TPU3050PO [TDK]

Teletext Decoder, PDIP52, PLASTIC, DIP-52;
TPU3050PO
型号: TPU3050PO
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Teletext Decoder, PDIP52, PLASTIC, DIP-52

光电二极管 商用集成电路
文件: 总72页 (文件大小:576K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
TPU 3035,  
TPU 3040,  
TPU 3050  
Teletext Processors  
MICRONAS  
Edition Feb. 23, 1999  
6251-349-6PD  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Contents  
Page  
Section  
Title  
4
1.  
Introduction  
4
1.1.  
Features  
6
6
6
6
7
8
8
8
9
9
9
2.  
Functional Description  
Conceptional Overview  
Teletext Acquisition  
Teletext Page Management  
Display Page Generation  
WST Display Controller  
Character Generator  
OSD Layer  
2.1.  
2.2.  
2.3.  
2.4.  
2.5.  
2.6.  
2.7.  
2.8.  
2.9.  
2.10.  
DRAM Interface  
SRAM Interface  
Applications  
10  
10  
11  
13  
14  
15  
16  
17  
17  
17  
18  
18  
18  
18  
19  
19  
19  
20  
20  
21  
21  
21  
22  
22  
23  
25  
25  
3.  
Specifications  
3.1.  
Outline Dimensions  
3.2.  
Pin Connections and Short Descriptions  
Pin Descriptions  
3.3.  
3.3.1.  
3.4.  
Pin Descriptions TPU 3050  
Pin Configuration  
3.5.  
Pin Circuits  
3.6.  
Electrical Characteristics  
3.6.1.  
3.6.2.  
3.6.3.  
3.6.4.  
3.6.5.  
3.6.6.  
3.6.7.  
3.6.8.  
3.6.9.  
3.6.10.  
3.6.11.  
3.6.12.  
3.6.13.  
3.6.14.  
3.6.15.  
3.6.15.1.  
3.6.15.2.  
3.6.16.  
3.6.16.1.  
Absolute Maximum Ratings  
Recommended Crystal Characteristics  
General Operating Conditions  
General Input Characteristics  
Power Consumption  
Timer, Interrupt and Watchdog Characteristics  
Clock Generator Characteristics  
Video Interface Characteristics  
MAC Interface Characteristics  
RGB Interface Characteristics  
Prio and Color Interface Characteristics  
H and V Sync Interface Characteristics  
MSync Interface Characteristics  
2
I C-Bus Interface Characteristics  
DRAM Interface Characteristics  
DRAM Fast Mode Timing  
DRAM Slow Mode Timing  
SRAM Interface Characteristics (TPU 3050 only)  
SRAM Mode Timing  
2
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
26  
26  
26  
27  
27  
28  
28  
28  
29  
30  
32  
33  
34  
35  
35  
36  
36  
38  
39  
40  
47  
47  
48  
50  
51  
52  
53  
4.  
Definitions  
CPU  
4.1.  
4.1.1.  
4.2.  
Memory Mapping  
2
I C-Bus Interface  
4.2.1.  
4.2.1.1.  
4.2.1.2.  
4.2.1.3.  
4.2.1.4.  
4.3.  
Subaddressing  
CPU Subaddressing  
DRAM Subaddressing  
Command Subaddressing  
Data Subaddressing  
Display Memory  
4.4.  
OSD Layer  
4.5.  
Character Set  
4.6.  
Font Structure  
4.7.  
Character Font  
4.7.1.  
4.7.2.  
4.7.3.  
4.7.4.  
4.8.  
Character Set 0  
Character Set 1  
Character Set 2  
NTSC Character Sets  
Character Mapping  
Command Language  
Memory Manager  
Memory Organization  
Page Table  
4.9.  
4.10.  
4.11.  
4.12.  
4.13.  
4.14.  
4.15.  
4.16.  
Ghost Row Organization  
Subpage Manager  
I/O Page Definition  
I/O Page Register  
66  
68  
68  
72  
5.  
6.  
7.  
8.  
Application  
Glossary of Abbreviations  
References  
Data Sheet History  
MICRONAS INTERMETALL  
3
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Multistandard Teletext Processor for Level 1 and 2  
Release Note:  
This data sheet describes functions and characteristics of TPU3040–A25 and TPU3050–C4.  
If not otherwise designated, the pin numbers mentioned refer to the 44-pin PLCC package. For corresponding  
PDIP and PSDIP numbers, see page 11. Revision bars indicate significant changes to the previous version.  
1. Introduction  
Table 1–1: Feature List  
The TPU 3040 is a single chip World System Teletext  
(WST) decoder for applications in analog and digital TV  
sets. Based on a 65C02 core with RAM and ROM on  
chip, an adaptive data slicer, a display controller, and a  
number of interfaces, the TPU 3040 offers acquisition  
and display of various teletext and data services such as  
WST, PDC, VPS, and WSS.  
TPU  
3035  
Acquisition  
3040  
3050  
No. of analog comp. video  
1
2
2
inputs  
Clamping  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
AGC  
1.1. Features  
Sync. separation with PLL  
Adaptive data slicer  
Signal quality detection  
PAL VBI acquisition  
NTSC VBI acquisition  
TheTPU3040isanintegratedcircuitdesignedinCMOS  
technology. As a stand-alone system or in combination  
with the DIGIT 3000 system, the TPU 3040 offers a wide  
range of new and interesting features, some of them  
unique in comparison with other products on the market.  
The TPU 3035 is a stripped-down version of TPU 3040,  
designed for low-cost applications. The basic chip archi-  
tecture remains unchanged, whereas some of the more  
sophisticated features are removed.  
MAC VBI acquisition  
(PLCC44 only)  
MAC packet text acquisition  
(PLCC44 only)  
The TPU 3050 offers all features of the TPU 3040 plus  
the possibility of connecting the SRAM instead of the  
DRAM memory.  
Full-field acquisition  
x
x
x
Asynchronous acquisition and  
display  
This data sheet describes the full feature set of the  
TPU 3040. Differences between TPU 3035, TPU 3040,  
and TPU 3050 are denoted when necessary (see Table  
1–1).  
Ghost row acquisition  
EPG support  
x
x
x
x
x
x
x
Internal row 26 processing  
(extended character sets)  
FLOF/TOP s/w support on chip  
PDC acquisition  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
VPS acquisition  
WSS acquisition  
US captioning  
Software acquisition (ad-  
vanced header, magazine  
shuffle, ...)  
Full parallel acquisition  
x
x
x
4
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Table 1–1, continued  
TPU  
3035  
Display  
3040  
3050  
TPU  
3035  
x
3040  
x
3050  
x
OSD – layer independent  
Display priority via  
software-ID  
D3000  
D3000  
D3000  
No. of different characters  
512  
512  
16  
512  
16  
No. of national language  
character sets  
16  
RGB input from SCART and  
Fast Blank interface  
x
x
x
Character matrix size  
No. of display rows  
Pixel graphics  
10x10  
> 26  
10x10  
10x10  
Hardware cursor  
> 26  
> 26  
Memory  
x
x
No. of pages on-chip  
No. of pages off-chip  
Minimum DRAM (ext.)  
Maximum DRAM (ext.)  
DRAM organization  
16:9 display  
(25% shrink)  
112  
2032  
2032  
1/2 screen display  
(50% shrink)  
x
x
x
x
256 Kbit  
1 Mbit  
1 bit  
256 Kbit  
16 Mbit  
1 bit  
256 Kbit  
16 Mbit  
1 bit  
1/2 screen 16:9 display  
(62.5% shrink)  
32 kHz mode  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
DRAM access time  
(page mode)  
90 ns  
90 ns  
90 ns  
Non-interlace display  
50/60 Hz display  
Minimum SRAM (ext.)  
Maximum SRAM (ext.)  
SRAM organization  
SRAM access time  
x
x
256 Kbit  
1 Mbit  
8 bit  
100/120 Hz display  
Scrolling vertical  
100 ns  
x
Scrolling horizontal  
Double height page display  
Status row single height  
Automatic memory/config.  
check  
Variable no. of subpages  
(internal subpage manage-  
ment)  
x
x
x
Two page display side by  
side  
Constant page access time  
x
x
x
Stable (line locked) display  
with noisy video  
x
x
x
Dyn. pg. storage (datacom-  
pression)  
Display synchronized by  
input video  
General Product Info  
75 Ohm output  
x
x
x
Supply voltage [V]  
5
5
5
Half contrast RGB out  
Power dissipation [mW]  
Control bus  
250  
250  
300  
2
2
2
RGB level adjustable  
(externally)  
I C  
I C  
I C  
IR decoder and control  
Software macro interface  
System clock [MHz]  
Package  
x
x
x
Level 3  
Level 2  
Level 2  
Level 2  
Level 2  
DRCS  
CLUT  
D3000  
D3000  
D3000  
20.25  
PDIP40  
20.25  
20.25  
double width  
double height  
full screen color  
x
x
x
x
x
x
x
x
x
PLCC44 PSDIP52  
PDIP40  
Technology  
0.8 µm  
CMOS  
0.8 µm  
CMOS  
0.8 µm  
CMOS  
MICRONAS INTERMETALL  
5
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
2. Functional Description  
2.1. Conceptional Overview  
2.2. Teletext Acquisition  
Theonlytaskoftheslicercircuitistoextractteletextlines  
from the incoming composite video signal and to store  
them into the acquisition scratch buffer of the external  
DRAM. No page selection is done at this hardware level.  
The basic idea behind the TPU 3040 concept is the re-  
placement of random logic by software. The still existing  
hardware supports the on-chip CPU in tasks with high  
data rates and ineffective software solutions. Typical  
tasks of a teletext decoder are listed below (realization  
on TPU 3040 in brackets):  
Two analog sources can be connected, thus it is pos-  
sible to receive text from one channel while watching  
another on the screen. After clamping and AGC amplifi-  
er the analog video signal is converted into binary data.  
Syncseparation is done by a sync slicer and a horizontal  
PLL, which generate the horizontal and vertical timing.  
By these means no external sync signals are needed  
and any available signal source can be used for teletext  
reception.  
– teletext data acquisition  
– teletext data decoding  
– page generation  
(hardware)  
(software)  
(software)  
(software)  
(hardware)  
(software)  
– page memory management  
– page display  
The teletext information itself is acquired using adaptive  
slicers on bit and byte level with soft error detection to  
decrease the bit error rate under bad reception condi-  
tions. The slicer can be programmed to different bit rates  
for reception of PAL, NTSC or MAC world system tele-  
text as well as VPS,WSS, or CAPTION signals.  
– user interface  
Fig. 2–1 shows the functional block diagram of the  
TPU 3040. The software approach is realized using a  
65C02 core with RAM and program ROM on chip. Via  
the I/O, the CPU is connected to a DRAM interface. The  
DRAM contains an acquisition scratch buffer which is  
filled automatically by the teletext slicer circuit. After pro-  
cessing this scratch buffer, the CPU stores reorganized  
teletext lines into the page memory which takes up the  
greatest space in the DRAM capacity. A third part of the  
DRAM holds WST level 2 display data, which are read  
out by the WST layer. The CPU has to generate the dis-  
play data by decoding teletext information from the page  
memory.  
2.3. Teletext Page Management  
As a state-of-the-art teletext decoder the TPU 3040 is  
able to store and manage a sufficient number of teletext  
pages to absorb the annoying transmission cycle times.  
The number of available pages is only limited by the  
memory size. With an intelligent software and a 16 Mbit  
DRAM it is possible to store and to control more than  
2000 teletext pages.  
Apart from the WST layer, there is also one additional  
on-chip OSD layer. The OSD layer accesses the on-chip  
memory to read text and character font information. The  
RGB outputs of the OSD layer can have higher priority  
thantheWSTlayeroutputs. Thusitispossibletooverlay  
the teletext display with an additional layer for user guid-  
ance.  
The management of such a data base is a typical soft-  
ware task and is therefore performed by the 65C02. Us-  
ingafixedlengthpagetablewithoneentryforeverypos-  
sible page, the software distributes the content of the  
acquisition scratch buffer among the page memory. The  
page size is fixed to 1 KByte, only ghost rows are  
chained in 128-byte segments to avoid unused memory  
space.  
The CPU memory contains RAM, program ROM and  
character ROM. The character ROM holds the font data  
and is separated from the program ROM to save CPU  
time. The CPU can still access the character ROM via  
a DMA interface including wait cycles. The WST layer  
and the additional OSD layer can also access the CPU  
memory via the same DMA interface.  
The CPU is supported by some glue logic such as timer,  
watchdog and interrupt controller and communicates  
2
with the outside world via the I C-Bus.  
6
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
43  
1
22  
24  
23  
TPU 3040  
42  
MUX  
ADC  
Slicer  
7–18  
Clamping  
AGC  
44  
3
4
5
6
19  
20  
2
I C-Bus  
Program  
RAM  
Program  
ROM  
DRAM  
Interface  
65C02  
Interface  
21  
2
Timer  
Interrupt  
Watchdog  
Skew  
Delay  
DMA  
Interface  
WST  
Layer  
29  
36  
37  
38  
39  
27  
28  
RGB &  
PRIO  
Interface  
Sync  
Interface  
Character  
ROM  
OSD  
Layer  
Clock  
Generator  
25  
26  
30 31  
32  
33  
41  
40  
34  
35  
Fig. 2–1: Functional block diagram of the TPU 3040  
2.4. Display Page Generation  
non-spacing attributes. This is done by using a slightly  
modified stack model, in which one pointer bit for every  
character location indicates the presence of additional  
parallelattributes. Fig. 2–2showstheorganizationofthe  
stack row buffer. In this stack model the number of non-  
spacing attributes per row is limited to 40, which agrees  
with the WST and CEPT specification.  
A stored teletext page cannot be displayed directly, be-  
cause of the row-adaptive transmission and the level 2  
enhancements (row 26–29). Therefore the CPU has to  
generate a display page buffer, separated into level 1  
datasuchascharactercodesandspacingattributesand  
into level 2 data, such as character set extension and  
MICRONAS INTERMETALL  
7
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Level 2 Buffer  
Pointer  
Level 1 Buffer  
– 1-bit italics  
– 1-bit shadow  
1
1
1
0
1
1
0
1
1
1
Char 3 Attr.  
Char 3 Attr.  
Char 3 Attr.  
Char 3 Attr.  
Char 6 Attr.  
Char 6 Attr.  
Char 6 Attr.  
Char 10 Attr.  
Char 10 Attr.  
Char 10 Attr.  
0
0
1
0
0
1
0
0
0
1
Char 1  
Char 2  
Char 3  
Char 4  
Char 5  
Char 6  
Char 7  
Char 8  
Char 9  
Char 10  
The display controller delivers 5-bit digital color informa-  
tion, a shadow signal for contrast reduction and a fast  
blank signal. The color bus can be used to address ex-  
ternal color-look-up-tables (CLUT) which are part of  
modern digital TV systems, such as the DIGIT 3000. By  
this means, the full level 2 color spectrum can be dis-  
played. For simple level 1 applications only 3 bits of the  
color bus are converted into analog RGB signals on  
chip.  
2.6. Character Generator  
Characters are displayed with a 10x10 pixel resolution  
in PAL and 10x8 pixel resolution in NTSC mode. Pixel  
clock is 10.125 MHz, derived from the main clock of  
20.25 MHz. To get 10-bit pixel information two memory  
cycles are needed. The character font is part of the  
mask-programmable ROM, but supplied with its own  
bus structure (see Fig. 4–1). By this means the data  
transfer between character ROM and teletext display  
controller does not stop the CPU, which is important in  
the case of doubled line frequency.  
0
0
0
0
0
Char 36 Attr.  
1
0
0
0
0
Char 36  
Char 37  
Char 38  
Char 39  
Char 40  
Fig. 2–2: Stack Row Buffer  
Both bus structures are connected via a memory inter-  
face which allows cross-connections using DMA or wait  
cycles. As the number of addressable characters is  
1024, the maximum character font size is 12800 byte. In  
this case part of the character font can be shifted into the  
program ROM which causes DMA cycles. Therefore  
only less frequently used characters should be placed  
into the program ROM. Vice versa seldom used CPU  
code can be put into the character ROM.  
2.5. WST Display Controller  
The display controller includes two row buffers. The first  
row buffer holds a copy of a teletext row from the display  
page buffer. This decreases the data rate through the  
DRAM interface by a factor of 10 or 8, because new tele-  
text row data is needed only after 10 lines in PAL or 8  
lines in NTSC mode. The second row buffer stores all  
display attributes in parallel, to allow level 2 display with-  
out additional decoding.  
The WST specification defines a number of 7-bit code  
tables, which are filled with 96 characters only. In the G0  
code table some characters have several language de-  
pendent variations. Additionally characters from the G0  
code table can be combined with diacritical marks from  
the G2 code table (row 26). Thus it is not possible to sim-  
ply transform the code tables into a continuous font  
ROM without getting unused ROM space and multiple  
defined character fonts.  
To present a WST level 2 display, the teletext display  
controller has to evaluate the following attributes in par-  
allel, that is for every character location:  
– 10-bit character code  
– 5-bit foreground color  
– 5-bit background color  
– 2-bit size  
The character ROM is optimized by reorganizing the  
code table structure of the WSTspecification. Thewhole  
character font is subdivided into blocks of 32 characters  
which are mapped to the WST character sets via a mask  
programmable mapping ROM (see Fig. 4–5). The char-  
acter set selection is done via software.  
– 5-bit flash  
– 1-bit invert  
2.7. OSD Layer  
– 1-bit separated  
– 1-bit conceal  
Apart from the WST layer, there is also one additional  
OSD layer on chip. The OSD layer accesses the CPU  
memory via DMA to read text and character font infor-  
mation. The RGB outputs of the OSD layer can have  
higher priority than the WST layer outputs. Thus it is pos-  
sible to overlay the teletext display with an additional lay-  
er for user guidance (see Fig. 2–3).  
– 1-bit underline  
– 1-bit boxing/window  
Additional attributes are defined to improve the display  
of CAPTION and OSD text:  
8
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
2.9. SRAM Interface  
Full Screen Layer  
The TPU 3050 is able to address either DRAM or SRAM  
memories. The DRAM interface can be switched into  
2
SRAM mode via I C-Bus. The SRAM interface is in-  
serted between the DRAM interface and the actual  
memory and demultiplexes the DRAM addresses into a  
single SRAM address and arranges the serial DRAM  
data into parallel data. Therefore, there is no gain in  
speed when SRAM is connected and slow SRAM types  
(100 ns) can be used. The internal, as well as the exter-  
nal controller software, does not see any difference be-  
tween DRAM and SRAM mode.  
WST Layer  
OSD Layer  
2.10. Applications  
The field of applications covers analog and digital TV  
sets, set-top satellite decoders, video recorders and  
home computers. For example, Fig. 2–4 shows how the  
TPU 3040 fits into an analog environment. Two analog  
sources are connected and the output is analog RGB,  
synchronized with an external sync signal or self-timed.  
Page selection and other user actions are sent to the  
Fig. 2–3: Display Layer  
2.8. DRAM Interface  
The DRAM interface connects a standard DRAM to the  
internal bus structure. The address bus is 12 bit wide,  
addressing DRAMs up to 16 Mbit. Smaller DRAMs can  
alsobeconnected. Themaximumdatathroughputofthe  
DRAM interface is 8.82 Mbit/s. This fast mode timing is  
adapted to DRAMS with page mode cycle time faster  
than 85 ns. In slow mode the data rate is 6.1 Mbit/s and  
the timing is adapted to DRAMS with a page mode cycle  
time faster than 120 ns. The data rate calculation al-  
ready takes into account the required refresh cycles.  
2
TPU 3040 via I C-Bus using a high level command lan-  
guage.  
DRAM  
The DRAM interface has to handle 3 asynchronous data  
streams. The CPU needs access to every memory loca-  
tion of the DRAM. During VBI the slicer writes up to 22  
teletext lines of 43 bytes into the acquisition scratch  
memory. Alternatively the slicer can store MAC packets  
of 90 bytes into the acquisition scratch. During text dis-  
play the display controller copies teletext rows from dis-  
play memory into its internal row buffer.  
Tuner 1  
Tuner 2  
R
G
B
TPU 3040  
Sync  
2
I C-Bus  
The lower data rate of the slow mode makes some re-  
strictions necessary. With 6.1 Mbit/s it is no longer possi-  
ble to run slicer and display in parallel. Only MAC packet  
teletext can still be acquired asynchronously because of  
the lower bit rate. VBI teletext can only be acquired while  
the display controller is inactive (synchronous acquisi-  
tion and display).  
Controller  
Fig. 2–4: Stand-Alone Application  
MICRONAS INTERMETALL  
9
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3. Specifications  
3.1. Outline Dimensions  
D001/3E  
SPGS0015-1/2E  
40  
1
21  
52  
1
27  
20  
26  
±0.15  
15.6  
±0.1  
15.6  
±0.1  
52  
±0.1  
±0.1  
14  
47  
5±1°  
6±5°  
±0.1  
0.27  
±0.06  
0.27  
0°...15°  
15.24  
±0.1  
1
±0.1  
±0.1  
1.25  
0.5  
0.457  
±0.05  
1.778  
19 x 2.54 = 48.26  
±0.1  
25 x 1.778 = 44.47  
Fig. 3–1:  
40-pin Plastic Dual-Inline Package  
(PDIP40)  
Weight approx. 6 g  
Dimensions in mm  
Fig. 3–2:  
52-Pin Plastic Shrink Dual-Inline Package  
(PSDIP52)  
Weight approximately 5.5 g  
Dimensions in mm  
± 0.1  
10 x 1.27 = 12.7  
±0.1  
1.27  
1.2 x 45°  
1.1 x 45 °  
6
1
40  
7
39  
1.6  
6
2
2
8.6  
5
17  
29  
1.9  
4.05  
18  
28  
± 0.125  
± 0.1  
16.5  
17.525  
0.1  
±0.15  
4.75  
SPGS7003-2/3E  
Fig. 3–3:  
44-Pin Plastic Leaded Chip Carrier Package  
(PLCC44)  
Weight approximately 2.5 g  
Dimensions in mm  
10  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.2. Pin Connections and Short Descriptions  
Pin No.  
PLCC44  
Pin No.  
PDIP40  
Pin No.  
PSDIP52  
Signal Name  
Type  
Symbol  
TPU 3040  
TPU 3035  
TPU 3040  
TPU 3040  
TPU 3050  
1
1
3
2
Reference Voltage Top  
SRAM Data 0  
Supply  
VRT  
D0  
Input/Output  
Input/Output  
Input/Output  
Input  
1
SRAM Data 1  
D1  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SRAM Data 2  
D2  
2
40  
39  
38  
37  
36  
Test Mode  
TEST  
DATA / D3  
WE  
3
DRAM Data / SRAM Data 3  
DRAM/SRAM Write Enable  
DRAM Row Address Strobe / SRAM Data 4  
DRAM Column Address Strobe / SRAM Data 5  
SRAM Data 6  
Input/Output  
Output  
4
5
Output  
RAS / D4  
CAS / D5  
D6  
6
Output  
Input/Output  
Input/Output  
Output  
SRAM Data 7  
D7  
7
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
DRAM/SRAM Address 0  
DRAM/SRAM Address 1  
DRAM/SRAM Address 2  
DRAM/SRAM Address 3  
DRAM/SRAM Address 4  
DRAM/SRAM Address 5  
DRAM/SRAM Address 6  
DRAM/SRAM Address 7  
DRAM/SRAM Address 8  
DRAM/SRAM Address 9  
DRAM/SRAM Address 10  
Pad Supply Voltage  
Pad Ground  
A0  
8
Output  
A1  
9
Output  
A2  
10  
11  
12  
13  
14  
15  
16  
17  
Output  
A3  
Output  
A4  
Output  
A5  
Output  
A6  
Output  
A7  
Output  
A8  
Output  
A9  
Output  
A10  
PVSUP  
PGND  
A11  
Supply  
Supply  
18  
24  
DRAM/SRAM Address 11  
SRAM Address 12  
Output  
Output  
A12  
A13  
A14  
A15  
SCL  
SDA  
A16  
A17  
A18  
A19  
SRAM Address 13  
Output  
SRAM Address 14  
Output  
SRAM Address 15  
Output  
19  
20  
23  
22  
IIC Bus Clock  
Input/Output  
Input/Output  
Output  
IIC Bus Data  
SRAM Address 16  
SRAM Address 17  
Output  
SRAM Address 18  
Output  
SRAM Address 19  
Output  
MICRONAS INTERMETALL  
11  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Pin Connections and Short Descriptions, continued  
Pin No.  
PLCC44  
Pin No.  
PDIP40  
Pin No.  
PSDIP52  
Signal Name  
Type  
Symbol  
TPU 3040  
TPU 3035  
TPU 3040  
TPU 3040  
TPU 3050  
21  
22  
23  
24  
25  
21  
SRAM Address 20  
Infrared  
Output  
Input  
Input  
Input  
Input  
A20  
IR  
MAC Paket Data  
MAC VBI Data  
MAC Sync  
MAC_PAK  
MAC_VBI  
MAC_SYNC  
20  
23  
Horizontal Sync  
Composite Sync 1  
Main Sync  
Input/Output  
Output  
Input  
HSYNC  
CSYNC1  
MSYNC  
26  
19  
22  
Vertical Sync  
Composite Sync 2  
Input/Output  
Output  
VSYNC  
CSYNC2  
27  
28  
18  
17  
21  
20  
Crystal Oscillator Output  
Output  
XTAL2  
Crystal Oscillator Input  
Main Clock  
Input  
Input  
XTAL1  
CLK20  
29  
30  
16  
15  
19  
18  
Reset  
Input/Output  
RESET  
Fast Blank Input  
Shadow  
Priority Bus 0  
Input  
Output  
Input/Output  
FBIN  
SHADOW  
PRIO0  
31  
32  
33  
14  
13  
12  
17  
16  
15  
Analog Blue Input  
Priority Bus 1  
Input  
Input/Output  
BIN  
PRIO1  
Analog Green Input  
Priority Bus 2  
Input  
Input/Output  
GIN  
PRIO2  
Analog Red Input  
Color Address Bus 4  
Input  
Output  
RIN  
COLOR4  
34  
35  
36  
11  
10  
9
14  
13  
12  
Digital Supply Voltage  
Digital Ground  
Supply  
Supply  
DVSUP  
DGND  
Fast Blank Output  
Color Address Bus 3  
Output  
Output  
FBOUT  
COLOR3  
37  
38  
39  
8
7
6
11  
10  
9
Analog Blue Output  
Color Address Bus 2  
Output  
Output  
BOUT  
COLOR2  
Analog Green Output  
Color Address Bus 1  
Output  
Output  
GOUT  
COLOR1  
Analog Red Output  
Color Address Bus 0  
Output  
Output  
ROUT  
COLOR0  
40  
41  
42  
43  
44  
5
4
3
2
8
7
6
5
4
Analog Ground  
Supply  
Supply  
Input  
AGND  
AVSUP  
VIN1  
Analog Supply Voltage  
Analog Composite Video 1  
Analog Signal Ground  
Analog Composite Video 2  
Supply  
Input  
SGND  
VIN2  
12  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.3. Pin Descriptions  
Pin 25 – HSYNC Horizontal Synchronization (Fig. 3–9)  
Via this input, the TPU 3040 receives the horizontal syn-  
chronization signal. Either the falling or the rising edge  
of this signal will start the internal horizontal timing gen-  
eration.  
Pin 1 – VRT Reference Voltage Top (Fig. 3–7)  
This pin is connected to the internally-stabilized refer-  
ence voltage of the A/D converter which is derived from  
the V  
supply. Pin 1 must be decoupled externally to  
ASUP  
Pin 26 – VSYNC Vertical Synchronization (Fig. 3–9)  
Via this input, the TPU 3040 receives the vertical syn-  
chronization signal. Either the falling or the rising edge  
of this signal will start the internal vertical timing genera-  
tion.  
prevent high and low frequency noise.  
Pin 2 – TEST Test Input (Fig. 3–8)  
This pin is used for switching the TPU 3040 into test  
mode. For normal operation this pin has to be connected  
to ground.  
Pin 27 and 28 – XTAL1 and XTAL2 (Fig. 3–13)  
These oscillator pins are used to connect a 20.25MHz  
crystal, which determines the internal clock signal. Alter-  
natively, an 20.25MHz clock signal may be fed to pin 28.  
Pin 3 – DATA DRAM Data Input/Output (Fig. 3–9)  
This pin serves as an output for writing data into the ex-  
ternal DRAM and as an input for reading data from the  
external DRAM.  
Pin 29 – RESET Reset Input/Output (Fig. 3–11)  
This pin is used for hardware reset. The TPU 3040  
watchdog generates a reset pulse which can be used to  
reset external circuits.  
Pin 4 – WE DRAM Write Enable Output (Fig. 3–9)  
This pin supplies the Write Enable signal to the external  
DRAM.  
Pin 30 – FBIN Fast Blanking Input (Fig. 3–14)  
This pin serves for enabling the analog RGB inputs.  
Pin 5 – RAS DRAM Row Address Strobe Output  
(Fig. 3–9)  
This pin supplies the Row Address Strobe signal to the  
external DRAM.  
Pin 31 to 33 – RIN, GIN, BIN RGB Inputs (Fig. 3–15)  
Via these inputs, the TPU 3040 receives analog RBG  
signals, e.g. OSD or video recorder (SCART), which are  
fed to the analog RBG outputs. The specified level of  
these signals is 0 V to 0.7 V. For other DC levels, an AC  
coupling has to be used and the internal clamping circuit  
will adjust the DC level.  
Pin 6 – CAS DRAM Column Address Strobe Output  
(Fig. 3–9)  
This pin supplies the Column Address Strobe signal to  
the external DRAM.  
Pins 7 to 18 – A0 to A11 DRAM Address Outputs  
(Figs. 3–9 and 3–10)  
These pins are used for addressing the external DRAM.  
The addressing is compatible to all DRAM sizes from  
64K to 16M, therefore the correct connection of pins A8  
to A11 to the corresponding DRAM pins is necessary.  
Pin 34 – DVSUP Digital Supply Voltage  
This pin supplies all digital stages and has to be con-  
nected with the positive supply voltage.  
Pin 35 – DGND Digital Ground  
This pin is the common ground connection of all digital  
stages and has to be connected with the ground of the  
power supply.  
Pins 19 and 20 – SCL and SDA IIC Bus (Fig. 3–11)  
Via these pins, the TPU 3040 communicates with exter-  
nal devices.  
Pin 36 – FBOUT Fast Blanking Output (Fig. 3–10)  
This output supplies a fast switching signal, indicating  
the presence of RBG output signals.  
Pin 21 – IR Infrared (Fig. 3–12)  
This pin has to be connected to ground.  
Pin 37 to 39 – ROUT, GOUT, BOUT RGB Outputs  
(Fig. 3–15)  
These outputs either supply the analog RGB signals,  
which have been received via the analog RGB input pins  
31 to 33, or the internally generated RGB signals.  
Pin 22 – MAC_PAK MAC Paket Data (Fig. 3–12)  
Via this pin, the TPU 3040 receives MAC packets from  
the DMA 2381 or from the DMA 2386.  
Pin 23 – MAC_VBI MAC VBI Data (Fig. 3–12)  
By means of this input, the TPU 3040 receives MAC VBI  
data from the DMA 2381 or from the DMA 2386.  
Pin 40 – AGND Analog Ground  
This pin is the common ground connection of all analog  
stages and has to be connected with the ground of the  
power supply.  
Pin 24 – MAC_SYNC MAC Synchronization (Fig. 3–12)  
By means of this input, the TPU 3040 receives the re-  
quired MAC synchronization pulse from the DMA 2381.  
This sync pulse is used both as line sync and frame sync  
for the MAC teletext acquisition.  
Pin 41 – AVSUP Analog Supply Voltage  
This pin supplies all analog stages and has to be con-  
nected with the positive supply voltage.  
MICRONAS INTERMETALL  
13  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Pin 42 and 44 – VIN1 and VIN2 Analog Video Inputs  
(Fig. 3–16)  
The analog input signals carrying text data are fed to the  
TPU 3040 via a clamping capacitor of 33 nF to these  
pins.  
Pin 43 – SGND Signal Ground  
The lower end of the internal reference chain of the A/D  
converter is internally connected to the pin 43.  
3.3.1. Pin Descriptions TPU 3050  
(pin numbers refer to 52-pin PSDIP package)  
Pin 33 – PVSUP Pad Supply Voltage  
This pin supplies all SRAM interface pads and has to be  
connected with the positive supply voltage.  
Pin 32 – PGND Pad Ground  
This pin is the common ground connection of all SRAM  
interface pads and has to be connected with the ground  
of the power supply.  
Pin 1, 2, 45 to 48, 50, 52 – D0 to D7 SRAM Data Input/  
Output (Fig. 3–9)  
Thesepinsserveasoutputforwritingdataintotheexter-  
nalSRAMandasinputforreadingdatafromtheexternal  
SRAM.  
Pins 7 to 18 – A0 to A16 SRAM Address Outputs  
(Figs. 3–9 and 3–10)  
These pins are used for addressing the external SRAM.  
The addressing is compatible to all SRAM sizes from  
64K to 1M. Therefore, the correct connection of pinsA11  
to A16 to the corresponding SRAM pins is necessary.  
14  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.4. Pin Configuration  
VRT  
TEST  
DATA  
WE  
RAS  
CAS  
VIN2  
SGND  
VIN1  
AVSUP  
AGND  
1
VRT  
SGND  
40 TEST  
6
5
4
3
2
1 44 43 42 41 40  
DATA  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
7
39  
A0  
A1  
A2  
ROUT / COLOR0  
GOUT / COLOR1  
BOUT / COLOR2  
FBOUT / COLOR3  
DGND  
3
VIN1  
WE  
RAS  
CAS  
A0  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
8
AVSUP  
4
9
AGND  
5
10  
11  
12  
13  
14  
15  
16  
17  
A3  
A4  
ROUT / COLOR0  
GOUT / COLOR1  
BOUT / COLOR2  
FBOUT / COLOR3  
DGND  
6
7
A1  
A5  
A6  
DVSUP  
TPU 3040  
A2  
8
RIN / COLOR4  
GIN / PRIO2  
BIN / PRIO1  
FBIN / PRIO0  
RESET  
A3  
9
A7  
A4  
10  
11  
A8  
DVSUP  
A5  
A9  
RIN / COLOR4 12  
GIN / PRIO2 13  
A6  
A10  
A7  
18 19 20 21 22 23 24 25 26 27 28  
14  
15  
16  
BIN / PRIO1  
FBIN / PRIO0  
RESET  
A8  
XTAL1 / CLK20  
XTAL2  
A11  
SCL  
SDA  
A9  
A10  
A11  
SCL  
SDA  
IR  
24  
23  
22  
21  
VSYNC / CSYNC  
HSYNC / MSYNC  
XTAL1 / CLK20 17  
XTAL2 18  
IR  
MAC_PAK  
VSYNC / CSYNC 19  
HSYNC / MSYNC 20  
MAC_SYNC  
MAC_VBI  
Fig. 3–6: TPU 3040 in 44-pin PLCC package  
Fig. 3–4: TPU 3040 in 40-pin PDIP package  
1
D1  
D0  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
D2  
2
TEST  
3
VRT  
D3 / DATA  
WE  
VIN2  
4
SGND  
5
D4 / RAS  
D5 / CAS  
D6  
VIN1  
6
AVSUP  
7
AGND  
8
D7  
A0  
A1  
A2  
A3  
A4  
A5  
ROUT / COLOR0  
GOUT / COLOR1  
BOUT / COLOR2  
FBOUT / COLOR3  
DGND  
9
10  
11  
12  
13  
14  
15  
16  
DVSUP  
RIN / COLOR4  
GIN / PRIO2  
A6  
A7  
A8  
36  
35  
BIN / PRIO1  
FBIN / PRIO0  
RESET  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A9  
34 A10  
PVSUP  
33  
32  
31  
XTAL1 / CLK20  
XTAL2  
PGND  
A11  
VSYNC / CSYNC  
HSYNC / MSYNC  
A16  
30 A12  
29 A13  
A14  
A15  
SDA  
28  
27  
SCL  
Fig. 3–5: TPU 3050 in 52-pin PSDIP package  
MICRONAS INTERMETALL  
15  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
P
off  
3.5. Pin Circuits  
The following figures schematically show the circuitry at  
the various pins. The integrated protection structures  
arenotshown. TheletterPmeansP-channel, theletter  
“N” N-channel.  
Fig. 3–12:  
Input Pins 22 to 24  
+
=
V
Ref  
Fig. 3–7:  
Supply Pin 1  
Fig. 3–13:  
Output/Input Pins 27, 28  
P
off  
V
SUP  
P
N
Fig. 3–8:  
Input Pins 2 and 21  
GND  
=
0.7 V  
Fig. 3–14: Input Pin 30  
V
SUP  
P
P
N
=
=
0.7 V  
0.46 V  
Fig. 3–9:  
N
Input/Output Pins 3 to  
14, 18, 25, 26  
GND  
Fastblank  
Clamp  
V
SUP  
P
Fig. 3–15: Input/Output Pins 31 to 33 and 37 to 39  
Fig. 3–10:  
N
Output Pins 15 to 17  
and 36  
GND  
Fig. 3–11:  
Input/Output Pins 19, 20  
and 29  
Fig. 3–16:  
Input Pins 42 and 44  
16  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6. Electrical Characteristics  
All voltages refer to ground.  
3.6.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin No.  
Min.  
0
Max.  
65  
125  
6
Unit  
°C  
°C  
V
T
A
Ambient Operating Temperature  
Storage Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Digital Input Voltage  
Analog Input Voltage  
Output Current  
T
*40  
*0.3  
*0.3  
*0.3  
*0.3  
*10  
S
V
DSUP  
34  
41  
V
ASUP  
6
V
V
DI  
V
DSUP  
)0.3  
)0.3  
V
V
AI  
V
ASUP  
V
I
O
10  
mA  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
3.6.2. Recommended Crystal Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
65  
Unit  
°C  
Test Conditions  
T
A
Ambient Operating Temperature  
Parallel Resonance Frequency  
27, 28  
0
f
0
20.25  
MHz  
ppm  
C = 30 pF, T = 25 °C  
L
A
f  
Frequency Tolerance  
± 50  
T = 25 °C  
A
f
0
f  
f
Frequency Deviation versus  
Temperature  
± 50  
ppm  
over operating temperature  
range with respect to fre-  
quency at 25 °C  
R
C
C
Series Resistance  
30  
8
r
Static Capacitance  
pF  
fF  
0
1
D
Dynamic Capacitance  
Rated Drive Level  
10  
30  
P
0.2  
mW  
dB  
f
f
Spurious Frequency Attenuation  
3
0
H
MICRONAS INTERMETALL  
17  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.3. General Operating Conditions  
Symbol  
Parameter  
Pin No.  
all  
Min.  
0
Typ.  
20  
Max.  
65  
Unit  
Test Conditions  
T
A
Ambient Operating Temperature  
Digital Supply Voltage  
Analog Supply Voltage  
Clock Frequency  
°C  
V
V
DSUP  
34  
4.75  
4.75  
20.20  
5.0  
5.25  
5.25  
20.30  
V
41  
5.0  
V
ASUP  
CLK  
f
27, 28  
20.25  
MHz  
correct slicer operation  
3.6.4. General Input Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
I
Input Leakage Current  
all inputs  
±1  
µA  
V
GND V V  
I SUP  
C
Input Capacitance  
20  
pF  
I
3.6.5. Power Consumption  
Symbol  
Parameter  
Pin No.  
34  
Min.  
Typ.  
40  
Max.  
60  
Unit  
mA  
Test Conditions  
I
I
Digital Supply Current  
Analog Supply Current  
Total Power Consumption  
DSUP  
ASUP  
41  
20  
30  
mA  
P
T
34,41  
300  
500  
mW  
3.6.6. Timer, Interrupt, and Watchdog Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
1.5  
Unit  
V
Test Conditions  
V
V
V
Reset Input Low Voltage  
Reset Input High Voltage  
Reset Output Low Voltage  
Reset Output Pulse Width  
Test Input Low Voltage  
Test Input High Voltage  
Infrared Input Low Voltage  
Infrared Input High Voltage  
29  
IL  
3.0  
V
IH  
OL  
0.4  
V
I = 3mA  
L
15  
t
OL  
1.618  
ms  
V
2
/ f  
CLK  
V
IL  
V
IH  
V
IL  
V
IH  
2
0.8  
2.0  
V
21  
0.8  
V
2.0  
V
18  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.7. Clock Generator Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
1.0  
Typ.  
Max.  
3.0  
Unit  
Test Conditions  
C = 10 nF  
C
V
Clock Input Amplitude  
Clock Input Frequency  
Generated Clock Frequency  
28  
V
PP  
CLK  
CLK  
CLK  
f
f
20.20  
20.20  
20.25  
20.25  
20.30  
20.30  
MHz  
MHz  
27,28  
recommended crystal  
3.6.8. Video Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
2.6  
Typ.  
2.8  
Max.  
3.0  
100  
1.3  
Unit  
Test Conditions  
V
V
V
I
Voltage Reference Top  
Voltage Reference Top Noise  
Video Input Voltage  
1
V
C = 100 nF || 10 µF  
L
VRT  
VRTN  
I
mV  
C = 100 nF || 10 µF  
L
PP  
42, 44  
0.7  
1
V
PP  
R = 75 Ω  
D
Positive Clamping Current  
235  
6
µA  
µA  
V
IN  
V
IN  
= 0V  
CLP  
CLN  
CR  
I
I
Negative Clamping Current  
Clamping Current Ratio  
= V  
ASUP  
35  
40  
33  
45  
C
R
Recommended Coupling  
Capacitance  
nF  
C
D
Recommended Drive Impedance  
75  
100  
3.6.9. MAC Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
0.8  
Unit  
V
Test Conditions  
V
V
Input Low Voltage  
Input High Voltage  
22, 23, 24  
IL  
2.0  
V
IH  
MICRONAS INTERMETALL  
19  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.10. RGB Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
0
Typ.  
Max.  
1.5  
Unit  
Test Conditions  
V
I
RGB Input Voltage  
External Coupling Capacitance  
31, 32, 33  
0 to 0.7  
V
R = 75 Ω  
L
C
R
100  
-
1000  
100  
nF  
R > 100k Ω  
L
C
RGB Input Resistance during  
Clamping  
clamp window = 64 µs  
CL  
V
V
V
V
V
Fast Blank Input Low Voltage  
Fast Blank Input High Voltage  
RGB Output Low Voltage  
30  
0.5  
V
R = 75 Ω  
L
IL  
0.9  
0
V
R = 75 Ω  
L
IH  
37, 38, 39  
50  
770  
513  
50  
10  
10  
10  
mV  
mV  
mV  
mV  
ns  
%
V
= 5.0 V, I = 0.5 mA  
OL  
ASUP L  
RGB Output High Voltage  
630  
420  
700  
467  
V
= 5.0 V, I = *0.5 mA  
OH100  
OH66  
ASUP L  
RGB Output High Voltage  
V
= 5.0 V, I = *0.5 mA  
ASUP L  
V  
Differential RGB Output Voltage  
RGB Output Transition Time  
RGB Output Positive Overshoot  
V
= 5.0 V, I t10 µA  
O
ASUP L  
t
T
V
= 5.0 V, C = 20 pF  
ASUP L  
V
OHO  
V
OLO  
V
= 5.0 V, C = 20 pF  
ASUP L  
RGB Output Negative Over-  
shoot  
%
V
= 5.0 V, C = 20 pF  
ASUP L  
R
Resistance from RGB Inputs to  
RGB Outputs  
31, 32, 33,  
37, 38, 39  
150  
ext. RGB on  
on  
V
V
Fast Blank Output Low Voltage  
Fast Blank Output High Voltage  
36  
0.4  
V
I = 1.6 mA  
L
OL  
3.0  
V
I =*0.5 mA  
L
OH  
t
T
Fast Blank Output Transition  
Time  
10  
ns  
C = 20 pF  
L
VOL(max) V  
OH(min)  
t
D
Differential RGB & FB Timing  
36  
10  
ns  
C = 20 pF  
L
37,38,39  
3.6.11. Prio and Color Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
0.8  
Unit  
V
Test Conditions  
V
V
Prio Input Low Voltage  
Prio Input High Voltage  
30 to 32  
IL  
1.5  
V
IH  
V
OL  
Prio & Color Output Low Voltage  
30 to 33  
36 to 39  
0.25  
0.5  
V
I = 8mA, strength 3  
L
I = 6mA, strength 2  
L
I = 4mA, strength 1  
L
I = 2mA, strength 0  
L
V
Prio & Color Output High Voltage  
1.8  
1.3  
2.0  
1.5  
V
I = *0.01 mA  
L
OH  
I
t
t
Prio & Color Output Pull-up  
Current  
mA  
V
OL  
= 0 V  
O
Prio & Color Output Transition  
Time  
10  
10  
ns  
ns  
C = 20 pF  
L
T
Differential Prio & Color Timing  
C = 20 pF  
L
D
20  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.12. H and V Sync Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
Input Trigger Level  
High Low  
25, 26  
1.5  
2.0  
V
ITF  
ITR  
V
Input Trigger Level  
Low High  
2.5  
3.0  
V
V
V
V
Input Trigger Hysteresis  
Output Low Voltage  
Output High Voltage  
Output Transition Time  
0.5  
V
ITH  
0.4  
V
I = 1.6 mA  
L
OL  
2.4  
V
I =*0.1 mA  
L
OH  
t
T
10  
ns  
C = 20 pF  
L
3.6.13. MSync Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
0.8  
Unit  
V
Test Conditions  
V
V
Input Low Voltage  
Input High Voltage  
25  
IL  
1.5  
10  
0
V
IH  
t
IS  
t
IH  
Input Setup Time  
Input Hold Time  
ns  
ns  
C = 20 pF  
L
C = 20 pF  
L
2
3.6.14. I C-Bus Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
Input Trigger Level  
High Low  
19, 20  
1.5  
2.0  
V
ITF  
ITR  
V
Input Trigger Level  
Low High  
2.5  
3.0  
V
V
V
Input Trigger Hysteresis  
Output Low Voltage  
Input Rise Time  
0.5  
V
ITH  
0.4  
1000  
300  
400  
V
I = 3 mA  
L
OL  
t
t
f
ns  
ns  
kHz  
R
Output Fall Time  
C = 400 pF  
L
F
Clock Frequency  
19  
0
SCL  
MICRONAS INTERMETALL  
21  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.15. DRAM Interface Characteristics  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
0.8  
Unit  
Test Conditions  
V
V
Input Low Voltage  
Input High Voltage  
3
5
V
IL  
2.0  
V
IH  
V
V
Output Low Voltage  
Output High Voltage  
Output Transition Time  
3 to 18  
0.4  
V
I = 1.6 mA  
L
OL  
2.4  
V
I = *0.5 mA  
L
OH  
t
T
10  
ns  
C = 15 pF  
L
V
OL(max) V  
OH(min)  
3.6.15.1. DRAM Fast Mode Timing at f  
= 20.25 MHz  
CLK  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
98.8  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test Conditions  
t
t
Page Mode Cycle Time  
CAS Pulse Width  
6
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
>
>
>
>
>
55  
25  
10  
80  
25  
PC  
PC  
60  
CAS  
CAS  
CP  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CAS Precharge Time  
10  
90  
40  
110  
45  
55  
55  
15  
105  
55  
5
CP  
RAS Precharge Time  
5
RP  
RP  
RAS Hold Time  
5, 6  
RSH  
CSH  
RCD  
CRP  
ASR  
RAH  
AR  
RSH  
CSH  
RCD  
CRP  
ASR  
RAH  
AR  
CAS Hold Time  
> 100  
RAS to CAS Delay Time  
CAS to RAS Precharge Time  
Row Address Setup Time  
Row Address Hold Time  
Column Address Hold Time  
Column Address Lead Time  
Column Address Setup Time  
Column Address Hold Time  
Read Command Hold Time  
Read Command Hold Time  
Write Command Hold Time  
Write Command Setup Time  
DATA Output Hold Time RAS  
DATA Output Setup Time  
DATA Output Hold Time  
DATA Input Setup Time  
DATA Input Hold Time  
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
<
<
25  
10  
0
5, 7 to 18  
15  
75  
50  
0
RAL  
ASC  
CAH  
RRH  
RCH  
WCH  
WCS  
DOHR  
DOS  
DOH  
DIS  
RAL  
ASC  
CAH  
RRH  
RCH  
WCH  
WCS  
DHR  
DS  
6, 7 to 18  
60  
80  
50  
90  
30  
105  
0
20  
0
4, 5  
4, 6  
0
20  
0
3, 5  
3, 6  
75  
0
60  
20  
0
20  
25  
30  
DH  
CAC  
OFF  
DIH  
22  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.15.2. DRAM Slow Mode Timing at f  
= 20.25 MHz  
CLK  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test Conditions  
t
t
Page Mode Cycle Time  
CAS Pulse Width  
6
148  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
DRAM:  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
> 120  
PC  
PC  
60  
>
>
>
>
60  
25  
90  
60  
CAS  
CAS  
CP  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CAS Precharge Time  
60  
90  
60  
140  
65  
85  
55  
15  
155  
105  
35  
60  
80  
50  
90  
50  
155  
30  
60  
20  
0
CP  
RAS Precharge Time  
5
RP  
RP  
RAS Hold Time  
5, 6  
RSH  
CSH  
RCD  
CRP  
ASR  
RAH  
AR  
RSH  
CSH  
RCD  
CRP  
ASR  
RAH  
AR  
CAS Hold Time  
> 120  
RAS to CAS Delay Time  
CAS to RAS Precharge Time  
Row Address Setup Time  
Row Address Hold Time  
Column Address Hold Time  
Column Address Lead Time  
Column Address Setup Time  
Column Address Hold Time  
Read Command Hold Time  
Read Command Hold Time  
Write Command Hold Time  
Write Command Setup Time  
DATA Output Hold Time RAS  
DATA Output Setup Time  
DATA Output Hold Time  
DATA Input Setup Time  
DATA Input Hold Time  
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
<
<
25  
10  
0
5, 7 to 18  
15  
80  
80  
0
RAL  
ASC  
CAH  
RRH  
RCH  
WCH  
WCS  
DOHR  
DOS  
DOH  
DIS  
RAL  
ASC  
CAH  
RRH  
RCH  
WCH  
WCS  
DHR  
DS  
6, 7 to 18  
20  
20  
0
4, 5  
4, 6  
30  
0
3, 5  
3, 6  
90  
0
30  
60  
35  
DH  
CAC  
OFF  
DIH  
MICRONAS INTERMETALL  
23  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
V
V
OH  
WE  
OL  
t
t
RRH  
RAL  
t
t
CSH  
t
WCH  
V
V
OH  
t
PC  
t
RSH  
t
RAS  
CAS  
AR  
RP  
OL  
t
t
t
t
CAS  
RCH  
RCD  
CP  
V
V
OH  
t
WCS  
OL  
t
CRP  
t
t
ASC  
RAH  
t
CAH  
t
ASR  
V
OH  
A[0...11]  
ROW ADDR.  
COLUMN ADDR. 0  
COLUMN ADDR. 1  
VALID DATA  
COLUMN ADDR. 7  
VALID DATA  
ROW ADDR.  
V
OL  
t
DOHR  
t
DOS  
t
DOH  
V
V
OH  
DOUT  
VALID DATA  
OL  
t
t
DIH  
DIS  
V
V
OH  
DIN  
VALID DATA  
VALID DATA  
VALID DATA  
OL  
Fig. 3–17: DRAM page mode waveforms  
24  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
3.6.16. SRAM Interface Characteristics (TPU 3050 only)  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
PSDIP 52  
V
V
Input Low Voltage  
Input High Voltage  
1,2  
45 to 48  
50,52  
0.8  
V
V
V
IL  
2.0  
IH  
V
V
Output Low Voltage  
Output High Voltage  
Output Transition Time  
1,2,24  
27 to 31  
34 to 50  
52  
0.4  
I = 1.6 mA  
L
OL  
2.4  
5
V
I = *0.5 mA  
L
OH  
t
T
10  
ns  
C = 15 pF  
L
V
OL(max) V  
OH(min)  
3.6.16.1. SRAM Mode Timing at f  
= 20.25 MHz  
CLK  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
PSDIP 52  
t
t
Read / Write Cycle Time  
24  
27 to 31  
34 to 44  
889  
ns  
SRAM:  
SRAM:  
t
t
> 100  
> 100  
RC  
RC  
WC  
WC  
t
t
t
t
t
t
t
t
t
t
t
Address Setup Time  
24  
444  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
SRAM:  
t
t
t
t
t
t
t
t
t
t
>
>
>
>
>
<
>
>
0
90  
5
AS  
AS  
27 to 31  
34 to 44  
49  
Address Valid to End of Write  
Write Recovery Time  
543  
593  
98.8  
0
AW  
AW  
WR  
WP  
OW  
WHZ  
DW  
DH  
WR  
WP  
WHZ  
OW  
DOS  
DOH  
DIS  
DIH  
DIL  
Write Pulse Width Time  
Write to Output High–Z  
Write to Output Active  
Data Output Setup Time  
Data Output Hold Time  
Data Input Setup Time  
Data Input Hold Time  
Data Input Latch Time  
49  
70  
10  
50  
40  
0
1,2  
45 to 50  
52  
25  
98.8  
0
1,2,24  
20  
< 100  
10  
AA  
27 to 31  
34 to 48  
50,52  
0
>
OH  
198  
t
t
WC  
RC  
V
OH  
A[0...16]  
VALID ADDRESS  
V
OL  
t
AW  
t
t
t
WR  
AS  
WP  
V
V
OH  
WE  
OL  
t
t
WHZ  
OW  
t
t
DOS  
DOH  
V
V
OH  
DOUT  
VALID DATA  
OL  
t
DIL  
t
AA  
t
t
DIH  
t
DIS  
OH  
V
V
OH  
DIN  
VALID DATA  
OL  
Fig. 3–18: SRAM mode waveforms  
MICRONAS INTERMETALL  
25  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4. Definitions  
4.1. CPU  
4.1.1. Memory Mapping  
Table 4–1: 65C02 memory map  
Zero Page  
Stack Page  
I/O Page  
Interrupt Vector  
Absolute Address  
(high byte, low byte)  
IRQ  
FFFF, FFFE  
FFFD, FFFC  
FFFB, FFFA  
FFF9  
Reset  
NMI  
Control Word  
Memory Segment  
Program RAM  
Zero Page  
Stack Page  
OSD Buffer  
I/O Page  
8K  
Character ROM  
Absolute Address  
0000 – 01FF  
0000 – 00FF  
0100 – 01FF  
0100 – 019F  
0200 – 02FF  
6000 – 7FFF  
E000 – FFFF  
8K  
Program ROM  
DMA  
Interface  
Character ROM  
Program ROM  
ADR  
DATA  
DATA  
ADR  
BE  
65C02  
Display  
RDY  
BUSREQ  
Fig. 4–1: 65C02 memory environment  
26  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
2
2
4.2. I C Bus Interface  
The time required to process the I C buffer depends on  
other processes running inside the TPU 3040 firmware.  
2
Thus the following I C telegram addressing the TPU can  
Communication between TPU 3040 and host controller  
be held after the slave address byte until the old tele-  
gram is completely processed.  
2
2
is done via I C-bus. For detailed information on the I C-  
2
bus please refer to the Philips manual ‘I C-bus Specifi-  
cation’.  
4.2.1. Subaddressing  
The TPU 3040 acts as a slave transmitter/receiver and  
uses clock synchronization to slow down the data trans-  
fer if necessary. General call address will not be ac-  
knowledged.  
Access to all memory locations and to the command in-  
terface is achieved by subaddressing. Both the external  
DRAM and the internal CPU memory can be addressed  
completely. The TPU 3040 acknowledges 6 different  
subaddresses following the slave address (see Table  
4–2).  
Different memories and functions of TPU 3040 can be  
accessed by subaddressing. The byte following the  
slave address byte is defined as the subaddress byte.  
2
The following symbols are used to describe the I C ex-  
ample telegrams:  
2
Maximum length of an I C telegram is 256 bytes follow-  
ing slave address and subaddress byte. The interface  
supports data transfer with autoincrement.  
<
>
start condition  
stop condition  
address bank byte  
address high byte  
address low byte  
command byte  
data byte  
status byte  
0 – n continuation bytes  
2
The I C-bus interface is interrupt-driven and uses an in-  
ab  
ah  
al  
cc  
dd  
ss  
..  
2
ternal 48-byte buffer to collect I C data in real-time with-  
out disturbing internal processes. This is done to avoid  
clock synchronization as far as possible. When the TPU  
2
2
3040 has to process the I C buffer and the I C telegram  
2
has not yet been stopped, the I C clock line will be held  
down.  
2
Table 4–2: I C-bus Subaddresses  
Name  
TPU  
Binary Value  
0010 001x  
0111 1000  
0111 1001  
0111 1010  
0111 1011  
0111 1100  
0111 1101  
Hex Value  
Mode  
W, R  
W
Function  
22, 23  
78  
TPU slave address  
Sub 1  
Sub 2  
Sub 3  
Sub 4  
Data  
subaddressing CPU (static)  
79  
W
subaddressing CPU (autoincrement)  
subaddressing DRAM (autoincrement)  
subaddressing command language  
subaddressing data register  
7A  
W
7B  
W
7C  
R/W  
R
Status  
7D  
status register  
bit 7 = command wait  
bit 6 = command invalid  
bit 5 = command found no data  
bit 4 = not used  
bit 3 = not used  
bit 2 = not used  
bit 1 = 0  
bit 0 = 0  
MICRONAS INTERMETALL  
27  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.2.1.1. CPU Subaddressing  
When reading the DRAM, the first data byte the TPU  
3040 returns is a dummy byte, which has to be ignored.  
There are 2 CPU subaddresses to access CPU  
memory: either with static memory address or with auto-  
incrementing memory address. The main purpose of  
CPU subaddressing is to write text into the OSD buffer  
and to access the I/O page (see chapter 4.15.). The stat-  
ic CPU subaddress can be used to write more than 1  
byte into the same I/O page register.  
< 22 7A ab ah al dd .. >  
< 22 7A ab ah al > < 22 7C dd .. >  
< 22 7A ab ah al > < 22 7C < 23 dd ..>  
Data written to the DRAM subaddress is collected first  
2
in the I C buffer of TPU 3040 and is copied to DRAM  
when the buffer is full (48 bytes) or after stop condition.  
During the time the buffer is copied to DRAM the TPU  
2
The CPU subaddress has to be followed by 2 address  
bytes defining the CPU memory address. The following  
data byte is written into this address. In the case of auto-  
increment the continuation bytes are written into incre-  
menting memory addresses.  
3040 will hold the I C clock line down.  
Reading data from the DRAM subaddress is also buff-  
ered internally. Reading the first byte will only empty the  
2
I C buffer. Every time the buffer is empty, the TPU 3040  
2
will copy 48 bytes from DRAM into the I C buffer. During  
this time the TPU 3040 will hold the I C clock line down.  
2
The CPU telegram can be stopped after the 2 memory  
2
address bytes. The following I C telegram subaddres-  
sing the data register will continue data transfer to or  
from the CPU memory. The data transfer will always  
start at the CPU memory address (autoincrement is not  
saved).  
4.2.1.3. Command Subaddressing  
TPU 3040 supports a command language, allowing the  
host controller to start complex processing inside the  
TPU 3040 with simple commands (see chapter 4.9.).  
Commands have to be sent to the command subad-  
dress.  
< 22 78 ah al dd .. >  
< 22 79 ah al dd .. >  
< 22 79 ah al > < 22 7C dd .. >  
Data is directly written into CPU memory without using  
the I C buffer of TPU 3040 and without waiting for a stop  
condition.  
2
The command subaddress has to be followed by the  
command code. The following data bytes are taken as  
command parameters.  
The execution time for commands depends on other  
processes running inside the TPU 3040 firmware, there-  
fore the host controller has to read the status register to  
get information about the running command before  
reading command parameter or starting other com-  
mands.  
4.2.1.2. DRAM Subaddressing  
DRAM access is necessary to generate level 2 displays.  
TheexternalDRAMcanbeaddressedonbytelevel. The  
maximum DRAM size of 16 Mbit requires a 21-bit  
memory address pointer. The format of the DRAM ad-  
dress pointer is shown in Fig. 4–2.  
The status register returns information about the com-  
mand interface. The ‘command wait’ bit is set during  
execution of a command and is reset when a command  
is executed completely and read parameters are avail-  
able. If a non-existing command is sent to the TPU 3040,  
the ‘command invalid’ bit is set. If a command could not  
be executed successfully, the ‘command found no data’  
bit is set. In this case the read parameters of this com-  
mand are not valid.  
5-bit Bank  
8-bit High  
8-bit Low  
Fig. 4–2: DRAM Address Pointer  
Reading status from TPU 3040 is done by subaddres-  
sing the status register followed by repeated start condi-  
tion and slave read address (see Fig. 4–3).  
The DRAM subaddress has to be followed by 3 address  
bytes defining the DRAM address pointer. The following  
data byte is written into this address.  
< 22 7B cc dd ..  
< 22 7D < 23 ss .. >  
< 22 7C < 23 dd .. >  
>
DRAMsubaddressingalwaysusesautoincrement. Sep-  
arate read and write DRAM address pointers are saved  
for autoincrement.  
Telegrams subaddressing the command interface are  
buffered and processed after receiving the stop condi-  
tion. Therefore the command code and all necessary  
command parameters have to be included in a single  
telegram.  
The DRAM telegram can be stopped after the 3 address  
pointerbytes. ThefollowingI Ctelegramsubaddressing  
the data register will continue data transfer to or from the  
DRAM.  
2
28  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.2.1.4. Data Subaddressing  
Writing data to TPU 3040 memory is possible by subad-  
dressing the data register directly. The data is then writ-  
ten into memory addressed by the foregoing telegram.  
< 22 7C dd .. >  
Reading data from TPU 3040 is done by subaddressing  
the data register followed by a repeated start condition  
and slave read address (see Fig. 4–3). The returned  
data depend on the subaddress selected in the preced-  
ing TPU telegram.  
< 22 7C < 23 dd .. >  
S
S
S
S
S
S
0010001  
0010001  
0010001  
0010001  
0010001  
0010001  
W
W
W
W
W
W
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
0111 1000  
0111 1001  
0111 1010  
0111 1011  
0111 1100  
0111 1100  
Ack  
Ack  
Ack  
Ack  
Ack  
Ack  
n byte Sub 1  
n byte Sub 2  
n byte Sub 3  
n byte Sub 4  
n byte Data  
0010001  
Ack  
Ack  
Ack  
Ack  
Ack  
R
P
P
P
P
P
S
S
Ack n–1 byte Data Ack  
last byte Data Nak  
P
P
S
0010001  
W
Ack  
0111 1101  
Ack  
0010001  
R
Ack  
Status  
Status  
Ack  
Nak  
W
R
Ack =  
Nak =  
S
P
=
=
0
1
0
1
1
0
SDA  
SCL  
S
P
=
=
=
=
Start  
Stop  
Interrupt  
Data from TPU  
2
Fig. 4–3: I C-bus Protocol  
MICRONAS INTERMETALL  
29  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.3. Display Memory  
The TPU 3040 supports a variable number of display  
memories, each 4 KByte large. One bank is used to  
store the display information of the selected teletext  
page. The bank location can be defined with the com-  
mand DISPLAY_TTX_POINTER. Other banks can be  
used to store any kind of display data in level 1 or level  
2 format. Switching between these banks is fast and can  
be programmed with the command DISPLAY_POINT-  
ER. Bank switching allows generation of OSD menus  
without affecting the teletext display.  
autoincrement  
40 byte level 1  
40 byte level 1  
40-bit pointer  
40-bit pointer  
40 byte level 2  
40 byte level 2  
full row attr.  
full row attr.  
Row 0  
Row 1  
Display Bank  
Row 46  
40 byte level 1  
40-bit pointer  
40 byte level 2  
full row attr.  
40 byte level 1  
40 byte level 1  
40-bit pointer  
40-bit pointer  
40 byte level 2  
40 byte level 2  
full row attr.  
full row attr.  
Row 0  
Row 1  
TTX Display Bank  
Row 25  
40 byte level 1  
40-bit pointer  
40 byte level 2  
full row attr.  
DRAM  
Fig. 4–4: Display Memory Organization  
30  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Table 4–3: Full Row Attribute  
Table 4–5: Level 2 Parallel Attributes  
7
P
P
P
P
P
P
P
P
P
P
P
6
0
0
1
1
1
1
1
1
1
1
1
5
0
1
0
1
1
1
1
1
1
1
1
4
3
2
1
0
Function  
+ 55H  
Bit  
R/W  
Full Row Attribute  
Function  
Color  
Foreground Color  
Background Color  
Flash Mode  
Reset  
Color  
Flash  
7
1 = row is displayed blank  
0 = row is displayed using row data  
0
0
0
0
1
1
1
1
0
1
1
1
0
0
0
0
L
0
1
1
0
0
1
1
Set  
Character Set  
DH DW Size  
6
1 = row is displayed in double height  
0 = row is displayed in normal height  
0
1
0
1
0
1
U
I
Underline/Separated  
Inverted  
5
1 = row is displayed in level 2 mode  
0 = row is displayed in level 1 mode  
C
W
S
IT  
Conceal  
Window/Boxing  
Shadow  
4 to 0  
5-bit value defining full row back-  
ground color  
Italic  
Table 4–6: Flash Modes  
Table 4–4: Level 1 Spacing Attributes  
4
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
3
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
2
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
x
0
0
1
1
1
1
0
0
0
0
1
1
1
1
x
Function  
Code  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Function  
Action  
Notes  
Off  
Alpha Black  
set alpha  
Normal  
mode and  
foreground  
color of fol-  
lowing alpha  
characters  
Normal Fast Phase 1  
Normal Fast Phase 2  
Normal Fast Phase 3  
Inverted  
Alpha Red  
Alpha Green  
Alpha Yellow  
Alpha Blue  
Inverted Fast Phase 1  
Inverted Fast Phase 2  
Inverted Fast Phase 3  
Color Table  
select G0  
character  
set  
Alpha Magenta  
Alpha Cyan  
Alpha White  
Flash Normal  
Flash Off  
Color Table Phase 1  
Color Table Phase 2  
Color Table Phase 3  
Incremental  
set at  
Boxing Off  
set at double  
set at double  
set at  
Boxing On  
x
x
Decremental  
Size Normal  
Size Double Height  
Size Double Width  
Size Double  
Mosaic Black  
Mosaic Red  
Table 4–7: Color Look-Up Table  
set mosaic  
mode and  
foreground  
color of fol-  
lowing  
mosaic  
characters  
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
x
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
x
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
x
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
x
Display Color  
Black  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Mosaic Green  
Mosaic Yellow  
Mosaic Blue  
Mosaic Magenta  
Mosaic Cyan  
Mosaic White  
Conceal  
Red  
Green  
Yellow  
Blue  
select G1  
character  
set  
Magenta  
Cyan  
White  
set at  
set at  
set at  
Transparent  
Reduced Red  
Reduced Green  
Reduced Yellow  
Reduced Blue  
Reduced Magenta  
Reduced Cyan  
Reduced White  
Programmable  
Contiguous Mosaic  
Separated Mosaic  
ESC  
Black Background  
New Background  
Hold Mosaic  
Release Mosaic  
set at  
set at  
set at  
Shaded attributes are default at start of each display row.  
MICRONAS INTERMETALL  
31  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.4. OSD Layer  
Table 4–8: OSD Layer Control Codes  
Code  
01  
Function  
Underline On  
Underline Off  
Flash On  
Notes  
only for 13 scanlines/character  
02  
03  
04  
Flash Off  
05  
Italics On  
06  
Italics Off  
07  
Transparent  
Shadow  
layer becomes transparent  
08  
layer becomes transparent and  
contrast is reduced to 66%  
0C  
END  
CR  
end of layer  
0D  
end of text line  
0E – 7F  
80 – FF  
ASCII Character using font 1 or font 2  
Color Control only one control code per charac-  
ter is allowed  
bit 0 = foreground color blue  
bit 1 = foreground color green  
bit 2 = foreground color red  
bit 3 = background color blue  
bit 4 = background color green  
bit 5 = background color red  
bit 6 = replace white by  
transparent  
bit 7 = 1  
Shaded attributes are default at start of each text line.  
32  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.5. Character Set  
10-bit Character Code = 2–bit Character Set (level 2) + 8–bit Character Value (level 1)  
000H  
Set = 0  
G0  
G0  
G0  
080H  
National  
National  
National  
National  
Character ROM  
PAL = 5200 byte  
100H  
180H  
G0  
G0  
Set = 1  
G1  
G0  
G0  
G1  
G1  
National  
National  
National  
National  
G1  
User  
National  
National  
National  
National  
G2  
Mapping ROM  
32 x 5 bit  
Set = 2  
200H  
280H  
G2  
G2  
G2  
G2  
G2  
User  
User  
User  
User  
NTSC = 2240 byte  
NTSC G0  
NTSC G0  
NTSC G0  
NTSC G1  
300H  
380H  
Set = 3  
NTSC G1  
G3  
G3  
NTSC User  
NTSC National  
G3  
User  
User  
User  
User  
32 char  
Fig. 4–5: Character Set Organization  
MICRONAS INTERMETALL  
33  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.6. Font Structure  
MSB  
9
LSB  
0
Line 1  
Line 2  
Line 3  
Line 4  
Line 5  
Line 6  
Line 7  
Line 8  
Line 9  
Line 10  
Character Font  
ROM_Adr = Char x 10 + Line + Font_Adr  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
Line 1  
Line 2  
Line 3  
Line 4  
Line 5  
Line 6  
Line 7  
Line 8  
Line 9  
Line 10  
Line 1  
Line 2  
Line 3  
Line 4  
Char  
Line  
Font_Adr  
16  
ROM_Adr  
16  
10  
4
4
Σ
16-bit  
2
Σ
14-bit  
Σ
12-bit  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
Extension Font  
ROM_Adr = Char / 4 x 10 + Line +Ext_ Font_Adr  
Line 1  
Line 2  
Line 3  
Line 4  
Line 5  
Line 6  
Line 7  
Line 8  
Line 9  
Line 10  
Line 1  
Line 2  
Line 3  
Line 4  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘@‘  
‘D‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘A‘  
‘E‘  
‘E‘  
‘E‘  
‘E‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘B‘  
‘F‘  
‘F‘  
‘F‘  
‘F‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘C‘  
‘G‘  
‘G‘  
‘G‘  
‘G‘  
Char  
8
Line  
Ext_Font_Adr  
16  
ROM_Adr  
16  
4
4
Σ
16-bit  
2
Σ
Σ
10-bit  
12-bit  
‘D‘  
‘D‘  
‘D‘  
Fig. 4–6: Character Font Structure  
34  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.7. Character Font  
4.7.1. Character Set 0  
Table 4–9: G0 font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
= National Option  
Table 4–10: National font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
MICRONAS INTERMETALL  
35  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.7.2. Character Set 1  
Table 4–11: G1 font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
= National Option  
4.7.3. Character Set 2  
Table 4–12: G2 font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
1
2
3
4
5
6
7
36  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Table 4–13: User font TPU 3035/3040  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
Table 4–14: User font TPU 3050  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
MICRONAS INTERMETALL  
37  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.7.4. NTSC Character Sets  
NTSC character sets G0 and G1 are identical to PAL character sets. There is no G2 character set for NTSC.  
Table 4–15: NTSC national font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
Table 4–16: NTSC user font  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
8
9
10  
11  
12  
13  
14  
15  
38  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.8. Character Mapping  
Table 4–17: Character set options  
Option Bits  
Character Set  
C14,C13,C12  
6
38  
40  
English (US)  
French  
55  
70  
000  
001  
010  
011  
100  
101  
110  
111  
English  
French  
Swedish  
Czech  
Polish  
English  
French  
Swedish  
Turkish  
German  
Spanish  
Italian  
English (US)  
Slovakian  
Hungarian  
Serbian  
French  
Swedish  
Czech  
German  
Serbian  
Italian  
Swedish  
Czech  
German  
Spanish  
Italian  
German  
Spanish  
Italian  
Albanian  
Polish  
Turkish  
English  
English  
English  
English  
Rumanian  
Table 4–18: National option mapping  
Language  
G0/G1 Table Position  
2/3  
5/15  
5/15  
2/3  
2/4  
2/4  
4/0  
13/12  
13/13  
4/0  
5/11  
5/12  
12/12  
12/13  
5/12  
13/5  
9/7  
5/13  
12/3  
12/11  
5/13  
15/4  
8/2  
5/14  
11/12  
8/4  
5/15  
9/1  
6/0  
7/11  
13/3  
8/3  
7/12  
12/13  
12/0  
7/12  
15/6  
9/8  
7/13  
13/1  
9/2  
7/14  
Albanian  
Czech  
13/2  
10/11  
5/11  
14/4  
9/1  
13/13  
9/3  
11/13  
11/13  
7/14  
15/7  
9/0  
12/9  
2/4  
15/13  
5/15  
13/0  
5/15  
13/0  
11/15  
5/15  
9/4  
English  
5/14  
14/6  
8/8  
6/0  
7/11  
14/5  
8/7  
7/13  
15/5  
8/9  
English (US)  
French  
5/15  
9/3  
2/4  
4/0  
14/7  
9/5  
8/1  
8/5  
German  
Hungarian  
Italian  
5/15  
5/15  
2/3  
2/4  
15/0  
9/14  
9/3  
8/13  
8/4  
8/14  
8/14  
9/0  
8/15  
10/1  
5/13  
15/8  
14/11  
12/3  
12/11  
8/4  
14/6  
12/15  
5/14  
13/3  
10/6  
11/12  
8/4  
14/0  
9/3  
8/10  
9/4  
8/11  
8/11  
9/6  
8/12  
8/3  
9/10  
8/12  
8/6  
9/2  
2/4  
14/0  
13/8  
10/5  
13/2  
10/11  
8/3  
8/2  
8/5  
9/5  
Polish  
5/15  
5/15  
5/15  
5/15  
9/0  
14/3  
14/1  
2/4  
13/15  
10/14  
13/12  
13/13  
9/15  
9/14  
10/8  
12/7  
14/14  
12/12  
12/13  
9/3  
10/9  
10/15  
13/13  
9/3  
13/9  
8/7  
13/7  
14/15  
12/13  
12/0  
9/11  
8/11  
8/11  
15/9  
12/5  
13/1  
9/2  
13/11  
8/8  
Rumanian  
Serbian  
Slovakian  
Spanish  
Swedish  
Turkish  
15/1  
13/0  
15/13  
9/2  
13/3  
8/3  
11/13  
11/13  
8/5  
12/9  
2/4  
9/4  
9/9  
8/12  
8/10  
14/15  
9/5  
5/15  
13/6  
14/1  
10/13  
8/13  
14/14  
8/14  
8/14  
9/13  
8/0  
8/15  
8/15  
13/0  
10/12  
9/3  
9/12  
9/0  
8/12  
8/12  
15/1  
MICRONAS INTERMETALL  
39  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.9. Command Language  
Table 4–19: Command Table  
Code Code  
Command Name  
Dummy  
No. Write Parameter  
No. Read Parameter  
Status Register  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x0x0 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x0x0 0000  
x0x0 0000  
x0x0 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x0x0 0000  
x000 0000  
x0x0 0000  
x0x0 0000  
x0x0 0000  
x000 0000  
x000 0000  
x000 0000  
x000 0000  
x0x0 0000  
x000 0000  
x000 0000  
x0x0 0000  
x0x0 0000  
x0x0 0000  
x000 0000  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0a  
0b  
0c  
0d  
0e  
0f  
0
0
Reset  
0
0
Escape  
0
0
Version  
0
2
Test  
0
0
Test  
0
0
DRAM Mode  
3
0
Acquisition Mode  
Display Mode  
5
2
3
0
Display TTX Pointer  
Display Pointer  
Display Clear  
2
0
3
0
2
0
Page Request  
Display Time Pointer  
Read DRAM Size  
Read VPS  
8
3
2
0
0
3
0
15  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1a  
1b  
1c  
1d  
1e  
1f  
Read Quality  
0
4
Read Display Mode  
Read Reset Source  
Read Rolling Header  
Read Page Info  
Read Page Row  
Change Page Info  
Search MPET  
Read Display Page  
Page Memory  
0
3
0
1
0
24  
2
7
5
40  
3
0
0
1 + (n*4)  
0
4
2
0
Display Page Request  
Page Table Reset  
Search Next Page  
Read Page Cycle  
Read TOP Code  
Read Rolling Time  
Copy Page Row  
Copy Data  
5
0
0
0
3
6
0
9
2
2
0
8
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2a  
2b  
2c  
2d  
2e  
2f  
8
0
7
0
Search Next TOP Code  
Read Ghost Row  
Read 8/30 Row  
Read Priority  
3
4
6
40  
1
40  
0
5
Page Priority  
2
0
Search AIT  
0
1 + (n*4)  
Read TOP Status  
Search AIT Title  
Reset Ghost Row Status  
Search MPT  
0
2
2
17  
0
0
0
1 + (n*4)  
Copy AIT Title  
Search Direct Choice  
Read Hamming  
Read Hamming 2  
Display Column  
Display Fill  
5
17  
1
1 + (n*2)  
1
1
3
3
30  
31  
32  
33  
34  
35  
36  
37  
38  
3+length  
0
4
0
2
1
0
0
0
5
0
Read BTTL  
9
Read Next Page  
Change BTT magazine  
Read WSS  
2
0
15  
7
Read CAPTION 1  
Read CAPTION 2  
OSD Font Pointer  
7
0
40  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Note:  
Ifnototherwisedesignated, allparametersinthefollowingtablearespecifiedassinglebytes. Aswriteparame-  
ter magazine numbers 8 and 0 have the same meaning, as read parameter the magazine number is a true 4-bit  
number (e.g. magazine 8 = 00001000). For write parameters the values in parentheses indicate default values  
after reset (in hex notation). For compatibility reasons every undefined bit in a write parameter should be set to  
‘0’. Undefined bits in a read parameter should be treated as “don’t care”.  
Table 4–20: Command Codes  
Code  
Function  
Write Parameter  
Read Parameter  
Notes  
Operational & Test Commands  
00  
01  
02  
03  
Dummy  
Reset  
no action  
software reset of 65C02  
escape to other codes  
Escape  
Version  
CPU pointer high  
CPU pointer low  
show version in OSD layer  
CPU pointer to text in ROM  
04  
05  
06  
Test  
reserved for testing  
reserved for testing  
Test  
DRAM Mode  
dram mode  
flash inc  
control enable  
(06)  
(05)  
(FF)  
dram mode = I/O page register 028EH  
flash freq = flash inc / (256 * 0.00324)  
control enable:  
bit0 = C4 erase page  
bit1 = C5 news flash  
bit2 = C6 subtitle  
bit3 = C7 suppress header  
bit4 = C8 update indicator  
bit5 = C9 interrupted sequence  
bit6 = C10 inhibit display  
bit7 = C11 magazine parallel  
07  
Acquisition Mode  
acquisition mode  
init subcode high  
init subcode low  
gain max  
(00)  
(FF)  
(FF)  
(1F)  
(1F)  
gain  
filter  
acquisition mode:  
bit0 = no slicer adaption  
bit1 = no bit error in framing code  
bit2 = limit slicer adaption  
init subcode:  
filter max  
automatic subcode request after  
page table reset  
gain max: only used if bit2 = 1  
filter max: only used if bit2 = 1  
Memory Management Commands  
14  
Read DRAM Size  
dram size high  
dram size low  
dram mode  
dram size:  
0080H = 256Kbit (slow mode)  
0200H = 1Mbit  
0800H = 4Mbit  
(fast mode)  
(fast mode)  
2000H = 16Mbit (fast mode)  
dram mode:  
(only in TPU 3050)  
see I/O page register 028EH  
25  
27  
Page Memory  
dram bank  
dram high  
(00)  
(40)  
start of page memory  
execute page table reset  
Page Table Reset  
reset page table  
reset ghost row status  
reset data service status  
reset cycle count  
reset memory count  
reset ghost count  
reset priorities  
clear rolling header  
clear VPS data  
clear WSS data  
42  
Reset Ghost Row Status  
ghost row status:  
bit0 = row 24 in cycle  
bit1 = row 25 in cycle  
bit2 = row 26 in cycle  
bit3 = row 27 in cycle  
bit4 = row 28 in cycle  
bit5 = row 29 in cycle  
bit6 = row 30 in cycle  
bit7 = row 31 in cycle  
MICRONAS INTERMETALL  
41  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Command Codes, continued  
Code  
Function  
Write Parameter  
Read Parameter  
Notes  
29  
Read Page Cycle  
ghost row status  
2 byte cycle count  
2 byte memory count  
2 byte ghost count  
data service status  
memory status  
= number of pages in cycle  
= number of pages in memory  
= number of ghost blocks in memory  
data service status:  
bit0 = 8/30 format 1 updated  
bit1 = 8/30 format 2 updated  
bit2 = VPS updated  
bit3 = WSS updated  
bit4 = CAPTION 1st field updated  
bit5 = CAPTION 2nd field updated  
memory status:  
bit0 = memory full  
38  
37  
Page Priority  
Read Priority  
enable  
border  
(00)  
(FF)  
enable:  
bit0 = enable priority manager  
border:  
min/max border for page priorities  
highest priority  
lowest priority  
border priority  
magazine number  
page number  
= max priority in page memory  
= min priority in page memory  
= min/max border for page priorities  
= page with lowest priority  
Page Related Commands  
12  
Page Request  
magazine number  
page number  
page subcode high  
page subcode low  
priority  
number of open requests  
removed magazine num-  
ber  
remove pages from memory beginning at  
start page if page priority is disabled,  
ignores start page if page priority is en-  
abled  
removed page number  
magazine number:  
quantity  
start magazine number  
start page number  
bit0–3= magazine number  
bit4 = not used  
bit5 = hex request  
bit6 = backward request  
bit7 = forced request = ignore  
cycle flag  
20  
22  
Read Page Info  
magazine number  
page number  
page pointer high  
page pointer low  
subpage count  
ghost row count  
ring buffer index  
page subcode high  
page subcode low  
= pointer from page table  
= number of subpages in chain  
= number of ghost rows in chain  
if page request with subcode F1xx  
Change Page Info  
magazine number  
page number  
page table flags  
page table flags:  
bit0 = protection  
bit1 = update  
bit2 = not used  
bit3 = not used  
bit4 = not used  
bit5 = subpage  
bit6 = memory  
bit7 = cycle  
28  
Search Next Page  
magazine number  
page number  
search code  
magazine number  
page number  
page pointer high  
page pointer low  
subpage count  
ghost row count  
search in page table for cycle flag  
magazine number:  
bit0–3= magazine number  
bit4 = take search code  
bit5 = hex search  
bit6 = backward search  
bit7 = include start page  
search code:  
bit0 = search protection flag  
bit1 = search update flag  
bit2–4= not used  
bit5 = search subpage flag  
bit6 = search memory flag  
bit7 = search cycle flag  
51  
Read Next Page  
magazine number  
page number  
magazine number  
page number  
calculate next page number  
magazine number:  
bit0–3= magazine number  
bit4 = not used  
bit5 = hex calculation  
bit6 = backward calculation  
bit7 = not used  
42  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Command Codes, continued  
Code  
Function  
Write Parameter  
Read Parameter  
Notes  
21  
Read Page Row  
magazine number  
page number  
40 byte row data  
row 0 – 24  
subpage number high  
subpage number low  
row number  
32  
Copy Page Row  
magazine number  
page number  
copy 40byte text row from page memory  
into DRAM  
subpage number high  
subpage number low  
row number  
destination dram bank  
destination dram high  
destination dram low  
35  
40  
Read Ghost Row  
Read TOP Status  
magazine number  
page number  
subpage number high  
subpage number low  
row number  
40 byte row data  
row 25 – 28  
designation code  
TOP Commands  
TOP status 1  
TOP status 2  
TOP status 1:  
bit0 = not used  
bit1 = MPT link in PLT  
bit2 = MPET link in PLT  
bit3 = AIT link in PLT  
bit4 = BTT in memory  
bit5 = MPT in memory  
bit6 = MPET in memory  
bit7 = AIT in memory  
TOP status 2:  
bit0–5 = not used  
bit6 = all MPET in memory  
bit7 = all AIT in memory  
30  
50  
Read TOP Code  
Read BTTL  
magazine number  
page number  
BTT code  
MPT code  
code:  
bit0–3= data  
bit6 = hamming error  
BTTL error  
8 byte BTTL data  
BTTL error:  
bit6 = hamming error in BTTL  
BTTL data:  
bit0–3= data  
bit6 = hamming error  
52  
43  
Change BTT magazine  
Search MPT  
magazine number (01)  
all TOP commands then refer to this  
magazine  
number of MPTs  
magazine number  
page number  
subpage number high  
subpage number low  
...  
search in PLT  
search in PLT  
search in PLT  
23  
39  
41  
Search MPET  
Search AIT  
number of MPETs  
magazine number  
page number  
subpage number high  
subpage number low  
...  
number of AITs  
magazine number  
page number  
subpage number high  
subpage number low  
...  
Search AIT Title  
magazine number  
page number  
5 byte data  
12 byte title  
search in AIT  
magazine number:  
bit0–3= magazine number (0#8)  
bit4–6= not used  
bit7 = ignore title language  
data:  
bit0–3= data  
bit6 = hamming error  
MICRONAS INTERMETALL  
43  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Command Codes, continued  
Code  
Function  
Write Parameter  
Read Parameter  
Notes  
44  
Copy AIT Title  
magazine number  
page number  
5 byte data  
12 byte title  
search in AIT and copy title into dram  
magazine number:  
destination dram bank  
destination dram high  
destination dram low  
bit0–3= magazine number (0#8)  
bit4–6= not used  
bit7 = ignore title language  
data:  
bit0–3= data  
bit6 = hamming error  
34  
Search Next TOP Code  
magazine number  
page number  
code condition  
magazine number  
page number  
code  
search in BTT  
magazine number:  
bit0–3= magazine number  
bit4–5= not used  
code flag  
bit6 = backward search  
bit7 = include start page  
code condition:  
low nibble = BTT code  
high nibble = search condition  
0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f
= BTT code in low nibble  
= BTT code # 0  
= block page  
= group page  
= normal page  
= subtitle page  
= TV page  
= block/TV page  
= group/block/TV page  
= subpage  
= block/TV subpage  
= group/block/TV subpage  
= title page  
= future page  
= future page  
= future page  
code:  
bit0–3= BTT code  
bit6 = hamming error  
code flag:  
bit0 = subtitle page found  
bit1 = TV page found  
bit2 = block page found  
bit3 = group page found  
bit4 = normal page found  
bit5 = future page found  
bit6 = title page found  
bit7 = subpage found  
45  
Search Direct Choice  
direct choice code  
number of AIT entries  
magazine number  
page number  
...  
search in AIT  
44  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Command Codes, continued  
Code  
Function  
Write Parameter  
Read Parameter  
Notes  
Miscellaneous Data Commands  
36  
Read 8/30 Row  
designation code  
40 byte row data  
only format 1 and 2 are supported  
1st byte of row data is already hamming  
decoded  
15  
53  
Read VPS  
Read WSS  
framing code  
counter  
13 byte VPS data  
= 51H  
= incremented every VPS reception  
= biphase decoded VPS bytes 3–15  
framing code  
counter  
13 byte WSS data  
= 78H  
= incremented every WSS reception  
= 102 WSS elements from group 1 on  
54  
55  
Read CAPTION 1  
Read CAPTION 2  
counter  
6 byte CAPTION data  
= incremented every reception in field 1  
= 3x oversampling  
counter  
6 byte CAPTION data  
= incremented every reception in field 2  
= 3x oversampling  
19  
31  
16  
Read Rolling Header  
Read Rolling Time  
Read Quality  
24 byte rolling header  
8 byte rolling time  
every row 0 in cycle  
using time pointer  
updated every VBI  
text lines  
hamming errors  
parity errors  
soft errors  
18  
Read Reset Source  
reset source  
reset source:  
bit0 = clock supervision  
bit1 = voltage supervision  
bit2 = watchdog  
all bits in reset source are reset after read  
46  
47  
Read Hamming  
hamming (8,4) byte  
data  
hamming byte:  
bit0–3= data  
bit6 = hamming error  
Read Hamming 2  
hamming (24,18) 1st byte  
hamming (24,18) 2nd byte  
hamming (24,18) 3rd byte  
address  
mode  
data  
address:  
bit0–5= address  
bit7 = hamming error  
mode:  
bit0–4= mode  
data:  
bit0–6= data  
33  
Copy Data  
source dram bank  
source dram high  
source dram low  
length  
copy data from DRAM to DRAM  
destination dram bank  
destination dram high  
destination dram low  
MICRONAS INTERMETALL  
45  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
Command Codes, continued  
Code  
Function  
Write Parameter  
Read Parameter  
Display Commands  
Notes  
17  
Read Display Mode  
display mode  
character set  
font  
display mode:  
bit0 = forced boxing  
bit1 = reveal  
bit2 = box  
bit3 = time hold  
bit4 = page hold  
bit5 = row 24 hold  
bit6 = row 25 hold  
bit7 = row 26 hold  
08  
Display Mode  
display mode  
character set  
font  
(00)  
(06)  
(00)  
display mode: see above  
character set: 6,38,40,55,70  
font:  
0=PAL  
1=NTSC  
09  
10  
Display TTX Pointer  
Display Pointer  
dram high  
dram low  
(20)  
(00)  
page memory is copied to TTX pointer  
dram high  
dram low  
scroll counter  
(20)  
(00)  
(00)  
display starts at pointer using scroll  
counter as line offset  
11  
13  
26  
Display Clear  
dram high  
dram low  
clear display bank beginning at pointer  
(26 rows * 86 bytes)  
Display Time Pointer  
Display Page Request  
dram high  
dram low  
(20)  
(20)  
8byte time string from packet x/00 is  
copied to time pointer  
magazine number  
page number  
subpage number high  
subpage number low  
magazine number:  
bit0–3= magazine number  
bit4 = change display delay  
bit5 = display clear (on update)  
bit6–7= not used  
display delay  
(1E)  
subpage number:  
F0xx for rolling subpages  
display delay:  
delay after row 0 reception in steps  
of 3.24ms (255 = no update)  
only used if bit4 = 1  
24  
48  
Read Display Page  
Display Column  
magazine number  
page number  
subpage number high  
subpage number low  
current page in display  
dram high  
dram low  
length  
write to dram with increment of 86 byte  
= number of bytes in list  
byte list  
...  
49  
56  
Display Fill  
dram high  
dram low  
length  
repeated write of 1 character to dram  
= number of repeated writes  
character  
OSD Font Pointer  
font mode  
font pointer high  
font pointer low  
extension font pointer high  
extension font pointer low  
(00)  
font mode:  
bit0 = 0 = reset OSD font 2 pointer  
bit0 = 1 = load OSD font 2 pointer  
withfollowingparameters  
46  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.10. Memory Manager  
4.11. Memory Organization  
The Memory manager is the core of the internal  
TPU 3040 software. Most of the acquisition and display  
related functions are controlled by this management.  
The upper end of the memory is defined by the DRAM  
size, the lower end can be defined with the  
PAGE_MEMORY command. Default memory organiza-  
tion is shown in Fig. 4–8.  
20 00 00 = 16Mbit  
DRAM  
08 00 00 = 4Mbit  
02 00 00 = 1Mbit  
Page Memory  
n x 1 KByte  
00 80 00 = 256Kbit  
Acquisition  
00 40 00  
Display Bank  
Scratch  
Memory  
4 KByte  
00 30 00  
TTX Display Bank  
Page  
Table  
Memory  
Manager  
Page  
Memory  
4 KByte  
00 20 00  
Acquisition  
Scratch  
Display  
Memory  
4 KByte  
00 10 00  
Page Table  
Display  
Controller  
4 KByte  
00 00 00  
Fig. 4–7: Memory Manager  
Fig. 4–8: Memory Organization  
MICRONAS INTERMETALL  
47  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.12. Page Table  
The cycle flag will be set as soon as this page is detected  
in the transmission cycle even if it cannot be stored in  
memory. Only if the page is really stored in memory, the  
memory flag will be set. The subpage flag will be set for  
every page in cycle if the page subcode is different from  
0000H or 3F7FH. The update flag is set every time a  
page is stored and will be reset only for the display page  
after updating the display memory. A page with protec-  
tion flag set will never be removed from memory.  
The memory management is based on a fixed size page  
table, which has entries for every hexadecimal page  
number from 100 to 8FF. The page table starts with page  
800 and contains a 2-byte page pointer for every page.  
The page table can be read with the command  
READ_PAGE_INFO sending the page number and  
reading the 2-byte page pointer containing:  
– DRAM pointer  
– cycle flag  
The memory manager uses page priorities to decide  
which pages should be stored or removed from memory.  
If no more memory is available, pages with lowest prior-  
ity are removed automatically and the higher priority  
pagesarestoredattheirplace. Bysettingthepageprior-  
ity the programmer has control over the memory man-  
agement.  
– memory flag  
– subpage flag  
– update flag  
– protection flag  
The page table is fully controlled by the memory manag-  
er and should never be written by external software. To  
change the page table flags the command  
CHANGE_PAGE_INFO can be used.  
The DRAM pointer gives the location where the page is  
stored in memory. The page size is fixed to 1 KByte, only  
ghost rows are allocated dynamically.  
Table 4–21: Page Table Format  
Index  
000  
001  
...  
2-byte Page Pointer  
start magazine 8  
Cycle  
Flag  
Memory Subpage  
Flag Flag  
Update  
Flag  
Protect  
Flag  
11-bit DRAM Pointer  
100  
...  
hexadecimal pages (e.g. TOP)  
1F0  
...  
7FE  
7FF  
end magazine 7  
48  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
control language  
row flag row flag row flag row flag  
ghost row pointer subpage pointer  
priority status  
subcode req  
subcode in  
8 byte  
4–11  
12–14  
0–7  
8–15  
16–23  
24–31  
packet x/00  
packet x/01  
8 byte  
1 KByte page data  
packet x/24  
24 byte  
subcode subcode  
high low  
mag  
page  
index  
Fig. 4–9: Page Format  
MICRONAS INTERMETALL  
49  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.13. Ghost Row Organization  
Table 4–22: Ghost Row Identification  
Page-related ghost rows are stored in blocks of 128  
byte. These ghost blocks are linked together using 2  
byte ghost row pointers. The first pointer can be found  
in the basic page, all following pointers are part of the  
block header. A zero pointer indicates the end of the  
chain.  
Row Number Tag  
Row  
000  
001  
010  
011  
100  
101  
110  
111  
empty  
row 25  
row 26  
row 27  
row 28  
row 29  
row 30  
row 31  
ghost  
pointer  
Page Table  
page pointer  
page 100  
ghost  
pointer  
4-bit designation code  
3-bit row number  
ghost block  
0000  
‘aa’  
‘aa’  
‘aa’  
row 1  
row 2  
row 3 ghost row pointer  
ghost block  
Fig. 4–10: Ghost Row Organization  
8 byte block header  
Every ghost block contains 3 ghost rows which can be  
identified by 3 row identification bytes in the block  
header. The row identification contains designation  
code and row number. The row number is reduced to a  
3-bit tag. All ghost rows in one block belong to the same  
page. If the memory manager removes a page from  
memory, the linked ghost blocks will also be removed.  
40 byte row 1 data  
40 byte row 2 data  
40 byte row 3 data  
Fig. 4–11: Ghost Block Structure  
50  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.14. Subpage Manager  
subpage  
pointer  
Page Table  
page 100  
subcode 0003  
Any page in cycle can have a number of subpages, iden-  
tifiedbysubcode. Innormalmodethesubpagemanager  
will acquire only one subpage of every requested page.  
This subpage can be any if subcode FFFF is requested  
oritwillbeselectedaccordingtotherequestedsubcode.  
page pointer  
AfteraPAGE_REQUESTcommandwithsubcodeF0xx,  
the subpage manager will acquire all subpages of the  
requested page. The subpages will be chained in the  
same order as they are transmitted, i.e. every new sub-  
code will be added at the end of chain. The page table  
entry points to the subpage which was transmitted first  
after the page request. The READ_PAGE_INFO com-  
mand will reply the page table pointer and the actual  
number of subpages in chain.  
subpage  
pointer  
page 100  
subcode 0001  
0000  
AfteraPAGE_REQUESTcommandwithsubcodeF1xx,  
thesubpagemanagerwillacquireallsubpagesofthere-  
quested page but will allocate only a limited amount of  
memory to store these subpages. The parameter “page  
subcode low” will define the length (in number of sub-  
pages) of a ring buffer in page memory which will hold  
the recently received subpages. In this case, the  
READ_PAGE_INFO command will return an index  
pointing to the most recently updated subpage in chain,  
together with the subcode of this page.  
page 100  
subcode 0002  
Fig. 4–12: Subpage Organization  
The DISPLAY_PAGE_REQUEST command searches  
and displays a page according to the requested display  
subcode. The search starts from page table and contin-  
ues through the subpage chain if there is any. A rolling  
header will be displayed if the requested subpage can-  
not be found in memory.  
ArequesteddisplaysubcodeFFFF(don’tcaresubcode)  
will only search and display the first subpage in chain,  
thus there is no rolling subpage anymore. A DIS-  
PLAY_PAGE_REQUEST command with subcode F0xx  
(follow subcode) will search and display the last re-  
ceived subpage in chain, thus it is possible to request all  
subpages in background while still showing rolling sub-  
pages in display.  
MICRONAS INTERMETALL  
51  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.15. I/O Page Definition  
Most hardware related functions of the TPU 3040 are  
controlled by memory mapped I/O of the 65C02. The fol-  
lowing table lists all available registers. For a more de-  
tailed description of the I/O page registers see next sec-  
tion.  
Reset values are written by TPU during initialization. Ap-  
plication software should only write into registers with  
user label ‘Appl’!  
Most of the I/O page registers are only write registers  
and will not return useful data when read by application  
software.  
The application software has access to the I/O page reg-  
2
isters via I C-bus using the CPU subaddresses SUB1  
and SUB 2.  
Table 4–23: I/O Page Register  
Addr.  
Mode  
R/W  
W
User  
Test  
Test  
Appl  
TPU  
Test  
Reset Name  
Addr.  
Mode  
W
User  
Test  
Test  
TPU  
Test  
Reset Name  
0200 H  
0201 H  
0202 H  
0203 H  
0204 H  
00 H Control Register  
00 H Test Mode  
00 H Standby  
0271 H  
0272 H  
0273 H  
0274 H  
00 H Display Test 1  
00 H Display Test 2  
00 H Display Mode 5  
00 H Display Test 4  
W
W
W
W
6C H Watchdog  
07 H Supervision  
W
R/W  
0280 H  
0281 H  
0282 H  
0283 H  
0284 H  
0285 H  
0286 H  
0287 H  
0288 H  
0289 H  
028A H  
028B H  
028C H  
028D H  
028E H  
0290 H  
0291 H  
0292 H  
0293 H  
0294 H  
0295 H  
0296 H  
0297 H  
0298 H  
0299 H  
029A H  
029B H  
029C H  
029D H  
029E H  
029F H  
02A0 H  
02A1 H  
02A2 H  
02A3 H  
02A4 H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
TPU  
Appl  
Appl  
Appl  
Appl  
TPU  
TPU  
TPU  
TPU  
TPU  
Test  
Test  
TPU  
TPU  
Appl  
Appl  
TPU  
Test  
Test  
Appl  
Appl  
00 H DRAM Display Pointer Low  
20 H DRAM Display Pointer Medium  
00 H DRAM Display Pointer High  
00 H DRAM Slicer Pointer Low  
10 H DRAM Slicer Pointer Medium  
00 H DRAM Slicer Pointer High  
0210 H  
0211 H  
0212 H  
0213 H  
0220 H  
0221 H  
0222 H  
0223 H  
0224 H  
0225 H  
0226 H  
0250 H  
0251 H  
0252 H  
0253 H  
0254 H  
0255 H  
0256 H  
025A H  
025B H  
0260 H  
0261 H  
0262 H  
0264 H  
0265 H  
0266 H  
0267 H  
0268 H  
0269 H  
026A H  
026B H  
026C H  
026D H  
026E H  
026F H  
0270 H  
R/W  
R/W  
R
TPU  
TPU  
TPU  
Appl  
TPU  
TPU  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Appl  
Test  
Appl  
Appl  
Appl  
Appl  
TPU  
Appl  
TPU  
Interface Data  
00 H Interface Status  
Interface Address  
W
R/W  
W
W
R
01 H Interface Mode  
FF H Interrupt Source  
3B H Interrupt Enable  
0F H Interrupt & Timer Mode  
DRAM CPU Write Pointer Low  
DRAM CPU Write Pointer Medium  
DRAM CPU Write Pointer High  
DRAM CPU Read Pointer Low  
DRAM CPU Read Pointer Medium  
DRAM CPU Read Pointer High  
DRAM Data  
Timer Latch Low  
Timer Latch High  
Timer Count Low  
Timer Count High  
R
R
R
W
W
W
W
W
W
W
W
R/W  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
04 H Clamping Start  
07 H Blanking Stop  
DRAM Hamming Data  
06 H DRAM Mode  
00 H Blanking Start  
W
01 H ACQ Soft Slicer  
37 H Halfline Code  
W
BE H ACQ TTX Bitslicer Frequency Low  
0A H ACQ TTX Bitslicer Frequency High  
FA H ACQ VPS Bitslicer Frequency Low  
09 H ACQ VPS Bitslicer Frequency High  
07 H ACQ Filter Coefficient  
60 H Display Mode 1  
W
4D H Display Mode 2  
W
07 H Clamping Stop  
W
35 H PRIO Mode  
W
00 H FB Mode  
W
0D H ACQ Data Slicer  
0060 H OSD Layer Vertical Start  
0128 H OSD Layer Vertical Stop  
16 H OSD Layer Horizontal Start  
version OSD Layer Text Pointer  
0138 H OSD Layer 2nd Color Start  
0C H OSD Layer 2nd Color  
0024 H WST Layer Vertical Start  
0F H WST Layer Horizontal Start  
00 H OSD Test  
W
04 H ACQ Accumulator Mode  
R
ACQ AC Accumulator  
ACQ FLT Accumulator  
R
W
00 H ACQ Packet Header Low  
00 H ACQ Packet Header High  
W
R
ACQ Soft Error Counter  
0F H ACQ Sync Slicer  
ACQ Sync Status  
W
R
W
18 H ACQ Standard  
0128 H WST Layer Vertical Stop  
011E H WST Layer Last Row  
00 H RGB Mode  
W
50 H ACQ Analog Mode  
00 H ACQ Test Mode  
00 H ACQ Test Observe  
00 H ACQ Video Input  
W
W
00 H Sync Mode  
W
pal font Display Font Pointer  
8F H Display Mode 3  
R
ACQ HSync Counter  
00 H Display Mode 4  
52  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
4.16. I/O Page Register  
Note:  
For compatibility reasons, every undefined bit of a write register should be set to ‘0’. Undefined bits of a read  
register should be treated as “don’t care”.  
0200 H  
R/W  
Reset  
00 H  
CONTROL REGISTER  
Bit  
all  
Function  
During reset the control register is loaded with the contents of the address FFF9H, but it can be read and  
written via software.  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
1 = CPU disable  
0 = CPU enable  
1 = program RAM disable  
0 = program RAM enable  
1 = program ROM disable  
0 = program ROM enable  
1 = character ROM disable  
0 = character ROM enable  
1 = DMA interface disable  
0 = DMA interface enable  
1 = I/O page disable  
0 = I/O page enable  
1 = test mode on  
0 = test mode off  
write: 1 = burnin test mode (only if test pin high)  
0 = normal test mode  
read: 1 = burnin test mode  
0 = normal test mode  
0202 H  
Write  
Reset  
0
STANDBY  
Bit  
2
Function  
1 = digital circuitry power off  
0 = digital circuitry power on  
(CPU still active with slow clock)  
1
0
0
0
1 = analog circuitry power off  
0 = analog circuitry power on  
1 = character ROM power off  
0 = character ROM power on  
0203 H  
Write  
Reset  
6C H  
WATCHDOG  
Bit  
all  
Function  
reset watchdog if 8-bit value= 0x6c is written into this register  
all other values or time out will reset the chip  
MICRONAS INTERMETALL  
53  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0204 H  
R/W  
Reset  
0
SUPERVISION  
Bit  
4
Function  
write enable only if test pin high  
write: 1 = short reset pulse  
0 = long reset pulse  
(15-bit FOSC)  
3
2
1
0
0
1
1
1
write enable only if test pin high  
write: 1 = short watchdog period  
0 = long watchdog period  
(19-bit PH2)  
write enabled per mask option  
write: 1 = watchdog enable  
0 = watchdog disable  
reset after read  
read: 1 = watchdog alarm  
0 = watchdog sleeping  
write disabled per mask option  
write: 1 = voltage supervision enable  
0 = voltage supervision disable  
reset after read  
read: 1 = voltage supervision alarm  
0 = voltage supervision sleeping  
write disabled per mask option  
write: 1 = clock supervision enable  
0 = clock supervision disable  
reset after read  
read: 1 = clock supervision alarm  
0 = clock supervision sleeping  
0210 H  
R/W  
Reset  
INTERFACE DATA  
Function  
Bit  
all  
8-bit value  
0211 H  
R/W  
INTERFACE STATUS  
Bit  
7
Reset  
Function  
write:  
read: 1 = stop condition  
read: 1 = write data telegram  
read: 1 = read data telegram  
read: 1 = sub 4 telegram  
read: 1 = sub 3 telegram  
read: 1 = sub 2 telegram  
read: 1 = sub 1 telegram  
read: 1 = start condition  
6
write:  
5
write:  
4
write:  
3
write:  
2
write:  
1
write: 1 = reset interface (static)  
write: 0 = clear status  
0
0212 H  
Read  
Reset  
INTERFACE ADDRESS  
Function  
Bit  
all  
8-bit value  
54  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0213 H  
Write  
Reset  
0
INTERFACE MODE  
Bit  
2
Function  
1 = IIM Bus test enable (if normal test mode)  
0 = IIM Bus test disable  
1
0
0
1
1 = standby enable  
0 = standby disable  
(if bit 2 of register 0202H = 1)  
1 = IIC Bus  
0 = IIM Bus  
0220 H  
R/W  
Reset  
FF H  
INTERRUPT SOURCE  
Bit  
all  
Function  
write: 1 = reset interrupt source  
0 = no action  
read: 1 = pending interrupt  
0 = no pending interrupt  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
IR input falling edge  
IR input rising edge  
timer  
12  
(bit 2 from timer = every 3.24ms)  
vertical sync display  
slave interface  
(bus write of address or read/write of data register)  
master interface  
TTX acquisition start  
TTX acquisition stop  
0221 H  
Write  
Reset  
3B H  
INTERRUPT ENABLE  
Bit  
all  
Function  
for bit mapping see register 0220 H  
1 = interrupt enable  
0 = interrupt disable  
0222 H  
Write  
Reset  
1
INTERRUPT & TIMER MODE  
Bit  
3
Function  
1 = timer not latched by falling edge of IR input (see Fig. 2–5)  
0 = timer latched by falling edge of IR input  
2
1
0
1
1
1
1 = timer not latched by rising edge of IR input (see Fig. 2–5)  
0 = timer latched by rising edge of IR input  
1 = IRQ generated by falling edge of IR input  
0 = NMI generated by falling edge of IR input  
1 = IRQ generated by rising edge of IR input  
0 = NMI generated by rising edge of IR input  
MICRONAS INTERMETALL  
55  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0223 H  
0224 H  
0225 H  
0226 H  
Read  
TIMER LATCH LOW  
TIMER LATCH HIGH  
TIMER COUNT LOW  
TIMER COUNT HIGH  
Bit  
all  
Reset  
Function  
8-bit value  
(see Fig. 2–5)  
Timer  
Interrupt  
IR  
Interrupt  
12  
2
fosc  
%16  
16 bit counter  
IR  
8
8
D ...D  
0
7
Fig. 2–5: Timer Structure  
0250 H  
Write  
Reset  
04 H  
CLAMPING START  
Bit  
all  
Function  
horizontal start of clamping pulse in character increments  
(see Fig. 2–6)  
correct clamping pulse cannot be guaranteed if clamping start = clamping stop  
0251 H  
Write  
Reset  
07 H  
BLANKING STOP  
Bit  
all  
Function  
horizontal stop of blanking pulse in character increments  
(see Fig. 2–6)  
correct blanking pulse cannot be guaranteed if blanking start = blanking stop  
0252 H  
Write  
Reset  
00 H  
BLANKING START  
Bit  
all  
Function  
horizontal start of blanking pulse or self-timed HSYNC in character increments (see Fig. 2–6)  
correct blanking pulse cannot be guaranteed if blanking start = blanking stop  
0256 H  
Write  
Reset  
07 H  
CLAMPING STOP  
Bit  
all  
Function  
horizontal stop of clamping pulse in character increments  
(see Fig. 2–6)  
correct clamping pulse cannot be guaranteed if clamping start = clamping stop  
56  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
HSYNC  
Clamping  
Blanking  
Fig. 2–6: Internal Timing  
0253 H  
Write  
HALFLINE CODE  
Bit  
all  
Reset  
Function  
37 H  
horizontal position to reset HSYNC flip-flop in normal sync mode (in character)  
horizontal position of halfline HSYNC in self-timed interlaced mode (in character)  
0254 H  
Write  
Reset  
0
DISPLAY MODE 1  
Bit  
7
Function  
1 = OSD layer always uses FONT 1  
0 = OSD layer changes from FONT 1 to FONT 2 if ASCII20H  
6
5
1
1
0
0
1 = enable OSD layer  
0 = disable OSD layer  
1 = active flash phase of OSD layer  
0 = inactive flash phase of OSD layer  
4
1 = 13 scanlines/character  
0 = 8 scanlines/character  
3 to 0  
With this scan line the OSD layer starts display of the first text line. By slow incrementing of this value soft  
scroll begins.  
0255 H  
Write  
Reset  
1
DISPLAY MODE 2  
Bit  
6
Function  
1 = skew delay enable  
0 = skew delay disable  
5
4
3
2
1
0
0
0
1
1
0
1
1 = VSYNC active high  
0 = VSYNC active low  
1 = HSYNC active high  
0 = HSYNC active low  
1 = 10.125MHz display clock  
0 = 20.25MHz display clock  
1 = font pointer offset 10 scanlines/character  
0 = font pointer offset 8 or 16 scanlines/character (depending on bit 1)  
1 = font pointer offset 16 scanlines/character  
0 = font pointer offset 8 scanlines/character  
1 = 10 scanlines/character  
0 = 8 or 13 scanlines/character (depending on bit 4 in register 0254 H)  
MICRONAS INTERMETALL  
57  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
025A H  
Bit  
Write  
Reset  
00  
PRIO MODE  
Function  
7 to 6  
prio output strength:  
3 = 8 mA output pull-down current  
2 = 6 mA output pull-down current  
1 = 4 mA output pull-down current  
0 = 2 mA output pull-down current  
5 to 3  
2 to 0  
110  
101  
prio code for shadow pixel  
prio code for normal pixel  
025B H  
R/W  
Reset  
00 H  
0
FB Mode  
Function  
write:  
Bit  
all  
7
read: every read resets status  
color bit 4  
color bit 3  
(color output of OSD layer)  
(color output of OSD layer)  
6
0
5
0
1 = inverted shadow output / enable fastblank input  
0 = normal shadow output / disable fastblank input  
4
3
2
1
0
0
0
0
0
0
1 = inverted color output  
0 = normal color output  
1 = inverted fastblank output  
0 = normal fastblank output  
1 = shadow output on pin 30  
0 = fastblank input on pin 30  
1 = invert fastblank input  
0 = normal fastblank input  
read: dynamic fastblank status  
read: static fastblank status  
1 = fastblank input with high priority  
0 = fastblank input with low priority  
0260 H  
Write  
OSD LAYER VERTICAL START  
Function  
Bit  
all  
Reset  
00 H  
60 H  
9-bit value defining vertical position (in scanline)  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
0261 H  
Write  
OSD LAYER VERTICAL STOP  
Function  
Bit  
all  
Reset  
01 H  
28 H  
9-bit value defining vertical position (in scanline)  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
0262 H  
Write  
Reset  
16 H  
OSD LAYER HORIZONTAL START  
Function  
Bit  
all  
8-bit value defining horizontal start position (in character)  
58  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0264 H  
Write  
Reset  
OSD LAYER TEXTPOINTER  
Bit  
all  
Function  
16-bit value defining memory address of text  
1st write:  
2nd write:  
bit7 to 0 = 8 MSBs  
bit7 to 0 = 8 LSBs  
0265 H  
Write  
OSD LAYER 2nd COLOR START  
Function  
Bit  
all  
Reset  
01 H  
38 H  
9-bit value defining vertical start for 2nd color (in scanline)  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
0266 H  
Bit  
Write  
Reset  
0C H  
OSD LAYER 2nd COLOR  
Function  
6 to 0  
7-bit value defining 2nd color  
2nd color is used during 1 text row (8, 10 or 13 scanlines) after 2nd color start  
0267 H  
Write  
WST LAYER VERTICAL START  
Function  
Bit  
all  
Reset  
00 H  
24 H  
9-bit value defining vertical position (in scanline)  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
0268 H  
Write  
Reset  
0F H  
WST LAYER HORIZONTAL START  
Function  
Bit  
all  
8-bit value defining horizontal start position (in character)  
026A H  
Write  
WST LAYER VERTICAL STOP  
Function  
Bit  
all  
Reset  
01 H  
28 H  
9-bit value defining vertical position (in scanline)  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
026B H  
Write  
WST LAYER LAST ROW  
Bit  
all  
Reset  
Function  
01 H  
1E H  
9-bit value defining last scanline of the last row to display level 1 double height  
after this scanline the level 1 double height attribute will not be decoded anymore  
1st write:  
2nd write:  
bit 0 = MSB  
bit7 to 0 = 8 LSBs  
MICRONAS INTERMETALL  
59  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
026C H  
Write  
Reset  
0
RGB MODE  
Bit  
6
Function  
1 = inverted CLK20 input  
0 = normal CLK20 input  
5
0
0
1 = WST layer mixed mode  
0 = WST layer normal mode  
4 to 3  
11 = WST layer top  
10 = WST layer opaque bottom  
01 = WST layer transparent bottom  
00 = WST layer disable  
2
0
0
1 = OSD layer mixed mode  
0 = OSD layer normal mode  
1 to 0  
11 = OSD layer top  
10 = OSD layer opaque bottom  
01 = OSD layer transparent bottom  
00 = OSD layer disable  
026D H  
Write  
Reset  
0
SYNC MODE  
Bit  
7
Function  
1 = MSYNC enable  
0 = HSYNC & VSYNC enable  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1 = CSYNC enable  
0 = CSYNC disable  
(for self-timed mode only)  
1 = double scan enable  
0 = double scan disable  
1 = blanking disable  
0 = blanking enable  
1 = NTSC self-timed mode  
0 = PAL self-timed mode  
1 = digital color mode enable  
0 = digital color mode disable  
1 = self-timed mode enable  
0 = self-timed mode disable  
1 = interlace enable = 312/313  
0 = interlace disable = 312/312  
(for self-timed mode only)  
026E H  
Write  
Reset  
DISPLAY FONT POINTER  
Bit  
all  
Function  
4 x 16 value defining memory address of related font  
WST layer always uses font 1  
order of loading:  
extension font 1  
extension font 2  
font 1  
font 2  
for every fontpointer:  
1st write:  
2nd write:  
bit7 to 0 = 8 MSBs  
bit7 to 0 = 8 LSBs  
60  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
026F H  
Write  
Reset  
1
DISPLAY MODE 3  
Bit  
7
Function  
1 = 10 pixel/character  
0 = 8 pixel/character  
6
5
0
0
1 = double dot size in vertical direction  
0 = normal dot size in vertical direction  
(OSD layer only)  
(OSD layer only)  
(OSD layer only)  
1 = double dot size in horizontal direction  
0 = normal dot size in horizontal direction  
4
0
1 = black colors replaced by transparent & shadow  
0 = black colors displayed black  
3 to 0  
F H  
4-bit value defining delay of horizontal start for both layers (in pixel)  
delay = mod (character_width – 2 – value)  
(leftmost position should not be used!)  
16  
0270 H  
Write  
Reset  
0
DISPLAY MODE 4  
Bit  
2
Function  
1 = boxing enable  
0 = boxing disable  
1
0
0
0
1 = reveal enable  
0 = reveal disable  
This bit is taken as flash clock for the WST layer, the frequency should be around 6 Hz.  
0273 H  
Bit  
Write  
DISPLAY MODE 5  
Reset  
Function  
4
0
0
WST layer scan line counter preset (LSB for zoom mode)  
WST layer scan line counter preset  
3 to 0  
0280 H  
0283 H  
0286 H  
0289 H  
R/W  
DRAM DISPLAY POINTER LOW  
DRAM SLICER POINTER LOW  
DRAM CPU WRITE POINTER LOW  
DRAM CPU READ POINTER LOW  
Bit  
Reset  
Function  
7 to 0  
8 least significant bits of 21 bit address pointer  
12 LSBs of 21 bit address pointer are running with autoincrement  
read value is only specified when pointer is not incrementing  
0281 H  
0284 H  
0287 H  
028A H  
R/W  
DRAM DISPLAY POINTER MEDIUM  
DRAM SLICER POINTER MEDIUM  
DRAM CPU WRITE POINTER MEDIUM  
DRAM CPU READ POINTER MEDIUM  
Bit  
all  
Reset  
Function  
8 medium bits of 21 bit address pointer  
12 LSBs of 21 bit address pointer are running with autoincrement  
read value is only specified when pointer is not incrementing  
writing this register clears all lower bits of related pointer  
MICRONAS INTERMETALL  
61  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0282 H  
0285 H  
0288 H  
028B H  
R/W  
DRAM DISPLAY POINTER HIGH  
DRAM SLICER POINTER HIGH  
DRAM CPU WRITE POINTER HIGH  
DRAM CPU READ POINTER HIGH  
Bit  
Reset  
Function  
4 to 0  
5 most significant bits of 21 bit address pointer  
static (no autoincrement)  
writing this register clears all lower bits of related pointer  
028C H  
R/W  
Reset  
DRAM DATA  
Function  
Bit  
all  
8 bit value  
028D H  
R/W  
Reset  
DRAM HAMMING DATA  
Bit  
all  
Function  
8 bit value  
writing this register resets hamming decoder  
028E H  
Write  
Reset  
0
DRAM MODE  
Bit  
5
Function  
1 = SRAM mode enable  
0 =DRAM mode enable  
(only available in TPU 3050)  
4
3
2
1
0
0
0
1
1
0
1 = next CPU write without WEQ but with address increment  
0 = normal CPU write mode  
1 = reset address pointer and switch off refresh during standby  
0 = keep address pointer and refresh during standby  
1 = display channel enable  
0 = display channel disable  
1 = slicer channel enable  
0 = slicer channel disable  
1 = slow mode timing  
0 =fast mode timing  
0290 H  
Bit  
Write  
Reset  
01 H  
ACQ SOFT SLICER  
Function  
4 to 0  
5 bit binary soft slicer level is compared with ABS[data]  
(*32data)31)  
0291 H  
0293 H  
Write  
ACQ TTX BITSLICER FREQUENCY LOW  
ACQ VPS BITSLICER FREQUENCY LOW  
Bit  
all  
Reset  
Function  
8 LSBs of bitslicer frequency  
62  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
0292 H  
0294 H  
Write  
ACQ TTX BITSLICER FREQUENCY HIGH  
ACQ VPS BITSLICER FREQUENCY HIGH  
Bit  
3
Reset  
1
Function  
1 = PHINC enable  
0 = PHINC disable  
phase inc = Freq*(1)1/8) before framing code  
phase inc = Freq*(1)1/16) after framing code  
phase inc = Freq  
11  
2 to 0  
3 MSBs of bitslicer frequency  
Freq = 2 * Bitfreq / 20.25MHz  
= 702 for PAL  
= 579 for NTSC  
= 506 for VPS or WSS  
= 153 for CAPTION  
0295 H  
Bit  
Write  
Reset  
07 H  
ACQ FILTER COEFFICIENT  
Function  
5 to 0  
high pass filter coefficient in 2’s complement  
100000 = not allowed  
100001 = *31  
000000 =  
0
011111 = )31  
0296 H  
Bit  
Write  
Reset  
0D H  
ACQ DATA SLICER  
Function  
5 to 0  
6-bit binary data slicer level is compared with ABS[data]  
(*32data)31)  
0297 H  
Write  
Reset  
0
ACQ ACCUMULATOR MODE  
Bit  
3
Function  
1 = soft error correction disable  
0 = soft error correction enable  
2
1
0
1
0
0
1 = AC & FLT accu disable  
0 = AC & FLT accu enable  
(only during VPS&CAPTION line)  
1 = DC accu disable  
0 = DC accu enable  
1 = reset DC & AC & FLT accu  
0 = no action  
(one shot)  
0298 H  
0299 H  
Read  
ACQ AC ACCUMULATOR  
ACQ FLT ACCUMULATOR  
Bit  
all  
Reset  
Function  
8 MSBs of 16bit accu  
accu increment is 6-bit binary ABS[data-slicer_level]  
these 8 MSBs are reset after read  
(*32data)31)  
read must occur when accu is not active  
029A H  
Write  
Reset  
00 H  
ACQ PACKET HEADER LOW  
Function  
Bit  
all  
8 LSBs of MAC packet address  
MICRONAS INTERMETALL  
63  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
029B H  
Bit  
Write  
Reset  
6
ACQ PACKET HEADER HIGH  
Function  
7 to 4  
4-bit framing code window  
every detected clock-runin loads window counter with 4-bit value * 2 (e.g. 6 12-bit window)  
window counter is clocked down to 0 with teletext bit rate  
slicer will ignore text line if no framing code is found inside framing code window  
0000 = disable framing code window  
3
2
0
0
0
1 = subframe 2 MAC packet acquisition enable  
0 = subframe 2 MAC packet acquisition disable  
1 = subframe 1 MAC packet acquisition enable  
0 = subframe 1 MAC packet acquisition disable  
1 to 0  
2 MSBs of MAC packet address  
029C H  
Bit  
Read  
Reset  
ACQ SOFT ERROR COUNTER  
Function  
5 to 0  
6-bit soft error counter  
counts number of soft error corrected bytes  
counter stops at 63  
reset after read  
029D H  
Write  
Reset  
0
ACQ SYNC SLICER  
Bit  
7
Function  
1 = vertical sync window disable  
0 = vertical sync window enable  
6 to 0  
00 H  
7-bit binary sync slicer level is compared with binary data  
(0data127)  
029E H  
Read  
Reset  
ACQ SYNC STATUS  
Bit  
7
Function  
1 = field 1  
0 = field 2  
set at line 624 (PAL) or line 524 (NTSC)  
reset at line 313 (PAL) or line 263 (NTSC)  
6
1 = vertical retrace  
0 = vertical window  
set at line 628 (PAL) or line 528 (NTSC)  
reset at line 624 (PAL) or line 524 (NTSC)  
64  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
029F H  
Write  
ACQ STANDARD  
Bit  
7
Reset  
0
Function  
1 = CAPTION enable in field 2  
0 = CAPTION disable in field 2  
6
5
0
0
0
1 = CAPTION enable in field 1  
0 = CAPTION disable in field 1  
1 = VPS enable  
0 = VPS disable  
7 to 5  
VPS and CAPTION cannot be used at the same time, therefore these combinations are used to enable  
WSS reception on a PAL+ signal  
0 =  
1 = VPS  
2 = CAPTION field 1  
3 = WSS & VPS  
4 = CAPTION field 2  
5 = WSS & VPS  
6 = CAPTION field 1&2  
7 = WSS  
4
1
1
0
0
0
0
1 = TTX enable  
0 = TTX disable  
3
1 = MAC VBI channel A  
0 = MAC VBI channel B  
2
1
1 = MAC packet acquisition enable  
0 = MAC VBI acquisition enable  
1 = NTSC mode  
0 = PAL mode  
0
1 = MAC mode  
0 = composite video mode  
1 to 0  
MAC and NTSC cannot be used at the same time, therefore this combination is used to enable full VBI data  
reception in Caption mode  
02A0 H  
Write  
ACQ ANALOG MODE  
Bit  
7
Reset  
0
Function  
1 = full N clamping  
0 = half N clamping  
(*150 µA)  
(* 75 µA)  
6
5
1
0
1 = N clamping disable  
0 = N clamping enable  
(*150 µA if data < sync slicer level)  
(+225 µA if data = 0, *6 µA static)  
1 = clamping disable  
0 = clamping enable  
4 to 0  
10 H  
5 bit analog gain of AGC  
31 = 12dB  
16 = 6dB  
00 = 0dB  
02A3 H  
Write  
Reset  
0
ACQ VIDEO INPUT  
Bit  
0
Function  
1 = video input 2  
0 = video input 1  
(pin 44)  
(pin 42)  
02A4 H  
Read  
ACQ HSYNC COUNTER  
Bit  
Reset  
0
Function  
7 to 0  
number of detected horizontal sync pulses per frame divided by 4  
sync pulse is detected if within horizontal window of HPLL  
counter is latched with vertical sync, the register can be read at any time  
MICRONAS INTERMETALL  
65  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
5. Application  
22pF 22pF  
256Kbit – 16Mbit DRAM  
10nF  
12  
20.25Mhz  
XTAL2 XTAL1  
RIN  
A[0...11] CAS RAS  
WE DATA TEST  
33nF  
33nF  
100nF  
100nF  
100nF  
VIN1  
VIN2  
VRT  
GIN  
100nF 10 µF  
BIN  
2 x 75  
FBIN  
SGND  
4 x 75 Ω  
TPU 3040  
HSYNC  
VSYNC  
+5 V  
AVSUP  
AGND  
DVSUP  
DGND  
100nF  
100nF  
FBOUT  
ROUT  
GOUT  
BOUT  
+5 V  
RESET  
IR  
SDA SCL  
10k  
1k  
1k  
1k  
100nF  
+5 V  
+5 V  
Fig. 5–1: TPU 3040 Application with DRAM  
66  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
22pF 22pF  
10nF  
OE  
CE  
256K/1Mbit SRAM  
17  
A[0...16]  
8
20.25Mhz  
WE  
DATA  
TEST  
XTAL2 XTAL1  
RIN  
33nF  
33nF  
100nF  
100nF  
100nF  
VIN1  
VIN2  
VRT  
GIN  
100nF 10 µF  
BIN  
2 x 75Ω  
FBIN  
SGND  
4 x 75 Ω  
TPU 3050  
HSYNC  
VSYNC  
+5 V  
AVSUP  
AGND  
DVSUP  
DGND  
100nF  
100nF  
FBOUT  
ROUT  
GOUT  
BOUT  
+5 V  
RESET  
SDA SCL  
PGND  
PVSUP  
10k  
1k  
1k  
1k  
100nF  
100nF  
+5 V  
+5 V  
+5 V  
Fig. 5–2: TPU 3050 Application with SRAM  
MICRONAS INTERMETALL  
67  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
7. References  
6. Glossary of Abbreviations  
AIT  
Additional Information Table  
Basic TOP Table  
1) “World System Teletext and Data Broadcasting  
System”. Technical Specification. February 1990.  
BTT  
BTTL  
CEPT  
Basic TOP Table List  
2) “Teletext Specification”. Interim Technical Docu-  
ment SPB 492. European Broadcasting Union.  
December 1992.  
Conférence Européene des Administra-  
tions des Postes et Télécommunication  
CLUT  
CPU  
CRI  
Color Look Up Table  
3) “8R2 Video-Programm-System (VPS)”.  
Technische Richtlinie ARD/ZDF.  
Central Processing Unit  
Clock Runin  
4) “8R4 Fernsehtext-Spezifikation”. Technische  
Richtlinie ARD/ZDF.  
DRAM  
DRCS  
FLOF  
FRC  
MAC  
MPT  
MPET  
OSD  
PDC  
PLT  
Dynamic Random Access Memory  
Dynamically Redefinable Character Set  
Full Level One Features  
Framing Code  
5) “8R5 TOP-Verfahren für Fernsehtext”.  
Technische Richtlinie ARD/ZDF.  
6) “Specification of the domestic video Programme  
Delivery Control system (PDC)”. European  
Broadcasting Union. August 1990.  
Multiplexed Analogue Components  
Multipage Table  
7) “Television systems; 625-Line television Wide  
Screen Signalling (WSS)”. ETSI.  
November 1993.  
Multipage Extension Table  
On Screen Display  
Programme Delivery Control  
Page Linking Table  
8) “Television Captioning for the Deaf”. Signal and  
Display Specifications. May 1980.  
RAM  
ROM  
SRAM  
TOP  
TPU  
Random Access Memory  
Read Only Memory  
Static Random Access Memory  
Table Of Pages  
Teletext Processing Unit  
Teletext  
TTX  
VBI  
Vertical Blanking Interval  
Video-Programm-System  
Wide Screen Signalling  
World System Teletext  
VPS  
WSS  
WST  
68  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
MICRONAS INTERMETALL  
69  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
70  
MICRONAS INTERMETALL  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
MICRONAS INTERMETALL  
71  
TPU 3035, TPU 3040, TPU 3050  
PRELIMINARY DATA SHEET  
8. Data Sheet History  
1. Preliminary data sheet: “TPU 3040”, Nov. 27, 1992,  
6251-349-1PD.  
5. Preliminary data sheet: “TPU 3035, TPU 3040”,  
Dec. 9, 1996, 6251-349-5PD.  
First release of the preliminary data sheet.  
Fifth release of the preliminary data sheet.  
Major changes:  
2. Preliminary data sheet: “TPU 3040”, June 28, 1993,  
6251-349-2PD.  
Second release of the preliminary data sheet.  
– section 4.14.: subpage manager extension  
– section 4.16.: RGB mode bit 6 added  
6. Preliminary data sheet: “TPU 3035, TPU 3040, TPU  
3050”, Feb. 23, 1998, 6251-349-6PD.  
Sixth release of the preliminary data sheet.  
Major changes:  
3. Preliminary data sheet: “TPU 3040”, Dec. 20, 1993,  
6251-349-3PD.  
Third release of the preliminary data sheet.  
4. Preliminary data sheet: “TPU 3035, TPU 3040”,  
Sept. 20, 1995, 6251-349-4PD.  
Fourth release of the preliminary data sheet.  
Major changes:  
– Combined data sheet for TPU 3035, TPU 3040,  
TPU 3050.  
– SRAM interface for TPU 3050  
– Combined data sheet for TPU 3035 and TPU 3040.  
– section 3.1.: Outline Dimensions changed  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
Order No. 6251-349-6PD  
72  
MICRONAS INTERMETALL  

相关型号:

TPU3050PQ

Teletext Decoder, PQCC44, PLASTIC, LCC-44
TDK

TPU305R

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-A

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-B

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-C

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-D

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-E

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-F

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU305R-STYLE-G

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU306

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA,
ALLEGRO

TPU306-STYLE-A

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO

TPU306-STYLE-B

Small Signal Field-Effect Transistor, 1-Element, P-Channel, Silicon, Junction FET, TO-226AA
ALLEGRO