TCM680EPA [TELCOM]

+5V TO 【10V VOLTAGE CONVERTER; + 5V至± 10V电压转换器
TCM680EPA
型号: TCM680EPA
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

+5V TO 【10V VOLTAGE CONVERTER
+ 5V至± 10V电压转换器

转换器 光电二极管
文件: 总7页 (文件大小:98K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4
EVALUATION  
KIT  
AVAILABLE  
TCM680  
+5V TO ±10V VOLTAGE CONVERTER  
FEATURES  
GENERAL DESCRIPTION  
99% Voltage Conversion Efficiency  
85% Power Conversion Efficiency  
Wide Voltage Range .........................+2.0V to +5.5V  
Only 4 External Capacitors Required  
Space Saving 8-Pin SOIC Design  
The TCM680 is a dual charge pump voltage converter  
that develops output voltages of +2VIN and – 2VIN from a  
single input voltage of +2.0V to +5.5V. Common applica-  
tions include ±10V from a single +5V logic supply, and ±6V  
from a +3V lithium battery.  
The TCM680 is packaged in a space-saving 8-pin  
SOIC package and requires only four inexpensive external  
capacitors. The charge pumps are clocked by an on-board  
8kHz oscillator. Low output source impedances (typically  
150) provides maximum output currents of 10mA for each  
output. Typical power conversion efficiency is 85%.  
High efficiency, small installed size and low cost make  
the TCM680 suitable for a wide variety of applications that  
need both positive and negative power supplies derived  
from a single input voltage.  
APPLICATIONS  
±10V From +5V Logic Supply  
±6V From a 3V Lithium Cell  
Handheld Instruments  
Portable Cellular Phones  
LCD Display Bias Generator  
Panel Meters  
Operational Amplifier Power Supplies  
PIN CONFIGURATIONS (DIP AND SOIC)  
ORDERING INFORMATION  
+
8
7
6
5
VOUT  
C1  
1
2
3
4
Part No.  
Package  
Temperature  
+
+
C1  
C2  
TCM680COA 8-Pin SOIC  
8-Pin Plastic DIP  
TCM680EOA 8-Pin SOIC  
0°C to +70°C  
0°C to +70°C  
– 40°C to +85°C  
– 40°C to +85°C  
TCM680CPA  
TCM680EPA  
TCM680CPA  
VIN  
C2  
VOUT  
TCM680EPA  
8-Pin Plastic DIP  
Charge Pump Family  
Evaluation Kit  
GND  
TC7660EV  
+
C1  
VOUT  
1
2
3
4
8
7
+
+
C1  
C2  
TCM680COA  
TCM680EOA  
6
5
VIN  
C2  
GND  
VOUT  
TYPICAL OPERATING CIRCUIT  
2.0V<VIN < +5.5V  
+5V  
+
VIN  
4.7µF  
C4  
C1  
+
+
+
C1  
+
VOUT  
VOUT = (2xVIN  
)
4.7µF  
C1  
+
TCM680  
C2  
+
C2  
VOUT = (– 2 x VIN  
VOUT  
)
4.7µF  
C2  
4.7µF  
C3  
GND  
+
GND  
GND  
TC660-2 9/4/96  
TELCOM SEMICONDUCTOR, INC.  
4-13  
+5V TO ±10V VOLTAGE CONVERTER  
TCM680  
ABSOLUTE MAXIMUM RATINGS*  
Power Dissipation (TA 70°C)  
Plastic DIP ......................................................730mW  
Small Outline ..................................................470mW  
Storage Temperature ............................ – 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
VIN ..................................................................................................... +6.0V  
V+OUT .............................................................................................. +12.0V  
VOUT ............................................................................................. – 12.0V  
VOUT Short-Circuit Duration ............................ Continuous  
V+OUT Current ............................................................75mA  
VIN dV/dT.............................................................. 1V/µsec  
*Stresses above those listed in "Absolute Maximum Ratings" may cause  
permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or other conditions above those  
indicated in the operation section of the specification is not implied.  
Exposure to the Absolute Maximum Ratings conditions for extended  
periods of time may affect device reliability.  
ELECTRICAL CHARACTERISTICS: VIN = +5V, TA = +25°C, test circuit Figure 1, unless otherwise indicated.  
Symbol Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Supply Voltage Range  
MIN. TA MAX., RL = 2kΩ  
2.0 1.5 to 5.5 5.5  
V
Supply Current  
VIN = 3V, RL = ∞  
VIN = 5V, RL = ∞  
0.5  
1
1
2
2.5  
3
mA  
VIN = 5V, 0°C TA +70°C, RL = ∞  
VIN = 5V, – 40°C TA +85°C, RL = ∞  
Negative Charge Pump Output  
Source Resistance  
IL= 10mA, IL+ = 0mA, VIN = 5V  
IL= 5mA, IL+ = 0mA, VIN = 2.8V  
IL= 10mA, IL+ = 0mA, VIN = 5V:  
0°C TA +70°C  
140  
180  
180  
250  
220  
250  
– 40°C TA +85°C  
Positive Charge Pump Output  
Source Resistance  
IL+ = 10mA, IL= 0mA, VIN = 5V  
IL+ = 5mA, IL= 0mA, VIN = 2.8V  
IL+ = 10mA, IL= 0mA, VIN = 5V:  
0°C TA +70°C  
140  
180  
180  
250  
220  
250  
– 40°C TA +85°C  
FOSC  
PEFF  
Oscillator Frequency  
Power Efficiency  
21  
85  
kHz  
%
RL = 2kΩ  
VOUT EFF Voltage Conversion Efficiency  
V+OUT, RL = ∞  
97  
97  
99  
99  
%
VOUT, RL = ∞  
TelCom Semiconductor reserves the right to make changes in the circuitry or specifications detailed in this manual at any time without notice. Minimums  
and maximums are guaranteed. All other specifications are intended as guidelines only. TelCom Semiconductor assumes no responsibility for the use of  
any circuits described herein and makes no representations that they are free from patent infringement.  
PIN DESCRIPTION  
VIN  
8-Pin  
DIP/SOIC Symbol Description  
4.7µF  
4.7µF  
C1  
+
+
OUT  
8
7
1
2
C1–  
Input. Capacitor C1 negative terminal.  
Input. Capacitor C2 positive terminal.  
Input. Capacitor C2 negative terminal.  
Output. Negative output voltage (–2VIN).  
Input. Device ground.  
V
V
OUT  
C1  
1
2
3
4
5
6
7
8
C2+  
+
+
C1  
C2  
C4  
10µF  
C2–  
C2  
+
RL  
TCM680  
6
5
3
4
VOUT  
GND  
VIN  
VIN  
C2  
V
GND  
GND  
OUT  
Input. Power supply voltage.  
C1+  
V+OUT  
Input. Capacitor C1 positive terminal.  
Output. Positive output voltage (+2VIN)  
C3  
10µF  
RL  
OUT  
V
Figure 1. Test Circuit  
4-14  
TELCOM SEMICONDUCTOR, INC.  
+5V TO ±10V VOLTAGE CONVERTER  
4
TCM680  
DETAILED DESCRIPTION  
Phase 1  
VIN = +5V  
C
4
+
VDD  
VSS  
SW1  
SW3  
VSS charge storage – The positive side of capacitors C1  
and C2 are connected to +5V at the start of this phase. C1+ is  
then switched to ground and the charge in C1is transferred  
to C2. Since C2+ is connected to +5V, the voltage potential  
across capacitor C2 is now 10V.  
+
+
C
1
C
2
C
3
SW2  
+
SW4  
–5V  
VIN = +5V  
Figure 4. Charge Pump – Phase 3  
C
4
Phase 4  
+
VDD  
SW1  
SW3  
VDD transfer – The fourth phase of the clock connects  
the negative terminal of C2 to ground, and transfers the  
generated 10V across C2 to C4, the VDD storage capacitor.  
Again, simultaneously with this, the positive side of capaci-  
tor C1 is switched to +5V and the negative side is connected  
to ground, and the cycle begins again.  
VSS  
+
+
C
1
C
2
+
C
3
SW2  
SW4  
–5V  
Figure 2. Charge Pump – Phase 1  
+5V  
Phase 2  
C
4
+
VDD  
VSS  
SW1  
SW3  
VSS transfer – Phase two of the clock connects the  
negative terminal of C2 to the VSS storage capacitor C3 and  
the positive terminal of C2 to ground, transferring the gener-  
ated10VtoC3. Simultaneously, thepositivesideofcapaci-  
tor C1 is switched to +5V and the negative side is connected  
to ground.  
+
+
C
C
1
2
+
C
3
SW2 SW4  
–10V  
+5V  
Figure 5. Charge Pump – Phase 4  
C
4
+
VDD  
MAXIMUM OPERATING LIMITS  
SW1  
SW3  
VSS  
+
+
The TCM680 has on-chip zener diodes that clamp VIN  
to 5.8V, V+OUT to 11.6V, and VOUT to –11.6V. Never exceed  
the maximum supply voltage or excessive current will be  
shuntedbythesediodes, potentiallydamagingthechip. The  
TCM680 will operate over the entire operating temperature  
range with an input voltage of 2V to 5.5V.  
C
1
C
2
+
C
3
SW2  
SW4  
–10V  
Figure 3. Charge Pump – Phase 2  
Phase 3  
VDD charge storage – The third phase of the clock is  
identical to the first phase – the charge transferred in C1  
produces5VinthenegativeterminalofC1,whichisapplied  
to the negative side of capacitor C2. Since C2+ is at +5V, the  
voltage potential across C2 is 10V.  
TELCOM SEMICONDUCTOR, INC.  
4-15  
+5V TO ±10V VOLTAGE CONVERTER  
TCM680  
Capacitor Selection  
EFFICIENCY CONSIDERATIONS  
The TCM680 requires only 4 external capacitors for  
operation. These can be inexpensive polarized aluminum  
electrolytic types. For the circuit in Figure 6 the output  
characteristics are largely determined by the external  
capacitors.AnexpressionforROUT canbederivedasshown  
below:  
Theoretically a charge pump can approach 100% effi-  
ciency under the following conditions:  
• The charge Pump switches have virtually no offset  
and extremely low on resistance  
• Minimal power is consumed by the drive circuitry  
• The impedances of the reservoir and pump capaci-  
tors are negligible  
R+OUT = 4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
)
For the TCM680, efficiency is as shown below:  
+4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
+1/(fPUMP x C1) + 1/(fPUMP x C2) + ESRC4  
)
Efficiency V+ = VDD /(2VIN)  
VDD = 2VIN – V+DROP  
ROUT  
=
4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
+4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4+ ESRC2  
+1/(fPUMP x C1) + 1/(fPUMP x C2) + ESRC3  
)
)
V+DROP = (I+OUT)(R+OUT  
)
Efficiency V= VSS /(– 2VIN)  
VSS = 2VIN – VDROP  
VDROP = (IOUT)(ROUT  
Assuming all switch resistances are approximately  
equal...  
)
Power Loss = (V+DROP)(I+OUT) + (VDROP)(IOUT  
)
R+OUT = 32RSW + 8ESRC1 + 8ESRC2 + ESRC4  
+1/(fPUMP x C1) + 1/(fPUMP x C2)  
There will be a substantial voltage difference between  
(V+OUT – VIN) and VIN for the positive pump and between  
V+OUT andVO– UTiftheimpedancesofthepumpcapacitorsC1  
and C2 are high with respect to the output loads.  
ROUT = 32RSW + 8ESRC1 + 8ESRC2 + ESRC3  
+1/(fPUMP x C1) + 1/(fPUMP x C2)  
Larger values of reservoir capacitors C3 and C4 will  
reduce output ripple. Larger values of both pump and  
reservoir capacitors improve the efficiency. See "Capacitor  
Selection" in Applications Section.  
ROUT is typically 140at +25°C with VIN = +5V and C1  
and C2 as 4.7µF low ESR capacitors. The fixed term  
(32RSW) is about 130. It can be seen easily that increasing  
or decreasing values of C1 and C2 will affect efficiency by  
changing ROUT. However, be careful about ESR. This term  
can quickly become dominant with large electrolytic capaci-  
tors. Table 1 shows ROUT for various values of C1 and C2  
(assume 0.5ESR). C1 and C4 must be rated at 6VDC or  
greater while C2 and C3 must be rated at 12VDC or greater.  
OutputvoltagerippleisaffectedbyC3andC4. Typically  
the larger the value of C3 and C4 the less the ripple for a  
given load current. The formula for VRIPPLE(p-p) is given  
below:  
APPLICATIONS  
Positive and negative Converter  
The most common application of the TCM680 is as a  
dualchargepumpvoltageconverterwhichprovidespositive  
and negative outputs of two times a positive input voltage.  
The simple circuit of Figure 6 performs this same function  
using the TCM680 and external capacitors, C1, C2, C3 and C4.  
V+RIPPLE(p-p) = {1/[2(fPUMP /3) x C4] + 2(ESRC4)}(I+OUT  
VRIPPLE(p-p) = {1/[2(fPUMP /3) x C3] + 2(ESRC3)}(IOUT  
)
C1  
22µF  
22µF  
)
+
+
8
7
1
2
VOUT  
VOUT  
C1  
For a 10µF (0.5ESR) capacitor for C3, C4,  
fPUMP = 21kHz and IOUT = 10mA the peak-to-peak ripple  
voltage at the output will be less than 100mV. In most  
applications(IOUT <=10mA)10-20µFoutputcapacitorsand  
1-5µF pump capacitors will suffice. Table 2 shows VRIPPLE  
for different values of C3 and C4 (assume 1ESR).  
+
+
C4  
C2  
C1  
22µF  
C2  
TCM680  
6
5
3
4
VIN  
VIN  
C2  
VOUT  
GND  
GND  
C3  
22µF  
VOUT  
Figure 6. Positive and Negative Converter  
4-16  
TELCOM SEMICONDUCTOR, INC.  
+5V TO ±10V VOLTAGE CONVERTER  
4
TCM680  
Table 1. ROUT vs. C1 ,C2  
Paralleling Devices  
C1, C2 (µF)  
ROUT ()  
Paralleling multiple TCM680s reduces the output resis-  
tance of both the positive and negative converters. The  
effective output resistance is the output resistance of a  
single device divided by the number of devices. As illus-  
trated in Figure 7, each requires separate pump capacitors  
C1 and C2, but all can share a single set of reservoir  
capacitors.  
0.1  
0.47  
1
1089  
339  
232  
165  
157  
146  
141  
137  
3.3  
4.7  
10  
±5V Regulated Supplies From A Single  
22  
3V Battery  
100  
Figure 8 shows a complete ±5V power supply using one  
3V battery. The TCM680 provides +6V at V+OUT, which is  
regulatedto+5VbytheTC55,and5VbythenegativeLDO.  
The input to the TCM680 can vary from 3V to 6V without  
affecting regulation appreciably. With higher input voltage,  
more current can be drawn from the outputs of the TCM680.  
With 5V at VIN, 10mA can be drawn from both regulated  
outputs simultaneously. Assuming 150source resistance  
forbothconverters, with(I+L +IL)=20mA, thepositivecharge  
pump will droop 3V, providing +7V for the negative charge  
pump.  
Table 2. VRIPPLE (p-p) vs. C3, C4 (IOUT = 10mA)  
C3, C4 (µF)  
VRIPPLE (mV)  
0.47  
1
1540  
734  
236  
172  
91  
3.3  
4.7  
10  
22  
52  
100  
27  
VIN  
VIN  
+
+
VIN  
C1  
C1  
+
+
10µF  
10µF  
10µF  
C1  
C1  
TCM680  
TCM680  
GND  
+
+
C2  
C2  
VOUT  
+
+
NEGATIVE  
SUPPLY  
10µF  
VOUT  
C2  
C2  
GND  
+
COUT  
22µF  
GND  
Figure 7. Paralleling TCM680 for Lower Output Source Resistance  
TELCOM SEMICONDUCTOR, INC.  
4-17  
+5V TO ±10V VOLTAGE CONVERTER  
TCM680  
+
+
COUT  
22µF  
TC55RP5002Exx  
VOUT  
+
+
VIN  
C1  
VIN  
+5 SUPPLY  
VOUT  
+
+6V  
+
10µF  
VSS  
1µF  
1µF  
C1  
+
3V  
GROUND  
TCM680  
+
C2  
+
+
VSS  
10µF  
–6V  
VOUT  
VOUT  
VIN  
–5 SUPPLY  
C
2
GND  
+
22µF  
NEGATIVE LDO  
COUT  
TC54VC2702Exx  
VOUT  
VIN  
LOW BATTERY  
VSS  
Figure 8. Split Supply Derived from 3V Battery  
4-18  
TELCOM SEMICONDUCTOR, INC.  
+5V TO ±10V VOLTAGE CONVERTER  
4
TCM680  
TYPICAL CHARACTERISTICS  
V+OUT or VOUT  
Output Resistance vs. VIN  
+
VOUT or VOUT vs. Load Current  
10.0  
9.0  
300  
C1 – C4 = 10µF  
V
= 5V  
IN  
250  
200  
8.0  
7.0  
150  
R
OUT  
100  
4
5
6
3
2
5
15  
1
0
10  
V
(V)  
LOAD CURRENT (mA)  
IN  
+
Supply Current vs. VIN  
Output Voltage vs. Output Current From V  
10.0  
to V  
OUT  
V
OUT  
1.4  
1.2  
1.0  
= 5V  
IN  
9.0  
0.8  
0.6  
0.4  
0.2  
NO LOAD  
8.0  
7.0  
4
5
6
1
3
2
6
8
10  
0
4
2
+
OUT  
OUT  
V
(V)  
IN  
OUTPUT CURRENT (mA) From V  
TO V  
Output Source Resistance vs. Temperature  
180  
160  
V
I
= 5V  
IN  
OUT = 10mA  
R
OUT  
140  
120  
100  
-50  
0
50  
100  
TEMPERATURE (°C)  
TELCOM SEMICONDUCTOR, INC.  
4-19  

相关型号:

TCM78808FN

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, PQCC68
TI

TCM78808FNR

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, PQCC68
TI

TCM78808HA-00

8 CHANNEL(S), SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM78808HB

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM78808HB-00

8 CHANNEL(S), SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM8-1

RF Transformer
MINI

TCM8-1+

RF Transformer
MINI

TCM8000

CELLULAR TELEPHONE AUDIO PROCESSOR
TI

TCM8000FN

Cellular Telephone Audio Processor 44-PLCC
TI

TCM8000FR

TELECOM, CELLULAR, BASEBAND CIRCUIT, PQFP44, TQFP-44
TI

TCM8002

DATA PROCESSOR FOR CELLULAR TELEPHONE
TI

TCM8002FR

DATA PROCESSOR FOR CELLULAR TELEPHONE
TI