MQFL-28-12S-Z-C [SYNQOR]

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12;
MQFL-28-12S-Z-C
型号: MQFL-28-12S-Z-C
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

DC-DC Regulated Power Supply Module, 1 Output, 120W, Hybrid, MODULE-12

文件: 总18页 (文件大小:708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MQFL-28-12D  
Dual Output  
HIGH RELIABILITY DC/DC CONVERTER  
16-40V  
16-50V  
12V  
10A  
91% @ 5A / 89% @ 10A  
Efficiency  
Continuous Input Transient Input Output Output  
FULL POWER OPERATION: -55ºC TO +125ºC  
TThhee MMiillQQoorr® sseerriieess ooff hhiigghh--rreelliiaabbiilliittyy DDCC//DDCC ccoonnvveerrtteerrss bbrriinnggss  
SSyynnQQoorrss ffiieelldd pprroovveenn hhiigghh--eeffffiicciieennccyy ssyynncchhrroonnoouuss rreeccttiiffiieerr tteecchh--  
nnoollooggyy ttoo tthhee MMiilliittaarryy//AAeerroossppaaccee iinndduussttrryy.. SSyynnQQoorrss iinnnnoovvaa--  
ttiivvee QQoorrSSeeaallTM ppaacckkaaggiinngg aapppprrooaacchh eennssuurreess ssuurrvviivvaabbiilliittyy iinn tthhee  
mmoosstt hhoossttiillee eennvviirroonnmmeennttss.. CCoommppaattiibbllee wwiitthh tthhee iinndduussttrryy ssttaann--  
ddaarrdd ffoorrmmaatt,, tthheessee ccoonnvveerrtteerrss ooppeerraattee aatt aa ffiixxeedd ffrreeqquueennccyy,,  
hhaavvee nnoo ooppttoo--iissoollaattoorrss,, aanndd ffoollllooww ccoonnsseerrvvaattiivvee ccoommppoonneenntt  
ddeerraattiinngg gguuiiddeelliinneess.. TThheeyy aarree ddeessiiggnneedd aanndd mmaannuuffaaccttuurreedd ttoo  
ccoommppllyy wwiitthh aa wwiiddee rraannggee ooff mmiilliittaarryy ssttaannddaarrddss..  
Design Process  
D
F
ESIGNED & MANUFACTURED IN THE USA  
MQFL series converters are:  
EATURING  
QORS  
EALH  
I-REL  
ASSEMBLY  
• Designed for reliability per NAVSO-P3641-A guidelines  
• Designed with components derated per:  
— MIL-HDBK-1547A  
— NAVSO P-3641A  
Features  
• Fixed switching frequency  
• No opto-isolators  
Qualification Process  
• Parallel operation with current share  
• Clock synchronization  
• Primary and secondary referenced enable  
• Continuous short circuit and overload protection  
• Input under-voltage lockout/over-voltage shutdown  
MQFL series converters are qualified to:  
• MIL-STD-810F  
— consistent with RTCA/D0-160E  
• SynQor’s First Article Qualification  
— consistent with MIL-STD-883F  
• SynQor’s Long-Term Storage Survivability Qualification  
• SynQor’s on-going life test  
Specification Compliance  
In-Line Manufacturing Process  
MQFL series converters (with MQME filter) are designed to meet:  
• MIL-HDBK-704-8 (A through F)  
• RTCA/DO-160E Section 16  
• MIL-STD-1275B  
• DEF-STAN 61-5 (part 6)/5  
• MIL-STD-461 (C, D, E)  
• AS9100 and ISO 9001:2000 certified facility  
• Full component traceability  
Temperature cycling  
• Constant acceleration  
• 24, 96, 160 hour burn-in  
• RTCA/DO-160E Section 22  
• Three level temperature screening  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 1  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
BLOCK DIAGRAM  
REGULATION STAGE  
ISOLATION STAGE  
7
CURRENT  
SENSE  
1
POSITIVE  
POSITIVE  
INPUT  
OUTPUT  
T1  
T2  
T1  
T2  
2
8
INPUT  
RETURN  
OUTPUT  
RETURN  
T1  
T2  
3
CASE  
9
GATE DRIVERS  
NEGATIVE  
OUTPUT  
UVLO  
OVSD  
GATE DRIVERS  
CURRENT  
LIMIT  
4
MAGNETIC  
12  
ENABLE 2  
ENABLE 1  
PRIMARY  
CONTROL  
5
11  
SHARE  
DATA COUPLING  
SECONDARY  
CONTROL  
SYNC OUTPUT  
10  
6
TRIM  
SYNC INPUT  
BIAS POWER  
CONTROL  
POWER  
POSITIVE  
OUTPUT  
TRANSFORMER  
TYPICAL CONNECTION DIAGRAM  
1
12  
+VIN  
ENA 2  
open  
means  
on  
2
11  
IN RTN  
SHARE  
3
10  
CASE  
TRIM  
+
MQFL  
4
5
6
9
+
28Vdc  
Load  
Load  
ENA 1  
– VOUT  
8
SYNC OUT  
SYNC IN  
OUT RTN  
+
open  
means  
on  
7
+VOUT  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 2  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
MQFL-28-12D ELECTRICAL CHARACTERISTICS  
Parameter  
Min. Nom. Max. Units Notes & Conditions  
Group A  
F, free running Subgroup14  
10  
Vin=28V DC 5%, +Iout = –Iout = 5A, CL = 0  
unless otherwise specified  
µ
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Non-Operating  
60  
60  
-0.8  
-1.2  
V
V
V
V
Operating 1  
Reverse Bias (TCASE = 125ºC)  
Reverse Bias (TCASE = -55ºC)  
Isolation Voltage (input/output to case, input to output)  
Continuous  
-500  
-800  
-55  
500  
800  
135  
135  
300  
50  
V
V
°C  
°C  
°C  
V
Transient (100 µs)  
Operating Case Temperature 2  
Storage Case Temperature  
-65  
Lead Temperature (20 sec)  
Voltage at ENA1, ENA2, SYNC IN  
INPUT CHARACTERISTICS  
Operating Input Voltage Range (continuous)  
Operating Input Voltage Range (transient, 1 sec)  
Input Under-Voltage Lockout 3  
-1.2  
16  
16  
28  
28  
40  
50  
V
V
1, 2, 3  
4, 5, 6  
Turn-On Voltage Threshold  
14.75  
13.80  
0.5  
15.50  
14.40  
1.1  
16.00  
15.00  
1.8  
V
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
Turn-Off Voltage Threshold  
Lockout Voltage Hysteresis  
Input Over-Voltage Shutdown 3  
Turn-Off Voltage Threshold  
54.0  
50.0  
2.0  
56.8  
51.4  
5.3  
60.0  
54.0  
8.0  
9.5  
160  
5
V
V
V
A
mA  
mA  
mA  
mA  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Turn-On Voltage Threshold  
Shutdown Voltage Hysteresis  
Maximum Input Current  
Vin = 16V; +Iout = –Iout = 5A  
No Load Input Current (operating)  
Disabled Input Current (ENA1)  
110  
2
25  
40  
Vin = 16V, 28V, 50V  
Vin = 16V, 28V, 50V  
Bandwidth = 100 kHz – 10 MHz; see Figure 20  
Disabled Input Current (ENA2)  
50  
60  
Input Terminal Current Ripple (peak to peak)  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point (TCASE = 25ºC)  
Positive Output 12  
+11.88  
-12.12  
+12.00  
-12.00  
+12.12  
-11.88  
V
V
1
1
Negative Output 12  
Output Voltage Set Point Over Temperature  
Positive Output 12  
+11.82  
-12.18  
-20  
50  
11.76  
200  
+12.00  
-12.00  
0
+12.18  
-11.82  
20  
V
V
mV  
mV  
V
mV  
mV  
A
A
W
A
A
A
mA  
µF  
2, 3  
2, 3  
Negative Output 12  
Positive Output Voltage Line Regulation 12  
Positive Output Voltage Load Regulation 12  
Total Positive Output Voltage Range 12  
Output Voltage Cross Regulation (Negative Output) 11,12  
Output Voltage Ripple and Noise Peak to Peak  
Total Operating Current Range  
Vin = 16V, 28V, 50V  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 5  
65  
80  
+Vout @ (+Iout = –Iout = 0A) – +Vout @ (+Iout = –Iout = 5A)  
12.00  
325  
20  
12.24  
600  
80  
–Vout @ (+Iout = –Iout = 2A) – –Vout @ (+Iout = 8A, –Iout = 2A)  
Bandwidth = 100 kHz - 10 MHz; C =11µF on both outputs  
L
0
0
0
10.5  
10.5  
10  
8
120  
12.5  
13.2  
(+Iout) + (–Iout)  
Single Output Operating Current Range  
Operating Output Power Range  
Output DC Current-Limit Inception 4  
Short Circuit Output Current  
Maximum +Iout or –Iout  
Total on both outputs  
+Iout + –Iout; +Iout = –Iout  
11.5  
12.1  
3.1  
+Vout 1.2V  
Back-Drive Current Limit while Enabled  
Back-Drive Current Limit while Disabled  
Maximum Output Capacitance 5  
DYNAMIC CHARACTERISTICS  
Output Voltage Deviation Load Transient 6  
For a Positive Step Change in Load Current  
For a Negative Step Change in Load Current  
Settling Time (either case) 7  
10  
50  
3000  
Total on both outputs  
-750  
-400  
400  
50  
mV  
mV  
µs  
Total Iout Step = 5A 10A, 1A 5A; C =11µF on both outputs  
4, 5, 6  
4, 5, 6  
4, 5, 6  
L
750  
200  
Output Voltage Deviation Line Transient 8  
For a Positive Step Change in Line Voltage  
For a Negative Step Change in Line Voltage  
Settling Time (either case) 7  
-500  
-500  
500  
500  
500  
mV  
mV  
µs  
Vin step = 16V 50V; C =11µF on both outputs  
4, 5, 6  
4, 5, 6  
See Note 5  
L
250  
Turn-On Transient  
Output Voltage Rise Time  
6
0
5.5  
3.0  
1.5  
10  
2
8.0  
6.0  
3.0  
ms  
%
ms  
ms  
ms  
+Vout = 1.2V 10.8V  
4, 5, 6  
See Note 5  
4, 5, 6  
Output Voltage Overshoot  
Turn-On Delay, Rising Vin 9  
ENA1, ENA2 = 5V  
ENA2 = 5V  
ENA1 = 5V  
Turn-On Delay, Rising ENA1  
4, 5, 6  
Turn-On Delay, Rising ENA2  
4, 5, 6  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 3  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
MQFL-28-12D ELECTRICAL CHARACTERISTICS (Continued)  
Parameter  
Min. Nom. Max. Units Notes & Conditions  
Vin=28V DC 5%, +Iout = –Iout = 5A, CL = 0  
Group A  
F, free running Subgroup14  
10  
µ
unless otherwise specified  
EFFICIENCY  
Iout = 10A (16Vin)  
85  
88  
85  
87  
84  
86  
90  
92  
89  
91  
89  
90  
22  
24  
%
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Iout = 5A (16Vin)  
Iout = 10A (28Vin)  
%
Iout = 5A (28Vin)  
%
Iout = 10A (40Vin)  
%
Iout = 5A (40Vin)  
%
Load Fault Power Dissipation  
Short Circuit Power Dissipation  
ISOLATION CHARACTERISTICS  
Isolation Voltage (dielectric strength)  
Input RTN to Output RTN  
Any Input Pin to Case  
32  
33  
W
W
Iout at current limit inception point 4  
+Vout +1.2V; –Vout –1.2V  
500  
500  
500  
100  
100  
V
V
V
1
1
1
1
1
1
Any Output Pin to Case  
Isolation Resistance (input rtn to output rtn)  
Isolation Resistance (any pin to case)  
Isolation Capacitance (input rtn to output rtn)  
FEATURE CHARACTERISTICS  
Switching Frequency (free running)  
Synchronization Input  
M
MΩ  
44  
nF  
500  
550  
600  
kHz  
1, 2, 3  
Frequency Range  
500  
2
-0.5  
20  
700  
10  
0.8  
80  
kHz  
V
V
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
Logic Level High  
Logic Level Low  
Duty Cycle  
See Note 5  
Synchronization Output  
Pull Down Current  
20  
25  
mA  
%
VSYNC OUT = 0.8V  
Output connected to SYNC IN of another MQFL converter  
See Note 5  
See Note 5  
Duty Cycle  
75  
Enable Control (ENA1 and ENA2)  
Off-State Voltage  
0.8  
V
µA  
V
µA  
V
V
1, 2, 3  
See Note 5  
1, 2, 3  
Module Off Pulldown Current  
On-State Voltage  
Module On Pin Leakage Current  
Pull-Up Voltage  
80  
2
Current drain required to ensure module is off  
20  
4.5  
0.5  
Maximum current draw from pin allowed with module still on See Note 5  
3.2  
-1.5  
4.0  
See Figure A  
(+Vout) 12V; See Figure E  
1, 2, 3  
See Note 5  
Output Voltage Trim Range  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (MIL-STD-217F2)  
3
GB @ Tcase=70  
º
C
2800  
420  
TBD  
10 Hrs.  
3
AIF @ Tcase=70  
º
C
10 Hrs.  
3
Demonstrated MTBF  
10 Hrs.  
WEIGHT CHARACTERISTICS  
Device Weight  
79  
g
Electrical Characteristics Notes  
1. Converter will undergo input over-voltage shutdown.  
2. Derate output power to 50% of rated power at Tcase = 135º C.  
3. High or low state of input voltage must persist for about 200 s to be acted on by the lockout or shutdown circuitry.  
µ
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.  
5. Parameter not tested but guaranteed to the limit specified.  
6. Load current transition time 10  
7. Settling time measured from start of transient to the point where the output voltage has returned to 1% of its final value.  
8. Line voltage transition time 100 s.  
9. Input voltage rise time 250 s.  
µs.  
µ
µ
10. Operating the converter at a synchronization frequency above the free running frequency will cause the converter’s efficiency to be  
slightly reduced and it may also cause a slight reduction in the maximum output current/power available. For more information consult  
the factory.  
11. The regulation stage operates to control the positive output. The negative output displays cross regulation.  
12. All +Vout and -Vout voltage measurements are made with Kelvin probes on the output leads.  
13. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section on page 12.  
14. Only the ES and HB grade products are tested at three temperatures. The B and C grade products are tested at one temperature.  
Please refer to the ESS table on Page 15 for details.  
15. These derating curves apply for the ES- and HB- grade products. The C- grade product has a maximum case temperature of 100º C  
and a maximum junction temperature rise of 20º C above TCASE. The B- grade product has a maximum case temperature of 85º C and  
a maximum junction temperature rise of 20º C at full load.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 4  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
100  
95  
90  
85  
80  
75  
70  
65  
60  
16  
14  
12  
10  
8
6
4
16 Vin  
28 Vin  
40 Vin  
16 Vin  
28 Vin  
40 Vin  
2
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Total Output Power (W)  
Total Output Power (W)  
Figure 1: Efficiency vs. output power, from 0 load to full load with 50%  
Figure 2: Power dissipation vs. output power, from 0 load to full load  
load on the +12V output and 50% load on the -12V output at minimum,  
with 50% load on the +12V output and 50% load on the -12V output at  
nominal, and maximum input voltage at 25  
°C.  
minimum, nominal, and maximum input voltage at 25°C.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
16  
14  
12  
10  
8
6
4
16 Vin  
28 Vin  
40 Vin  
16 Vin  
28 Vin  
40 Vin  
2
0
8/0  
7/1  
6/2  
5/3  
4/4  
3/5  
2/6  
1/7  
0/8  
8/0  
7/1  
6/2  
5/3  
4/4  
3/5  
2/6  
1/7  
0/8  
Load Current (A), +Iout / -Iout  
Load Current (A), +Iout / -Iout  
Figure 3: Efficiency vs. output current, with total output current fixed at  
Figure 4: Power dissipation vs. output current, with total output current  
80% load (96W) and loads split as shown between the +12V and -12V  
fixed at 80% load (96W) and loads split as shown between the +12V  
outputs at minimum, nominal, and maximum input voltage at 25  
°C.  
and -12V outputs at minimum, nominal, and max input voltage at 25°C.  
100  
95  
90  
85  
80  
75  
70  
16  
14  
12  
10  
8
6
4
16 Vin  
28 Vin  
40 Vin  
16 Vin  
28 Vin  
65  
60  
2
40 Vin  
0
-55ºC  
25ºC  
85ºC  
125ºC  
-55ºC  
25ºC  
85ºC  
125ºC  
Case Temperature (ºC)  
Case Temperature (ºC)  
Figure 5: Efficiency at 60% load (3A load on +12V and 3A load on -  
Figure 6: Power dissipation at 60% load (3A load on +12V and 3A  
12V) versus case temperature for Vin = 16V, 28V, and 40V.  
load on -12V) versus case temperature for Vin =16V, 28V, and 40V.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 5  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
12.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
-11.5  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
Input voltage has virtually no  
Input voltage has virtually no  
effect on cross regulation  
12.4  
effect on cross regulation  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
+Vout  
+Vout  
-Vout  
11.6  
-Vout  
11.5  
-11.5  
0 / 8  
8 / 2  
6 / 4  
5 / 5  
+IOUT (A) / -IOUT (A)  
4 / 6  
2 / 8  
8 / 0  
6 / 2  
4 / 4  
2 / 6  
+IOUT (A) / -IOUT (A)  
Figure 7: Load regulation vs. load current with power fixed at full load  
Figure 8: Load regulation vs. load current with power fixed at 80%  
(120W) and load currents split as shown between the +12V and -12V  
load (96W) and load currents split as shown between the +12V and -  
outputs, at nominal input voltage and T  
= 25ºC.  
12V outputs, at nominal input voltage and T  
= 25ºC.  
CASE  
CASE  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
-11.5  
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-12.5  
-12.4  
-12.3  
-12.2  
-12.1  
-12.0  
-11.9  
-11.8  
-11.7  
-11.6  
-11.5  
Input voltage has virtually no  
Input voltage has virtually no  
effect on cross regulation  
effect on cross regulation  
+Vout  
-Vout  
+Vout  
-Vout  
0
24  
48  
72  
96  
120  
0
24  
48  
72  
96  
120  
Total Output Power (W)  
Total Output Power (W)  
Figure 9: Load regulation vs. total output power from zero to to full  
Figure 10: Load regulation vs. total output power from zero to to full  
load where +Iout equals three times -Iout at nominal input voltage and  
load where -Iout equals three times +Iout at nominal input voltage and  
T
= 25ºC.  
T
= 25ºC.  
CASE  
CASE  
6
14  
12  
10  
8
168  
144  
120  
96  
5
4
3
2
1
6
72  
4
48  
Tj  
Tj  
Tj  
= 105ºC  
= 125ºC  
max  
max  
2
24  
max = 145ºC  
28 Vin  
0
0
0
0
25  
45  
65  
85  
105  
125  
145  
135  
2
4
6
8
10  
12  
14  
Case Temperature (ºC)  
Total Load Current (A)  
Figure 11: Output Current / Output Power derating curve as a function  
of T and the maximum desired power MOSFET junction temperature  
Figure 12: Positive output voltage vs. total load current evenly split  
showing typical current limit curves.  
CASE  
(see Note 15).  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 6  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
+Vout  
-Vout  
+Vout  
-Vout  
Figure 13: Turn-on transient at full rated load current (resistive load)  
(5 ms/div). Input voltage pre-applied. Ch 1: +Vout (5V/div);  
Ch 2: -Vout (5V/div); Ch 3: Enable1 input (5V/div).  
Figure 14: Turn-on transient at zero load current (5 ms/div). Input  
voltage pre-applied. Ch 1: +Vout (5V/div); Ch 2: -Vout (5V/div); Ch  
3: Enable1 input (5V/div).  
+Vout  
+Vout  
-Vout  
-Vout  
Figure 15: Turn-on transient at full rated load current (resistive load)  
(5 ms/div). Input voltage pre-applied. Ch 1: +Vout (5V/div);  
Ch 2: -Vout (5V/div); Ch 3: Enable2 input (5V/div).  
Figure 16: Turn-on transient at full load, after application of input volt-  
age (ENA 1 and ENA 2 logic high) (5 ms/div). Ch 1: +Vout (5V/div);  
Ch 2: -Vout (5V/div); Ch 3: Vin (10V/div).  
+Vout  
+Iout  
+Vout  
+Iout  
-Vout  
-Iout  
-Vout  
-Iout  
Figure 17: Output voltage response to step-change in total load current  
Figure 18: Output voltage response to step-change in total load current  
(50%-100%-50%) of total Iout (max) split 50%/50%. Load cap: 1  
cap and 10 F, 100 m ESR tantalum cap. Ch 1: +Vout (500mV/div);  
Ch 2: -Iout (5A/div); Ch 3: -Vout (500mV/div); Ch 4: -Iout (5A/div).  
Product # MQFL-28-12D Phone 1-888-567-9596 www.synqor.com  
µ
F ceramic  
(0%-50%-0%) of total Iout (max) split 50%/50%. Load cap: 1  
cap and 10 F, 100 m ESR tantalum cap. Ch 1: +Vout (500mV/div);  
Ch 2: -Iout (5A/div); Ch 4: -Vout (500mV/div); Ch 4: -Iout (5A/div).  
Doc.# 005-2MQ120D Rev. A 10/23/07  
µF ceramic  
µ
µ
Page 7  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
See Fig. 22  
See Fig. 21  
+VOUT  
RTN  
iC  
MQME  
Filter  
MQFL  
Converter  
–VOUT  
VSOURCE  
1 µF  
10  
µF,  
ceramic  
100m  
ESR  
capacitors  
capacitors  
Figure 20: Test set-up diagram showing measurement points for Input  
Figure 19: Output voltage response to step-change in input voltage (16V -  
Terminal Ripple Current (Figure 21) and Output Voltage Ripple (Figure  
22).  
50V - 16V). Load cap: 10µF, 100 mESR tantalum cap and 1µF ceramic cap.  
Ch 1: +Vout (500mV/div); Ch 2: -Vout (500mV/div); Ch 3: Vin (20V/div).  
Figure 21: Input terminal current ripple, i , at full rated output current  
and nominal input voltage with SynQor MQ filter module (50 mA/div).  
Bandwidth: 20MHz. See Figure 20.  
Figure 22: Output voltage ripple, +Vout (Ch 1) and -Vout (Ch 2), at nominal  
input voltage and full load current evenly split (20 mV/div). Load capacitance:  
1µF ceramic cap and 10µF tantalum cap. Bandwidth: 10 MHz. See Figure 20.  
c
Figure 24: SYNC OUT vs. time, driving SYNC IN of a second SynQor  
MQFL converter.  
Figure 23: Rise of output voltage after the removal of a short circuit  
across the positive output terminals. Ch 1: +Vout (5V/div); Ch 2: -Vout  
(5V/div); Ch 3: +Iout (10A/div).  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 8  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
1
1
0.1  
0.01  
0.1  
0.01  
0.001  
16Vin  
28Vin  
40Vin  
16Vin  
28Vin  
40Vin  
0.001  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 25: Magnitude of incremental output impedance (+Zout = +vout /+iout  
)
Figure 26: Magnitude of incremental output impedance (-Zout = -vout /-iout) for  
for minimum, nominal, and maximum input voltage at full rated power.  
minimum, nominal, and maximum input voltage at full rated power.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
16Vin  
16Vin  
28Vin  
40Vin  
-80  
-90  
-80  
-90  
28Vin  
40Vin  
-100  
-100  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 27: Magnitude of incremental forward transmission (+FT = +vout /vin)  
Figure 28: Magnitude of incremental forward transmission (-FT = -vout /vin)  
for minimum, nominal, and maximum input voltage at full rated power.  
for minimum, nominal, and maximum input voltage at full rated power.  
30  
20  
10  
0
30  
20  
10  
0
-10  
-20  
-10  
-20  
-30  
-30  
16Vin  
16Vin  
28Vin  
28Vin  
-40  
-40  
40Vin  
40Vin  
-50  
-50  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 29: Magnitude of incremental reverse transmission (+RT = iin /+iout  
)
Figure 30: Magnitude of incremental reverse transmission (-RT = iin /-iout) for  
for minimum, nominal, and maximum input voltage at full rated power.  
minimum, nominal, and maximum input voltage at full rated power.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 9  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
100  
10  
1
16Vin  
0.1  
28Vin  
40Vin  
0.01  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 32: High frequency conducted emissions of standalone MQFL-28-  
05S, 5Vout module at 120W output, as measured with Method CE102.  
Limit line shown is the 'Basic Curve' for all applications with a 28V source.  
Figure 31: Magnitude of incremental input impedance (Z = v /i  
for minimum, nominal, and maximum input voltage at full rated power  
with 50% / 50% split.  
)
in  
in in  
Figure 33: High frequency conducted emissions of MQFL-28-05S, 5Vout mod-  
ule at 120W output with MQFL-28-P filter, as measured with Method CE102.  
Limit line shown is the 'Basic Curve' for all applications with a 28V source.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 10  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
the converter to operate indefinitely into a short circuit and to  
avoid a hiccup mode, even under a tough start-up condition.  
BASIC OPERATION AND FEATURES  
The MQFL DC/DC converter uses a two-stage power conversion  
topology. The first, or regulation, stage is a buck-converter that  
keeps the output voltage constant over variations in line, load,  
and temperature. The second, or isolation, stage uses transform-  
ers to provide the functions of input/output isolation and voltage  
transformation to achieve the output voltage required.  
An input under-voltage lockout feature with hysteresis is provided,  
as well as an input over-voltage shutdown. There is also an out-  
put current limit that is nearly constant as the load impedance  
decreases to a short circuit (i.e., there is not fold-back or fold-for-  
ward characteristic to the output current under this condition).  
When a load fault is removed, the output voltage rises exponen-  
tially to its nominal value without an overshoot.  
In the dual output converter there are two secondary windings in  
the transformer of the isolation stage, one for each output. There  
is only one regulation stage, however, and it is used to control  
the positive output. The negative output therefore displays  
“Cross-Regulation”, meaning that its output voltage depends on  
how much current is drawn from each output.  
The MQFL converter’s control circuit does not implement an out-  
put over-voltage limit or an over-temperature shutdown.  
The following sections describe the use and operation of addi-  
tional control features provided by the MQFL converter.  
Both the positive and the negative outputs share a common OUT-  
PUT RETURN pin.  
CONTROL FEATURES  
Both the regulation and the isolation stages switch at a fixed fre-  
quency for predictable EMI performance. The isolation stage  
switches at one half the frequency of the regulation stage, but  
due to the push-pull nature of this stage it creates a ripple at dou-  
ble its switching frequency. As a result, both the input and the  
output of the converter have a fundamental ripple frequency of  
about 550 kHz in the free-running mode.  
ENABLE: The MQFL converter has two enable pins. Both must  
have a logic high level for the converter to be enabled. A logic  
low on either pin will inhibit the converter.  
The ENA1 pin (pin 4) is referenced with respect to the converter’s  
input return (pin 2). The ENA2 pin (pin 12) is referenced with  
respect to the converter’s output return (pin 8). This permits the  
converter to be inhibited from either the input or the output side.  
Rectification of the isolation stage’s output is accomplished with  
synchronous rectifiers. These devices, which are MOSFETs with  
a very low resistance, dissipate far less energy than would  
Schottky diodes. This is the primary reason why the MQFL con-  
verters have such high efficiency, particularly at low output volt-  
ages.  
Regardless of which pin is used to inhibit the converter, the reg-  
ulation and the isolation stages are turned off. However, when  
the converter is inhibited through the ENA1 pin, the bias supply  
is also turned off, whereas this supply remains on when the con-  
verter is inhibited through the ENA2 pin. A higher input standby  
current therefore results in the latter case.  
Besides improving efficiency, the synchronous rectifiers permit  
operation down to zero load current. There is no longer a need  
for a minimum load, as is typical for converters that use diodes  
for rectification. The synchronous rectifiers actually permit a neg-  
ative load current to flow back into the converter’s output termi-  
nals if the load is a source of short or long term energy. The  
MQFL converters employ a “back-drive current limit” to keep this  
negative output terminal current small.  
5.6V  
82K  
1N4148  
PIN 4  
(or PIN 12)  
ENABLE  
TO ENABLE  
CIRCUITRY  
250K  
125K  
There is a control circuit on both the input and output sides of the  
MQFL converter that determines the conduction state of the  
power switches. These circuits communicate with each other  
across the isolation barrier through a magnetically coupled  
device. No opto-isolators are used.  
2N3904  
PIN 2  
(or PIN 8)  
IN RTN  
A separate bias supply provides power to both the input and out-  
put control circuits. Among other things, this bias supply permits  
Figure A: Equivalent circuit looking into either the ENA1 or ENA2  
pins with respect to its corresponding return pin.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 11  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
Both enable pins are internally pulled high so that an open con-  
nection on both pins will enable the converter. Figure A shows  
the equivalent circuit looking into either enable pins. It is TTL  
compatible.  
put can be used to drive the SYNC IN pins of as many as ten (10)  
other MQFL converters. The pulse train coming out of SYNC  
OUT has a duty cycle of 50% and a frequency that matches the  
switching frequency of the converter with which it is associated.  
This frequency is either the free-running frequency if there is no  
synchronization signal at the SYNC IN pin, or the synchroniza-  
tion frequency if there is.  
SYNCHRONIZATION: The MQFL converter’s switching fre-  
quency can be synchronized to an external frequency source that  
is in the 500 kHz to 700 kHz range. A pulse train at the desired  
frequency should be applied to the SYNC IN pin (pin 6) with  
respect to the INPUT RETURN (pin 2). This pulse train should  
have a duty cycle in the 20% to 80% range. Its low value should  
be below 0.8V to be guaranteed to be interpreted as a logic low,  
and its high value should be above 2.0V to be guaranteed to be  
interpreted as a logic high. The transition time between the two  
states should be less than 300ns.  
The SYNC OUT signal is available only when the dc input volt-  
age is above approximately 12V and when the converter is not  
inhibited through the ENA1 pin. An inhibit through the ENA2  
pin will not turn the SYNC OUT signal off.  
NOTE: An MQFL converter that has its SYNC IN pin driven by  
the SYNC OUT pin of a second MQFL converter will have its start  
of its switching cycle delayed approximately 180 degrees rela-  
tive to that of the second converter.  
If the MQFL converter is not to be synchronized, the SYNC IN pin  
should be left open circuit. The converter will then operate in its  
free-running mode at a frequency of approximately 550 kHz.  
Figure B shows the equivalent circuit looking into the SYNC IN  
pin. Figure C shows the equivalent circuit looking into the SYNC  
OUT pin.  
If, due to a fault, the SYNC IN pin is held in either a logic low or  
logic high state continuously, the MQFL converter will revert to its  
free-running frequency.  
CURRENT SHARE: Like the single output MQFL converters, the  
dual output converters have a SHARE pin (pin 11). In this case,  
however, the voltage at this pin represents the sum of the positive  
and negative output currents. As such, the share pin cannot  
cause two or more paralleled converters to share load currents on  
the positive or negative outputs independently. Nevertheless,  
there may be applications where the two currents have a fixed  
ratio, in which case it can make sense to force the sharing of total  
current among several converters.  
The MQFL converter also has a SYNC OUT pin (pin 5). This out-  
5V  
5K  
TO SYNC  
CIRCUITRY  
PIN 6  
SYNC IN  
IN RTN  
5K  
Since the SHARE pin is monitored with respect to the OUTPUT  
RETURN (pin 8) by each converter, it is important to connect all  
of the converters’ OUTPUT RETURN pins together through a low  
DC and AC impedance. When this is done correctly, the con-  
verters will deliver their appropriate fraction of the total load cur-  
rent to within +/- 10% at full rated load.  
PIN 2  
Figure B: Equivalent circuit looking into the SYNC IN pin with  
respect to the IN RTN (input return) pin.  
Whether or not converters are paralleled, the voltage at the  
SHARE pin could be used to monitor the approximate average  
current delivered by the converter(s). A nominal voltage of 1.0V  
represents zero current and a nominal voltage of 2.2V represents  
the maximum rated total current, with a linear relationship in  
between. The internal source resistance of a converter’s SHARE  
pin signal is 2.5 k. During an input voltage fault or primary dis-  
able event, the SHARE pin outputs a power failure warning pulse.  
The SHARE pin will go to 3V for approximately 14ms as the out-  
put voltage falls.  
5V  
5K  
SYNC OUT  
FROM SYNC  
CIRCUITRY  
PIN 5  
IN RTN  
PIN 2  
OPEN COLLECTOR  
OUTPUT  
Figure C: Equivalent circuit looking into SYNC OUT pin with  
respect to the IN RTN (input return) pin.  
NOTE: Converters operating from separate input filters with  
reverse polarity protection (such as the MQME-28-T filter) with  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 12  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
their outputs connected in parallel may exhibit hiccup operation  
at light loads. Consult factory for details.  
10,000.0  
1,000.0  
100.0  
10.0  
OUTPUT VOLTAGE TRIM: If desired, it is possible to increase  
or decrease the MQFL dual converter’s output voltage from its  
nominal value. To increase the output voltage a resistor, Rup,  
should be connected between the TRIM pin (pin 10) and the OUT-  
PUT RETURN pin (pin 8), as shown in Figure D. The value of this  
resistor should be determined according to the following equa-  
tion:  
Trim Down Configuration  
Trim Up Configuration  
Vnom – 2.5  
Vout – Vnom  
– 2 x Vnom + 5  
Rup = 10 x  
(
)
1.0  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
Change in Vout (V)  
where:  
Vnom = the converter’s nominal output voltage,  
Figure E: Change in Output Voltage Graph  
Vout = the desired output voltage (greater than Vnom), and  
Rup is in kiloOhms (k).  
As the output voltage is trimmed up, it produces a greater voltage  
stress on the converter’s internal components and may cause the  
converter to fail to deliver the desired output voltage at the low  
end of the input voltage range at the higher end of the load cur-  
rent and temperature range. Please consult the factory for  
details. Factory trimmed converters are available by request.  
The maximum value of output voltage that can be achieved is  
12.5V.  
To decrease the output voltage a resistor, Rdown, should be con-  
nected between the TRIM pin and the POSITIVE OUTPUT pin (pin  
7), as shown in Figure D. The value of this resistor should be  
determined according to the following equation:  
INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter  
has an under-voltage lockout feature that ensures the converter  
will be off if the input voltage is too low. The threshold of input  
voltage at which the converter will turn on is higher that the  
threshold at which it will turn off. In addition, the MQFL converter  
will not respond to a state of the input voltage unless it has  
remained in that state for more than about 200  
µs. This hysteresis  
and the delay ensure proper operation when the source imped-  
ance is high or in a noisy enviroment.  
Vnom  
Vout – 2.5  
– 1  
– 5  
Rdown = 10 x  
x
[
2.5 ] [Vnom – Vout ]  
where:  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (less than Vnom), and  
Rdown is in kiloOhms (k).  
1
12  
+VIN  
ENA 2  
SHARE  
TRIM  
open  
means  
on  
2
11  
10  
IN RTN  
3
CASE  
+
Rup  
MQFL  
4
5
6
9
8
7
+
28Vdc  
Load  
Load  
ENA 1  
– VOUT  
OUT RTN  
+VOUT  
Rdown  
SYNC OUT  
SYNC IN  
+
open  
means  
on  
Figure D: Typical connection for output voltage trimming.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 13  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
INPUT OVER-VOLTAGE SHUTDOWN: The MQFL converter  
also has an over-voltage feature that ensures the converter will be  
off if the input voltage is too high. It also has a hysteresis and  
time delay to ensure proper operation.  
The Mil-HDBK-1547A component derating guideline calls for a  
maximum component temperature of 105ºC. Figure 11 therefore  
has one power derating curve that ensures this limit is main-  
tained. It has been SynQor’s extensive experience that reliable  
long-term converter operation can be achieved with a maximum  
component temperature of 125ºC. In extreme cases, a maximum  
temperature of 145ºC is permissible, but not recommended for  
long-term operation where high reliability is required. Derating  
curves for these higher temperature limits are also included in  
Figure 11. The maximum case temperature at which the con-  
verter should be operated is 135ºC.  
SHUT DOWN: The MQFL converter will shut down in response  
to only four conditions: ENA1 input low, ENA2 input low, VIN  
input below under-voltage lockout threshold, or VIN input above  
over-voltage shutdown threshold. Following a shutdown event,  
there is a startup inhibit delay which will prevent the converter  
from restarting for approximately 300ms. After the 300ms delay  
elapses, if the enable inputs are high and the input voltage is  
within the operating range, the converter will restart. If the VIN  
input is brought down to nearly 0V and back into the operating  
range, there is no startup inhibit, and the output voltage will rise  
according to the "Turn-On Delay, Rising Vin" specification.  
When the converter is mounted on a metal plate, the plate will  
help to make the converter’s case bottom a uniform temperature.  
How well it does so depends on the thickness of the plate and on  
the thermal conductance of the interface layer (e.g. thermal  
grease, thermal pad, etc.) between the case and the plate.  
Unless this is done very well, it is important not to mistake the  
plate’s temperature for the maximum case temperature. It is easy  
for them to be as much as 5-10ºC different at full power and at  
high temperatures. It is suggested that a thermocouple be  
attached directly to the converter’s case through a small hole in  
the plate when investigating how hot the converter is getting.  
Care must also be made to ensure that there is not a large ther-  
mal resistance between the thermocouple and the case due to  
whatever adhesive might be used to hold the thermocouple in  
place.  
BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETs  
as synchronous rectifiers are capable of drawing a negative cur-  
rent from the load if the load is a source of short- or long-term  
energy. This negative current is referred to as a “back-drive cur-  
rent”.  
Conditions where back-drive current might occur include paral-  
leled converters that do not employ current sharing, or where the  
current share feature does not adequately ensure sharing during  
the startup or shutdown transitions. It can also occur when con-  
verters having different output voltages are connected together  
through either explicit or parasitic diodes that, while normally off,  
become conductive during startup or shutdown. Finally, some  
loads, such as motors, can return energy to their power rail.  
Even a load capacitor is a source of back-drive energy for some  
period of time during a shutdown transient.  
INPUT SYSTEM INSTABILITY: This condition can occur  
because any DC/DC converter appears incrementally as a  
negative resistance load. A detailed application note titled  
“Input System Instability” is available on the SynQor website  
which provides an understanding of why this instability arises,  
and shows the preferred solution for correcting it.  
To avoid any problems that might arise due to back-drive current,  
the MQFL converters limit the negative current that the converter  
can draw from its output terminals. The threshold for this back-  
drive current limit is placed sufficiently below zero so that the  
converter may operate properly down to zero load, but its  
absolute value (see the Electrical Characteristics page) is small  
compared to the converter’s rated output current.  
THERMAL CONSIDERATIONS: Figure 11 shows the suggest-  
ed Power Derating Curves for this converter as a function of the  
case temperature and the maximum desired power MOSFET junc-  
tion temperature. All other components within the converter are  
cooler than its hottest MOSFET, which at full power is no more  
than 20ºC higher than the case temperature directly below this  
MOSFET.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 14  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS  
B-Grade  
(-40oC to +85oC)  
C-Grade  
(-40oC to +100oC)  
ES-Grade  
(-55oC to +125oC)  
(Element Evaluation)  
HB-Grade  
(-55oC to +125oC)  
(Element Evaluation)  
Consistent with  
MIL-STD-883F  
Screening  
Yes  
No  
Yes  
No  
Yes  
Yes  
Internal Visual  
*
Condition B  
(-55oC to +125oC)  
Condition C  
(-65oC to +150oC)  
Method 1010  
Temperature Cycle  
Method 2001  
(Y1 Direction)  
Condition A  
(5000g)  
Constant  
Acceleration  
No  
No  
500g  
Method 1015  
Load Cycled  
10s period  
12 Hrs @ +100oC  
24 Hrs @ +125oC  
96 Hrs @ +125oC  
160 Hrs @ +125oC  
Burn-in  
2s @ 100% Load  
8s @ 0% Load  
Method 5005  
(Group A)  
+25oC  
+25oC  
-45, +25, +100oC  
Full QorSeal  
-55, +25, +125oC  
Full QorSeal  
Final Electrical Test  
Mechanical Seal,  
Thermal, and  
Anodized Package  
Full QorSeal  
Coating Process  
2009  
Yes  
Yes  
External Visual  
*
*
Construction  
Process  
Ruggedized  
QorSeal  
QorSeal  
QorSeal  
* Per IPC-A-610 (Rev. D) Class 3  
MilQor converters and filters are offered in four variations of construction technique and environmental stress screening options. The  
three highest grades, C, ES, and HB, all use SynQor’s proprietary QorSeal™ Hi-Rel assembly process that includes a Parylene-C coat-  
ing of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. The B-grade version  
uses a ruggedized assembly process that includes a medium performance thermal compound filler and a black anodized aluminum  
case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES-  
and HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies  
each new batch of devices.  
† Note: Since the surface of the black anodized case is not guaranteed to be electrically conductive, a star washer or similar device  
should be used to cut through the surface oxide if electrical connection to the case is desired.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 15  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
MQFL-28-12D-X-HB  
DC/DC CONVERTER  
28Vin ±12Vout @ 10A  
PACKAGE PINOUTS  
Pin #  
1
2
Function  
POSITIVE INPUT  
INPUT RETURN  
CASE  
3
4
5
6
7
8
9
10  
11  
12  
ENABLE 1  
MQFL-28-12D-Y-HB  
DC/DC CONVERTER  
SYNC OUTPUT  
SYNC INPUT  
POSITIVE OUTPUT  
OUTPUT RETURN  
NEGATIVE OUTPUT  
TRIM  
28Vin ±12Vout @ 10A  
SHARE  
ENABLE 2  
NOTES  
1) Case: Aluminum with gold over nick-  
el plate finish for the C-, ES-, and HB-  
Grade products.  
Aluminum with black anodized finish  
for the B-Grade products.  
2) Pins: Diameter: 0.040” (1.02mm)  
Material: Copper  
Finish: Gold over Nickel plate  
3) All dimensions as inches (mm)  
4) Tolerances: a) x.xx +0.02”  
(x.x +0.5mm)  
b) x.xxx +0.010”  
(x.xx +0.25mm)  
5) Weight: 2.8 oz. (79 g) typical  
6) Workmanship: Meets or exceeds IPC-  
A-610C Class III  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 16  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
MilQor MQFL FAMILY MATRIX  
The tables below show the array of MQFL converters available. When ordering SynQor converters, please ensure that you use  
the complete part number according to the table in the last page. Contact the factory for other requirements.  
Single Output Converters  
1.5V 1.8V 2.5V 3.3V 5V 6V 7.5V 9V 12V 15V 28V  
(1R5S) (1R8S) (2R5S) (3R3S) (05S) (06S) (7R5S) (09S) (12S) (15S)  
(28S)  
MQFL-28  
16-40Vin Cont.  
16-50Vin 1s Trans.  
40A 40A 40A 30A 24A 20A 16A 13A 10A 8A  
4A  
*
Absolute Max Vin = 60V  
MQFL-28E  
16-70Vin Cont.  
40A 40A 40A 30A 24A 20A 16A 13A 10A 8A  
4A  
*
16-80Vin 1s Trans.  
Absolute Max Vin =100V  
MQFL-28V  
16-40Vin Cont.  
40A 40A 40A 30A 20A 17A 13A 11A 8A 6.5 3.3A  
40A 40A 40A 30A 20A 17A 13A 11A 8A 6.5 3.3A  
*
5.5-50Vin 1s Trans.  
Absolute Max Vin = 60V  
MQFL-28VE  
16-70Vin Cont.  
*
5.5-80Vin 1s Trans.  
Absolute Max Vin = 100V  
MQFL-270  
155-400Vin Cont.  
40A 40A 40A 30A 24A 20A 16A 13A 10A 8A  
4A  
*
155-475Vin 0.1s Trans.  
Absolute Max Vin = 550V  
MQFL-270E  
130-475Vin Cont.  
40A 40A 40A 30A 20A 17A 13A 11A 8A 6.5 3.3A  
40A 40A 30A 22A 15A 12A 10A 8A 6A 5A 2.7A  
*
130-520Vin 0.1s Trans.  
Absolute Max Vin = 600V  
MQFL-270L  
65-350Vin Cont.  
*
65-475Vin 0.1s Trans.  
Absolute Max Vin = 550V  
Dual Output Converters†  
Triple Output Converters  
±5V ±12V ±15V  
3.3V/±12V 3.3V/±15V 5V/±12V 5V/±15V 30V/±15V  
(05D)  
(12D)  
(15D)  
(3R312T)  
(3R315T)  
(0512T)  
(0515T)  
(3015T)  
MQFL-28  
16-40Vin Cont.  
16-50Vin 1s Trans.  
MQFL-28  
16-40Vin Cont.  
16-50Vin 1s Trans.  
24A  
10A  
8A  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
*
*
Total Total Total  
Absolute Max Vin = 60V  
Absolute Max Vin = 60V  
MQFL-28E  
MQFL-28E  
24A  
10A  
8A  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
16-70Vin Cont.  
16-70Vin Cont.  
*
*
16-80Vin 1s Trans.  
Absolute Max Vin =100V  
Total Total Total  
16-80Vin 1s Trans.  
Absolute Max Vin =100V  
MQFL-28V  
MQFL-28V  
20A  
8A  
6.5A  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
16-40Vin Cont.  
16-40Vin Cont.  
*
*
5.5-50Vin 1s Trans.  
Absolute Max Vin = 60V  
Total Total Total  
5.5-50Vin 1s Trans.  
Absolute Max Vin = 60V  
MQFL-28VE  
MQFL-28VE  
20A  
8A  
6.5A  
22A/  
22A/  
15A/  
15A/  
2.5A/  
16-70Vin Cont.  
16-70Vin Cont.  
*
*
5.5-80Vin 1s Trans.  
Total Total Total  
5.5-80Vin 1s Trans.  
±1A  
±0.8A  
±1A  
±0.8A  
±0.8A  
Absolute Max Vin = 100V  
Absolute Max Vin = 100V  
MQFL-270  
MQFL-270  
24A  
10A  
8A  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
155-400Vin Cont.  
155-400Vin Cont.  
*
*
155-475Vin 0.1s Trans.  
155-475Vin 0.1s Trans.  
Total Total Total  
Absolute Max Vin = 550V  
Absolute Max Vin = 550V  
MQFL-270E  
MQFL-270E  
20A  
8A  
6.5A  
22A/  
22A/  
15A/  
15A/  
2.5A/  
130-475Vin Cont.  
130-475Vin Cont.  
*
*
130-520Vin 0.1s Trans.  
Total Total Total  
130-520Vin 0.1s Trans.  
±1A  
±0.8A  
±1A  
±0.8A  
±0.8A  
Absolute Max Vin = 600V  
Absolute Max Vin = 600V  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
MQFL-270L  
MQFL-270L  
15A  
6A  
5A  
65-350Vin Cont.  
65-350Vin Cont.  
*
*
65-475Vin 0.1s Trans.  
Absolute Max Vin = 550V  
Total Total Total  
65-475Vin 0.1s Trans.  
Absolute Max Vin = 550V  
(75Wmax Total Output Power)  
*Converters may be operated continuously at the highest transient input voltage, but some  
component electrical and thermal stresses would be beyond MIL-HDBK-1547A guidelines.  
†80% of total output current available on  
any one output.  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 17  
MQFL-28-12D  
Output:  
Current:  
±12 V  
10 A Total  
Technical Specification  
PART NUMBERING SYSTEM  
The part numbering system for SynQor’s MilQor DC/DC converters follows the format shown in the table below.  
Input  
Voltage  
Range  
Output Voltage(s)  
Model  
Name  
Package Outline/  
Pin Configuration  
Screening  
Grade  
Single  
Dual  
Triple  
Output  
Output  
Output  
1R5S  
1R8S  
2R5S  
3R3S  
05S  
28  
28E  
28V  
28VE  
3R312T  
3R315T  
0512T  
X
Y
B
C
05D  
12D  
15D  
MQFL  
06S  
W
Z
ES  
HB  
7R5S  
09S  
0515T  
270  
3015T  
270E  
270L  
12S  
15S  
28S  
Example:  
MQFL – 28 – 12D – Y – ES  
APPLICATION NOTES  
A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.  
PATENTS (additional patent applications may be filed)  
SynQor holds the following patents, one or more of which might apply to this product:  
5,999,417  
6,594,159  
6,927,987  
6,222,742  
6,731,520  
7,050,309  
6,545,890  
6,894,468  
7,072,190  
6,577,109  
6,896,526  
7,085,146  
Contact SynQor for further information:  
Warranty  
Phone:  
978-849-0600  
SynQor offers a two (2) year limited warranty. Complete warranty  
information is listed on our website or is available upon request from  
SynQor.  
Toll Free: 888-567-9596  
Fax:  
978-849-0602  
E-mail:  
Web:  
power@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
USA  
Product # MQFL-28-12D  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-2MQ120D Rev. A  
10/23/07  
Page 18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY