73M1903C-IM/F [TERIDIAN]

Modem Analog Front End; 调制解调器模拟前端
73M1903C-IM/F
型号: 73M1903C-IM/F
厂家: TERIDIAN SEMICONDUCTOR CORPORATION    TERIDIAN SEMICONDUCTOR CORPORATION
描述:

Modem Analog Front End
调制解调器模拟前端

调制解调器
文件: 总46页 (文件大小:452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
73M1903C  
Modem Analog Front End  
DATA SHEET  
JANUARY 2008  
DESCRIPTION  
Features  
Two pairs of software selectable transmit  
differential outputs for worldwide impedance  
driver implementations.  
The TERIDIAN 73M1903C Analog Front End  
(AFE) IC includes fully differential hybrid driver  
outputs, which connect to the telephone line  
interface through a transformer-based DAA. The  
receive pins are also fully differential for  
maximum flexibility and performance. This  
arrangement allows for the design of a high  
performance hybrid circuit to improve signal to  
noise performance under low receive level  
conditions, and compatibility with any standard  
transformer intended for PSTN communications  
applications.  
Up to 56kbps (V.92) performance  
Programmable sample rates (7.2-16.0kHz)  
Reference clock range of 1-40MHz  
Crystal frequency range of 4.9-27MHz  
Master or slave mode operation and daisy  
chain configurable synchronous serial Host  
interface  
Low power modes  
Fully differential receiver and transmitter  
Drivers for transformer interface  
3.0V – 3.6V operation  
The device incorporates a programmable sample  
rate circuit to support soft modem and DSP  
based implementations of all speeds up to V.92  
(56kbps). The sampling rates supported are from  
7.2kHz to 16.0kHz by programming the pre-  
scaler NCO and the PLL NCO.  
5V tolerant I/O  
Industrial temperature range (-40 to +85°C)  
JATE compliant transmit spectrum  
Package options: 32 pin QFN  
Applications  
The TERIDIAN 73M1903C device incorporates a  
digital host interface that is compatible with the  
serial ports found on most commercially available  
DSPs and processors and exchanges both  
payload and control information with the host.  
This interface can be configured as a single  
master/slave mode or as a daisy chain mode that  
allows the user to connect up to eight 73M1903C  
devices to a single host for multi Analog Front  
End applications, such as, central server  
modems.  
Central site server modems  
Set Top Boxes  
Personal Video Recorders (PVR)  
Multifunction Peripherals (MFP)  
Fax Machines  
Internet Appliances  
Game Consoles  
Point of Sale Terminals  
Automatic Teller Machines  
Speaker Phones  
Digital Answering Machines  
RF Modems  
Costs saving features of the device include an  
input reference frequency circuit, which accepts a  
range of crystals from 4.9-27MHz. It also accepts  
external reference clock values between 1MHz-  
40MHz generated by the host processor. In most  
applications, this eliminates the need for a  
dedicated crystal oscillator and reduces the bill of  
materials (BOM).  
VBG  
(HYBRID)  
TXAP1  
Transmit  
Drivers/  
Filters  
Analog  
Sigma  
Delta  
TXAN1  
Ref.  
TXAP2  
TXAN2  
SCLK  
SDIN  
SDOUT  
FS  
Control  
Receiver  
MUX/  
Serial  
Port  
RXAP  
RXAN  
Registers  
DAC  
Clock  
Crystal  
Filters  
FSD  
GPIO  
DAA  
Control  
Logic  
The 73M1903C also supports two analog loop  
back and one digital loop back test modes.  
controls  
HOOK  
Page: 1 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Table of Contents  
DESCRIPTION..............................................................................................................................................1  
Features ........................................................................................................................................................1  
Applications...................................................................................................................................................1  
SIGNAL DESCRIPTION ...............................................................................................................................4  
SERIAL INTERFACE....................................................................................................................................5  
CONTROL REGISTER MAP ......................................................................................................................11  
SYSTEM CONTROL REGISTERS.............................................................................................................12  
GPIO REGISTERS .....................................................................................................................................13  
PLL CONFIGURATION REGISTERS.........................................................................................................14  
CLOCK GENERATION...............................................................................................................................17  
ANALOG I/O ...............................................................................................................................................20  
MODEM TRANSMITTER............................................................................................................................21  
MODEM RECEIVER...................................................................................................................................24  
TEST MODES.............................................................................................................................................28  
POWER SAVING MODES..........................................................................................................................28  
ELECTRICAL SPECIFICATIONS...............................................................................................................29  
ABSOLUTE MAXIMUM RATINGS..........................................................................................................29  
RECOMMENDED OPERATING CONDITIONS......................................................................................29  
DIGITAL SPECIFICATIONS .......................................................................................................................30  
DC CHARACTERISTICS ........................................................................................................................30  
AC TIMING..............................................................................................................................................31  
ANALOG SPECIFICATIONS ......................................................................................................................32  
DC SPECIFICATIONS ............................................................................................................................32  
AC SPECIFICATIONS.............................................................................................................................32  
PERFORMANCE.....................................................................................................................................33  
PACKAGE OPTIONS..................................................................................................................................35  
MECHANICAL DRAWINGS........................................................................................................................36  
73M1903C DAA Resistor Calculation Guide...........................................................................................37  
APPENDIX B...............................................................................................................................................40  
Crystal Oscillator .....................................................................................................................................40  
PLL ..........................................................................................................................................................41  
Examples of NCO settings ......................................................................................................................42  
ORDERING INFORMATION.......................................................................................................................46  
Page: 2 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
List of Figures  
Figure 1: SCLK and FS with SckMode=0..................................................................................................7  
Figure 2: Control frame position vs. SPOS ..............................................................................................7  
Figure 3: Serial Port Timing Diagrams......................................................................................................8  
Figure 4: 73M1903C Host connection in master and slave mode................................................................9  
Figure 5: 73M1903C Daisy chaining for master/slave mode and slave modes ....................................9  
Figure 6: Clock Generation .........................................................................................................................17  
Figure 7: Analog block diagram ..................................................................................................................20  
Figure 8: Overall TX path frequency response at 8kHz sample rate..........................................................21  
Figure 9: Frequency response of TX path for DC to 4kHz in band signal at 8kHz sample rate........22  
Figure 10: Overall receiver frequency response at 8kHz sample rate.................................................25  
Figure 11: Rx passband response at 8kHz sample rate........................................................................26  
Figure 12: RXD Spectrum of 1kHz tone ..................................................................................................27  
Figure 13: RXD Spectrum of 0.5kHz, 1kHz, 2kHz, 3kHz and 3.5kHz tones of Equal Amplitudes......27  
Figure 14: Serial Port Data Timing ..........................................................................................................31  
Figure 15: Typical DAA block diagram........................................................................................................37  
Figure 16: Single transmitter arrangement .................................................................................................38  
Figure 17: Dual transmitter arrangement....................................................................................................39  
Figure 18: NCO block diagram ...................................................................................................................40  
Figure 19: PLL Block Diagram....................................................................................................................41  
Page: 3 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
PIN DESCRIPTION  
The TERIDIAN 73M1903C modem Analog Front End (AFE) IC is available in a 32 pin QFN package. The  
following table describes the function of each pin. There are three pairs of power supply pins, VPA  
(analog), VPD (digital) and VPPLL (PLL). They should be separately decoupled from the supply source  
in order to isolate digital noise from the analog circuits internal to the chip. VPPLL can be directly  
connected to VPD. Failure to adequately isolate and decouple these supplies will compromise device  
performance.  
PIN NAME  
TYPE  
PIN #  
DESCRIPTION  
VND  
VNA  
GND  
GND  
PWR  
PWR  
PWR  
1, 22  
16  
Negative Digital Ground  
Negative Analog Ground  
Positive Digital Supply  
VPD  
2, 25  
9
VPA  
Positive Analog Supply  
VPPLL  
20  
Positive PLL Supply, shared with VPD  
VNPLL  
PWR  
17  
Negative PLL Ground  
Master reset. When this pin is a logic 0 all registers are reset to their  
default states; Weak-pulled high-default. A low pulse longer than 100ns  
is needed to reset the device. The device will be ready within 100us after  
this pin goes to logic 1 state.  
RST  
I
26  
Crystal oscillator input. When providing an external clock source, drive  
OSCIN.  
OSCIN  
I
19  
18  
OSCOUT  
GPIO(0-7)  
O
I/O  
Crystal oscillator circuit output pin.  
3, 4, 5, 6, 23 24,  
30, 31  
Software definable digital input/output pins.  
RXAN  
RXAP  
I
14  
15  
10  
11  
12  
13  
Receive analog negative input.  
Receive analog positive input.  
Transmit analog negative output 1  
Transmit analog negative output 2  
Transmit analog positive output 1  
Transmit analog positive output 2  
I
TXAN1  
TXAN2  
TXAP1  
TXAP2  
O
O
O
O
Serial interface clock. With master mode and SCLK continuous selected,  
Freq = 256*Fs ( =2.4576MHz for Fs=9.6kHz). For slave mode, this pin  
must be pulled down by a resistor (<4.7k).  
SCLK  
I/O  
8
SDOUT  
SDIN  
FS  
O
I
32  
29  
7
Serial data output (or input to the host).  
Serial data input (or output from the host)  
O
Frame synchronization. (Active Low)  
Type of frame sync. 0 = late (mode0); 1 = early (mode1). Weak-pulled  
high – default  
TYPE  
I
27  
Controls the SCLK behavior after FS. Open, weak-pulled high = SCLK  
Continuous; tied low = 32 clocks per R/W cycle.  
Delayed frame sync to support daisy chain mode with additional  
73M1903C devices  
SckMode  
I
28  
21  
FSD  
O
Table 1: 32 QFN Pin Description  
Page: 4 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
MODEM ANALOG FRONT END (MAFE) SERIAL INTERFACE  
The MAFE (Modem Analog Front End) serial data port is a bi-directional port that can be supported by  
most DSPs. The typical I2S (Inter-IC Sound, NXP semiconductor) bus can be easily converted into MAFE  
compatible interface. The 73M1903C can be configured either as a master or a slave of the serial  
interface. When the 73M1903C is configured as a master device, it generates a serial bit clock, Sclk,  
from a system clock, Sysclk, which is normally an output from an on-chip PLL that can be programmed by  
the user. In master mode, the serial bit clock is always derived by dividing the system clock by 18. The  
Sclk rate, Fsclk, is related to the frame synchronization rate (sample rate), Fs, by the relationship Fsclk =  
256 x Fs or Fs = Fsclk / 256 = Fsys / 18 / 256 = Fsys / 4608, where Fsys is the frequency of Sysclk. Fs is  
also the rate at which both transmit and receive data bytes are sent (received) to (by) the Host.  
Throughout this document two pairs of sample rate, Fs, and crystal frequency, Fxtal, will be often cited to  
facilitate discussions. They are:  
1. Fxtal1 = 27MHz, Fs1 = 7.2kHz  
2. Fxtal2 = 18.432MHz, Fs2 = 8kHz.  
3. Fxtal3 = 24.576MHz, Fs3 = 9.6kHz  
Upon reset, until a switch to the PLL based clock, Pllclk, occurs, the system clock will be at the crystal  
frequency, Fxtal, and therefore the serial bit clock will be sclk = Fsys/18 = Fxtal/18.  
Examples:  
1. If Fxtal1 = 27.000MHz, then sclk=1.500MHz and Fs=sclk/256 = 5.859375kHz.  
2. If Fxtal2 = 18.432MHz, then sclk=1.024MHz and Fs=sclk/256 = 4.00kHz.  
3. If Fxtal3 = 24.576MHz, then sclk=1.3653MHz and Fs=sclk/256 = 5.33kHz.  
When 73M1903C is programmed through the serial port to a desired Fs and the PLL has settled out, the  
system clock will transition to the PLL-based clock in a glitch-less manner.  
Examples:  
1. If Fs1 = 7.2kHz, Fsys = 4608 * Fs = 33.1776MHz and sclk = Fsys / 18 = 1.8432MHz.  
2. If Fs2 = 8.0kHz, Fsys = 4608 * Fs = 36.8640MHz and sclk = Fsys / 18 = 2.048MHz.  
3. If Fs3 = 9.6kHz, Fsys = 4608 * Fs = 44.2368MHz and sclk = Fsys / 18 = 2.4576MHz.  
This transition is entirely controlled by the host. Upon reset or power down of PLL and/or analog front  
end, the chip will automatically run off the crystal until the host forces the transition by setting Frcvco bit  
(Bit 7 in Register0E). The transition should be forced on or after the second frame synch period following  
the write to a designated PLL programming registers (Register08 to Register0D).  
When reprogramming the PLL the host should first transition the system clock to the crystal before  
reprogramming the PLL so that any transients associated with it will not adversely impact the serial port  
communication.  
Power saving is accomplished by disabling the analog front end by clearing ENFE bit (bit 7 Register00).  
During the normal operation, a data frame sync signal (FS) is generated by the 73M1903C at the rate of  
Fs. For every data FS there are 16 bits transmitted and 16 bits received. The frame synchronization (FS)  
signal is pin programmable for type. FS can either be early or late determined by the state of the TYPE  
input pin. When Type pin is left open, an early FS is generated in the bit clock prior to the first data bit  
transmitted or received. When held low, a late FS operates as a chip select; the FS signal is active for all  
bits that are transmitted or received. The TYPE input pin is sampled when the reset pin is active and  
ignored at all other times. The final state of the TYPE pin as the reset pin is de-asserted determines the  
frame synchronization mode used.  
Page: 5 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
SERIAL DATA AND CONTROL  
The bits transmitted on the SDOUT pin are defined as follows:  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
RX15 RX14 RX13 RX12 RX11 RX10 RX9 RX8 RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0  
If the HC bit (Bit 0 of Register01) is set to zero, the 16 bits that are received on the SDIN are defined as  
follows:  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
TX15 TX14 TX13 TX12 TX11 TX10 TX9 TX8 TX7 TX6 TX5 TX4 TX3 TX2 TX1 CTL  
In this case LSB(TX0) in a transmit bit stream is forced to 0 automatically.  
If the Hardware Control bit (Bit 0 of Register 01) is set to one, the 16 bits that are received on the SDIN  
input are defined as follows:  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
TX15 TX14 TX13 TX12 TX11 TX10 TX9 TX8 TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0  
Bit 15 is transmitted/received first. Bits RX15:0 are the receive code word. Bits TX15:0 are the transmit  
code word. If the hardware control bit is set to one, a control frame is initiated between every pair of data  
frames. If the hardware control bit is set to zero, CTL is used by software to request a control frame. If  
CTL is high, a control frame will be initiated before the next data frame. A control frame allows the  
controller to read or write status and control to the 73M1903C.  
The control word received on the SDIN pin is defined as follows:  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
R/W A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The control word transmitted on the SDOUT pin is defined as follows:  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0  
0
0
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
If the R/W bit (Bit15 of control word) is set to a 0, the data byte transmitted on the SDOUT pin is all zeros  
and the data received on the SDIN pin is written to the register pointed to by the received address bits;  
A6-A0. If the R/W bit is set to a 1, there is no write to any register and the data byte transmitted on the  
SDOUT pin is the data contained in the register pointed to by address bits A6-A0. Only one control frame  
can occur between any two data frames.  
Writes to unimplemented registers are ignored. Reading an unimplemented register returns an unknown  
value. The position of a control data frame is controlled by the SPOS; bit 1 of register 01h. If SPOS is  
set to a 0 the control frames occur mid way between data frames, i.e., the time between data frames is  
equal. If SPOS is set to a 1, the control frame is ¼ of the way between consecutive data frames, i.e., the  
control frame is closer to the first data frame. This is illustrated in Figure 2.  
The TERIDIAN 73M1903C modem AFE IC includes a feature that shuts off the serial clock (SCLK) after  
32 cycles of SCLK following the frame synch (figure 1). The SckMode pin controls this mode. If this pin  
is left open the clock will run continuously. If SckMode is set low, the clock will be gated on for 32 clocks  
Page: 6 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
for each FS. The SDOUT and FS pins change values following a rising edge of SCLK. The SDIN pin is  
sampled on the falling edge of SCLK. Figure 3 shows the timing diagrams for the serial port.  
32 Cycles of SCLK  
SCLK  
FS  
(early mode)  
SCLK Relative to early FS  
32 Cycles of SCLK  
SCLK  
FS  
(late mode)  
SCLK Relative to late FS  
Figure 1: SCLK and FS with SckMode=0  
DATA FRAMES  
SPOS = 0  
SPOS = 1  
CONTROL FRAMES  
Figure 2: Control frame position vs. SPOS  
Page: 7 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
SCLK  
FS  
TX15 TX14 TX13 TX12 TX11 TX10  
RX15 RX14 RX13 RX12 RX11 RX10  
TX9  
RX9  
TX8  
RX8  
TX7  
RX7  
TX6  
RX6  
TX5  
RX5  
TX4  
RX4  
TX3  
RX3  
TX2  
RX2  
TX1  
RX1  
CTL  
RX0  
SDIN  
SDOUT  
Data Frame with earlyl Frame Sync  
SCLK  
FS  
TX15 TX14 TX13 TX12 TX11 TX10  
RX15 RX14 RX13 RX12 RX11 RX10  
TX9  
RX9  
TX8  
RX8  
TX7  
RX7  
TX6  
RX6  
TX5  
RX5  
TX4  
RX4  
TX3  
RX3  
TX2  
RX2  
TX1  
RX1  
CTL  
RX0  
SDIN  
SDOUT  
Data Frame with late Frame Sync  
SCLK  
FS  
R/W  
zero  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SDIN  
SDOUT  
zero  
zero  
zero  
zero  
zero  
zero  
zero  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Control Frame with early Frame Sync  
SCLK  
FS  
R/W  
zero  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SDIN  
zero  
zero  
zero  
zero  
zero  
zero  
zero  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
SDOUT  
Control Frame with late Frame Sync  
Sample Rate  
SCLK  
FS  
128  
256  
1
16  
144  
1
TX  
RX  
TX  
RX  
TX  
TX  
RX  
TX  
RX  
1
R
0
A
0
A
0
DI  
DI  
DI  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
0
A
0
SDIN  
SDOUT  
RX  
Data Frame  
RX  
DO  
DO  
DO  
RX  
Control Frame  
Data Frame  
Relation Between the Data and Control Frames  
(Master Mode, continuous clock, default SPOS)  
Figure 3: Serial Port Timing Diagrams  
Page: 8 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
SLAVE MODE AND DAISY CHAIN  
If the SCLK pin is externally pulled down to ground by a <4.7Kresistor, the 79M1903C device is in the  
slave mode, after reset. In this mode of operation the serial clock (SCLK) and FS are inputs to 79M1903C  
provided by the Master device. The serial clock input must be connected to OSCIN pin while SCLK pin of  
73M1903C is unconnected, except for the resistor connected to ground (see Figures 4 and 5). The  
73M1903C PLL must be programmed to multiply the serial clock frequency by an appropriate factor in  
order to obtain Fsys. Therefore the serial clock has to be continuous and without low frequency jitter (the  
high frequency jitter is rejected by the 79M1903C PLL). The SckMode pin is not used since the Master  
device provides FS and serial clock.  
73M1903C  
73M1903C  
MCLK  
(Master)  
OSCIN  
SCLK  
OSCIN  
(Slave)  
SDOUT  
SDIN  
SDIN  
SDOUT  
SDIN  
SDIN  
SDOUT  
SDOUT  
HOST  
HOST  
(Master)  
(Slave)  
"x"  
"x"  
"1/0"  
"1/0"  
FS  
FS  
FS  
FS  
SckMode  
SckMode  
TYPE  
SCLK  
SCLK  
TYPE  
SCLK  
"x" : don't care  
73M1903C Master Mode  
73M1903C Slave Mode  
Figure 4: 73M1903C Host connection in master and slave mode  
73M1903C  
73M1903C  
MCLK  
SCLK  
SDOUT  
SDIN  
OSCIN (Master)  
OSCIN (Slave)  
SDOUT  
SDIN  
SDIN  
SDOUT  
FS  
SDIN  
SDOUT  
HOST  
HOST  
"x"  
"x"  
FS  
(Slave)  
FS  
FS  
(Master)  
SckMode  
"1/0"  
"1/0"  
SckMode  
SCLK  
SCLK  
FSBD  
TYPE  
SCLK  
TYPE  
FSBD  
73M1903C  
73M1903C  
OSCIN  
(Slave)  
OSCIN  
(Slave)  
"x" : don't care  
SDIN  
SDIN  
SDOUT  
SDOUT  
"x"  
"x"  
"x"  
"x"  
FS  
FS  
SckMode  
SckMode  
SCLK  
TYPE  
SCLK  
TYPE  
Daisy chain for Slave mode  
Figure 5: 73M1903C Daisy chaining for master/slave mode and slave modes  
Daisy chain for Master/Slave mode  
In order to daisy chain two or more 73M1903C devices, the master must be programmed into hardware  
controlled control frame mode by setting the HC bit (bit 0 in Register01) to “1”, then set FSDEn (bit 3 in  
Register06), and then set CkoutEn bit (bit 3 in Register01) to allow the FSD to come through. The first  
Page: 9 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
frame after enabling FSD must be Data. For the two daisy chained devices, the data/control frames are  
32 bits. The first 16 bits go to the first device; the next 16 bits go to the second device in the chain, as  
timed by FSD of the first device. For four daisy-chained devices, the data/control frames are 64 bits. The  
first 16 bits go to the first device in the chain; the next 16 bits go to the second device in the chain as  
started by FSD of the first device, etc. FSD is always ”Late Type” frame sync.  
Up to eight 73M1903C devices may be daisy-chained if the control frame sync is placed at the middle of  
the data frame sync interval. Four devices may be daisy-chained if the control frame sync is placed at the  
1/4 of the data frame sync interval. In all cases involving slave and daisy chain operation, only hardware  
controlled Control Frames can be supported. Software requested control frames are not allowed.  
In slave mode the relationship of Fs and Fsclk is Fsclk/Fs, with a range of from 96 to 256 SCLKs per Fs.  
Again, the host controls the relationship of FS to SCLK, with the condition that Fsclk>750kHz and  
Fsys=4608*Fs. The 79M1903C PLL must be programmed to generate Fsys with those conditions. To  
program the 73M1903C NCOs, OSCIN (Fsclk)=SCLK=Fref when Pdvsr=1 and Prst=0 in the calculations.  
Fsys in the previous discussion is Fvco in the calculations which is equal to 4608*Fs. For example, two  
typical cases are Fsclk=256*Fs and Fsclk=144*Fs.  
For the case when Fsclk=256*Fs and Fs=8kHz, the 79M1903C PLL has to be set to  
Fsys=4608*Fs=36.864MHz, and Sclk=256*8kHz=2.048MHz. Therefore Ndvsr=36.864/2.048=18 (12h)  
and Nrst=0  
For the case when Fsclk=144*Fs and d Fs=8kHz, the 79M1903C PLL has to be set to  
Fsys=4608*Fs=36.864MHz and Sclk=144*8kHZ=1.152MHz. Therefore Ndvsr=36.864/1.152=32 (20h)  
and Nrst=0  
Page: 10 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
CONTROL REGISTER MAP  
The following Table 2 shows the map of addressable registers in the 73M1903C. Each register and its  
bits are described in detail in the following sections.  
Register  
Address Default  
BIT 7  
ENFE SELTX2  
TMEN DIGLB  
GPIO7 GPIO 6  
DIR7 DIR6  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Name  
CTRL  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
08h  
00h  
FFh  
FFh  
00h  
00h  
60h  
00h  
00h  
0Ah  
22h  
12h  
00h  
C0h  
00H  
TXBST(1:0)  
ANALB  
GPIO 5 GPIO 4  
DIR5 DIR4  
TXDIS  
RXG(1:0)  
RXGAIN  
HC  
TEST  
DATA  
DIR  
Register04  
Register05  
REV  
Register07  
PLL_PSEQ  
PLL_RST  
PLL_KVCO  
PLL_DIV  
PLL_SEQ  
XTAL_BIAS  
PLL_LOCK  
INTLB  
CkoutEn RXPULL SPOS  
GPIO 3  
DIR3  
GPIO 2 GPIO 1 GPIO 0  
DIR2  
DIR1  
DIR0  
Reserved  
Reserved  
FSDEn  
Reserved  
Pseq(7:0)  
Rev(3:0)  
Reserved  
Prst(2:0)  
Ichp(3:0)  
Pdvsr(4:0)  
Reserved  
Ndvsr(6:0)  
Nseq(7:0)  
Kvco(2:0)  
-
Xtal(1:0)  
Frcvco PwdnPll LockDet  
Reserved  
-
-
Nrst(2:0)  
-
-
-
-
Note: Register or bit names in bold underline denotes the READ ONLY bits and registers.  
Register bits marked “-“ are not used. Writing any value to these bits won’t affect the operation.  
Reserved are bits reserved for factory test purpose only. Do not attempt to write these locations to values  
other than their default to prevent unexpected operation.  
Register Bit notations used in this document are as follows.  
- Registerxx: Register05 represents the register with Address 0x05  
- BIT(s)NAME(MSB:LSB) ; Rev(3:0) represents 4 bits of Rev3, Rev2, Rev1 and Rev0.  
-(RegisterAddress[BIT(s)]) ; (0X00[7]) represents Bit 7 of Register address 0x00, ENFE bit  
(0X06[7:4]) represents Bit 7, Bit 6, Bit 5 and Bit4 of Register address 06, Rev(3:0).  
Table 2: Register Map  
Page: 11 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
SYSTEM CONTROL REGISTERS  
Register00 (CTRL): Address 00h  
Reset State 08h  
BIT 7  
BIT 6  
BIT 5  
TXBST  
BIT 4  
BIT 3  
BIT 2  
RXG1  
BIT 1  
RXG0  
BIT 0  
RXGAIN  
ENFE  
SelTX2  
TXBST0 TXDIS  
ENFE  
(0X00[7]) Enable Front End.  
1 = Enable the digital filters and analog front end.  
0 = Disable the analog blocks shut off the clocks to the digital and analog receive/transmit  
circuits.  
SelTX2  
(0X00[6]) Select Tx driver 2  
1 = Selects Secondary transmitter (TXAP2 and TXAN2) if TXDIS=0  
0 = Selects Primary transmitter (TXAP1 andTXAN1) if TXDIS=0  
TXBST1  
(0X00[5])  
1 = Add a gain of 1.335dB (16.6%) to the transmitter; also the common mode voltage of the  
transmit path is increased to 1.586V. This is intended for enhancing DTMF transmit power  
only and should not be used in data mode.  
0 = No gain is added  
TXBST0  
TXDIS  
(0X00[4])  
1 = A gain of 1.65dB(21%) is added to the transmitter  
0 = The gain of the transmitter is nominal  
(0X00[3])  
1 = Tri-state the TXAP1,2 and TXAN1,2 pins, provides a bias of VBG into 80 kfor each  
output pin  
RXG(1:0) (0X00[2:1]) Rx Gain Selection  
00 = 6 dB Receive Gain  
01 = 9 dB  
10 = 12 dB  
11 = 0 dB  
RXGAIN  
(0X00[0]) 20 dB RxGain Enable. This gain selection can be used for line snoop or Caller ID  
detection.  
1 = Increase the gain of the receiver by 20 dB.  
0 = Normal operation  
Register01 (TEST): Address 01h  
Reset State 00h  
BIT 7  
BIT 6  
BIT 5  
ANALB  
BIT 4  
INTLB  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
HC  
TMEN  
DIGLB  
CkoutEn RXPULL SPOS  
TMEN  
(0X01[7]) Test Mode Enable.  
0 = Normal operation  
1 = Enable test modes.  
DIGLB  
(0X01[6]) Digital Loop back Enable  
0 = Normal operation  
1 = Tie the serial bit stream from the digital transmit filter output to the digital receive filter  
input.  
ANALB  
(0X01[5]) Analog Loop back Enable  
0 = Normal operation  
1 = Tie the analog output of the transmitter to the analog input of the receiver.  
Page: 12 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
INTLB  
(0X01[4]) Internal Loop back Enable. (Remote Analog Loop back)  
0 = Normal operation  
1 = Tie the digital serial bit stream from the analog receiver output to the analog transmitter  
input.  
CkoutEn  
RXPULL  
(0X01[3]) Clock Output Enable  
1 =  
Enable the CLKOUT output; This bit must be set after the FSDEn bit is set to enable  
daisy chain mode.  
0 =  
CLKOUT tri-stated, for normal operation.  
(0X01[2])  
1 =  
Pulls DC Bias to RXAP/RXAN pins, thru 100Kohm each, to VREF, to be used in  
testing Rx path.  
0 =  
No DC Bias to RXAP/RXAN pins  
SPOS  
HC  
(0X01[1])  
1 =  
0 =  
Control frames occur after one quarter of the time between data frames has elapsed.  
Control frames occur half way between data frames.  
(0X01[0])  
1 =  
Control frame generation is under hardware control, bit 0 of data frames on SDIN is bit  
0 of the transmit word and control frames happen automatically after every data frame.  
Control frame generation is under software control, bit 0 of data frames on SDIN is a  
control frame request bit and control frames happen only on request.  
0 =  
Register06 (REV): Address 06h  
Reset State 60h  
BIT 7  
Rev(3:0)  
FSDEn  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Rev(3:0)  
FSDEn  
Reserved  
(0X06[7:4]) Contain the revision ID of the TERIDIAN 73M1903C device. The rest of this  
register is for chip development purposes only and is not intended for customer use. Do not  
write to shaded locations.  
(0X06[3]) Delayed Frame Sync Enable. This bit shall be enabled if the daisy chain mode is  
used.  
1 = Delayed frame sync for daisy chaining of additional 73M1903C devices.  
0 = FSD tristated, for normal operation.  
GPIO REGISTERS  
The TERIDIAN 73M1903C modem AFE device provides 8 user definable I/O pins. Each pin is  
programmed separately as either an input or an output by a bit in a direction register. If the bit in the  
direction register is set high, the corresponding pin is an input whose value is read from the GPIO data  
register. If it is low, the pin will be treated as an output whose value is set by the GPIO data register.  
To avoid unwanted current contention and consumption in the system from the GPIO port before the  
GPIO is configured after a reset, the GPIO port I/Os are initialized to a high impedance state. The input  
structures are protected from floating inputs, and no output levels are driven by any of the GPIO pins.  
The GPIO pins are configured as inputs or outputs when the host controller (or DSP) writes to the GPIO  
direction register. The GPIO direction and data registers are initialized to all ones (FFh) upon reset.  
Page: 13 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Register02 (DATA): Address 02h  
Reset State FFh  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
GPIO7  
GPIO6  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
GPIO(7:0)  
(0X02[7:0])  
Bits in this register will be asserted on the GPIO(7:0) pins if the  
corresponding direction register bit is a 0. Reading this address will return data reflecting  
the values of pins GPIO(7:0).  
Register03 (DIR): Address 03h  
Reset State FFh  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
DIR7  
DIR6  
DIR5  
DIR4  
DIR3  
DIR2  
DIR1  
DIR0  
DIR(7:0)  
(0X03[7:0])  
This register is used to designate the GPIO pins as either inputs or  
outputs. If the register bit is reset to ‘0’, the corresponding GPIO pin is programmed as an  
output. If the register bit is set to a “1”, the corresponding pin will be configured as an input.  
PLL CONFIGURATION REGISTERS  
Register08 (PLL_PSEQ): Address 08h  
Reset State 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Pseq(7:0)  
Pseq(7:0)  
(0X08[7:0])  
This corresponds to the sequence of divisor. If Prst(2:0) setting in  
Register09 is 00, this register is ignored.  
Register09 (PLL_RST): Address 09h  
Reset State 0Ah  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Prst(2:0)  
Pdvsr(4:0)  
Prst(2:0) represents the rate at which the sequence register is reset.  
Pdvsr(4:0) represents the divisor.  
Register0A (PLL_KVCO): Address 0Ah  
Reset State 22h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Ichp(3:0)  
Reserved  
Kvco(2:0)  
Ichp(3:0) (0X0A[:47]) represents the size of the charge pump current in the PLL. This charge pump  
current can be calculated with Ichp = 2.0µA* (2 + Ichp0 + Ichp1 * 21 + Ichp2 * 22+Ichp3 * 2^3 )*  
(T/To), where To=300 C° and T=Temperature in K°.  
Bit 3 is a reserved control bit. This bit shall remain “0” always.  
Kvco(2:0) (0X0A[2:0]) Represents the magnitude of Kvco associated with the VCO within PLL.  
Page: 14 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Kvco2  
Kvco1  
Kvco0  
Fvco  
Kvco  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
33 MHz  
36 MHz  
44 MHz  
48 MHz  
57 MHz  
61 MHz  
69 MHz  
73 MHz  
38MHz/v  
38MHz/v  
40MHz/v  
40MHz/v  
63MHz/v  
63MHz/v  
69MHz/v  
69MHz/v  
Table 3: Fvco and Kvco settings at 25°C  
Register0B (PLL_DIV): Address 0Bh  
Reset State 12h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Unused  
Ndvsr(6:0)  
Ndvsr(6:0)  
(0X0B[6:0])  
Represents the divisor. If Nrst{2:0] =0 this register is ignored.  
Register0C (PLL_SEQ): Address 0Ch  
Reset State 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BIT 0  
Nseq(7:0)  
Nseq(7:0)  
(0X0C[7:0])  
Represents the divisor sequence.  
Register0D (XTAL_BIAS): Address 0Dh  
Reset State 48h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
Xtal(1:0)  
Reserved  
-
Nrst(2:0)  
Xtal(1:0)  
(0X0D[7:6]) Crystal Oscillator bias current selection  
00 = Xtal osc. bias current at 120µA  
01 = Xtal osc. bias current at 180µA  
10 = Xtal osc. bias current at 270µA  
11 = Xtal osc. bias current at 450µA  
If OSCIN is used as a Clock input, “00” setting should be used to save power.  
(0X0D[2:0]) Represents the rate at which the NCO sequence register is reset.  
The address 0Dh must be the last register to be written to when effecting a change in PLL.  
Nrst(2:0)  
Page: 15 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Register0E (PLL_LOCK): Address 0Eh  
Reset State 00h  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Frcvco  
PwdnPLL LockDet  
-
-
-
-
-
Frcvco  
(0X0E[7]) Force Vco as System clock Enable.  
0 = Xtal oscillator as system clock.  
1 = forces VCO as system clock. This bit is reset to ‘0’ upon reset, PwdnPll = 1 or ENFE = 0.  
Both PwdnPll and ENFE are delayed coming out of digital section to keep PLL alive long  
enough to transition the system clock to crystal clock when Frcvco is reset by PwdnPLL or  
ENFE.  
PwdnPll  
(0X0E[6]) PLL Power down Enable Please refer to the Table 4 Below.  
1 = forces Power down of PLL analog section.  
0: normal operation  
LockDet (0X0E[5]) PLL Lock indicator. Read only.  
1 = PLL locked  
0 = PLL not locked.  
ENFE  
PwdnPll  
PLL  
(Register00 bit7)  
(Register0E bit6)  
0
1
1
X
0
1
PLL Power Off  
PLL Power On  
PLL Power Off  
Table 4: PLL Power Down  
Page: 16 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
CLOCK GENERATION  
Crystal Oscillator and Prescaler NCO  
The crystal oscillator operates over wide choice of crystals (from 4.9MHz to 27MHz) and it is first input to  
a Numerically Controlled Oscillator (NCO) -based prescaler (divider) prior to being passed onto an on-  
chip PLL. The intent of the prescaler is to convert the crystal oscillator frequency, Fxtal, to a convenient  
frequency to be used as a reference frequency, Fref, for the PLL. The NCO prescaler requires a set of  
three numbers to be entered through the serial port (Pseq[7:0], Prst[2:0] and Pdvsr[2:0]. The PLL also  
requires 3 numbers as for programming; Ndvsr[6:0], Nseq[7:0], and Nrst[2:0]. The following is a brief  
description of the registers that control the NCOs, PLLs, and sample rates for the TERIDIAN 73M1903C  
IC. The tables show some examples of the register settings for different clock and sample rates. A more  
detailed discussion on how these values are derived can be found in Appendix B.  
LockDet  
0
System  
Clock  
Fref  
Up  
NCO  
Divide  
by 2/1  
R1  
C1  
1
Charge  
Pump  
VCO  
prescaler  
C2  
PFD  
Kd  
Dn  
Kvco  
FXtal  
3
3
Ichp Control  
Kvco Control  
NCO  
FrcVco  
Figure 6: Clock Generation  
Page: 17 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Reg Address  
Ichp Kvco  
Fs(kHz)  
8h 9h Ah Bh Ch Dh* (µA) [2:0]  
DA EF 20 13 10 C4  
7.2  
8
0
1
1
1
1
2
3
3
3
4
5
6
6
7
8.0  
DA EF 31 15 04 C2 10  
80 F5 41 1D 06 C2 12  
DA EF 31 16 14 C4 10  
DA EF 31 18 XX C0 10  
DA EF 32 19 1A C4 10  
DA EF 43 1B 54 C6 12  
2.4*8/7*3 = 8.22857142858  
8.4  
9.0  
9.6  
2.4*10/7*3 = 10.2857142857  
2.4*8/7*4 = 10.9714285714*  
40 C7 23 0D A4 C7  
54 C7 23 0E 10 C4  
DA EF 24 20 XX C0  
80 E8 15 11 0E C3  
54 CB 26 1A 0E C3  
8
8
8
6
8
11.2*  
12.0  
12.8*  
2.4*10/7*4 = 13.7142857143  
14.4  
16.0  
DA EF 46 26 14 C4 12  
A4 E9 17 19 1A C4  
6
Table 7: Clock Generation Register Settings for Fxtal = 27MHz  
Reg Address  
Ichp Kvco  
Fs(kHz)  
8h 9h Ah Bh Ch Dh* (µA) [2:0]  
7.2  
XX 0A 10 0D 02 C1  
XX 0A 11 0F XX C0  
0E 68 11 0D 02 C1  
XX 0A 21 0F 0E C3  
XX 0A 21 10 FE C7  
XX 0A 22 12 XX C0  
04 49 23 12 XX C0  
0E 68 23 12 XX C0  
XX 0A 23 15 XX C0  
XX 0A 14 16 02 C1  
XX 0A 15 18 XX C0  
XX 07 16 12 XX C0  
XX 0A 26 1B XX C0  
XX 08 17 18 XX C0  
6
6
6
8
8
8
8
8
8
6
6
6
8
6
0
1
1
1
1
2
3
3
3
4
5
6
6
7
8.0  
2.4*8/7*3 = 8.22857142858  
8.4  
9.0  
9.6  
2.4*10/7*3 = 10.2857142857  
2.4*8/7*4 = 10.9714285714  
11.2  
12  
12.8  
2.4*10/7*4 = 13.7142857143  
14.4  
16.0  
Table 8: Clock Generation Register Settings for Fxtal = 24.576MHz  
Page: 18 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Reg Address  
Ichp Kvco  
Fs(kHz)  
(µA) [2:0]  
8h 9h Ah Bh Ch Dh*  
XX 04 20 0E 14 C4  
7.2  
8
0
1
1
1
2
3
3
4
5
6
7
8.0  
XX 04 31 10 XX C0 10  
XX 04 31 10 1E C4 10  
XX 04 31 12 XX C0 10  
XX 04 32 13 10 C4 10  
02 23 33 13 10 C4 10  
XX 04 33 16 14 C4 10  
8.4  
9.0  
9.6  
2.4*8/7*4 = 10.9714285714  
11.2  
12  
XX 04 24 18 XX C0  
8
12.8  
14.4  
16.0  
XX 04 35 19 1A C4 10  
XX 08 66 39 1A C4 16  
XX 03 17 18 XX C0  
6
Table 9: Clock Generation Register Settings for Fxtal = 9.216MHz  
Reg Address  
Ichp Kvco  
Fs(kHz)  
8h 9h Ah Bh Ch Dh* (µA) [2:0]  
7.2  
8.0  
DA EF 30 15 1A C4 10  
02 2C 31 13 10 C4 10  
08 72 41 1C 3E C5 12  
DA EF 41 19 10 C4 12  
0
1
1
1
1
2
3
3
3
4
5
6
6
7
2.4*8/7*3 = 8.22857142858  
8.4  
9.0  
9.6  
08 66 11 0A 1E C4  
6
DA EF 42 1C 1E C4 12  
DA EF 43 1E 7E C6 12  
3E A9 33 14 76 C6 10  
DA EF 53 21 1A C4 14  
2.4*10/7*3 = 10.2857142857  
2.4*8/7*4 = 10.9714285714  
11.2  
12  
12.8  
08 66 14 0E 14 C4  
6
DA EF 45 26 14 C4 12  
10 8C 46 20 80 C7 12  
54 CA 46 1C 3E C5 12  
2.4*10/7*4 = 13.7142857143  
14.4  
16.0  
A4 E9 17 1C 1E C4  
6
Table 10: Clock Generation Register Settings for Fxtal = 24.000MHz  
Reg Address  
Ichp Kvco  
Fs(kHz)  
7.2  
8h 9h Ah Bh Ch Dh* (µA) [2:0]  
0
92 F4 50 1A 06 C2 14  
40 CA 17 1D 02 C1  
16.0  
6
7
Table 11: Clock Generation Register Settings for Fxtal = 25.35MHz  
Page: 19 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
ANALOG I/O  
Figure 7 shows the block diagram of the analog front end. The analog interface circuit uses differential  
transmit and receive signals to and from the external circuitry.  
The hybrid driver in the TERIDIAN 73M1903C IC is capable of connecting directly, but not limited to, a  
transformer-based Direct Access Arrangement (DAA). The hybrid driver is capable of driving the DAA’s  
line coupling transformer and load impedance. The hybrid drivers can also drive high impedance loads  
without modification.  
An on-chip band gap voltage is used to provide an internal voltage reference and bias currents for the  
analog receive and transmit channels. The reference derived from the bandgap, nominally 1.25 Volts, is  
multiplied to 1.36 Volts and output at the VREF pin. Several voltage references, nominally 1.25 Volts, are  
used in the analog circuits. The band gap and reference circuits are disabled after a chip reset since the  
ENFE (Register00 bit7) is reset to a default state of zero. When ENFE=0, the band gap voltage and the  
analog bias currents are disabled. In this case all of the analog circuits are powered down and draw less  
than 5 µA of current.  
A clock generator (CKGN) is used to create all of the non-overlapping phase clocks needed for the time  
sampled switched-capacitor circuits, ASDM, DAC1, and TLPF. The CKGN input is 2 times the  
analog/digital interface sample rate or 3.072MHz clock for Fs=8kHz.  
ANALOG  
DIGITAL  
Decimating  
Filter  
Anti-Alias Filter  
AAF  
RXAP  
RXAN  
Analog  
Sigma-Delta  
Modulator  
MUX  
rbs  
1
15:0  
MUX  
DDEC  
Out  
rbi  
t
AMUX1  
SE  
ASDM  
L
analb  
phase clocks (1.536 MHz)  
Clocks  
Serial  
Port  
PLL/  
sck  
(3.072 MHz)  
VBG  
BGAP  
Bandgap  
CKGN  
Clock Generator  
CLKDIV  
phase clocks  
(1.536 MHz)  
OPSR  
Digital  
+
-
Sigma-Delta  
Modulator  
SMFLT  
TXAP1  
TXAN1  
TXAP2  
TXAN2  
Outp  
Transmit  
Low Pass  
Filter  
15:0  
tbs  
In  
MUX  
1
DSDM  
DAC  
Outn DAC  
1
tbit  
TLPF  
Hybrid Drivers  
SFR  
REGISTERS  
Figure 7: Analog block diagram  
Page: 20 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
MODEM TRANSMITTER  
The modem transmitter begins with a 48 tap Transmit Interpolation Filter (TIF) that takes in the 16-bit,  
two’s compliment numbers (TXD) at SDIN pin at Fs=8kHz rate. It up-samples (interpolates) the data to  
16kHz rate rejecting the images at multiples of 8kHz that exist in the original TXD data stream and  
outputs 16-bit, two’s compliment numbers to a digital sigma-delta modulator.  
interpolation filter is 0.664 (–3.56dB) at dc.  
The gain of the  
The digital sigma-delta modulator (DSDM) takes 16-bit, two’s compliment numbers as input and  
generates a 1’s bit stream which feeds into a D to A converter (DAC1). The gain through DSDM is 1.0.  
DSDM takes 16-bit, two’s compliment numbers as input and generates a 1’s bit stream that feeds into a D  
to A converter (DAC1).  
DAC1 consists of a 5-tap FIR filter and a first order switched capacitor low pass filter both operating at  
1.536MHz. It possesses nulls at multiples of 384kHz to allow decimation by the succeeding filter.  
DAC1’s differential output is fed to a 3rd-order switched-capacitor low pass filter (TLPF). The output of  
TLPF drives a continuous time smoothing filter. The sampling nature of the transmitter leads to an  
additional filter response that affects the in-band signals. The response is in the form of sin(x)/x and can  
be expressed as 20*log [(sin(PI*f/fs))/(PI*f/fs)] where f = signal frequency and fs = sample frequency = 16  
kHz. Figure 8 and Figure 9 shows the frequency response of the transmit path from TXD to TXAP/TXAN.  
The transmit bandwidth is about 3.65kHz when Fs=8kHz. The bandwidth scales with Fs, the sampling  
rate. In case of Fs=9.6kHz , then the bandwidth is 3.65kHz x 9.6/8 = 4.38kHz and Fs=10.28kHz, the  
bandwidth is 3.65kHz x 10.28/8 = 4.69kHz. This is applicable for both transmit and receive path filters.  
Figure 8: Overall TX path frequency response at 8kHz sample rate  
Page: 21 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Figure 9: Frequency response of TX path for DC to 4kHz in band signal at 8kHz sample rate  
TRANSMIT LEVELS  
The 16-bit transmit code word written by the DSP to the Digital Sigma-Delta Modulator (DSDM) (via TIF)  
has a linear relationship with the analog output signal. So, decreasing a code word by a factor of 0.5 will  
result in a 0.5 (-6dB) gain change in the analog output signal.  
The following formula describes the relationship between the transmit code word and the output level at  
the transmit pins (TXAP/TXAN):  
Vout (V) = 2 * code/32,767 * DSDMgain * dacGAIN * VREF * TLPFgain * SMFLTgain * FreqFctr  
Vout is the differential peak voltage at the TXAP and TXAN pins.  
Code is the 16-bit, two’s compliment transmit code word written out by the DSP to the DSDM (via TIF).  
The code word falls within a range of ± 32,767. For a sinusoidal waveform, the peak code word should  
be used in the formula to obtain the peak output voltage.  
DSDMgain is the scaling factor used on the transmit code word to reduce the possibility of saturating the  
modulator. This value is set to 0.640625(–3.555821dB) at dc in the 48 tap transmit interpolation filter  
(TIF) that precedes DSDM.  
dacGAIN is the gain of the DAC. The value dacGAIN is calculated based on capacitor values inside  
DAC1 and dacGAIN=8/9=0.8889. The number 32,767 refers to the code word that generates an 82%  
“1’s” pulse density at the output of the DSDM. As can be seen from the formula, the D to A conversion is  
dependent on the level of VREF. Also when DTMFBST bit is set, VREF is increased from 1.36V to  
Page: 22 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
1.586V to allow higher transmit level or 16.6% increase in gain. This bit is intended for enhancing the  
DTMF transmit level and should not be used in data mode.  
TLPFgain is the gain of TLPF and nominally equals to 0.00dB or 1.0.  
SMFLTgain is the gain of SMFLT and nominally equal to 1.445 or 3.2dB.  
When TXBST0 bit is set, the gain is further increased by 1.65dB (1.21) for the total of 4.85 dB. This is to  
accommodate greater hybrid insertion loss encountered in some applications.  
FreqFctr shows dependency of the entire transmit path on frequency. See Figure 8.  
With the transmit code word of +/- 32,767, the nominal differential swing at the transmit pins at dc is:  
Vout (V) = 2 * code/32,767 * DSDMgain * dacGAIN * VREF * TLPFgain * SMFLTgain * FreqFctr  
= 2 * 32,767/32767 * 0.6640625 * 0.8889 * 1.36 * 1.0 * 1.4454 * 1.0 = 2.31Vpk diff.  
When DTMFBST bit is set, Vout (V) = 1.166 * 2.31= 2.693Vpk diff.  
When TXBST0 bit is set, Vout (V) = 1.21 * 2.31= 2.795Vpk diff. (1)  
When both DTMFBST and TXBST0 are set to 1, Vout (V) = 2.795 * 1.166 = 3.259Vpk diff.  
[1] If not limited by power supply or internal reference.  
Page: 23 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
TRANSMIT POWER - dBm  
To calculate the analog output power, the peak voltage must be calculated and the peak to rms ratio  
(crest factor) must be known. The following formula can be used to calculate the output power, in dBm  
referenced to 600.  
Pout (dBm) = 10 * log [ ( Vout (V) / cf )2 / ( 0.001 * 600 ) ]  
The following example demonstrates the calculation of the analog output power given a 1.2kHz FSK tone  
(sine wave) with a peak code word value of 11,878 sent out by the DSP.  
The differential output voltage at TXAP-TXAN will be:  
With FreqFctr = 1.02, (See Figure 8)  
Vout (V) = 2 * (11,878/32,767) * 0.6640625 * 0.8889 * 1.36 * 1.0 * 1.4454 * 1.02 = 0.841Vpk.  
The output signal power will be:  
Pout (dBm) = 10 * log [(0.841 / 1.41)2 / (0.001 * 600) ] = - 2.29dBm.  
Transmit Type crest factor Max line level  
V.90  
QAM  
DPSK  
FSK  
4.0  
-12dBm  
-9dBm  
-9dBm  
-9dBm  
-5.7dBm  
2.31  
1.81  
1.41  
1.99  
DTMF  
Table 13: Peak to RMS ratios and maximum transmit  
levels for various modulation types  
MODEM RECEIVER  
A differential receive signal applied at the RXAP and RXAN pins or the output signal at TXAP and TXAN  
pass through a multiplexer, which selects the inputs to the ADC. In normal operation, RXAP/RXAN are  
selected. In analog loopback mode, TXAP/TXAN are selected. The DC bias for the RXAP/RXAN inputs  
is supplied from TXAP/TXAN thru the external DAA in normal conditions. It can be supplied internally, in  
the absence of the external DAA, by setting RXPULL bit in Register02.  
The output of the multiplexer goes into a second-order continuous time, Sallen-Key, low-pass filter (AAF)  
with a 3dB point at approximately 40kHz. The filtered output signal is the input to an analog sigma-delta  
modulator (ASDM), clocked at an over sampling frequency of 1.536MHz for Fs = 8kHz, which converts  
the analog signal to a serial bit stream with a pulse density that is proportional to the amplitude of the  
analog input signal.  
There are three gain control bits for the receive path. The RXGAIN bit in control register one results in a  
+20dB gain of the receive signal when set to a “1”. This 20dB of gain compensates for the loss through  
the DAA while on hook. It is used for Caller ID reception. This gain is realized in the front end of ASDM.  
Page: 24 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
The other gain bits in control register 1, RXG1:0, compensate for differences in loss through the receive  
path.  
RXG1  
RXG0  
Receive Gain Setting  
0
0
1
1
0
1
0
1
6dB  
9dB  
12dB  
0dB  
Table 12: Receive Gain  
The output of ASDM is a serial bit stream that feeds multiple digital sinc3 filters. The filters are  
synchronized so that there is one sample available after every 96 analog samples or at a rate of 16kHz  
for Fs=8kHz. The output of the sinc3 filter is a 17 bit, two’s compliment number representing the  
amplitude of the input signal. The sinc3 filter, by virtue of holding action (for 96 sample period), introduces  
a droop in the passband that is later corrected for by a 48-tap FIR filter that follows.  
The output of the sinc3 filter is input to another 48 tap digital FIR filter that provides an amplitude  
correction as well as rejecting noise above Fs/2 or 4kHz for Fs=8kHz. The output of this filter is then  
decimated by a factor of 2; so, the final output is 16 bit, two’s compliment samples at a rate of 8 kHz.  
Figure 10 and Figure 11 depict the sinc3 filter’s frequency response of ASDM along with the 48 tap digital  
FIR response that compensates for it and the resulting overall response of the receiver.  
Figure 10: Overall receiver frequency response at 8kHz sample rate  
Page: 25 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Figure 11: Rx passband response at 8kHz sample rate  
It is important to keep in mind that the receive signal should not exceed 1.16Vpk-diff for proper  
performance for Rxg=11 (0dB). In particular, if the input level exceeds a value such that one’s density of  
RBS exceeds 99.5%, sinc3 filter output will exceed the maximum input range of the decimation filter and  
consequently the data will be corrupted. Also for stability reasons, the receive signal should not exceed  
1.16Vpk differentially. This value is set at around 65% of the full receive signal of 1.791Vpkdiff at  
RXAP/RXAN pins that “would” corresponds to ASDM putting out all ones.  
Figure 12 and Figure 13 show the spectrum of 1kHz tone received at RXAP/RXAN of 1.16Vpk-diff and  
0.5kHz and 1.0kHz tones of 0.6Vpk-diff each, respectively for Fs=8kHz. Note the effect of FIR  
suppressing the noise above 4kHz but at the same time enhancing (in order to compensate for the  
passband droop of sinc3 filter) it near the passband edge of 4kHz.  
The bandwidth of the receive filter is about 3.585kHz when Fs=8kHz. The bandwidth scales with Fs, the  
sampling rate. Please refer to the MODEM TRANSMITTER section for more information.  
Page: 26 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Figure 12: RXD Spectrum of 1kHz tone  
Figure 13: RXD Spectrum of 0.5kHz, 1kHz, 2kHz, 3kHz and 3.5kHz tones of Equal Amplitudes  
Page: 27 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
TEST MODES  
There are two loop back test modes that affect the configuration of the analog front end. The internal  
loop back mode connects the serial bit stream generated by the analog receiver to the input of the analog  
transmitter. This loop back mode is similar to a remote analog loop back mode and can be used to  
evaluate the operation of the analog circuits. When using this loop back mode, the TXAN/TXAP pins  
should not be externally coupled to the RXAP/RXAN pins. Set bit 4 (INTLB) in register 01h (CTRL2) to  
enter this loop back mode.  
The second loop back test mode is the external loop back mode, or local analog loop back mode. In this  
mode, the analog transmitter outputs are fed back into the input of the analog receiver. Set bit 5 (ANALB)  
in register 01h (CTRL2) to enter this loop back mode. In this mode, TBS must be kept to below a value  
that corresponds to less than 1.16V/2.31V x -6dB = 25% of the full scale code of +/- 32768 at TXD in  
order to ensure that the receiver is not overdriven beyond the maximum of 1.16Vpkpk diff for  
Rxg=11(0dB) setting. See Table 16 on page 32 for the maximum allowed transmit levels. Check the  
transmitted data against received data via serial interface. This tests the functionality of essentially all  
blocks, both digital and analog, of the chip.  
There is a third loopback mode that bypasses the analog circuits entirely. Digital loop back forces the  
transmitter digital serial bit stream (from DSDM) to be routed into the digital receiver’s sinc3 filters. Set bit  
6 (DIGLB) in register 01h (CTRL2) to enter this loop back mode.  
POWER SAVING MODES  
The 73M1903C has only one power conservation mode. When the ENFE, bit 7 in register 00h, is zero  
the clocks to the filters and the analog are turned off. The transmit pins output a nominal 80kꢀ  
impedance. The clock to the serial port is running and the GPIO and other registers can be read or  
updated.  
Page: 28 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Operation outside these rating limits may cause permanent damage to this device.  
PARAMETER  
RATING  
Supply Voltage  
-0.5V to +4.0V  
-0.5V to 6.0V  
-0.5V to VDD + 0.5V  
Pin Input Voltage (except OSCIN)  
Pin Input Voltage (OSCIN)  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
RATING  
Supply Voltage (VDD) with respect to VSS  
Oscillator Frequency  
3.0V to 3.6V  
24.576 MHz ±100ppm  
-40C to +85°C  
Operating Temperature  
Page: 29 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
DIGITAL SPECIFICATIONS  
DC CHARACTERISTICS  
PARAMETER  
Condition  
MIN  
NOM  
MAX  
UNIT  
Input Low Voltage  
Input High Voltage  
(Except OSCIN)  
Input High Voltage  
OSCIN  
VIL  
-0.5  
0.2 * VDD  
V
VIH1  
0.7 VDD  
5.5  
V
VIH2  
0.7 VDD  
VDD + 0.5  
V
Output Low Voltage  
(Except OSCOUT, FS, VOL  
SCLK, SDOUT)  
IOL = 4mA  
0.45  
V
Output Low Voltage  
VOLOSC  
IOL = 3.0mA  
IOL = 1mA  
0.7  
V
V
OSCOUT  
Output Low Voltage  
FS,SCLK,SDOUT  
Output High Voltage  
VOL  
0.45  
(Except OSCOUT, FS, VOH  
SCLK, SDOUT)  
IOH = -4mA  
VDD - 0.45  
V
Output High Voltage  
VOHOSC  
IOH =-3.0mA  
IOH = -1mA  
VDD - 0.9  
V
V
OSCOUT  
Output High Voltage  
FS,SCLK,SDOUT  
Input Low Leakage  
Current  
VOH  
IIL1  
VDD - 0.45  
VSS < Vin < VIL1  
1
µA  
(Except OSCIN)  
Input High Leakage  
Current (Except  
OSCIN)  
IIH1  
IIL2  
IIH2  
VIH1 < Vin < 5.5  
VSS < Vin < VIL2  
VIH2 < Vin < VDD  
1
µA  
µA  
µA  
Input Leakage Current  
OSCIN  
1
1
30  
30  
Input High Leakage  
Current  
OSCIN  
IDD current at 3.0V – 3.6V Nominal at 3.3V  
IDD Total current  
IDD Total current  
IDD Total current  
IDD Total current  
Fs=8kHz,  
IDD  
IDD  
IDD  
IDD  
IDD  
9
12.0  
13.4  
14.5  
16.0  
2.5  
mA  
mA  
mA  
mA  
mA  
Xtal=27MHz  
Fs=11.2kHz,  
Xtal=27MHz  
Fs=14.4kHz,  
Xtal=27MHz  
Fs=16.0kHz,  
Xtal=27MHz  
10.3  
11.8  
12.2  
2
IDD Total current  
ENFE=0  
Page: 30 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
AC TIMING  
PARAMETER  
MIN  
NOM  
MAX  
UNIT  
ns  
SCLK Period (Tsclk) (Fs=8kHz)  
SCLK to FS Delay (td1)  
-
-
1/2.048MHz  
-
20  
20  
20  
-
-
--  
-
-
-
ns  
SCLK to FS Delay (td2)  
-
-
15  
10  
ns  
SCLK to SDOUT Delay (td3) (With 10pf load)  
Setup Time SDIN to SCLK (tsu)  
Hold Time SDIN to SCLK (th)  
ns  
ns  
-
ns  
Table 14: -Serial interface Timing  
td1  
td2  
tclk  
SCLK  
FS  
RX15  
TX15  
RX14  
TX14  
RX1  
TX  
RX0  
SDOUT  
td3  
tsu  
TX0  
SDIN  
th  
Figure 14: Serial Port Data Timing  
Page: 31 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
ANALOG SPECIFICATIONS  
DC SPECIFICATIONS  
VREF is not brought out to a pin on the 73M1903C. This specification is for information only. The VREF  
voltage may be measured as the quiescent DC level at the transmit pins.  
Parameter  
VREF  
Test Condition  
VDD= 3.0V - 3.6V.  
300Hz-3.3kHz  
Min  
Nom  
1.36  
-86  
Max  
-80  
Units  
V
dBm600  
dB  
VREF Noise  
VREF PSRR 300Hz-30kHz  
40*  
Table 15: Reference Voltage Specifications  
AC SPECIFICATIONS  
The table below shows the maximum transmit levels that the output drivers can deliver before distortion  
through the DAA starts to become significant. The loss though the DAA transmit path is assumed to be 7  
dB. The signals presented at TXAP and TXAN are symmetrical. The transmit levels can be increased by  
setting either TXBST0 (+1.5dB) or/and DTMFBST (+0.83dB) for the combined total gain of 2.33dB.  
These can be used where higher-level DTMF tones are required.  
MAXIMUM TRANSMIT LEVELS  
Maximum  
differential line  
level (dBm0)  
Maximum single-  
ended level at  
Single-ended rms Single-ended  
Voltage at TXA Peak Voltage at  
peak to  
TXA pins (dBm) rms ratio  
pins (V)  
TXA pins (V)  
Transmit Type  
VPA=2.7V to 3.6V; All rms and peak voltages are relative to VREF  
-12.0  
-11.0  
4
0.2175  
0.377  
0.87  
0.87  
V.90  
QAM  
-7.3  
-6.3  
2.31  
DPSK  
-5.1  
-3.0  
-4.1  
-2.0  
1.81  
0.481  
0.87  
FSK  
1.41  
0.617  
0.87  
DTMF (high tone)  
DTMF (low tone)  
-7.8  
-9.8  
-6.8  
-8.8  
1.41  
1.41  
0.354  
0.283  
0.500  
0.400  
Table 16: Maximum Transmit Levels  
Page: 32 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
PERFORMANCE  
Receiver  
Parameter  
Test Conditions  
Measured at RXAP/N relative to VREF  
RXPULL=HI  
Min  
Nom  
Max  
Units  
kꢀ  
Input Impedance  
230  
Measured at RXAP/N relative to VREF  
RXPULL=LO  
1.0  
Mꢀ  
Receive Gain  
Boost  
Rxgain = 1; 1kHz; RXAP/N=0.116Vpk-diff  
Gain Measured relative to Rxgain=0  
RXGAIN=1 for Fs=8kHz  
17.0  
16.2  
15.7  
18.5  
17.4  
17.2  
20.0  
18.7  
18.7  
dB  
dB  
dB  
RXGAIN =1 for Fs=12kHz  
RXGAIN =1 for Fs=14.4kHz  
THD = 2nd and 3rd harmonic.  
RXGAIN =1  
Total Harmonic  
Distortion (THD)  
RXG Gain  
64  
70  
Gain Measured relative to RXG[1:0]=11  
(0dB) @1 kHz  
RXG[1:0]=00  
5.8  
8.8  
6
9
6.2  
9.2  
dB  
dB  
dB  
RXG[1:0]=01  
RXG[1:0]=10  
11.8  
12  
12.2  
Passband Gain  
Input offset  
Input 1.16Vpk-diff at RXA. Measure gain at  
0.5kHz, and 2kHz. Normalized to 1kHz.  
Gain at 0.5kHz  
-0.29  
-0.2  
-30  
-0.042  
0.000  
-0.06  
0.21  
0.2  
30  
dB  
dB  
dB  
Gain at 1kHz (Normalized)  
Gain at 2.0kHz  
Short RXAP to RXAN. Measure input  
voltage relative to VREF  
Normalized to VBG=1.25V.  
Includes the effect of AAF(-0.4dB) with  
Bits 1,0 of CTRL2 register (01h) = 00.  
0
MV  
Sigma-Delta ADC  
Modulation gain  
41  
µV/bit  
Vpk-diff  
Maximum Analog Peak voltage measured differentially  
Signal Level at  
RXAP/RXAN  
across RXAP/RXAN.  
1.16  
-80  
1kHz 1.16Vpk-diff at RXA with Rxg=11  
THD = 2nd and 3rd harmonic.  
Total Harmonic  
Distortion (THD)  
80  
85  
DB  
Transmit V.22bis low band; FFT run on  
ADC samples. Noise in 0 to 4kHz band  
0dBm 1000Hz sine wave at TXAP; FFT  
on Rx ADC samples, 1st four harmonics  
Reflected back to receiver inputs.  
Noise  
-85  
DBm  
Crosstalk  
-100  
DB  
Note: RXG[1:0] and RXGAIN are assumed to have settings of ‘0’ unless they are specified otherwise.  
Table 17: Receiver Performance Specifications  
Page: 33 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Transmitter  
Parameter  
Test Condition  
Min  
Nom  
Max Units  
DAC gain  
Code word of ± 32,767 @1kHz;  
TXBST0=0; DTMFBST=0  
Across TXAP and TXAN for  
DAC input = 0  
(Transmit Path Gain)  
DC offset –  
70  
µv/bit  
Differential Mode  
-100  
-80  
100  
80  
MV  
MV  
DC offset – Common Average of TXAP and TXAN for DAC input = 0;  
Mode  
relative to VREF  
Code word of ± 32,767 @1kHz;  
TXBST0 Gain  
relative to TXBST0=0; TXBST1=0  
1.65  
DB  
Code word of ± 32,767 @1kHz;  
DTMFBST Gain  
relative to TXBST0=0; TXBST1=0  
1.335  
DB32  
Code word of ± 24,575 (75% scale) @1kHz;  
relative to TXBST0=0;TXBST1=0  
THD = 2nd and 3rd harmonic.  
Code word of ± 26,213 (80% scale) @1kHz;  
relative to TXBST0=0;TXBST1=0  
THD = 2nd and 3rd harmonic.  
Code word of ± 29,490 (90% scale) @1kHz;  
relative to TXBST0=1;TXBST1=1  
THD = 2nd and 3rd harmonic.  
Code word of ± 29,490(90% scale) @1kHz;  
relative to TXBST0=1;DTMFBST=1  
THD = 2nd and 3rd harmonic  
Total Harmonic  
Distortion (THD)  
-80  
-75  
-60  
-85  
-85  
-70  
-70  
dB  
dB  
dB  
dB  
1200Resistor  
across TNAN/TXAP  
At output (TXAP-TXAN): DTMF  
dB  
below  
low  
1.0kHz, 1.2kHz sine waves, summed  
2.0Vpk (-2dBm tone summed with 0dBm tone)  
Refer to TBR 21 specifications for description of  
complete requirements.  
Intermod Distortion  
70  
tone  
Idle Channel Noise  
PSRR  
200Hz - 4.0kHz  
110  
µV  
dB  
dB  
-30 dBm signal at VPA  
40  
300Hz – 30kHz  
Passband Ripple  
300Hz - 3.2kHz  
-0.125  
0.125  
Code word of ± 32,767 @1kHz. Measure gain at  
0.5kHz, and 2kHz relative to 1kHz.  
Gain at 0.5kHz  
Transmit Gain  
Flatness  
0.17  
0
dB  
dB  
dB  
dB  
Gain at 1kHz (Normalized)  
Gain at 2.0kHz  
0.193  
-0.12  
Gain at 3.3kHz  
Table 18: Transmitter Performance Specifications  
Page: 34 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Parameter  
Test Condition  
Min  
Nom  
Max  
Units  
TXAP/N output  
impedance  
TXDIS =1.  
Measure impedance differentially  
between TXAP and TXAN.  
differentially  
(TXDIS=1)  
160  
0
kꢀ  
Txap/n common  
output offset  
(TXDIS=1)  
TXDIS=1  
Short TXAP and TXAN. Measure the  
voltage respect to Vbg  
-20  
20  
mV  
Note: TXBST0 and DTMFBS are assumed have setting 0’s unless they are specified otherwise.  
Table 19: Transmitter Performance Specifications (continued)  
PACKAGE OPTIONS  
(Drawings not to scale)  
VND  
VPD  
1
2
3
4
5
6
7
8
GPIO5  
24  
23  
22  
21  
20  
19  
18  
17  
GPIO4  
VND  
GPIO0  
GPIO1  
FSD  
TERIDIAN  
73M1903C  
GPIO2  
GPIO3  
FS  
VPPLL  
OSCIN  
OSCOUT  
VNPLL  
SCLK  
73M1903C QFN 32  
Page: 35 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
MECHANICAL DRAWIN  
0.85 N O M ./ 0.9M AX.  
5
0.00 / 0.005  
2.5  
0.20 R E F.  
1
2
3
S EATIN G  
PLAN E  
TOP VIEW  
SID E VIEW  
3.0 / 3.75  
0.18 / 0.3  
CHAMFERED  
0.30  
1.5 / 1.875  
1
2
3
0.2 MIN.  
0.35 / 0.45  
0.25  
0.5  
BOTTOM VIEW  
32 pin QFN  
Controlling dimensions in mm  
Page: 36 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
APPENDIX A  
73M1903C DAA Resistor Calculation Guide  
CBlock  
RW  
TXAP1  
R1  
Bridge  
Diode  
Hook  
Bead  
Switch  
TIP  
ACTIVE  
INDUCTOR  
TXAN1  
R1  
RING  
DETECTOR  
Bead  
RING  
C1  
R3  
C1  
R2  
RXAP  
RXAN  
R3  
R2  
Figure 15: Typical DAA block diagram  
The following procedure can be used to approximate the component values for the DAA. The optimal  
values will be somewhat different due to the effects of the reactive components in the DAA (this is a DC  
approximation). Simulations with the reactive components accurately modeled will yield optimal values.  
The procedures for calculating the component values in the DAA are as follows. First determine R1. For  
a differential transmitter R1 is composed of 2 resistors that represent the difference in resistance between  
the total winding resistance of the transformer and the reflected impedance, 600 . This value is usually  
supplied by the transformer vendor. The DAA should be designed to reflect 600 when looking in at  
TIP/RING. The transformer is normally a 1 to 1 turns ratio, the holding coil and ring detect circuit are high  
impedance, and Cblock is a high value so in the frequency band of interest it is negligible. The sum of R2  
and R3 is much greater than R1, and the output impedance of the drivers driving TXAP/TXAN are low,  
therefore:  
Rin 2.R1 RW Rohswitch 2.Rbead  
RW is the sum of the winding resistance of both sides of the transformer. Measure each side of the  
transformer with an Ohmmeter and sum them.  
Rohswitch is the on resistance of the Off Hook Switch. Mechanical Relay switches can be ignored, but  
Solid State Relays sometimes have an appreciable on resistance.  
Rbead is the DC resistance of whatever series RF blocking devices may be in the design.  
For Rin equal to 600 :  
600 RW Rohswitch 2.Rbead  
R1  
2
To maximize THL (Trans-Hybrid Loss), or to minimize the amount of transmit signal that shows up back  
on the Receive pins. The RXAP/RXAN pins get their DC bias from the TXAP/TXAN pins. By capacitively  
coupling the R3 resistors with the C1 caps, the DC offset can be minimized from the TXAP/TXAN to the  
RXAP/RXAN because the DC offset will be divided by the ratio of the R1 resistors to the winding  
resistance on the modem side of the transformer.  
Page: 37 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Next make the sum of R2 + R3 much higher than 600 . Make sure they are lower than the input  
impedance of the RXAP/RXAN pins; otherwise they can move the frequency response of the input filter.  
So let R2 + R3 = 100 K.  
100 K  
R3  
Rwtot 600  
1
1200  
where  
Rwtot RW Rohswitch 2.Rbead  
R2 100 K R3  
Use 1% resistors for R1, R2, and R3  
To select the value for C1, make the zero at around 10Hz.  
1
10  
2.  
C1  
π
.100 K.C1  
1
2. .100 K.10  
π
C1 0.15 uF  
The blocking cap Cblock should also have the same frequency response, but due to the low impedance,  
its value will be much higher, usually requiring a polarized cap. A blocking cap may also be needed on  
the modem side of the transformer if the DC offset current of the transmit pins will exceed the current  
rating of the transformer.  
1
Cblock  
2. .600.10  
Cblock 27 uF  
π
When using a wet transformer design as in the following Figure 16, the only difference is that the  
Hook  
Bead  
RW  
Switch  
TIP  
R1  
R1  
TXAP1  
TXAN1  
RING  
DETECTOR  
Bead  
RING  
C1  
R3  
C1  
R2  
RXAP  
RXAN  
R3  
R2  
Figure 16: Single transmitter arrangement  
Page: 38 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
blocking capacitor, Cblock, it is removed. All other equations still hold true.  
When both drivers are used for worldwide application, the recommended connections are shown below.  
The termination realized when the primary driver is selected is 2R1 + Rwtot;  
With the secondary driver is selected it is 2Z4 + Rwtot.  
R1  
RW  
TXAP1  
TXAN1  
TXAP2  
TXAN2  
R1  
Z4  
Z4  
ZL  
C1  
R3  
RXAP  
R3  
R2  
R3  
R3  
RXAN  
R2  
Figure 17: Dual transmitter arrangement  
Still keep R2 + R3 = 100K.  
100K  
Rwtot + 600  
Rwtot + 600 + 1200  
R3  
1 +  
and  
R2 100 K R3  
.
Trans-Hybrid Loss (THL)  
Trans-Hybrid Loss is by definition the loss of transmit signal from Tip/Ring to the receive inputs on the  
modem IC. This definition is only valid when driving a specific phone line impedance. In reality, phone  
line impedances are never perfect, so this definition isn’t of much help. Instead, as an alternate definition  
that helps in analysis for this modem design, THL is the loss from the transmit pins to the receive pins. In  
this definition the worst-case THL from the transmit pins to the Receive pins is 10.8dB. An insertion loss  
of 7dB is assumed accounting for losses due to switch, bridge and transformer.  
Page: 39 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
APPENDIX B  
Crystal Oscillator  
The crystal oscillator is designed to operate over wide choice of crystals (from 4.9MHz to 27MHz). The  
crystal oscillator output is input to an NCO based pre-scaler (divider) prior to being passed onto an on-  
chip PLL. The intent of the pre-scaler is to convert the crystal oscillator frequency, Fxtal, to a convenient  
frequency to be used as a reference frequency, Fref, for the PLL. A set of three numbers– Pdvsr (5 bit),  
Prst (3 bit) and Pseq (8 bit) must be entered thru the serial port as follows:  
Pdvsr = Integer [Fref/Fxtal];  
Prst = Denominator of the ratio (Fref/Fxtal) minus 1 when it is expressed as a ratio of two smallest  
integers = Nnco1/Dnco1;  
Pseq = Divide Sequence  
overflow  
Fxtal  
Fref  
Counter  
count ctrl  
Pdvsr  
Pdvsr +1  
mux  
Sequence  
Register  
Sequence  
Counter  
Rst  
Prst[2:0]  
Pseq[7:0]  
Figure 18: NCO block diagram  
Please note that in all cases, pre-scaler should be designed such that pre-scaler output frequency, Fref,  
is in the range of 2 ~ 4MHz.  
In the first example below, the exact divide ratio required is Fxtal/Fref = 15.625 =125/8. If a divide  
sequence of {÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15} is repeated, the effective divide ratio would be exactly  
15.625. Consequently, Pdvsr of 15, the length of the repeating pattern, Prst = 8 –1 =7, and the pattern,  
{1,1,0,1,1,0,1,0}, where 0 means Pdvsr, or ÷15, and 1 means Pdvsr +1, or ÷16 must be entered as below.  
Example 1: Fxtal = 27MHz, Fref = 1.728MHz.  
Pdvsr = Integer [Fxtal/Fref] = 15 =0Fh  
Prst[2:0] = 8 – 1 = 7 from Fxtal/Fref = 15.625 =125/8;  
Pseq = ÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15 => {1,1,0,1,1,0,1,0} =DAh.  
In the second example, Fxtal/Fref =4.0. This is a constant divide by 4. Thus Pdvsr is 4, Prst = 1 –1 =0  
and Pseq = {x,x,x,x,x,x,x,x).  
Page: 40 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Example 2: Fxtal = 18.432MHz, Fref = 2.304 MHz.  
Pdvsr = Integer [Fxtal/Fref] = 8 = 8h;  
Prst[2:0] = 1- 1 = 0 from Fref/Fxtal = 18.432/2.304 = 8/1;  
Pseq = {x,x,x,x,x,x,x,x} = xxh  
Example 3: Fxtal = 24.576MHz, Fref = 2.4576MHz.  
Pdvsr = Integer [ Fxtal/Fref] = 10 = Ah;  
Prst[2:0] = 1- 1 = 0 from Fref/Fxtal = 24.576/2.4576 = 10/1;  
Pseq = {x,x,x,x,x,x,x,x} = xxh  
Example 4: Fxtal = 24.576MHz, Fref = 3.072MHz.  
Pdvsr = Integer [ Fxtal/Fref] = 8 = 8h;  
Prst[2:0] = 1- 1 = 0 from Fref/Fxtal = 24.576/3.072 = 8/1;  
Pseq = {x,x,x,x,x,x,x,x} = xxh  
It is also important to note that when Fxtal/Fref is an integer the output of the prescaler is a straight  
frequency divider (example 2). As such there will be no jitter generated at Fref. However if Fxtal/Fref is  
a fractional number, Fref, at the output of the prescaler NCO would be exact only in an average sense  
(example 1) and there will be a certain amount of fixed pattern (repeating) jitter associated with Fref which  
can be filtered out by the PLL that follows by appropriately programming the PLL. It is important to note,  
however, that the fixed pattern jitter does not degrade the performance of the sigma delta modulators so  
long as its frequency is >> 4kHz.  
PLL  
NCO  
Up  
Kd  
Prescaler  
Fref  
Divide  
by 2/1  
R1  
C1  
VCO  
Charge  
Pump  
C2  
PFD  
Kvco  
Dn  
Ichp Control  
3
Kvco Control  
3
NCO  
Figure 19: PLL Block Diagram  
73M1903C has a built in PLL circuit to allow an operation over wide range of Fs. It is of a conventional  
design with the exception of an NCO based feedback divider. (See Figure 18: PLL Block Diagram).  
The architecture of the 73M1903C dictates that the PLL output frequency, Fvco, be related to the  
sampling rate, Fs, by Fvco = 2 x 2304 x Fs. The NCO must function as a divider whose divide ratio  
equals Fref/Fvco.  
Just as in the NCO prescaler, a set of three numbers– Ndvsr ( 7 bits ), Nrst ( 3 bits ) and Nseq ( 8 bits )  
must be entered thru a serial port to affect this divide:  
Ndvsr = Integer [Fref/Fxtal] ;  
Nrst = Denominator of the ratio (Fvco/Fref), Dnco1, minus 1, when it is expressed as a ratio of two  
smallest integers = Nnco1/Dnco1;  
Nseq = Divide Sequence  
Page: 41 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Example 1: Fs = 7.2kHz or Fvco = 2 x 2304 x 7.2kHz =33.1776MHz, Fref = 1.728MHz.  
Ndvsr = Integer [ Fvco/Fref ] = 19  
Nrst = 5 – 1 = 4 from Fvco/Fref = 19.2 = 96/5;  
Nseq = ÷19, ÷19, ÷19, ÷19, ÷20 => {0,0,0,0,1} =xxx00001 = 01h.  
Example 2: Fs = 8.0kHz or Fvco = 2 x 2304 x 8kHz =36.864MHz, Fref = 2.304MHz.  
Ndvsr = Integer [Fvco/Fref] = 16 = 10h;  
Nrst= 1-1 = 0 from Fvco/Fref = 16/1;  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example 3: Fs = 9.6kHz or Fvco = 2 x 2304 x 9.6kHz =44.2368MHz, Fref = 2.4576MHz.  
Ndvsr = Integer [Fvco/Fref] = 18 = 16h;  
Nrst= 1-1 = 0 from Fvco/Fref = 18/1;  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example 4: Fs = 16.0kHz or Fvco = 2 x 2304 x 16.0kHz =73.728MHz, Fref = 3.072MHz.  
Ndvsr = Integer [Fvco/Fref] = 24 =18h;  
Nrst= 1-1 = 0 from Fvco/Fref = 24/1;  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
It is important to note that in general the NCO based feedback divider will generate a fixed jitter pattern  
whose frequency components are at Fref/Accreset2 and its integer multiples. The overall jitter frequency  
will be a nonlinear combination of jitters from both pre-scaler and PLL NCO. The fundamental frequency  
component of this jitter is at Fref/Prst/Nrst. The PLL parameters should be selected to remove this jitter.  
Three separate controls are provided to fine tune the PLL as shown in the following sections.  
To ensure quick settling of PLL, a feature was designed into the 73M1903C where Ichp is kept at a higher  
value until LockDet becomes active or Frcvco bit is set to 1, whichever occurs first. Thus PLL is  
guaranteed to have the settling time of less than one Frame Synch period after a new set of NCO  
parameters had been written to the appropriate registers. The serial port register writes for a particular  
sample rate should be done in sequence starting from register 08h ending in register 0Dh. 0Dh register  
should be the last one to be written to. This will be followed by a write to the next register in sequence  
(0Eh) to force the transition of Sysclk from Xtal to Pllclk.  
Upon the system reset, the system clock is reset to Fxtal/9. The system clock will remain at Fxtal/9 until  
the Host forces the transition, but no sooner the second Frame Synch period after the write to 0Dh.  
When this happens, the system clock will transition to PLLclk without any glitches thru a specially  
designed deglitch MUX.  
Examples of NCO settings  
Example 1:  
Crystal Frequency = 24.576MHz; Desired Sampling Rate, Fs = 13.714kHz(=2.4kHz x 10/7 x 4)  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4kHz x 10/7 x 4 = 13.714kHz, or  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4kHz x 10/7 x 4 = 63.19543MHz.  
Page: 42 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by :  
223042.4kHz10/74  
.
Fvco/ Fxtal =  
24.576MHz  
After a few rounds of simplification this ratio reduces to:  
18  
7
Nnco1  
1
7
18  
1
Fvco / Fxtal  
=
= (  
) (  
)
1
Dnco1  
7
=
=
Nnco2  
1
Dnco2  
18  
, where Nnco1 and Nnco2 must be < or equal to 8.  
The ratio, Nnco1/Dnco1 = 1/7, is used to form a divide ratio for the NCO in prescaler and Nnco2/Dnco2 =  
1/18 for the NCO in the PLL.  
Prescaler NCO: From Nnco1/Dnco1 = 1/7,  
Pdvsr = Integer [nco1/Nnco1] = 7;  
Prst[2:0] = Nnco1 – 1 = 0; this means NO fractional divide. It always does ÷7. Thus Pseq becomes  
“don’t care” and is ignored.  
Pseq = {x,x,x,x,x,x,x,x} = xxh.  
PLL NCO: From Nnco2/Dnco2 = 1/18,  
Ndvsr = Integer [Dnco2/Nnco2] = 18;  
Nrst[2:0] = Nnco2 – 1 = 0; this means NO fractional divide. It always does ÷18. Thus Pseq becomes  
“don’t care” and is ignored.  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example 2:  
Crystal Frequency = 24.576MHz; Desired Sampling Rate, Fs = 10.971kHz=2.4kHz x 8/7 x4  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4kHz x 8/7 x 4 =10.971kHz.  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4kHz x 8/7 x 4 = 50.55634MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by :  
223042.4kHz8/74  
.
Fvco/ Fxtal  
=
24.576MHz  
Page: 43 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
After a few rounds of simplification this ratio reduces to:  
4
35  
18  
1
Fvco / Fxtal = (  
) (  
)
Nnco1  
4
Dnco1  
35  
=
=
Nnco2  
1
Dnco2  
18  
, where Nnco1 and Nnco2 must be < or equal to 8.  
The ratio, Nnco1/Dnco1 = 4/35, is used to form a divide ratio for the NCO in pre-scaler and Nnco2/Dnco2  
=1/18 for the NCO in the PLL.  
Pre-scaler NCO: From Nnco1/Dnco1 = 4/35,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 8;  
Prst[2:0] = Nnco1 – 1 = 3;  
Dnco1/Nnco1 = 35/4 = 8.75 suggests a divide sequence of {÷9,÷9,÷9,÷8}, or  
Pseq = {x,x,x,x,1,1,1,0} = xDh.  
PLL NCO: From Nnco2/Dnco2 = 1/18,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 18;  
Nrst[2:0] = Nnco2 – 1 = 0; this means NO fractional divide. It always does ÷18. Thus Pseq becomes  
“don’t care”.  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Example3:  
Crystal Frequency = 27MHz; Desired Sampling Rate, Fs = 7.2kHz  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4kHz x 3 = 7.2kHz.  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4kHz x 3 = 33.1776MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by :  
223042.4kHz3  
.
Fvco/ Fxtal =  
27MHz  
After a few rounds of simplification this reduces to:  
8
125  
96  
5
Fvco / Fxtal = (  
) (  
)
.
Nnco1  
8
Dnco1  
125  
=
=
Nnco2  
5
Dnco2  
96  
The two ratios are not unique and many other possibilities exist. But for this particular application, they  
are found to be the best set of choices within the constraints of Prst and Nrst allowed. (Nnco1, Nnco2  
must be less than or equal to 8.)  
Page: 44 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
The ratio, Nnco1/Dnco1 = 8/125, is used to form a divide ratio for the NCO in prescaler and Nnco2/Dnco2  
=5/96 for the NCO in the PLL.  
Pre-scaler NCO: From Nnco1/Dnco1 = 8/125,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 15;  
Prst[2:0] = Nnco1 – 1 = 7;  
Dnco1/Nnco1 = 125/8 = 15.625 suggests a divide sequence of {÷16,÷16,÷15,÷16,÷16,÷15,÷16,÷15}, or  
Pseq = {1,1,0,1,1,0,1,0} = DAh.  
PLL NCO: From Nnco2/Dnco2 = 5/96,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 19;  
Nrst[2:0] = Nnco2 – 1 = 4;  
Dnco2/Nnco2 = 19.2 suggests a divide sequence of {÷19, ÷19, ÷19, ÷19, ÷20}, or  
Nseq = {x,x,x,0,0,0,0,1} = x1h.  
Example4:  
Crystal Frequency = 24.576MHz; Desired Sampling Rate, Fs = 16.0kHz  
Step 1. First compute the required VCO frequency, Fvco, corresponding to  
Fs = 2.4kHz x 20/3 = 16.0kHz.  
Fvco = 2 x 2304 x Fs = 2 x 2304 x 2.4kHz x 20/3 = 73.728MHz.  
Step 2. Express the required VCO frequency divided by the Crystal Frequency as a ratio of two integers.  
This is initially given by :  
223042.4kHz20/3  
.
Fvco/ Fxtal =  
24.576MHz  
After a few rounds of simplification this reduces to:  
24  
1
1
8
Fvco / Fxtal = (  
) (  
)
Nnco1  
1
Dnco1  
8
=
=
Nnco2  
1
Dnco2  
24  
The ratio, Nnco1/Dnco1 = 1/1, is used to form a divide ratio for the NCO in prescaler and Nnco2/Dnco2  
=1/24 for the NCO in the PLL.  
Pre-scaler NCO: From Nnco1/Dnco1 = 1/8,  
Pdvsr = Integer [ Dnco1/Nnco1 ] = 8 = 08h,  
Prst[2:0] = Nnco1 – 1 = 0; this means NO fractional divide. It always does ÷8. Thus Pseq becomes “don’t  
care”.  
Pseq = {x,x,x,x,x,x,x,x}= xxh.  
PLL NCO: From Nnco2/Dnco2 = 1/24,  
Ndvsr = Integer [ Dnco2/Nnco2 ] = 24 = 18h,  
Nrst[2:0] = Nnco2 – 1 = 0; this means NO fractional divide. It always does ÷24. Thus Nseq becomes  
“don’t care”.  
Nseq = {x,x,x,x,x,x,x,x} = xxh.  
Page: 45 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Rev 4.3  
73M1903C  
Modem Analog Front End  
DATA SHEET  
ORDERING INFORMATION  
PART DESCRIPTION  
73M1903C 32-Lead QFN Lead Free  
73M1903C 32-Lead QFN Lead Free, Tape and Reel  
ORDER NUMBER  
73M1903C-IM/F  
73M1903C-IMR/F  
Data Sheet: This Data Sheet is proprietary to TERIDIAN Semiconductor Corporation (TSC) and sets forth design goals for the described  
product. The data sheet is subject to change. TSC assumes no obligation regarding future manufacture, unless agreed to in writing.  
This product is sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to  
warranty, patent infringement and limitation of liability. TERIDIAN Semiconductor Corporation (TSC) reserves the right to make changes in  
specifications at any time without notice. Accordingly, the reader is cautioned to verify that a data sheet is current before placing orders.  
TSC assumes no liability for applications assistance.  
TERIDIAN Semiconductor Corp., 6440 Oak Canyon, Suite 100, Irvine, CA 92618  
TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com  
01/17/2008– Rev 4.3  
Rev 4.3  
© 2005-2008 TERIDIAN Semiconductor Corporation  
Page: 46 of 46  
© 2005-2008 TERIDIAN Semiconductor Corporation  

相关型号:

73M1903C-IMR/F

Modem Analog Front End
TERIDIAN

73M1922-IM/F

Consumer Circuit, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM

73M1922-IMR/F

Consumer Circuit, 5 X 5 MM, ROHS COMPLIANT, QFN-32
MAXIM

73M1922-IMR/F

Consumer Circuit, 5 X 5 MM, ROHS COMPLIANT, QFN-32
TERIDIAN

73M1922-IVT/F

Consumer Circuit, PDSO20, ROHS COMPLIANT, MO-153AC, TSSOP-20
MAXIM

73M1922-IVT/F

Consumer Circuit, PDSO20, ROHS COMPLIANT, MO-153AC, TSSOP-20
TERIDIAN

73M1922-IVTR/F

Consumer Circuit, PDSO20, ROHS COMPLIANT, MO-153AC, TSSOP-20
TERIDIAN

73M1966-IM

Telecom IC,
TERIDIAN

73M1966-IM/F

Telecom IC,
TERIDIAN

73M1966-IMR

Telecom IC,
TERIDIAN

73M1966-IMR/F

Telecom IC,
TERIDIAN

73M1966-IVT

Telecom IC,
TERIDIAN