rx Link 4 OIF-IMA Counter  
Rx Link 5 OIF-IMA Counter  
Rx Link 6 OIF-IMA Counter  
Rx Link 7 OIF-IMA Counter  
®
28529-DSH-001-K  
Mindspeed Technologies  
122  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (6 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x8c0  
0x8c1  
0x8c2  
0x8c3  
0x8c4  
0x8c5  
0x8c6  
0x8c7  
IMA_FE_TX_LNK0_GRP_ID  
IMA_FE_TX_LNK1_GRP_ID  
IMA_FE_TX_LNK2_GRP_ID  
IMA_FE_TX_LNK3_GRP_ID  
IMA_FE_TX_LNK4_GRP_ID  
IMA_FE_TX_LNK5_GRP_ID  
IMA_FE_TX_LNK6_GRP_ID  
IMA_FE_TX_LNK7_GRP_ID  
Rx Link 0 Captured GRP ID  
page 243  
Rx Link 1 Captured GRP ID  
Rx Link 2 Captured GRP ID  
Rx Link 3 Captured GRP ID  
Rx Link 4 Captured GRP ID  
Rx Link 5 Captured GRP ID  
Rx Link 6 Captured GRP ID  
Rx Link 7 Captured GRP ID  
Receive Groups 1–4 Configuration Tables  
0x8d0  
0x8d1  
0x8d2  
0x8d3  
0x8d4  
0x8d5  
0x8d6  
0x8d7  
0x8d8  
0x8d9  
0x8da  
0x8db  
0x8dc  
0x8dd  
0x8de  
0x8df  
IMA_RX_GRP1_CFG  
Rx GRP 1 Configuration  
Rx GRP 1 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP1_CTL  
IMA_RX_GRP1_FIRST_PHY_ADDR  
IMA_RX_GRP1_ID  
Rx GRP 1 First Link Address  
Rx GRP 1 Rx Group ID  
Rx GRP 2 Configuration  
Rx GRP 2 Control  
IMA_RX_GRP2_CFG  
IMA_RX_GRP2_CTL  
IMA_RX_GRP2_FIRST_PHY_ADDR  
IMA_RX_GRP2_ID  
Rx GRP 2 First Link Address  
Rx GRP 2 Rx Group ID  
Rx GRP 3 Configuration  
Rx GRP 3 Control  
IMA_RX_GRP3_CFG  
IMA_RX_GRP3_CTL  
IMA_RX_GRP3_FIRST_PHY_ADDR  
IMA_RX_GRP3_ID  
Rx GRP 3 First Link Address  
Rx GRP 3 Rx Group ID  
Rx GRP 4 Configuration  
Rx GRP 4 Control  
IMA_RX_GRP4_CFG  
IMA_RX_GRP4_CTL  
IMA_RX_GRP4_FIRST_PHY_ADDR  
IMA_RX_GRP4_ID  
Rx GRP 4 First Link Address  
Rx GRP 4 Rx Group ID  
Receive Groups 1–4 Far-End Status  
0x8e0  
0x8e2  
0x8e3  
0x8e4  
0x8e5  
0x8e6  
0x8e7  
0x8e8  
0x8ea  
0x8eb  
0x8ec  
IMA_RX_GRP1_RX_TEST_PATTERN  
IMA_RX_GRP1_STAT_CTL_CHANGE  
IMA_RX_GRP1_ACTUAL_GRP_ID  
IMA_RX_GRP1_STAT_CTL  
Rx GRP 1 Rx Test Pattern  
Rx GRP 1 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
Rx GRP 1 Rx Group ID  
Rx GRP 1 Status / Control  
Rx GRP 1 Timing Control  
Rx GRP 1 Test Control  
Rx GRP 1 Tx Test Pattern  
Rx GRP 2 Rx Test Pattern  
Rx GRP 2 SCCI  
IMA_RX_GRP1_TIMING_INFO  
IMA_RX_GRP1_TEST_CTL  
IMA_RX_GRP1_TX_TEST_PATTERN  
IMA_RX_GRP2_RX_TEST_PATTERN  
IMA_RX_GRP2_STAT_CTL_CHANGE  
IMA_RX_GRP2_ACTUAL_GRP_ID  
IMA_RX_GRP2_STAT_CTL  
Rx GRP 2 Rx Group ID  
Rx GRP 2 Status / Control  
®
28529-DSH-001-K  
Mindspeed Technologies  
123  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (7 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x8ed  
0x8ee  
0x8ef  
0x8f0  
0x8f2  
0x8f3  
0x8f4  
0x8f5  
0x8f6  
0x8f7  
0x8f8  
0x8fa  
0x8fb  
0x8fc  
0x8fd  
0x8fe  
0x8ff  
IMA_RX_GRP2_TIMING_INFO  
IMA_RX_GRP2_TEST_CTL  
Rx GRP 2 Timing Control  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 2 Test Control  
Rx GRP 2 Tx Test Pattern  
Rx GRP 3 Rx Test Pattern  
Rx GRP 3 SCCI  
IMA_RX_GRP2_TX_TEST_PATTERN  
IMA_RX_GRP3_RX_TEST_PATTERN  
IMA_RX_GRP3_STAT_CTL_CHANGE  
IMA_RX_GRP3_ACTUAL_GRP_ID  
IMA_RX_GRP3_STAT_CTL  
Rx GRP 3 Rx Group ID  
Rx GRP 3 Status / Control  
Rx GRP 3 Timing Control  
Rx GRP 3 Test Control  
Rx GRP 3 Tx Test Pattern  
Rx GRP 4 Rx Test Pattern  
Rx GRP 4 SCCI  
IMA_RX_GRP3_TIMING_INFO  
IMA_RX_GRP3_TEST_CTL  
IMA_RX_GRP3_TX_TEST_PATTERN  
IMA_RX_GRP4_RX_TEST_PATTERN  
IMA_RX_GRP4_STAT_CTL_CHANGE  
IMA_RX_GRP4_ACTUAL_GRP_ID  
IMA_RX_GRP4_STAT_CTL  
Rx GRP 4 Rx Group ID  
Rx GRP 4 Status / Control  
Rx GRP 4 Timing Control  
Rx GRP 4 Test Control  
Rx GRP 4 Tx Test Pattern  
IMA_RX_GRP4_TIMING_INFO  
IMA_RX_GRP4_TEST_CTL  
IMA_RX_GRP4_TX_TEST_PATTERN  
Transmit Groups 5–8 Configuration Tables  
0x920  
0x921  
0x922  
0x923  
0x924  
0x925  
0x926  
0x927  
0x928  
0x929  
0x92a  
0x92b  
0x92c  
0x92d  
0x92e  
0x92f  
0x930  
IMA_TX_GRP5_RX_TEST_PATTERN  
IMA_TX_GRP5_CTL  
Tx GRP 5 Rx Test Pattern  
Tx GRP 5 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
IMA_TX_GRP5_FIRST_PHY_ADDR  
IMA_TX_GRP5_ID  
Tx GRP 5 First Link Address  
Tx GRP 5 Tx Group ID  
Tx GRP 5 Status / Control  
Tx GRP 5 Timing Control  
Tx GRP 5 Test Control  
Tx GRP 5 Tx Test Pattern  
Tx GRP 6 Rx Test Pattern  
Tx GRP 6 Control  
IMA_TX_GRP5_STAT_CTL  
IMA_TX_GRP5_TIMING_INFO  
IMA_TX_GRP5_TEST_CTL  
IMA_TX_GRP5_TX_TEST_PATTERN  
IMA_TX_GRP6_RX_TEST_PATTERN  
IMA_TX_GRP6_CTL  
IMA_TX_GRP6_FIRST_PHY_ADDR  
IMA_TX_GRP6_ID  
Tx GRP 6 First Link Address  
Tx GRP 6 Tx Group ID  
Tx GRP 6 Status / Control  
Tx GRP 6 Timing Control  
Tx GRP 6 Test Control  
Tx GRP 6 Tx Test Pattern  
Tx GRP 7 Rx Test Pattern  
IMA_TX_GRP6_STAT_CTL  
IMA_TX_GRP6_TIMING_INFO  
IMA_TX_GRP6_TEST_CTL  
IMA_TX_GRP6_TX_TEST_PATTERN  
IMA_TX_GRP7_RX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
124  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (8 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x931  
0x932  
0x933  
0x934  
0x935  
0x936  
0x937  
0x938  
0x939  
0x93a  
0x93b  
0x93c  
0x93d  
0x93e  
0x93f  
IMA_TX_GRP7_CTL  
Tx GRP 7 Control  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP7_FIRST_PHY_ADDR  
IMA_TX_GRP7_ID  
Tx GRP 7 First Link Address  
Tx GRP 7 Tx Group ID  
Tx GRP 7 Status / Control  
Tx GRP 7 Timing Control  
Tx GRP 7 Test Control  
Tx GRP 7 Tx Test Pattern  
Tx GRP 8 Rx Test Pattern  
Tx GRP 8 Control  
IMA_TX_GRP7_STAT_CTL  
IMA_TX_GRP7_TIMING_INFO  
IMA_TX_GRP7_TEST_CTL  
IMA_TX_GRP7_TX_TEST_PATTERN  
IMA_TX_GRP8_RX_TEST_PATTERN  
IMA_TX_GRP8_CTL  
IMA_TX_GRP8_FIRST_PHY_ADDR  
IMA_TX_GRP8_ID  
Tx GRP 8 First Link Address  
Tx GRP 8 Tx Group ID  
Tx GRP 8 Status / Control  
Tx GRP 8 Timing Control  
Tx GRP 8 Test Control  
Tx GRP 8 Tx Test Pattern  
IMA_TX_GRP8_STAT_CTL  
IMA_TX_GRP8_TIMING_INFO  
IMA_TX_GRP8_TEST_CTL  
IMA_TX_GRP8_TX_TEST_PATTERN  
Tx UTOPIA Addresses 4 - 7 Cell Counters  
0x940  
0x941  
0x942  
0x943  
0x944  
0x945  
0x946  
0x947  
IMA_TX_ATM4_CELL_COUNT_LSB  
IMA_TX_ATM4_CELL_COUNT_MSB  
IMA_TX_ATM5_CELL_COUNT_LSB  
IMA_TX_ATM5_CELL_COUNT_MSB  
IMA_TX_ATM6_CELL_COUNT_LSB  
IMA_TX_ATM6_CELL_COUNT_MSB  
IMA_TX_ATM7_CELL_COUNT_LSB  
IMA_TX_ATM7_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x04 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x04 Cell Count MSBs  
Transmit UTOPIA Address 0x05 Cell Count LSBs  
Transmit UTOPIA Address 0x05 Cell Count MSBs  
Transmit UTOPIA Address 0x06 Cell Count LSBs  
Transmit UTOPIA Address 0x06 Cell Count MSBs  
Transmit UTOPIA Address 0x07 Cell Count LSBs  
Transmit UTOPIA Address 0x07 Cell Count MSBs  
Rx UTOPIA Addresses 4 - 7 Cell Counters  
0x950  
0x951  
0x952  
0x953  
0x954  
0x955  
0x956  
0x957  
IMA_RX_ATM4_CELL_COUNT_LSB  
IMA_RX_ATM4_CELL_COUNT_MSB  
IMA_RX_ATM5_CELL_COUNT_LSB  
IMA_RX_ATM5_CELL_COUNT_MSB  
IMA_RX_ATM6_CELL_COUNT_LSB  
IMA_RX_ATM6_CELL_COUNT_MSB  
IMA_RX_ATM7_CELL_COUNT_LSB  
IMA_RX_ATM7_CELL_COUNT_MSB  
Receive UTOPIA Address 0x04 Cell Count LSBs  
Receive UTOPIA Address 0x04 Cell Count MSBs  
Receive UTOPIA Address 0x05 Cell Count LSBs  
Receive UTOPIA Address 0x05 Cell Count MSBs  
Receive UTOPIA Address 0x06 Cell Count LSBs  
Receive UTOPIA Address 0x06 Cell Count MSBs  
Receive UTOPIA Address 0x07 Cell Count LSBs  
Receive UTOPIA Address 0x07 Cell Count MSBs  
page 218  
®
28529-DSH-001-K  
Mindspeed Technologies  
125  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (9 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Port 8–15 Control and Status  
0x960  
0x961  
0x962  
0x963  
0x964  
0x965  
0x966  
0x967  
IMA_TX_LNK8_CTL  
IMA_TX_LNK9_CTL  
IMA_TX_LNK10_CTL  
IMA_TX_LNK11_CTL  
IMA_TX_LNK12_CTL  
IMA_TX_LNK13_CTL  
IMA_TX_LNK14_CTL  
IMA_TX_LNK15_CTL  
Tx Link 8 Control  
Tx Link 9 Control  
Tx Link 10 Control  
Tx Link 11 Control  
Tx Link 12 Control  
Tx Link 13 Control  
Tx Link 14 Control  
Tx Link 15 Control  
page 232  
page 233  
page 234  
page 235  
page 236  
0x968  
0x969  
0x96a  
0x96b  
0x96c  
0x96d  
0x96e  
0x96f  
IMA_TX_LNK8_STATE  
IMA_TX_LNK9_STATE  
Tx Link 8 Status  
Tx Link 9 Status  
Tx Link 10 Status  
Tx Link 11 Status  
Tx Link 12 Status  
Tx Link 13 Status  
Tx Link 14 Status  
Tx Link 15 Status  
IMA_TX_LNK10_STATE  
IMA_TX_LNK11_STATE  
IMA_TX_LNK12_STATE  
IMA_TX_LNK13_STATE  
IMA_TX_LNK14_STATE  
IMA_TX_LNK15_STATE  
0x970  
0x971  
0x972  
0x973  
0x974  
0x975  
0x976  
0x977  
IMA_TX_LNK8_ID  
IMA_TX_LNK9_ID  
IMA_TX_LNK10_ID  
IMA_TX_LNK11_ID  
IMA_TX_LNK12_ID  
IMA_TX_LNK13_ID  
IMA_TX_LNK14_ID  
IMA_TX_LNK15_ID  
Tx Link 8 Assigned LID  
Tx Link 9 Assigned LID  
Tx Link 10 Assigned LID  
Tx Link 11 Assigned LID  
Tx Link 12 Assigned LID  
Tx Link 13 Assigned LID  
Tx Link 14 Assigned LID  
Tx Link 15 Assigned LID  
0x980  
0x981  
0x982  
0x983  
0x984  
0x985  
0x986  
0x987  
IMA_RX_LNK8_CTL  
IMA_RX_LNK9_CTL  
IMA_RX_LNK10_CTL  
IMA_RX_LNK11_CTL  
IMA_RX_LNK12_CTL  
IMA_RX_LNK13_CTL  
IMA_RX_LNK14_CTL  
IMA_RX_LNK15_CTL  
Rx Link 8 Control  
Rx Link 9 Control  
Rx Link 10 Control  
Rx Link 11 Control  
Rx Link 12 Control  
Rx Link 13 Control  
Rx Link 14 Control  
Rx Link 15 Control  
0x988  
0x989  
0x98a  
0x98b  
0x98c  
0x98d  
0x98e  
0x98f  
IMA_RX_LNK8_STATE  
IMA_RX_LNK9_STATE  
IMA_RX_LNK10_STATE  
IMA_RX_LNK11_STATE  
IMA_RX_LNK12_STATE  
IMA_RX_LNK13_STATE  
IMA_RX_LNK14_STATE  
IMA_RX_LNK15_STATE  
Rx Link 8 Status  
Rx Link 9 Status  
Rx Link 10 Status  
Rx Link 11 Status  
Rx Link 12 Status  
Rx Link 13 Status  
Rx Link 14 Status  
Rx Link 15 Status  
®
28529-DSH-001-K  
Mindspeed Technologies  
126  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (10 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x990  
0x991  
0x992  
0x993  
0x994  
0x995  
0x996  
0x997  
IMA_RX_LNK8_DEFECT  
Rx Link 8 Defects  
Rx Link 9 Defects  
Rx Link 10 Defects  
Rx Link 11 Defects  
Rx Link 12 Defects  
Rx Link 13 Defects  
Rx Link 14 Defects  
Rx Link 15 Defects  
page 237  
page 238  
page 239  
page 240  
page 241  
page 242  
IMA_RX_LNK9_DEFECT  
IMA_RX_LNK10_DEFECT  
IMA_RX_LNK11_DEFECT  
IMA_RX_LNK12_DEFECT  
IMA_RX_LNK13_DEFECT  
IMA_RX_LNK14_DEFECT  
IMA_RX_LNK15_DEFECT  
0x998  
0x999  
0x99a  
0x99b  
0x99c  
0x99d  
0x99e  
0x99f  
IMA_FE_TX_LNK8_CFG  
IMA_FE_TX_LNK9_CFG  
IMA_FE_TX_LNK10_CFG  
IMA_FE_TX_LNK11_CFG  
IMA_FE_TX_LNK12_CFG  
IMA_FE_TX_LNK13_CFG  
IMA_FE_TX_LNK14_CFG  
IMA_FE_TX_LNK15_CFG  
FE Tx Link 8 Link Config  
FE Tx Link 9 Link Config  
FE Tx Link 10 Link Config  
FE Tx Link 11 Link Config  
FE Tx Link 12 Link Config  
FE Tx Link 13 Link Config  
FE Tx Link 14 Link Config  
FE Tx Link 15 Link Config  
0x9a0  
0x9a1  
0x9a2  
0x9a3  
0x9a4  
0x9a5  
0x9a6  
0x9a7  
IMA_FE_LNK8_STATE  
IMA_FE_LNK9_STATE  
IMA_FE_LNK10_STATE  
IMA_FE_LNK11_STATE  
IMA_FE_LNK12_STATE  
IMA_FE_LNK13_STATE  
IMA_FE_LNK14_STATE  
IMA_FE_LNK15_STATE  
Rx Link 8 FE Status  
Rx Link 9 FE Status  
Rx Link 10 FE Status  
Rx Link 11 FE Status  
Rx Link 12 FE Status  
Rx Link 13 FE Status  
Rx Link 14 FE Status  
Rx Link 15 FE Status  
0x9a8  
0x9a9  
0x9aa  
0x9ab  
0x9ac  
0x9ad  
0x9ae  
0x9af  
IMA_RX_LNK8_ID  
IMA_RX_LNK9_ID  
IMA_RX_LNK10_ID  
IMA_RX_LNK11_ID  
IMA_RX_LNK12_ID  
IMA_RX_LNK13_ID  
IMA_RX_LNK14_ID  
IMA_RX_LNK15_ID  
Rx Link 8 Assigned LID  
Rx Link 9 Assigned LID  
Rx Link 10 Assigned LID  
Rx Link 11 Assigned LID  
Rx Link 12 Assigned LID  
Rx Link 13 Assigned LID  
Rx Link 14 Assigned LID  
Rx Link 15 Assigned LID  
0x9b0  
0x9b1  
0x9b2  
0x9b3  
0x9b4  
0x9b5  
0x9b6  
0x9b7  
IMA_RX_LNK8_IV_CNT  
IMA_RX_LNK9_IV_CNT  
IMA_RX_LNK10_IV_CNT  
IMA_RX_LNK11_IV_CNT  
IMA_RX_LNK12_IV_CNT  
IMA_RX_LNK13_IV_CNT  
IMA_RX_LNK14_IV_CNT  
IMA_RX_LNK15_IV_CNT  
Rx Link 8 IV-IMA Counter  
Rx Link 9 IV-IMA Counter  
Rx Link 10 IV-IMA Counter  
Rx Link 11 IV-IMA Counter  
Rx Link 12 IV-IMA Counter  
Rx Link 13 IV-IMA Counter  
Rx Link 14 IV-IMA Counter  
Rx Link 15 IV-IMA Counter  
0x9b8  
0x9b9  
0x9ba  
0x9bb  
0x9bc  
0x9bd  
0x9be  
0x9bf  
IMA_RX_LNK8_OIF_CNT  
IMA_RX_LNK9_OIF_CNT  
IMA_RX_LNK10_OIF_CNT  
IMA_RX_LNK11_OIF_CNT  
IMA_RX_LNK12_OIF_CNT  
IMA_RX_LNK13_OIF_CNT  
IMA_RX_LNK14_OIF_CNT  
IMA_RX_LNK15_OIF_CNT  
Rx Link 8 OIF-IMA Counter  
Rx Link 9 OIF-IMA Counter  
Rx Link 10 OIF-IMA Counter  
Rx Link 11 OIF-IMA Counter  
Rx Link 12 OIF-IMA Counter  
Rx Link 13 OIF-IMA Counter  
Rx Link 14 OIF-IMA Counter  
Rx Link 15 OIF-IMA Counter  
®
28529-DSH-001-K  
Mindspeed Technologies  
127  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (11 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x9c0  
0x9c1  
0x9c2  
0x9c3  
0x9c4  
0x9c5  
0x9c6  
0x9c7  
IMA_FE_TX_LNK8_GRP_ID  
IMA_FE_TX_LNK9_GRP_ID  
IMA_FE_TX_LNK10_GRP_ID  
IMA_FE_TX_LNK11_GRP_ID  
IMA_FE_TX_LNK12_GRP_ID  
IMA_FE_TX_LNK13_GRP_ID  
IMA_FE_TX_LNK14_GRP_ID  
IMA_FE_TX_LNK15_GRP_ID  
Rx Link 8 Captured GRP ID  
page 243  
Rx Link 9 Captured GRP ID  
Rx Link 10 Captured GRP ID  
Rx Link 11 Captured GRP ID  
Rx Link 12 Captured GRP ID  
Rx Link 13 Captured GRP ID  
Rx Link 14 Captured GRP ID  
Rx Link 15 Captured GRP ID  
Receive Groups 5–8 Configuration Tables  
0x9d0  
0x9d1  
0x9d2  
0x9d3  
0x9d4  
0x9d5  
0x9d6  
0x9d7  
0x9d8  
0x9d9  
0x9da  
0x9db  
0x9dc  
0x9dd  
0x9de  
0x9df  
IMA_RX_GRP5_CFG  
Rx GRP 5 Configuration  
Rx GRP 5 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP5_CTL  
IMA_RX_GRP5_FIRST_PHY_ADDR  
IMA_RX_GRP5_ID  
Rx GRP 5 First Link Address  
Rx GRP 5 Rx Group ID  
Rx GRP 6 Configuration  
Rx GRP 6 Control  
IMA_RX_GRP6_CFG  
IMA_RX_GRP6_CTL  
IMA_RX_GRP6_FIRST_PHY_ADDR  
IMA_RX_GRP6_ID  
Rx GRP 6 First Link Address  
Rx GRP 6 Rx Group ID  
Rx GRP 7 Configuration  
Rx GRP 7 Control  
IMA_RX_GRP7_CFG  
IMA_RX_GRP7_CTL  
IMA_RX_GRP7_FIRST_PHY_ADDR  
IMA_RX_GRP7_ID  
Rx GRP 7 First Link Address  
Rx GRP 7 Rx Group ID  
Rx GRP 8 Configuration  
Rx GRP 8 Control  
IMA_RX_GRP8_CFG  
IMA_RX_GRP8_CTL  
IMA_RX_GRP8_FIRST_PHY_ADDR  
IMA_RX_GRP8_ID  
Rx GRP 8 First Link Address  
Rx GRP 8 Rx Group ID  
Receive Groups 5–8 Far-End Status  
0x9e0  
0x9e2  
0x9e3  
0x9e4  
0x9e5  
0x9e6  
0x9e7  
0x9e8  
0x9ea  
0x9eb  
0x9ec  
IMA_RX_GRP5_RX_TEST_PATTERN  
IMA_RX_GRP5_STAT_CTL_CHANGE  
IMA_RX_GRP5_ACTUAL_GRP_ID  
IMA_RX_GRP5_STAT_CTL  
Rx GRP 5 Rx Test Pattern  
Rx GRP 5 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
Rx GRP 5 Rx Group ID  
Rx GRP 5 Status / Control  
Rx GRP 5 Timing Control  
Rx GRP 5 Test Control  
Rx GRP 5 Tx Test Pattern  
Rx GRP 6 Rx Test Pattern  
Rx GRP 6 SCCI  
IMA_RX_GRP5_TIMING_INFO  
IMA_RX_GRP5_TEST_CTL  
IMA_RX_GRP5_TX_TEST_PATTERN  
IMA_RX_GRP6_RX_TEST_PATTERN  
IMA_RX_GRP6_STAT_CTL_CHANGE  
IMA_RX_GRP6_ACTUAL_GRP_ID  
IMA_RX_GRP6_STAT_CTL  
Rx GRP 6 Rx Group ID  
Rx GRP 6 Status / Control  
®
28529-DSH-001-K  
Mindspeed Technologies  
128  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (12 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0x9ed  
0x9ee  
0x9ef  
0x9f0  
0x9f2  
0x9f3  
0x9f4  
0x9f5  
0x9f6  
0x9f7  
0x9f8  
0x9fa  
0x9fb  
0x9fc  
0x9fd  
0x9fe  
0x9ff  
IMA_RX_GRP6_TIMING_INFO  
IMA_RX_GRP6_TEST_CTL  
Rx GRP 6 Timing Control  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 6 Test Control  
Rx GRP 6 Tx Test Pattern  
Rx GRP 7 Rx Test Pattern  
Rx GRP 7 SCCI  
IMA_RX_GRP6_TX_TEST_PATTERN  
IMA_RX_GRP7_RX_TEST_PATTERN  
IMA_RX_GRP7_STAT_CTL_CHANGE  
IMA_RX_GRP7_ACTUAL_GRP_ID  
IMA_RX_GRP7_STAT_CTL  
Rx GRP 7 Rx Group ID  
Rx GRP 7 Status / Control  
Rx GRP 7 Timing Control  
Rx GRP 7 Test Control  
Rx GRP 7 Tx Test Pattern  
Rx GRP 8 Rx Test Pattern  
Rx GRP 8 SCCI  
IMA_RX_GRP7_TIMING_INFO  
IMA_RX_GRP7_TEST_CTL  
IMA_RX_GRP7_TX_TEST_PATTERN  
IMA_RX_GRP8_RX_TEST_PATTERN  
IMA_RX_GRP8_STAT_CTL_CHANGE  
IMA_RX_GRP8_ACTUAL_GRP_ID  
IMA_RX_GRP8_STAT_CTL  
Rx GRP 8 Rx Group ID  
Rx GRP 8 Status / Control  
Rx GRP 8 Timing Control  
Rx GRP 8 Test Control  
Rx GRP 8 Tx Test Pattern  
IMA_RX_GRP8_TIMING_INFO  
IMA_RX_GRP8_TEST_CTL  
IMA_RX_GRP8_TX_TEST_PATTERN  
Transmit Groups 9–12 Configuration Tables  
0xa20  
0xa21  
0xa22  
0xa23  
0xa24  
0xa25  
0xa26  
0xa27  
0xa28  
0xa29  
0xa2a  
0xa2b  
0xa2c  
0xa2d  
0xa2e  
0xa2f  
0xa30  
IMA_TX_GRP9_RX_TEST_PATTERN  
IMA_TX_GRP9_CTL  
Tx GRP 9 Rx Test Pattern  
Tx GRP 9 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
IMA_TX_GRP9_FIRST_PHY_ADDR  
IMA_TX_GRP9_ID  
Tx GRP 9 First Link Address  
Tx GRP 9 Tx Group ID  
Tx GRP 9 Status / Control  
Tx GRP 9 Timing Control  
Tx GRP 9 Test Control  
Tx GRP 9 Tx Test Pattern  
IMA_TX_GRP9_STAT_CTL  
IMA_TX_GRP9_TIMING_INFO  
IMA_TX_GRP9_TEST_CTL  
IMA_TX_GRP9_TX_TEST_PATTERN  
IMA_TX_GRP10_RX_TEST_PATTERN  
IMA_TX_GRP10_CTL  
Tx GRP 10 Rx Test Pattern  
Tx GRP 10 Control  
IMA_TX_GRP10_FIRST_PHY_ADDR  
IMA_TX_GRP10_ID  
Tx GRP 10 First Link Address  
Tx GRP 10 Tx Group ID  
Tx GRP 10 Status / Control  
Tx GRP 10 Timing Control  
Tx GRP 10 Test Control  
Tx GRP 10 Tx Test Pattern  
Tx GRP 11 Rx Test Pattern  
IMA_TX_GRP10_STAT_CTL  
IMA_TX_GRP10_TIMING_INFO  
IMA_TX_GRP10_TEST_CTL  
IMA_TX_GRP10_TX_TEST_PATTERN  
IMA_TX_GRP11_RX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
129  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (13 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xa31  
0xa32  
0xa33  
0xa34  
0xa35  
0xa36  
0xa37  
0xa38  
0xa39  
0xa3a  
0xa3b  
0xa3c  
0xa3d  
0xa3e  
0xa3f  
IMA_TX_GRP11_CTL  
Tx GRP 11 Control  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP11_FIRST_PHY_ADDR  
IMA_TX_GRP11_ID  
Tx GRP 11 First Link Address  
Tx GRP 11 Tx Group ID  
Tx GRP 11 Status / Control  
Tx GRP 11 Timing Control  
Tx GRP 11 Test Control  
Tx GRP 11 Tx Test Pattern  
Tx GRP 12 Rx Test Pattern  
Tx GRP 12 Control  
IMA_TX_GRP11_STAT_CTL  
IMA_TX_GRP11_TIMING_INFO  
IMA_TX_GRP11_TEST_CTL  
IMA_TX_GRP11_TX_TEST_PATTERN  
IMA_TX_GRP12_RX_TEST_PATTERN  
IMA_TX_GRP12_CTL  
IMA_TX_GRP12_FIRST_PHY_ADDR  
IMA_TX_GRP12_ID  
Tx GRP 12 First Link Address  
Tx GRP 12 Tx Group ID  
Tx GRP 12 Status / Control  
Tx GRP 12 Timing Control  
Tx GRP 12 Test Control  
Tx GRP 12 Tx Test Pattern  
IMA_TX_GRP12_STAT_CTL  
IMA_TX_GRP12_TIMING_INFO  
IMA_TX_GRP12_TEST_CTL  
IMA_TX_GRP12_TX_TEST_PATTERN  
Tx UTOPIA Addresses 8 - 11 Cell Counters  
0xa40  
0xa41  
0xa42  
0xa43  
0xa44  
0xa45  
0xa46  
0xa47  
IMA_TX_ATM8_CELL_COUNT_LSB  
IMA_TX_ATM8_CELL_COUNT_MSB  
IMA_TX_ATM9_CELL_COUNT_LSB  
IMA_TX_ATM9_CELL_COUNT_MSB  
IMA_TX_ATM10_CELL_COUNT_LSB  
IMA_TX_ATM10_CELL_COUNT_MSB  
IMA_TX_ATM11_CELL_COUNT_LSB  
IMA_TX_ATM11_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x08 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x08 Cell Count MSBs  
Transmit UTOPIA Address 0x09 Cell Count LSBs  
Transmit UTOPIA Address 0x09 Cell Count MSBs  
Transmit UTOPIA Address 0x0A Cell Count LSBs  
Transmit UTOPIA Address 0x0A Cell Count MSBs  
Transmit UTOPIA Address 0x0B Cell Count LSBs  
Transmit UTOPIA Address 0x0B Cell Count MSBs  
Rx UTOPIA Addresses 8 - 11 Cell Counters  
0xa50  
0xa51  
0xa52  
0xa53  
0xa54  
0xa55  
0xa56  
0xa57  
IMA_RX_ATM8_CELL_COUNT_LSB  
IMA_RX_ATM8_CELL_COUNT_MSB  
IMA_RX_ATM9_CELL_COUNT_LSB  
IMA_RX_ATM9_CELL_COUNT_MSB  
IMA_RX_ATM10_CELL_COUNT_LSB  
IMA_RX_ATM10_CELL_COUNT_MSB  
IMA_RX_ATM11_CELL_COUNT_LSB  
IMA_RX_ATM11_CELL_COUNT_MSB  
Receive UTOPIA Address 0x08 Cell Count LSBs  
Receive UTOPIA Address 0x08 Cell Count MSBs  
Receive UTOPIA Address 0x09 Cell Count LSBs  
Receive UTOPIA Address 0x09 Cell Count MSBs  
Receive UTOPIA Address 0x0A Cell Count LSBs  
Receive UTOPIA Address 0x0A Cell Count MSBs  
Receive UTOPIA Address 0x0B Cell Count LSBs  
Receive UTOPIA Address 0x0B Cell Count MSBs  
page 218  
®
28529-DSH-001-K  
Mindspeed Technologies  
130  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (14 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Port 16–23 Control and Status  
0xa60  
0xa61  
0xa62  
0xa63  
0xa64  
0xa65  
0xa66  
0xa67  
IMA_TX_LNK16_CTL  
IMA_TX_LNK17_CTL  
IMA_TX_LNK18_CTL  
IMA_TX_LNK19_CTL  
IMA_TX_LNK20_CTL  
IMA_TX_LNK21_CTL  
IMA_TX_LNK22_CTL  
IMA_TX_LNK23_CTL  
Tx Link 16 Control  
Tx Link 17 Control  
Tx Link 18 Control  
Tx Link 19 Control  
Tx Link 20 Control  
Tx Link 21 Control  
Tx Link 22 Control  
Tx Link 23 Control  
page 232  
page 233  
page 234  
page 235  
page 236  
0xa68  
0xa69  
0xa6a  
0xa6b  
0xa6c  
0xa6d  
0xa6e  
0xa6f  
IMA_TX_LNK16_STATE  
IMA_TX_LNK17_STATE  
IMA_TX_LNK18_STATE  
IMA_TX_LNK19_STATE  
IMA_TX_LNK20_STATE  
IMA_TX_LNK21_STATE  
IMA_TX_LNK22_STATE  
IMA_TX_LNK23_STATE  
Tx Link 16 Status  
Tx Link 17 Status  
Tx Link 18 Status  
Tx Link 19 Status  
Tx Link 20 Status  
Tx Link 21 Status  
Tx Link 22 Status  
Tx Link 23 Status  
0xa70  
0xa71  
0xa72  
0xa73  
0xa74  
0xa75  
0xa76  
0xa77  
IMA_TX_LNK16_ID  
IMA_TX_LNK17_ID  
IMA_TX_LNK18_ID  
IMA_TX_LNK19_ID  
IMA_TX_LNK20_ID  
IMA_TX_LNK21_ID  
IMA_TX_LNK22_ID  
IMA_TX_LNK23_ID  
Tx Link 16 Assigned LID  
Tx Link 17 Assigned LID  
Tx Link 18 Assigned LID  
Tx Link 19 Assigned LID  
Tx Link 20 Assigned LID  
Tx Link 21 Assigned LID  
Tx Link 22 Assigned LID  
Tx Link 23 Assigned LID  
0xa80  
0xa81  
0xa82  
0xa83  
0xa84  
0xa85  
0xa86  
0xa87  
IMA_RX_LNK16_CTL  
IMA_RX_LNK17_CTL  
IMA_RX_LNK18_CTL  
IMA_RX_LNK19_CTL  
IMA_RX_LNK20_CTL  
IMA_RX_LNK21_CTL  
IMA_RX_LNK22_CTL  
IMA_RX_LNK23_CTL  
Rx Link 16 Control  
Rx Link 17 Control  
Rx Link 18 Control  
Rx Link 19 Control  
Rx Link 20 Control  
Rx Link 21 Control  
Rx Link 22 Control  
Rx Link 23 Control  
0xa88  
0xa89  
0xa8a  
0xa8b  
0xa8c  
0xa8d  
0xa8e  
0xa8f  
IMA_RX_LNK16_STATE  
IMA_RX_LNK17_STATE  
IMA_RX_LNK18_STATE  
IMA_RX_LNK19_STATE  
IMA_RX_LNK20_STATE  
IMA_RX_LNK21_STATE  
IMA_RX_LNK22_STATE  
IMA_RX_LNK23_STATE  
Rx Link 16 Status  
Rx Link 17 Status  
Rx Link 18 Status  
Rx Link 19 Status  
Rx Link 20 Status  
Rx Link 21 Status  
Rx Link 22 Status  
Rx Link 23 Status  
®
28529-DSH-001-K  
Mindspeed Technologies  
131  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (15 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xa90  
0xa91  
0xa92  
0xa93  
0xa94  
0xa95  
0xa96  
0xa97  
IMA_RX_LNK16_DEFECT  
Rx Link 16 Defects  
Rx Link 17 Defects  
Rx Link 18 Defects  
Rx Link 19 Defects  
Rx Link 20 Defects  
Rx Link 21 Defects  
Rx Link 22 Defects  
Rx Link 23 Defects  
page 237  
page 238  
page 239  
page 240  
page 241  
page 242  
IMA_RX_LNK17_DEFECT  
IMA_RX_LNK18_DEFECT  
IMA_RX_LNK19_DEFECT  
IMA_RX_LNK20_DEFECT  
IMA_RX_LNK21_DEFECT  
IMA_RX_LNK22_DEFECT  
IMA_RX_LNK23_DEFECT  
0xa98  
0xa99  
0xa9a  
0xa9b  
0xa9c  
0xa9d  
0xa9e  
0xa9f  
IMA_FE_TX_LNK16_CFG  
IMA_FE_TX_LNK17_CFG  
IMA_FE_TX_LNK18_CFG  
IMA_FE_TX_LNK19_CFG  
IMA_FE_TX_LNK20_CFG  
IMA_FE_TX_LNK21_CFG  
IMA_FE_TX_LNK22_CFG  
IMA_FE_TX_LNK23_CFG  
FE Tx Link 16 Link Config  
FE Tx Link 17 Link Config  
FE Tx Link 18 Link Config  
FE Tx Link 19 Link Config  
FE Tx Link 20 Link Config  
FE Tx Link 21 Link Config  
FE Tx Link 22 Link Config  
FE Tx Link 23 Link Config  
0xaa0  
0xaa1  
0xaa2  
0xaa3  
0xaa4  
0xaa5  
0xaa6  
0xaa7  
IMA_FE_LNK16_STATE  
IMA_FE_LNK17_STATE  
IMA_FE_LNK18_STATE  
IMA_FE_LNK19_STATE  
IMA_FE_LNK20_STATE  
IMA_FE_LNK21_STATE  
IMA_FE_LNK22_STATE  
IMA_FE_LNK23_STATE  
Rx Link 16 FE Status  
Rx Link 17 FE Status  
Rx Link 18 FE Status  
Rx Link 19 FE Status  
Rx Link 20 FE Status  
Rx Link 21 FE Status  
Rx Link 22 FE Status  
Rx Link 23 FE Status  
0xaa8  
0xaa9  
0xaaa  
0xaab  
0xaac  
0xaad  
0xaae  
0xaaf  
IMA_RX_LNK16_ID  
IMA_RX_LNK17_ID  
IMA_RX_LNK18_ID  
IMA_RX_LNK19_ID  
IMA_RX_LNK20_ID  
IMA_RX_LNK21_ID  
IMA_RX_LNK22_ID  
IMA_RX_LNK23_ID  
Rx Link 16 Assigned LID  
Rx Link 17 Assigned LID  
Rx Link 18 Assigned LID  
Rx Link 19 Assigned LID  
Rx Link 20 Assigned LID  
Rx Link 21 Assigned LID  
Rx Link 22 Assigned LID  
Rx Link 23 Assigned LID  
0xab0  
0xab1  
0xab2  
0xab3  
0xab4  
0xab5  
0xab6  
0xab7  
IMA_RX_LNK16_IV_CNT  
IMA_RX_LNK17_IV_CNT  
IMA_RX_LNK18_IV_CNT  
IMA_RX_LNK19_IV_CNT  
IMA_RX_LNK20_IV_CNT  
IMA_RX_LNK21_IV_CNT  
IMA_RX_LNK22_IV_CNT  
IMA_RX_LNK23_IV_CNT  
Rx Link 16 IV-IMA Counter  
Rx Link 17 IV-IMA Counter  
Rx Link 18 IV-IMA Counter  
Rx Link 19 IV-IMA Counter  
Rx Link 20 IV-IMA Counter  
Rx Link 21 IV-IMA Counter  
Rx Link 22 IV-IMA Counter  
Rx Link 23 IV-IMA Counter  
0xab8  
0xab9  
0xaba  
0xabb  
0xabc  
0xabd  
0xabe  
0xabf  
IMA_RX_LNK16_OIF_CNT  
IMA_RX_LNK17_OIF_CNT  
IMA_RX_LNK18_OIF_CNT  
IMA_RX_LNK19_OIF_CNT  
IMA_RX_LNK20_OIF_CNT  
IMA_RX_LNK21_OIF_CNT  
IMA_RX_LNK22_OIF_CNT  
IMA_RX_LNK23_OIF_CNT  
Rx Link 16 OIF-IMA Counter  
Rx Link 17 OIF-IMA Counter  
Rx Link 18 OIF-IMA Counter  
Rx Link 19 OIF-IMA Counter  
Rx Link 20 OIF-IMA Counter  
Rx Link 21 OIF-IMA Counter  
Rx Link 22 OIF-IMA Counter  
Rx Link 23 OIF-IMA Counter  
®
28529-DSH-001-K  
Mindspeed Technologies  
132  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (16 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xac0  
0xac1  
0xac2  
0xac3  
0xac4  
0xac5  
0xac6  
0xac7  
IMA_FE_TX_LNK16_GRP_ID  
IMA_FE_TX_LNK17_GRP_ID  
IMA_FE_TX_LNK18_GRP_ID  
IMA_FE_TX_LNK19_GRP_ID  
IMA_FE_TX_LNK20_GRP_ID  
IMA_FE_TX_LNK21_GRP_ID  
IMA_FE_TX_LNK22_GRP_ID  
IMA_FE_TX_LNK23_GRP_ID  
Rx Link 16 Captured GRP ID  
page 243  
Rx Link 17 Captured GRP ID  
Rx Link 18 Captured GRP ID  
Rx Link 19 Captured GRP ID  
Rx Link 20 Captured GRP ID  
Rx Link 21 Captured GRP ID  
Rx Link 22 Captured GRP ID  
Rx Link 23 Captured GRP ID  
Receive Groups 9–12 Configuration Tables  
0xad0  
0xad1  
0xad2  
0xad3  
0xad4  
0xad5  
0xad6  
0xad7  
0xad8  
0xad9  
0xada  
0xadb  
0xadc  
0xadd  
0xade  
0xadf  
IMA_RX_GRP9_CFG  
Rx GRP 9 Configuration  
Rx GRP 9 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP9_CTL  
IMA_RX_GRP9_FIRST_PHY_ADDR  
IMA_RX_GRP9_ID  
Rx GRP 9 First Link Address  
Rx GRP 9 Rx Group ID  
Rx GRP 10 Configuration  
Rx GRP 10 Control  
IMA_RX_GRP10_CFG  
IMA_RX_GRP10_CTL  
IMA_RX_GRP10_FIRST_PHY_ADDR  
IMA_RX_GRP10_ID  
Rx GRP 10 First Link Address  
Rx GRP 10 Rx Group ID  
Rx GRP 11 Configuration  
Rx GRP 11 Control  
IMA_RX_GRP11_CFG  
IMA_RX_GRP11_CTL  
IMA_RX_GRP11_FIRST_PHY_ADDR  
IMA_RX_GRP11_ID  
Rx GRP 11 First Link Address  
Rx GRP 11 Rx Group ID  
Rx GRP 12 Configuration  
Rx GRP 12 Control  
IMA_RX_GRP12_CFG  
IMA_RX_GRP12_CTL  
IMA_RX_GRP12_FIRST_PHY_ADDR  
IMA_RX_GRP12_ID  
Rx GRP 12 First Link Address  
Rx GRP 12 Rx Group ID  
Receive Groups 9–12 Far-End Status  
0xae0  
0xae2  
0xae3  
0xae4  
0xae5  
0xae6  
0xae7  
0xae8  
0xaea  
0xaeb  
0xaec  
IMA_RX_GRP9_RX_TEST_PATTERN  
IMA_RX_GRP9_STAT_CTL_CHANGE  
IMA_RX_GRP9_ACTUAL_GRP_ID  
IMA_RX_GRP9_STAT_CTL  
Rx GRP 9 Rx Test Pattern  
Rx GRP 9 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
Rx GRP 9 Rx Group ID  
Rx GRP 9 Status / Control  
Rx GRP 9 Timing Control  
Rx GRP 9 Test Control  
Rx GRP 9 Tx Test Pattern  
IMA_RX_GRP9_TIMING_INFO  
IMA_RX_GRP9_TEST_CTL  
IMA_RX_GRP9_TX_TEST_PATTERN  
IMA_RX_GRP10_RX_TEST_PATTERN  
IMA_RX_GRP10_STAT_CTL_CHANGE  
IMA_RX_GRP10_ACTUAL_GRP_ID  
IMA_RX_GRP10_STAT_CTL  
Rx GRP 10 Rx Test Pattern  
Rx GRP 10 SCCI  
Rx GRP 10 Rx Group ID  
Rx GRP 10 Status / Control  
®
28529-DSH-001-K  
Mindspeed Technologies  
133  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (17 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xaed  
0xaee  
0xaef  
0xaf0  
0xaf2  
0xaf3  
0xaf4  
0xaf5  
0xaf6  
0xaf7  
0xaf8  
0xafa  
0xafb  
0xafc  
0xafd  
0xafe  
0xaff  
IMA_RX_GRP10_TIMING_INFO  
IMA_RX_GRP10_TEST_CTL  
Rx GRP 10 Timing Control  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 10 Test Control  
Rx GRP 10 Tx Test Pattern  
Rx GRP 11 Rx Test Pattern  
Rx GRP 11 SCCI  
IMA_RX_GRP10_TX_TEST_PATTERN  
IMA_RX_GRP11_RX_TEST_PATTERN  
IMA_RX_GRP11_STAT_CTL_CHANGE  
IMA_RX_GRP11_ACTUAL_GRP_ID  
IMA_RX_GRP11_STAT_CTL  
Rx GRP 11 Rx Group ID  
Rx GRP 11 Status / Control  
Rx GRP 11 Timing Control  
Rx GRP 11 Test Control  
Rx GRP 11 Tx Test Pattern  
Rx GRP 12 Rx Test Pattern  
Rx GRP 12 SCCI  
IMA_RX_GRP11_TIMING_INFO  
IMA_RX_GRP11_TEST_CTL  
IMA_RX_GRP11_TX_TEST_PATTERN  
IMA_RX_GRP12_RX_TEST_PATTERN  
IMA_RX_GRP12_STAT_CTL_CHANGE  
IMA_RX_GRP12_ACTUAL_GRP_ID  
IMA_RX_GRP12_STAT_CTL  
Rx GRP 12 Rx Group ID  
Rx GRP 12 Status / Control  
Rx GRP 12 Timing Control  
Rx GRP 12 Test Control  
Rx GRP 12 Tx Test Pattern  
IMA_RX_GRP12_TIMING_INFO  
IMA_RX_GRP12_TEST_CTL  
IMA_RX_GRP12_TX_TEST_PATTERN  
Transmit Groups 13–16 Configuration Tables  
0xb20  
0xb21  
0xb22  
0xb23  
0xb24  
0xb25  
0xb26  
0xb27  
0xb28  
0xb29  
0xb2a  
0xb2b  
0xb2c  
0xb2d  
0xb2e  
0xb2f  
0xb30  
IMA_TX_GRP13_RX_TEST_PATTERN  
Tx GRP 13 Rx Test Pattern  
Tx GRP 13 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
IMA_TX_GRP13_CTL  
IMA_TX_GRP13_FIRST_PHY_ADDR  
IMA_TX_GRP13_ID  
Tx GRP 13 First Link Address  
Tx GRP 13 Tx Group ID  
Tx GRP 13 Status / Control  
Tx GRP 13 Timing Control  
Tx GRP 13 Test Control  
Tx GRP 13 Tx Test Pattern  
Tx GRP 14 Rx Test Pattern  
Tx GRP 14 Control  
IMA_TX_GRP13_STAT_CTL  
IMA_TX_GRP13_TIMING_INFO  
IMA_TX_GRP13_TEST_CTL  
IMA_TX_GRP13_TX_TEST_PATTERN  
IMA_TX_GRP14_RX_TEST_PATTERN  
IMA_TX_GRP14_CTL  
IMA_TX_GRP14_FIRST_PHY_ADDR  
IMA_TX_GRP14_ID  
Tx GRP 14 First Link Address  
Tx GRP 14 Tx Group ID  
Tx GRP 14 Status / Control  
Tx GRP 14 Timing Control  
Tx GRP 14 Test Control  
Tx GRP 14 Tx Test Pattern  
Tx GRP 15 Rx Test Pattern  
IMA_TX_GRP14_STAT_CTL  
IMA_TX_GRP14_TIMING_INFO  
IMA_TX_GRP14_TEST_CTL  
IMA_TX_GRP14_TX_TEST_PATTERN  
IMA_TX_GRP15_RX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
134  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (18 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xb31  
0xb32  
0xb33  
0xb34  
0xb35  
0xb36  
0xb37  
0xb38  
0xb39  
0xb3a  
0xb3b  
0xb3c  
0xb3d  
0xb3e  
0xb3f  
IMA_TX_GRP15_CTL  
Tx GRP 15 Control  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP15_FIRST_PHY_ADDR  
IMA_TX_GRP15_ID  
Tx GRP 15 First Link Address  
Tx GRP 15 Tx Group ID  
Tx GRP 15 Status / Control  
Tx GRP 15 Timing Control  
Tx GRP 15 Test Control  
Tx GRP 15 Tx Test Pattern  
Tx GRP 16 Rx Test Pattern  
Tx GRP 16 Control  
IMA_TX_GRP15_STAT_CTL  
IMA_TX_GRP15_TIMING_INFO  
IMA_TX_GRP15_TEST_CTL  
IMA_TX_GRP15_TX_TEST_PATTERN  
IMA_TX_GRP16_RX_TEST_PATTERN  
IMA_TX_GRP16_CTL  
IMA_TX_GRP16_FIRST_PHY_ADDR  
IMA_TX_GRP16_ID  
Tx GRP 16 First Link Address  
Tx GRP 16 Tx Group ID  
Tx GRP 16 Status / Control  
Tx GRP 16 Timing Control  
Tx GRP 16 Test Control  
Tx GRP 16 Tx Test Pattern  
IMA_TX_GRP16_STAT_CTL  
IMA_TX_GRP16_TIMING_INFO  
IMA_TX_GRP16_TEST_CTL  
IMA_TX_GRP16_TX_TEST_PATTERN  
Tx UTOPIA Addresses 12 - 15 Cell Counters  
0xb40  
0xb41  
0xb42  
0xb43  
0xb44  
0xb45  
0xb46  
0xb47  
IMA_TX_ATM12_CELL_COUNT_LSB  
IMA_TX_ATM12_CELL_COUNT_MSB  
IMA_TX_ATM13_CELL_COUNT_LSB  
IMA_TX_ATM13_CELL_COUNT_MSB  
IMA_TX_ATM14_CELL_COUNT_LSB  
IMA_TX_ATM14_CELL_COUNT_MSB  
IMA_TX_ATM15_CELL_COUNT_LSB  
IMA_TX_ATM15_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x0C Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x0C Cell Count MSBs  
Transmit UTOPIA Address 0x0D Cell Count LSBs  
Transmit UTOPIA Address 0x0D Cell Count MSBs  
Transmit UTOPIA Address 0x0E Cell Count LSBs  
Transmit UTOPIA Address 0x0E Cell Count MSBs  
Transmit UTOPIA Address 0x0F Cell Count LSBs  
Transmit UTOPIA Address 0x0F Cell Count MSBs  
Rx UTOPIA Addresses 12 - 15 Cell Counters  
0xb50  
0xb51  
0xb52  
0xb53  
0xb54  
0xb55  
0xb56  
0xb57  
IMA_RX_ATM12_CELL_COUNT_LSB  
IMA_RX_ATM12_CELL_COUNT_MSB  
IMA_RX_ATM13_CELL_COUNT_LSB  
IMA_RX_ATM13_CELL_COUNT_MSB  
IMA_RX_ATM14_CELL_COUNT_LSB  
IMA_RX_ATM14_CELL_COUNT_MSB  
IMA_RX_ATM15_CELL_COUNT_LSB  
IMA_RX_ATM15_CELL_COUNT_MSB  
Receive UTOPIA Address 0x0C Cell Count LSBs  
Receive UTOPIA Address 0x0C Cell Count MSBs  
Receive UTOPIA Address 0x0D Cell Count LSBs  
Receive UTOPIA Address 0x0D Cell Count MSBs  
Receive UTOPIA Address 0x0E Cell Count LSBs  
Receive UTOPIA Address 0x0E Cell Count MSBs  
Receive UTOPIA Address 0x0F Cell Count LSBs  
Receive UTOPIA Address 0x0F Cell Count MSBs  
page 218  
®
28529-DSH-001-K  
Mindspeed Technologies  
135  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (19 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Port 24–31 Control and Status  
0xb60  
0xb61  
0xb62  
0xb63  
0xb64  
0xb65  
0xb66  
0xb67  
IMA_TX_LNK24_CTL  
IMA_TX_LNK25_CTL  
IMA_TX_LNK26_CTL  
IMA_TX_LNK27_CTL  
IMA_TX_LNK28_CTL  
IMA_TX_LNK29_CTL  
IMA_TX_LNK30_CTL  
IMA_TX_LNK31_CTL  
Tx Link 24 Control  
Tx Link 25 Control  
Tx Link 26 Control  
Tx Link 27 Control  
Tx Link 28 Control  
Tx Link 29 Control  
Tx Link 30 Control  
Tx Link 31 Control  
page 232  
page 233  
page 234  
page 235  
page 236  
0xb68  
0xb69  
0xb6a  
0xb6b  
0xb6c  
0xb6d  
0xb6e  
0xb6f  
IMA_TX_LNK24_STATE  
IMA_TX_LNK25_STATE  
IMA_TX_LNK26_STATE  
IMA_TX_LNK27_STATE  
IMA_TX_LNK28_STATE  
IMA_TX_LNK29_STATE  
IMA_TX_LNK30_STATE  
IMA_TX_LNK31_STATE  
Tx Link 24 Status  
Tx Link 25 Status  
Tx Link 26 Status  
Tx Link 27 Status  
Tx Link 28 Status  
Tx Link 29 Status  
Tx Link 30 Status  
Tx Link 31 Status  
0xb70  
0xb71  
0xb72  
0xb73  
0xb74  
0xb75  
0xb76  
0xb77  
IMA_TX_LNK24_ID  
IMA_TX_LNK25_ID  
IMA_TX_LNK26_ID  
IMA_TX_LNK27_ID  
IMA_TX_LNK28_ID  
IMA_TX_LNK29_ID  
IMA_TX_LNK30_ID  
IMA_TX_LNK31_ID  
Tx Link 24 Assigned LID  
Tx Link 25 Assigned LID  
Tx Link 26 Assigned LID  
Tx Link 27 Assigned LID  
Tx Link 28 Assigned LID  
Tx Link 29 Assigned LID  
Tx Link 30 Assigned LID  
Tx Link 31 Assigned LID  
0xb80  
0xb81  
0xb82  
0xb83  
0xb84  
0xb85  
0xb86  
0xb87  
IMA_RX_LNK24_CTL  
IMA_RX_LNK25_CTL  
IMA_RX_LNK26_CTL  
IMA_RX_LNK27_CTL  
IMA_RX_LNK28_CTL  
IMA_RX_LNK29_CTL  
IMA_RX_LNK30_CTL  
IMA_RX_LNK31_CTL  
Rx Link 24 Control  
Rx Link 25 Control  
Rx Link 26 Control  
Rx Link 27 Control  
Rx Link 28 Control  
Rx Link 29 Control  
Rx Link 30 Control  
Rx Link 31 Control  
0xb88  
0xb89  
0xb8a  
0xb8b  
0xb8c  
0xb8d  
0xb8e  
0xb8f  
IMA_RX_LNK24_STATE  
IMA_RX_LNK25_STATE  
IMA_RX_LNK26_STATE  
IMA_RX_LNK27_STATE  
IMA_RX_LNK28_STATE  
IMA_RX_LNK29_STATE  
IMA_RX_LNK30_STATE  
IMA_RX_LNK31_STATE  
Rx Link 24 Status  
Rx Link 25 Status  
Rx Link 26 Status  
Rx Link 27 Status  
Rx Link 28 Status  
Rx Link 29 Status  
Rx Link 30 Status  
Rx Link 31 Status  
®
28529-DSH-001-K  
Mindspeed Technologies  
136  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (20 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xb90  
0xb91  
0xb92  
0xb93  
0xb94  
0xb95  
0xb96  
0xb97  
IMA_RX_LNK24_DEFECT  
Rx Link 24 Defects  
Rx Link 25 Defects  
Rx Link 26 Defects  
Rx Link 27 Defects  
Rx Link 28 Defects  
Rx Link 29 Defects  
Rx Link 30 Defects  
Rx Link 31 Defects  
page 237  
page 238  
page 239  
page 240  
page 241  
page 242  
IMA_RX_LNK25_DEFECT  
IMA_RX_LNK26_DEFECT  
IMA_RX_LNK27_DEFECT  
IMA_RX_LNK28_DEFECT  
IMA_RX_LNK29_DEFECT  
IMA_RX_LNK30_DEFECT  
IMA_RX_LNK31_DEFECT  
0xb98  
0xb99  
0xb9a  
0xb9b  
0xb9c  
0xb9d  
0xb9e  
0xb9f  
IMA_FE_TX_LNK24_CFG  
IMA_FE_TX_LNK25_CFG  
IMA_FE_TX_LNK26_CFG  
IMA_FE_TX_LNK27_CFG  
IMA_FE_TX_LNK28_CFG  
IMA_FE_TX_LNK29_CFG  
IMA_FE_TX_LNK30_CFG  
IMA_FE_TX_LNK31_CFG  
FE Tx Link 24 Link Config  
FE Tx Link 25 Link Config  
FE Tx Link 26 Link Config  
FE Tx Link 27 Link Config  
FE Tx Link 28 Link Config  
FE Tx Link 29 Link Config  
FE Tx Link 30 Link Config  
FE Tx Link 31 Link Config  
0xba0  
0xba1  
0xba2  
0xba3  
0xba4  
0xba5  
0xba6  
0xba7  
IMA_FE_LNK24_STATE  
IMA_FE_LNK25_STATE  
IMA_FE_LNK26_STATE  
IMA_FE_LNK27_STATE  
IMA_FE_LNK28_STATE  
IMA_FE_LNK29_STATE  
IMA_FE_LNK30_STATE  
IMA_FE_LNK31_STATE  
Rx Link 24 FE Status  
Rx Link 25 FE Status  
Rx Link 26 FE Status  
Rx Link 27 FE Status  
Rx Link 28 FE Status  
Rx Link 29 FE Status  
Rx Link 30 FE Status  
Rx Link 31 FE Status  
0xba8  
0xba9  
0xbaa  
0xbab  
0xbac  
0xbad  
0xbae  
0xbaf  
IMA_RX_LNK24_ID  
IMA_RX_LNK25_ID  
IMA_RX_LNK26_ID  
IMA_RX_LNK27_ID  
IMA_RX_LNK28_ID  
IMA_RX_LNK29_ID  
IMA_RX_LNK30_ID  
IMA_RX_LNK31_ID  
Rx Link 24 Assigned LID  
Rx Link 25 Assigned LID  
Rx Link 26 Assigned LID  
Rx Link 27 Assigned LID  
Rx Link 28 Assigned LID  
Rx Link 29 Assigned LID  
Rx Link 30 Assigned LID  
Rx Link 31 Assigned LID  
0xbb0  
0xbb1  
0xbb2  
0xbb3  
0xbb4  
0xbb5  
0xbb6  
0xbb7  
IMA_RX_LNK24_IV_CNT  
IMA_RX_LNK25_IV_CNT  
IMA_RX_LNK26_IV_CNT  
IMA_RX_LNK27_IV_CNT  
IMA_RX_LNK28_IV_CNT  
IMA_RX_LNK29_IV_CNT  
IMA_RX_LNK30_IV_CNT  
IMA_RX_LNK31_IV_CNT  
Rx Link 24 IV-IMA Counter  
Rx Link 25 IV-IMA Counter  
Rx Link 26 IV-IMA Counter  
Rx Link 27 IV-IMA Counter  
Rx Link 28 IV-IMA Counter  
Rx Link 29 IV-IMA Counter  
Rx Link 30 IV-IMA Counter  
Rx Link 31 IV-IMA Counter  
0xbb8  
0xbb9  
0xbba  
0xbbb  
0xbbc  
0xbbd  
0xbbe  
0xbbf  
IMA_RX_LNK24_OIF_CNT  
IMA_RX_LNK25_OIF_CNT  
IMA_RX_LNK26_OIF_CNT  
IMA_RX_LNK27_OIF_CNT  
IMA_RX_LNK28_OIF_CNT  
IMA_RX_LNK29_OIF_CNT  
IMA_RX_LNK30_OIF_CNT  
IMA_RX_LNK31_OIF_CNT  
Rx Link 24 OIF-IMA Counter  
Rx Link 25 OIF-IMA Counter  
Rx Link 26 OIF-IMA Counter  
Rx Link 27 OIF-IMA Counter  
Rx Link 28 OIF-IMA Counter  
Rx Link 29 OIF-IMA Counter  
Rx Link 30 OIF-IMA Counter  
Rx Link 31 OIF-IMA Counter  
®
28529-DSH-001-K  
Mindspeed Technologies  
137  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (21 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xbc0  
0xbc1  
0xbc2  
0xbc3  
0xbc4  
0xbc5  
0xbc6  
0xbc7  
IMA_FE_TX_LNK24_GRP_ID  
IMA_FE_TX_LNK25_GRP_ID  
IMA_FE_TX_LNK26_GRP_ID  
IMA_FE_TX_LNK27_GRP_ID  
IMA_FE_TX_LNK28_GRP_ID  
IMA_FE_TX_LNK29_GRP_ID  
IMA_FE_TX_LNK30_GRP_ID  
IMA_FE_TX_LNK31_GRP_ID  
Rx Link 24 Captured GRP ID  
page 243  
Rx Link 25 Captured GRP ID  
Rx Link 26 Captured GRP ID  
Rx Link 27 Captured GRP ID  
Rx Link 28 Captured GRP ID  
Rx Link 29 Captured GRP ID  
Rx Link 30 Captured GRP ID  
Rx Link 31 Captured GRP ID  
Receive Groups 13–16 Configuration Tables  
0xbd0  
0xbd1  
0xbd2  
0xbd3  
0xbd4  
0xbd5  
0xbd6  
0xbd7  
0xbd8  
0xbd9  
0xbda  
0xbdb  
0xbdc  
0xbdd  
0xbde  
0xbdf  
IMA_RX_GRP13_CFG  
Rx GRP 13 Configuration  
Rx GRP 13 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP13_CTL  
IMA_RX_GRP13_FIRST_PHY_ADDR  
IMA_RX_GRP13_ID  
Rx GRP 13 First Link Address  
Rx GRP 13 Rx Group ID  
Rx GRP 14 Configuration  
Rx GRP 14 Control  
IMA_RX_GRP14_CFG  
IMA_RX_GRP14_CTL  
IMA_RX_GRP14_FIRST_PHY_ADDR  
IMA_RX_GRP14_ID  
Rx GRP 14 First Link Address  
Rx GRP 14 Rx Group ID  
Rx GRP 15 Configuration  
Rx GRP 15 Control  
IMA_RX_GRP15_CFG  
IMA_RX_GRP15_CTL  
IMA_RX_GRP15_FIRST_PHY_ADDR  
IMA_RX_GRP15_ID  
Rx GRP 15 First Link Address  
Rx GRP 15 Rx Group ID  
Rx GRP 16 Configuration  
Rx GRP 16 Control  
IMA_RX_GRP16_CFG  
IMA_RX_GRP16_CTL  
IMA_RX_GRP16_FIRST_PHY_ADDR  
IMA_RX_GRP16_ID  
Rx GRP 16 First Link Address  
Rx GRP 16 Rx Group ID  
Receive Groups 13–16 Far-End Status  
0xbe0  
0xbe2  
0xbe3  
0xbe4  
0xbe5  
0xbe6  
0xbe7  
0xbe8  
0xbea  
0xbeb  
0xbec  
IMA_RX_GRP13_RX_TEST_PATTERN  
IMA_RX_GRP13_STAT_CTL_CHANGE  
IMA_RX_GRP13_ACTUAL_GRP_ID  
IMA_RX_GRP13_STAT_CTL  
Rx GRP 13 Rx Test Pattern  
Rx GRP 13 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
Rx GRP 13 Rx Group ID  
Rx GRP 13 Status / Control  
Rx GRP 13 Timing Control  
Rx GRP 13 Test Control  
Rx GRP 13 Tx Test Pattern  
Rx GRP 14 Rx Test Pattern  
Rx GRP 14 SCCI  
IMA_RX_GRP13_TIMING_INFO  
IMA_RX_GRP13_TEST_CTL  
IMA_RX_GRP13_TX_TEST_PATTERN  
IMA_RX_GRP14_RX_TEST_PATTERN  
IMA_RX_GRP14_STAT_CTL_CHANGE  
IMA_RX_GRP14_ACTUAL_GRP_ID  
IMA_RX_GRP14_STAT_CTL  
Rx GRP 14 Rx Group ID  
Rx GRP 14 Status / Control  
®
28529-DSH-001-K  
Mindspeed Technologies  
138  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (22 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xbed  
0xbee  
0xbef  
0xbf0  
0xbf2  
0xbf3  
0xbf4  
0xbf5  
0xbf6  
0xbf7  
0xbf8  
0xbfa  
0xbfb  
0xbfc  
0xbfd  
0xbfe  
0xbff  
IMA_RX_GRP14_TIMING_INFO  
IMA_RX_GRP14_TEST_CTL  
Rx GRP 14 Timing Control  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 14 Test Control  
Rx GRP 14 Tx Test Pattern  
Rx GRP 15 Rx Test Pattern  
Rx GRP 15 SCCI  
IMA_RX_GRP14_TX_TEST_PATTERN  
IMA_RX_GRP15_RX_TEST_PATTERN  
IMA_RX_GRP15_STAT_CTL_CHANGE  
IMA_RX_GRP15_ACTUAL_GRP_ID  
IMA_RX_GRP15_STAT_CTL  
Rx GRP 15 Rx Group ID  
Rx GRP 15 Status / Control  
Rx GRP 15 Timing Control  
Rx GRP 15 Test Control  
Rx GRP 15 Tx Test Pattern  
Rx GRP 16 Rx Test Pattern  
Rx GRP 16 SCCI  
IMA_RX_GRP15_TIMING_INFO  
IMA_RX_GRP15_TEST_CTL  
IMA_RX_GRP15_TX_TEST_PATTERN  
IMA_RX_GRP16_RX_TEST_PATTERN  
IMA_RX_GRP16_STAT_CTL_CHANGE  
IMA_RX_GRP16_ACTUAL_GRP_ID  
IMA_RX_GRP12_STAT_CTL  
Rx GRP 16 Rx Group ID  
Rx GRP 16 Status / Control  
Rx GRP 16 Timing Control  
Rx GRP 16 Test Control  
Rx GRP 16 Tx Test Pattern  
IMA_RX_GRP16_TIMING_INFO  
IMA_RX_GRP16_TEST_CTL  
IMA_RX_GRP16_TX_TEST_PATTERN  
Transmit Groups 17–20 Configuration Tables  
0xc20  
0xc21  
0xc22  
0xc23  
0xc24  
0xc25  
0xc26  
0xc27  
0xc28  
0xc29  
0xc2a  
0xc2b  
0xc2c  
0xc2d  
0xc2e  
0xc2f  
0xc30  
IMA_TX_GRP17_RX_TEST_PATTERN  
Tx GRP 17 Rx Test Pattern  
Tx GRP 17 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
IMA_TX_GRP17_CTL  
IMA_TX_GRP17_FIRST_PHY_ADDR  
IMA_TX_GRP17_ID  
Tx GRP 17 First Link Address  
Tx GRP 17 Tx Group ID  
Tx GRP 17 Status / Control  
Tx GRP 17 Timing Control  
Tx GRP 17 Test Control  
Tx GRP 17 Tx Test Pattern  
Tx GRP 18 Rx Test Pattern  
Tx GRP 18 Control  
IMA_TX_GRP17_STAT_CTL  
IMA_TX_GRP17_TIMING_INFO  
IMA_TX_GRP17_TEST_CTL  
IMA_TX_GRP17_TX_TEST_PATTERN  
IMA_TX_GRP18_RX_TEST_PATTERN  
IMA_TX_GRP18_CTL  
IMA_TX_GRP18_FIRST_PHY_ADDR  
IMA_TX_GRP18_ID  
Tx GRP 18 First Link Address  
Tx GRP 18 Tx Group ID  
Tx GRP 18 Status / Control  
Tx GRP 18 Timing Control  
Tx GRP 18 Test Control  
Tx GRP 18 Tx Test Pattern  
Tx GRP 19 Rx Test Pattern  
IMA_TX_GRP18_STAT_CTL  
IMA_TX_GRP18_TIMING_INFO  
IMA_TX_GRP18_TEST_CTL  
IMA_TX_GRP18_TX_TEST_PATTERN  
IMA_TX_GRP19_RX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
139  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (23 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xc31  
0xc32  
0xc33  
0xc34  
0xc35  
0xc36  
0xc37  
0xc38  
0xc39  
0xc3a  
0xc3b  
0xc3c  
0xc3d  
0xc3e  
0xc3f  
IMA_TX_GRP19_CTL  
Tx GRP 19 Control  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP19_FIRST_PHY_ADDR  
IMA_TX_GRP19_ID  
Tx GRP 19 First Link Address  
Tx GRP 19 Tx Group ID  
Tx GRP 19 Status / Control  
Tx GRP 19 Timing Control  
Tx GRP 19 Test Control  
Tx GRP 19 Tx Test Pattern  
Tx GRP 20 Rx Test Pattern  
Tx GRP 20 Control  
IMA_TX_GRP19_STAT_CTL  
IMA_TX_GRP19_TIMING_INFO  
IMA_TX_GRP19_TEST_CTL  
IMA_TX_GRP19_TX_TEST_PATTERN  
IMA_TX_GRP20_RX_TEST_PATTERN  
IMA_TX_GRP20_CTL  
IMA_TX_GRP20_FIRST_PHY_ADDR  
IMA_TX_GRP20_ID  
Tx GRP 20 First Link Address  
Tx GRP 20 Tx Group ID  
Tx GRP 20 Status / Control  
Tx GRP 20 Timing Control  
Tx GRP 20 Test Control  
Tx GRP 20 Tx Test Pattern  
IMA_TX_GRP20_STAT_CTL  
IMA_TX_GRP20_TIMING_INFO  
IMA_TX_GRP20_TEST_CTL  
IMA_TX_GRP20_TX_TEST_PATTERN  
Tx UTOPIA Addresses 16 - 19 Cell Counters  
0xc40  
0xc41  
0xc42  
0xc43  
0xc44  
0xc45  
0xc46  
0xc47  
IMA_TX_ATM16_CELL_COUNT_LSB  
IMA_TX_ATM16_CELL_COUNT_MSB  
IMA_TX_ATM17_CELL_COUNT_LSB  
IMA_TX_ATM17_CELL_COUNT_MSB  
IMA_TX_ATM18_CELL_COUNT_LSB  
IMA_TX_ATM18_CELL_COUNT_MSB  
IMA_TX_ATM19_CELL_COUNT_LSB  
IMA_TX_ATM19_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x10 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x10 Cell Count MSBs  
Transmit UTOPIA Address 0x11 Cell Count LSBs  
Transmit UTOPIA Address 0x11 Cell Count MSBs  
Transmit UTOPIA Address 0x12 Cell Count LSBs  
Transmit UTOPIA Address 0x12 Cell Count MSBs  
Transmit UTOPIA Address 0x13 Cell Count LSBs  
Transmit UTOPIA Address 0x13 Cell Count MSBs  
Rx UTOPIA Addresses 16 - 19 Cell Counters  
0xc48  
0xc49  
0xc4a  
0xc4b  
0xc4c  
0xc4d  
0xc4e  
0xc4f  
IMA_RX_ATM16_CELL_COUNT_LSB  
IMA_RX_ATM16_CELL_COUNT_MSB  
IMA_RX_ATM17_CELL_COUNT_LSB  
IMA_RX_ATM17_CELL_COUNT_MSB  
IMA_RX_ATM18_CELL_COUNT_LSB  
IMA_RX_ATM18_CELL_COUNT_MSB  
IMA_RX_ATM19_CELL_COUNT_LSB  
IMA_RX_ATM19_CELL_COUNT_MSB  
Receive UTOPIA Address 0x10 Cell Count LSBs  
Receive UTOPIA Address 0x10 Cell Count MSBs  
Receive UTOPIA Address 0x11 Cell Count LSBs  
Receive UTOPIA Address 0x11 Cell Count MSBs  
Receive UTOPIA Address 0x12 Cell Count LSBs  
Receive UTOPIA Address 0x12 Cell Count MSBs  
Receive UTOPIA Address 0x13 Cell Count LSBs  
Receive UTOPIA Address 0x13 Cell Count MSBs  
page 218  
Receive Groups 17–20 Configuration Tables  
0xc50  
0xc51  
0xc52  
0xc53  
0xc54  
IMA_RX_GRP17_CFG  
Rx GRP 17 Configuration  
Rx GRP 17 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
IMA_RX_GRP17_CTL  
IMA_RX_GRP17_FIRST_PHY_ADDR  
IMA_RX_GRP17_ID  
Rx GRP 17 First Link Address  
Rx GRP 17 Rx Group ID  
Rx GRP 18 Configuration  
IMA_RX_GRP18_CFG  
®
28529-DSH-001-K  
Mindspeed Technologies  
140  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (24 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xc55  
0xc56  
0xc57  
0xc58  
0xc59  
0xc5a  
0xc5b  
0xc5c  
0xc5d  
0xc5e  
0xc5f  
IMA_RX_GRP18_CTL  
Rx GRP 18 Control  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP18_FIRST_PHY_ADDR  
IMA_RX_GRP18_ID  
Rx GRP 18 First Link Address  
Rx GRP 18 Rx Group ID  
Rx GRP 19 Configuration  
Rx GRP 19 Control  
IMA_RX_GRP19_CFG  
IMA_RX_GRP19_CTL  
IMA_RX_GRP19_FIRST_PHY_ADDR  
IMA_RX_GRP19_ID  
Rx GRP 19 First Link Address  
Rx GRP 19 Rx Group ID  
Rx GRP 20 Configuration  
Rx GRP 20 Control  
IMA_RX_GRP20_CFG  
IMA_RX_GRP20_CTL  
IMA_RX_GRP20_FIRST_PHY_ADDR  
IMA_RX_GRP20_ID  
Rx GRP 20 First Link Address  
Rx GRP 20 Rx Group ID  
Receive Groups 17–20 Far-End Status  
0xc60  
0xc62  
0xc63  
0xc64  
0xc65  
0xc66  
0xc67  
0xc68  
0xc6a  
0xc6b  
0xc6c  
0xc6d  
0xc6e  
0xc6f  
0xc70  
0xc72  
0xc73  
0xc74  
0xc75  
0xc76  
0xc77  
0xc78  
0xc7a  
IMA_RX_GRP17_RX_TEST_PATTERN  
IMA_RX_GRP17_STAT_CTL_CHANGE  
IMA_RX_GRP17_ACTUAL_GRP_ID  
IMA_RX_GRP17_STAT_CTL  
Rx GRP 17 Rx Test Pattern  
Rx GRP 17 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
Rx GRP 17 Rx Group ID  
Rx GRP 17 Status / Control  
Rx GRP 17 Timing Control  
Rx GRP 17 Test Control  
Rx GRP 17 Tx Test Pattern  
Rx GRP 18 Rx Test Pattern  
Rx GRP 18 SCCI  
IMA_RX_GRP17_TIMING_INFO  
IMA_RX_GRP17_TEST_CTL  
IMA_RX_GRP17_TX_TEST_PATTERN  
IMA_RX_GRP18_RX_TEST_PATTERN  
IMA_RX_GRP18_STAT_CTL_CHANGE  
IMA_RX_GRP18_ACTUAL_GRP_ID  
IMA_RX_GRP18_STAT_CTL  
Rx GRP 18 Rx Group ID  
Rx GRP 18 Status / Control  
Rx GRP 18 Timing Control  
Rx GRP 18 Test Control  
Rx GRP 18 Tx Test Pattern  
Rx GRP 19 Rx Test Pattern  
Rx GRP 19 SCCI  
IMA_RX_GRP18_TIMING_INFO  
IMA_RX_GRP18_TEST_CTL  
IMA_RX_GRP18_TX_TEST_PATTERN  
IMA_RX_GRP19_RX_TEST_PATTERN  
IMA_RX_GRP19_STAT_CTL_CHANGE  
IMA_RX_GRP19_ACTUAL_GRP_ID  
IMA_RX_GRP19_STAT_CTL  
Rx GRP 19 Rx Group ID  
Rx GRP 19 Status / Control  
Rx GRP 19 Timing Control  
Rx GRP 19 Test Control  
Rx GRP 19 Tx Test Pattern  
Rx GRP 20 Rx Test Pattern  
Rx GRP 20 SCCI  
IMA_RX_GRP19_TIMING_INFO  
IMA_RX_GRP19_TEST_CTL  
IMA_RX_GRP19_TX_TEST_PATTERN  
IMA_RX_GRP20_RX_TEST_PATTERN  
IMA_RX_GRP20_STAT_CTL_CHANGE  
®
28529-DSH-001-K  
Mindspeed Technologies  
141  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (25 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xc7b  
0xc7c  
0xc7d  
0xc7e  
0xc7f  
IMA_RX_GRP20_ACTUAL_GRP_ID  
IMA_RX_GRP20_STAT_CTL  
Rx GRP 20 Rx Group ID  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 20 Status / Control  
Rx GRP 20 Timing Control  
Rx GRP 20 Test Control  
Rx GRP 20 Tx Test Pattern  
IMA_RX_GRP20_TIMING_INFO  
IMA_RX_GRP20_TEST_CTL  
IMA_RX_GRP20_TX_TEST_PATTERN  
Transmit Groups 21–24 Configuration Tables  
0xca0  
0xca1  
0xca2  
0xca3  
0xca4  
0xca5  
0xca6  
0xca7  
0xca8  
0xca9  
0xcaa  
0xcab  
0xcac  
0xcad  
0xcae  
0xcaf  
IMA_TX_GRP21_RX_TEST_PATTERN  
Tx GRP 21 Rx Test Pattern  
Tx GRP 21 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
IMA_TX_GRP21_CTL  
IMA_TX_GRP21_FIRST_PHY_ADDR  
IMA_TX_GRP21_ID  
Tx GRP 21 First Link Address  
Tx GRP 21 Tx Group ID  
Tx GRP 21 Status / Control  
Tx GRP 21 Timing Control  
Tx GRP 21 Test Control  
Tx GRP 21 Tx Test Pattern  
Tx GRP 22 Rx Test Pattern  
Tx GRP 22 Control  
IMA_TX_GRP21_STAT_CTL  
IMA_TX_GRP21_TIMING_INFO  
IMA_TX_GRP21_TEST_CTL  
IMA_TX_GRP21_TX_TEST_PATTERN  
IMA_TX_GRP22_RX_TEST_PATTERN  
IMA_TX_GRP22_CTL  
IMA_TX_GRP22_FIRST_PHY_ADDR  
IMA_TX_GRP22_ID  
Tx GRP 22 First Link Address  
Tx GRP 22 Tx Group ID  
Tx GRP 22 Status / Control  
Tx GRP 22 Timing Control  
Tx GRP 22 Test Control  
Tx GRP 22 Tx Test Pattern  
Tx GRP 23 Rx Test Pattern  
Tx GRP 23 Control  
IMA_TX_GRP22_STAT_CTL  
IMA_TX_GRP22_TIMING_INFO  
IMA_TX_GRP22_TEST_CTL  
IMA_TX_GRP22_TX_TEST_PATTERN  
IMA_TX_GRP23_RX_TEST_PATTERN  
IMA_TX_GRP23_CTL  
0xcb0  
0xcb1  
0xcb2  
0xcb3  
0xcb4  
0xcb5  
0xcb6  
0xcb7  
0xcb8  
0xcb9  
0xcba  
0xcbb  
0xcbc  
IMA_TX_GRP23_FIRST_PHY_ADDR  
IMA_TX_GRP23_ID  
Tx GRP 23 First Link Address  
Tx GRP 23 Tx Group ID  
Tx GRP 23 Status / Control  
Tx GRP 23 Timing Control  
Tx GRP 23 Test Control  
Tx GRP 23 Tx Test Pattern  
Tx GRP 24 Rx Test Pattern  
Tx GRP 24 Control  
IMA_TX_GRP23_STAT_CTL  
IMA_TX_GRP23_TIMING_INFO  
IMA_TX_GRP23_TEST_CTL  
IMA_TX_GRP23_TX_TEST_PATTERN  
IMA_TX_GRP24_RX_TEST_PATTERN  
IMA_TX_GRP24_CTL  
IMA_TX_GRP24_FIRST_PHY_ADDR  
IMA_TX_GRP24_ID  
Tx GRP 24 First Link Address  
Tx GRP 24 Tx Group ID  
Tx GRP 24 Status / Control  
IMA_TX_GRP24_STAT_CTL  
®
28529-DSH-001-K  
Mindspeed Technologies  
142  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (26 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xcbd  
0xcbe  
0xcbf  
IMA_TX_GRP24_TIMING_INFO  
IMA_TX_GRP24_TEST_CTL  
Tx GRP 24 Timing Control  
page 213  
page 214  
page 215  
Tx GRP 24 Test Control  
IMA_TX_GRP24_TX_TEST_PATTERN  
Tx GRP 24 Tx Test Pattern  
Tx UTOPIA Addresses 20 - 23 Cell Counters  
0xcc0  
0xcc1  
0xcc2  
0xcc3  
0xcc4  
0xcc5  
0xcc6  
0xcc7  
IMA_TX_ATM20_CELL_COUNT_LSB  
IMA_TX_ATM20_CELL_COUNT_MSB  
IMA_TX_ATM21_CELL_COUNT_LSB  
IMA_TX_ATM21_CELL_COUNT_MSB  
IMA_TX_ATM22_CELL_COUNT_LSB  
IMA_TX_ATM22_CELL_COUNT_MSB  
IMA_TX_ATM23_CELL_COUNT_LSB  
IMA_TX_ATM23_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x14 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x14 Cell Count MSBs  
Transmit UTOPIA Address 0x15 Cell Count LSBs  
Transmit UTOPIA Address 0x15 Cell Count MSBs  
Transmit UTOPIA Address 0x16 Cell Count LSBs  
Transmit UTOPIA Address 0x16 Cell Count MSBs  
Transmit UTOPIA Address 0x17 Cell Count LSBs  
Transmit UTOPIA Address 0x17 Cell Count MSBs  
Rx UTOPIA Addresses 20 - 23 Cell Counters  
0xcc8  
0xcc9  
0xcca  
0xccb  
0xccc  
0xccd  
0xcce  
0xccf  
IMA_RX_ATM20_CELL_COUNT_LSB  
IMA_RX_ATM20_CELL_COUNT_MSB  
IMA_RX_ATM21_CELL_COUNT_LSB  
IMA_RX_ATM21_CELL_COUNT_MSB  
IMA_RX_ATM22_CELL_COUNT_LSB  
IMA_RX_ATM22_CELL_COUNT_MSB  
IMA_RX_ATM23_CELL_COUNT_LSB  
IMA_RX_ATM23_CELL_COUNT_MSB  
Receive UTOPIA Address 0x14 Cell Count LSBs  
Receive UTOPIA Address 0x14 Cell Count MSBs  
Receive UTOPIA Address 0x15 Cell Count LSBs  
Receive UTOPIA Address 0x15 Cell Count MSBs  
Receive UTOPIA Address 0x16 Cell Count LSBs  
Receive UTOPIA Address 0x16 Cell Count MSBs  
Receive UTOPIA Address 0x17 Cell Count LSBs  
Receive UTOPIA Address 0x17 Cell Count MSBs  
page 218  
Receive Groups 21–24 Configuration Tables  
0xcd0  
0xcd1  
0xcd2  
0xcd3  
0xcd4  
0xcd5  
0xcd6  
0xcd7  
0xcd8  
0xcd9  
0xcda  
0xcdb  
0xcdc  
0xcdd  
0xcde  
0xcdf  
IMA_RX_GRP21_CFG  
Rx GRP 21 Configuration  
Rx GRP 21 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP21_CTL  
IMA_RX_GRP21_FIRST_PHY_ADDR  
IMA_RX_GRP21_ID  
Rx GRP 21 First Link Address  
Rx GRP 21 Rx Group ID  
Rx GRP 22 Configuration  
Rx GRP 22 Control  
IMA_RX_GRP22_CFG  
IMA_RX_GRP22_CTL  
IMA_RX_GRP22_FIRST_PHY_ADDR  
IMA_RX_GRP22_ID  
Rx GRP 22 First Link Address  
Rx GRP 22 Rx Group ID  
Rx GRP 23 Configuration  
Rx GRP 23 Control  
IMA_RX_GRP23_CFG  
IMA_RX_GRP23_CTL  
IMA_RX_GRP23_FIRST_PHY_ADDR  
IMA_RX_GRP23_ID  
Rx GRP 23 First Link Address  
Rx GRP 23 Rx Group ID  
Rx GRP 24 Configuration  
Rx GRP 24 Control  
IMA_RX_GRP24_CFG  
IMA_RX_GRP24_CTL  
IMA_RX_GRP24_FIRST_PHY_ADDR  
IMA_RX_GRP24_ID  
Rx GRP 24 First Link Address  
Rx GRP 24 Rx Group ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
143  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (27 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Receive Groups 21–24 Far-End Status  
0xce0  
0xce2  
0xce3  
0xce4  
0xce5  
0xce6  
0xce7  
0xce8  
0xcea  
0xceb  
0xcec  
0xced  
0xcee  
0xcef  
0xcf0  
0xcf2  
0xcf3  
0xcf4  
0xcf5  
0xcf6  
0xcf7  
0xcf8  
0xcfa  
0xcfb  
0xcfc  
0xcfd  
0xcfe  
0xcff  
IMA_RX_GRP21_RX_TEST_PATTERN  
IMA_RX_GRP21_STAT_CTL_CHANGE  
IMA_RX_GRP21_ACTUAL_GRP_ID  
IMA_RX_GRP21_STAT_CTL  
Rx GRP 21 Rx Test Pattern  
Rx GRP 21 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 21 Rx Group ID  
Rx GRP 21 Status / Control  
Rx GRP 21 Timing Control  
Rx GRP 21 Test Control  
Rx GRP 21 Tx Test Pattern  
Rx GRP 22 Rx Test Pattern  
Rx GRP 22 SCCI  
IMA_RX_GRP21_TIMING_INFO  
IMA_RX_GRP21_TEST_CTL  
IMA_RX_GRP21_TX_TEST_PATTERN  
IMA_RX_GRP22_RX_TEST_PATTERN  
IMA_RX_GRP22_STAT_CTL_CHANGE  
IMA_RX_GRP22_ACTUAL_GRP_ID  
IMA_RX_GRP22_STAT_CTL  
Rx GRP 22 Rx Group ID  
Rx GRP 22 Status / Control  
Rx GRP 22 Timing Control  
Rx GRP 22 Test Control  
Rx GRP 22 Tx Test Pattern  
Rx GRP 23 Rx Test Pattern  
Rx GRP 23 SCCI  
IMA_RX_GRP22_TIMING_INFO  
IMA_RX_GRP22_TEST_CTL  
IMA_RX_GRP22_TX_TEST_PATTERN  
IMA_RX_GRP23_RX_TEST_PATTERN  
IMA_RX_GRP23_STAT_CTL_CHANGE  
IMA_RX_GRP23_ACTUAL_GRP_ID  
IMA_RX_GRP23_STAT_CTL  
Rx GRP 23 Rx Group ID  
Rx GRP 23 Status / Control  
Rx GRP 23 Timing Control  
Rx GRP 23 Test Control  
Rx GRP 23 Tx Test Pattern  
Rx GRP 24 Rx Test Pattern  
Rx GRP 24 SCCI  
IMA_RX_GRP23_TIMING_INFO  
IMA_RX_GRP23_TEST_CTL  
IMA_RX_GRP23_TX_TEST_PATTERN  
IMA_RX_GRP24_RX_TEST_PATTERN  
IMA_RX_GRP24_STAT_CTL_CHANGE  
IMA_RX_GRP24_ACTUAL_GRP_ID  
IMA_RX_GRP24_STAT_CTL  
Rx GRP 24 Rx Group ID  
Rx GRP 24 Status / Control  
Rx GRP 24 Timing Control  
Rx GRP 24 Test Control  
Rx GRP 24 Tx Test Pattern  
IMA_RX_GRP24_TIMING_INFO  
IMA_RX_GRP24_TEST_CTL  
IMA_RX_GRP24_TX_TEST_PATTERN  
Transmit Groups 25–28 Configuration Tables  
0xd20  
0xd21  
0xd22  
0xd23  
0xd24  
IMA_TX_GRP25_RX_TEST_PATTERN  
Tx GRP 25 Rx Test Pattern  
Tx GRP 25 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
IMA_TX_GRP25_CTL  
IMA_TX_GRP25_FIRST_PHY_ADDR  
IMA_TX_GRP25_ID  
Tx GRP 25 First Link Address  
Tx GRP 25 Tx Group ID  
Tx GRP 25 Status / Control  
IMA_TX_GRP25_STAT_CTL  
®
28529-DSH-001-K  
Mindspeed Technologies  
144  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (28 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xd25  
0xd26  
0xd27  
0xd28  
0xd29  
0xd2a  
0xd2b  
0xd2c  
0xd2d  
0xd2e  
0xd2f  
0xd30  
0xd31  
0xd32  
0xd33  
0xd34  
0xd35  
0xd36  
0xd37  
0xd38  
0xd39  
0xd3a  
0xd3b  
0xd3c  
0xd3d  
0xd3e  
0xd3f  
IMA_TX_GRP25_TIMING_INFO  
IMA_TX_GRP25_TEST_CTL  
IMA_TX_GRP25_TX_TEST_PATTERN  
IMA_TX_GRP26_RX_TEST_PATTERN  
IMA_TX_GRP26_CTL  
Tx GRP 25 Timing Control  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
Tx GRP 25 Test Control  
Tx GRP 25 Tx Test Pattern  
Tx GRP 26 Rx Test Pattern  
Tx GRP 26 Control  
IMA_TX_GRP26_FIRST_PHY_ADDR  
IMA_TX_GRP26_ID  
Tx GRP 26 First Link Address  
Tx GRP 26 Tx Group ID  
Tx GRP 26 Status / Control  
Tx GRP 26 Timing Control  
Tx GRP 26 Test Control  
Tx GRP 26 Tx Test Pattern  
Tx GRP 27 Rx Test Pattern  
Tx GRP 27 Control  
IMA_TX_GRP26_STAT_CTL  
IMA_TX_GRP26_TIMING_INFO  
IMA_TX_GRP26_TEST_CTL  
IMA_TX_GRP26_TX_TEST_PATTERN  
IMA_TX_GRP27_RX_TEST_PATTERN  
IMA_TX_GRP27_CTL  
IMA_TX_GRP27_FIRST_PHY_ADDR  
IMA_TX_GRP27_ID  
Tx GRP 27 First Link Address  
Tx GRP 27 Tx Group ID  
Tx GRP 27 Status / Control  
Tx GRP 27 Timing Control  
Tx GRP 27 Test Control  
Tx GRP 27 Tx Test Pattern  
Tx GRP 28 Rx Test Pattern  
Tx GRP 28 Control  
IMA_TX_GRP27_STAT_CTL  
IMA_TX_GRP27_TIMING_INFO  
IMA_TX_GRP27_TEST_CTL  
IMA_TX_GRP27_TX_TEST_PATTERN  
IMA_TX_GRP28_RX_TEST_PATTERN  
IMA_TX_GRP28_CTL  
IMA_TX_GRP28_FIRST_PHY_ADDR  
IMA_TX_GRP28_ID  
Tx GRP 28 First Link Address  
Tx GRP 28 Tx Group ID  
Tx GRP 28 Status / Control  
Tx GRP 28 Timing Control  
Tx GRP 28 Test Control  
Tx GRP 28 Tx Test Pattern  
IMA_TX_GRP28_STAT_CTL  
IMA_TX_GRP28_TIMING_INFO  
IMA_TX_GRP28_TEST_CTL  
IMA_TX_GRP28_TX_TEST_PATTERN  
Tx UTOPIA Addresses 24 - 27 Cell Counters  
0xd40  
0xd41  
0xd42  
0xd43  
0xd44  
0xd45  
0xd46  
0xd47  
IMA_TX_ATM24_CELL_COUNT_LSB  
IMA_TX_ATM24_CELL_COUNT_MSB  
IMA_TX_ATM25_CELL_COUNT_LSB  
IMA_TX_ATM25_CELL_COUNT_MSB  
IMA_TX_ATM26_CELL_COUNT_LSB  
IMA_TX_ATM26_CELL_COUNT_MSB  
IMA_TX_ATM27_CELL_COUNT_LSB  
IMA_TX_ATM27_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x18 Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x18 Cell Count MSBs  
Transmit UTOPIA Address 0x19 Cell Count LSBs  
Transmit UTOPIA Address 0x19 Cell Count MSBs  
Transmit UTOPIA Address 0x1A Cell Count LSBs  
Transmit UTOPIA Address 0x1A Cell Count MSBs  
Transmit UTOPIA Address 0x1B Cell Count LSBs  
Transmit UTOPIA Address 0x1B Cell Count MSBs  
®
28529-DSH-001-K  
Mindspeed Technologies  
145  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (29 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
Rx UTOPIA Addresses 24 - 27 Cell Counters  
0xd48  
0xd49  
0xd4a  
0xd4b  
0xd4c  
0xd4d  
0xd4e  
0xd4f  
IMA_RX_ATM24_CELL_COUNT_LSB  
IMA_RX_ATM24_CELL_COUNT_MSB  
IMA_RX_ATM25_CELL_COUNT_LSB  
IMA_RX_ATM25_CELL_COUNT_MSB  
IMA_RX_ATM26_CELL_COUNT_LSB  
IMA_RX_ATM26_CELL_COUNT_MSB  
IMA_RX_ATM27_CELL_COUNT_LSB  
IMA_RX_ATM27_CELL_COUNT_MSB  
Receive UTOPIA Address 0x18 Cell Count LSBs  
Receive UTOPIA Address 0x18 Cell Count MSBs  
Receive UTOPIA Address 0x19 Cell Count LSBs  
Receive UTOPIA Address 0x19 Cell Count MSBs  
Receive UTOPIA Address 0x1A Cell Count LSBs  
Receive UTOPIA Address 0x1A Cell Count MSBs  
Receive UTOPIA Address 0x1B Cell Count LSBs  
Receive UTOPIA Address 0x1B Cell Count MSBs  
page 218  
Receive Groups 25–28 Configuration Tables  
0xd50  
0xd51  
0xd52  
0xd53  
0xd54  
0xd55  
0xd56  
0xd57  
0xd58  
0xd59  
0xd5a  
0xd5b  
0xd5c  
0xd5d  
0xd5e  
0xd5f  
IMA_RX_GRP25_CFG  
Rx GRP 25 Configuration  
Rx GRP 25 Control  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP25_CTL  
IMA_RX_GRP25_FIRST_PHY_ADDR  
IMA_RX_GRP25_ID  
Rx GRP 25 First Link Address  
Rx GRP 25 Rx Group ID  
Rx GRP 26 Configuration  
Rx GRP 26 Control  
IMA_RX_GRP26_CFG  
IMA_RX_GRP26_CTL  
IMA_RX_GRP26_FIRST_PHY_ADDR  
IMA_RX_GRP26_ID  
Rx GRP 26 First Link Address  
Rx GRP 26 Rx Group ID  
Rx GRP 27 Configuration  
Rx GRP 27 Control  
IMA_RX_GRP27_CFG  
IMA_RX_GRP27_CTL  
IMA_RX_GRP27_FIRST_PHY_ADDR  
IMA_RX_GRP27_ID  
Rx GRP 27 First Link Address  
Rx GRP 27 Rx Group ID  
Rx GRP 28 Configuration  
Rx GRP 28 Control  
IMA_RX_GRP28_CFG  
IMA_RX_GRP28_CTL  
IMA_RX_GRP28_FIRST_PHY_ADDR  
IMA_RX_GRP28_ID  
Rx GRP 28 First Link Address  
Rx GRP 28 Rx Group ID  
Receive Groups 25–28 Far-End Status  
0xd60  
0xd62  
0xd63  
0xd64  
0xd65  
0xd66  
0xd67  
0xd68  
0xd6a  
0xd6b  
IMA_RX_GRP25_RX_TEST_PATTERN  
IMA_RX_GRP25_STAT_CTL_CHANGE  
IMA_RX_GRP25_ACTUAL_GRP_ID  
IMA_RX_GRP25_STAT_CTL  
Rx GRP 25 Rx Test Pattern  
Rx GRP 25 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
Rx GRP 25 Rx Group ID  
Rx GRP 25 Status / Control  
Rx GRP 25 Timing Control  
Rx GRP 25 Test Control  
Rx GRP 25 Tx Test Pattern  
Rx GRP 26 Rx Test Pattern  
Rx GRP 26 SCCI  
IMA_RX_GRP25_TIMING_INFO  
IMA_RX_GRP25_TEST_CTL  
IMA_RX_GRP25_TX_TEST_PATTERN  
IMA_RX_GRP26_RX_TEST_PATTERN  
IMA_RX_GRP26_STAT_CTL_CHANGE  
IMA_RX_GRP26_ACTUAL_GRP_ID  
Rx GRP 26 Rx Group ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
146  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (30 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xd6c  
0xd6d  
0xd6e  
0xd6f  
0xd70  
0xd72  
0xd73  
0xd74  
0xd75  
0xd76  
0xd77  
0xd78  
0xd7a  
0xd7b  
0xd7c  
0xd7d  
0xd7e  
0xd7f  
IMA_RX_GRP26_STAT_CTL  
Rx GRP 26 Status / Control  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
IMA_RX_GRP26_TIMING_INFO  
IMA_RX_GRP26_TEST_CTL  
Rx GRP 26 Timing Control  
Rx GRP 26 Test Control  
Rx GRP 26 Tx Test Pattern  
Rx GRP 27 Rx Test Pattern  
Rx GRP 27 SCCI  
IMA_RX_GRP26_TX_TEST_PATTERN  
IMA_RX_GRP27_RX_TEST_PATTERN  
IMA_RX_GRP27_STAT_CTL_CHANGE  
IMA_RX_GRP27_ACTUAL_GRP_ID  
IMA_RX_GRP27_STAT_CTL  
Rx GRP 27 Rx Group ID  
Rx GRP 27 Status / Control  
Rx GRP 27 Timing Control  
Rx GRP 27 Test Control  
Rx GRP 27 Tx Test Pattern  
Rx GRP 28 Rx Test Pattern  
Rx GRP 28 SCCI  
IMA_RX_GRP27_TIMING_INFO  
IMA_RX_GRP27_TEST_CTL  
IMA_RX_GRP27_TX_TEST_PATTERN  
IMA_RX_GRP28_RX_TEST_PATTERN  
IMA_RX_GRP28_STAT_CTL_CHANGE  
IMA_RX_GRP28_ACTUAL_GRP_ID  
IMA_RX_GRP28_STAT_CTL  
Rx GRP 28 Rx Group ID  
Rx GRP 28 Status / Control  
Rx GRP 28 Timing Control  
Rx GRP 28 Test Control  
Rx GRP 28 Tx Test Pattern  
IMA_RX_GRP28_TIMING_INFO  
IMA_RX_GRP28_TEST_CTL  
IMA_RX_GRP28_TX_TEST_PATTERN  
Transmit Groups 29–32 Configuration Tables  
0xda0  
0xda1  
0xda2  
0xda3  
0xda4  
0xda5  
0xda6  
0xda7  
0xda8  
0xda9  
0xdaa  
0xdab  
0xdac  
0xdad  
0xdae  
0xdaf  
IMA_TX_GRP29_RX_TEST_PATTERN  
Tx GRP 29 Rx Test Pattern  
Tx GRP 29 Control  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
IMA_TX_GRP29_CTL  
IMA_TX_GRP29_FIRST_PHY_ADDR  
IMA_TX_GRP29_ID  
Tx GRP 29 First Link Address  
Tx GRP 29 Tx Group ID  
Tx GRP 29 Status / Control  
Tx GRP 29 Timing Control  
Tx GRP 29 Test Control  
Tx GRP 29 Tx Test Pattern  
Tx GRP 30 Rx Test Pattern  
Tx GRP 30 Control  
IMA_TX_GRP29_STAT_CTL  
IMA_TX_GRP29_TIMING_INFO  
IMA_TX_GRP29_TEST_CTL  
IMA_TX_GRP29_TX_TEST_PATTERN  
IMA_TX_GRP30_RX_TEST_PATTERN  
IMA_TX_GRP30_CTL  
IMA_TX_GRP30_FIRST_PHY_ADDR  
IMA_TX_GRP30_ID  
Tx GRP 30 First Link Address  
Tx GRP 30 Tx Group ID  
Tx GRP 30 Status / Control  
Tx GRP 30 Timing Control  
Tx GRP 30 Test Control  
Tx GRP 30 Tx Test Pattern  
IMA_TX_GRP30_STAT_CTL  
IMA_TX_GRP30_TIMING_INFO  
IMA_TX_GRP30_TEST_CTL  
IMA_TX_GRP30_TX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
147  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (31 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xdb0  
0xdb1  
0xdb2  
0xdb3  
0xdb4  
0xdb5  
0xdb6  
0xdb7  
0xdb8  
0xdb9  
0xdba  
0xdbb  
0xdbc  
0xdbd  
0xdbe  
0xdbf  
IMA_TX_GRP31_RX_TEST_PATTERN  
IMA_TX_GRP31_CTL  
Tx GRP 31 Rx Test Pattern  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
page 208  
page 209  
page 210  
page 211  
page 212  
page 213  
page 214  
page 215  
Tx GRP 31 Control  
IMA_TX_GRP31_FIRST_PHY_ADDR  
IMA_TX_GRP31_ID  
Tx GRP 31 First Link Address  
Tx GRP 31 Tx Group ID  
Tx GRP 31 Status / Control  
Tx GRP 31 Timing Control  
Tx GRP 31 Test Control  
Tx GRP 31 Tx Test Pattern  
Tx GRP 32 Rx Test Pattern  
Tx GRP 32 Control  
IMA_TX_GRP31_STAT_CTL  
IMA_TX_GRP31_TIMING_INFO  
IMA_TX_GRP31_TEST_CTL  
IMA_TX_GRP31_TX_TEST_PATTERN  
IMA_TX_GRP32_RX_TEST_PATTERN  
IMA_TX_GRP32_CTL  
IMA_TX_GRP32_FIRST_PHY_ADDR  
IMA_TX_GRP32_ID  
Tx GRP 32 First Link Address  
Tx GRP 32 Tx Group ID  
Tx GRP 32 Status / Control  
Tx GRP 32 Timing Control  
Tx GRP 32 Test Control  
Tx GRP 32 Tx Test Pattern  
IMA_TX_GRP32_STAT_CTL  
IMA_TX_GRP32_TIMING_INFO  
IMA_TX_GRP32_TEST_CTL  
IMA_TX_GRP32_TX_TEST_PATTERN  
Tx UTOPIA Addresses 28 - 31 Cell Counters  
0xdc0  
0xdc1  
0xdc2  
0xdc3  
0xdc4  
0xdc5  
0xdc6  
0xdc7  
IMA_TX_ATM28_CELL_COUNT_LSB  
IMA_TX_ATM28_CELL_COUNT_MSB  
IMA_TX_ATM29_CELL_COUNT_LSB  
IMA_TX_ATM29_CELL_COUNT_MSB  
IMA_TX_ATM30_CELL_COUNT_LSB  
IMA_TX_ATM30_CELL_COUNT_MSB  
IMA_TX_ATM31_CELL_COUNT_LSB  
IMA_TX_ATM31_CELL_COUNT_MSB  
Transmit UTOPIA Address 0x1C Cell Count LSBs  
page 216  
Transmit UTOPIA Address 0x1C Cell Count MSBs  
Transmit UTOPIA Address 0x1D Cell Count LSBs  
Transmit UTOPIA Address 0x1D Cell Count MSBs  
Transmit UTOPIA Address 0x1E Cell Count LSBs  
Transmit UTOPIA Address 0x1E Cell Count MSBs  
Transmit UTOPIA Address 0x1F Cell Count LSBs  
Transmit UTOPIA Address 0x1F Cell Count MSBs  
Rx UTOPIA Addresses 28 - 31 Cell Counters  
0xdc8  
0xdc9  
0xdca  
0xdcb  
0xdcc  
0xdcd  
0xdce  
0xdcf  
IMA_RX_ATM28_CELL_COUNT_LSB  
IMA_RX_ATM28_CELL_COUNT_MSB  
IMA_RX_ATM29_CELL_COUNT_LSB  
IMA_RX_ATM29_CELL_COUNT_MSB  
IMA_RX_ATM30_CELL_COUNT_LSB  
IMA_RX_ATM30_CELL_COUNT_MSB  
IMA_RX_ATM31_CELL_COUNT_LSB  
IMA_RX_ATM31_CELL_COUNT_MSB  
Receive UTOPIA Address 0x1C Cell Count LSBs  
Receive UTOPIA Address 0x1C Cell Count MSBs  
Receive UTOPIA Address 0x1D Cell Count LSBs  
Receive UTOPIA Address 0x1D Cell Count MSBs  
Receive UTOPIA Address 0x1E Cell Count LSBs  
Receive UTOPIA Address 0x1E Cell Count MSBs  
Receive UTOPIA Address 0x1F Cell Count LSBs  
Receive UTOPIA Address 0x1F Cell Count MSBs  
page 218  
Receive Groups 29–32 Configuration Tables  
0xdd0  
0xdd1  
0xdd2  
0xdd3  
IMA_RX_GRP29_CFG  
Rx GRP 29 Configuration  
Rx GRP 29 Control  
page 220  
page 221  
page 222  
page 223  
IMA_RX_GRP29_CTL  
IMA_RX_GRP29_FIRST_PHY_ADDR  
IMA_RX_GRP29_ID  
Rx GRP 29 First Link Address  
Rx GRP 29 Rx Group ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
148  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (32 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xdd4  
0xdd5  
0xdd6  
0xdd7  
0xdd8  
0xdd9  
0xdda  
0xddb  
0xddc  
0xddd  
0xdde  
0xddf  
IMA_RX_GRP30_CFG  
IMA_RX_GRP30_CTL  
Rx GRP 30 Configuration  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
page 220  
page 221  
page 222  
page 223  
Rx GRP 30 Control  
IMA_RX_GRP30_FIRST_PHY_ADDR  
IMA_RX_GRP30_ID  
Rx GRP 30 First Link Address  
Rx GRP 30 Rx Group ID  
Rx GRP 31 Configuration  
Rx GRP 31 Control  
IMA_RX_GRP31_CFG  
IMA_RX_GRP31_CTL  
IMA_RX_GRP31_FIRST_PHY_ADDR  
IMA_RX_GRP31_ID  
Rx GRP 31 First Link Address  
Rx GRP 31 Rx Group ID  
Rx GRP 32 Configuration  
Rx GRP 32 Control  
IMA_RX_GRP32_CFG  
IMA_RX_GRP32_CTL  
IMA_RX_GRP32_FIRST_PHY_ADDR  
IMA_RX_GRP32_ID  
Rx GRP 32 First Link Address  
Rx GRP 32 Rx Group ID  
Receive Groups 29–32 Far-End Status  
0xde0  
0xde2  
0xde3  
0xde4  
0xde5  
0xde6  
0xde7  
0xde8  
0xdea  
0xdeb  
0xdec  
0xded  
0xdee  
0xdef  
0xdf0  
0xdf2  
0xdf3  
0xdf4  
0xdf5  
0xdf6  
0xdf7  
0xdf8  
IMA_RX_GRP29_RX_TEST_PATTERN  
IMA_RX_GRP29_STAT_CTL_CHANGE  
IMA_RX_GRP29_ACTUAL_GRP_ID  
IMA_RX_GRP29_STAT_CTL  
Rx GRP 29 Rx Test Pattern  
Rx GRP 29 SCCI  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
page 224  
Rx GRP 29 Rx Group ID  
Rx GRP 29 Status / Control  
Rx GRP 29 Timing Control  
Rx GRP 29 Test Control  
Rx GRP 29 Tx Test Pattern  
Rx GRP 30 Rx Test Pattern  
Rx GRP 30 SCCI  
IMA_RX_GRP29_TIMING_INFO  
IMA_RX_GRP29_TEST_CTL  
IMA_RX_GRP29_TX_TEST_PATTERN  
IMA_RX_GRP30_RX_TEST_PATTERN  
IMA_RX_GRP30_STAT_CTL_CHANGE  
IMA_RX_GRP30_ACTUAL_GRP_ID  
IMA_RX_GRP30_STAT_CTL  
Rx GRP 30 Rx Group ID  
Rx GRP 30 Status / Control  
Rx GRP 30 Timing Control  
Rx GRP 30 Test Control  
Rx GRP 30 Tx Test Pattern  
Rx GRP 31 Rx Test Pattern  
Rx GRP 31 SCCI  
IMA_RX_GRP30_TIMING_INFO  
IMA_RX_GRP30_TEST_CTL  
IMA_RX_GRP30_TX_TEST_PATTERN  
IMA_RX_GRP31_RX_TEST_PATTERN  
IMA_RX_GRP31_STAT_CTL_CHANGE  
IMA_RX_GRP31_ACTUAL_GRP_ID  
IMA_RX_GRP31_STAT_CTL  
Rx GRP 31 Rx Group ID  
Rx GRP 31 Status / Control  
Rx GRP 31 Timing Control  
Rx GRP 31 Test Control  
Rx GRP 31 Tx Test Pattern  
Rx GRP 32 Rx Test Pattern  
IMA_RX_GRP31_TIMING_INFO  
IMA_RX_GRP31_TEST_CTL  
IMA_RX_GRP31_TX_TEST_PATTERN  
IMA_RX_GRP32_RX_TEST_PATTERN  
®
28529-DSH-001-K  
Mindspeed Technologies  
149  
Mindspeed Proprietary and Confidential  
Registers  
Table 2-10. IMA Control and Status Registers (33 of 33)  
Page  
Number  
Address  
Name  
Description (Continued)  
0xdfa  
0xdfb  
0xdfc  
0xdfd  
0xdfe  
0xdff  
IMA_RX_GRP32_STAT_CTL_CHANGE  
IMA_RX_GRP32_ACTUAL_GRP_ID  
IMA_RX_GRP32_STAT_CTL  
Rx GRP 32 SCCI  
page 225  
page 226  
page 227  
page 228  
page 229  
page 230  
Rx GRP 32 Rx Group ID  
Rx GRP 32 Status / Control  
Rx GRP 32 Timing Control  
Rx GRP 32 Test Control  
Rx GRP 32 Tx Test Pattern  
IMA_RX_GRP32_TIMING_INFO  
IMA_RX_GRP32_TEST_CTL  
IMA_RX_GRP32_TX_TEST_PATTERN  
ATM Cell Capture Registers  
0xe00-  
0xe2F  
CELL_CAP_PAYLDn  
Cell Capture Payload Contents Registers  
page 244  
0xe30  
0xe31  
0xe32  
CAP_FAC  
Capture Facility Register  
Capture Control Register  
Capture Status Register  
page 244  
page 244  
page 245  
CAP_CNTL  
CAP_STAT  
2.2  
TC Registers  
2.2.1  
0x00—SUMINT (Summary Interrupt Indication Status Register)  
The SUMINT register indicates the one-second interrupts, external framer interrupts, and port summary interrupts.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0  
Reserved, set to a logical 0.  
0
0
0
0
(1)  
TxCellInt  
When a logical 1 is read, this bit indicates a Transmit Cell Interrupt. This interrupt is a summary  
interrupt and signifies that an interrupt indication occurred in the TxCellInt register (0x2C).  
(1)  
0
RxCellInt  
When a logical 1 is read, this bit indicates a Receive Cell Interrupt. This interrupt is a summary  
interrupt and signifies that an interrupt indication occurred in the RxCellInt register (0x2D).  
Footnote:  
(1) This bit is a summary indication of any interrupt events that occurred in the indicated registers. This bit is a pointer to the next interrupt  
indication register to be read. This bit will be cleared when the interrupt bits in the corresponding interrupt indication registers are read  
and automatically cleared.  
®
28529-DSH-001-K  
Mindspeed Technologies  
150  
Mindspeed Proprietary and Confidential  
Registers  
2.2.2  
0x01—ENSUMINT (Summary Interrupt Control Register)  
The ENSUMINT register controls which of the interrupts listed in the SUMINT register (0x00) appear in the  
SUMPORT register and on the MicroInt* (pin AA1), provided the corresponding ENSUMPORT bit is enabled and  
EnIntPin (bit 3) in the GENCTRL register (0xF00) is enabled.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
EnTxCellInt  
When written to a logical 1, this bit enables the transmit cell interrupts located in the TxCellInt  
register (0x2C). These interrupts appear can on the MicroInt* pin (pin AA1), provided that  
EnPortInt in the ENSUMPORT0-3 register (0x0F06, 0x0F08, 0x0F0A, 0x0F0C) is enabled for this  
port and EnIntPin (bit 3) in the GENCTRL register (0x0F00) is enabled.  
0
0
EnRxCellInt  
When written to a logical 1, this bit enables the receive cell interrupts located in the RxCellInt  
register (0x2D). These interrupts can appear on the MicroInt* pin (pin AA1), provided that  
EnPortInt in the ENSUMPORT0-3 register (0x0F06, 0x0F08, 0x0F0A, 0x0F0C) is enabled for this  
port and EnIntPin (bit 3) in the GENCTRL register (0x0F00) is enabled.  
®
28529-DSH-001-K  
Mindspeed Technologies  
151  
Mindspeed Proprietary and Confidential  
Registers  
2.2.3  
0x04—PMODE (Port Mode Control Register)  
The PMODE register controls the port-level software resets, source loopback, and physical layer interface mode.  
Bit  
Default  
Name  
Description  
7
0
PrtMstRst  
When written to a logical 1, this bit initiates a Port Master Reset. All internal state machines  
associated with this port are reset and all control registers for this port, except this one, assume  
their default values. Only bits 0–6 in this register are overwritten with their default values.  
6
5
0
0
PrtLgcRst  
When written to a logical 1, this bit initiates a Port Logic Reset. All internal state machines  
associated with this port are reset but all registers (0x00–0x3F) listed as “Type: W/R” in Table 2-  
3 are unaltered. Output signals for this port are three-state during Port Logic Reset.  
(1)  
SrcLoop  
When written to a logical 1, this bit enables a source loopback. The line transmit clock and data  
outputs are connected to the line receive clock and data inputs. Refer to Figure 1-12. During  
Source loopback mode 0, the device is automatically configured for General Purpose mode  
(ignoring the contents of the PhyType[2:0] bits).  
(1)  
4
3
0
0
FeLnLoop  
Enables Far-end line loopback. In this mode, the receive data is processed by the TC block and  
looped back at the UTOPIA interface to the transmit side. Refer to Figure 1-13.  
(1)  
SrcLoopMode  
When source loopback is enabled (when SrcLoop is written to a logic 1), this bit select between  
the two types of source loopback as follows:  
0 - Source Loopback 0 selected  
1 - Source Loopback 1 selected  
(1)  
2
1
0
0
0
0
PhyType[2]  
These bits determine the Physical Layer Interface Mode:  
(1)  
PhyType[1]  
000—T1 mode  
001—E1 mode  
010—Reserved  
011—Reserved  
100—Reserved  
101—General Purpose  
110—DSL Mode  
111—Power Down  
(1)  
PhyType[0]  
In General Purpose Mode, the SPRxSync and SPTxSync pins are ignored. (However,  
good design practice would have them tied high.)  
Footnote:  
(1) These bits should only be changed when the device or port logic reset is asserted.  
®
28529-DSH-001-K  
Mindspeed Technologies  
152  
Mindspeed Proprietary and Confidential  
Registers  
2.2.4  
0x05—IOMODE (Input/Output Mode Control Register)  
The IOMODE register controls the line interface signal polarities and status outputs.  
Bit  
Default  
Name  
Description  
7
6
0
0
Reserved, set to 0.  
(1)  
RxSyncPol  
This bit determines the Receiver Synchronization input Polarity. When written to a logical 1, the  
active level on the SPRxSync input is high. When written to a logical 0, the active level is low.  
(1)  
5
0
RxClkPol  
This bit determines the Receiver Clock Input Polarity. When written to a logical 1, the active edge  
on the SPRxClk input is the falling edge. When written to a logical 0, the active edge is the rising  
edge.  
(1)  
4
3
0
0
TxSyncPol  
This bit determines the Transmitter Synchronization input Polarity. When written to a logical 1,  
the active level on the SPTxSync input is high. When written to a logical 0, the active level is low.  
(1)  
TxClkPol  
This bit determines the Transmitter Clock Input Polarity. When written to a logical 1, the active  
edge on the SPTxClk input is the falling edge. When written to a logical 0, the active edge is the  
rising edge.  
(1)  
2
0
TxDatShft  
This bit when set to a logical 1 shifts the serial Tx data by 1/2 a cycle. This results in the Tx data  
being output a 1/2 SPTxClk cycle later than when the Tx inputs are sampled. This feature is  
disabled when set to 0.  
1
0
0
Reserved, set to 0.  
Reserved, set to 0.  
0
Footnote:  
(1) These bits should only be changed when the device or port logic reset is asserted.  
®
28529-DSH-001-K  
Mindspeed Technologies  
153  
Mindspeed Proprietary and Confidential  
Registers  
2.2.5  
0x08—CGEN (Cell Generation Control Register)  
The CGEN register controls the device’s cell generation functions.  
Bit  
Default  
Name  
Description  
7
0
DisHEC  
When written to a logical 1, this bit disables internal generation of the HEC field. When disabled,  
the HEC field from the UTOPIA interface remains unchanged in the transmitted cell. When  
written to a logical 0, HEC is internally calculated and inserted in the transmitted cell.  
6
5
4
1
1
0
EnTxCos  
When written to a logical 1, this bit enables the Transmit HEC Coset. When written to a logical 0,  
the HEC Coset is disabled.  
EnTxCellScr  
ErrHEC  
When written to a logical 1, this bit enables the Transmit Cell Scrambler. When written to a  
logical 0, the Transmit Cell Scrambler is disabled.  
When written to a logical 1, this bit causes the ERRPAT register to be XORed with the calculated  
HEC byte for one transmit cell. These bits are cleared automatically by internal circuitry after the  
indicated error insertion has taken place. Clearing takes precedence over a simultaneous write  
operation to this register.  
3
0
DSLSyncPol  
This bit controls the polarity of the sync pulse in DSL mode. Set to 1 for active high and to 0 for  
active low.  
2
1
0
0
Reserved, write to a logical 0.  
EnTxDSSScr  
When written to a logical 1, this bit enables the Transmit DSS Scrambler. When written to a  
logical 0, the Transmit DSS Scrambler is disabled.  
0
0
EnRxDSSScr  
When written to a logical 1, this bit enables the Receive DSS Scrambler. When written to a  
logical 0, the Receive DSS Scrambler is disabled.  
®
28529-DSH-001-K  
Mindspeed Technologies  
154  
Mindspeed Proprietary and Confidential  
Registers  
2.2.6  
0x09—HDRFIELD (Header Field Control Register)  
The HDRFIELD register controls the header insertion elements.  
Bit  
Default  
Name  
Description  
7
6
5
4
0
0
0
0
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
InsGFC  
InsVPI  
InsVCI  
InsPT  
When written to a logical 1, this bit inserts a Generic Flow Control (GFC) field in the outgoing  
header from the TXHDR registers. When written to a logical 0, the GFC field is not changed prior  
to transmission.  
3
2
1
0
0
0
0
0
When written to a logical 1, this bit inserts a Virtual Path Identifier (VPI) field in the outgoing  
header from the TXHDR registers. When written to a logical 0, the VPI field is not changed prior  
to transmission.  
When written to a logical 1, this bit inserts a Virtual Channel Identifier (VCI) field in the outgoing  
header from the TXHDR registers. When written to a logical 0, the VCI field is not changed prior  
to transmission.  
When written to a logical 1, this bit inserts a Payload Type (PT) field in the outgoing header from  
the TXHDR registers. When written to a logical 0, the PT field is not changed prior to  
transmission.  
InsCLP  
When written to a logical 1, this bit inserts a Cell Loss Priority (CLP) bit in the outgoing header  
from the TXHDR registers. When written to a logical 0, the CLP field is not changed prior to  
transmission.  
2.2.7  
0x0A—IDLPAY (Transmit Idle Cell Payload Control Register)  
The IDLPAY register contains the transmit idle cell payload.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
1
1
0
1
0
1
0
IdlPay[7]  
IdlPay[6]  
IdlPay[5]  
IdlPay[4]  
IdlPay[3]  
IdlPay[2]  
IdlPay[1]  
IdlPay[0]  
These bits hold the Transmit Idle Cell Payload values for outgoing idle cells.  
®
28529-DSH-001-K  
Mindspeed Technologies  
155  
Mindspeed Proprietary and Confidential  
Registers  
2.2.8  
0x0B—ERRPAT (Error Pattern Control Register)  
The ERRPAT register provides the error pattern for the HEC error insertion function. ErrHEC (bit 4) in the CGEN  
register (0x08) enables this function. Each bit in the error pattern register is XORed with the corresponding bit of  
the calculated HEC byte to be errored.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
ErrPat[7]  
ErrPat[6]  
ErrPat[5]  
ErrPat[4]  
ErrPat[3]  
ErrPat[2]  
ErrPat[1]  
ErrPat[0]  
Error pattern bit 7.  
Error pattern bit 6.  
Error pattern bit 5.  
Error pattern bit 4.  
Error pattern bit 3.  
Error pattern bit 2.  
Error pattern bit 1.  
Error pattern bit 0.  
2.2.9  
0x0C—CVAL (Cell Validation Control Register)  
The CVAL register controls the validation of incoming cells.  
Bit  
Default  
Name  
Description  
7
0
RejHdr  
When written to a logical 1, this bit enables the Rejection of certain Header cells. When enabled,  
cells with headers matching the RXHDRx/RXMSKx definition are rejected and all others are  
accepted. When written to a logical 0, cells with matching headers are accepted and cells with  
non-matching headers are rejected.  
6
1
DelIdle  
When written to a logical 1, this bit enables the Deletion of Idle Cells. When enabled, cells  
matching the RXIDL/IDLMSK definition are deleted from the received cell stream. When written  
to a logical 0, idle cells are included in the received stream.  
5
4
3
2
1
1
1
0
0
0
EnRxCos  
When written to a logical 1, this bit enables the Receive HEC Coset. When written to a logical 0,  
the HEC Coset is disabled.  
EnRxCellScr  
EnHECCorr  
DisHECChk  
DisCellRcvr  
When written to a logical 1, this bit enables the Receive Cell Scrambler. When written to a logical  
0, the Receive Cell Scrambler is disabled.  
When written to a logical 1, this bit enables HEC Correction. When written to a logical 0, HEC  
Correction is disabled.  
When written to a logical 1, this bit disables HEC Checking. When written to a logical 0, HEC  
checking is performed as a cell validation criterion. See Table 1-26.  
When written to a logical 1, this bit disables the Cell Receiver. When disabled, all cell reception is  
disabled on the next cell boundary. When written to a logical 0, cell reception begins or resumes  
on the next cell boundary.  
0
0
DisLOCD  
When written to a logical 1, this bit disables Loss of Cell Delineation. When disabled, cells are  
passed even if cell delineation has not been found. When written to a logical 0, cells are passed  
only while cell alignment has been achieved. See Table 1-26.  
®
28529-DSH-001-K  
Mindspeed Technologies  
156  
Mindspeed Proprietary and Confidential  
Registers  
2.2.10  
0x0D—UTOP1 (UTOPIA Control Register 1)  
The UTOP1 register controls the UTOPIA resets.  
Bit  
Default  
Name  
Description  
7
0
TxReset  
RxReset  
When written to a logical 1, this bit resets the transmit FIFO pointers. This reset should only be  
used as a test function because it can create short cells.  
6
0
When written to a logical 1, this bit resets the receive FIFO pointers. This reset should only be  
used as a test function because it can create short cells.  
5
4
3
2
1
0
0
0
0
0
0
0
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
2.2.11  
0x0E—UTOP2 (UTOPIA Control Register 2) (TC Block)  
The UTOP2 register contains the multi-PHY address value for the port.  
Bit  
Default  
Name  
Description  
7
0
0
Reserved, write to a logical 0.  
Reserved, write to a logical 0.  
6
(1)  
5
1
UtopDis  
When written to a logical 1, this bit disables UTOPIA outputs for this port.  
(1)  
4
0
MphyAddr[4]—MSB  
These bits are the Multi-PHY Device Address. Each M2852x port should have a unique address.  
These bits correspond to the URxAddr and UTxAddr pins. When the pin matches the bit values,  
the port is accessed. This port ignores any transactions meant for another port or PHY device.  
(1)  
3
(2)  
(2)  
(2)  
(2)  
MphyAddr[3]  
(1)  
2
MphyAddr[2]  
(1)  
1
MphyAddr[1]  
(1)  
0
MphyAddr[0]—LSB  
Footnote:  
(1) These bits should only be changed when the device or port logic reset is asserted.  
(2) The default for these bits is the port number for each port. (0000—Port 0, 0001—Port 1, 0010—Port 2, 0011—Port 3, 0100—Port 4,  
0101—Port 5, 0110—Port 6, 0111—Port 7, 1000—Port 8, 1001—Port 9, 1010—Port 10, 1011—Port 11, 1100—Port 12, 1101—Port  
13, 1110—Port 14, 1111—Port 15, 0000—Port 16, 0001—Port 17, 0010—Port 18, 0011—Port 19, 0100—Port 20, 0101—Port 21,  
0110—Port 22, 0111—Port 23, 1000—Port 24, 1001—Port 25, 1010—Port 26, 1011—Port 27, 1100—Port 28, 1101—Port 29,  
1110—Port 30, 1111—Port 31)  
®
28529-DSH-001-K  
Mindspeed Technologies  
157  
Mindspeed Proprietary and Confidential  
Registers  
2.2.12  
0x0F—UDF2 (UDF2 Control Register)  
The contents of the UDF2 register are inserted into the UDF2 byte on the UTOPIA receive bus when operating in  
16-bit UTOPIA mode.  
Bit  
Default  
Name  
Description  
7
0
0
UDF2[7]  
UDF2[6]  
UDF2[5]  
UDF2[4]  
UDF2[3]  
UDF2[2]  
UDF2[1]  
UDF2[0]  
The contents of this register are output over the UTOPIA receive bus when operating in UTOPIA  
16-bit mode. The default matches the port address.  
6
5
0
4
0
3
(1)  
(1)  
(1)  
(1)  
2
1
0
Footnote:  
(1) The default for these bits is the port number for each port. (0000—Port 0, 0001—Port 1, 0010—Port 2, 0011—Port 3, 0100—Port 4,  
0101—Port 5, 0110—Port 6, 0111—Port 7, 1000—Port 8, 1001—Port 9, 1010—Port 10, 1011—Port 11, 1100—Port 12, 1101—Port  
13, 1110—Port 14, 1111—Port 15, 0000—Port 16, 0001—Port 17, 0010—Port 18, 0011—Port 19, 0100—Port 20, 0101—Port 21,  
0110—Port 22, 0111—Port 23, 1000—Port 24, 1001—Port 25, 1010—Port 26, 1011—Port 27, 1100—Port 28, 1101—Port 29,  
1110—Port 30, 1111—Port 31)  
2.2.13  
0x10—TXHDR1 (Transmit Cell Header Control Register 1)  
The TXHDR1 register contains the first byte of the Transmit Cell Header. It controls the header value that is  
inserted in the transmitted cell. This header consists of 32 bits divided among four registers (TXHDR1–4).  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxHdr1[7]  
These bits hold the Transmit Header values for Octet 1 of the outgoing cell. Insertion of the bits  
is controlled by the HDRFIELD register (0x09).  
TxHdr1[6]  
TxHdr1[5]  
TxHdr1[4]  
TxHdr1[3]  
TxHdr1[2]  
TxHdr1[1]  
TxHdr1[0]  
GFC/VPI bits  
(for UNI they are GFC bits, for NNI they are VPI bits)  
VPI bits  
®
28529-DSH-001-K  
Mindspeed Technologies  
158  
Mindspeed Proprietary and Confidential  
Registers  
2.2.14  
0x11—TXHDR2 (Transmit Cell Header Control Register 2)  
The TXHDR2 register contains the second byte of the Transmit Cell Header. (See 0x10—TXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxHdr2[7]  
These bits hold the Transmit Header values for Octet 2 of the outgoing cell. Insertion of the bits  
is controlled by the HDRFIELD register (0x09).  
TxHdr2[6]  
TxHdr2[5]  
TxHdr2[4]  
TxHdr2[3]  
TxHdr2[2]  
TxHdr2[1]  
TxHdr2[0]  
VPI bits  
VCI bits  
2.2.15  
0x12—TXHDR3 (Transmit Cell Header Control Register 3)  
The TXHDR3 register contains the third byte of the Transmit Cell Header. (See 0x10—TXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxHdr3[7]  
These bits hold the Transmit Header values for Octet 3 of the outgoing cell. Insertion of the bits  
is controlled by the HDRFIELD register (0x09).  
TxHdr3[6]  
TxHdr3[5]  
TxHdr3[4]  
TxHdr3[3]  
TxHdr3[2]  
TxHdr3[1]  
TxHdr3[0]  
VCI bits  
®
28529-DSH-001-K  
Mindspeed Technologies  
159  
Mindspeed Proprietary and Confidential  
Registers  
2.2.16  
0x13—TXHDR4 (Transmit Cell Header Control Register 4)  
The TXHDR4 register contains the fourth byte of the Transmit Cell Header. (See 0x10—TXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxHdr4[7]  
These bits hold the Transmit Header values for Octet 4 of the outgoing cell. Insertion of the bits  
is controlled by the HDRFIELD register (0x09).  
TxHdr4[6]  
TxHdr4[5]  
TxHdr4[4]  
TxHdr4[3]  
TxHdr4[2]  
TxHdr4[1]  
TxHdr4[0]  
VCI bits  
Payload-type bits  
Cell Loss Priority bit  
2.2.17  
0x14—TXIDL1 (Transmit Idle Cell Header Control Register 1)  
The TXIDL1 register contains the first byte of the Transmit Idle Cell Header. It controls the header value that is  
inserted in the transmitted idle cells. This header consists of 32 bits divided among four registers.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxIdl1[7]  
TxIdl1[6]  
TxIdl1[5]  
TxIdl1[4]  
TxIdl1[3]  
TxIdl1[2]  
TxIdl1[1]  
TxIdl1[0]  
These bits hold the Transmit Idle Cell Header values for Octet 1 of the outgoing cell.  
GFC/VPI bits  
(for UNI they are GFC bits, for NNI the are VPI bits)  
VPI bits  
®
28529-DSH-001-K  
Mindspeed Technologies  
160  
Mindspeed Proprietary and Confidential  
Registers  
2.2.18  
0x15—TXIDL2 (Transmit Idle Cell Header Control Register 2)  
The TXIDL2 register contains the second byte of the Transmit Idle Cell Header. (See 0x14—TXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxIdl2[7]  
TxIdl2[6]  
TxIdl2[5]  
TxIdl2[4]  
TxIdl2[3]  
TxIdl2[2]  
TxIdl2[1]  
TxIdl2[0]  
These bits hold the Transmit Idle Cell Header values for Octet 2 of the outgoing cell.  
VPI bits  
VCI bits  
2.2.19  
0x16—TXIDL3 (Transmit Idle Cell Header Control Register 3)  
The TXIDL3 register contains the third byte of the Transmit Idle Cell Header. (See 0x14—TXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
TxIdl3[7]  
TxIdl3[6]  
TxIdl3[5]  
TxIdl3[4]  
TxIdl3[3]  
TxIdl3[2]  
TxIdl3[1]  
TxIdl3[0]  
These bits hold the Transmit Idle Cell Header values for Octet 3 of the outgoing cell.  
VCI bits  
®
28529-DSH-001-K  
Mindspeed Technologies  
161  
Mindspeed Proprietary and Confidential  
Registers  
2.2.20  
0x17—TXIDL4 (Transmit Idle Cell Header Control Register 4)  
The TXIDL4 register contains the fourth byte of the Transmit Idle Cell Header. (See 0x14—TXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
TxIdl4[7]  
TxIdl4[6]  
TxIdl4[5]  
TxIdl4[4]  
TxIdl4[3]  
TxIdl4[2]  
TxIdl4[1]  
TxIdl4[0]  
These bits hold the Transmit Idle Cell Header values for Octet 4 of the outgoing cell.  
VCI bits  
Payload-type bits  
Cell Loss Priority bit  
2.2.21  
0x18—RXHDR1 (Receive Cell Header Control Register 1)  
The RXHDR1 register contains the first byte of the Receive Cell Header. The header values direct ATM cells to the  
UTOPIA port if an incoming ATM cell header matches the value in the header register. Receive Header Mask  
Registers further qualify ATM cell reception. This header consists of 32 bits divided among four registers.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxHdr1[7]  
These bits hold the Receive Header values for Octet 1 of the incoming cell.  
RxHdr1[6]  
RxHdr1[5]  
RxHdr1[4]  
RxHdr1[3]  
RxHdr1[2]  
RxHdr1[1]  
RxHdr1[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
162  
Mindspeed Proprietary and Confidential  
Registers  
2.2.22  
0x19—RXHDR2 (Receive Cell Header Control Register 2)  
The RXHDR2 register contains the second byte of the Receive Cell Header. (See 0x18—RXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxHdr2[7]  
These bits hold the Receive Header values for Octet 2 of the incoming cell.  
RxHdr2[6]  
RxHdr2[5]  
RxHdr2[4]  
RxHdr2[3]  
RxHdr2[2]  
RxHdr2[1]  
RxHdr2[0]  
2.2.23  
0x1A—RXHDR3 (Receive Cell Header Control Register 3)  
The RXHDR3 register contains the third byte of the Receive Cell Header. (See 0x18—RXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxHdr3[7]  
These bits hold the Receive Header values for Octet 3 of the incoming cell.  
RxHdr3[6]  
RxHdr3[5]  
RxHdr3[4]  
RxHdr3[3]  
RxHdr3[2]  
RxHdr3[1]  
RxHdr3[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
163  
Mindspeed Proprietary and Confidential  
Registers  
2.2.24  
0x1B—RXHDR4 (Receive Cell Header Control Register 4)  
The RXHDR4 register contains the fourth byte of the Receive Cell Header. (See 0x18—RXHDR1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxHdr4[7]  
These bits hold the Receive Header values for Octet 4 of the incoming cell.  
RxHdr4[6]  
RxHdr4[5]  
RxHdr4[4]  
RxHdr4[3]  
RxHdr4[2]  
RxHdr4[1]  
RxHdr4[0]  
2.2.25  
0x1C—RXMSK1 (Receive Cell Mask Control Register 1)  
The RXMSK1 register contains the first byte of the Receive Cell Mask. It modifies ATM cell screening, which  
compares the Receive Cell Header Registers to the incoming cells. Setting a bit in the Mask Register causes the  
corresponding bit in the received ATM cell header to be disregarded for screening. For example, setting RXMSK1  
bit 0 to 1 causes ATM cells to be accepted with either 1 or 0 in the octet 1, bit 0 position. Combinations of Receive  
Header Mask bits can select groups of ATM VPI/VCIs for reception. This mask consists of 32 bits divided among  
four registers.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
RxMsk1[7]  
These bits hold the Receive Header Mask for Octet 1 of the incoming cell.  
RxMsk1[6]  
RxMsk1[5]  
RxMsk1[4]  
RxMsk1[3]  
RxMsk1[2]  
RxMsk1[1]  
RxMsk1[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
164  
Mindspeed Proprietary and Confidential  
Registers  
2.2.26  
0x1D—RXMSK2 (Receive Cell Mask Control Register 2)  
The RXMSK2 register contains the second byte of the Receive Cell Mask. (See 0x1D—RXMSK1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
RxMsk2[7]  
These bits hold the Receive Header Mask for Octet 2 of the incoming cell.  
RxMsk2[6]  
RxMsk2[5]  
RxMsk2[4]  
RxMsk2[3]  
RxMsk2[2]  
RxMsk2[1]  
RxMsk2[0]  
2.2.27  
0x1E—RXMSK3 (Receive Cell Mask Control Register 3)  
The RXMSK3 register contains the third byte of the Receive Cell Mask. (See 0x1D—RXMSK1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
RxMsk3[7]  
These bits hold the Receive Header Mask for Octet 3 of the incoming cell.  
RxMsk3[6]  
RxMsk3[5]  
RxMsk3[4]  
RxMsk3[3]  
RxMsk3[2]  
RxMsk3[1]  
RxMsk3[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
165  
Mindspeed Proprietary and Confidential  
Registers  
2.2.28  
0x1F—RXMSK4 (Receive Cell Mask Control Register 4)  
The RXMSK4 register contains the fourth byte of the Receive Cell Mask. (See 0x1D—RXMSK1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
RxMsk4[7]  
These bits hold the Receive Header Mask for Octet 4 of the incoming cell.  
RxMsk4[6]  
RxMsk4[5]  
RxMsk4[4]  
RxMsk4[3]  
RxMsk4[2]  
RxMsk4[1]  
RxMsk4[0]  
2.2.29  
0x20—RXIDL1 (Receive Idle Cell Header Control Register 1)  
The RXIDL1 register contains the first byte of the Receive Idle Cell Header. It defines ATM idle cells for the cell  
receiver. Idle cells are discarded from the received stream if register CVAL (0x0C) bit 6 is set to 1. This header  
consists of 32 bits divided among four registers.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxIdl1[7]  
These bits hold the Receive Idle cell header for Octet 1 of the incoming cell.  
RxIdl1[6]  
RxIdl1[5]  
RxIdl1[4]  
RxIdl1[3]  
RxIdl1[2]  
RxIdl1[1]  
RxIdl1[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
166  
Mindspeed Proprietary and Confidential  
Registers  
2.2.30  
0x21—RXIDL2 (Receive Idle Cell Header Control Register 2)  
The RXIDL2 register contains the second byte of the Receive Idle Cell Header. (See 0x20—RXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxIdl2[7]  
These bits hold the Receive Idle cell header for Octet 2 of the incoming cell.  
RxIdl2[6]  
RxIdl2[5]  
RxIdl2[4]  
RxIdl2[3]  
RxIdl2[2]  
RxIdl2[1]  
RxIdl2[0]  
2.2.31  
0x22—RXIDL3 (Receive Idle Cell Header Control Register 3)  
The RXIDL3 register contains the third byte of the Receive Idle Cell Header. (See 0x20—RXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RxIdl3[7]  
These bits hold the Receive Idle cell header for Octet 3 of the incoming cell.  
RxIdl3[6]  
RxIdl3[5]  
RxIdl3[4]  
RxIdl3[3]  
RxIdl3[2]  
RxIdl3[1]  
RxIdl3[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
167  
Mindspeed Proprietary and Confidential  
Registers  
2.2.32  
0x23—RXIDL4 (Receive Idle Cell Header Control Register 4)  
The RXIDL4 register contains the fourth byte of the Receive Idle Cell Header. (See 0x20—RXIDL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
RxIdl4[7]  
These bits hold the Receive Idle cell header for Octet 4 of the incoming cell.  
RxIdl4[6]  
RxIdl4[5]  
RxIdl4[4]  
RxIdl4[3]  
RxIdl4[2]  
RxIdl4[1]  
RxIdl4[0]  
2.2.33  
0x24—IDLMSK1 (Receive Idle Cell Mask Control Register 1)  
The IDLMSK1 register contains the first byte of the Receive Idle Cell Mask. It modifies ATM cell screening, which  
compares the Receive Idle Cell Header Registers to the incoming cells. Setting a bit in the Mask Register causes  
the corresponding bit in the received ATM idle cell header to be disregarded for screening. For example, setting  
IDLMSK1 bit 0 to 1 causes cells to be accepted as ATM idle cells with either 1 or 0 in the octet 1, bit 0 position. This  
header consists of 32 bits divided among four registers.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
IdlMsk1[7]  
These bits hold the Receive Idle cell header mask for Octet 1 of the incoming cell.  
IdlMsk1[6]  
IdlMsk1[5]  
IdlMsk1[4]  
IdlMsk1[3]  
IdlMsk1[2]  
IdlMsk1[1]  
IdlMsk1[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
168  
Mindspeed Proprietary and Confidential  
Registers  
2.2.34  
0x25—IDLMSK2 (Receive Idle Cell Mask Control Register 2)  
The IDLMSK2 register contains the second byte of the Receive Idle Cell Mask. (See 0x24—RXMSKL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
IdlMsk2[7]  
These bits hold the Receive Idle cell header mask for Octet 2 of the incoming cell.  
IdlMsk2[6]  
IdlMsk2[5]  
IdlMsk2[4]  
IdlMsk2[3]  
IdlMsk2[2]  
IdlMsk2[1]  
IdlMsk2[0]  
2.2.35  
0x26—IDLMSK3 (Receive Idle Cell Mask Control Register 3)  
The IDLMSK3 register contains the third byte of the Receive Idle Cell Mask. (See 0x24—RXMSKL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
IdlMsk3[7]  
These bits hold the Receive Idle cell header mask for Octet 3 of the incoming cell.  
IdlMsk3[6]  
IdlMsk3[5]  
IdlMsk3[4]  
IdlMsk3[3]  
IdlMsk3[2]  
IdlMsk3[1]  
IdlMsk3[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
169  
Mindspeed Proprietary and Confidential  
Registers  
2.2.36  
0x27—IDLMSK4 (Receive Idle Cell Mask Control Register 4)  
The IDLMSK4 register contains the fourth byte of the Receive Idle Cell Mask. (See 0x24—RXMSKL1.)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
IdlMsk4[7]  
These bits hold the Receive Idle cell header mask for Octet 4 of the incoming cell.  
IdlMsk4[6]  
IdlMsk4[5]  
IdlMsk4[4]  
IdlMsk4[3]  
IdlMsk4[2]  
IdlMsk4[1]  
IdlMsk4[0]  
2.2.37  
0x28—ENCELLT (Transmit Cell Interrupt Control Register)  
The ENCELLT register controls which of the interrupts listed in the TxCellInt register (0x2C) appear on the  
MicroInt* pin (pin AA1), provided that both EnTxCellInt (bit 1) in the ENSUMINT register (0x01) and EnPortInt bit in  
the appropriate ENSUMPORTn (n= 0 - 3) register (0xF06, 0xF08, 0xF0A or 0xF0C) for this port are enabled, and  
EnIntPin (bit 3) in the GENCTRL register (0xF00) is enabled.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
0
0
0
EnParErrInt  
When written to a logical 1, this bit enables the Parity Error Interrupt.  
When written to a logical 1, this bit enables the Start of Cell Error Interrupt.  
When written to a logical 1, this bit enables the Transmit FIFO Overflow Interrupt.  
When written to a logical 1, this bit enables the Receive FIFO Overflow Interrupt.  
When written to a logical 1, this bit enables the Cell Sent Interrupt.  
Reserved for factory test, ignore.  
EnSOCErrInt  
EnTxOvflInt  
EnRxOvflInt  
EnCellSentInt  
Reserved, set to a logical 0.  
Reserved, set to a logical 0.  
®
28529-DSH-001-K  
Mindspeed Technologies  
170  
Mindspeed Proprietary and Confidential  
Registers  
2.2.38  
0x29—ENCELLR (Receive Cell Interrupt Control Register)  
The ENCELLR register controls which of the interrupts listed in the RxCellInt register (0x2D) appear on the  
MicroInt* pin (pin AA1), provided that both EnRxCellInt (bit 0) in the ENSUMINT register (0x01) and EnPortInt bit in  
the appropriate ENSUMPORTn (n= 0 - 3) register (0xF06, 0xF08, 0xF0A or 0xF0C) for this port are enabled, and  
EnIntPin (bit 3) in the GENCTRL register (0xF00) is enabled.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
EnLOCDInt  
When written to a logical 1, this bit enables a Loss of Cell Delineation Interrupt.  
When written to a logical 1, this bit enables a HEC Error Detected Interrupt.  
When written to a logical 1, this bit enables a HEC Error Corrected Interrupt.  
Reserved, write to a logical 0.  
EnHECDetInt  
EnHECCorrInt  
EnCellRcvdInt  
EnIdleRcvdInt  
EnNonMatchInt  
EnNonZerGFCInt  
When written to a logical 1, this bit enables a Cell Received Interrupt.  
When written to a logical 1, this bit enables an Idle Cell Received Interrupt.  
When written to a logical 1, this bit enables a Non-matching Cell Received Interrupt.  
When written to a logical 1, this bit enables a Non-zero GFC Received Interrupt.  
2.2.39  
0x2C—TXCELLINT (Transmit Cell Interrupt Indication Status Register)  
The TXCELLINT register indicates that a change of status has occurred within the transmit status signals.  
Bit  
Default  
Name  
(1)  
Description  
7
0
ParErrInt  
When a logical 1 is read, this bit indicates that a Parity Error occurred.  
When a logical 1 is read, this bit indicates that a Start of Cell Error occurred.  
When a logical 1 is read, this bit indicates that a Transmit FIFO Overflow occurred.  
When a logical 1 is read, this bit indicates that a Receive FIFO Overflow occurred.  
When a logical 1 is read, this bit indicates that a cell has been sent.  
Reserved for factory test, ignore.  
(1)  
6
SOCErrInt  
(1)  
5
TxOvflInt  
RxOvflInt  
(1)  
4
(1)  
3
CellSentInt  
2
1
Reserved, set to a logical 0.  
0
0
Reserved, write to a logical 0.  
Footnote:  
(1) Single event—A 0 to 1 transition on the corresponding status bit causes this interrupt to occur, provided that this interrupt has been  
enabled by the corresponding enable bit. Reading this interrupt register clears this interrupt.  
®
28529-DSH-001-K  
Mindspeed Technologies  
171  
Mindspeed Proprietary and Confidential  
Registers  
2.2.40  
0x2D—RXCELLINT (Receive Cell Interrupt Indication Status Register)  
The RXCELLINT register indicates that a change of status has occurred within the receive status signals.  
Bit  
Default  
Name  
(2)  
Description  
7
LOCDInt  
When a logical 1 is read, this bit indicates that a Loss of Cell Delineation has occurred.  
When a logical 1 is read, this bit indicates that a HEC Error was detected.  
When a logical 1 is read, this bit indicates that a HEC Error was corrected.  
Reserved, write to a logical 0.  
(1)  
6
HECDetInt  
HECCorrInt  
(1)  
5
4
(1)  
3
CellRcvdInt  
When a logical 1 is read, this bit indicates that a cell has been received.  
When a logical 1 is read, this bit indicates that an Idle Cell has been received.  
When a logical 1 is read, this bit indicates that a Non-matching Cell has been received.  
When a logic 1 is read, this bit indicates that a Non-zero GFC has been received.  
(1)  
2
IdleRcvdInt  
(1)  
1
NonMatchInt  
(1)  
0
NonZerGFCInt  
Footnote:  
(1) Single event—A 0 to 1 transition on the corresponding status bit causes this interrupt to occur, provided that this interrupt has been  
enabled by the corresponding enable bit. Reading this interrupt register clears this interrupt.  
(2) Dual event—Either a 0 to 1 or a 1 to 0 transition on the corresponding status bit causes this interrupt to occur, provided that this interrupt  
has been enabled by the corresponding enable bit. Reading this interrupt register clears this interrupt.  
2.2.41  
0x2E—TXCELL (Transmit Cell Status Register)  
The TXCELL register contains status for the cell transmitter. This register is cleared on read. Bits 1-7 are read-  
only.  
Bit  
Default  
Name  
Description  
(1)  
7
ParErr  
When a logical 1 is read, this bit indicates that a parity error was received on the transmit  
UTOPIA input data octet.  
(1)  
6
5
4
SOCErr  
When a logical 1 is read, this bit indicates that a Start of Cell Error was received on the UTxSOC  
pin (pin TBD).  
(1)  
TxOvfl  
RxOvfl  
When a logical 1 is read, this bit indicates that a Transmit FIFO Overflow condition occurred in  
the transmit UTOPIA FIFO.  
(1)  
When a logical 1 is read, this bit indicates that a Receive FIFO Overflow condition occurred in the  
receive UTOPIA FIFO.  
(1)  
3
0
CellSent  
When a logical 1 is read, this bit indicates that a non-idle cell was formatted and transmitted.  
Reserved for factory test, ignore.  
2
1
Reserved, set to a logical 0.  
0
0
Reserved, set to a logical 0.  
Footnote:  
(1) This status indicates an event that occurred since the register was last read.  
®
28529-DSH-001-K  
Mindspeed Technologies  
172  
Mindspeed Proprietary and Confidential  
Registers  
2.2.42  
0x2F—RXCELL (Receive Cell Status Register)  
The RXCELL register contains status for the cell receiver. This register is cleared on read.  
Bit  
Default  
Name  
Description  
(2)  
7
6
5
4
3
2
LOCD  
When a logical 1 is read, this bit indicates a Loss of Cell Delineation.  
(1)  
HECDet  
When a logical 1 is read, this bit indicates that an uncorrected HEC Error was detected.  
When a logical 1 is read, this bit indicates that a HEC Error was corrected.  
Reserved, ignore this bit.  
(1)  
HECCorr  
CellRcvd  
IdleRcvd  
When logical 1 is read, this bit indicates that a valid cell was received.  
(1)  
(1)  
When a logical 1 is read, this bit indicates that a cell with a header matching the receive idle cell  
header value and mask criteria was received.  
1
NonMatch  
When a logical 1 is read, this bit indicates that a cell has been rejected by the cell screening  
function.  
(1)  
0
NonZerGFC  
When a logical 1 is read, this bit indicates that a cell with a Non-zero GFC field in the header was  
received.  
Footnote:  
(1) This status indicates an event that occurred since the register was last read.  
(2) This status reflects the current state of the circuit.  
2.2.43  
0x30—IDLCNTL (Idle Cell Receive Counter [Low Byte])  
The IDLCNTL counter tracks the number of received idle cells. This byte of the counter should be read first. The  
counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
IdleCnt[7]  
Received cell counter bit 7.  
Received cell counter bit 6.  
Received cell counter bit 5.  
Received cell counter bit 4.  
Received cell counter bit 3.  
Received cell counter bit 2.  
Received cell counter bit 1.  
Received cell counter bit 0 (LSB).  
IdleCnt[6]  
IdleCnt[5]  
IdleCnt[4]  
IdleCnt[3]  
IdleCnt[2]  
IdleCnt[1]  
IdleCnt[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
173  
Mindspeed Proprietary and Confidential  
Registers  
2.2.44  
0x31—IDLCNTH (Idle Cell Receive Counter [High Byte])  
The IDLCNTH counter tracks the number of received cells. The counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
IdleCnt[15]  
Received cell counter bit 15.  
Received cell counter bit 14.  
Received cell counter bit 13.  
Received cell counter bit 12.  
Received cell counter bit 11.  
Received cell counter bit 10.  
Received cell counter bit 9.  
Received cell counter bit 8.  
IdleCnt[14]  
IdleCnt[13]  
IdleCnt[12]  
IdleCnt[11]  
IdleCnt[10]  
IdleCnt[9]  
IdleCnt[8]  
2.2.45  
0x33—LOCDCNT (LOCD Event Counter)  
This counter tracks the number of times that cell delineation was lost. Note that the LOCD interrupt is a dual event  
interrupt and is set when cell delineation is lost or regained. Thus the number of LOCD events will not match the  
number of LOCD interrupts.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
LOCDCnt[7]  
LOCD Event counter bit 7 (MSB).  
LOCD Event counter bit 6.  
LOCD Event counter bit 5.  
LOCD Event counter bit 4.  
LOCD Event counter bit 3.  
LOCD Event counter bit 2.  
LOCD Event counter bit 1.  
LOCD Event counter bit 0 (LSB).  
LOCDCnt[6]  
LOCDCnt[5]  
LOCDCnt[4]  
LOCDCnt[3]  
LOCDCnt[2]  
LOCDCnt[1]  
LOCDCnt[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
174  
Mindspeed Proprietary and Confidential  
Registers  
2.2.46  
0x34—TXCNTL (Transmitted Cell Counter [Low Byte])  
The TXCNTL counter tracks the number of transmitted cells. This byte of the counter should be read first. The  
counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
TxCnt[7]  
TxCnt[6]  
TxCnt[5]  
TxCnt[4]  
TxCnt[3]  
TxCnt[2]  
TxCnt[1]  
TxCnt[0]  
Transmitted cell counter bit 7.  
Transmitted cell counter bit 6.  
Transmitted cell counter bit 5.  
Transmitted cell counter bit 4.  
Transmitted cell counter bit 3.  
Transmitted cell counter bit 2.  
Transmitted cell counter bit 1.  
Transmitted cell counter bit 0 (LSB).  
2.2.47  
0x35—TXCNTH (Transmitted Cell Counter [High Byte])  
The TXCNTH counter tracks the number of transmitted cells. The counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
TxCnt[15]  
Transmitted cell counter bit 15.  
Transmitted cell counter bit 14.  
Transmitted cell counter bit 13.  
Transmitted cell counter bit 12.  
Transmitted cell counter bit 11.  
Transmitted cell counter bit 10.  
Transmitted cell counter bit 9.  
Transmitted cell counter bit 8.  
TxCnt[14]  
TxCnt[13]  
TxCnt[12]  
TxCnt[11]  
TxCnt[10]  
TxCnt[9]  
TxCnt[8]  
®
28529-DSH-001-K  
Mindspeed Technologies  
175  
Mindspeed Proprietary and Confidential  
Registers  
2.2.48  
0x37—CORRCNT (Corrected HEC Error Counter)  
The CORRCNT counter tracks the number of corrected HEC errors. The counter is cleared on read 0x38—  
RXCNTL (Received Cell Counter [Low Byte]).  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
CorrCnt[7]  
Corrected HEC Error counter bit 7 (MSB).  
Corrected HEC Error counter bit 6.  
Corrected HEC Error counter bit 5.  
Corrected HEC Error counter bit 4.  
Corrected HEC Error counter bit 3.  
Corrected HEC Error counter bit 2.  
Corrected HEC Error counter bit 1.  
Corrected HEC Error counter bit 0 (LSB).  
CorrCnt[6]  
CorrCnt[5]  
CorrCnt[4]  
CorrCnt[3]  
CorrCnt[2]  
CorrCnt[1]  
CorrCnt[0]  
2.2.49  
0x38—RXCNTL (Received Cell Counter [Low Byte])  
The RXCNTL counter tracks the number of received cells. This byte of the counter should be read first. The counter  
is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
RxCnt[7]  
RxCnt[6]  
RxCnt[5]  
RxCnt[4]  
RxCnt[3]  
RxCnt[2]  
RxCnt[1]  
RxCnt[0]  
Received cell counter bit 7.  
Received cell counter bit 6.  
Received cell counter bit 5.  
Received cell counter bit 4.  
Received cell counter bit 3.  
Received cell counter bit 2.  
Received cell counter bit 1.  
Received cell counter bit 0 (LSB).  
®
28529-DSH-001-K  
Mindspeed Technologies  
176  
Mindspeed Proprietary and Confidential  
Registers  
2.2.50  
0x39—RXCNTH (Received Cell Counter [High Byte])  
The RXCNTH register tracks the number of received cells. The counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
RxCnt[15]  
Received cell counter bit 15.  
Received cell counter bit 14.  
Received cell counter bit 13.  
Received cell counter bit 12.  
Received cell counter bit 11.  
Received cell counter bit 10.  
Received cell counter bit 9.  
Received cell counter bit 8.  
RxCnt[14]  
RxCnt[13]  
RxCnt[12]  
RxCnt[11]  
RxCnt[10]  
RxCnt[9]  
RxCnt[8]  
2.2.51  
0x3B—UNCCNT (Uncorrected HEC Error Counter)  
The UNCCNT counter tracks the number of uncorrected HEC errors. The counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
UncCnt[7]  
Uncorrected HEC Error counter bit 7 (MSB).  
UncCnt[6]  
UncCnt[5]  
UncCnt[4]  
UncCnt[3]  
UncCnt[2]  
UncCnt[1]  
UncCnt[0]  
Uncorrected HEC Error counter bit 6.  
Uncorrected HEC Error counter bit 5.  
Uncorrected HEC Error counter bit 4.  
Uncorrected HEC Error counter bit 3.  
Uncorrected HEC Error counter bit 2.  
Uncorrected HEC Error counter bit 1.  
Uncorrected HEC Error counter bit 0 (LSB).  
®
28529-DSH-001-K  
Mindspeed Technologies  
177  
Mindspeed Proprietary and Confidential  
Registers  
2.2.52  
0x3C—NONCNTL (Non-matching Cell Counter [Low Byte])  
The NONCNTL counter tracks the number of non-matching cells. This byte of the counter should be read first. The  
counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
NonCnt[7]  
Non-matching cell counter bit 7.  
Non-matching cell counter bit 6.  
Non-matching cell counter bit 5.  
Non-matching cell counter bit 4.  
Non-matching cell counter bit 3.  
Non-matching cell counter bit 2.  
Non-matching cell counter bit 1.  
Non-matching cell counter bit 0 (LSB).  
NonCnt[6]  
NonCnt[5]  
NonCnt[4]  
NonCnt[3]  
NonCnt[2]  
NonCnt[1]  
NonCnt[0]  
2.2.53  
0x3D—NONCNTH (Non-matching Cell Counter [High Byte])  
The NONCNTH counter tracks the number of non-matching cells. The counter is cleared on read.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
NonCnt[15]  
Non-matching cell counter bit 15 (MSB).  
Non-matching cell counter bit 14.  
Non-matching cell counter bit 13.  
Non-matching cell counter bit 12.  
Non-matching cell counter bit 11.  
Non-matching cell counter bit 10.  
Non-matching cell counter bit 9.  
Non-matching cell counter bit 8.  
NonCnt[14]  
NonCnt[13]  
NonCnt[12]  
NonCnt[11]  
NonCnt[10]  
NonCnt[9]  
NonCnt[8]  
®
28529-DSH-001-K  
Mindspeed Technologies  
178  
Mindspeed Proprietary and Confidential  
Registers  
2.3  
General Control Registers  
2.3.1  
0xF00—GENCTRL (General Device Control Register)  
Bit  
Default  
Name  
Description  
7
0
DevMstRst  
Device master reset. When set high, all internal state machines in the TC block are held in reset  
and all registers (except this bit) assume their default values. If configuring the device for  
pass-through operation, a minimum delay of 25 uS for IMA_Sysclk of 66 MHz or 33uS for  
IMA_Sysclk of 50 MHz is required from the release of device reset to the first access of the  
IMA_RX_TRANS_TABLE register or IMA_RX_ATM_TRANS_TABLE register (0x818/0x819).  
6
5
0
0
DevLgcRst  
EnStatLat  
Device logic reset. When set high, all internal state machines in the TC block are held in reset  
but register values are unaffected.  
When set to 1, the one-second status latching is enabled. The value of the status bits are the  
events which occurred between the last two one-second events. Any events occurring after the  
last one-second event is not reflected when the status register is read. Those events are  
reflected in the status register upon the next one-second event. When a status register is read,  
the status is cleared and is not updated until the next one-second event.  
When set to 0, the one-second status latching is disabled. The value of a status register is the  
events occurred since the last read of the status register.  
4
0
EnCntrLat  
EnIntPin  
When set to 1, the one-second counter latching is enabled. The value of the counter is the  
number of events counted between the last two one-second events. Any events occurring after  
the last one-second event is not reflected when the counter is read. Those events are reflected  
in the counter upon the next one-second event. When a counter is read, the count is cleared  
and is not updated until the next one-second event.  
When set to 0, the one-second counter latching is disabled. The value of a counter is the  
number of events counted since the last read of the counter.  
3
2–1  
0
0
00  
0
Enables the MicroInt* output pin.  
Reserved, set to zero.  
OneSecOut  
When set to 1, the OneSecIO pin is configured as an output. The pin provides a one-second  
event pulse. The one-second event is generated internally of the device. The event occurs after  
the device has counted 8000 periods of a 8 KHz clock.  
When set to 0, the OneSecIO pin is configured as an input. The one-second event must be  
generated externally, by pulsing the OneSecIO pin for low-high-low.  
2.3.2  
0xF01—PARTNUM (Part and Version Number Register)  
Bit  
Default  
Name  
Description  
7–4  
pppp  
PartNum[3:0]  
Part number controlled by bondout:  
16 TC Port version - 0101  
32 TC Port version - 1001  
3–0  
0000  
Version[3:0]  
Version number of the device. Number starts at “0000” for the initial version  
®
28529-DSH-001-K  
Mindspeed Technologies  
179  
Mindspeed Proprietary and Confidential  
Registers  
2.3.3  
0xF02—PHYINTFC (PHY-side Interface Control Register)  
Bit  
Default  
Name  
Description  
7
6
5
0
1
PHYIntSelPin  
PHYBusWidth  
Reserved, set to 0.  
This bit reflects the level of the external PhyIntFcSel pin (read only)  
When set to 0, the PHY-side UTOPIA interface is set to 16-bit mode.  
When set to 1, the PHY-side UTOPIA interface is set to 8-bit mode.  
4–0  
00000  
Reserved, set to zero.  
2.3.4  
0xF03—ATMINTFC (ATM-side Interface Control Register)  
Bit  
Default  
Name  
Description  
7–6  
00  
ATMmux[1:0]  
Controls the ATM-side UTOPIA interface mux.  
00 – External interface is placed in Tristate mode.  
01 – UTOPIA level 2 interface to IMA32 block is enabled.  
10 – UTOPIA level 2 interface to TC block is enabled.  
11 – External interface is placed in Tristate mode.  
5
4
0
0
ATMBusWidth  
DualClavEnb  
When set to 0, the 16-bit UTOPIA bus is enabled  
When set to 1, the 8-bit UTOPIA bus is enabled.  
When set to 1, Dual Clav/Enb mode on the interface is enabled. When set to 0, single clav/enb  
is enabled. For single Clav mode, UrxEnb[1] and UtxEnB[1] are not used but must be pulled  
up.  
3-0  
0000  
Reserved, set to zero.  
2.3.5  
0xF04—STATOUT (Output Status Control Register)  
Bit  
Default  
Name  
Description  
7–2  
1–0  
000000  
00  
Reserved, set to zero.  
StatOut[1:0]  
The value written into these bits will be asserted on the StatOut[1:0] output pins.  
®
28529-DSH-001-K  
Mindspeed Technologies  
180  
Mindspeed Proprietary and Confidential  
Registers  
2.3.6  
0xF05—SUMPORT0 (Summary Port Interrupt Status Register for TC ports  
0-7)  
Bit  
Default  
Name  
Description  
1
7
0
0
0
0
0
0
0
0
PortInt[7]  
This bit is a summary indicator of the interrupts from the Port 7 SUMINT register (0x1C0).  
This bit is a summary indicator of the interrupts from the Port 6 SUMINT register (0x180).  
This bit is a summary indicator of the interrupts from the Port 5 SUMINT register (0x140).  
This bit is a summary indicator of the interrupts from the Port 4 SUMINT register (0x100).  
This bit is a summary indicator of the interrupts from the Port 3 SUMINT register (0x0C0).  
This bit is a summary indicator of the interrupts from the Port 2 SUMINT register (0x080).  
This bit is a summary indicator of the interrupts from the Port 1 SUMINT register (0x040).  
This bit is a summary indicator of the interrupts from the Port 0 SUMINT register (0x000).  
1
1
1
1
1
1
1
6
PortInt[6]  
PortInt[5]  
PortInt[4]  
PortInt[3]  
PortInt[2]  
PortInt[1]  
PortInt[0]  
5
4
3
2
1
0
Footnote:  
(1) This bit is a pointer to the next interrupt indication register to be read. This bit will be cleared when the interrupt bit in the corresponding  
interrupt indication register is read and automatically cleared.  
2.3.7  
0xF06—ENSUMPORT0 (Summary Port Interrupt Control Register for TC  
Ports 0-7)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
EnPortInt[7]  
When set, this bit enables PortInt[7] to appear on the MicroInt* output.  
When set, this bit enables PortInt[6] to appear on the MicroInt* output.  
When set, this bit enables PortInt[5] to appear on the MicroInt* output.  
When set, this bit enables PortInt[4] to appear on the MicroInt* output.  
When set, this bit enables PortInt[3] to appear on the MicroInt* output.  
When set, this bit enables PortInt[2] to appear on the MicroInt* output.  
When set, this bit enables PortInt[1] to appear on the MicroInt* output.  
When set, this bit enables PortInt[0] to appear on the MicroInt* output.  
EnPortInt[6]  
EnPortInt[5]  
EnPortInt[4]  
EnPortInt[3]  
EnPortInt[2]  
EnPortInt[1]  
EnPortInt[0]  
®
28529-DSH-001-K  
Mindspeed Technologies  
181  
Mindspeed Proprietary and Confidential  
Registers  
2.3.8  
0xF07—SUMPORT1 (Summary Port Interrupt Status Register for TC ports  
8-15)  
Bit  
Default  
Name  
Description  
1
7
0
0
0
0
0
0
0
0
PortInt[15]  
This bit is a summary indicator of the interrupts from the Port 15 SUMINT register (0x3C0).  
This bit is a summary indicator of the interrupts from the Port 14 SUMINT register (0x380).  
This bit is a summary indicator of the interrupts from the Port 13 SUMINT register (0x340).  
This bit is a summary indicator of the interrupts from the Port 12 SUMINT register (0x300).  
This bit is a summary indicator of the interrupts from the Port 11 SUMINT register (0x2C0).  
This bit is a summary indicator of the interrupts from the Port 10 SUMINT register (0x280).  
This bit is a summary indicator of the interrupts from the Port 9 SUMINT register (0x240).  
This bit is a summary indicator of the interrupts from the Port 8 SUMINT register (0x200).  
1
1
1
1
1
6
PortInt[14]  
PortInt[13]  
PortInt[12]  
PortInt[11]  
PortInt[10]  
5
4
3
2
1
1
0
PortInt[9]  
1
PortInt[8]  
Footnote:  
(1) This bit is a pointer to the next interrupt indication register to be read. This bit will be cleared when the interrupt bit in the corresponding  
interrupt indication register is read and automatically cleared.  
2.3.9  
0xF08—ENSUMPORT1 (Summary Port Interrupt Control Register for TC  
Ports 8-15)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
EnPortInt[15]  
EnPortInt[14]  
EnPortInt[13]  
EnPortInt[12]  
EnPortInt[11]  
EnPortInt[10]  
EnPortInt[9]  
EnPortInt[8]  
When set, this bit enables PortInt[15] to appear on the MicroInt* output.  
When set, this bit enables PortInt[14] to appear on the MicroInt* output.  
When set, this bit enables PortInt[13] to appear on the MicroInt* output.  
When set, this bit enables PortInt[12] to appear on the MicroInt* output.  
When set, this bit enables PortInt[11] to appear on the MicroInt* output.  
When set, this bit enables PortInt[10] to appear on the MicroInt* output.  
When set, this bit enables PortInt[9] to appear on the MicroInt* output.  
When set, this bit enables PortInt[8] to appear on the MicroInt* output.  
®
28529-DSH-001-K  
Mindspeed Technologies  
182  
Mindspeed Proprietary and Confidential  
Registers  
2.3.10  
0xF09—SUMPORT2 (Summary Port Interrupt Status Register for TC ports  
16-23)  
Bit  
Default  
Name  
Description  
1
7
0
0
0
0
0
0
0
0
PortInt[23]  
This bit is a summary indicator of the interrupts from the Port 23 SUMINT register (0x5C0).  
This bit is a summary indicator of the interrupts from the Port 22 SUMINT register (0x580).  
This bit is a summary indicator of the interrupts from the Port 21 SUMINT register (0x540).  
This bit is a summary indicator of the interrupts from the Port 20 SUMINT register (0x500).  
This bit is a summary indicator of the interrupts from the Port 19 SUMINT register (0x4C0).  
This bit is a summary indicator of the interrupts from the Port 18 SUMINT register (0x480).  
This bit is a summary indicator of the interrupts from the Port 17 SUMINT register (0x440).  
This bit is a summary indicator of the interrupts from the Port 16 SUMINT register (0x400).  
1
1
1
1
1
1
1
6
PortInt[22]  
PortInt[21]  
PortInt[20]  
PortInt[19]  
PortInt[18]  
PortInt[17]  
PortInt[16]  
5
4
3
2
1
0
Footnote:  
(1) This bit is a pointer to the next interrupt indication register to be read. This bit will be cleared when the interrupt bit in the corresponding  
interrupt indication register is read and automatically cleared.  
2.3.11  
0xF0A—ENSUMPORT2 (Summary Port Interrupt Control Register for TC  
Ports 16-23)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
EnPortInt[23]  
EnPortInt[22]  
EnPortInt[21]  
EnPortInt[20]  
EnPortInt[19]  
EnPortInt[18]  
EnPortInt[17]  
EnPortInt[16]  
When set, this bit enables PortInt[23] to appear on the MicroInt* output.  
When set, this bit enables PortInt[22] to appear on the MicroInt* output.  
When set, this bit enables PortInt[21] to appear on the MicroInt* output.  
When set, this bit enables PortInt[20] to appear on the MicroInt* output.  
When set, this bit enables PortInt[19] to appear on the MicroInt* output.  
When set, this bit enables PortInt[18] to appear on the MicroInt* output.  
When set, this bit enables PortInt[17] to appear on the MicroInt* output.  
When set, this bit enables PortInt[16] to appear on the MicroInt* output.  
®
28529-DSH-001-K  
Mindspeed Technologies  
183  
Mindspeed Proprietary and Confidential  
Registers  
2.3.12  
0xF0B—SUMPORT3 (Summary Port Interrupt Status Register for TC ports  
24-31)  
Bit  
Default  
Name  
Description  
1
7
0
0
0
0
0
0
0
0
PortInt[31]  
This bit is a summary indicator of the interrupts from the Port 31 SUMINT register (0x7C0).  
This bit is a summary indicator of the interrupts from the Port 30 SUMINT register (0x780).  
This bit is a summary indicator of the interrupts from the Port 29 SUMINT register (0x740).  
This bit is a summary indicator of the interrupts from the Port 28 SUMINT register (0x700).  
This bit is a summary indicator of the interrupts from the Port 27 SUMINT register (0x6C0).  
This bit is a summary indicator of the interrupts from the Port 26 SUMINT register (0x680).  
This bit is a summary indicator of the interrupts from the Port 25 SUMINT register (0x640).  
This bit is a summary indicator of the interrupts from the Port 24 SUMINT register (0x600).  
1
1
1
1
1
1
1
6
PortInt[30]  
PortInt[29]  
PortInt[28]  
PortInt[27]  
PortInt[26]  
PortInt[25]  
PortInt[24]  
5
4
3
2
1
0
Footnote:  
(1) This bit is a pointer to the next interrupt indication register to be read. This bit will be cleared when the interrupt bit in the corresponding  
interrupt indication register is read and automatically cleared.  
2.3.13  
0xF0C—ENSUMPORT3 (Summary Port Interrupt Control Register for TC  
Ports 24-31)  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
EnPortInt[31]  
EnPortInt[30]  
EnPortInt[29]  
EnPortInt[28]  
EnPortInt[27]  
EnPortInt[26]  
EnPortInt[25]  
EnPortInt[24]  
When set, this bit enables PortInt[31] to appear on the MicroInt* output.  
When set, this bit enables PortInt[30] to appear on the MicroInt* output.  
When set, this bit enables PortInt[29] to appear on the MicroInt* output.  
When set, this bit enables PortInt[28] to appear on the MicroInt* output.  
When set, this bit enables PortInt[27] to appear on the MicroInt* output.  
When set, this bit enables PortInt[26] to appear on the MicroInt* output.  
When set, this bit enables PortInt[25] to appear on the MicroInt* output.  
When set, this bit enables PortInt[24] to appear on the MicroInt* output.  
2.3.14  
0xF0F—SCRATCH (Scratch Pad Register)  
Bit  
Default  
Name  
Description  
7-0  
00000000 Scratch  
These bits can be written and read by the system. These bits are not used for any purpose  
inside the device.  
®
28529-DSH-001-K  
Mindspeed Technologies  
184  
Mindspeed Proprietary and Confidential  
Registers  
2.3.15  
0xF10—TCCTRL0 (TC Control Register for TC ports 0-3)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft0  
When set to 1, the Tx data on the Interleaved Highway Data Bus 0 will be output 1/2 IHTxClk0  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol0  
IhRxClkPol0  
Interleaved Highway Bus 0 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk0, set to 1 for  
falling edge.  
Interleaved Highway Bus 0 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk0, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH0  
When set, this bit enables interleaved highway interface for TC Ports 0-3.  
When set, this bit enables fractional T1/E1 logic for TC port 3.  
When set, this bit enables fractional T1/E1 logic for TC port 2.  
When set, this bit enables fractional T1/E1 logic for TC port 1.  
When set, this bit enables fractional T1/E1 logic for TC port 0.  
EnFrac[3]  
EnFrac[2]  
EnFrac[1]  
EnFrac[0]  
2.3.16  
0xF11—TCCTRL1 (TC Control Register for TC ports 4-7)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft1  
When set to 1, the Tx data on the Interleaved Highway Data Bus 1 will be output 1/2 IHTxClk1  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol1  
IhRxClkPol1  
Interleaved Highway Bus 1 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk1, set to 1 for  
falling edge.  
Interleaved Highway Bus 1 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk1, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH1  
When set, this bit enables interleaved highway interface for TC Ports 4-7.  
When set, this bit enables fractional T1/E1 logic for TC port 7.  
When set, this bit enables fractional T1/E1 logic for TC port 6.  
When set, this bit enables fractional T1/E1 logic for TC port 5.  
When set, this bit enables fractional T1/E1 logic for TC port 4.  
EnFrac[7]  
EnFrac[6]  
EnFrac[5]  
EnFrac[4]  
®
28529-DSH-001-K  
Mindspeed Technologies  
185  
Mindspeed Proprietary and Confidential  
Registers  
2.3.17  
0xF12—TCCTRL2 (TC Control Register for TC ports 8-11)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft2  
When set to 1, the Tx data on the Interleaved Highway Data Bus 2 will be output 1/2 IHTxClk2  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol2  
IhRxClkPol2  
Interleaved Highway Bus 2 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk2, set to 1 for  
falling edge.  
Interleaved Highway Bus 2 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk2, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH2  
When set, this bit enables interleaved highway interface for TC Ports 8-11.  
When set, this bit enables fractional T1/E1 logic for TC port 11.  
When set, this bit enables fractional T1/E1 logic for TC port 10.  
When set, this bit enables fractional T1/E1 logic for TC port 9.  
When set, this bit enables fractional T1/E1 logic for TC port 8.  
EnFrac[11]  
EnFrac[10]  
EnFrac[9]  
EnFrac[8]  
2.3.18  
0xF13—TCCTRL3 (TC Control Register for TC ports 12-15)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft3  
When set to 1, the Tx data on the Interleaved Highway Data Bus 3 will be output 1/2 IHTxClk3  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol3  
IhRxClkPol3  
Interleaved Highway Bus 3 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk3, set to 1 for  
falling edge.  
Interleaved Highway Bus 3 Rx Clock Polarity. Set to 0 for rising edge of IHTxClk3, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH3  
When set, this bit enables interleaved highway interface for TC Ports 12-15.  
When set, this bit enables fractional T1/E1 logic for TC port 15.  
When set, this bit enables fractional T1/E1 logic for TC port 14.  
When set, this bit enables fractional T1/E1 logic for TC port 13.  
When set, this bit enables fractional T1/E1 logic for TC port 12.  
EnFrac[15]  
EnFrac[14]  
EnFrac[13]  
EnFrac[12]  
®
28529-DSH-001-K  
Mindspeed Technologies  
186  
Mindspeed Proprietary and Confidential  
Registers  
2.3.19  
0xF14—TCCTRL4 (TC Control Register for TC ports 16-19)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft4  
When set to 1, the Tx data on the Interleaved Highway Data Bus 4 will be output 1/2 IHTxClk4  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol4  
IhRxClkPol4  
Interleaved Highway Bus 4 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk4, set to 1 for  
falling edge.  
Interleaved Highway Bus 4 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk4, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH4  
When set, this bit enables interleaved highway interface for TC Ports 16-19.  
When set, this bit enables fractional T1/E1 logic for TC port 19.  
When set, this bit enables fractional T1/E1 logic for TC port 18.  
When set, this bit enables fractional T1/E1 logic for TC port 17.  
When set, this bit enables fractional T1/E1 logic for TC port 16.  
EnFrac[19]  
EnFrac[18]  
EnFrac[17]  
EnFrac[16]  
2.3.20  
0xF15—TCCTRL5 (TC Control Register for TC ports 20-23)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft5  
When set to 1, the Tx data on the Interleaved Highway Data Bus 5 will be output 1/2 IHTxClk5  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol5  
IhRxClkPol5  
Interleaved Highway Bus 5 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk5, set to 1 for  
falling edge.  
Interleaved Highway Bus 5 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk5, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH5  
When set, this bit enables interleaved highway interface for TC Ports 20-23.  
When set, this bit enables fractional T1/E1 logic for TC port 23.  
When set, this bit enables fractional T1/E1 logic for TC port 22.  
When set, this bit enables fractional T1/E1 logic for TC port 21.  
When set, this bit enables fractional T1/E1 logic for TC port 20.  
EnFrac[23]  
EnFrac[22]  
EnFrac[21]  
EnFrac[20]  
®
28529-DSH-001-K  
Mindspeed Technologies  
187  
Mindspeed Proprietary and Confidential  
Registers  
2.3.21  
0xF16—TCCTRL6 (TC Control Register for TC ports 24-27)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft6  
When set to 1, the Tx data on the Interleaved Highway Data Bus 6 will be output 1/2 IHTxClk6  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol6  
IhRxClkPol6  
Interleaved Highway Bus 6 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk6, set to 1 for  
falling edge.  
Interleaved Highway Bus 6 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk6, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH6  
When set, this bit enables interleaved highway interface for TC Ports 24-27.  
When set, this bit enables fractional T1/E1 logic for TC port 27.  
When set, this bit enables fractional T1/E1 logic for TC port 26.  
When set, this bit enables fractional T1/E1 logic for TC port 25.  
When set, this bit enables fractional T1/E1 logic for TC port 24.  
EnFrac[27]  
EnFrac[26]  
EnFrac[25]  
EnFrac[24]  
2.3.22  
0xF17—TCCTRL7 (TC Control Register for TC ports 28-31)  
Bit  
Default  
Name  
Description  
7
0
IhTxDatShft7  
When set to 1, the Tx data on the Interleaved Highway Data Bus 7 will be output 1/2 IHTxClk7  
cycle later than when the Tx inputs are sampled. Set to 0 to disable 1/2 cycle shift.  
6
5
0
0
IhTxClkPol7  
IhRxClkPol7  
Interleaved Highway Bus 7 Tx Clock Polarity. Set to 0 for rising edge of IHTxClk7, set to 1 for  
falling edge.  
Interleaved Highway Bus 7 Rx Clock Polarity. Set to 0 for rising edge of IHRxClk7, set to 1 for  
falling edge.  
4
3
2
1
0
0
0
0
0
0
EnIH7  
When set, this bit enables interleaved highway interface for TC Ports 28-31.  
When set, this bit enables fractional T1/E1 logic for TC port 31.  
When set, this bit enables fractional T1/E1 logic for TC port 30.  
When set, this bit enables fractional T1/E1 logic for TC port 29.  
When set, this bit enables fractional T1/E1 logic for TC port 28.  
EnFrac[31]  
EnFrac[30]  
EnFrac[29]  
EnFrac[28]  
2.3.23  
0xF18—ONESECINT (One Second Interrupt Status Register)  
Bit  
Default  
Name  
Description  
7-1  
0
0000000  
0
-
Reserved, set to zero  
OneSecInt  
This bit is the indicator of the one second interrupt  
®
28529-DSH-001-K  
Mindspeed Technologies  
188  
Mindspeed Proprietary and Confidential  
Registers  
2.3.24  
0xF19—ONESECINT (One Second Interrupt Control Register)  
Bit  
Default  
Name  
Description  
7-1  
0
0000000  
1
-
Reserved, set to zero  
When set, this bit enables OneSecInt to appear on the Microint* output pin.  
EnOneSecInt  
2.4  
IMA Subsystem Registers  
The IMA Subsystem layer contains configuration and status information that is common to all IMA groups.  
2.4.1  
0x800—IMA_VER_1_CONFIG (IMA Type and Version Code I)  
The IMA_Version I and II registers contain the type and revision level of the IMA core. Read-only.  
Bit  
Default  
Name  
Description  
7–4  
IMA Core Type I  
0xa = M28529, 32 ports 32 IMA groups  
0xb = M28525, 16 ports 16 IMA groups  
3
1
IMA Core Type II  
Version Code I  
1 = Internal memory present  
2–0  
0x4 = M2852x family major revision level  
2.4.2  
0x801—IMA_VER_2_CONFIG (IMA Version Codes II and III)  
This register is read-only.  
Bit  
Default  
Name  
Description  
7–4  
Version Code II  
4 bit code:  
0x4 = M2852x-12  
3–0  
Version Code III  
4 bit code:  
0x0 = M2852x-12  
®
28529-DSH-001-K  
Mindspeed Technologies  
189  
Mindspeed Proprietary and Confidential  
Registers  
2.4.3  
0x802—IMA_SUBSYS_CONFIG (IMA Configuration Control)  
This register contains some of the basic IMA Subsystem configuration.  
Bit  
Default  
Name  
Description  
7–6  
0
Link Type  
Sets default link type for all IMA groups. Not used with variable rate facilities  
0 = T1  
1 = E1  
2 = Alternate T1 (1.544 Mbps payload)  
3 = Alternate E1 (1.984 Mbps payload)  
5–4  
0
SRAM size  
0 = 25 ms (E1 mode)  
1 = 50 ms  
2 = 100 ms  
3 = 200 ms  
3
0
0
Number of SRAMs  
Number of Ports  
0 = 1 SRAM, Set to 0 for all M2852x devices  
2–0  
This field indicates the range of valid PHY addresses.  
0: addresses 0x00–0x03 are valid  
1: addresses 0x00–0x07 are valid  
2: addresses 0x00–0x0B are valid  
3: addresses 0x00–0x0F are valid  
4: addresses 0x00–0x13 are valid  
5: addresses 0x00–0x17 are valid  
6: addresses 0x00–0x1B are valid  
7: addresses 0x00–0x1F are valid  
This field has different ranges depending on Product type:  
M28525: Range: 0–3  
M28529: Range: 0–7  
2.4.4  
0x803—IMA_MISC_STATUS (IMA Miscellaneous Status)  
This register contains miscellaneous status information for the IMA Subsystem. Read-only.  
Bit  
Default  
Name  
Description  
7
6
5
4
Reserved  
Reserved  
Reserved  
ATM Data Width  
This bit indicates whether the ATM UTOPIA bus is operating in 16 bit (high) or 8 bit (low) data  
mode.  
3
2
IMA_RefClk Error  
This bit is set high if a transition detector for IMA_RefClk detects a bad signal. This bit is active  
high and is reset upon reading this address.  
Tx ATM Parity Error  
This bit indicates that a parity error has been detected on the Transmit ATM side UTOPIA bus.  
This bit is active high and is reset upon reading this address.  
1
0
Reserved.  
Rx PHY Parity Error  
This bit indicates that a parity error has been detected on the Receive PHY side cell bus. This bit  
is active high and is reset upon reading this address.  
®
28529-DSH-001-K  
Mindspeed Technologies  
190  
Mindspeed Proprietary and Confidential  
Registers  
2.4.5  
0x804—IMA_MISC_CONFIG (IMA Miscellaneous Control)  
This register contains some of the basic IMA Subsystem configuration.  
Bit  
Default  
Name  
Description  
7
6
0
Reserved. Set to 0  
Alternate GTSM Mode  
1 = When the GTSM is down, ATMUTxClAv for that group is controlled as if all configured  
links in the group are Active.  
0 = When the GTSM is down, ATMUTxClAv for that group is inactive.  
5–4  
0
PHY Size  
This two bit field determines the use of the PHY side ClAv and Enb* signals. When using  
Utopia-to-Serial mode, PHY Size should be set to 16 ports per Clav and En*. Thus for  
M28525, PHY Size should be 2 while for M28529, PHY Size should be 1.  
0 = ClAv and En* for every 4 PHY addresses (support 8 ports total)  
(Ports 0-3 assigned to Clav0/Enb0*)  
(Ports 4-7 assigned to Clav1/En1*)  
1 = ClAv and En* for every 16 PHY addresses (support 32 ports total)  
(Ports 0-15 assigned to Clav0/Enb0*)  
(Ports 16-31 assigned to Clav1/Enb1*)  
2 = ClAv and En* for all PHY addresses (support 32 ports total)  
(Ports 0-31 assigned to Clav0/Enb0*)  
For Utopia-to-Utopia mode, PhyUrxEna[1] and PhyUtxEna[1] should be pull  
high when PHY Size is set to 2.  
3 = ClAv and En* for every 8 PHY addresses (support 16 ports total)  
(Ports 0-7 assigned to Clav0/Enb0*)  
(Ports 8-15 assigned to Clav1/Enb1*)  
3
2
1
0
0
0
0
0
Enable External HEC  
Checker  
1 = Bit 7 of the HEC Byte is a HEC error flag  
0 = Use the HEC Error checker within the IMA block  
Check ATMUTxAddr[4] and 0 = mask bits (don’t care)  
ATMURxAddr[4]  
1 = Check ATMUTxAddr[4] and TMURxAddr[4] for correct value  
Check ATMUTxAddr[3] and 0 = mask bits (don’t care)  
ATMURxAddr[3]  
1 = Check ATMUTxAddr[3] and ATMURxAddr[3] for correct value  
Check ATMUTxAddr[2] and 0 = mask bits (don’t care)  
ATMURxAddr[2]  
1 = Check ATMUTxAddr[2] and ATMURxAddr[2] for correct value  
2.4.6  
0x805—IMA_MEM_LOW_TEST (IMA Memory Test Address (Bits 0–7))  
Registers 0x805—0x808 are used to perform memory diagnostic tests on the internal or external differential delay  
SRAM.  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Memory Test Address  
This field contains the least significant bits of the memory test address for the selected memory  
component. Range: 0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
191  
Mindspeed Proprietary and Confidential  
Registers  
2.4.7  
0x806—IMA_MEM_HI_TEST (IMA Memory Test Address (Bits 8–15))  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Memory Test Address  
This field contains the middle significant bits of the memory test address for the selected  
memory component. Range: 0x00–0xFF  
2.4.8  
0x807—IMA_MEM_TEST_CTL (IMA Memory Test Control / Address MSBs)  
Bit  
Default  
Name  
Description  
7
0
Memory Test Address  
Bit 20  
This field contains the most significant bit of the memory test address for the selected memory  
component.  
6–4  
3–0  
0
0
RAM Test Access  
0 = no test selected, normal operation  
1 = SRAM Test  
2–7 = Reserved  
Memory Test Address  
Bits 19–16  
This field contains the most significant bits of the memory test address for the selected memory  
component. Range: 0x00–0x0F  
2.4.9  
0x808—IMA_MEM_TEST_DATA (IMA Memory Test Data)  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Memory Test Data  
This field contains the data to be written or read from the memory test address for the selected  
memory component. Range: 0x00–0xFF  
2.4.10  
0x809—IMA_LNK_DIAG_CTL (IMA Link Diagnostic Control Register)  
This register is used to specify a port number for observation of link differential delay and anomalies. The contents  
of this register are used to report the link information via registers 0x809–0x80B. Bit 5 of this register is read-only.  
Bit  
Default  
Name  
Description  
7
6
5
Reserved. Set to 0  
Reserved. Set to 0  
Link Delay Write  
Counter  
This field contains the most significant bit of the SRAM write counter for the diagnostic link  
(selected using the field below).  
4–0  
0x00  
Link Diagnostic PHY  
Address  
This field contains the PHY Cell Bus Address of the port for which a diagnostic measurement is  
to be performed. Range: 0x00–0x1F  
2.4.11  
0x80A—IMA_LNK_DIFF_DEL (IMA Link Differential Delay Write Counter)  
This register, along with bit 5 of address 0x809, reports the value of the SRAM write phase at the time when the  
read phase is 0. This phase information is used to calculate the link differential delay.  
®
28529-DSH-001-K  
Mindspeed Technologies  
192  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description  
7–0  
Link Delay Write  
Counter  
This field contains a snapshot of 8 of the least significant bits of the SRAM write counter for the  
diagnostic link (selected using address 0x809).  
All others (Range: 0x00–0xFF)  
Delay Window = 0 (see register 0x815): Value = Cell_count >> 1  
Delay Window = 1–3 (see register 0x815): Value = Cell_count  
Delay Window = 4 (see register 0x815): Value = Cell_count >> 2  
2.4.12  
0x80B—IMA_RCV_LNK_ANOMALIES (IMA Receive Link Anomalies)  
These anomalies are for the diagnostic link selected using address 0x809. The bits in this register are read-only  
and are cleared upon read.  
Bit  
Default  
Name  
Description  
7
ICP-ERR Anomaly  
1 = ICP-ERR anomaly was active sometime since the last time this register was read  
0 = ICP-ERR defect was inactive  
6
5
4
3
2
1
0
ICP-INV Anomaly—  
Unexpected IMA Label  
1 = Unexpected IMA Label condition of the ICP-INV anomaly was active sometime since the last  
time this register was read  
0 = Unexpected IMA Label condition was inactive  
ICP-INV Anomaly—  
Unexpected LID  
1 = Unexpected LID condition of the ICP-INV anomaly was active sometime since the last time  
this register was read  
0 = Unexpected LID condition was inactive  
ICP-INV Anomaly—  
Unexpected IMA ID  
1 = Unexpected IMA ID condition of the ICP-INV anomaly was active sometime since the last  
time this register was read  
0 = Unexpected IMA ID condition was inactive  
ICP-INV Anomaly—  
Unexpected M  
1 = Unexpected M condition of the ICP-INV anomaly was active sometime since the last time  
this register was read  
0 = Unexpected M condition was inactive  
ICP-INV Anomaly—  
Unexpected IMA Frame since the last time this register was read  
Number  
1 = Unexpected IMA Frame Number condition of the ICP-INV anomaly was active sometime  
0 = Unexpected IMA Frame Number condition was inactive  
ICP-INV Anomaly—  
Unexpected IMA Cell  
Offset  
1 = Unexpected IMA Cell Offset condition of the ICP-INV anomaly was active sometime since the  
last time this register was read  
0 = Unexpected IMA Cell Offset condition was inactive  
ICP-MIS Anomaly  
1 = ICP-MIS anomaly was active sometime since the last time this register was read  
0 = ICP-MIS defect was inactive  
®
28529-DSH-001-K  
Mindspeed Technologies  
193  
Mindspeed Proprietary and Confidential  
Registers  
2.4.13  
0x80C—IMA _PHY_LOOPBACK (IMA Phy Side UTOPIA Loopback)  
This register controls the UTOPIA loopbacks on the PHY side of the IMA block.  
Bit  
Default  
Name  
Description  
7-3  
2
Reserved. Set to 0  
Loopback Enable  
0 = PHY side loopback disabled.  
1 = PHY side loopback enabled per bits 1:0 of this register.  
1-0  
Loopback Type(s)  
0 = IMA System Loopback 0 -- uses TxClav signal(s) from PHY (TC or external)  
1 = IMA System Loopback 1 -- ignores TxClav signal(s) from PHY layer  
2 = IMA Line Loopback -- ignores TxClav signal(s) from PHY layer  
3 = Not Defined  
2.4.14  
0x80E—IMA_DIAG_XOR_BIT (IMA Diagnostic Bit)  
This register provides a single bit that can be used by a diagnostic test routine to verify the connectivity of the  
microprocessor address lines to the IMA device. This bit is read-only.  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
Address Diagnostic Bit Exclusive OR of address bits from previous IMA core Read access. The number of bits in the  
exclusive OR operation is 11.  
2.4.15  
0x80F—IMA_DIAG (IMA Diagnostic Register)  
This register provides an isolated 8 bit storage register that can be used by a diagnostic test routine to verify the  
connectivity of the microprocessor data lines to the IMA device.  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Data Diagnostic Register An 8 bit register that can be written and read by the processor. The register is not used within  
the IMA Block.  
®
28529-DSH-001-K  
Mindspeed Technologies  
194  
Mindspeed Proprietary and Confidential  
Registers  
2.4.16  
0x810—IMA_TIM_REF_MUX_CTL_ADDR (IMA Timing Reference  
Multiplexer Control Address)  
This register is used in conjunction with 0x811 to configure various timing elements within the IMA core. Register  
0x810 and 0x811 are an indirect register pair in that a particular timing element is selected using register 0x810  
and the configuration for that timing element is programmed using register 0x811.  
Bit  
Default  
Name  
Description  
7–6  
0
Multiplexer Type  
0 = Set timing reference for a Rx IMA Group  
1 = Set timing reference for a Tx IMA Group  
2 = Set timing source for Tx_TRL Outputs  
3 = Set the Clock Divisor for an IMA group  
5
0
Reserved. Set to 0.  
4–0  
Multiplexer ID  
For Multiplexer Type = 0, Multiplexer Type = 1, and Multiplexer Type = 3:  
M28525: 0–0xF: IMA Group 1–16  
M28529: 0–0x1F: IMA Group 1–32  
For Multiplexer Type = 2:  
0–1: Tx_TRL[0]–Tx_TRL[1] output  
®
28529-DSH-001-K  
Mindspeed Technologies  
195  
Mindspeed Proprietary and Confidential  
Registers  
2.4.17  
0x811—IMA_TIM_REF_MUX_CTL_DATA (IMA Timing Reference  
Multiplexer Control Data)  
Bit  
Default  
Name  
Description  
7
6
Reserved. Set to 0.  
Reserved. Set to 0.  
For Multiplexer Type 0 and 1  
5–0  
5–0  
0x00  
0x00  
Timing Source  
Timing Source  
0x00–0x1F: Select timing from a Receive Port (see register 0x816)  
M28525: 0–0xF: Port 0–15  
M28529: 0–0x1F: Port 0–31  
0x20: Use IMA_SysClk/24 or DSL generator output as source (see register 0x816)  
0x21: Use IMA_RefClk as source  
For Multiplexer Type 2  
0x00–0x1F: Select timing from a Receive Port (see register 0x816)  
M28525: 0–0xF: Port 0–15  
M28529: 0–0x1F: Port 0–31  
0x20: IMA_SysClk/24  
0x21: IMA_RefClk  
0x22: 8 kHz  
For Multiplexer Type 3  
5
4
Reserved. Set to 0.  
Reserved. Set to 0.  
3–0  
0x0  
Clock Divisor  
This field contains the clock divider multiplier for the group. The IMA group number is set by  
writing to the Multiplexer ID field in address 0x810.  
0 = Based on Link Type field in address 0x002  
1 = 1/1  
2 = 192/193  
3 = 15/16  
®
28529-DSH-001-K  
Mindspeed Technologies  
196  
Mindspeed Proprietary and Confidential  
Registers  
2.4.18  
0x812—IMA_RX_PERSIST_CONFIG (IMA Receive Persistence  
Configuration)  
Bit  
Default  
Name  
Description  
7
6
0
0
Reserved. Set to 0.  
(1)  
Alpha Value  
0: α = 1  
1: α = 2  
(2)  
5–3  
2–0  
0
0
Beta Value  
0: β = 1  
1: β = 2  
2: β = 3  
3: β = 4  
4: β = 5  
(3)  
Gamma Value  
0: γ = 1  
1: γ = 2  
2: γ = 3  
3: γ = 4  
4: γ = 5  
Footnote:  
(1) The Alpha Value is the number of consecutive invalid ICP cells needed for the link to leave the IMA Sync state.  
(2) The Beta Value is the number of consecutive errored ICP cells needed for the link to leave the IMA Sync state.  
(3) The Gamma Value is the number of consecutive valid ICP cells needed for the link to enter the IMA Sync state.  
2.4.19  
0x813—IMA_ATM_UTOPIA_BUS_CTL (IMA ATM UTOPIA Bus Control)  
This register configures the operation of the ATM side UTOPIA bus and the sample time of PhyUTxClAv for an IMA  
group.  
Bit  
Default  
Name  
Description  
7
6
0
Reserved. Set to 0.  
ATM Address Mode  
0 = UTOPIA Level 2 (multiple addresses)  
1 = UTOPIA Level 1 (single fixed address, no address latching)  
5
4
0
0
Reserved. Set to 0.  
ATMURxClAv Mode  
0 = ATMURxClAv is set active for selected channel during cell transfer  
1 = ATMURxClAv is set inactive for selected channel during cell transfer  
3
0
ATMUTxClAv Last 4  
Bytes/Words Mode  
0 = ATMUTxClAv is forced inactive/active (based on the state of bit 2) during last 4 bytes/words  
for selected channel during cell transfer  
1 = ATMUTxClAv reflects true cell available status during last 4 bytes/words for selected channel  
during cell transfer  
2
1
0
0
0
0
ATMUTxClAv Mode  
0 = ATMUTxClAv is set inactive for selected channel during cell transfer  
1 = ATMUTxClAv is set active for selected channel during cell transfer  
ClAv Three-state Disable 0 = ATMURxClAv and ATMUTxClAv threestate when not selected  
1 = ATMURxClAv and ATMUTxClAv do not threestate  
PHYUTxClAv Sample  
Time  
0 = For an IMA group, sample PhyUTxClAv during an ICP cell to determine SICP rate  
1 = For an IMA group, delay sampling PhyUTxClAv until >5 payload byte periods after an ICP  
transfer  
®
28529-DSH-001-K  
Mindspeed Technologies  
197  
Mindspeed Proprietary and Confidential  
Registers  
2.4.20  
0x814—IMA_DIFF_DELAY_ADDR (IMA Differential Delay Control Address)  
This register is used in conjunction with 0x815 to configure the differential delay operation of the IMA core. Register  
0x814 and 0x815 are an indirect register pair in that a particular IMA group is selected using register 0x814 and the  
configuration for that IMA group is programmed using register 0x815.  
Bit  
Default  
Name  
Description  
7
6
0
Reserved. Set to 0.  
Control Type  
0 = Set Delay Threshold for an IMA group  
1 = Set Delay Window for an IMA group  
5
Reserved. Set to 0.  
4–0  
0x0  
Group Number  
M28525: 0–0xF: IMA Group 1–16  
M28529: 0–0x1F: IMA Group 1–32  
2.4.21  
0x815—IMA_DIFF_DELAY_DATA (IMA Differential Delay Control Data)  
Bit  
Default  
Name  
Description  
For Control Type = 0  
7–0  
0x00  
Differential Delay  
Threshold  
This field contains the cell offset that corresponds to differential delay threshold setting for the  
group.  
Delay Window = 0, 5: Value = 255–(Cell_count >> 1)  
Delay Window = 1–3, 6–7: Value = 255–Cell_count  
Delay Window = 4: Value = 255–(Cell_count >> 2)  
For Control Type = 1  
7
6
Reserved. Set to 0.  
Reserved. Set to 0.  
Reserved. Set to 0.  
Reserved. Set to 0.  
Reserved. Set to 0.  
5
4
3
2–0  
Delay Window  
This field contains the number of IMA frames (assuming M=128) that are examined when  
setting the differential delay buffer. This field is set based on the facility payload rate.  
0 = 8 frames (1024 cells), for payload rates 1024 kbps  
1 = 4 frames (512 cells), for 1024 kbps > payload rates 512 kbps  
2 = 2 frames (256 cells), for 512 kbps > payload rates 256 kbps  
3 = 1 frame (128 cells), for payload rates < 256 kbps  
4 = 16 frames (2048 cells), for payload rates 1024 kbps  
5 = 8 frames (1024 cells), for 1024 kbps > payload rates 512 kbps  
6 = 4 frames (512 cells), for 512 kbps > payload rates 256 kbps  
7 = 2 frame (256 cells), for payload rates < 256 kbps  
®
28529-DSH-001-K  
Mindspeed Technologies  
198  
Mindspeed Proprietary and Confidential  
Registers  
2.4.22  
0x816—IMA_DSL_CLOCK_GEN_ADDR (IMA DSL Clock Generator Control)  
This register is used in conjunction with 0x817 to configure the operation of the DSL Clock Generator in the IMA  
core. Register 0x816 and 0x817 are an indirect register pair in that a particular clock generator element is selected  
using register 0x816 and the configuration for that element is programmed using register 0x817.  
The overall operation of the clock generators are governed by the following equations:  
Prescaler Factor = Prescaler Numerator / (Prescaler Terminal Count + 1)  
Intermediate Frequency = Reference Clock Frequency * Prescaler Factor  
Reference Denominator = 257 + Reference Clock Divisor  
8 kHz = Intermediate Frequency / (Reference Denominator)  
Link Payload Rate = 8 kbps * (Multiplier Factor) * (Rate Multiplier)  
A further constraint is:  
(Maximum Link Payload Rate) / (Rate Multiplier) Intermediate Frequency IMA_SysClk/16  
In a typical G.shdsl application, Intermediate Frequency is set to 2.56 MHz, Rate Multiplier = 1, and the Reference  
Denominator is set to 320. Other settings are possible as long as the above equations and constraints are met.  
Bit  
Default  
Name  
Description  
7–5  
0
Control Type  
0 = Basic Setup  
1 = Pre-scaler and Reference Divisor Setup  
2 = Tx IMA Group Factor LSBs  
3 = Tx IMA Group Factor MSB  
4 = Rx IMA Group Factor LSBs  
5 = Rx IMA Group Factor MSB  
6 = Rx Timing Synthesizer Factor LSBs  
7 = Rx Timing Synthesizer Factor MSB  
For Control Type = 0  
Reserved. Set to 0.  
4–0  
For Control Type = 1  
Reserved. Set to 0.  
4-2  
1-0  
Sub Type  
0 = Pre-scaler Terminal Count  
1 = Pre-scalar Numerator  
2 = Reference Divisor  
3 = Reserved  
For Control Type = 2, 3, 4, 5  
4–0  
4–0  
0x0  
Group Number  
Port Number  
M28525: 0–0xF: IMA Group 1–16  
M28529: 0–0x1F: IMA Group 1–32  
For Control Type = 6, 7  
0x00  
M28525: 0–0xF: Port 0–15  
M28529: 0–0x1F: Port 0–31  
®
28529-DSH-001-K  
Mindspeed Technologies  
199  
Mindspeed Proprietary and Confidential  
Registers  
2.4.23  
0x817—IMA_DSL_CLOCK_GEN_DATA (IMA_DSL Clock Generator Data)  
This register is used in conjunction with 0x816 to configure the operation of the DSL Clock Generator in the IMA  
core. Register 0x816 and 0x817 are an indirect register pair in that a particular clock generator element is selected  
using register 0x816 and the configuration for that element is programmed using register 0x817.  
Bit  
Default  
Name  
Description  
For Control Type = 0  
7
6
0
Reserved. Set to 0.  
EnRxSyn  
Enable Rx Timing Synthesizers  
0 = Use SPRxClk inputs  
1 = Use synthesizers instead of SPRxClk inputs  
5
0
DSLClkGen  
Substitute DSL clock generator  
0 = Use IMA_SysClk/24 in IMA group clock and Tx_TRL selectors  
1 = Use DSL Clock generator outputs when Timing Source is set to 0x20 in register  
0x811.  
4
0
IMA_ClkSel  
0 = Use IMA_SysClk as input to DSL Clock Generators  
1 = Use IMA_RefClk as input to DSL Clock Generators  
3–0  
Reserved. Set to 0.  
For Control Type = 1/Sub-type = 0  
7–0  
0x00  
Pre-scaler Terminal  
Count  
This field contains the terminal count of the pre-scaler clock divider. The pre-scaler denominator  
is the value of this field plus 1.  
For Control Type = 1/Sub-type = 1  
This field contains the numerator for the pre-scaler.  
For Control Type = 1/Sub-type = 2  
7–0  
7-0  
0x00  
0x00  
Pre-scaler Numerator  
Reference Clock Divisor This field contains 8 of the 9 bits of the terminal count for the reference clock divisor. The  
reference clock divisor counts from 0 to the terminal count which is given by the value of this  
field plus 257. As an example if the value of this register is 63 decimal, then the reference clock  
divisor will be 320.  
For Control Type = 2, 4  
7–0  
0x00  
Group Clock Multiplier  
Factor (lsbs)  
This register contains the 8 lsbs of the payload bandwidth for the ports used in the IMA group.  
The contents of this register are multiplied by 8kbps and the Rate Multiplier in order to obtain  
the bandwidth.  
For Control Type = 3, 5  
7-6  
5-4  
0
Reserved. Set to 0.  
Rate Multiplier  
Scale factor used to generate link rates > Intermediate Frequency  
0 = Multiply rate by 1 (typically used by link rates < 3.072 Mbps)  
1 = Multiply rate by 2 (typically used by 3.072 < link rates < 6.144 Mbps)  
2 = Multiply rate by 4 (typically used by link rates > 6.144 Mbps)  
3 = Not defined.  
3-1  
0
0
Reserved. Set to 0.  
Group Clock Multiplier  
Factor (msb)  
This register contains the msb of the payload bandwidth for the ports used in the IMA group.  
The contents of this register are multiplied by 2048kbps and the Rate Multiplier in order to  
obtain the bandwidth.  
®
28529-DSH-001-K  
Mindspeed Technologies  
200  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description (Continued)  
For Control Type = 6  
7–0  
0x00  
Port Clock Multiplier  
Factor (lsbs)  
This register contains the 8 lsbs of the payload bandwidth for the specific port of the Rx Timing  
clock synthesizer. The contents of this register are multiplied by 8kbps and the Rate Multiplier in  
order to obtain the bandwidth.  
For Control Type = 7  
7–6  
5-4  
0
Reserved. Set to 0.  
Rate Multiplier  
Scale factor used to generate link rates > Intermediate Frequency  
0 = Multiply rate by 1 (typically used by link rates < 3.072 Mbps)  
1 = Multiply rate by 2 (typically used by 3.072 < link rates < 6.144 Mbps)  
2 = Multiply rate by 4 (typically used by link rates > 6.144 Mbps)  
3 = Not defined.  
3–1  
0
0
Reserved. Set to 0.  
Port Clock Multiplier  
Factor (msb)  
This register contains the msb of the payload bandwidth for the specific port of the Rx Timing  
clock synthesizer. The contents of this register are multiplied by 2048kbps and the Rate  
Multiplier in order to obtain the bandwidth.  
2.4.24  
0x818—IMA_RX_TRANS_TABLE (IMA Receive Translation Table Address)  
This register is used in conjunction with 0x819 for configure the translation between the ATM side UTOPIA  
addresses and the internal channels (bypass ports and IMA groups) associated with the IMA core. Register 0x818  
and 0x819 are an indirect register pair in that a address is selected using register 0x818 and the configuration for  
that address is programmed using register 0x819.  
Bit  
Default  
Name  
Description  
7
0
Translation Type  
0 = the value in bits 5–0 enables ATM address –> IMA internal channel translations  
1 = the value in bits 5–0 enables IMA internal channel –> ATM address translations  
6
Don’t care. Ignore.  
For Translation Type = 0  
Don’t care. Ignore.  
5
4–0  
0x00  
ATM UTOPIA Address  
For Type 0, this field contains the ATM Side UTOPIA address.  
Range: 0x00–0x1F  
For Translation Type = 1  
5–0  
0x00  
Internal IMA Channel  
For Type 1, this field contains the IMA internal channel address.  
Range 0x00–0x1F: Receive Port  
M28525: 0–0xF: Port 0–15  
M28529: 0–0x1F: Port 0–31  
Range 0x20–0x3F: IMA Group  
M28525: 0x20–0x2F: IMA Group 1–16  
M28529: 0x20–0x3F: IMA Group 1–32  
®
28529-DSH-001-K  
Mindspeed Technologies  
201  
Mindspeed Proprietary and Confidential  
Registers  
2.4.25  
0x819—IMA_RX_ATM_TRANS_TABLE (IMA Receive ATM Translation  
Table Internal Channel)  
This register is used in conjunction with 0x818 for configure the translation between the ATM side UTOPIA  
addresses and the internal channels (bypass ports and IMA groups) associated with the IMA core. Register 0x818  
and 0x819 are an indirect register pair in that an address is selected using register 0x818 and the configuration for  
that address is programmed using register 0x819.  
Bit  
Default  
Name  
Description  
For Translation Type = 0  
7
6
1
Don’t care. Ignore.  
Internal IMA Channel  
1=ATM address is not assigned to this device  
0=ATM address is assigned to this device  
5-0  
7
0
Don’t care. Ignore.  
For Translation Type = 1  
Channel Active  
1 = Internal Channel Active  
0 = Internal Channel Inactive  
6
5
Don’t care. Ignore.  
Don’t care. Ignore.  
4–0  
0x00  
ATM UTOPIA Address  
This field contains the mapping for the Internal IMA channel set in register 0x818.  
Range: 0x00–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
202  
Mindspeed Proprietary and Confidential  
Registers  
2.4.26  
0x81B—IMA_TX_TRANS_TABLE (IMA Transmit Translation Table Address)  
This register is used in conjunction with 0x81C for configure the translation between the ATM side UTOPIA  
addresses and the internal channels (bypass ports and IMA groups) associated with the IMA core. Register 0x81B  
and 0x81C are an indirect register pair in that a address is selected using register 0x81B and the configuration for  
that address is programmed using register 0x81C.  
Bit  
Default  
Name  
Description  
7
0
Translation Type  
0 = the value in bits 5–0 enables ATM address –> IMA internal channel translations  
1 = the value in bits 5–0 enables IMA internal channel –> ATM address translations  
6
Don’t care. Ignore.  
For Translation Type = 0  
Don’t care. Ignore.  
5
4–0  
0x00  
ATM UTOPIA Address  
For Type 0, this field contains the ATM Side UTOPIA address.  
Range: 0x00–0x1F  
For Translation Type = 1  
5–0  
0x00  
Internal IMA Channel  
For Type 1, this field contains the IMA internal channel address.  
Range 0x00–0x1F: Transmit Port  
M28525: 0–0xF: Port 0–15  
M28529: 0–0x1F: Port 0–31  
Range 0x20–0x3F: IMA Group  
M28525: 0x20–0x2F: IMA Group 1–16  
M28529: 0x20–0x3F: IMA Group 1–32  
2.4.27  
0x81C—IMA_TX_ATM_TRANS_TABLE (Transmit ATM Translation Table  
Internal Channel)  
This register is used in conjunction with 0x81B for configure the translation between the ATM side UTOPIA  
addresses and the internal channels (bypass ports and IMA groups) associated with the IMA core. Register 0x81B  
and 0x81C are an indirect register pair in that a address is selected using register 0x81B and the configuration for  
that address is programmed using register 0x81C.  
Bit  
Default  
Name  
Description  
For Translation Type = 0  
7
6
1
Don’t care. Ignore.  
Internal IMA Channel  
1=ATM address is not assigned to this device  
0=ATM address is assigned to this device  
5-0  
Don’t care. Ignore  
®
28529-DSH-001-K  
Mindspeed Technologies  
203  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description  
For Translation Type = 1  
7
0
Channel Active  
1 = Internal Channel Active  
0 = Internal Channel Inactive  
6
5
Don’t care. Ignore.  
Don’t care. Ignore.  
4–0  
0x00  
ATM UTOPIA Address  
This field contains the mapping for the Internal IMA channel set in register 0x81B.  
Range: 0x00–0x1F  
2.5  
IMA Group  
The IMA Group layer contains configuration and status information that is associated with IMA groups.  
2.5.1  
0x81F—IMA_GRP_1TO4_SEM (Group Table Control I)  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 4  
addresses 0x8DC–0x8DF  
addresses 0x8D8–0x8DB  
addresses 0x8D4–0x8D7  
addresses 0x8D0–0x8D3  
addresses 0x838–0x83F  
addresses 0x830–0x837  
addresses 0x828–0x82F  
addresses 0x820–0x827  
Update Enable for Receive group 3  
Update Enable for Receive group 2  
Update Enable for Receive group 1  
Update Enable for Transmit group 4  
Update Enable for Transmit group 3  
Update Enable for Transmit group 2  
Update Enable for Transmit group 1  
2.5.2  
0x91F—IMA_GRP_5TO8_SEM (Group Table Control II)  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
204  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 8  
Update Enable for Receive group 7  
Update Enable for Receive group 6  
Update Enable for Receive group 5  
Update Enable for Transmit group 8  
Update Enable for Transmit group 7  
Update Enable for Transmit group 6  
Update Enable for Transmit group 5  
addresses 0x9DC–0x9DF  
addresses 0x9D8–0x9DB  
addresses 0x9D4–0x9D7  
addresses 0x9D0–0x9D3  
addresses 0x938–0x93F  
addresses 0x930–0x937  
addresses 0x928–0x92F  
addresses 0x920–0x927  
2.5.3  
0xA1F—IMA_GRP_9TO12_SEM (Group Table Control III)  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 12  
Update Enable for Receive group 11  
Update Enable for Receive group 10  
Update Enable for Receive group 9  
Update Enable for Transmit group 12  
Update Enable for Transmit group 11  
Update Enable for Transmit group 10  
Update Enable for Transmit group 9  
addresses 0xADC–0xADF  
addresses 0xAD8–0xADB  
addresses 0xAD4–0xAD7  
addresses 0xAD0–0xAD3  
addresses 0xA38–0xA3F  
addresses 0xA30–0xA37  
addresses 0xA28–0xA2F  
addresses 0xA20–0xA27  
®
28529-DSH-001-K  
Mindspeed Technologies  
205  
Mindspeed Proprietary and Confidential  
Registers  
2.5.4  
0xB1F—IMA_GRP_13TO16_SEM (Group Table Control IV)  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 16  
Update Enable for Receive group 15  
Update Enable for Receive group 14  
Update Enable for Receive group 13  
Update Enable for Transmit group 16  
Update Enable for Transmit group 15  
Update Enable for Transmit group 14  
Update Enable for Transmit group 13  
addresses 0xBDC–0xBDF  
addresses 0xBD8–0xBDB  
addresses 0xBD4–0xBD7  
addresses 0xBD0–0xBD3  
addresses 0xB38–0xB3F  
addresses 0xB30–0xB37  
addresses 0xB28–0xB2F  
addresses 0xB20–0xB27  
2.5.5  
0xC1F—IMA_GRP_17TO20_SEM (Group Table Control V (M28529 Only))  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 20  
Update Enable for Receive group 19  
Update Enable for Receive group 18  
Update Enable for Receive group 17  
Update Enable for Transmit group 20  
Update Enable for Transmit group 19  
Update Enable for Transmit group 18  
Update Enable for Transmit group 17  
addresses 0xC5C–0xC5F (Not defined for M28525)  
addresses 0xC58–0xC5B (Not defined for M28525)  
addresses 0xC54–0xC57 (Not defined for M28525)  
addresses 0xC50–0xC53 (Not defined for M28525)  
addresses 0xC38–0xC3F (Not defined for M28525)  
addresses 0xC30–0xC37 (Not defined for M28525)  
addresses 0xC28–0xC2F (Not defined for M28525)  
addresses 0xC20–0xC27 (Not defined for M28525)  
®
28529-DSH-001-K  
Mindspeed Technologies  
206  
Mindspeed Proprietary and Confidential  
Registers  
2.5.6  
0xC9F—IMA_GRP_21TO24_SEM (Group Table Control V (M28529 Only))  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 24  
Update Enable for Receive group 23  
Update Enable for Receive group 22  
Update Enable for Receive group 21  
Update Enable for Transmit group 24  
Update Enable for Transmit group 23  
Update Enable for Transmit group 22  
Update Enable for Transmit group 21  
addresses 0xCDC–0xCDF (Not defined for M28525)  
addresses 0xCD8–0xCDB (Not defined for M28525)  
addresses 0xCD4–0xCD7 (Not defined for M28525)  
addresses 0xCD0–0xCD3 (Not defined for M28525)  
addresses 0xCB8–0xCBF (Not defined for M28525)  
addresses 0xCB0–0xCB7 (Not defined for M28525)  
addresses 0xCA8–0xCAF (Not defined for M28525)  
addresses 0xCA0–0xCA7 (Not defined for M28525)  
2.5.7  
0xD1F—IMA_GRP_25TO28_SEM (Group Table Control V (M28529 Only))  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 28  
Update Enable for Receive group 27  
Update Enable for Receive group 26  
Update Enable for Receive group 25  
Update Enable for Transmit group 28  
Update Enable for Transmit group 27  
Update Enable for Transmit group 26  
Update Enable for Transmit group 25  
addresses 0xD5C–0xD5F (Not defined for M28525)  
addresses 0xD58–0xD5B (Not defined for M28525)  
addresses 0xD54–0xD57 (Not defined for M28525)  
addresses 0xD50–0xD53 (Not defined for M28525)  
addresses 0xD38–0xD3F (Not defined for M28525)  
addresses 0xD30–0xD37 (Not defined for M28525)  
addresses 0xD28–0xD2F (Not defined for M28525)  
addresses 0xD20–0xD27 (Not defined for M28525)  
®
28529-DSH-001-K  
Mindspeed Technologies  
207  
Mindspeed Proprietary and Confidential  
Registers  
2.5.8  
0xD9F—IMA_GRP_29TO32_SEM (Group Table Control V (M28529 Only))  
For the following bits, 1 = the group table is being updated, 0 = the group table is not being updated. The update  
enable must be set to 1 prior to writing the group table. All elements of the group table must be re-written. After  
writing to all 8 elements, the update enable is reset to 0. The group tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Update Enable for Receive group 32  
Update Enable for Receive group 31  
Update Enable for Receive group 30  
Update Enable for Receive group 29  
Update Enable for Transmit group 32  
Update Enable for Transmit group 31  
Update Enable for Transmit group 30  
Update Enable for Transmit group 29  
addresses 0xDDC–0xDDF (Not defined for M28525)  
addresses 0xDD8–0xDDB (Not defined for M28525)  
addresses 0xDD4–0xDD7 (Not defined for M28525)  
addresses 0xDD0–0xDD3 (Not defined for M28525)  
addresses 0xDB8–0xDBF (Not defined for M28525)  
addresses 0xDB0–0xDB7 (Not defined for M28525)  
addresses 0xDA8–0xDAF (Not defined for M28525)  
addresses 0xDA0–0xDA7 (Not defined for M28525)  
2.5.9  
IMA_TX_GRPn_RX_TEST_PATTERN (Transmit Group Rx Test Pattern)  
This register contains the value of the Rx Test Pattern field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x820 0x828 0x830 0x838 0x920 0x928 0x930 0x938 0xA20 0xA28 0xA30 0xA38 0xB20 0xB28 0xB30 0xB38  
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC20 0xC28 0xC30 0xC38 0xCA  
0
0xCA  
8
0xCB  
0
0xCB  
8
0xD2  
0
0xD2  
8
0xD3  
0
0xD3  
8
0xDA  
0
0xDA  
8
0xDB  
0
0xDB  
8
M28525 -- Not Applicable  
M28529  
®
28529-DSH-001-K  
Mindspeed Technologies  
208  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Rx Test Pattern  
In support of the Test Pattern Procedure, this field is set equal to the value acquired from the  
Receive side test link. See address 0x8E7. When the Test Pattern Procedure is inactive, the Rx  
Test Pattern field should be set to 0xFF.  
Range: 0x00–0xFF  
2.5.10  
IMA_TX_GRPn_CTL (Transmit Group Control Register)  
This register, in conjunction with the IMA_TX_GRPn_FIRST_PHY_ADDR register, controls the operation of the  
Transmit IMA group.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x821 0x829 0x831 0x839 0x921 0x929 0x931 0x939 0xA21 0xA29 0xA31 0xA39 0xB21 0xB29 0xB31 0xB39  
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC21 0xC29 0xC31 0xC39 0xCA  
1
0xCA  
9
0xCB  
1
0xCB  
9
0xD2  
1
0xD2  
9
0xD3  
1
0xD3  
9
0xDA  
1
0xDA  
9
0xDB  
1
0xDB  
9
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
0
Group Enable  
1 = Group is established and a round-robin is created  
0 = Group is not established  
6
0
SW Timeout Expired  
1 = certain LSM transitions (Unusable Usable, Usable Active) are allowed  
0 = certain LSM transitions (Unusable Usable, Usable Active) are blocked  
5
Reserved. Set to 0.  
4–0  
0x0  
Group Size  
Sets the number of configured links within group.  
Range: 0x0–0x1F (1–32 links in group)  
®
28529-DSH-001-K  
Mindspeed Technologies  
209  
Mindspeed Proprietary and Confidential  
Registers  
2.5.11  
IMA_TX_GRPn_FIRST_PHY_ADDR (Transmit First PHY Address)  
This register, in conjunction with the IMA_TX_GRPn_CTL register, controls the operation of the Transmit IMA  
group.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x82  
2
0x82A  
0x83  
2
0x83A  
0x92  
2
0x92A  
0x93  
2
0x93A 0xA2 0xA2A 0xA3 0xA3A 0xB2 0xB2A 0xB3 0xB3A  
2
2
2
2
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC22 0xC2 0xC32 0xC3  
0xCA  
2
0xCA  
A
0xCB  
2
0xCB  
A
0xD2  
2
0xD2  
A
0xD3  
2
0xD3  
A
0xDA  
2
0xDA  
A
0xDB  
2
0xDB  
A
A
A
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
6
0
Reserved. Set to 0.  
Group Inhibit  
1 = Group is inhibited from carrying traffic  
0 = Group is not inhibited  
5
0x0  
Tx IMA Version  
IMA OAM Label value  
1 = IMA v1.1  
0 = IMA v1.0  
4–0  
0x00  
Link PHY Address  
This field contains the PHY port address of the Transmit link with the lowest LID in the group.  
M28525: Range: 0–0xF  
M28529: Range: 0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
210  
Mindspeed Proprietary and Confidential  
Registers  
2.5.12  
IMA_TX_GRPn_ID (Transmit Group ID)  
This register contains the value of the IMA Group ID field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x82 0x82B 0x83 0x83B 0x923 0x92B 0x933 0x93B 0xA2 0xA2B 0xA3 0xA3B 0xB2 0xB2B 0xB3 0xB3B  
3
3
3
3
3
3
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC23 0xC2 0xC33 0xC3  
0xCA  
3
0xCA  
B
0xCB  
3
0xCB  
B
0xD2  
3
0xD2  
B
0xD3  
3
0xD3  
B
0xDA  
3
0xDA  
B
0xDB  
3
0xDB  
B
B
B
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Tx Group ID  
This field contains the Transmit Group ID sent in the Transmit ICP cells of all links within the  
group. Range: 0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
211  
Mindspeed Proprietary and Confidential  
Registers  
2.5.13  
IMA_TX_GRPn_STAT_CTL (Transmit Group Status and Control)  
This register contains the value of the Group Status and Control field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x824 0x82C 0x834 0x83C 0x924 0x92C 0x934 0x93C 0xA2 0xA2C 0xA3 0xA3C 0xB2 0xB2C 0xB3 0xB3C  
4
4
4
4
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC2  
4
0xC2  
C
0xC3  
4
0xC3  
C
0xCA  
4
0xCA  
C
0xCB  
4
0xCB  
C
0xD2  
4
0xD2  
C
0xD3  
4
0xD3 0xDA 0xDA 0xDB 0xDB  
C
4
C
4
C
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–4  
0x00  
Group State  
0 = Start-up  
1 = Start-up-Ack  
2 = Config-Abort–Unsupported M  
3 = Config-Abort–Incompatible Symmetry  
4 = Config-Abort–Unsupported IMA Version  
5–7 = Reserved for other Config-Abort states  
8 = Insufficient Links  
9 = Blocked  
0xA = Operational  
0xB–F = reserved  
3–2  
1–0  
0
0
Group Symmetry  
Frame Length (M)  
0 = Symmetrical configuration and operation  
1 = Symmetrical configuration and asymmetrical operation  
2 = Asymmetrical configuration and operation  
3 = Alternate symmetrical configuration and operation  
0 = M is 32  
1 = M is 64  
2 = M is 128  
3 = M is 256  
®
28529-DSH-001-K  
Mindspeed Technologies  
212  
Mindspeed Proprietary and Confidential  
Registers  
2.5.14  
IMA_TX_GRPn_TIMING_INFO (Transmit Timing Information)  
This register contains the value of the Transmit Timing Information field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x82 0x82D 0x83 0x83D 0x92 0x92D 0x93 0x93D 0xA2 0xA2D 0xA3 0xA3D 0xB2 0xB2D 0xB3 0xB3D  
5
5
5
5
5
5
5
5
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC25 0xC2 0xC35 0xC3  
0xCA  
5
0xCA  
D
0xCB  
5
0xCB  
D
0xD2  
5
0xD2  
D
0xD3  
5
0xD3  
D
0xDA  
5
0xDA  
D
0xDB  
5
0xDB  
D
D
D
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
6
5
0
0
0
Unused: Set to 0.  
Unused: Set to 0.  
Tx Clock Mode  
0 = Independent Transmit Clock (ITC)  
1 = Common Transmit Clock (CTC)  
4–0  
0
Timing Reference Link This field contains the LID of the Transmit TRL. Range: 0x0–0x1F  
ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
213  
Mindspeed Proprietary and Confidential  
Registers  
2.5.15  
IMA_TX_GRPn_TEST_CTL (Transmit Test Control)  
This register contains the value of the Tx Test Control field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x826 0x82E 0x836 0x83E 0x926 0x92E 0x936 0x93E 0xA2 0xA2E 0xA3 0xA3E 0xB2 0xB2E 0xB3 0xB3E  
6
6
6
6
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC26 0xC2E 0xC36 0xC3E 0xCA  
6
0xCA  
E
0xCB  
6
0xCB  
E
0xD2  
6
0xD2  
E
0xD3  
6
0xD3  
E
0xDA  
6
0xDA  
E
0xDB  
6
0xDB  
E
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
6
5
0
0
0
Unused: Set to 0.  
Unused: Set to 0.  
Test Link Command  
Test Link ID  
0 = Inactive  
1 = Active  
4–0  
0
This field contains the LID of the Transmit Test Link. Range: 0x0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
214  
Mindspeed Proprietary and Confidential  
Registers  
2.5.16  
IMA_TX_GRPn_TX_TEST_PATTERN (Transmit Group Tx Test Pattern)  
This register contains the value of the Tx Test Pattern field for the transmitted ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x827 0x82F 0x837 0x83F 0x927 0x92F 0x937 0x93F 0xA27 0xA2F 0xA37 0xA3F 0xB27 0xB2F 0xB37 0xB3F  
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC27 0xC2F 0xC37 0xC3F 0xCA 0xCAF 0xCB 0xCBF 0xD2 0xD2F 0xD3 0xD3F 0xDA  
0xDA  
F
0xDB  
7
0xDB  
F
7
7
7
M28525 -- Not Applicable  
M28529  
7
7
Bit  
Default  
Name  
Description  
7–0  
0x0  
Tx Test Pattern  
If the Test Link Command is set to Active, the Tx Test Pattern is sent in the ICP cell of the  
Transmit Test Link. For other links and when the Test Link Command is Inactive, the Tx Test  
Pattern in the Transmit ICP cells will automatically be set to 0x00. Range: 0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
215  
Mindspeed Proprietary and Confidential  
Registers  
2.5.17  
IMA_TX_ATMn_CELL_COUNT_LSB (Transmit Cell Count LSBs)  
This register contains the least significant bits of a 16 bit count of the number of ATM layer cells transmitted over  
the Transmit ATM side UTOPIA bus for a particular UTOPIA address. The register is read only.  
Tx UTOPIA Address 0 - 15  
n=0  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15  
0x840 0x842 0x844 0x846 0x940 0x942 0x944 0x946 0xA40 0xA42 0xA44 0xA46 0xB40 0xB42 0xB44 0xB46  
M28525  
M28529  
Tx UTOPIA Address 16–31  
n=16 n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31  
0xC40 0xC42 0xC44 0xC46 0xCC  
0
0xCC  
2
0xCC  
4
0xCC  
6
0xD4  
0
0xD4  
2
0xD4  
4
0xD4  
6
0xDC  
0
0xDC  
2
0xDC  
4
0xDC  
6
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7-0  
0
Transmit Cell Count LSBs  
Transmit Cell Count: This field contains the least significant bits of a 16-bit count of the  
number of ATM layer cells transmitted over the specific UTOPIA address. A write  
operation with data = 0x01 to the first address (0x840 for Address 0, 0x842 for Address  
1, etc.) transfers the state of all 16 bits of the counter to registers that are accessible to  
the microprocessor bus and clears the state of the counter, The first address should be  
read first. The second address (0x841 for Address 0, 0x843 for Address 1, etc.) is read  
next. A write operation with data = 0x00 to the first address of each group returns back to  
the raw counters.  
®
28529-DSH-001-K  
Mindspeed Technologies  
216  
Mindspeed Proprietary and Confidential  
Registers  
2.5.18  
IMA_TX_ATMn_CELL_COUNT_MSB (Transmit Cell Count MSBs)  
This register contains the most significant bits of a 16 bit count of the number of ATM layer cells transmitted over  
the Transmit ATM side UTOPIA bus for a particular UTOPIA address. The register is read only.  
Tx UTOPIA Address 0 - 15  
n=0  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15  
0x841 0x843 0x845 0x847 0x941 0x943 0x945 0x947 0xA41 0xA43 0xA45 0xA47 0xB41 0xB43 0xB45 0xB47  
M28525  
M28529  
Tx UTOPIA Address 16–31  
n=16 n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31  
0xC41 0xC43 0xC45 0xC47 0xCC  
1
0xCC  
3
0xCC  
5
0xCC  
7
0xD4  
1
0xD4  
3
0xD4  
5
0xD4  
7
0xDC  
1
0xDC  
3
0xDC  
5
0xDC  
7
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7-0  
0
Transmit Cell Count MSBs  
Transmit Cell Count: This field contains the most significant bits of a 16 bit count of the  
number of ATM layer cells transmitted over the specific UTOPIA address. A write  
operation with data = 0x01 to the first address (0x840 for Address 0, 0x842 for Address  
1, etc.) transfers the state of all 16 bits of the counter to registers that are accessible to  
the microprocessor bus and clears the counter. A read operation should then be  
performed to read the previous state of the counter. The first address should be read  
first. The second address (0x841 for Address 0, 0x843 for Address 1, etc.) is read next. A  
write operation with data = 0x00 to the first address of each group returns back to the  
raw counters.  
®
28529-DSH-001-K  
Mindspeed Technologies  
217  
Mindspeed Proprietary and Confidential  
Registers  
2.5.19  
IMA_RX_ATMn_CELL_COUNT_LSB (Receive Cell Count LSBs)  
This register contains the least significant bits of a 16 bit count of the number of ATM layer cells received over the  
Receive ATM side UTOPIA bus for a particular UTOPIA address. The register is read only.  
Rx UTOPIA Address 0 - 15  
n=0  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15  
0x850 0x852 0x854 0x856 0x950 0x952 0x954 0x956 0xA50 0xA52 0xA54 0xA56 0xB50 0xB52 0xB54 0xB56  
M28525  
M28529  
Rx UTOPIA Address 16–31  
n=16 n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31  
0xC48 0xC4  
A
0xC4 0xC4E 0xCC  
0xCC  
A
0xCC  
C
0xCC  
E
0xD4  
8
0xD4  
A
0xD4  
C
0xD4  
E
0xDC  
8
0xDC  
A
0xDC  
C
0xDC  
E
C
8
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7-0  
0
Receive Cell Count LSBs  
Receive Cell Count: This field contains the least significant bits of a 16 bit count of the  
number of ATM layer cells received over the specific UTOPIA address. A write operation  
with data = 0x01 to the first address (0x850 for Address 0, 0x852 for Address 1, etc.)  
transfers the state of all 16 bits of the counter to registers that are accessible to the  
microprocessor bus and clears the counter. A read operation should then be performed to  
read the previous state of the counter. The first address should be read first. The second  
address (0x851 for Address 0, 0x853 for Address 1, etc.) is read next. A write operation  
with data = 0x00 to the first address of each group returns back to the raw counters.  
®
28529-DSH-001-K  
Mindspeed Technologies  
218  
Mindspeed Proprietary and Confidential  
Registers  
2.5.20  
IMA_RX_ATMn_CELL_COUNT_MSB (Receive Cell Count MSBs)  
This register contains the most significant bits of a 16 bit count of the number of ATM layer cells received over the  
Receive ATM side UTOPIA bus for a particular UTOPIA address. The register is read only.  
Rx UTOPIA Address 0 - 15  
n=0  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15  
0x851 0x853 0x855 0x857 0x951 0x953 0x955 0x957 0xA51 0xA53 0xA55 0xA57 0xB51 0xB53 0xB55 0xB57  
M28525  
M28529  
Rx UTOPIA Address 16–31  
n=16 n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31  
0xC49 0xC4  
B
0xC4 0xC4F 0xCC  
0xCC  
B
0xCC 0xCCF 0xD4  
0xD4  
B
0xD4 0xD4F 0xDC  
0xDC  
B
0xDC  
D
0xDC  
F
D
9
D
9
D
9
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7-0  
0
Receive Cell Count MSBs  
Receive Cell Count: This field contains the most significant bits of a 16 bit count of the  
number of ATM layer cells received over the specific UTOPIA address. A write operation  
with data = 0x01 to the first address (0x850 for Address 0, 0x852 for Address 1, etc.)  
transfers the state of all 16 bits of the counter to registers that are accessible to the  
microprocessor bus and clears the counter. A read operation should then be performed to  
read the previous state of the counter. The first address should be read first. The second  
address (0x851 for Address 0, 0x853 for Address 1, etc.) is read next. A write operation  
with data = 0x00 to the first address of each group returns back to the raw counters.  
®
28529-DSH-001-K  
Mindspeed Technologies  
219  
Mindspeed Proprietary and Confidential  
Registers  
2.5.21  
IMA_RX_GRPn_CFG (Receive Group Status and Control)  
This register, in conjunction with the IMA_RX_GRPn_CTL and IMA_RX_GRPn_FIRST_PHY_ADDR registers,  
controls the operation of the Receive IMA group.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8D  
0
0x8D  
4
0x8D  
8
0x8D  
C
0x9D  
0
0x9D  
4
0x9D  
8
0x9D  
C
0xAD  
0
0xAD  
4
0xAD  
8
0xAD  
C
0xBD  
0
0xBD  
4
0xBD  
8
0xBD  
C
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC50 0xC54 0xC58 0xC5  
C
0xCD  
0
0xCD  
4
0xCD  
8
0xCD  
C
0xD5  
0
0xD5  
4
0xD5  
8
0xD5  
C
0xDD  
0
0xDD  
4
0xDD  
8
0xDD  
C
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
0
Check Group ID  
1 = The receive group ID is compared with the expected Group ID as part of link framing  
0 = the receive group ID is ignored  
6
0
Acquire Frame Length 1 = The frame length and IMA version acquired from the received link is used as part of link framing  
0 = The frame length and IMA version from the received link is compared against the expected  
frame length and IMA version as part of link framing  
5–4  
3–2  
0
0
Maximum Differential Reserved. Set to 0.  
Delay  
Group Symmetry  
0 = Symmetrical configuration and operation  
1 = Symmetrical configuration and asymmetrical operation  
2 = Asymmetrical configuration and operation  
3 = Alternate symmetrical configuration and operation  
1–0  
0
Frame Length (M)  
0 = M is 32  
1 = M is 64  
2 = M is 128  
3 = M is 256  
®
28529-DSH-001-K  
Mindspeed Technologies  
220  
Mindspeed Proprietary and Confidential  
Registers  
2.5.22  
IMA_RX_GRPn_CTL (Receive Group Control Register)  
This register, in conjunction with the IMA_RX_GRPn_CFG and IMA_RX_GRPn_FIRST_PHY_ADDR registers,  
controls the operation of the Receive IMA group.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8D  
1
0x8D  
5
0x8D 0x8DD 0x9D  
0x9D  
5
0x9D 0x9DD 0xAD  
0xAD  
5
0xAD  
9
0xAD  
D
0xBD  
1
0xBD  
5
0xBD  
9
0xBD  
D
9
1
9
1
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC5  
1
0xC5  
5
0xC5  
9
0xC5  
D
0xCD  
1
0xCD  
5
0xCD  
9
0xCD  
D
0xD5  
1
0xD5  
5
0xD5  
9
0xD5  
D
0xDD  
1
0xDD  
5
0xDD  
9
0xDD  
D
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
0
Group Enable  
1 = Group is established and a round-robin is created  
0 = Group is not established  
6
0
SW Timeout Expired  
1 = certain LSM transitions (Usable Active) are allowed  
0 = certain LSM transitions (Usable Active) are blocked  
5
Reserved. Set to 0.  
4–0  
0x0  
Group Size  
Sets the number of configured links within group.  
Range: 0x0–0x1F (1–32 links in group)  
®
28529-DSH-001-K  
Mindspeed Technologies  
221  
Mindspeed Proprietary and Confidential  
Registers  
2.5.23  
IMA_RX_GRPn_FIRST_PHY_ADDR (Receive First PHY Address)  
This register, in conjunction with the IMA_RX_GRPn_CTL and IMA_RX_GRPn_CFG registers, controls the  
operation of the Receive IMA group.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8D  
2
0x8D 0x8DA 0x8DE 0x9D  
0x9D 0x9DA 0x9DE 0xAD  
0xAD 0xADA 0xAD  
0xBD  
2
0xBD 0xBDA 0xBD  
6
2
6
2
6
E
6
E
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC5  
2
0xC5  
6
0xC5 0xC5E 0xCD  
0xCD  
6
0xCD  
A
0xCD  
E
0xD5  
2
0xD5  
6
0xD5 0xD5E 0xDD  
0xDD  
6
0xDD  
A
0xDD  
E
A
2
A
2
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
0
Resync Group  
1 = Enables the link differential delay synchronization process  
0 = Disables the link differential delay synchronization process  
6
0
Drain Buffer  
This bit is used by the software driver to reset the differential delay in T1/E1 mode:  
1 = Allows the differential delay buffer to drain excess cell buffering.  
0 = Normal delay buffering.  
5
0
Rx IMA Version  
IMA OAM Label value  
1 = IMA v1.1  
0 = IMA v1.0  
4–0  
0x00  
Link PHY Address  
This field contains the PHY port address of the Receive link with the lowest LID in the group.  
M28525: Range: 0–0xF  
M28529: Range: 0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
222  
Mindspeed Proprietary and Confidential  
Registers  
2.5.24  
IMA_RX_GRPn_ID (Expected Receive Group ID)  
This register contains the value of the Expected IMA Group ID field for the received ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8D  
3
0x8D 0x8DB 0x8DF 0x9D  
0x9D 0x9DB 0x9DF 0xAD  
0xAD  
7
0xAD  
B
0xAD  
F
0xBD  
3
0xBD  
7
0xBD  
B
0xBD  
F
7
3
7
3
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC5  
3
0xC5  
7
0xC5 0xC5F 0xCD  
0xCD  
7
0xCD 0xCDF 0xD5  
0xD5  
7
0xD5 0xD5F 0xDD  
0xDD  
7
0xDD 0xDDF  
B
B
3
B
3
B
3
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–0  
0x00  
Expected Rx Group ID This field contains the Group ID expected in the Receive ICP cells of all links in this group. Range:  
0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
223  
Mindspeed Proprietary and Confidential  
Registers  
2.5.25  
IMA_RX_GRPn_RX_TEST_PATTERN (Receive Group Rx Test Pattern)  
This read-only register contains the value of the Rx Test Pattern field acquired from the received ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E0 0x8E8 0x8F0 0x8F8 0x9E0 0x9E8 0x9F0 0x9F8 0xAE0 0xAE8 0xAF0 0xAF8 0xBE0 0xBE8 0xBF0 0xBF8  
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6  
0
0xC6  
8
0xC7 0xC78 0xCE0 0xCE8 0xCF0 0xCF8 0xD6  
0xD6 0xD70 0xD78 0xDE0 0xDE8 0xDF0 0xDF8  
8
0
0
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–0  
Rx Test Pattern  
This field reflects the value of the Rx Test Pattern byte acquired from the Receive side test link.  
Range: 0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
224  
Mindspeed Proprietary and Confidential  
Registers  
2.5.26  
IMA_RX_GRPn_STAT_CTL_CHANGE (Receive Group Status & Control  
Change Indication)  
This read-only register contains the value of the Status and Control Indication field acquired from the received ICP  
cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E2 0x8EA  
0x8F  
2
0x8FA 0x9E2 0x9EA  
0x9F  
2
0x9FA  
0xAE  
2
0xAEA 0xAF 0xAFA 0xBE  
0xBEA 0xBF 0xBFA  
2
2
2
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6  
2
0xC6  
A
0xC7 0xC7A 0xCE2 0xCEA 0xCF2 0xCFA 0xD6  
0xD6 0xD72 0xD7 0xDE2 0xDE 0xDF2 0xDFA  
2
2
A
A
A
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–0  
Rx SCCI  
This field reflects the value of the Status & Change Control Indication byte acquired from the  
Receive ICP cells of the monitored link. Range: 0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
225  
Mindspeed Proprietary and Confidential  
Registers  
2.5.27  
IMA_RX_GRPn_ACTUAL_GRP_ID (Actual Receive Group ID)  
This read-only register contains the value of the IMA ID field acquired from the received ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E3 0x8EB  
0x8F  
3
0x8FB 0x9E3 0x9EB 0x9F  
3
0x9FB 0xAE3 0xAEB 0xAF 0xAFB 0xBE3 0xBEB 0xBF 0xBFB  
3
3
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6  
3
0xC6  
B
0xC7 0xC7B 0xCE3 0xCEB 0xCF3 0xCFB 0xD6  
0xD6 0xD73 0xD7 0xDE3 0xDE 0xDF3 0xDFB  
3
3
B
B
B
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–0  
Actual Rx Group ID  
This field contains the Group ID acquired from the Receive ICP cells of the monitored link. Range:  
0x00–0xFF  
®
28529-DSH-001-K  
Mindspeed Technologies  
226  
Mindspeed Proprietary and Confidential  
Registers  
2.5.28  
IMA_RX_GRPn_STAT_CTL (Receive Group Status and Control)  
This read-only register contains the value of the Group Status and Control field acquired from the received ICP  
cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E4 0x8EC  
0x8F  
4
0x8FC 0x9E4 0x9EC 0x9F  
4
0x9FC 0xAE4 0xAEC 0xAF 0xAFC 0xBE4 0xBEC 0xBF 0xBFC  
4
4
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6  
4
0xC6  
C
0xC7 0xC7C 0xCE4 0xCEC 0xCF4 0xCFC 0xD6  
0xD6 0xD74 0xD7 0xDE4 0xDE 0xDF4 0xDFC  
4
4
C
C
C
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7–4  
Group State  
0 = Start-up  
1 = Start-up-Ack  
2 = Config-Abort–Unsupported M  
3 = Config-Abort–Incompatible Symmetry  
4 = Config-Abort–Unsupported IMA Version  
5–7 = Reserved for other Config-Abort states  
8 = Insufficient Links  
9 = Blocked  
0xA = Operational  
0xB–F = reserved  
3–2  
1–0  
Group Symmetry  
Frame Length (M)  
0 = Symmetrical configuration and operation  
1 = Symmetrical configuration and asymmetrical operation  
2 = Asymmetrical configuration and operation  
0 = M is 32  
1 = M is 64  
2 = M is 128  
3 = M is 256  
®
28529-DSH-001-K  
Mindspeed Technologies  
227  
Mindspeed Proprietary and Confidential  
Registers  
2.5.29  
IMA_RX_GRPn_TIMING_INFO (Receive Timing Information)  
This read-only register contains the value of the Transmit Timing Information field acquired from the received ICP  
cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E5 0x8ED  
0x8F 0x8FD 0x9E5 0x9ED  
5
0x9F 0x9FD 0xAE 0xAED 0xAF 0xAFD 0xBE 0xBED 0xBF 0xBFD  
5
5
5
5
5
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6  
5
0xC6  
D
0xC7  
5
0xC7 0xCE5 0xCE  
0xCF5 0xCFD 0xD6  
5
0xD6  
D
0xD7  
5
0xD7  
D
0xDE  
5
0xDE 0xDF5 0xDFD  
D
D
D
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
6
5
Unused  
Unused  
Rx Clock Mode  
0 = Independent Transmit Clock (ITC)  
1 = Common Transmit Clock (CTC)  
4–0  
Timing Reference Link This field contains the LID of the Receive TRL. Range: 0x0–0x1F  
ID  
®
28529-DSH-001-K  
Mindspeed Technologies  
228  
Mindspeed Proprietary and Confidential  
Registers  
2.5.30  
IMA_RX_GRPn_TEST_CTL (Receive Test Control)  
This read-only register contains the value of the Tx Test Control field acquired from the received ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E6 0x8EE 0x8F6 0x8FE 0x9E6 0x9EE 0x9F6 0x9FE 0xAE6 0xAEE  
0xAF 0xAFE 0xBE6 0xBEE 0xBF 0xBFE  
6
6
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6 0xC6E 0xC7 0xC7E 0xCE6 0xCEE 0xCF6 0xCFE 0xD6  
0xD6  
E
0xD7  
6
0xD7  
E
0xDE  
6
0xDE 0xDF6 0xDFE  
E
6
6
6
M28525 -- Not Applicable  
M28529  
Bit  
Default  
Name  
Description  
7
6
5
Unused  
Unused  
Test Link Command  
0 = Inactive  
1 = Active  
4–0  
Test Link ID  
This field contains the LID of the Receive Test Link. Range: 0x0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
229  
Mindspeed Proprietary and Confidential  
Registers  
2.5.31  
IMA_RX_GRPn_TX_TEST_PATTERN (Receive Group Tx Test Pattern)  
This read-only register contains the value of the Tx Test Pattern field acquired from the received ICP cells.  
Group 1–16 Address  
n=1  
n=2  
n=3  
n=4  
n=5  
n=6  
n=7  
n=8  
n=9  
n=10 n=11 n=12 n=13 n=14 n=15 n=16  
0x8E7 0x8EF 0x8F7 0x8FF 0x9E7 0x9EF 0x9F7 0x9FF 0xAE7 0xAEF 0xAF7 0xAFF 0xBE7 0xBEF 0xBF7 0xBFF  
M28525  
M28529  
Group 17–32 Address  
n=17 n=18 n=19 n=20 n=21 n=22 n=23 n=24 n=25 n=26 n=27 n=28 n=29 n=30 n=31 n=32  
0xC6 0xC6F 0xC7 0xC7F 0xCE7 0xCEF 0xCF7 0xCFF 0xD6 0xD6F 0xD7 0xD7F 0xDE 0xDEF 0xDF7 0xDFF  
7
7
7
M28525 -- Not Applicable  
M28529  
7
7
Bit  
Default  
Name  
Description  
7–0  
Tx Test Pattern  
If the Test Link Command is set to Active, the Tx Test Pattern is accessed from the ICP cell of the  
Transmit Test Link. This register should be read multiple times (debounced) to ensure receipt of a  
valid test pattern. Range: 0x00–0xFF  
2.6  
IMA Link Registers  
The IMA Link layer contains configuration and status information that is associated with IMA groups or pass-  
through facilities.  
2.6.1  
0x81E—IMA_LNK_SEM (Link Table Control Register)  
For the following bits, 1 = the link table is being updated, 0 = the link table is not being updated. The update enable  
must be set to 1 prior to writing the link table. All elements of the link table must be re-written. After writing to all 8  
elements, the update enable is reset to 0. The link tables are described below.  
This register cannot be read back.  
NOTE:  
Bit  
Default  
Name  
Description  
7
0
Update Enable for Receive  
addresses 0xB80–0xB87, 0xBA8–0xBAF  
facilities 24–31  
(Not defined for M28525)  
6
0
Update Enable for Receive  
facilities 16–23  
addresses 0xA80–0xA87, 0xAA8–0xAAF  
(Not defined for M28525)  
®
28529-DSH-001-K  
Mindspeed Technologies  
230  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description  
5
0
Update Enable for Receive  
facilities 8–15  
addresses 0x980–0x987, 0x9A8–0x9AF  
(Not defined for M28525)  
4
3
2
1
0
0
0
0
0
0
Update Enable for Receive  
facilities 0–7  
addresses 0x880–0x887, 0x8A8–0x8AF  
(Not defined for M28525)  
Update Enable for Transmit  
facilities 24–31  
addresses 0xB60–0xB67, 0xB70–0xB77  
(Not defined for M28525)  
Update Enable for Transmit  
facilities 16–23  
addresses 0xA60–0xA67, 0xA70–0xA77  
(Not defined for M28525)  
Update Enable for Transmit  
facilities 8–15  
addresses 0x960–0x967, 0x970–0x977  
(Not defined for M28525)  
Update Enable for Transmit  
facilities 0–7  
addresses 0x860–0x867, 0x870–0x877  
®
28529-DSH-001-K  
Mindspeed Technologies  
231  
Mindspeed Proprietary and Confidential  
Registers  
2.6.2  
IMA_TX_LNKn_CTL (Transmit Link Control Register)  
This register, in conjunction with IMA_TX_LNKn_ID register, configures the IMA link attributes for the Transmit port.  
Hex Address  
n
Address  
n
Address  
0
1
0x860  
0x861  
0x862  
0x863  
0x864  
0x865  
0x866  
0x867  
0x960  
0x961  
0x962  
0x963  
0x964  
0x965  
0x966  
0x967  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA60  
0xA61  
0xA62  
0xA63  
0xA64  
0xA65  
0xA66  
0xA67  
0xB60  
0xB61  
0xB62  
0xB63  
0xB64  
0xB65  
0xB66  
0xB67  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
0
0
0
0
Link Assigned  
1 = Facility is part of IMA Group  
0 = Facility is a bypass channel (pass-through or unassigned)  
6
5
Link Inhibit  
Link Fault  
1 = Link is blocked from use  
0 = Link is not inhibited  
1 = Link Fault Failure is active  
0 = Link Fault Failure is inactive  
4–0  
Next Link PHY Address This field contains the PHY address of the next link in the IMA Group. If the link is a pass-  
through facility, this field is ignored but is recommended to be set to the PHY address of the  
pass-through facility (i.e., set to 0 for PHY address 0, set to 1 for PHY address 1, etc.).  
M28525: Range: 0–0x0F  
M28529: Range: 0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
232  
Mindspeed Proprietary and Confidential  
Registers  
2.6.3  
IMA_TX_LNKn_STATE (Transmit Link Status Register)  
This read-only register provides state and status information for the Transmit link.  
Hex Address  
n
Address  
n
Address  
0
1
0x868  
0x869  
0x86A  
0x86B  
0x86C  
0x86D  
0x86E  
0x86F  
0x968  
0x969  
0x96A  
0x96B  
0x96C  
0x96D  
0x96E  
0x96F  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA68  
0xA69  
0xA6A  
0xA6B  
0xA6C  
0xA6D  
0xA6E  
0xA6F  
0xB68  
0xB69  
0xB6A  
0xB6B  
0xB6C  
0xB6D  
0xB6E  
0xB6F  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–6  
Tx-Stuff-IMA Counter  
This field contains a count of the number of Near-End Transmit cell stuffing events. Upon a read  
of this address, the contents of the counter is transferred to a register that is accessible to the  
microprocessor bus and the counter is cleared.  
5
4
3
Reserved.  
Reserved.  
Waiting for SW Timer  
1 = a transition of the Transmit LSM is waiting for an enable from software  
0 = no transition of the LSM is waiting for software  
2–0  
NE Tx LSM State  
0 = Not In Group  
1 = Unusable—no reason given  
2 = Unusable—Fault  
3 = Unusable—Mis-connected  
4 = Unusable—Blocked  
5 = Unusable—Failed  
6 = Usable  
7 = Active  
®
28529-DSH-001-K  
Mindspeed Technologies  
233  
Mindspeed Proprietary and Confidential  
Registers  
2.6.4  
IMA_TX_LNKn_ID (Transmit Link ID Register)  
This register, in conjunction with IMA_TX_LNKn_CTL register, configures the IMA link attributes for the Transmit  
port.  
Hex Address  
n
Address  
n
Address  
0
1
0x870  
0x871  
0x872  
0x873  
0x874  
0x875  
0x876  
0x877  
0x970  
0x971  
0x972  
0x973  
0x974  
0x975  
0x976  
0x977  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA70  
0xA71  
0xA72  
0xA73  
0xA74  
0xA75  
0xA76  
0xA77  
0xB70  
0xB71  
0xB72  
0xB73  
0xB74  
0xB75  
0xB76  
0xB77  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
6
5
0
Reserved. Set to 0  
Reserved. Set to 0  
Link Misconnect  
1 = Link Misconnect Failure is active  
0 = Link Misconnect Failure is inactive  
4–0  
0x00  
Link ID  
This field contains the Transmit Link ID assigned to this facility.  
Range: 0x00–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
234  
Mindspeed Proprietary and Confidential  
Registers  
2.6.5  
IMA_RX_LNKn_CTL (Receive Link Control Register)  
This register, in conjunction with IMA_RX_LNKn_ID register, configures the IMA link attributes for the Receive port.  
Hex Address  
n
Address  
n
Address  
0
1
0x880  
0x881  
0x882  
0x883  
0x884  
0x885  
0x886  
0x887  
0x980  
0x981  
0x982  
0x983  
0x984  
0x985  
0x986  
0x987  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA80  
0xA81  
0xA82  
0xA83  
0xA84  
0xA85  
0xA86  
0xA87  
0xB80  
0xB81  
0xB82  
0xB83  
0xB84  
0xB85  
0xB86  
0xB87  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
0
Link Assigned  
1 = Facility is part of IMA Group  
0 = Facility is a bypass channel (pass-through or unassigned)  
6–5  
4–0  
0
Link State  
0 = Link is not inhibited  
1 = Link Fault Failure is active  
2 = Link is blocked from use  
3 = Rx Failed condition  
0
Next Link PHY Address This field contains the PHY address of the next link in the IMA Group. If the link is a pass-  
through facility, this field is ignored but is recommended to be set to the PHY address of the  
pass-through facility (i.e., set to 0 for PHY address 0, set to 1 for PHY address 1, etc.).  
M28525: Range: 0–F  
M28529: Range: 0–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
235  
Mindspeed Proprietary and Confidential  
Registers  
2.6.6  
IMA_RX_LNKn_STATE (Receive Link Status Register)  
This read-only register provides state and status information for the Receive link.  
Hex Address  
n
Address  
n
Address  
0
1
0x888  
0x889  
0x88A  
0x88B  
0x88C  
0x88D  
0x88E  
0x88F  
0x988  
0x989  
0x98A  
0x98B  
0x98C  
0x98D  
0x98E  
0x98F  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA88  
0xA89  
0xA8A  
0xA8B  
0xA8C  
0xA8D  
0xA8E  
0xA8F  
0xB88  
0xB89  
0xB8A  
0xB8B  
0xB8C  
0xB8D  
0xB8E  
0xB8F  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–6  
Rx-Stuff-IMA Counter  
This field contains a count of the number of Near-End Receive cell stuffing events. Upon a read  
of this address, the contents of the counter is transferred to a register that is accessible to the  
microprocessor bus and the counter is cleared.  
5
4
3
Reserved.  
Reserved.  
Waiting for SW Timer  
1 = a transition of the Receive LSM is waiting for an enable from software  
0 = no transition of the LSM is waiting for software  
2–0  
NE Rx LSM State  
0 = Not In Group  
1 = Unusable—no reason given  
2 = Unusable—Fault  
3 = Unusable—Mis-connected  
4 = Unusable—Blocked  
5 = Unusable—Failed  
6 = Usable  
7 = Active  
®
28529-DSH-001-K  
Mindspeed Technologies  
236  
Mindspeed Proprietary and Confidential  
Registers  
2.6.7  
IMA_RX_LNKn_DEFECT (Receive Link Defects Register)  
This register provides state and status information for the Receive link. This register is primarily read-only except  
for bit 1 which is read/write.  
Hex Address  
n
Address  
n
Address  
0
1
0x890  
0x891  
0x892  
0x893  
0x894  
0x895  
0x896  
0x897  
0x990  
0x991  
0x992  
0x993  
0x994  
0x995  
0x996  
0x997  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA90  
0xA91  
0xA92  
0xA93  
0xA94  
0xA95  
0xA96  
0xA97  
0xB90  
0xB91  
0xB92  
0xB93  
0xB94  
0xB95  
0xB96  
0xB97  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
0
(LIF Defect)  
1 = The LIF defect has changed state since the last time this register was read  
0 = The LIF defect has not changed state  
6
5
4
3
2
1
0
LIF Defect  
1 = The LIF defect is currently active  
0 = The LIF defect is inactive  
(LODS Defect)  
LODS Defect  
(RDI Defect)  
RDI Defect  
1 = The LODS defect has changed state since the last time this register was read  
0 = The LODS defect has not changed state  
1 = The LODS defect is currently active  
0 = The LODS defect is inactive  
1 = The RDI defect has changed state since the last time this register was read  
0 = The RDI defect has not changed state  
1 = The RDI defect is currently active  
0 = The RDI defect is inactive  
PHY Defect  
1 = A PHY defect is active  
0 = All PHY defects are inactive  
Rx_TRL Error  
This bit is set high if the transition detector for the Rx_TRL input detects a bad signal. This bit is  
active high and is reset upon reading this address.  
®
28529-DSH-001-K  
Mindspeed Technologies  
237  
Mindspeed Proprietary and Confidential  
Registers  
2.6.8  
IMA_FE_TX_LNKn_CFG (FE Transmit Configuration Register)  
This read-only register provides Far-End Transmit configuration information for the Receive link.  
Hex Address  
n
Address  
n
Address  
0
1
0x898  
0x899  
0x89A  
0x89B  
0x89C  
0x89D  
0x89E  
0x89F  
0x998  
0x999  
0x99A  
0x99B  
0x99C  
0x99D  
0x99E  
0x99F  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xA98  
0xA99  
0xA9A  
0xA9B  
0xA9C  
0xA9D  
0xA9E  
0xA9F  
0xB98  
0xB99  
0xB9A  
0xB9B  
0xB9C  
0xB9D  
0xB9E  
0xB9F  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–6  
Frame Length (M)  
This field contains the contents of the frame length field for the ICP cell arriving on this facility.  
0 = M is 32  
1 = M is 64  
2 = M is 128  
3 = M is 256  
5
IMA Version  
Link ID  
(IMA OAM Label value)  
1 = IMA v1.1  
0 = IMA v1.0  
4–0  
This field contains the contents of the Link ID field for the ICP cell arriving on this facility. Range:  
0x0–0x1F.  
The value in this register is undefined when there is no valid IMA cell stream present on the  
link. The value in this register is also undefined for a maximum of two seconds following  
the creation of a group containing this link.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
238  
Mindspeed Proprietary and Confidential  
Registers  
2.6.9  
IMA_FE_LNKn_STATE (FE Link Status Register)  
This read-only register provides Far-End link status information for the facility.  
Hex Address  
n
Address  
n
Address  
0
1
0x8A0  
0x8A1  
0x8A2  
0x8A3  
0x8A4  
0x8A5  
0x8A6  
0x8A7  
0x9A0  
0x9A1  
0x9A2  
0x9A3  
0x9A4  
0x9A5  
0x9A6  
0x9A7  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xAA0  
0xAA1  
0xAA2  
0xAA3  
0xAA4  
0xAA5  
0xAA6  
0xAA7  
0xBA0  
0xBA1  
0xBA2  
0xBA3  
0xBA4  
0xBA5  
0xBA6  
0xBA7  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–5  
FE Tx LSM State  
0 = Not In Group  
1 = Unusable—No reason given  
2 = Unusable—Fault  
3 = Unusable—Mis-connected  
4 = Unusable—Blocked  
5 = Unusable—Failed  
6 = Usable  
7 = Active  
4–2  
FE Rx LSM State  
0 = Not In Group  
1 = Unusable—No reason given  
2 = Unusable—Fault  
3 = Unusable—Mis-connected  
4 = Unusable—Blocked  
5 = Unusable—Failed  
6 = Usable  
7 = Active  
®
28529-DSH-001-K  
Mindspeed Technologies  
239  
Mindspeed Proprietary and Confidential  
Registers  
Bit  
Default  
Name  
Description (Continued)  
1–0  
FE Rx Defect Indicator  
0 = No Defects  
1 = Physical link defect  
2 = LIF defect  
3 = LODS defect  
2.6.10  
IMA_RX_LNKn_ID (Receive Link ID Register)  
This register, in conjunction with IMA_RX_LNKn_CTL register, configures the IMA link attributes for the Receive  
port.  
Hex Address  
n
Address  
n
Address  
0
1
0x8A8  
0x8A9  
0x8AA  
0x8AB  
0x8AC  
0x8AD  
0x8AE  
0x8AF  
0x9A8  
0x9A9  
0x9AA  
0x9AB  
0x9AC  
0x9AD  
0x9AE  
0x9AF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xAA8  
0xAA9  
0xAAA  
0xAAB  
0xAAC  
0xAAD  
0xAAE  
0xAAF  
0xBA8  
0xBA9  
0xBAA  
0xBAB  
0xBAC  
0xBAD  
0xBAE  
0xBAF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
6
5
0
Reserved. Set to 0  
Reserved. Set to 0  
Link Misconnect  
1 = Link Misconnect Failure is active  
0 = Link Misconnect Failure is inactive  
4–0  
0
Link ID  
This field contains the Receive Link ID assigned to this facility.  
Range: 0x00–0x1F  
®
28529-DSH-001-K  
Mindspeed Technologies  
240  
Mindspeed Proprietary and Confidential  
Registers  
2.6.11  
IMA_RX_LNKn_IV_CNT (IMA Violation Counter Register)  
This read-only register contains a count of the IV-IMA Anomalies for the Receive link.  
Hex Address  
n
Address  
n
Address  
0
1
0x8B0  
0x8B1  
0x8B2  
0x8B3  
0x8B4  
0x8B5  
0x8B6  
0x8B7  
0x9B0  
0x9B1  
0x9B2  
0x9B3  
0x9B4  
0x9B5  
0x9B6  
0x9B7  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xAB0  
0xAB1  
0xAB2  
0xAB3  
0xAB4  
0xAB5  
0xAB6  
0xAB7  
0xBB0  
0xBB1  
0xBB2  
0xBB3  
0xBB4  
0xBB5  
0xBB6  
0xBB7  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–0  
IV-IMA Counter  
This field contains a count of the ICP-ERR, ICP-INV, and ICP-MIS anomalies. Writing a 0x01 to  
address 0x8B0 will freeze the value of all the IV-IMA and OIF-IMA counters in the defined  
registers. The internal counters are cleared by this action. After all the registers have been read,  
writing a 0x00 to address 0x8B0 will release the “freeze” and the defined registers will reflect the  
current anomaly count.  
®
28529-DSH-001-K  
Mindspeed Technologies  
241  
Mindspeed Proprietary and Confidential  
Registers  
2.6.12  
IMA_RX_LNKn_OIF_CNT (Out-of-IMA Frame Counter Register)  
This read-only register contains a count of the OIF-IMA Anomalies for the Receive link.  
Hex Address  
n
Address  
n
Address  
0
1
0x8B8  
0x8B9  
0x8BA  
0x8BB  
0x8BC  
0x8BD  
0x8BE  
0x8BF  
0x9B8  
0x9B9  
0x9BA  
0x9BB  
0x9BC  
0x9BD  
0x9BE  
0x9BF  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xAB8  
0xAB9  
0xABA  
0xABB  
0xABC  
0xABD  
0xABE  
0xABF  
0xBB8  
0xBB9  
0xBBA  
0xBBB  
0xBBC  
0xBBD  
0xBBE  
0xBBF  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7
6
Reserved.  
Reserved.  
Reserved.  
Reserved.  
5
4
3–0  
OIF-IMA Counter  
This field contains a count of the OIF anomalies. Writing a 0x01 to address 0x8B0 will freeze the  
value of all the IV-IMA and OIF-IMA counters in the defined registers. The internal counters are  
cleared by this action. After all the registers have been read, writing a 0x00 to address 0x8B0 will  
release the “freeze” and the defined registers will reflect the current anomaly count.  
®
28529-DSH-001-K  
Mindspeed Technologies  
242  
Mindspeed Proprietary and Confidential  
Registers  
2.6.13  
IMA_FE_TX_LNKn_GRP_ID (FE Transmit Group ID Register)  
This read-only register contains the value of the IMA ID field acquired from the received ICP for the Receive link.  
Hex Address  
n
Address  
n
Address  
0
1
0x8C0  
0x8C1  
0x8C2  
0x8C3  
0x8C4  
0x8C5  
0x8C6  
0x8C7  
0x9C0  
0x9C1  
0x9C2  
0x9C3  
0x9C4  
0x9C5  
0x9C6  
0x9C7  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
0xAC0  
0xAC1  
0xAC2  
0xAC3  
0xAC4  
0xAC5  
0xAC6  
0xAC7  
0xBC0  
0xBC1  
0xBC2  
0xBC3  
0xBC4  
0xBC5  
0xBC6  
0xBC7  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Bit  
Default  
Name  
Description  
7–0  
Actual Rx Group ID  
This field contains the value of the Group ID field from the ICP cells for this facility. Range:  
0x00–0xFF  
The value in this register is undefined when there is no valid IMA cell stream present on the  
link. The value in this register is also undefined for a maximum of two seconds following  
the creation of a group containing this link.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
243  
Mindspeed Proprietary and Confidential  
Registers  
2.7  
ATM Cell Capture Registers  
The ATM Cell Capture registers allow an ATM cell to be captured from a facility for diagnostic purposes.  
When a facility is configured to be part of an IMA Group, a valid cell stream must be present  
on the input port or the values contained in these registers are undefined. The values in  
these registers are also undefined for a maximum of two seconds following the creation of  
a group containing the specified facility in 0xE30. If the facility is configured for  
passthrough mode, the above restrictions do not apply.  
NOTE:  
2.7.1  
0xE00-0xE2F—CELL_CAP_PAYLDn (Capture Payload Contents Register)  
These registers hold the 48 byte payload contents of a captured ATM Cell. These registers are read-only.  
Bit  
Default  
Name  
Description  
7-0  
0
ATMPLDn  
Contains one byte of the 48 byte payload contents of a captured ATM Cell. The first byte is stored  
in register 0xE00 and the remainder of the 48 bytes are stored consecutively in registers up to  
location 0xE2F.  
2.7.2  
0xE30—CAP_FAC (Capture Facility Register)  
The capture facility register configures the facility that the ATM cells will be captured from.  
Bit  
Default  
Name  
Description  
7-5  
4-0  
0
Reserved  
This field is programmed with the facility that ATM cells will be captured from.  
CAPFCL  
2.7.3  
0xE31—CAP_CNTL (Capture Control Register)  
The capture control register enables the capture circuit to store an incoming ATM cell as well as determine the type  
of ATM cell stored  
Bit  
Default  
Name  
Description  
7-2  
1
0
Reserved  
CAPTYPE  
This bit selects whether the next incoming ICP cell is stored or simply the next ATM cell,  
regardless of type, is stored.  
0 = ICP Cell only  
1 = Any cell (Data Cell, Filler Cell, or ICP/SICP Cell)  
0
0
ENCAP  
Enables the capture circuit to store the next incoming cell qualified by the cell type programmed  
in bit 1.  
This bit is written to a ‘1’ to arm the capture circuit to store the ATM cell.  
This bit is should be written to a ‘0’ once the ATM cell is captured. See register 0xE32 for the  
capture status.  
®
28529-DSH-001-K  
Mindspeed Technologies  
244  
Mindspeed Proprietary and Confidential  
Registers  
2.7.4  
0xE32—CAP_STAT (Capture Status Register)  
The capture status register indicates the status of the ATM cell capture.  
Bit  
Default  
Name  
Description  
7-1  
0
Reserved  
0
CELLCAP  
This bit shows whether an ATM cell has been captured. This status bit is only valid when the  
Capture Control bit is enabled.  
1 = Cell has been stored  
0 = Cell has not been stored  
®
28529-DSH-001-K  
Mindspeed Technologies  
245  
Mindspeed Proprietary and Confidential  
3.0 Product Specification  
3.1  
Absolute Maximum Ratings  
The absolute maximum ratings in Table 3-1 indicate the maximum stresses that the M2852x can tolerate without  
risking permanent damage. These ratings are not typical of normal operation of the device. Exposure to absolute  
maximum rating conditions for extended periods of time may affect the device’s reliability. This device should be  
handled as an ESD-sensitive device. Voltage on any signal pin that exceeds the power supply voltage by more than  
+0.5 V can induce destructive latchup.  
Table 3-1.  
Absolute Maximum Ratings (General)  
Parameter  
Value  
Supply Voltage - VDD33  
Supply Voltage - VDD18  
ESD Voltage (VGG)  
–0.5 to +3.6 V  
–0.5 to +1.98 V  
–0.5 to +5.5 V  
–0.5 to (VDD33 + 1.89V)  
–40 °C to 125 °C  
–40 °C to 85 °C  
+240 °C for 10 seconds  
+125 °C  
Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature  
Junction Temperature  
Static Discharge Voltage (Human Body Model)  
Static Discharge Voltage (Charge Device Model)  
Latch-up Current  
±2000 V  
±350 V  
±150 mA at 85 °C  
±20 mA  
DC Input Current  
NOTE:  
Please refer to Mindspeed SMT application note for the Pb-free devices and for the detail explination of how JEDEC determines the reflow  
temperatures based on package thickness:  
http://mindspeed.com/mspd/support/quality/SMT-PB-free.pdf  
Table 3-2.  
Absolute Maximum Ratings (M28525/M28529)  
Parameter  
Value  
θ
No Airflow  
~20°C/W  
JA  
®
28529-DSH-001-K  
Mindspeed Technologies  
246  
Mindspeed Proprietary and Confidential  
Product Specification  
3.2  
Recommended Operating Conditions  
Table 3-3.  
Recommended Operating Conditions  
Symbol  
Parameter  
Minimum  
Nominal  
Maximum  
Units  
VDD33  
VDD18  
Tamb  
3.3V Power supply  
3.135  
1.71  
-40  
3.3  
1.8  
25  
3.465  
1.89  
85  
V
V
1.8V Power supply  
Ambient operating temperature  
°C  
3.3  
DC Characteristics  
Table 3-4 lists the DC characteristics of the M2852x. Table 3-5 lists Power Characteristics of the device.  
Table 3-4.  
DC Characteristics  
Parameter  
Minimum  
Typical  
Maximum  
Comments  
Power Supply VDD33  
3.0  
1.71  
3.0  
0
3.3  
1.8  
3.6  
1.89  
5.5  
VDC ±10%  
VDC ±5%  
VDC  
Power Supply VDD18  
(1,2)  
(3)  
ESD Voltage VGG (3.3 V or 5 V)  
Input Low Voltage (VIL)—TTL  
Input High Voltage (VIH)—TTL  
Output Voltage Low (TTL)  
3.3/5  
0.8  
VDC  
2.0  
5.25  
0.4  
VDC  
Volts;  
I
= 4.0 mA  
OH  
Output Voltage High (TTL)  
2.4  
Volts;  
= 1500 µA  
I
OH  
Input Leakage Current  
–10  
–10  
10  
10  
7
µA; Vin = PWR or GND  
Three-state Output Leakage Current  
Input Capacitance  
µA; Vout = PWR or GND  
pF  
pF  
pF  
Output Capacitance  
7
Bidirectional Capacitance  
7
Footnote:  
(1) With 5 V logic input, VGG should be tied to 5 V. With 3.3 V logic input, VGG should be tied to 3.3 V. VGG must be equal or greater than  
power supply voltage.  
(2) When VGG is operated at 5 V, sequence VGG to VDD33 as discussed in Chapter 4.0.  
(3) Typical value for VGG is 3.3 or 5 V.  
®
28529-DSH-001-K  
Mindspeed Technologies  
247  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-5.  
Power Characteristics (M28529)  
Conditions Parameter  
Minimum  
Typical  
Maximum  
Comments  
E1  
VDD33  
100  
290  
mW  
mW  
Utopia-Serial  
VDD18  
IMA_SysClk = 49.152MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 25MHz  
8 IMA Groups with 4 Links each  
T1  
VDD33  
VDD18  
100  
240  
mW  
mW  
Utopia-Serial  
IMA_SysClk = 37.056MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 25MHz  
8 IMA Groups with 4 Links each  
Interleaved Highway  
Utopia-Serial  
IMA_SysClk = 49.152MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 25MHz  
VDD33  
VDD18  
100  
355  
mW  
mW  
8 IMA Groups with 4 Links each  
E1  
VDD33  
VDD18  
200  
260  
mW  
mW  
Utopia-Utopia  
IMA_SysClk = 49.152MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 25MHz  
8 IMA Groups with 4 Links each  
DSL 2.304Mbs  
Utopia-Utopia  
IMA_SysClk = 66MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 66MHz  
VDD33  
VDD18  
235  
410  
mW  
mW  
8 IMA Groups with 4 Links each  
DSL 5.4Mbs  
Utopia-Utopia  
IMA_SysClk = 66MHz  
IMA_RefClk = 49.152MHz  
MicroClk = 66MHz  
VDD33  
VDD18  
300  
425  
mW  
mW  
8 IMA Groups with 4 Links each  
®
28529-DSH-001-K  
Mindspeed Technologies  
248  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4  
Timing Specifications  
This section provides timing diagrams and descriptions for the various interfaces of the M2852x. The timing  
relationship labels are numbered when they occur more than once in a diagram, so each label is unique. This  
numbering aids in identifying the appropriate label in the timing table. Signals are measured at the 50% point of the  
changing edge, except for those involving high impedance transitions, which are measured at 10% and 90%.  
Figure 3-1 and Figure 3-2 illustrate how input and output waveforms are defined.  
Figure 3-1. Input Waveform  
2.0 V  
1.4 V  
0.8 V  
t
per  
Figure 3-2. Output Waveform  
2.4 V  
1.4 V  
0.4 V  
t
t
pwh  
pwl  
t
per  
®
28529-DSH-001-K  
Mindspeed Technologies  
249  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.1  
Reset Timing  
Figure 3-3 and Table 3-6 show the timing requirements for the asynchronous reset input to the device.  
Figure 3-3. Reset Timing  
tw  
Reset*  
Table 3-6.  
Reset Timing Parameters  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
t
Reset minimum pulse width  
100  
ns  
w
3.4.2  
Microprocessor Timing  
Figures 3-4 through 3-7 and Tables 3-7 through 3-10 show the timing requirements and characteristics of the  
microprocessor interface. Capacitive load on all signals is 50pF.  
Figure 3-4. Microprocessor Timing —Asynchronous Read  
MicroAddr[11:0]  
tpwl  
tpwh  
ts  
th  
MCS*  
MRd*  
tpwl  
ts  
th  
ten  
tpd  
tdis  
MicroData[7:0]  
tenzl  
tdislz  
MRdy  
MWr*  
(High)  
(Low)  
MSyncMode  
®
28529-DSH-001-K  
Mindspeed Technologies  
250  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-7.  
Microprocessor Timing Parameters - Asynchronous Read  
Description Minium  
Label  
Maximum  
Units  
(1)  
t
Microprocessor Clock  
Pulse Width High  
Pulse Width Low  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
4 * t  
4 * t  
2
10  
pwh  
per  
per  
t
pwl  
(2)  
t
Setup, MicroAddr[11:0] to the falling edge of (MCS* + MRd*)  
s
(3)  
t
Hold, MicroAddr[11:0] from the rising edge of (MCS* + MRd*)  
7
h
(2)  
t
Enable, MicroData[7:0] from the falling edge of (MCS* + MRd*)  
4
en  
pd  
t
Propagation Delay, MicroData[7:0] from the falling edge of (MCS* +  
2 *t  
3 * t +10  
per  
per  
(2)  
MRd*)  
(3)  
t
Disable, MicroData[7:0] from the rising edge of (MCS* + MRd*)  
4
4
10  
10  
ns  
ns  
ns  
dis  
(2)  
t
Enable, MRdy from the falling edge of (MCS* + MRd*)  
enzl  
(2)  
t
Disable, MRdy from the falling edge of (MCS* + MRd*)  
3 * t  
4 * t +10  
per  
dislz  
per  
Footnote:  
(1) The microprocessor clock is required by internal logic but has no relationship with the I/O signals.  
(2) Timing starts from whichever is asserted last.  
(3) Timing relative to whichever goes inactive first.  
(4) Timing relative to a 50pF load.  
Figure 3-5. Microprocessor Timing —Asynchronous Write  
MicroAddr[11:0]  
MicroData[7:0]  
ts2  
th1  
th2  
tpwl  
tpwh  
ts1  
MCS*  
th1  
th2  
tpwl  
ts1  
tpwh  
MWr*  
tenzl  
tdislz  
MRdy  
MRd*  
(High)  
(Low)  
MSyncMode  
®
28529-DSH-001-K  
Mindspeed Technologies  
251  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-8.  
Microprocessor Timing Parameters - Asynchronous Write  
Description Minimum  
Label  
Maximum  
Units  
(1)  
t
Microprocessor Clock  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
per  
pwl  
t
Pulse Width Low (MCS* + MWr*)  
4 * t  
4 * t  
2
per  
per  
t
Pulse Width High (MCS* + MWr*)  
pwh  
(2)  
t
Setup, MicroAddr[11:0] to the falling edge of (MCS* + MWr*)  
s1  
h1  
(3)  
(2)  
t
Hold, MicroAddr[11:0] from the rising edge of (MCS* + MWr*)  
Setup, MicroData[7:0] from the falling edge of (MCS* + MWr*)  
7
t
7
t
per  
s2  
h2  
(3)  
t
Hold, MicroData[6:0] from the rising edge of (MCS* + MWr*)  
10  
(2)  
t
Enable, MRdy from the falling edge of (MCS* + MWr*)  
4
enzl  
(2)  
t
Disable, MRdy from the falling edge of (MCS* + MWr*)  
3 * t  
4 * t +10  
dislz  
per  
per  
Footnote:  
(1) The microprocessor clock is required by internal logic but has no relationship with the I/O signals.  
(2) Timing starts from whichever is asserted last.  
(3) Timing relative to whichever goes inactive first.  
(4) Timing relative to a 50pF load.  
Figure 3-6. Microprocessor Timing —Synchronous Read  
tper  
MicroClk  
ts  
ts  
ts  
ts  
th  
th  
th  
MCS*  
MWR*  
MAS*  
th  
Microaddr[11:0]  
ten  
tpd  
tdis  
MicroData  
MRdy  
tenzl  
tdislz  
MicroInt*  
MSyncMode  
(High)  
®
28529-DSH-001-K  
Mindspeed Technologies  
252  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-9.  
Microprocessor Timing Parameters - Synchronous Read  
Label  
Description  
Minimum  
Maximum  
Units  
t
Microprocessor Clock Period  
40  
40  
5
ns  
%
per  
t
Microprocessor Clock Period Duty Cycle  
Setup to the rising edge of MicroClk  
60  
15  
26  
15  
15  
15  
duty  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s
t
Hold from the rising edge of MicroClk  
Enable from the rising edge of MicroClk  
Propagation Delay from the rising edge of MicroClk  
Propagation Delay from the falling edge of MicroClk  
Enable from the rising edge of MicroClk  
Disable from the rising edge of Microclk  
2
h
t
2
en  
pd  
dis  
t
2
t
2
t
2
enzl  
t
2
dislz  
Footnote:  
(1) Timing relative to a 50pF Load  
Figure 3-7. Microprocessor Timing —Synchronous Write  
tper  
MicroClk  
th  
th  
th  
ts  
MCS*  
MWr*  
ts  
ts  
ts  
ts  
MAS*  
th  
MicroAddr[11:0]  
th  
MicroData[7:0]  
MRdy  
tenzl  
MicroInt*  
(High)  
MSyncMode  
®
28529-DSH-001-K  
Mindspeed Technologies  
253  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-10. Microprocessor Timing Parameters - Synchronous Write  
Label Description  
Minimum  
Maximum  
Units  
t
Microprocessor clock period  
40  
40  
5
ns  
%
per  
t
Microprocessor Clock Period Duty Cycle  
Setup to the rising edge of MicroClk  
Hold from the rising edge of MicroClk  
Enable from the rising edge of MicroClk  
60  
15  
duty  
t
ns  
ns  
ns  
s
t
2
h
t
2
enzl  
Footnote:  
(1) Timing relative to a 50pF load  
3.4.3  
PHY-side Interface Timing (Serial Mode)  
The PHY-side interface on the MaxIMA supports three different modes of operation, serial, interleaved and  
UTOPIA. Figure 3-8 through 3-13 show the timing diagrams for T1/E1/DSL mode. Table 3-11 and Table 3-12 show  
the PHY-side timing requirements for T1/E1/DSL mode.  
Figure 3-8. PHY-side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 0, TxDatShft = 0)  
tp e r  
tp w h  
tp w l  
S P T x C lk  
t h  
ts  
th  
t s  
S P T x S y n c  
(In p u t)  
t p d  
t p d  
t p d  
S P T x S y n c  
(O u tp u t)  
S P T x D a ta  
Figure 3-9. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 1, TxDatShft = 0)  
tp e r  
tp w h  
tp w l  
S P T x C lk  
t h  
ts  
th  
t s  
S P T x S y n c  
(In p u t)  
t p d  
t p d  
t p d  
S P T x S y n c  
(O u tp u t)  
S P T x D a ta  
®
28529-DSH-001-K  
Mindspeed Technologies  
254  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-10. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 0, TxDatShft = 1)  
tp e r  
tp w h  
tp w l  
S P T x C lk  
t h  
ts  
th  
t s  
S P T x S y n c  
(In p u t)  
tp d  
tp d  
S P T x S y n c  
(O u tp u t)  
tp d  
S P T x D a ta  
Figure 3-11. PHY-Side Serial T1/E1/DSL Mode Transmit Timing (TxClkPol = 1, TxDatShft = 1)  
tp e r  
tp w h  
tp w l  
S P T x C lk  
t h  
ts  
th  
t s  
S P T x S y n c  
(In p u t)  
tp d  
tp d  
S P T x S y n c  
(O u tp u t)  
tp d  
S P T x D a ta  
Table 3-11. PHY-side Serial T1/E1/DSL Mode Transmit Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
Serial transmit clock period  
50  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
Serial clock pulse width (high)  
Serial clock pulse width (low)  
pwh  
t
pwl  
(1)  
t
Setup to sptxclk rise(fall) edge  
s
(1)  
t
Hold from sptxclk rise(fall) edge  
3
h
(1)  
t
Delay from sptxclk rise(fall) edge  
1
20  
pd  
Footnote:  
(1) Timing synchronized to falling edge when TxClkPol = 1  
General Note:  
1. The TxClkPol (bit 3) in the IOMODE register determines whether timing is referenced to the positive or negative clock edge.  
2. All outputs are assumed to have 20 pF loading.  
®
28529-DSH-001-K  
Mindspeed Technologies  
255  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-12. PHY-side Serial T1/E1/DSL Mode Receive Timing (Positive Clock Edge Timing- RxClkPol = 0)  
tper  
tpwh  
tpwl  
SPRxClk  
SPRxData  
SPRxSync  
th1  
ts1  
ts2  
ts2  
th2  
th2  
Figure 3-13. PHY-side Serial T1/E1/DSL Mode Receive Timing (Negative Clock Edge Timing- RxClkPol = 1)  
tper  
tpwl  
tpwh  
SPRxClk  
ts1  
th1  
SPRxData  
ts2  
th2  
ts2  
th2  
SRPxSync  
Table 3-12. PHY-side Serial T1/E1/DSL Mode Receive Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
Serial receive clock period  
50  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
Serial receive clock pulse width (high)  
Serial receive clock pulse width (low)  
pwh  
t
pwl  
(1)  
t
Setup to sprxclk rise(fall) edge  
s1  
h1  
(1)  
t
Hold from sprxclk rise(fall) edge  
3
(1)  
t
Setup to sprxclk rise(fall) edge  
5
s2  
h2  
(1)  
t
Hold from sprxclk rise(fall) edge  
3
Footnote:  
(1) Timing Synchronized to falling clock edge when RxClkPol = 1  
General Note:  
1. The RxClkPol (bit 5) in the IOMODE register determines whether timing is synchronized to the positive or negative clock edge.  
2. All outputs are assumed to have 20 pF loading.  
®
28529-DSH-001-K  
Mindspeed Technologies  
256  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.4  
Fractional T1/E1 Mode Timing  
Figure 3-14 and show the PHY-side interface timing when configured for Fractional T1/E1 mode. Table 3-13 and 3-  
14 show the PHY-side timing requirements for Fractional T1/E1 mode.  
Figure 3-14. Fractional T1/E1 Transmit Timing  
tper  
tpwh  
tpwl  
SPTxCLK  
ts  
th  
SPTxSYNC  
SPTxDATA  
tpd  
tpd  
Table 3-13. Fractional T1/E1 Transmit Timing Parameters  
Symbol Parameter  
Minimum  
Typical  
Maximum  
Units  
t
Fractional transmit clock period  
50  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
Fractional transmit clock pulse width (high)  
Fractional transmit clock pulse width (low)  
Set up time to sptxclk rising edge  
pwh  
t
pwl  
t
s
t
Hold time from sptxclk falling edge  
Delay from sptxclk rising edge  
5
h
t
1
20  
pd  
®
28529-DSH-001-K  
Mindspeed Technologies  
257  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-15. Fractional T1/E1 Receive Timing  
tper  
tpwh  
tpwl  
SPRxCLK  
ts1  
th1  
SPRxSYNC  
ts2  
th2  
SPRxDATA  
Table 3-14. Fractional T1/E1 Receive Timing Parameters  
Symbol Parameter  
Minimum  
Typical  
Maximum  
Units  
t
Serial receive clock period  
50  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
Serial receive clock pulse width (high)  
Serial receive clock pulse width (low)  
Setup to sprxclk rising edge  
pwh  
t
pwl  
t
5
5
s1  
h1  
t
Hold from sprxclk falling edge  
Setup to sprxclk rising edge  
t
10  
10  
s2  
h2  
t
Hold from sprxclk rising edge  
®
28529-DSH-001-K  
Mindspeed Technologies  
258  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.5  
PHY-side Interface Mode (Interleaved Highway)  
Figure 3-16 and 3-21 show the PHY-side interface timing when configured for Interleaved Highway mode. Table 3-  
15 and 3-16 show the PHY-side timing requirements for Interleaved Highway mode.  
Figure 3-16. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 0, IHTxDatShftx = 0))  
tper  
tpwl  
tpwh  
IHTxClk  
th  
ts  
th  
ts  
IHTxSync  
IHTxInDo  
ts  
th  
th  
ts  
tpd  
IHTxData  
Figure 3-17. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 1, IHTxDatShftx = 0)  
tper  
tpwh  
tpwl  
IHTxClk  
ts  
ts  
th  
th  
IHTxSync  
th  
ts  
ts  
th  
IHTxInDo  
IHTxData  
tpd  
®
28529-DSH-001-K  
Mindspeed Technologies  
259  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-18. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 0, IHTxDatShftx = 1)  
tper  
tpw h  
tpw l  
IH TxC lk  
ts  
ts  
th  
th  
IH TxS ync  
IH TxInD o  
IH TxD ata  
th  
ts  
ts  
th  
tpd  
Figure 3-19. PHY-side Interleaved Highway Mode Transmit Timing (IHTxClkPolx = 1, IHTxDatShftx = 1)  
tp e r  
tp w l  
tp w h  
IH T xC lk  
ts  
ts  
th  
th  
IH T xS yn c  
IH T xIn D o  
IH T xD a ta  
th  
ts  
ts  
th  
tp d  
Table 3-15. PHY-side Interleaved Highway Mode Transmit Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
IH transmit clock period  
50  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
per  
t
IH transmit clock pulse width (high)  
IH transmit clock pulse width (low)  
pwh  
t
pwl  
(1)  
t
Setup to ihtxclk rise(fall) edge  
s
(1)  
t
Hold from ihtxclk rise(fall) edge  
3
h
(1)  
t
Delay from ihtxclk rise(fall) edge  
2
20  
pd  
Footnote:  
(1) Timing synchronized to falling clock edge when IHTxClkPolx = 1  
General Note:  
1. All outputs are assumed to have 20 pF loading.  
®
28529-DSH-001-K  
Mindspeed Technologies  
260  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-20. PHY-side Interleaved Highway Mode Receive Timing (Positive Edge - IHRxClkPolx = 0)  
tper  
tpwl  
tpwh  
IHR xClk  
ts  
ts  
ts  
th  
th  
th  
ts  
th  
IHR xSync  
IHR xInDo  
IHR xData  
ts  
th  
Figure 3-21. PHY-side Interleaved Highway Mode Receive Timing (Negative Edge - IHRxClkPolx = 1)  
tpe r  
tpw l  
tp w h  
IH R xC lk  
ts  
th  
ts  
th  
IH R xS ync  
IH R xInD o  
IH R xD ata  
ts  
th  
ts  
th  
th  
ts  
Table 3-16. PHY-side Interleaved Highway Mode Receive Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
IH receive clock period  
50  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
per  
t
IH receive clock pulse width (high)  
IH receive clock pulse width (low)  
pwh  
t
pwl  
(1)  
t
Setup to ihrxclk rise(fall) edge  
s
(1)  
t
Hold from ihrxclk rise(fall) edge  
3
h
Footnote:  
(1) Timing synchronized with falling clock edge when RxClkPolx = 1  
General Note:  
1. All outputs are assumed to have 20 pF loading.  
®
28529-DSH-001-K  
Mindspeed Technologies  
261  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.6  
PHY-Side Interface Timing (UTOPIA)  
Figures 3-22 through 3-23 and Tables 3-17 through 3-18 show the timing requirements and characteristics of the  
PHY-side UTOPIA interface.  
Figure 3-22. PHY-side UTOPIA Transmit Timing  
tper  
phyUTxClk  
tpd  
phyUtxEnb*  
tpd  
phyUTxAddr[4:0]  
tpd  
phyUTxData[15:0]  
tpd  
phyUTxSOC  
tpd  
phyUTxPrty  
th  
ts  
phyUTxClav  
Table 3-17. PHY-side UTOPIA Transmit Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
(1)  
t
UTOPIA transmit clock period  
30.3  
ns  
%
per  
t
UTOPIA transmit clock dutycycle  
Setup to phyutxclk rise edge  
Hold from phyutxclk rise edge  
Enable from phyutxclk fall edge  
50  
duty  
t
8
1
ns  
ns  
ns  
s
t
h
t
-5  
7
pd  
Footnote:  
(1) This clock is a divide-by-2 of IMA_SysClk.  
General Note:  
1. Timing applies with 0-50pF loads on the outputs.  
®
28529-DSH-001-K  
Mindspeed Technologies  
262  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-23. PHY-side UTOPIA Receive Timing  
tper  
phyURxClk  
tpd  
phyURxEnb*  
tpd  
phyURxAddr[4:0]  
phyURxData[15:0]  
phyURxSOC  
th  
ts  
th  
ts  
th  
ts  
phyURxPrty  
th  
ts  
phyURxClav  
Table 3-18. PHY-side UTOPIA Receive Timing Parameters  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
(1)  
t
UTOPIA receive clock period  
30.3  
ns  
%
per  
t
UTOPIA receive clock dutycycle  
Setup to phyurxclk rise edge  
Hold from phyurxclk rise edge  
Enable from phyurxclk fall edge  
50  
duty  
t
8
1
ns  
ns  
ns  
s
t
h
t
-5  
7
pd  
Footnote:  
(1) This clock is a divide-by-2 of IMA_SysClk.  
General Note:  
1. Timing applies with 0-50pF loads on the outputs.  
®
28529-DSH-001-K  
Mindspeed Technologies  
263  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.7  
UTOPIA Interface Timing (ATM-Side)  
Figures 3-24 through 3-25 and Tables 3-19 through 3-22 show the timing requirements and characteristics of the  
ATM-side UTOPIA interface.  
Figure 3-24. ATM-side UTOPIA Transmit Timing  
tper  
atmUTxClk  
atmUTxEnb*  
ts  
th  
atmUTxAddr[4:0]  
atmUTxData[15:0]  
ts  
ts  
ts  
th  
th  
th  
atmUTxSoc  
atmUTxPrty  
tpd  
tdis  
ten  
atmUTxClav  
Table 3-19. ATM-side UTOPIA Transmit Timing Parameters (IMA Enabled - 16 Bit Mode)  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
(1)  
t
UTOPIA transmit clock period  
20  
ns  
%
per  
t
UTOPIA transmit clock dutycycle  
Setup to atmutxclk rise edge  
Hold from atmutxclk rise edge  
Delay from atmutxclk rise edge  
Enable from atmutxclk rise edge  
Disable from atmutxclk rise edge  
40  
4
60  
duty  
t
ns  
ns  
ns  
ns  
ns  
s
t
1
h
t
1
15  
15  
15  
pd  
t
1
en  
t
1
dis  
General Note:  
1. Timing applies with 0-30pF loads on the outputs.  
®
28529-DSH-001-K  
Mindspeed Technologies  
264  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-20. ATM-side UTOPIA Transmit Timing Parameters (IMA Bypassed - 8/16 Bit Mode, IMA  
Enabled - 8 Bit Mode)  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
UTOPIA transmit clock period  
UTOPIA transmit clock dutycycle  
Setup to atmutxclk rise edge  
Hold from atmutxclk rise edge  
Delay from atmutxclk rise edge  
Enable from atmutxclk rise edge  
Disable from atmutxclk rise edge  
30.3  
40  
8
ns  
%
per  
t
60  
duty  
t
ns  
ns  
ns  
ns  
ns  
s
t
1
h
t
1
20  
20  
20  
pd  
t
1
en  
t
1
dis  
General Note:  
Timing applies with 0-30pF loads on the outputs.  
Figure 3-25. ATM-side UTOPIA Receive Timing  
tper  
atmURxClk  
ts  
ts  
th  
atmURxEnb*  
th  
atmURxAddr[4:0]  
tpd  
ten  
tdis  
atmURxData[15:0]  
ten  
tdis  
tdis  
tdis  
tpd  
tpd  
tpd  
atmURxPrty  
ten  
atmURxSoc  
ten  
atmURxClav  
®
28529-DSH-001-K  
Mindspeed Technologies  
265  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-21. ATM-side UTOPIA Receive Timing Parameters (IMA Enabled - 16 Bit Mode)  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
(1)  
t
UTOPIA receive clock period  
20  
ns  
%
per  
t
UTOPIA receive clock dutycycle  
Setup to atmurxclk rise edge  
Hold from atmurxclk rise edge  
Delay from atmurxclk rise edge  
Enable from atmurxclk rise edge  
Disable from atmurxclk rise edge  
40  
4
60  
duty  
t
ns  
ns  
ns  
ns  
ns  
s
t
1
h
t
1
15  
15  
15  
pd  
t
1
en  
t
1
dis  
General Note:  
1. Timing applies with 0-30 pF loads on the outputs.  
Table 3-22. ATM-side UTOPIA Receive Timing Parameters (IMA Bypassed - 8/16 Bit Mode, IMA  
Enabled - 8 Bit Mode)  
Symbol  
Parameter  
Minimum  
Typical  
Maximum  
Units  
t
UTOPIA receive clock period  
30.3  
40  
8
ns  
%
per  
t
UTOPIA receive clock dutycycle  
Setup to atmurxclk rise edge  
Hold from atmurxclk rise edge  
Delay from atmurxclk rise edge  
Enable from atmurxclk rise edge  
Disable from atmurxclk rise edge  
60  
duty  
t
ns  
ns  
ns  
ns  
ns  
s
t
1
h
t
1
20  
20  
20  
pd  
t
1
en  
t
1
dis  
General Note:  
1. Timing applies with 0-30 pF loads on the outputs.  
®
28529-DSH-001-K  
Mindspeed Technologies  
266  
Mindspeed Proprietary and Confidential  
Product Specification  
3.4.8  
External Memory Interface Timing Diagram  
Figure 3-26. External Memory Timing  
tper  
Write Cycle  
Read Cycle  
MemCtrl_CLK  
tapd  
tapd  
tadpd  
tcpd  
tapd  
MemAddr  
tadpd  
tadpd  
tadpd  
MemCtrl_ADSC*  
tcpd  
tcpd  
tcpd  
MemCtrl_CE*  
twpd  
twpd  
MemCtrl_WE*  
MemCtrl_OE*  
topd  
topd  
trdh  
trds  
twdpd  
twdh  
memdata  
Write Data  
Read Data  
®
28529-DSH-001-K  
Mindspeed Technologies  
267  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-23. External Memory Timing Parameters  
Symbol Parameter  
Minimum  
Typical  
Maximum  
Units  
t
Pulse Width Low  
Pulse Width High  
Period  
8
8
-
-
ns  
ns  
ns  
ns  
pwl  
t
pwh  
t
20  
1
-
per  
t
Propagation Delay, MemAddr from rising edge of  
MemCtrl_CLK  
10  
apd  
t
Propagation Delay, MemCtrl_ADSC from rising edge of  
MemCtrl_CLK  
1
1
1
1
-
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
adpd  
t
Propagation Delay, MemCtrl_CE* from rising edge of  
MemCtrl_CLK  
cpd  
t
Propagation Delay, MemCtrl_WE* from rising edge of  
MemCtrl_CLK  
wpd  
t
Propagation Delay, MemCtrl_OE* from rising edge of  
MemCtrl_CLK  
opd  
t
Propagation Delay, valid write data from rising edge of  
MemCtrl_CLK  
wdpd  
t
Hold, valid write data from rising edge of MemCtrl_CLK  
Setup, read data to rising edge of MemCtrl_CLK  
Hold, read data from rising edge of MemCtrl_CLK  
1
5
1
-
-
-
ns  
ns  
ns  
wdh  
t
rds  
rdh  
t
Footnote:  
(1) All outputs are assumed to have a load of 20pf  
3.4.9  
JTAG Interface Timing  
Figure 3-27 and Table 3-24 show the timing requirements and characteristics of the JTAG interface.  
Figure 3-27. JTAG Timing  
tper  
TCK  
trec  
TRST*  
ts  
th  
TMS  
TDI  
ts  
th  
tdis1  
tdis2  
ten  
tpd  
TDO  
®
28529-DSH-001-K  
Mindspeed Technologies  
268  
Mindspeed Proprietary and Confidential  
Product Specification  
Table 3-24. JTAG Timing Parameters  
Symbol Parameter  
Minimum  
Typical  
Maximum  
Units  
t
tck clock period  
100  
40  
ns  
%
per  
t
tck clock duty cycle  
60  
duty  
t
Recovery, tck rise edge from trst_n rise edge  
Setup to tck rise edge  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
rec  
t
10  
s
t
Hold from tck rise edge  
Delay from tck fall edge  
Enable from tck fall edge  
Disable from tck fall edge  
Disable from tck fall edge  
10  
h
t
15  
15  
15  
15  
pd  
t
en  
t
t
dis1  
dis2  
Footnote:  
(1) All outputs are assumed to have a load of 80pf  
3.4.10  
One-second Interface Timing  
Figure 3-28 and Table 3-25 show the timing requirements and characteristics of the one-second interface.  
Figure 3-28. One-second Timing  
t
t
t
per  
pwh1  
pwl1  
8kHzIn  
t
t
pd  
pd  
OneSecIO  
General Notes:  
When OneSecIO is configured as an output, it is equal to 8kHzIn/8000.  
500027_033  
Table 3-25. One Second Timing Parameters  
Label  
Description  
Min  
Max  
Unit  
8KHzIn Clock Frequency  
8KHzIn Duty Cycle  
0.01  
40%  
1
100  
60%  
20  
KHz  
t
per  
t
Propagation Delay, OneSecOut from the rising edge of OneSecClk  
ns  
pd  
®
28529-DSH-001-K  
Mindspeed Technologies  
269  
Mindspeed Proprietary and Confidential  
Product Specification  
3.5  
Package Specification  
3.5.1  
Mechanical Description  
The M28525/9 is a 484-ball, 27mm PBGA package. A mechanical drawing of the device is provided in Figure 3-29  
and Figure 3-30.  
Figure 3-29. M28525/9 Mechanical Drawing (Bottom View)  
®
28529-DSH-001-K  
Mindspeed Technologies  
270  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-30. M28525/9 Mechanical Drawing (Top and Side Views)  
®
28529-DSH-001-K  
Mindspeed Technologies  
271  
Mindspeed Proprietary and Confidential  
Product Specification  
3.6  
Interface Pin Description  
Figure 3-31. M28529 Pinout Diagram, UTOPIA-to-Serial (Bottom View)  
®
28529-DSH-001-K  
Mindspeed Technologies  
272  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-32. M28525 Pinout Diagram Utopia-to-Serial (Bottom View)  
®
28529-DSH-001-K  
Mindspeed Technologies  
273  
Mindspeed Proprietary and Confidential  
Product Specification  
Figure 3-33. M28525/9 Pinout Diagram UTOPIA-to-UTOPIA (Bottom View)  
®
28529-DSH-001-K  
Mindspeed Technologies  
274  
Mindspeed Proprietary and Confidential  
4.0 Appendices  
4.1  
IMA Version 1.1 PICS Proforma  
To evaluate conformance of a particular implementation, it is necessary to have a statement of which capabilities  
and options have been implemented for a given protocol. Such a statement is called a Protocol Implementation  
Conformance Statement (PICS).  
4.1.1  
Scope  
This annex provides the PICS proforma for the Inverse Multiplexing for ATM (IMA) Version 1.1 Specification as  
described in AF-PHY-0086.001[A-1] in compliance with the relevant requirements, and in accordance with the  
relevant guidelines, given in ISO/IEC 9646-2[A-3].  
4.1.2  
Definitions  
This document uses the following terms defined in ISO/IEC 9646-1[A-2]:  
a Protocol Implementation Conformance Statement (PICS) is a statement made by the supplier of an  
implementation or a system, stating which capabilities have been implemented for a given protocol,  
a PICS Proforma is a document in the form of a questionnaire, designed by the protocol specifier or the  
conformance test suite specifier, which when completed for an implementation or a system, becomes the  
PICS, and  
a static conformance review is a review of the extent to which the static conformance requirements are met by  
the implementation, accomplished by comparing the PICS with the static conformance requirements  
expressed in the relevant protocol specification.  
4.1.3  
Symbols and Conventions  
M—Mandatory  
O—Option (may be selected to suit the implementation, provided that any requirements applicable to the options  
are observed)  
4.1.4  
Conformance  
The supplier of a protocol implementation, which is claimed to conform to AF-PHY-0086.001[A-1], is required to  
complete a copy of the PICS proforma provided in the following sections of this annex and is required to provide the  
information necessary to identify both the supplier and the implementation.  
®
28529-DSH-001-K  
Mindspeed Technologies  
275  
Mindspeed Proprietary and Confidential  
Appendices  
4.1.5  
IMA PICS Proforma  
4.1.5.1  
Global Statement of Conformance  
The implementation described in this PICS Proforma meets all of the mandatory requirements of the protocol  
specification.  
Yes__XX  
No__  
Note: Answering “No” indicates non-conformance to the protocol specification. Non-supported mandatory  
capabilities are to be identified in the following tables, with an explanation in the “Comments” section of each table  
as to why the implementation is “non conforming”.  
4.1.5.2  
Instructions for Completing the PICS Proforma  
Each question in this section refers to a major function of the protocol. Answering “Yes” to a particular question  
states that the implementation supports all of the mandatory procedures for that function, as defined in the  
referenced section of AF-PHY-0086.001[A-1]. Answering “No” to a particular question in this section states that the  
implementation does not support that function of the protocol.  
A supplier may also provide additional information, categorized as exceptional (X) or supplementary information.  
This additional information should be provided in the Support column as items labeled X<I> for exceptional or S<I>  
for supplementary information, respectively for cross-reference purposes, where <I> is any unambiguous number.  
4.1.5.3  
Table 4-1.  
Item  
IMA Protocol Functions  
Basic IMA Protocol (BIP) Definition Functions (1 of 5)  
Cond. for Status  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
BIP.1  
BIP.2  
BIP.3  
Does the implementation support a number N (1 N 32) of transmission  
links within an IMA group operating at the same nominal link cell rate  
(LCR)?  
M
(R-1)  
Yes X No__  
Does the implementation support the IMA interface connected to another  
interface over clear channel facilities (implies cells generated by transmit  
IMA shall only be terminated at the receive IMA)?  
M
M
(R-2)  
(R-3)  
Yes X No__  
Yes X No__  
Does the interface specific TC sublayer of the implementation pass all cells  
to the IMA sublayer or provide an indication that a cell was received (this  
includes HEC errored cells)?  
BIP.4  
BIP.5  
BIP.6  
BIP.7  
BIP.8  
Does the implementation prohibit cell rate decoupling at the interface  
specific TC sublayer?  
M
M
M
M
M
(R-4)  
(R-5)  
(R-6)  
(R-7)  
(R-8)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Does the implementation assign a LID unique within the IMA group to each  
Tx IMA link on each physical link?  
Does the implementation ensure that the LID does not change while the link  
is a member of the IMA group?  
Does the implementation distribute ATM cells arriving from the ATM layer  
over the N links in a cyclic round-robin fashion, and on a cell-by-cell basis?  
Does the implementation distribute ATM cells over the links using an  
ascending order based on the LID assigned to each link within the IMA  
group?  
®
28529-DSH-001-K  
Mindspeed Technologies  
276  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-1.  
Basic IMA Protocol (BIP) Definition Functions (2 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
BIP.9  
Does the implementation support the ICP cell format defined in Table 2 on  
page 31 to convey IMA configuration, synchronization, status, and defect  
information to the far-end?  
M
(R-9)  
Yes X No__  
BIP.10 Does the implementation perform cell rate decoupling by inserting IMA Filler  
cells in place of ATM cells when there is no cell available at the ATM layer?  
M
M
(R-10)  
(R-11)  
Yes X No__  
Yes X No__  
BIP.11 Does the implementation accept, on receive, ATM cells from the N links  
according to ascending order based on the LID received in the ICP cells on  
the incoming link?  
BIP.12 Does the implementation, on receive, compensate for link differential delays  
and rebuild the original ATM cell stream?  
M
M
(R-11)  
(R-11)  
Yes X No__  
Yes X No__  
BIP.13 Does the implementation discard received Filler cells and cells with bad  
HEC?  
BIP.14 Does the implementation process and discard incoming ICP cells?  
M
M
(R-11)  
(R-11)  
Yes X No__  
Yes X No__  
BIP.15 Does the implementation aggregate, on receive, the ATM cell stream to the  
ATM layer?  
BIP.16 Does the implementation preserve the order of incoming cells?  
M
M
(R-11)  
(R-12)  
Yes X No__  
Yes X No__  
BIP.17 Does the implementation use the ICP cell to maintain IMA protocol  
synchronization?  
BIP.18 Does the implementation use the ICP cell to maintain link delay  
synchronization?  
M
M
M
M
M
(R-12)  
(R-13)  
(R-14)  
(R-15)  
(R-16)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.19 Does the implementation transmit first the most significant bit of each octet  
of the IMA OAM cell?  
BIP.20 Does the implementation support the same cell header for both the Filler and  
ICP cell formats as defined in Table 1 on page 28 and Table 2 on page 31?  
BIP.21 Does the implementation use bit 7 of octet 7 (CID field) of the Filler and ICP  
cells to identify the IMA OAM cell as an ICP or Filler cell?  
BIP.22 Does the implementation use octets 52-53 as specified in ITU-T  
Recommendation I.610 [A-5] for octets 52-53 of the OAM cells of the F1/F3  
flows?  
BIP.23 Does the implementation support the Filler cell format defined in Table 1 on  
page 28?  
M
M
M
M
M
M
(R-17)  
(R-18)  
(R-19)  
(R-20)  
(R-21)  
(R-22)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.24 Does the implementation support the ICP cell format defined in Table 2 on  
page 31?  
BIP.25 Does the implementation transmit the content of the link specific fields  
appearing in class A over the link for which these fields apply?  
BIP.26 Does the implementation transmit the same content of fields appearing in  
classes B and C of the ICP cell over all links within an IMA group?  
BIP.27 Does the implementation use the LID bits (bits 4-0 of octet 7) in the ICP cell  
to identify the Link ID (range being 0 to 31)?  
BIP.28 Does the implementation use the “Tx State” field, located in the Link “x”  
Information field in an ICP cell, to report the transmit state of the IMA link on  
which the NE IMA is transmitting ICP cells carrying LID = “x” (“x” being a  
value between 0 and 31)?  
®
28529-DSH-001-K  
Mindspeed Technologies  
277  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-1.  
Basic IMA Protocol (BIP) Definition Functions (3 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
BIP.29 Does the implementation use the “Rx State”, located in the Link “x”  
Information field in an ICP cell, to report the receive state of the incoming  
IMA link on which the FE IMA is transmitting ICP cells carrying LID = “x”  
(“x” being a value between 0 and 31)?  
M
(R-23)  
Yes X No__  
BIP.30 Does the implementation use the “Rx Defect Indicators” field, located  
in the Link “x” Information field in an ICP cell, to report the Rx defect  
indicators corresponding to the incoming IMA link on which the FE IMA is  
transmitting ICP cells carrying LID = “x” (“x” being a value between 0 and  
31)?  
M
(R-24)  
Yes X No__  
BIP.31 Does the implementation always transmit ICP cells with Octet 50 unused and  
set to “0x6A” as defined in ITU-T Recommendation I.432 [A-4]?  
M
M
M
M
M
M
M
(R-25)  
(R-26)  
(R-27)  
(R-28)  
(R-29)  
(R-30)  
(R-31)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.32 Does the implementation reserve the End-to-End Channel field (Octet 51) as  
a proprietary channel?  
BIP.33 Does the implementation set the End-to-End Channel field (Octet 51) to “0”  
when not using this field?  
BIP.34 Does the implementation not rely on the processing of the End-to-End  
Channel field for any IMA functionality?  
BIP.35 Does the implementation only consider the information within ICP cells  
exhibiting neither a HEC nor a CRC-10 error?  
BIP.36 Does the implementation always transmit "0x03" over the OAM Label in the  
Filler and ICP cells?  
BIP.37 If the implementation does not support the IMA version proposed by the  
OAM Label received from the far-end IMA unit, does the implementation  
report the “Config-Aborted - Unsupported IMA Version" state over the  
“Group Status and Control” field?  
BIP.38 Does the implementation transmit IMA frames, composed of M consecutive  
cells, on each link within the IMA group?  
M
M
M
M
M
M
M
M
M
O
(R-32)  
(R-33)  
(R-34)  
(R-35)  
(R-36)  
(R-36)  
(R-37)  
(R-38)  
(R-39)  
(O-1)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.39 Does the implementation send ICP cells on each link once per IMA frame,  
hence every M cells?  
BIP.40 Does the implementation use the IFSN field in the ICP cell to indicate the  
sequence number of the IMA frame?  
BIP.41 Does the implementation increment the IFSN field in the ICP cell from 0 to  
255 and repeat the sequence?  
BIP.42 Does the implementation increment the IFSN field in the ICP cell with each  
IMA frame on a per-link basis?  
BIP.43 Within an IMA frame, does the implementation place identical IFSN values in  
the ICP cells sent on each link?  
BIP.44 Does the implementation align the transmission of the IMA frame on all links  
within an IMA group?  
BIP.45 Does the implementation use the ICP Cell Offset field (octet 9) to indicate the  
location of the ICP cell within the IMA frame of length M cells?  
BIP.46 Does the implementation always set the value of the ICP cell offset between  
0 and M-1 where M is the IMA frame length in cells?  
BIP.47 Does the implementation distribute the ICP cells, from link to link within the  
IMA group, in an uniform fashion across the IMA frame?  
®
28529-DSH-001-K  
Mindspeed Technologies  
278  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-1.  
Basic IMA Protocol (BIP) Definition Functions (4 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
BIP.48 Does the implementation select the offset of the ICP cell sent of any link  
when the link is assigned a LID?  
M
(R-40)  
Yes X No__  
BIP.49 Does the implementation retain the offset of the ICP cell sent on a given link  
until the link is no longer part of the group?  
M
M
(R-40)  
(R-41)  
Yes X No__  
Yes X No__  
BIP.50 Does the implementation always use the Frame Length field in the ICP cell to  
indicate the value of M?  
BIP.51 Does the implementation support M = 128?  
BIP.52 Does the implementation support M = 32?  
BIP.53 Does the implementation support M = 64?  
BIP.54 Does the implementation support M = 256?  
M
O
(R-42)  
(O-2)  
(O-2)  
(O-2)  
(R-43)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
O
O
BIP.55 Does the implementation only change the value M at group  
start-up time?  
M
BIP.56 Does the implementation use on transmit the value configured by the UM?  
(O-2)  
(O-2)  
M
M
(CR-1)  
(CR-2)  
Yes X No__  
Yes X No__  
BIP.57 Does the implementation allow different values of M in both Tx and Rx  
directions?  
BIP.58 Does the implementation synchronize its incoming links using the received  
M value for IMA frame synchronization?  
(O-2)  
M
M
(CR-3)  
(R-44)  
Yes X No__  
Yes X No__  
BIP.59 Does the implementation abort the start-up procedure using the  
corresponding code in the Group Status and Control field of the ICP cell  
when it does not support the received M?  
BIP.60 Does the implementation allow to configure the value M?  
O
(O-3)  
Yes X No__  
Yes X No__  
BIP.61 Does the implementation set the SCCI field to the previously transmitted  
SCCI field value, incremented modulo 256, to indicate a change on at least  
one of the fields appearing in octets 12 through 49 in the transmitted ICP  
cell?  
M
(R-45)  
BIP.62 Does the implementation use the SCCI field to identify received ICP cells for  
processing when ICP cells are monitored on more than one link, or when the  
monitored link has changed?  
M
M
(R-46)  
(R-46)  
Yes X No__  
Yes X No__  
BIP.63 Does the implementation process the fields in octets 12 through 49 if the  
SCCI field has advanced beyond the SCCI value of the last processed ICP  
cell?  
BIP.64 Does the implementation select the IMA ID at group start-up time?  
BIP.65 Does the implementation transmit the IMA ID in the IMA ID field?  
BIP.66 Does the implementation allow to configure the value of IMA ID?  
M
M
O
(R-47)  
(R-48)  
(O-4)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.67 Does the implementation use the “Group Symmetry Mode” field, specified in  
Table 2 on page 31, to indicate the symmetry of the IMA group?  
M
(R-49)  
BIP.68 Does the implementation ensure that the symmetry of the group is only  
established or changed at group start-up time?  
M
M
O
(R-50)  
(R-51)  
(O-5)  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.69 Does the implementation support the Symmetrical Configuration and  
Operation mode?  
BIP.70 Does the implementation support the Symmetrical Configuration and  
Asymmetrical Operation mode?  
®
28529-DSH-001-K  
Mindspeed Technologies  
279  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-1.  
Basic IMA Protocol (BIP) Definition Functions (5 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
BIP.71 Does the implementation support the Asymmetrical Configuration and  
Operation mode?  
O
(O-6)  
Yes X No__  
BIP.72 Does the implementation abort the start-up procedure using the appropriate  
code defined in the “Group Status and Control” field of the ICP cell (as  
specified in Table 2 on page 31) if the NE does not support the symmetry  
mode proposed by the FE?  
M
M
O
(R-52)  
(R-52)  
(O-7)  
Yes X No__  
Yes X No__  
Yes X No__  
BIP.73 Does the implementation abort the start-up procedure using the appropriate  
code defined in the “Group Status and Control” field of the ICP cell (as  
specified in Table 2 on page 31) if the symmetry mode proposed by the FE  
and the configured symmetry mode of the NE do not match?  
BIP.74 In order to allow a fast recovery when (O-5) or (O-6) is used at the NE and  
when the FE IMA unit can only be configured to the “Symmetrical  
Configuration and Operation” mode, does the implementation adjust to  
“Symmetrical Configuration and Operation”.  
BIP.75 Does the implementation support only the valid combinations of group  
symmetry modes at each end of the IMA virtual link as specified in Table 4  
on page 36?  
M
O
(R-53)  
(O-8)  
Yes X No__  
Yes X No__  
BIP.76 Does the implementation allow configuration of the group mode?  
Comments: Maximum group size is 8 links.  
Table 4-2.  
QoS Requirements Functions  
Cond. for  
Status  
Status  
Pred.  
Item  
Protocol feature  
Ref.  
Support  
QOS.1 Does the implementation support all ATM traffic/QoS classes supported by  
the ATM layer?  
M
(R-54)  
Yes X No__  
Comments:  
Table 4-3.  
CTC and ITC Operation Functions (1 of 2)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
CIT.1  
Does the implementation indicate to the FE in which transmit clock mode it  
is running in the “Transmit Clock Mode” field in the ICP cell?  
M
(R-55)  
Yes X No__  
CIT.2  
CIT.3  
Does the implementation support the CTC mode in the transmit direction?  
M
M
(R-56)  
(R-57)  
Yes X No__  
Yes X No__  
Does the implementation only indicate to the FE that it is in the CTC mode  
when all the “transmit” clocks of the links in the group are derived from the  
same source?  
CIT.4  
CIT.5  
Does the implementation support the ITC mode in the transmit direction?  
O
O
(O-9)  
Yes X No__  
Yes X No__  
Does the implementation indicate that it is in the ITC mode even if all the  
transmit clocks of the links in the group are derived from the same source?  
(O-10)  
CIT.6  
CIT.7  
Does the implementation use the cell stuffing procedure to prevent link  
transmit buffer under-run or over-run?  
(O-9)  
M
M
(CR-4)  
(R-58)  
Yes X No__  
Yes X No__  
Does the implementation indicate a stuff event in the ICP cell preceding a  
stuff event using the mandatory LSI codes specified in Table 2 on page 30?  
®
28529-DSH-001-K  
Mindspeed Technologies  
280  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-3.  
CTC and ITC Operation Functions (2 of 2)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
CIT.8  
Does the implementation perform stuffing by repeating the ICP cell  
containing the LSI code indicating that “this cell is 1 out of 2 ICP cells  
comprising the stuff event”?  
M
(R-59)  
Yes X No__  
CIT.9  
Does the implementation also indicate an incoming stuff event in the fourth,  
third, and second ICP preceding the stuff event using the optional LSI  
codes?  
O
(O-11)  
Yes X No__  
CIT.10 At any given link, does the implementation ensure it does not introduce a  
stuff event more than once every 5*M ICP, Filler and ATM layer cells?  
M
M
(R-60)  
(R-61)  
Yes X No__  
Yes X No__  
CIT.11 Does the implementation remove one of any two consecutive ICP cells with  
LSI code indicating “this cell is 1 out of the 2 ICP cells comprising the stuff  
event”?  
CIT.12 Does the implementation ensure that the SICP cell is not counted as a cell  
for the purposes of determining the IMA round-robin sequence?  
M
(R-61)  
Yes X No__  
CIT.13 Does the implementation support CTC and ITC modes on receive?  
M
M
(R-62)  
(R-63)  
Yes X No__  
Yes X No__  
CIT.14 Does the implementation inform the UM of a mismatch between the FE and  
NE IMA transmit clock modes?  
CIT.15 Does the implementation ensure that a restart is not caused if the  
implementation detects a mismatch between the FE and NE Transmit clock  
modes?  
M
O
(R-63)  
(O-12)  
Yes X No__  
Yes X No__  
CIT.16 Does the implementation rely on at least one ICP cell with a correct CRC-10  
in order to process the incoming stuff cell indication code (this is  
recommended)?  
Comments:  
Table 4-4.  
IMA Data Cell (IDC) Rate Implementation Functions (1 of 2)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IDC.1  
IDC.2  
IDC.3  
IDC.4  
Does the implementation ensure on transmit that a Filler cell is not injected if  
an ATM layer cell is available for scheduling?  
M
(R-64)  
(R-64)  
(R-65)  
(R-66)  
Yes X No__  
Does the implementation only check on transmit that an ATM layer cell is  
available and accept that cell only when the Tx IDCC ticks?  
M
M
M
Yes X No__  
Yes X No__  
Yes X No__  
Does the implementation only select the TRL from the set of links whose  
transmit state is Active?  
If there is no link in the Active state, does the implementation select one of  
the links in the Usable state, if any, or one of the links in the Unusable state  
otherwise?  
IDC.5  
Does the implementation only select or change the TRL during the following  
situations:  
M
(R-67)  
Yes X No__  
during group start-up,  
when the previously selected TRL's transmit state changes from Active to  
any other state (e.g., Usable, Unusable, or Not In Group) while another link’s  
transmit state is Active, or  
when the previously selected TRL’s transmit state changes from Usable to  
Unusable or Not In Group while another link’s transmit state is Active or  
Usable?  
®
28529-DSH-001-K  
Mindspeed Technologies  
281  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-4.  
IMA Data Cell (IDC) Rate Implementation Functions (2 of 2)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IDC.6  
IDC.7  
IDC.8  
IDC.9  
Does the implementation indicate the selected or changed TRL to the FE over  
the “Transmit Timing Information” field in the ICP cell?  
M
(R-68)  
Yes X No__  
Does the implementation derive the Tx IDCC from the selected TRL  
according to Equation 1 on page 40?  
M
M
M
M
(R-69)  
(R-70)  
(CR-5)  
(CR-6)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
When running in the CTC mode, does the implementation introduce a stuff  
event every 2048 ICP, Filler and ATM layer cells on all links?  
Does the implementation introduce a stuff event every 2048 ICP, Filler and  
ATM layer cells on the TRL?  
(O-9)  
IDC.10 Does the implementation introduce stuff events on links other than the TRL (O-9)  
in order to compensate for the timing difference between the TRL and the  
other links?  
IDC.11 Does the implementation remove CDV attributed to the presence of ICP cells  
by a mechanism equivalent to providing a small smoothing buffer into which  
cells are placed after reordering and after removing ICP cells?  
M
M
M
(R-71)  
(R-72)  
(R-73)  
Yes X No__  
Yes X No__  
Yes X No__  
IDC.12 If the TRL is in the Working state and the FE has, for at least 100  
milliseconds, identified a given link as the TRL, does the implementation  
derive the Rx IDCR using the incoming link indicated by the FE as the TRL?  
IDC.13 Does the implementation have an equivalent behavior to the following: when  
the IMA data cell clock at the receiver ticks, one cell is removed from the  
smoothing buffer; if the cell is a Filler cell, then the Filler cell is discarded and  
nothing passed to the ATM layer; if the cell is not a Filler cell, then it is passed  
to the ATM layer?  
Comments:  
Table 4-5.  
Link Differential Delay (LDD) Functions  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
LDD.1 Does the implementation introduce a differential delay among the  
constituent links of a maximum of 2.5 cell times at the physical link rate?  
M
(R-74)  
(R-75)  
(O-13)  
Yes X No__  
LDD.2 Does the implementation tolerate up to at least 25 milliseconds of link  
differential delay on receive?  
M
O
Yes X No__  
Yes X No__  
LDD.3 Does the implementation allow configuring the link differential delay  
tolerance?  
Comments:  
Table 4-6.  
IMA Interface Operation (IIO) Functions (1 of 4)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IIO.1  
IIO.2  
Does the implementation support the Tx LSM defined in Table 8 on page 52?  
M
M
(R-76)  
(R-77)  
Yes X No__  
Yes X No__  
Does the implementation support the Rx LSM defined in Table 9 on page  
53?  
IIO.3  
Does the implementation signal the current state of the Tx LSM to the FE  
IMA unit via the ICP cells?  
M
(R-78)  
Yes X No__  
®
28529-DSH-001-K  
Mindspeed Technologies  
282  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-6.  
IMA Interface Operation (IIO) Functions (2 of 4)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IIO.4  
IIO.5  
IIO.6  
Does the implementation perform the actions corresponding to the Tx LSM  
sub-states?  
M
(R-78)  
Yes X No__  
Does the implementation update the Tx LSM according the occurrence of  
the events listed in Table 8 on page 52?  
M
M
(R-78)  
(R-78)  
Yes X No__  
Yes X No__  
Does the implementation treat sequentially the incoming events that trigger  
the Tx LSM, although the order of treatment is implementation specific if  
these events appear simultaneously?  
IIO.7  
IIO.8  
IIO.9  
Does the implementation signal the current state of the Rx LSM to the FE  
IMA unit via the ICP cells?  
M
M
M
M
(R-78)  
(R-78)  
(R-78)  
(R-78)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Does the implementation perform the actions corresponding to the Rx LSM  
sub-states?  
Does the implementation update the Rx LSM according the occurrence of  
the events listed in Table 9 on page 53?  
IIO.10 Does the implementation treat sequentially the incoming events that trigger  
the Rx LSM, although the order of treatment is implementation specific if  
these events appear simultaneously?  
IIO.11 Does the implementation report any change of the Tx and Rx LSMs within  
the next 2*M (where M is the M used by the IMA transmitter) cells on that  
link over the “Tx State” and “Rx State” fields of the Link Information field  
(refer to Table 3 on page 32)?  
M
(R-79)  
Yes X No__  
IIO.12 Does the implementation use one of the Unusable encodings when reporting  
the Unusable state?  
M
O
(R-80)  
(O-14)  
(R-81)  
(R-82)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
IIO.13 Does the implementation use “Inhibited”, “Failed”, “Fault” or “Mis-  
connected” as a reason when reporting the Unusable state?  
IIO.14 Does the implementation re-evaluate the TX and Rx LSMs state upon each  
incoming ICP cell with new state indication?  
M
M
IIO.15 Does the implementation allow the valid combinations of Tx and Rx LSM  
states and disallow the invalid combinations when running in the  
Symmetrical Configuration and Operation mode?  
IIO.16 Does the implementation allow the valid combinations of Tx and Rx LSM  
states and disallow the invalid combinations when running in the  
Symmetrical Configuration and Asymmetrical Operation mode?  
M
(R-82)  
Yes X No__  
IIO.17 Does the implementation allow all combinations of Tx and Rx LSM states  
when running in the Asymmetrical Configuration and Operation mode?  
M
M
(R-82)  
(R-83)  
Yes X No__  
Yes X No__  
IIO.18 Does the implementation report any GSM states, with the exception of the  
Not Configured state, to the FE group using the corresponding value defined  
in the “Group Status and Control” field?  
IIO.19 Does the implementation always send over each link the same value in the  
“Group Status and Control” field for at least 2 consecutive IMA frames?  
M
M
M
(R-84)  
(R-85)  
(R-86)  
Yes X No__  
Yes X No__  
Yes X No__  
IIO.20 Does the implementation validate the Rx OAM Label, Rx M, and Rx IMA ID  
over at least one link before moving into the Start-up-Ack state?  
IIO.21 Does the implementation use the validated Rx OAM Label, Rx M, and Rx  
IMA ID to achieve IMA frame synchronization as defined in Section 11 on  
page 68?  
®
28529-DSH-001-K  
Mindspeed Technologies  
283  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-6.  
IMA Interface Operation (IIO) Functions (3 of 4)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IIO.22 Does the implementation ensure that at least P links in the transmit  
M
(R-87)  
Yes X No__  
Tx  
direction and P links in the received direction can be moved into the Active  
Rx  
state before moving the GSM into the Operational state?  
IIO.23 Does the implementation ensure that P is greater than zero?  
M
M
M
(R-88)  
(R-88)  
(R-89)  
Yes X No__  
Yes X No__  
Yes X No__  
Tx  
IIO.24 Does the implementation ensure that P is greater than zero?  
Rx  
IIO.25 Does the implementation ensure that P and P are equal when the  
Tx  
Rx  
configured in the Symmetrical Configuration and Operation mode?  
IIO.26 Does the implementation allow configuration of the value of P ?  
O
O
(O-15)  
(O-15)  
(R-90)  
Yes X No__  
Yes X No__  
Yes X No__  
Tx  
IIO.27 Does the implementation allow configuration of the value of P  
?
Rx  
IIO.28 Does the implementation report the Config-Aborted state for at least one  
second when the configuration requested by the FE is unacceptable?  
M
IIO.29 Does the implementation support the GSM state transitions as defined in 13  
on page 60?  
M
M
M
M
M
M
M
(R-91)  
(R-92)  
(R-92)  
(R-92)  
(R-92)  
(R-93)  
(R-93)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
IIO.30 Does the implementation determine and report that the group is up when  
both the local and remote GSMs are Operational?  
IIO.31 Does the implementation determine and report that the group is down when  
either the local or the remote GSM is not operational?  
IIO.32 Does the implementation report the proper reasons why the GSM is not  
operational?  
IIO.33 Does the implementation report the highest priority reason according to  
Table 14 on page 61?  
IIO.34 Does the implementation report the entrance of the GTSM into the Down  
state to the UM and ATM Layer Management?  
IIO.35 Is the report of the entrance of the GTSM into the Down state the only  
notification to the ATM Layer Management about Physical Layer defects or  
failures?  
IIO.36 Does the implementation report the return of the GTSM to the Up state to  
the UM and ATM Layer Management?  
M
M
(R-94)  
(R-95)  
Yes X No__  
Yes X No__  
IIO.37 Does the implementation ensure it does not drop any ATM layer cells when  
adding or recovering links while the GSM is maintained in the Operational  
state?  
IIO.38 Does the implementation ensure that it does not drop any ATM layer cells  
when deleting or inhibiting links while the GSM is maintained in the  
Operational state?  
M
M
M
(R-96)  
(R-97)  
(R-98)  
Yes X No__  
Yes X No__  
Yes X No__  
IIO.39 When running the group start-up procedure, does the implementation  
ensure that all accepted links have their states changed to Tx=Usable in the  
same update of the ICP cell?  
IIO.40 When running the group start-up procedure and after the Tx state of all  
accepted links has been reported in a previous update of the ICP cell, does  
the implementation ensure that all accepted links have their states changed  
to Rx=Active in the same update of the ICP cell?  
IIO.41 When running the group start-up procedure and after the Rx state of all  
accepted links has been reported in a previous update of the ICP cell, does  
the implementation ensure that all accepted links have their states changed  
to Tx=Active in the same update of the ICP cell?  
M
(R-99)  
Yes X No__  
®
28529-DSH-001-K  
Mindspeed Technologies  
284  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-6.  
IMA Interface Operation (IIO) Functions (4 of 4)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IIO.42 When running the group start-up procedure, does the implementation wait a  
minimum of one second, unless all the configured links are being reported  
Tx=Usable by FE, before reporting links Rx=Active?  
M
(R-100)  
Yes X No__  
IIO.43 When running the group start-up procedure, does the implementation wait a  
minimum of one second, unless all the configured links are being reported  
Rx=Active by FE, before reporting links Tx=Active?  
M
M
(R-101)  
(R-102)  
Yes X No__  
Yes X No__  
IIO.44 Does the implementation synchronize the insertion of new links or  
recovered links added using the slow recovery mechanism, defined in  
Section 12.1.3.1 on page 74, within the IMA RR?  
IIO.45 Does the implementation execute only one LASR procedure per IMA group  
at any time (even if more than one link is inserted at the same time)?  
M
M
(R-103)  
(R-104)  
Yes X No__  
Yes X No__  
IIO.46 Does the implementation delay the insertion of one or more new links or a  
possible slow link recovery when the LASR is in progress until the link  
addition procedure is completed or aborted?  
IIO.47 When running the LASR procedure, does the implementation ensure that all  
the inserted links have their states changed to Tx=Usable in the same update  
of the ICP?  
M
M
(R-105)  
(R-106)  
Yes X No__  
Yes X No__  
IIO.48 When running the LASR procedure and after the Tx state of all accepted  
links has been reported Usable in a previous update of the ICP cell, does the  
implementation ensure that all the inserted links have their states changed  
to Rx=Active in the same update of the ICP cell?  
IIO.49 When running the LASR procedure and after the Rx state of all accepted  
links has been reported Active in a previous update of the ICP cell, does the  
implementation ensure that all the inserted links have their states changed  
to Tx=Active in the same update of the ICP cell?  
M
(R-107)  
Yes X No__  
IIO.50 When running the LASR procedure, does the implementation wait a  
minimum of one second, unless all the inserted links are being reported  
Tx=Usable by FE, before reporting links Rx=Active?  
M
M
(R-108)  
(R-109)  
Yes X No__  
Yes X No__  
IIO.51 When running the LASR procedure, does the implementation wait a  
minimum of one second, unless the inserted links are being reported  
Rx=Active by FE, before reporting links Tx=Active?  
Table 4-7.  
IMA Frame Synchronization (IFS) Mechanism Functions (1 of 2)  
Cond. for Status  
Protocol feature  
Item  
Ref.  
Support  
Status  
Pred.  
IFS.1  
Does the implementation perform IMA frame synchronization on each link,  
M
(R-110)  
Yes X No__  
based on the IFSM defined in Figure 19 on page 69 and Table 16 on page  
69?  
IFS.2  
Does the implementation operate the IFSM for each link independently of  
any link defects and link delay compensation?  
M
(R-111)  
Yes X No__  
IFS.3  
IFS.4  
IFS.5  
IFS.6  
Does the implementation support the default value 2 for Alpha(α)?  
Does the implementation support the default value 2 for Beta(β)?  
Does the implementation support the default value 1 for Gamma(γ)?  
Does the implementation support the value 1 for Alpha(α)?  
M
M
M
O
(R-112)  
(R-112)  
(R-112)  
(O-16)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
®
28529-DSH-001-K  
Mindspeed Technologies  
285  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-7.  
IMA Frame Synchronization (IFS) Mechanism Functions (2 of 2)  
Cond. for Status  
Protocol feature  
Item  
Ref.  
Support  
Status  
Pred.  
IFS.7  
IFS.8  
IFS.9  
Does the implementation support the value 1 for Beta(β)?  
O
O
O
O
O
O
O
O
M
(O-16)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Does the implementation support the value 3 for Beta(β)?  
Does the implementation support the value 4 for Beta(β)?  
(O-16)  
(O-16)  
(O-16)  
(O-16)  
(O-16)  
(O-16)  
(O-16)  
(R-113)  
IFS.10 Does the implementation support the value 5 for Beta(β)?  
IFS.11 Does the implementation support the value 2 for Gamma(γ)?  
IFS.12 Does the implementation support the value 3 for Gamma(γ)?  
IFS.13 Does the implementation support the value 4 for Gamma(γ)?  
IFS.14 Does the implementation support the value 5 for Gamma(γ)?  
IFS.15 Does the implementation assume that any occurrence of HEC/CRC errored  
cell in the ICP cell position was an ICP cell?  
IFS.16 Does the implementation ignore the cell content of a HEC/CRC errored cell in  
the ICP cell position?  
M
O
M
O
O
O
(R-113)  
(O-17)  
(R-114)  
(O-18)  
(O-18)  
(O-19)  
Yes X No__  
Yes X No__  
Yes X No__  
IFS.17 Does the implementation go into the Hunt state from any other state when  
no longer getting cells from the physical layer?  
IFS.18 Does the implementation maintain IMA frame synchronization for cases 1, 2,  
3, and 6 identified in Figure 20 on page 71?  
IFS.19 Does the implementation maintain IMA frame synchronization for case 4  
identified in Figure 20 on page 71?  
Yes X No__  
Need (O-11)  
IFS.20 Does the implementation maintain IMA frame synchronization for case 5  
identified in Figure 20 on page 71?  
Yes X No__  
IFS.21 Does the implementation maintain IMA frame synchronization for case 7  
identified in Figure 20 on page 71 when passing stuff indication over more  
than one of the previous ICP cells and when Beta(β) is greater than 2?  
Yes X No__  
Need (O-11)  
Comments: (O-11) required to support (O-18) and (O-19).  
Table 4-8.  
IMA Interface OAM Operation Functions (1 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
OAM.1 Does the implementation report the following link remote defect indicators:  
link defects, LIF, and LODS?  
M
(R-115)  
Yes X No__  
OAM.2 If several defects are detected at the same time, does the implementation  
report the defect with the highest priority, as listed in Table 17 on page 72?  
M
M
(R-116)  
(R-117)  
Yes X No__  
Yes X No__  
OAM.3 Does the implementation report any Rx defect to the far-end IMA within the  
next 2*M cells to be transmitted after the defect state has been entered as  
specified in Section 12.1.3 on page 72 (where M is the M used by the IMA  
transmitter)?  
OAM.4 Does the implementation perform error handling as specified in Figure 21 on  
page 73 and Figure 22 on page 74?  
M
M
(R-118)  
(R-119)  
Yes X No__  
Yes X No__  
OAM.5 On a given link, does the implementation pass to the ATM layer from the IMA  
sublayer any cells accumulated before the occurrence of an OCD or OIF  
anomaly on that link?  
®
28529-DSH-001-K  
Mindspeed Technologies  
286  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-8.  
IMA Interface OAM Operation Functions (2 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
OAM.6 Does the implementation inhibit the passing from the IMA sublayer to the  
ATM layer of any cells received on a link during an OCD or OIF anomaly  
condition reported on that link?  
M
(R-120)  
Yes X No__  
OAM.7 Does the implementation replace with Filler cells all ATM layer cells received  
M
(R-121)  
Yes X No__  
on a link after an OCD or OIF anomaly condition has been detected on that  
link?  
OAM.8 Does the implementation only report an Rx defect in the backward direction  
after LIF or LODS defect state is entered?  
M
M
M
M
M
M
M
M
M
M
(R-122)  
(R-123)  
(R-124)  
(R-124)  
(R-124)  
(R-124)  
(R-124)  
(R-124)  
(R-124)  
(R-125)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.9 Does the implementation report the LIF or LODS defect as specified in  
Section 12.1.2 on page 72?  
OAM.10 Does the implementation detect errored ICP cells as indicated in Table 18 on  
page 77?  
OAM.11 Does the implementation detect invalid ICP cells as indicated in Table 18 on  
page 77?  
OAM.12 Does the implementation detect missing ICP cells as indicated in Table 18 on  
page 77?  
OAM.13 Does the implementation report OIF events as indicated in Table 18 on page  
77?  
OAM.14 Does the implementation report LIF defects as indicated in Table 18 on page  
77?  
OAM.15 Does the implementation report LODS defects as indicated in Table 18 on  
page 77?  
OAM.16 Does the implementation report RDI-IMA defects as indicated in Table 18 on  
page 77?  
OAM.17 Does the implementation increment IV-IMA for every detected errored,  
invalid or missing ICP cell, except during seconds when a SES-IMA or UAS-  
IMA condition is reported, as indicated in Table 19 on page 77?  
OAM.18 Does the implementation increment OIF-IMA for each reported OIF anomaly,  
except during seconds when a SES-IMA or UAS-IMA condition is reported,  
as indicated in Table 19 on page 77?  
O
M
M
(O-20)  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.19 Does the implementation increment SES-IMA for every one second interval  
containing 30% of the ICP cells counted as IV-IMA, as indicated in Table  
19 on page 77?  
(R-126)  
(R-126)  
OAM.20 Does the implementation increment SES-IMA for every one interval of one  
second containing one or more link defects (e.g., LOS, OOF/LOF, AIS, and  
LCD), except during seconds when an UAS-IMA condition is reported, as  
indicated in Table 19 on page 77?  
OAM.21 Does the implementation increment SES-IMA for every one second interval  
containing one or more LIF link defects, except during seconds when an  
UAS-IMA condition is reported, as indicated in Table 19 on page 77?  
M
M
(R-126)  
(R-126)  
Yes X No__  
Yes X No__  
OAM.22 Does the implementation increment SES-IMA for every one second interval  
containing one or more LODS link defects, except during seconds when a  
UAS-IMA condition is reported, as indicated in Table 19 on page 77?  
®
28529-DSH-001-K  
Mindspeed Technologies  
287  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-8.  
IMA Interface OAM Operation Functions (3 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
OAM.23 Does the implementation increment SES-IMA-FE for every one second  
interval containing one or more RDI-IMA defect, except during seconds  
when a UAS-IMA-FE condition is reported, as indicated in Table 19 on page  
77?  
M
(R-127)  
Yes X No__  
OAM.24 Does the period of NE unavailability begin at the onset of 10 contiguous  
SES-IMA (including the first 10 seconds to enter the UAS-IMA condition), as  
indicated in Table 19 on page 77?  
M
M
M
M
M
M
(R-128)  
(R-128)  
(R-128)  
(R-129)  
(R-129)  
(R-129)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.25 Does the period of NE unavailability end at the onset of 10 contiguous  
seconds with no SES-IMA (excluding the last 10 seconds to exit the UAS-  
IMA condition), as indicated in Table 19 on page 77?  
OAM.26 Does the implementation increment UAS-IMA for each one second interval  
when the UAS-IMA condition is reported, as indicated in Table 19 on page  
77?  
OAM.27 Does the period of FE unavailability begin at the onset of 10 contiguous SES-  
IMA (including the first 10 seconds to enter the UAS-IMA condition), as  
indicated in Table 19 on page 77?  
OAM.28 Does the period of FE unavailability end at the onset of 10 contiguous  
seconds with no SES-IMA-FE (excluding the last 10 seconds to exit the UAS-  
IMA-FE condition), as indicated in Table 19 on page 77?  
OAM.29 Does the implementation increment UAS-IMA-FE for each one second  
interval when the UAS-IMA-FE condition is reported, as indicated in Table 19  
on page 77?  
OAM.30 Does the implementation increment Tx-UUS-IMA for each second when the  
NE Tx LSM is Unusable, as indicated in Table 19 on page 77?  
M
M
M
M
M
M
M
M
M
M
O
(R-130)  
(R-131)  
(R-132)  
(R-133)  
(R-134)  
(R-134)  
(R-135)  
(R-135)  
(R-135)  
(R-135)  
(O-21)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.31 Does the implementation increment Rx-UUS-IMA for each second when the  
NE Rx LSM is Unusable, as indicated in Table 19 on page 77?  
OAM.32 Does the implementation increment Tx-UUS-IMA-FE for each second when  
the FE Tx LSM is reported Unusable, as indicated in Table 19 on page 77?  
OAM.33 Does the implementation increment Rx-UUS-IMA-FE for each second when  
the FE Rx LSM is reported Unusable, as indicated in Table 19 on page 77?  
OAM.34 Does the implementation increment Tx-FC each time the Tx-Mis-Connected  
link failure condition is entered, as indicated in Table 19 on page 77?  
OAM.35 Does the implementation increment Tx-FC each time the Tx-Fault link failure  
condition is entered, as indicated in Table 19 on page 77?  
OAM.36 Does the implementation increment Rx-FC each time the LIF link failure  
condition is entered, as indicated in Table 19 on page 77?  
OAM.37 Does the implementation increment Rx-FC each time the LODS link failure  
condition is entered, as indicated in Table 19 on page 77?  
OAM.38 Does the implementation increment Rx-FC each time the Rx-Mis-Connected  
link failure condition is entered, as indicated in Table 19 on page 77?  
OAM.39 Does the implementation increment Rx-FC each time the Rx-Fault link failure  
condition is entered, as indicated in Table 19 on page 77?  
OAM.40 Does the implementation increment Tx-FC-FE each time the Tx-Unusable-FE  
link failure condition is entered, as indicated in Table 19 on page 77?  
®
28529-DSH-001-K  
Mindspeed Technologies  
288  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-8.  
IMA Interface OAM Operation Functions (4 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
OAM.41 Does the implementation increment Rx-FC-FE each time the RFI-IMA link  
failure condition is entered, as indicated in Table 19 on page 77?  
O
(O-22)  
Yes X No__  
OAM.42 Does the implementation increment Rx-FC-FE each time the Rx-Unusable-FE  
link failure condition is entered, as indicated in Table 19 on page 77?  
O
O
O
(O-22)  
(O-23)  
(O-24)  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.43 Does the implementation increment Tx-Stuff-IMA for each stuff event  
inserted in the transmit direction, as indicated in Table 19 on page 77?  
OAM.44 Does the implementation increment Rx-Stuff-IMA for each stuff event  
detected in the receive direction, except during seconds when a SES-IMA or  
UAS-IMA condition is reported, as indicated in Table 19 on page 77?  
OAM.45 Does the implementation increment GR-UAS-IMA for each second when the  
GTSM is down, as indicated in Table 19 on page 77?  
M
M
M
O
(R-136)  
(R-137)  
(R-137)  
(O-25)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.46 Does the implementation increment GR-FC each time the Config-Aborted  
group failure condition is entered, as indicated in Table 19 on page 77?  
OAM.47 Does the implementation increment GR-FC each time the Insufficient-Links  
group failure condition is entered, as indicated in Table 19 on page 77?  
OAM.48 Does the implementation increment GR-FC-FE each time the Start-up-FE  
group failure condition is entered, as indicated in Table 19 on page 77?  
OAM.49 Does the implementation increment GR-FC-FE each time the Config-  
Aborted-FE group failure condition is entered, as indicated in Table 19 on  
page 77?  
O
(O-25)  
OAM.50 Does the implementation increment GR-FC-FE each time the Insufficient-  
O
(O-25)  
Yes X No__  
Links-FE group failure condition is entered, as indicated in Table 19 on page  
77?  
OAM.51 Does the implementation increment GR-FC-FE each the Blocked-FE group  
failure condition is entered, as indicated in Table 19 on page 77?  
O
O
O
(O-25)  
(O-26)  
(O-27)  
Yes X No__  
Yes X No__  
Yes__ No X  
OAM.52 Does the implementation accumulate IMA performance parameters over 15  
minute intervals?  
OAM.53 Does the implementation accumulate IMA performance parameters over 24  
hour intervals?  
OAM.54 Does the implementation keep the current/previous and recent data?  
OAM.55 Does the implementation use the current data for threshold crossing?  
OAM.56 Does the implementation keep the current/previous and recent data?  
OAM.57 Does the implementation use the current data for threshold crossing?  
(O-26)  
M
M
M
M
M
(CR-7)  
(CR-8)  
(CR-9)  
(CR-10)  
(R-138)  
Yes X No__  
Yes__ No X  
Yes__ No X  
Yes__ No X  
Yes X No__  
(O-26)  
(O-27)  
(O-27)  
OAM.58 Does the implementation report a LIF failure alarm for the persistence of a  
LIF defect at the NE?  
OAM.59 Does the implementation report a LODS failure alarm for the persistence of a  
LODS defect at the NE?  
M
M
M
M
(R-139)  
(R-140)  
(R-141)  
(R-142)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.60 Does the implementation report a RFI-IMA failure alarm for the persistence  
of a RDI-IMA defect at the NE?  
OAM.61 Does the implementation report Tx-Mis-Connected failure alarm when the Tx  
link is detected as mis-connected?  
OAM.62 Does the implementation report Rx-Mis-Connected failure alarm when the  
Rx link is detected as mis-connected?  
®
28529-DSH-001-K  
Mindspeed Technologies  
289  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-8.  
IMA Interface OAM Operation Functions (5 of 5)  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
OAM.63 Does the implementation report a Tx Fault failure alarm for any  
implementation specific Tx fault declared at the NE?  
O
(O-28)  
Yes X No__  
OAM.64 Does the implementation report a Rx Fault failure alarm for any  
implementation specific Rx fault declared at the NE?  
O
M
M
M
(O-29)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.65 Does the implementation report a Tx-Unusable-FE failure alarm when it  
receives Tx-Unusable from FE?  
(R-143)  
(R-144)  
(R-145)  
OAM.66 Does the implementation report a Rx-Unusable-FE failure alarm when it  
receives Rx-Unusable from FE?  
OAM.67 Does the implementation report a Start-up-FE failure alarm when it receives  
this signal from FE (the declaration of this failure alarm may be delayed to  
ensure the FE remains in Start-up)?  
OAM.68 Does the implementation report a Config-Aborted failure alarm when the FE  
tries to use unacceptable configuration parameters?  
M
M
M
M
(R-146)  
(R-147)  
(R-148)  
(R-149)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.69 Does the implementation report a Config-Aborted-FE failure alarm when the  
FE reports unacceptable configuration parameters?  
OAM.70 Does the implementation report an Insufficient-Links failure alarm when less  
than P transmit links or P receive links are active?  
Tx  
Rx  
OAM.71 Does the implementation report an Insufficient-Links-FE failure alarm when  
the FE reports that less than P transmit links or P receive links are  
Tx  
Rx  
active?  
OAM.72 Does the implementation report a Blocked-FE failure alarm when the FE  
reports that it is blocked?  
M
M
M
(R-150)  
(R-151)  
(R-152)  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.73 Does the implementation report GR-Timing-Mismatch when the FE transmit  
clock mode is different than the NE transmit clock mode?  
OAM.74 In the case of the LIF, LODS, RFI-IMA and Fault failure alarms, does the  
implementation support 2.5 0.5 seconds as a default persistence checking  
time to enter a failure alarm condition?  
OAM.75 In the case of the LIF, LODS, RFI-IMA and Fault failure alarms, does the  
implementation support 10 0.5 seconds as a default persistence clearing  
time to exit the failure alarm condition?  
M
O
(R-152)  
(O-30)  
Yes X No__  
Yes X No__  
Yes X No__  
Yes X No__  
OAM.76 In the case of the LIF, LODS, RFI-IMA and Fault failure alarms, does the IMA  
allow configuration of other values for default persistence checking time to  
enter a failure alarm condition?  
OAM.77 In the case of the LIF, LODS, RFI-IMA and Fault failure alarms, does the IMA  
allow configuration of other values for default persistence checking time to  
exit the same failure alarm condition?  
O
(O-30)  
OAM.78 Does the implementation ensure that the Tx-Fault failure alarm, as defined in (O-28)  
(O-28) on page 79, is not cleared until the fault that led to the declaration of  
the alarm is no longer present for the duration specified to clear the alarm in  
(R-152) on page 80?  
M
(CR-11)  
OAM.79 Does the implementation ensure that the Rx-Fault failure alarm, as defined in (O-29)  
(O-29) on page 79, is not cleared until the fault that led to the declaration of  
the alarm is no longer present for the duration specified to clear the alarm in  
(R-152) on page 80?  
M
(CR-12)  
Yes X No__  
Comments: 24 hour PM intervals require external software. No threshold crossing feature in driver. Link Fault failures are not defined in standard.  
®
28529-DSH-001-K  
Mindspeed Technologies  
290  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-9.  
Test Pattern Procedure (TPP) Functions  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
TPP.1  
TPP.2  
Does the implementation activate the Test Pattern procedure in the transmit  
direction?  
O
(O-31)  
Yes X No__  
Does the implementation use the Test Link Command field in the ICP cell (as  
defined in the Tx Test Control field in Table 2 on page 31) to request the FE to  
activate the loop back of the test pattern contained in the Tx Test Pattern  
field?  
(O-31)  
M
(CR-12)  
Yes X No__  
TPP.3  
TPP.4  
TPP.5  
Does the implementation use the Tx LID field defined in the Tx Test Control  
field in Table 2 on page 31 to identify to the FE which transmit link the FE  
should extract the Tx Test Pattern from in the received ICP cells?  
(O-31)  
(O-31)  
(O-31)  
M
M
M
(CR-12)  
(CR-12)  
(CR-12)  
Yes X No__  
Yes X No__  
Yes X No__  
Does the implementation send any changed values of the Test Link  
Command, Tx LID and Tx Test Pattern fields in ICP cells for at least 2  
consecutive IMA frames over each link within the IMA group?  
Does the implementation continue to send the same values of the Test Link  
Command, Tx LID and Tx Test Pattern fields as long as the IMA transmitter  
wants the FE IMA unit to loop back the test pattern?  
TPP.6  
TPP.7  
Does the implementation monitor the incoming ICP cells on the links already  
recognized in the group to detect a change of the Test Link Command?  
M
M
(R-153)  
(R-154)  
Yes X No__  
Yes X No__  
If the Test Link Command field is detected as active over the links already  
recognized in the group and over the test link, does the implementation copy  
the value of the Tx Test Pattern field received from the test link, indicated  
over the Tx LID field, into the Rx Test Pattern field on every subsequent ICP  
cell sent over all outgoing links in the group?  
TPP.8  
TPP.9  
Does the implementation continue sending the same value over the Rx Test  
Pattern field until the IMA transmitter has received an indication to stop  
looping the pattern, to loop a new pattern received from the same link over  
the Tx Test Pattern, or to loop the test pattern received from another link  
(indicated over the Tx LID field)?  
M
(R-155)  
Yes X No__  
Does the implementation return the “0xFF” pattern over the Rx Test Pattern  
field when the incoming test command is inactive or the test link is not  
detected?  
M
M
(R-156)  
(R-157)  
Yes X No__  
Yes X No__  
TPP.10 Does the implementation only handle one test pattern per IMA group at any  
given time?  
Comments:  
®
28529-DSH-001-K  
Mindspeed Technologies  
291  
Mindspeed Proprietary and Confidential  
Appendices  
Table 4-10. IMA Interaction with Plane Management Functions  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
IPM.1 Does the implementation process IMA group configuration indications  
received from the Plane Management?  
M
(R-158)  
Yes X No__  
IPM.2 Does the implementation process IMA link addition/deletion indications  
received from the Plane Management?  
M
M
M
(R-158)  
(R-158)  
(R-158)  
Yes X No__  
Yes X No__  
Yes X No__  
IPM.3 Does the implementation send IMA service operational status change  
indications to the Plane Management?  
IPM.4 Does the implementation send Tx/Rx cell rate change indications to the  
Plane Management?  
Comments: Plane Management software required to interface with driver API.  
Table 4-11. Management Information Base (MIB) Functions  
Cond. for Status  
Item  
Protocol feature  
Ref.  
Support  
Status  
Pred.  
MIB.1  
MIB.2  
Does the implementation support a UM based on SNMP?  
O
(O-32)  
Yes X No__  
Yes__ No X  
Does the implementation implement the mandatory objects in the IMA-MIBs  
defined in Appendix A on page 106?  
(O-32)  
(O-32)  
M
(CR-17)  
MIB.3  
Does the implementation implement the optional objects in the IMA MIBs  
defined in Appendix A on page 106?  
O
(O-33)  
Yes__ No X  
Comments: Support for MIB objects implemented. Requires SNMP agent software to create MIB using driver API.  
4.1.6  
PICS Proforma References  
1. The ATM Forum, AF-PHY-0086.001, Inverse Multiplexing for ATM (IMA) Specification Version 1.1.  
2. ISO/IEC 9646-1: 1990, Information technology - Open systems interconnection - Conformance testing  
methodology and framework - Part 1: General concepts (See also ITU-T Recommendation X.290 (1991)).  
3. ISO/IEC 9646-2: 1990, Information technology - Open systems interconnection - Conformance testing  
methodology and framework - Part 2: Abstract test suite specification (See also ITU-T Recommendation X.291  
(1991)).  
4. ITU-T Recommendation I.432 Series, “B-ISDN User-Network Interface - Physical Layer Specification”, April  
1996.  
5. ITU-T Recommendation I.610, “B-ISDN Operation and Maintenance Principles and Functions”, 1995.  
4.2  
Boundary Scan  
Please contact Mindspeed for information and files for Boundary Scan.  
®
28529-DSH-001-K  
Mindspeed Technologies  
292  
Mindspeed Proprietary and Confidential  
Appendices  
4.3  
Power Sequencing  
The VGG pin provides ESD protection when interfacing with 5V systems. VGG must be connected to 5V for 5V I/O  
tolerance. When 5V tolerance is not required it is recommended that VGG be tied to the same power supply as  
VDD33.  
During power up and power down the designer should take caution as VGG should not exceed VDD33 by more  
than 3.6V, except for short durations identified in the note below. VGG must never be less than VDD33 by more  
than 0.5V.  
VGG can exceed VDD33 by up to 5V ( 10%) for short durations of less than 10 ms.  
VGG must never be less than VDD33 by more than 0.5V.  
NOTE:  
®
28529-DSH-001-K  
Mindspeed Technologies  
293  
Mindspeed Proprietary and Confidential  
www.mindspeed.com  
General Information:  
Telephone: (949) 579-3000  
Headquarters - Newport Beach  
4000 MacArthur Blvd., East Tower  
Newport Beach, CA 92660  
®
© 2006 Mindspeed Technologies , Inc. All rights reserved.  
®
®
Information in this document is provided in connection with Mindspeed Technologies ("Mindspeed ") products.  
These materials are provided by Mindspeed as a service to its customers and may be used for informational  
purposes only. Except as provided in Mindspeed’s Terms and Conditions of Sale for such products or in any  
separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes  
no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and  
product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and  
shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its  
specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any  
intellectual property rights is granted by this document.  
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR  
IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR  
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL  
DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR  
COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE  
MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR  
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS,  
WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.  
Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed  
customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to  
fully indemnify Mindspeed for any damages resulting from such improper use or sale.  
®
28529-DSH-001-K  
Mindspeed Technologies  
294  
Mindspeed Proprietary and Confidential  

相关型号:

28529-DSH-001-K_15

Inverse Multiplexing for ATM (IMA) Family
TE

2853

10.75 MHz bandpass filter
KR

2853/1-1100

Wire And Cable
ALPHAWIRE

2853/1-11000

Wire And Cable
ALPHAWIRE

2853103

Strip Terminal Block, 12A, ROHS COMPLIANT
PHOENIX

2853116

Strip Terminal Block, 12A, ROHS COMPLIANT
PHOENIX

2853365

Terminal Block Accessory, Housing
PHOENIX

2853750

Strip Terminal Block,
PHOENIX

2853763

Strip Terminal Block
PHOENIX

2853899

Terminal Block Accessory
PHOENIX

2853983

Terminal Block Accessory, Din Rail, Zinc Alloy, ROHS COMPLIANT
PHOENIX

2854

360 MHz bandpass filter
KR