TC835CBU [TELCOM]

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER; 个人计算机数据采集A / D转换器
TC835CBU
型号: TC835CBU
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER
个人计算机数据采集A / D转换器

转换器 计算机
文件: 总12页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
TC835  
PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER  
GENERAL DESCRIPTION  
FEATURES  
Upgrade of Pin-Compatible TC7135, ICL7135,  
MAX7135 and SI7135  
Guaranteed 200 kHz Operation  
Single 5V Operation With TC7660  
Multiplexed BCD Data Output  
UART and Microprocessor Interface  
Control Outputs for Auto-Ranging  
Input Sensitivity ............................................ 100 µV  
No Sample and Hold Required  
The TC835 is a low-power, 4-1/2 digit (0.005% resolu-  
tion), BCD analog-to-digital converter (ADC) that has been  
characterized for 200 kHz clock rate operation. The five  
conversions per second rate is nearly twice as fast as the  
ICL7135 or TC7135. The TC835 (like the TC7135) does  
not use the external diode-resistor roll-over error compen-  
sation circuits required by the ICL7135.  
The multiplexed BCD data output is perfect for interfac-  
ing to personal computers. The low-cost, greater than 14-  
bit high-resolution, and 100 µV sensitivity makes the TC835  
exceptionally cost-effective.  
Microprocessor-based data acquisition systems are  
supported by the BUSY and STROBE outputs, along with  
the RUN/HOLD input of the TC835. The overrange, under-  
range, busy, and run/hold control functions and multiplexed  
BCD data outputs make the TC835 the ideal converter for  
µP-based scales and measurement systems and intelligent  
panel meters.*  
The TC835 interfaces with full-function LCD and LED  
display decoder/drivers. The UNDERRANGE and  
OVERRANGE outputs may be used to implement an auto-  
ranging scheme or special display functions.  
APPLICATIONS  
Personal Computer Data Acquisition  
Scales, Panel Meters, Process Controls  
HP-IL Bus Instrumentation  
ORDERING INFORMATION  
Temperature  
Part No.  
Package  
Range  
TC835CBU  
TC835CKW  
TC835CPI  
64-Pin PQFP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
44-Pin PQFP  
28-Pin Plastic DIP  
NOTE: Tape and reel available for 44-pin PQFP packages.  
*See Application Notes 16 and 17 for microprocessor interface tech-  
niques.  
TYPICAL APPLICATION  
ADDRESS BUS  
CONTROL  
+
5V  
+
DATA BUS  
V
REF  
CAP  
BUF  
AZ  
GAIN: 10, 20, 50, 100  
+15V –15V  
DG529  
POL  
OR  
UR  
D5  
B8  
B4  
PA0  
PA1  
PA2  
1Y  
2Y  
3Y  
1B  
2B  
3B  
SEL  
1A  
2A  
INT  
11  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
+
8
3
TC835  
+
D
A
157  
10  
LH0084  
9
INPUT  
3A  
B2  
D
B
14  
16  
6522  
-VIA-  
PA3  
PA4  
PA5  
PA6  
PA7  
CA1  
CA2  
B1  
D1  
D2  
D3  
D4  
STB  
R/H  
f
WR  
15  
V
R
REF  
VOLTAGE  
A
A
EN  
0
1
INPUT  
DIFFERENTIAL  
MULTIPLEXER  
ANALOG  
COMMON  
DGND  
IN  
f
IN  
GAIN SELECTION  
5V  
PB5  
PB4  
PB0 PB1 PB2 PB3  
CHANNEL SELECTION  
TC835-8 11/5/96  
TELCOM SEMICONDUCTOR, INC.  
3-65  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
Package Power Dissipation (TA 70°C)  
ABSOLUTE MAXIMUM RATINGS* (Note 1)  
28-Pin Plastic DIP.............................................1.14W  
44-Pin PQFP ....................................................1.00W  
64-Pin PFP .......................................................1.14W  
Positive Supply Voltage ............................................. +6V  
Negative Supply Voltage............................................ - 9V  
Analog Input Voltage (Pin 9 or 10) ........ V+ to V(Note 2)  
Reference Input Voltage (Pin 2) .......................... V+ to V–  
Clock Input Voltage ............................................. 0V to V+  
Operating Temperature Range .................... 0°C to +70°C  
Storage Temperature Range ................ – 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating Conditions for extended periods  
may affect device reliability.  
ELECTRICAL CHARACTERISTICS: TA = +25°C, fCLOCK = 200 kHz, V+ = +5V, V= – 5V, unless otherwise specified.  
Symbol Parameter  
Analog  
Test Conditions  
Min  
Typ  
Max  
Unit  
Display Reading With  
Zero Volt Input  
Notes 3 and 4  
–0.0000  
±0.0000  
0.5  
+0.0000  
Display  
Reading  
TCZ  
Zero Reading  
Temperature Coefficient  
VIN = 0V  
Note 5  
2
5
µV/°C  
TCFS  
Full-Scale  
VIN = 2V  
ppm/°C  
Temperature Coefficient  
Notes 5 and 6  
NL  
Nonlinearity Error  
Note 7  
Note 7  
0.5  
0.01  
1
Count  
LSB  
DNL  
Differential Linearity Error  
Display Reading in  
Ratiometric Operation  
VIN = VREF  
Note 3  
+0.9996  
+0.9998  
+1.0000  
Display  
Reading  
±FSE  
± Full-Scale Symmetry  
Error (Roll-Over Error)  
–VIN = +VIN  
Note 8  
0.5  
1
Count  
IIN  
Input Leakage Current  
Noise  
Note 4  
1
10  
pA  
eN  
Peak-to-Peak Value Not Exceeded 95% of Time  
15  
µVP-P  
Digital  
IIL  
Input Low Current  
Input High Current  
Output Low Voltage  
VIN = 0V  
10  
0.08  
0.2  
100  
10  
µA  
µA  
V
IIH  
VIN = +5V  
IOL = 1.6 mA  
VOL  
VOH  
0.4  
Output High Voltage  
B1, B2, B4, B8, D1–D5  
Busy, Polarity, Overrange, IOH = 10 µA  
IOH = 1 mA  
2.4  
4.9  
4.4  
4.99  
5
5
V
V
Underrange, Strobe  
fCLK  
Clock Frequency  
Note 10  
0
200  
1200  
kHz  
Power Supply  
V+  
V–  
I+  
Positive Supply Voltage  
4
5
6
– 8  
3
V
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
– 3  
– 5  
1
V
fCLK = 0 Hz  
fCLK = 0 Hz  
fCLK = 0 Hz  
mA  
mA  
mW  
I–  
0.7  
8.5  
3
PD  
30  
7. – 2V VIN +2V. Error of reading from best fit straight  
line.  
NOTES: 1. Functional operation is not implied.  
2. Limit input current to under 100 µA if input voltages exceed supply  
8. |VIN| = 1.9959.  
voltage.  
9. Test circuit shown in Figure 1.  
3. Full-scale voltage = 2V.  
10. Specification related to clock frequency range over which  
the TC835 correctly performs its various functions.  
Increased errors result at higher operating frequencies.  
4. VIN = 0V.  
5. 0°C TA +70°C.  
6. External reference temperature coefficient less than 0.01 ppm/°C.  
3-66  
TELCOM SEMICONDUCTOR, INC.  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
3
TC835  
PIN CONFIGURATIONS  
UNDERRANGE  
28  
V
1
2
44 43 42 41 40 39 38 37 36 35 34  
27 OVERRANGE  
REF IN  
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
2
3
4
NC  
NC  
ANALOG  
COM  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
STROBE  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
3
INT OUT  
AZ IN  
INT OUT  
4
RUN/HOLD  
DGND  
5
AZ IN  
BUFF OUT  
REF CAP–  
BUFF OUT  
6
5
6
POLARITY  
CLK IN  
BUSY  
D1 (LSD)  
D2  
C
7
REF  
TC835CPI  
+
REF CAP+  
–INPUT  
C
8
TC835CKW  
REF  
7
9
D1 (LSD)  
D2  
INPUT  
+INPUT  
V+  
8
+
10  
11  
12  
13  
14  
INPUT  
+
9
D3  
V
NC  
10  
11  
NC  
D4  
(MSD) D5  
(LSB) B1  
B2  
NC  
23 NC  
B8 (MSD)  
B4  
15  
19 20 21 22  
12 13 14 15 16 17 18  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
NC  
NC  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
3
4
D3  
D4  
5
6
B3  
B4  
7
OVERRANGE  
8
UNDERRANGE  
B2  
SUB  
B1  
9
TC835CBU  
SUB  
10  
11  
12  
13  
14  
15  
16  
V–  
REF IN  
NOTES 1 & 2  
D5  
ANALOG COM  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTES:  
1. NC = No internal connection.  
2. Pins 9, 25, 40 and 56 are connected to the die substrate.  
The potential at these pins is approximately V . No  
external connections should be made.  
+
TELCOM SEMICONDUCTOR, INC.  
3-67  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
–5V  
SET V  
= 1V  
REF  
IN  
1
2
3
4
V
REF  
V
28  
ANALOG  
UNDERRANGE  
OVERRANGE  
STROBE  
INPUT BUFFER  
SW  
I
100 k  
REF IN  
27  
26  
25  
24  
23  
22  
21  
20  
19  
C
R
INT  
+
+
INT  
IN  
ANALOG  
COMMON  
+
SW  
SW  
RI  
RI  
ANALOG GND  
C
RUN/HOLD  
SZ  
INT OUT  
0.47  
µF  
1 µF  
SW  
SW  
Z
5
6
IZ  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
AZ IN  
+
C
COMPARATOR  
SW  
REF  
R
+
REF  
IN  
BUFF OUT  
100 kΩ  
100  
kΩ  
7
8
9
CLOCK  
INPUT  
120 kHz  
TO  
C
REF  
SIGNAL  
INPUT  
DIGITAL  
SECTION  
INTEGRATOR  
1 µF  
SW  
SW  
+
C
Z
Z
+
RI  
REF  
SW  
SW  
RI  
INPUT  
(LSD) D1  
D2  
ANALOG  
COM  
0.1 µF  
10  
11  
12  
13  
14  
+
INPUT  
+
SW  
TC835  
18  
1
SW  
I
SWITCH OPEN  
D3  
+
5V  
V
IN  
SWITCH CLOSED  
17  
16  
15  
D5 (MSD)  
D4  
(MSB) B8  
B4  
B1 (LSB)  
B2  
Figure 3B. System Zero Phase  
Figure 1. Test Circuit  
ANALOG  
INPUT BUFFER  
+
SW  
I
V
C
R
INT  
INT  
+
+
IN  
+
RI  
SW  
SW  
RI  
C
SZ  
SW  
SW  
Z
IZ  
+
C
COMPARATOR  
SW  
REF  
R
+
REF  
IN  
BUFFER  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
LOGIC  
INPUT  
SW  
SW  
Z
Z
+
RI  
SW  
SW  
RI  
ANALOG  
COM  
SW  
1
SW  
I
SWITCH OPEN  
IN  
SWITCH CLOSED  
Figure 2. Digital Logic Input  
Figure 3C. Input Signal Integration Phase  
ANALOG  
ANALOG  
INPUT BUFFER  
SW  
SW  
I
INPUT BUFFER  
SW  
I
C
R
INT  
+
+
INT  
IN  
C
R
INT  
+
+
IN  
INT  
+
SW  
SW  
RI  
RI  
+
RI  
SW  
SW  
C
RI  
SZ  
C
SZ  
SW  
SW  
Z
IZ  
SW  
SW  
+
COMPARATOR  
IZ  
Z
C
REF  
R
+
+
COMPARATOR  
REF  
IN  
C
SW  
REF  
R
+
REF  
IN  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
TO  
DIGITAL  
SECTION  
SW  
SW  
Z
Z
INTEGRATOR  
+
RI  
SW  
SW  
SW  
SW  
Z
Z
RI  
+
RI  
SW  
SW  
ANALOG  
COM  
RI  
ANALOG  
COM  
SW  
1
SW  
I
SWITCH OPEN  
SW  
1
SW  
IN  
SWITCH CLOSED  
I
IN  
Figure 3D. Reference Voltage Integration Cycle  
Figure 3A. Analog Circuit Function Diagram  
3-68  
TELCOM SEMICONDUCTOR, INC.  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
3
TC835  
The dual-slope converter accuracy is unrelated to the  
integratingresistorandcapacitorvalues, aslongastheyare  
stable during a measurement cycle. An inherent benefit is  
noiseimmunity. Noisespikesareintegrated, oraveraged, to  
zero during the integration periods. Integrating ADCs are  
immune to the large conversion errors that plague succes-  
sive approximation converters in high-noise environments.  
(See Figure 4.)  
ANALOG  
INPUT BUFFER  
SW  
I
C
R
Z
INT  
+
+
INT  
IN  
+
SW  
SW  
C
RI  
RI  
C
SZ  
SW  
IZ  
SW  
+
COMPARATOR  
SW  
REF  
R
+
REF  
IN  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
SW  
SW  
Z
Z
+
RI  
SW  
SW  
RI  
TC835 Operational Theory  
ANALOG  
COM  
The TC835 incorporates a system zero phase and  
integrator output voltage zero phase to the normal two-  
phase dual-slope measurement cycle. Reduced system  
errors, fewer calibration steps, and a shorter overrange  
recovery time result.  
SW  
1
SW  
I
SWITCH OPEN  
IN  
SWITCH CLOSED  
Figure 3E. Integrator Output Zero Phase  
The TC835 measurement cycle contains four phases:  
GENERAL THEORY OF OPERATION  
(All Pin Designations Refer to 28-Pin DIP)  
Dual-Slope Conversion Principles  
(1) System zero  
(2) Analog input signal integration  
(3) Reference voltage integration  
(4) Integrator output zero  
The TC835 is a dual-slope, integrating analog-to-digital  
converter. An understanding of the dual-slope conversion  
technique will aid in following the detailed TC835 opera-  
tional theory.  
The conventional dual-slope converter measurement  
cycle has two distinct phases:  
Internal analog gate status for each phase is shown in  
Table 1.  
ANALOG  
INPUT  
(1) Input signal integration  
(2) Reference voltage integration (deintegration)  
INTEGRATOR  
SIGNAL  
COMPARATOR  
+
The input signal being converted is integrated for a fixed  
time period. Time is measured by counting clock pulses. An  
opposite polarity constant reference voltage is then inte-  
grateduntiltheintegratoroutputvoltagereturnstozero. The  
referenceintegrationtimeisdirectlyproportionaltotheinput  
signal.  
Inasimpledual-slopeconverter,acompleteconversion  
requires the integrator output to "ramp-up" and "ramp-  
down."  
+
SWITCH  
DRIVER  
CLOCK  
PHASE  
CONTROL  
REF  
VOLTAGE  
CONTROL  
LOGIC  
POLARITY CONTROL  
COUNTER  
Asimplemathematicalequationrelatestheinputsignal,  
reference voltage, and integration time:  
DISPLAY  
V
V
IN Ϸ  
IN Ϸ  
V
FULL SCALE  
1/2 V  
tSI  
1
VR tRI  
RC  
,
FULL SCALE  
VIN(t) dt =  
RC  
0
FIXED VARIABLE  
where:  
VR = Reference voltage  
tSI = Signal integration time (fixed)  
SIGNAL REFERENCE  
INTEGRATE INTEGRATE  
TIME TIME  
Figure 4. Basic Dual-Slope Converter  
tRI = Reference voltage integration time (variable).  
For a constant VIN:  
tRI  
VIN = VR  
.
]
[
tSI  
TELCOM SEMICONDUCTOR, INC.  
3-69  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
Table 1. Internal Analog Gate Status  
Conversion  
Internal Analog Gate Status  
Reference  
Schematic  
Cycle Phase  
SWI  
SWR+I  
SWRI  
SWZ  
SWR  
SW1  
SWIZ  
System Zero  
Closed  
Closed  
Closed  
3B  
3C  
Input Signal  
Integration  
Closed  
Reference Voltage  
Integration  
Closed*  
Closed  
Closed  
3D  
3E  
Integrator  
Closed  
Output Zero  
*NOTE: Assumes a positive polarity input signal. SWRI would be closed for a negative input signal.  
Analog Section Functional Description  
System Zero (Figure 3B)  
During this phase, errors due to buffer, integrator, and  
comparator offset voltages are compensated for by charg-  
ing CAZ (auto-zero capacitor) with a compensating error  
voltage. With a zero input voltage the integrator output will  
remain at zero.  
The external input signal is disconnected from the  
internal circuitry by opening the two SWI switches. The  
internal input points connect to ANALOG COMMON. The  
reference capacitor charges to the reference voltage poten-  
tial through SWR. A feedback loop, closed around the  
integrator and comparator, charges the CAZ capacitor with a  
voltage to compensate for buffer amplifier, integrator, and  
comparator offset voltages.  
(In Reference to the 28-Pin Plastic Package)  
Differential Inputs  
(+INPUT, Pin 10 and –INPUT, Pin 9)  
The TC835 operates with differential voltages within the  
input amplifier common-mode range. The input amplifier  
common-mode range extends from 0.5V below the positive  
supply to 1V above the negative supply. Within this com-  
mon-mode voltage range, an 86 dB common-mode rejec-  
tion ratio is typical.  
The integrator output also follows the common-mode  
voltage. The integrator output must not be allowed to satu-  
rate. A worst-case condition exists, for example, when a  
large positive common-mode voltage with a near full-scale  
negative differential input voltage is applied. The negative  
input signal drives the integrator positive when most of its  
swing has been used up by the positive common-mode  
voltage. For these critical applications the integrator swing  
can be reduced to less than the recommended 4V full-scale  
swing,withsomelossofaccuracy.Theintegratoroutputcan  
swing within 0.3V of either supply without loss of linearity.  
Analog Input Signal Integration (Figure 3C)  
The TC835 integrates the differential voltage between  
the +INPUT and –INPUT pins. The differential voltage must  
be within the device common-mode range; - 1V from either  
supply rail, typically.  
The input signal polarity is determined at the end of this  
phase.  
Reference Voltage Integration (Figure 3D)  
ANALOG COMMON Input (Pin 3)  
The previously-charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator output  
back to zero. The digital reading displayed is:  
ANALOG COMMON is used as the –INPUT return  
duringauto-zeroanddeintegrate. IfINPUTisdifferentfrom  
ANALOG COMMON, a common-mode voltage exists in the  
system. This signal is rejected by the excellent CMRR of the  
converter.Inmostapplications,INPUTwillbesetatafixed,  
known voltage (power supply common, for instance). In this  
application, ANALOG COMMON should be tied to the same  
point, thus removing the common-mode voltage from the  
converter. The reference voltage is referenced to ANALOG  
COMMON.  
Differential Input  
Reading = 10,000  
.
[
VREF  
]
Integrator Output Zero (Figure 3E)  
This phase guarantees the integrator output is at 0V  
when the system zero phase is entered and that the true  
system offset voltages are compensated for. This phase  
normally lasts 100 to 200 clock cycles. If an overrange  
conditionexists, thephaseisextendedto6200clockcycles.  
REFERENCE Voltage Input (REF IN, Pin 2)  
TheREFINinputmustbeapositivevoltagewithrespect  
to ANALOG COMMON. Two reference voltage circuits are  
shown in Figure 5.  
3-70  
TELCOM SEMICONDUCTOR, INC.  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
3
TC835  
+
POLARITY  
D5  
MSB  
D4  
D3  
D2  
D1  
V
13 B1  
14 B2  
DIGIT  
DRIVE  
SIGNAL  
LSB  
+
V
DATA  
OUTPUT  
MULTIPLEXER  
15 B4  
16 B8  
FROM  
REF  
IN  
ANALOG  
SECTION  
6.8V  
ZENER  
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
POLARITY  
FF  
TC835  
I
Z
ANALOG  
COMMON  
COUNTERS  
ZERO  
CROSS  
DETECT  
CONTROL LOGIC  
27  
24  
22  
25  
28  
26  
21  
BUSY  
V
DIGITAL CLOCK  
GND IN  
RUN/  
HOLD  
OVER–  
RANGE  
UNDER–  
RANGE  
STROBE  
+
V
6.8 k  
Figure 6. Digital Section Functional Diagram  
+
V
TC04  
REF  
IN  
INTEGRATOR  
OUTPUT  
20  
kΩ  
1.25V REF  
SIGNAL  
INTE  
10,000  
COUNTS  
(FIXED)  
TC835  
SYSTEM  
ZERO  
REFERENCE  
INTEGRATE  
20,001  
10,001  
COUNTS  
COUNTS (MAX)  
ANALOG  
COMMON  
FULL MEASUREMENT CYCLE  
40,002 COUNTS  
ANALOG  
GROUND  
BUSY  
OVERRANGE  
WHEN  
APPLICABLE  
Figure 5. Using an External Reference  
UNDERRANGE  
WHEN  
Digital Section Functional Description  
APPLICABLE  
EXPANDED SCALE  
BELOW  
The major digital subsystems within the TC835 are  
illustrated in Figure 6, with timing relationships shown in  
Figure7. ThemultiplexedBCDoutputdatacanbedisplayed  
on LCD or LED display with the TC7211A (LCD)  
4-digit display driver.  
DIGIT SCAN  
D5  
D4  
D3  
D2  
The digital section is best described through a discus-  
sion of the control signals and data outputs.  
D1  
100  
COUNTS  
FIRST D5 OF SYSTEM ZERO  
AND REFERENCE INTEGRATE  
ONE COUNT LONGER.  
*
RUN/HOLD Input (Pin 25)  
STROBE  
When left open, this pin assumes a logic "1" level. With  
a R/H = 1, the TC835 performs conversions continuously,  
with a new measurement cycle beginning every 40,002  
clock pulses.  
When R/H changes to a logic "0," the measurement  
cycle in progress will be completed, and data held and  
displayed as long as the logic "0" condition exists.  
A positive pulse (>300nsec) at R/H initiates a new  
measurement cycle. The measurement cycle in progress  
when R/H initially assumed the logic "0" state must be  
completed before the positive pulse can be recognized as a  
single conversion run command.  
AUTO ZERO  
REFERENCE  
INTEGRATE  
SIGNAL  
INTEGRATE  
*
DIGIT SCAN  
FOR  
OVERRANGE  
D5  
D4  
D3  
D2  
*
D1  
Figure 7. Timing Diagrams for Outputs  
TELCOM SEMICONDUCTOR, INC.  
3-71  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
The new measurement cycle begins with a 10,001-  
count auto-zero phase. At the end of this phase the busy  
signal goes high.  
TC835  
OUTPUTS  
BUSY  
END OF CONVERSION  
STROBE Output (Pin 26)  
*
B1–B8  
During the measurement cycle, the STROBE control  
line is pulsed low five times. The five low pulses occur in the  
center of the digit drive signals (D1, D2, D3, D5, Figure 8).  
D5 (MSD) goes high for 201 counts when the measure-  
ment cycles end. In the center of the D5 pulse, 101 clock  
pulses after the end of the measurement cycle, the first  
STROBE occurs for one-half clock pulse. After the D5 digit  
strobe, D4 goes high for 200 clock pulses. The STROBE  
goeslow100clockpulsesafterD4 goeshigh.Thiscontinues  
through the D1 digit drive pulse.  
The digit drive signals will continue to permit display  
scanning. STROBE pulses are not repeated until a new  
measurement is completed. The digit drive signals will not  
continue if the previous signal resulted in an overrange  
condition.  
D3  
D2  
D1 (LSD)  
DATA  
D5  
D5 (MSD)  
DATA  
D4  
DATA  
DATA  
DATA  
DATA  
STROBE  
NOTE ABSENCE  
OF STROBE  
200  
COUNTS  
201  
COUNTS  
200  
COUNTS  
D5  
D4  
D3  
200  
COUNTS  
200  
COUNTS  
200  
COUNTS  
D2  
D1  
TheactivelowSTROBEpulsesaidBCDdatatransferto  
UARTs, processors and external latches. (See Application  
Note 16.)  
200  
COUNTS  
*
DELAY BETWEEN BUSY GOING LOW AND FIRST STROBE  
PULSE IS DEPENDENT ON ANALOG INPUT.  
BUSY Output (Pin 21)  
Figure 8. Strobe Signal Pulses Low Five Times per Conversion  
At the beginning of the signal-integration phase, BUSY  
goeshighandremainshighuntilthefirstclockpulseafterthe  
integrator zero crossing. BUSY returns to the logic "0" state  
after the measurement cycle ends in an overrange condi-  
tion. The internal display latches are loaded during the first  
clock pulse after BUSY, and are latched at the clock pulse  
end. The BUSY signal does not go high at the beginning of  
the measurement cycle, which starts with the auto-zero  
cycle.  
The polarity bit is valid even for a zero reading. Signals  
less than the converter's LSB will have the signal polarity  
determined correctly. This is useful in null applications.  
DIGIT Drive Outputs (Pins 12, 17, 18, 19 and 20)  
Digit drive signals are positive-going signals. The scan  
sequenceisD5 toD1.Allpositivepulsesare200clockpulses  
wide, except D5, which is 201 clock pulses wide.  
All five digits are scanned continuously, unless an  
overrange condition occurs. In an overrange condition, all  
digit drives are held low from the final STROBE pulse until  
the beginning of the next reference-integrate phase. The  
scanning sequence is then repeated. This provides a blink-  
ing visual display indication.  
OVERRANGE Output (Pin 27)  
If the input signal causes the reference voltage integra-  
tion time to exceed 20,000 clock pulses, the OVERRANGE  
output is set to a logic "1." The overrange output register is  
setwhenBUSYgoeslow, andisresetatthebeginningofthe  
next reference-integration phase.  
BCD Data Outputs (Pins 13, 14, 15 and 16)  
UNDERRANGE Output (Pin 28)  
The binary coded decimal (BCD) bits B8, B4, B2, B1, are  
positive-true logic signals. The data bits become active  
simultaneously with the digit drive signals. In an overrange  
condition, all data bits are at a logic "0" state.  
If the output count is 9% of full scale or less (1800  
counts), the underrange register bit is set at the end of  
BUSY. Thebitissetlowatthenextsignal-integrationphase.  
POLARITY Output (Pin 23)  
Apositiveinputisregisteredbyalogic"1"polaritysignal.  
The polarity bit is valid at the beginning of reference inte-  
grate and remains valid until determined during the next  
conversion.  
3-72  
TELCOM SEMICONDUCTOR, INC.  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
3
TC835  
APPLICATIONS INFORMATION  
Component Value Selection  
The stability of the reference voltage is a major factor in  
the overall absolute accuracy of the converter. For this  
reason, it is recommended that a high-quality reference be  
used where high-accuracy absolute measurements are  
being made. Suitable references are:  
The integrating resistor is determined by the full-scale  
input voltage and the output current of the buffer used to  
chargetheintegratorcapacitor.Boththebufferamplifierand  
the integrator have a class A output stage, with 100 µA of  
quiescent current. A 20 µA drive current gives negligible  
linearity errors. Values of 5 µA to 40 µA give good results.  
The exact value of an integrating resistor for a 20 µA current  
is easily calculated.  
Part Type  
Manufacturer  
TC04A  
TC9491  
TelCom Semiconductor  
TelCom Semiconductor  
full-scale voltage  
Conversion Timing  
RINT  
=
20 µA  
Line Frequency Rejection  
A signal integration period at a multiple of the 60 Hz line  
frequency will maximize 60 Hz "line noise" rejection.  
A 200 kHz clock frequency will reject 60 Hz and 400 Hz  
noise. This corresponds to five readings per second.  
Integrating Capacitor  
The product of integrating resistor and capacitor should  
beselectedtogivethemaximumvoltageswingthatensures  
the tolerance buildup will not saturate the integrator swing  
(approximately 0.3V from either supply). For ±5V supplies  
and ANALOG COMMON tied to supply ground, a ±3.5V to  
±4Vfull-scaleintegratorswingisadequate.A0.10µFto0.47  
µFisrecommended.Ingeneral,thevalueofCINT isgivenby:  
Conversion Rate vs Clock Frequency  
Oscillator Frequency  
(kHz)  
Conversion Rate  
(Conv/Sec)  
[10,000 × clock period] × IINT  
100  
120  
200  
300  
400  
800  
1200  
2.5  
3
5
7.5  
10  
20  
30  
CINT  
=
=
Integrator output voltage swing  
(10,000) (clock period) (20 µA)  
Integrator output voltage swing  
Averyimportantcharacteristicoftheintegratingcapaci-  
tor is that it has low dielectric absorption to prevent rollover  
or ratiometric errors. A good test for dielectric absorption is  
to use the capacitor with the input tied to the reference. This  
ratiometric condition should read half-scale 0.9999, any  
deviation is probably due to dielectric absorption. Polypro-  
pylene capacitors give undetectable errors at reasonable  
cost.Polystyreneandpolycarbonatecapacitorsmayalsobe  
used in less critical applications.  
Line Frequency Rejection  
Oscillator Frequency  
(kHz)  
60 Hz  
50 Hz  
400 Hz  
50.000  
53.333  
66.667  
80.000  
83.333  
Auto-Zero and Reference Capacitors  
100.000  
125.000  
133.333  
166.667  
200.000  
250.000  
The size of the auto-zero capacitor has some influence  
on the noise of the system. A large capacitor reduces the  
noise. Thereferencecapacitorshouldbelargeenoughsuch  
that stray capacitance to ground from its nodes is negligible.  
The dielectric absorption of the reference capacitor and  
auto-zero capacitor are only important at power-on, or when  
thecircuitisrecoveringfromanoverload.Smallerorcheaper  
capacitors can be used if accurate readings are not required  
for the first few seconds of recovery.  
The conversion rate is easily calculated:  
Conversion Rate  
Reference Voltage  
Clock Frequency (Hz)  
(Readings 1/sec) =  
4000  
Theanaloginputrequiredtogenerateafull-scaleoutput  
is VIN = 2 VREF  
.
TELCOM SEMICONDUCTOR, INC.  
3-73  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
For many dedicated applications where the input signal  
is always of one polarity, the delay of the comparator need  
not be a limitation. Since the nonlinearity and noise do not  
increase substantially with frequency, clock rates of up to  
~1 MHz may be used. For a fixed clock frequency, the extra  
count or counts caused by comparator delay will be a  
constant and can be subtracted out digitally.  
The clock frequency may be extended above 200 kHz  
without this error, however, by using a low-value resistor in  
series with the integrating capacitor. The effect of the  
resistor is to introduce a small pedestal voltage on to the  
integrator output at the beginning of the reference integrate  
phase. By careful selection of the ratio between this resistor  
and the integrating resistor (a few tens of ohms in the  
recommended circuit), the comparator delay can be com-  
pensated and the maximum clock frequency extended by  
approximately a factor of 3. At higher frequencies, ringing  
andsecond-orderbreakswillcausesignificantnonlinearities  
in the first few counts of the instrument.  
Power Supplies and Grounds  
Power Supplies  
The TC835 is designed to work from ±5V supplies. For  
single +5V operation, a TC7660 can provide a – 5V supply.  
Grounding  
Systems should use separate digital and analog ground  
systems to avoid loss of accuracy.  
Displays and Driver Circuits  
TelCom Semiconductor manufactures two display de-  
coder/drivercircuitstointerfacetheTC835toanLCDorLED  
display.Eachdrivehas28outputsfordrivingfour7-segment  
digit displays.  
Device  
Package  
Description  
TC7211AIPL  
40-Pin Epoxy  
4-Digit LCD Driver/Decoder  
Theminimumclockfrequencyisestablishedbyleakage  
on the auto-zero and reference capacitors. With most de-  
vices, measurement cycles as long as 10 seconds give no  
measurable leakage error.  
Several sources exist for LCD and LED display:  
Display  
Manufacturer  
Address  
Type  
The clock used should be free from significant phase or  
frequency jitter. Several suitable low-cost oscillators are  
shown in the applications section. The multiplexed output  
means that if the display takes significant current from the  
logic supply, the clock should have good PSRR.  
Hewlett Packard  
Components  
640 Page Mill Rd.  
Palo Alto, CA 94304  
LED  
Litronix, Inc.  
19000 Homestead Rd.  
Cupertino, CA 94010  
LED  
AND  
720 Palomar Ave.  
Sunnyvale, CA 94086  
LCD and  
LED  
Zero-Crossing Flip-Flop  
Epson America, Inc.  
3415 Kanhi Kawa St.  
Torrance, CA 90505  
LCD  
The flip-flop interrogates the data once every clock  
pulse after the transients of the previous clock pulse and  
half-clockpulsehavedieddown.Falsezero-crossingscaused  
by clock pulses are not recognized. Of course, the flip-flop  
delays the true zero-crossing by up to one count in every  
instance, and if a correction were not made, the display  
would always be one count too high. Therefore, the counter  
is disabled for one clock pulse at the beginning of the  
reference integrate (deintegrate) phase. This one-count  
delay compensates for the delay of the zero-crossing flip-  
flop, and allows the correct number to be latched into the  
display. Similarly, a one-count delay at the beginning of  
auto-zerogivesanoverloaddisplayof0000insteadof0001.  
Nodelayoccursduringsignalintegrate,sothattrueratiometric  
readings result.  
High-Speed Operation  
The maximum conversion rate of most dual-slope A/D  
converters is limited by the frequency response of the  
comparator. The comparator in this circuit follows the inte-  
grator ramp with a 3 µsec delay, and at a clock frequency of  
200 kHz (5 µsec period), half of the first reference integrate  
clock period is lost in delay. This means that the meter  
reading will change from 0 to 1 with a 50 µV input, 1 to 2 with  
150 µV, 2 to 3 at 250 µV, etc. This transition at midpoint is  
considered desirable by most users; however, if the clock  
frequency is increased appreciably above 200 kHz, the  
instrument will flash "1" on noise peaks even when the input  
is shorted.  
3-74  
TELCOM SEMICONDUCTOR, INC.  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
3
TC835  
TYPICAL APPLICATIONS DIAGRAMS  
4-1/2 Digit ADC With Multiplexed Common Anode LED Display  
+5V  
20 19  
18 17 12  
D1 D2 D3 D4 D5  
INT OUT  
4
5
0.33µF  
1 µF  
AZ IN  
4.7 k  
23  
7
POL  
6
BUFF  
OUT  
b
c
7
7
7
7
C
100 kΩ  
REF  
22  
10  
TC835  
f
200 kHz  
1 µF  
IN  
+
X7  
8
C
BLANK MSD ON ZERO  
6
REF  
100 kΩ  
+
+INPUT  
9–15  
5
ANALOG  
16  
15  
14  
13  
1 µF  
D
INPUT  
B8  
9
3
RBI  
7447  
–INPUT  
2
1
7
C
B
A
B4  
B2  
B1  
16  
+5V  
ANALOG  
COMMON  
REF  
+
V
V
IN  
1
2
11  
6.8 kΩ  
–5V  
100 kΩ  
TC04  
Comparator Clock Circuits  
RC Oscillator Circuit  
+5V  
R
R
2
1
C
16 k  
1 kΩ  
f
O
56 kΩ  
2
3
+
8
V
OUT  
0.22 µF  
GATES ARE 74C04  
7
LM311  
1
R1 R2  
1
30 kΩ  
1. fO =  
, RP =  
4
R1 + R2  
16 kΩ  
2 C(0.41 RP + 0.7 R1)  
390 pF  
a. If R1 = R2 = R1, f 0.55/RC  
b. If R2 >> R1, f 0.45/R1C  
c. If R2 << R1, f 0.72/R1C  
+5V  
R2  
100 kΩ  
R4  
2 kΩ  
2. Examples:  
C2  
a. f = 120 kHz, C = 420 pF  
2
3
+
6
10 pF  
7
R2  
R1 = R2 10.9 kΩ  
V
LM311  
OUT  
100 kΩ  
4
R3  
b. f = 120 kHz, C = 420 pF, R2 = 50 kΩ  
R1 = 8.93 kΩ  
1
50 kΩ  
C1  
0.1 µF  
c. f = 120 kHz, C = 220 pF, R2 = 5 kΩ  
R1 = 27.3 kΩ  
TELCOM SEMICONDUCTOR, INC.  
3-75  
PERSONAL COMPUTER  
DATA ACQUISITION A/D CONVERTER  
TC835  
TYPICAL APPLICATIONS DIAGRAMS  
4-1/2 Digit ADC with Multiplexed Common Cathode LED Display  
+5V  
+5V  
SET V  
= 1V  
REF  
–5V  
6.8V  
28  
27  
26  
1
V
UR  
OR  
100  
kΩ  
2
3
TC04  
1.22V  
REF IN  
150Ω  
ANALOG  
GND  
STROBE  
47  
kΩ  
10  
11  
9
8
7
6
5
4
3
2
1
ANALOG  
GND  
150Ω  
25  
24  
23  
22  
21  
20  
4
5
6
7
8
9
INT  
RUN/HOLD  
DGND  
OUT  
1 µF  
0.33 µF  
12  
13  
14  
15  
AZ IN  
BUFF  
OUT  
CD4513  
BE  
POLARITY  
100 kΩ  
+
C
CLK IN  
BUSY  
(LSD) D1  
D2  
REF  
1 µF  
100  
kΩ  
C
REF  
+5V  
16  
17  
+
–INPUT  
+INPUT  
SIG  
0.1  
µF  
10  
11  
12  
19  
18  
17  
IN  
18  
+
+5V  
D3  
V
TC835  
D4  
D5 (MSD)  
13  
14  
16  
15  
(MSB) B8  
B4  
B1 (LSB)  
B2  
f
= 200 kHz  
OSC  
+5V  
4-1/2 DIGIT LCD  
SEGMENT  
DRIVE  
1/2 CD4030  
–5V  
5
1
23  
POL  
BP  
D1  
20  
V
CD4081  
1/4 CD4030  
31  
32  
33  
34  
D1  
D2  
D3  
D4  
4
INT OUT  
19  
18  
17  
0.33 µF  
1 µF  
D2  
D3  
D4  
5
6
AZ IN  
BUFF OUT  
100 k  
16  
CD4071  
TC7211A  
22  
30  
29  
28  
27  
B8  
200 kHz  
+
f
B3  
B2  
B1  
B0  
IN  
TC835  
15  
14  
B4  
B2  
B1  
100 kΩ  
1
+
10  
9
V
+INPUT  
–INPUT  
35  
GND  
ANALOG  
INPUT  
13  
12  
D
Negative Supply Voltage Generator  
D5  
Q
1/2  
CD4013  
CLK  
1/4 CD4081  
+5V  
26  
27  
3
ANALOG  
COMMON  
STROBE  
OR  
11  
+5V  
+
S
R
1/4 CD4030  
V
8
REF  
IN  
+
V
2
1
(–5V)  
10 µF  
5
6.8 kΩ  
V
+5V  
TC7660  
100 kΩ  
+
TC04  
TC835  
24  
4
2
3
+
10 µF  
3-76  
TELCOM SEMICONDUCTOR, INC.  

相关型号:

TC835CBUTR

1-CH DUAL-SLOPE ADC, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC835CKW

Personal Computer Data Acquisition A/D Converter
MICROCHIP

TC835CKW

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER
TELCOM

TC835CPI

Personal Computer Data Acquisition A/D Converter
MICROCHIP

TC835CPI

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER
TELCOM

TC835CPIG

1-CH DUAL-SLOPE ADC, PDIP28, PLASTIC, DIP-28
MICROCHIP

TC8395-90

16-Bit Microcontroller
ETC

TC8395BH

16-Bit Microcontroller
ETC

TC8398

Microcontroller, 16-Bit, MROM, 12MHz, NMOS, CDIP48, CERAMIC, DIP-48
INTEL

TC83C251SA

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, CDIP40, CERAMIC, DIP-40
INTEL

TC83C251SA16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER
INTEL

TC83C251SB

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, CDIP40, CERAMIC, DIP-40
INTEL