SPM1004-1V2C [SUMIDA]

12V Input 6A Output Power Supply in Inductor (PSI2) Module;
SPM1004-1V2C
型号: SPM1004-1V2C
厂家: SUMIDA CORPORATION    SUMIDA CORPORATION
描述:

12V Input 6A Output Power Supply in Inductor (PSI2) Module

文件: 总28页 (文件大小:1928K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPM1004  
12V Input 6A Output Power Supply in Inductor (PSI2) Module  
FEATURES  
DESCRIPTION  
Integrated Point of Load power module using PSI2  
Power Supply in Inductor technology  
Small footprint, low-profile, 15mm x 9mm x 3mm,  
with LGA Package (with 0.63 mm pads)  
Efficiency of 95.2% at 3A and 94.2% at 6A for 5V  
output  
SPM1004 is an easy-to-use 6A output integrated Point of  
Load (POL) power supply module. It contains integrated  
power MOSFETs, driver, PWM controller,  
a high  
performance inductor, input and output capacitors and  
other passive components in one low profile LGA package  
using PSI2 technology.  
High output current, 6A without derating at 85°C  
ambient with no air flow  
Wide output voltage selections: from 0.8V to 5V  
output voltages with ±10% trim capability  
Output voltage remote sensing  
Only one external input capacitor and one external output  
capacitor are needed for typical applications. There is no  
need for loop compensation, sensitive PCB layout,  
inductor selection, or in-circuit production testing.  
SPM1004 integrated POL power module series are offered  
with eight models for eight different output voltages:  
5.0V, 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V, and 0.8V. Each  
output voltage can be trimmed by ±10%.  
Pre-bias startup capability  
Adjustable soft-start time  
Enable signal input and Power Good signal output  
Programmable Under Voltage Lock Out (UVLO)  
Output Over-Current Protection (OCP)  
Operating temperature range -40°C to 85°C  
Qualified to IPC9592B, Class II  
All SPM1004 models deliver full 6A load current without  
derating at 85°C ambient temperature with no airflow.  
Small size (15mm x 9mm) and low profile (3mm) allows  
SPM1004 to be placed very close to its load or on the back  
side of the PCB for high density applications.  
MSL 3 and RoHS compliant  
Constant-on-time (COT) control is used to achieve  
excellent transient response to line and load changes  
without sacrificing stability and high efficiency at light  
load.  
Sumida's PSI2 technology ensures optimal inductor design,  
uniform temperature distribution and very low  
temperature difference between case and IC die.  
APPLICATIONS  
Broadband and communications equipment  
DSP and FPGA Point of Load applications  
High density distributed power systems  
Systems using PCI / PCI express / PXI express  
Automated test and medical equipment  
SIMPLIFIED APPLICATION  
EFFICIENCY VS LOAD CURRENT (VIN = 12V)  
97  
96  
95  
94  
93  
VAUX  
PVIN  
PWRGD  
SS  
VSENSE  
VOUT  
VOUT  
VIN  
CIN  
SPM1004  
COUT  
EN  
VADJ  
92  
Vout = 5.0 V  
AGND  
PGND  
PHASE  
91  
Vout = 3.3 V  
90  
0
1
2
3
4
5
6
Output Current (A)  
Version 3.3  
February 19, 2016  
Page 1 of 28  
SPM1004  
ABSOLUTE MAXIMUM(1) RATINGS over operating temperature range (unless  
otherwise noted)  
VALUE  
Unit  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.6  
-0.6  
-0.3  
-0.3  
MAX  
18  
PVIN  
EN  
VSENSE  
VADJ  
SS  
VOUT  
PHASE  
PWRGD  
V
6
6
6
6
PVIN  
PVIN  
6
V
V
V
V
V
V
V
V
Input Signals  
Output Signals  
VAUX  
6
Current  
EN  
2.5  
150  
150  
260  
mA  
°C  
°C  
°C  
Operating Junction Temperature  
Storage Temperature  
Lead Temperature (soldering)  
-40  
-65  
Temperature  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the module. These are stress  
ratings only, and functional operation of the module at these or any other conditions beyond those indicated under  
recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may  
affect reliability.  
Version 3.3  
February 19, 2016  
Page 2 of 28  
SPM1004  
ELECTRICAL CHARACTERISTICS  
The electrical characteristics are presented in two parts. Part 1 provides the electrical characteristics that are common  
to all models and Part 2 provides the electrical characteristics that are specific to each model.  
The electrical performance is based on the following conditions unless otherwise stated: 25°C ambient temperature,  
no air flow; VIN = 12V, IOUT = 6A, CIN = 100μF ceramic, COUT = 200μF ceramic.  
Part 1: Electrical Characteristics Common to All Models:  
PARAMETERS  
Output current  
Input voltage  
TEST CONDITIONS  
TA = -40°C to 85°C, natural convection  
TA = -40°C to 85°C; IOUT 0 to max  
Enable high voltage (module turned on)  
Enable low voltage (module turned off)  
VEN = 2V  
VEN = 0V  
EN pin to PGND (shut down)  
EN = 2V, IOUT = 0A  
MIN  
0
9
TYP  
MAX  
6
15  
UNIT  
A
V
V
V
mA  
μA  
mA  
mA  
IOUT  
VIN:  
:
12  
1.3  
0.5  
0.1  
0
0.2  
1.0  
91%  
10  
VEN_ON Enable on voltage  
VEN_OFF Enable off voltage  
1.1  
0.6  
IEN  
Enable input current  
Input standby current  
0.5  
2.5  
94%  
100  
ISTBY  
PWRGD high  
Leakage current  
PWRGD delay  
87%  
VOUT rising  
nA  
ms  
V
(% of VOUT  
)
PWRGD Power Good Signal  
2.5  
80%  
PWRGD low  
VOUT falling  
(% of VOUT  
)
At 4mA sink current  
0.4  
V
OVP threshold (percentage of nominal)  
OVP shutdown delay  
Thermal shutdown  
Thermal shutdown recovery hysteresis  
Output voltage  
Output current  
Ceramic  
Ceramic  
Non-ceramic  
117%  
4.6  
120%  
2
170  
15  
123%  
OVP  
Over-Voltage Protection  
μs  
°C  
°C  
Thermal shutdown (die temperature)  
4.8  
5.0  
1
V
VAUX: Auxiliary output  
mA  
μF  
μF  
μF  
μF  
μF  
CVAUX: External capacitor at VAUX  
CPVIN: External capacitor at PVIN  
22  
47  
220  
200  
Ceramic  
100  
500  
2000  
COUT: External output capacitor  
Non-ceramic (Electrolytic or tantalum)  
Version 3.3  
February 19, 2016  
Page 3 of 28  
SPM1004  
Part 2: Electrical Characteristics Specific for Each Individual Model  
SPM1004-5V0  
PARAMETERS  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
TEST CONDITIONS  
Over IOUT range  
Over IOUT range  
MIN  
8.5  
7.0  
TYP  
9.0  
7.5  
MAX  
9.5  
8.0  
UNIT  
V
V
V
Over IOUT range  
4.5  
5.0  
5.5  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
VOUT  
Load regulation  
Total variation  
±4%  
Vo_rip  
,
Output voltage ripple  
20  
mVpp  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
95.2%  
94.2%  
96.1%  
94.5%  
94.3%  
93.7%  
30  
75  
800  
8.5  
VIN = 12V  
η
Efficiency  
VIN = 9V  
IOUT = 3A  
VIN = 15V  
IOUT = 6A  
Over/undershoot  
Recovery time  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
SPM1004-3V3  
PARAMETERS  
TEST CONDITIONS  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
Over IOUT range  
Over IOUT range  
Over IOUT range  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
V
V
V
2.97  
3.3  
3.63  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
93.5%  
91.8%  
94.3%  
92.2%  
92.7%  
91.3%  
25  
50  
800  
8.5  
VIN = 12V  
η
Efficiency  
VIN = 9V  
IOUT = 3A  
VIN = 15V  
IOUT = 6A  
Over/undershoot  
Recovery time  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
Version 3.3  
February 19, 2016  
Page 4 of 28  
SPM1004  
SPM1004-2V5  
PARAMETERS  
TEST CONDITIONS  
Over IOUT range  
Over IOUT range  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
V
V
V
Over IOUT range  
2.25  
2.5  
2.75  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
92.5%  
90.2%  
93.2%  
90.6%  
91.7%  
89.7%  
25  
50  
600  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
SPM1004-1V8  
PARAMETERS  
TEST CONDITIONS  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
Over IOUT range  
Over IOUT range  
Over IOUT range  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
V
V
V
1.62  
1.8  
1.98  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
91.0%  
87.6%  
91.6%  
87.9%  
89.7%  
86.7%  
20  
50  
600  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
Version 3.3  
February 19, 2016  
Page 5 of 28  
SPM1004  
SPM1004-1V5  
PARAMETERS  
TEST CONDITIONS  
Over IOUT range  
Over IOUT range  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
V
V
V
Over IOUT range  
1.35  
1.5  
1.65  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
90.2%  
86.1%  
90.8%  
86.4%  
89.3%  
85.4%  
20  
50  
550  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
SPM1004-1V2  
PARAMETERS  
TEST CONDITIONS  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
Over IOUT range  
Over IOUT range  
Over IOUT range  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
V
V
V
1.08  
1.2  
1.32  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
89.9%  
84.5%  
89.9%  
84.7%  
88.6%  
83.7%  
20  
30  
450  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
Version 3.3  
February 19, 2016  
Page 6 of 28  
SPM1004  
SPM1004-1V0  
PARAMETERS  
TEST CONDITIONS  
Over IOUT range  
Over IOUT range  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
V
V
V
Over IOUT range  
0.9  
1.0  
1.1  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
±1%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
87.8%  
82.1%  
88.3%  
82.3%  
86.6%  
81.3%  
20  
30  
400  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
SPM1004-0V8  
PARAMETERS  
TEST CONDITIONS  
MIN  
8.0  
6.5  
TYP  
8.5  
7.0  
MAX  
9.0  
7.5  
UNIT  
VSTART Startup voltage  
UVLO Under Voltage Lock Out  
VOUT(adj): Output voltage trim range  
Set point accuracy  
Over IOUT range  
Over IOUT range  
Over IOUT range  
TA = 25°C, VIN = 12V, IOUT = 3A  
-40°C < TA < +85°C, IOUT = 3A  
Over VIN range, TA = 25°C, IOUT = 3A  
Over IOUT range, TA = 25°C, VIN = 12V  
Set-point, line, load, temperature variation  
20MHz bandwidth, VIN = 12V, IOUT = 6A  
V
V
V
0.72  
0.8  
0.88  
±0.5%  
±0.5%  
±0.5%  
±1%  
Temperature variation  
Line regulation  
Load regulation  
Total variation  
Output voltage ripple  
VOUT  
±3%  
Vo_rip  
,
20  
mVpp  
IOUT = 3A  
85.7%  
78.7%  
86.4%  
79.0%  
84.3%  
77.8%  
20  
25  
400  
8.5  
VIN = 12V  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
IOUT = 3A  
IOUT = 6A  
Over/undershoot  
Recovery time  
η
Efficiency  
VIN = 9V  
VIN = 15V  
mV  
μs  
1A/μs load step  
between 2A and 5A  
VIN = 12V, IOUT = 6A  
VIN = 12V  
Transient Response  
FS  
ILIM  
Switching frequency  
Current Limit Point  
kHz  
A
Version 3.3  
February 19, 2016  
Page 7 of 28  
SPM1004  
POWER MODULE INFORMATION  
FUNCTIONAL BLOCK DIAGRAM for SPM1004 (FOR ALL MODELS)  
PWRGD  
Shutdown  
Logic  
PWRGD  
Logic  
EN  
VIN UVLO  
VAUX  
LDO  
VSENSE  
VADJ  
PVIN  
PH  
Power  
Stage  
and  
Control  
Logic  
SS  
VOUT  
Const On  
Time Control  
VREF  
Ramp  
Compensation  
OCP  
PGND  
AGND  
Version 3.3  
February 19, 2016  
Page 8 of 28  
SPM1004  
PIN DESCRIPTIONS (ALL SPM1004 Models)  
PIN Name  
Description  
Input voltage pins, referenced to PGND. Connect input ceramic capacitors between these  
PVIN  
pins and PGND plane, close to the power module. It is suggested to place the ceramic  
(A3, B3, C3, D3, E3, F3, G2-G3) capacitors at both sides of the module, one between PIN A3 and PIN A4-A5 and one  
between PIN G2-G3 and PIN G4-G5.  
Auxiliary output from an LDO in the module, which is referenced to AGND. An external  
VAUX  
capacitor is not normally necessary but can be added if required.  
(A1, B1)  
Note: VAUX pin can only provide 1mA maximum current.  
Switching node of the Buck converter. Connect these pins together using a small and  
isolated copper plane under the module for best thermal performance. Do not connect any  
external component to these pins. Do not use these pins for other functions.  
PHASE  
(A6-A8)  
VOUT  
(E6-E11, F6-F11, G6-G11)  
PGND  
(A4-A5, A9-A11, B4-B11, C4-  
C11, D4-D11, E4, F4-F5, G4-  
G5)  
Output voltage pins. Connect these pins together onto a copper plane. Connect external  
output filter capacitors between these pins and PGND plane, close to the module.  
Zero DC voltage reference for power circuitry. These pins should be connected directly to  
the PCB ground plane. All pins must be connected together externally with a copper plane  
located directly under the module.  
Zero DC voltage reference for the analog control circuitry. A small analog ground plane is  
recommended, and these pins should be connected directly to the PCB analog ground  
plane. A single point external connection between AGND and PGND is recommended.  
VADJ, SS, and VSENSE pins should be referenced to analog ground.  
Enable and Under Voltage Lock Out (UVLO) pin. When floating or above Enable On Voltage  
(VEN_ON), the power module will be turned on when the power input voltage (PVIN) is above  
startup voltage (VSTART). When EN pin is below Enable Off Voltage (VEN_OFF), the power  
module will be off.  
AGND  
(A2, B2, C2)  
EN  
(G1)  
Different startup voltage can be programmed by an external resistor if required, as  
discussed on page 18.  
Output voltage adjustment pin. The output voltage can be adjusted up to ±10% of its  
nominal value. A resistor between VADJ and VSENSE will trim the output voltage down. A  
resistor between VADJ and AGND will trim the output voltage up. Refer to page 15.  
Remote sensing pin. Connect this pin to VOUT close to the load for improved voltage  
regulation.  
VADJ  
(F1)  
VSENSE  
(E1)  
Note: this pin is not connected to VOUT inside the module, and must be connected  
externally.  
SS  
(D1)  
Soft-start pin. Soft-start time can be increased by connecting a capacitor between this pin  
and AGND.  
Power Good pin, an open drain output. A resistor connected between PWRGD and VAUX  
can be used as a pull-up. PWRGD is high if the output voltage is higher than 91% of the  
nominal value. It will be pulled down if the output voltage is less than 80% or higher than  
120% of the nominal value.  
PWRGD  
(C1)  
Version 3.3  
February 19, 2016  
Page 9 of 28  
SPM1004  
LGA PACKAGE  
73 PINS,  
(TOP VIEW)  
PVIN  
1 2  
PGND  
4
3
5 6  
9 10  
11  
7 8  
EN  
VADJ  
G
F
VOUT  
PGND  
VSENSE  
SS  
E
D
C
B
A
PWRGD  
VAUX  
AGND PVIN PGND PHASE  
Version 3.3  
February 19, 2016  
Page 10 of 28  
SPM1004  
TYPICAL EFFICIENCY AND POWER LOSS DATA (Note 1)  
SPM1004-5V0, VOUT = 5V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
Output Current (A)  
Fig. 1 Efficiency vs Output Current  
Fig. 2 Power Dissipation vs Output Current  
SPM1004-3V3, VOUT = 3.3V  
96  
95  
94  
93  
92  
91  
90  
89  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 3 Efficiency vs Output Current  
Fig. 4 Power Dissipation vs Output Current  
Version 3.3  
February 19, 2016  
Page 11 of 28  
SPM1004  
SPM1004-2V5, VOUT = 2.5V  
95  
94  
93  
92  
91  
90  
89  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 5 Efficiency vs Output Current  
Fig. 6 Power Dissipation vs Output Current  
SPM1004-1V8, VOUT = 1.8V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
93  
92  
91  
90  
89  
88  
87  
86  
85  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 7 Efficiency vs Output Current  
Fig. 8 Power Dissipation vs Output Current  
Version 3.3  
February 19, 2016  
Page 12 of 28  
SPM1004  
SPM1004-1V5, VOUT = 1.5V  
93  
92  
91  
90  
89  
88  
87  
86  
85  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 10 Power Dissipation vs Output Current  
Fig. 9 Efficiency vs Output Current  
SPM1004-1V2, VOUT = 1.2V  
96  
94  
92  
90  
88  
86  
84  
82  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 11 Efficiency vs Output Current  
Fig. 12 Power Dissipation vs Output Current  
Version 3.3  
February 19, 2016  
Page 13 of 28  
SPM1004  
SPM-1004-1V0, VOUT = 1.0V  
92  
90  
88  
86  
84  
82  
80  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 13 Efficiency vs Output Current  
Fig. 14 Power Dissipation vs Output Current  
SPM1004-0V8, VOUT = 0.8V  
90  
88  
86  
84  
82  
80  
78  
76  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
1.4  
Vin = 9 V  
Vin = 12 V  
Vin = 15 V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
Fig. 16 Power Dissipation vs Output Current  
Fig. 15 Efficiency vs Output Current  
Note 1: The above curves (Figure 1 to Figure 16) are derived from measured data taken on samples of the SPM1004  
tested at room temperature (25°C), and are considered to be typical for the product.  
Version 3.3  
February 19, 2016  
Page 14 of 28  
SPM1004  
APPLICATION INFORMATION  
Output Voltage Adjustment  
The output voltage of each model of SPM1004 can be trimmed by ±10% from its nominal value. To trim output voltage  
up, a resistor (RUP) should be connected between output voltage adjustment pin (VADJ) and analog ground pin (AGND),  
as shown in Fig. 17. To trim output voltage down, a resistor (RDOWN) should be connected between remote sensing pin  
(VSENSE) and output voltage adjustment pin (VADJ), as shown in Fig. 18. It is recommended to use 1% tolerance or  
better for these resistors.  
VOUT  
VOUT  
VOUT  
VOUT  
SPM1004  
SPM1004  
VSENSE  
VSENSE  
R1  
R1  
COUT  
RDOWN  
COUT  
VADJ  
VADJ  
VREF  
VREF  
R2  
R2  
RUP  
AGND  
AGND  
Fig. 17 Output Voltage Trim Up Circuit  
Fig. 18 Output Voltage Trim Down Circuit  
Following equations can be used to calculate the trim resistor value (in kΩ) for 5V output (SPM1004-5V0). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 5V.  
101.4  
RUP _5V 0  
(for trim up only)  
Eq. (1)  
Eq. (2)  
1.964VOUT 9.65  
SPM1004-5V0, VOUT = 5.0V  
166VOUT 101.4  
9.651.964VOUT  
RDOWN _ 5V 0  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 3.3V output (SPM1004-3V3). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 3.3V.  
63.3  
RUP _ 3V 3  
(for trim up only)  
Eq. (3)  
Eq. (4)  
1.98VOUT 6.44  
SPM1004-3V3, VOUT = 3.3V  
103.6VOUT 63.3  
6.441.98VOUT  
RDOWN _ 3V 3  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 2.5V output (SPM1004-2V5). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 2.5V.  
Version 3.3  
February 19, 2016  
Page 15 of 28  
 
 
SPM1004  
43.8  
RUP _ 2V 5  
(for trim up only)  
Eq. (5)  
Eq. (6)  
1.964VOUT 4.85  
SPM1004-2V5, VOUT = 2.5V  
71.7VOUT 43.8  
4.851.964VOUT  
RDOWN _ 2V 5  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 1.8V output (SPM1004-1V8). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 1.8V.  
19.1  
RUP _1V 8  
(for trim up only)  
Eq. (7)  
Eq. (8)  
1.637VOUT 2.91  
SPM1004-1V8, VOUT = 1.8V  
31.26VOUT 19.1  
2.911.637VOUT  
RDOWN _1V 8  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 1.5V output (SPM1004-1V5). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 1.5V.  
14.3  
RUP _1V 5  
(for trim up only)  
Eq. (9)  
1.637VOUT 2.43  
SPM1004-1V5, VOUT = 1.5V  
23.4VOUT 14.3  
2.431.637VOUT  
RDOWN _1V 5  
(for trim down only)  
Eq. (10)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 1.2V output (SPM1004-1V2). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 1.2V.  
9.31  
RUP _1V 2  
(for trim up only)  
Eq. (11)  
Eq. (12)  
1.637VOUT 1.931  
SPM1004-1V2, VOUT = 1.2V  
15.2VOUT 9.31  
1.9311.637VOUT  
RDOWN _1V 2  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 1.0V output (SPM1004-1V0). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 1.0V.  
24.2  
RUP _1V 0  
(for trim up only)  
Eq. (13)  
Eq. (14)  
3.273VOUT 3.21  
SPM1004-1V0, VOUT = 1.0V  
39.6VOUT 24.2  
3.213.273VOUT  
RDOWN _1V 0  
(for trim down only)  
Following equations can be used to calculate the trim resistor value (in kΩ) for 0.8V output (SPM1004-0V8). In the  
equation, VOUT is the desired output voltage. It should be within ±10% of the nominal output voltage of 0.8V.  
26  
RUP _ 0V 8  
(for trim up only)  
Eq. (15)  
Eq. (16)  
4.91VOUT 3.866  
SPM1004-0V8, VOUT = 0.8V  
42.52VOUT 26  
3.8664.91VOUT  
RDOWN _0V 8  
(for trim down only)  
Version 3.3  
February 19, 2016  
Page 16 of 28  
SPM1004  
Power Up with and without Enable (EN) Control  
The EN pin provides an external on/off control of the power module. Once the voltage at EN pin exceeds the threshold  
voltage (1.3V) or is left open, the power module starts operation when the input voltage is higher than the input start  
up voltage (VSTART).  
When the voltage at EN pin is pulled below the threshold voltage, the switching converter stops switching and the  
power module enters low quiescent current state.  
If an application requires controlling the EN pin, an open drain or open collector output logic can be used to interface  
with the pin, as shown in Fig. 19, where high ON/OFF signal (low EN) disables the power module.  
SPM1004  
EN  
ON/OFF  
Signal  
PGND  
Q1  
Fig. 19 Typical ON/OFF Control  
When EN pin is open (or connected to a logic high voltage), SPM1004 produces a regulated output voltage following  
the application of a valid input voltage. Fig. 20 shows the startup waveform for SPM1004-1V8 without EN control.  
VIN  
(5 V/div)  
VPWRGD  
(5 V/div)  
VOUT  
(1 V/div)  
Time (2 ms/div)  
Fig. 20 Startup Waveforms for SPM1004-1V8 without EN Control  
Fig. 21 and Fig. 22 show the typical output voltage waveforms when SPM1004-1V8 is turned on and turned off by the  
EN pin. In these figures, the top trace is enable signal (EN), the middle trace Power Good voltage (PWRGD), and the  
bottom trace is the output voltage.  
Version 3.3  
February 19, 2016  
Page 17 of 28  
 
 
SPM1004  
VEN  
(5 V/div)  
VEN  
(5 V/div)  
VPWRGD  
(5 V/div)  
VPWRGD  
(5 V/div)  
VOUT  
(1 V/div)  
VOUT  
(1 V/div)  
Time (2 ms/div)  
Time (2 ms/div)  
Fig. 21 Enable Turn-On for SPM1004-1V8, (IOUT = 6A)  
Fig. 22 Enable Turn-Off for SPM1004-1V8, (IOUT = 6A)  
The startup and enable waveforms are similar for other output voltages.  
Startup Voltage Setup  
By default, the power modules will be turned on when the input voltage reaches the startup voltage (VSTART), and will  
be turned off when the input voltage reduces to below the Under-Voltage Lock-Out (UVLO) level. Startup voltage  
cannot be reduced from the values provided in the table of Electrical Characteristics. Startup voltage can be increased  
by an external resistor (REN) connected between EN pin and PGND pin.  
For SPM1004-5V0, the resistor value REN (in kΩ) can be calculated using (17) below based on the required startup  
voltage, VSTART_5V0. Note: VSTART_5V0 must be higher than 9V.  
325  
REN _5V 0  
17)  
2.5VSTART _5V 0 22.5  
For all other models, the resistor value REN (in kΩ) can be calculated using (18) below based on the required startup  
voltage, VSTART. Note: VSTART must be higher than 8.5V.  
325  
REN  
Eq. (18)  
2.5VSTART 21.3  
Power Good (PWRGD)  
The PWRGD pin is an open drain output, and can be used to indicate when the output voltage is within the normal  
operating range. It is recommended to connect a pull up resistor (10KΩ to 100KΩ) between PWRGD pin and VAUX pin  
of the module. The PWRGD signal becomes high when the output voltage reaches 91% of normal output voltage. The  
PWRGD signal is pulled low when the output voltage is lower than 80% or higher than 120% of the normal output  
voltage.  
Soft-Start Operation (SS)  
The soft-start function forces the output voltage to rise gradually to its nominal value rather than rising as rapidly as  
possible. When an external soft-start capacitor is not connected, the soft-start time is set to 3.3ms nominal for all the  
SPM1004 models. The soft-start time can be increased by connecting an external capacitor between soft-start pin (SS)  
and analog ground (AGND) pin. The relationship between the required soft-start time and the external capacitor is  
given by the following equation:  
CSS (nF) 32.7TSS (ms) 100  
Eq. (19)  
Version 3.3  
February 19, 2016  
Page 18 of 28  
SPM1004  
The following table gives some typical external soft-start capacitor values for different soft-start times.  
Table 1. Soft-start capacitor values and soft-start time (typical)  
External capacitor (nF)  
Nominal SS time (ms)  
open  
3.3  
68  
5.1  
100  
6.6  
470  
17.5  
1000  
33.6  
2200  
70.3  
3300  
104  
Application Schematics  
Fig. 23 shows a typical application schematic for 12V input and 3.3V output application. The on / off of the power  
module is controlled by an external ON/OFF signal through a MOSFET.  
VAUX  
PVIN  
PWRGD  
SS  
SENSE  
VOUT  
VOUT  
3.3V  
PVIN  
9V to 15V  
CIN2  
68µF  
CIN1  
2×47µF  
COUT1  
4×47µF  
SPM1004-3V3  
EN  
VADJ  
AGND  
PGND  
PHASE  
ON/OFF  
Signal  
Fig. 23 Schematic for VIN = 12V, VOUT = 3.3V with External ON/OFF Signal Control  
Fig. 24 shows a typical schematic for 12V input and 1.8V output application. In this example, the startup voltage has  
been changed to 10V with EN resistor REN of 88.7kΩ. The soft-start time has been set to 17.5ms with an external soft-  
start capacitor of 0.47µF.  
Note: in Fig. 23 the VSENSE pin is shown connected directly to the output capacitor COUT. This module uses a constant  
on-time control and the feedback needs to sense the output voltage ripple as accurately as possible to provide the best  
regulation. If there is a significant distance between the SPM1004 and the load, the bulk output capacitor should be  
physically located close to the load, and the VSENSE connected at that point. When the recommended capacitance of  
4x 47uF is used, one capacitor can be located at the module and the other three close to the load.  
Version 3.3  
February 19, 2016  
Page 19 of 28  
 
SPM1004  
CSS  
0.47µF  
VAUX  
PVIN  
PWRGD  
SS  
SENSE  
PVIN  
9V to 15V  
VOUT  
1.8V  
VOUT  
CIN2  
68µF  
CIN1  
2×47µF  
COUT  
4×47µF  
SPM1004-1V8  
EN  
VADJ  
REN  
88.7kΩ  
AGND  
PGND  
PHASE  
Fig. 24 Schematic for VIN = 12V, VOUT = 1.8V with Startup Voltage of 10V and Soft-start Time of 17.5ms  
Sequencing Operation  
The term sequencing is used when two or more separate modules are configured to start one after the other, in  
sequence.  
Sequencing operation between two or more SPM1004 power modules can be implemented with PWRGD pin and EN  
pin. Fig. 25 shows an example configuration when SPM1004-2V5 starts first and SPM1004-1V8 starts after the output  
voltage of SPM1004-2V5 has reached 2.5V. In this case, the Power Good signal (PWRGD) of SPM1004-2V5 turns on  
SPM1004-1V8 through the EN pin of SPM1004-1V8.  
Fig. 26 shows the output voltage waveforms of two SPM1004 modules used in sequential startup mode. It shows that  
PWRGD signal becomes high when SPM1004-2V5 enters into regulation and then the SPM1004-1V8 starts up.  
Note: The SPM1004 can start in sequence with another SPM1004 or with any other POL having a compatible Power  
Good output.  
Version 3.3  
February 19, 2016  
Page 20 of 28  
SPM1004  
VOUT1 2.5V  
EN  
VOUT  
SPM1004-2V5  
PWRGD  
VPWRGD_1  
(1 V/div)  
VOUT2 1.8V  
EN  
VOUT  
VOUT_1  
(1 V/div)  
SPM1004-1V8  
VOUT_2  
(2 V/div)  
PWRGD  
Fig. 25 Sequencing Startup Schematic, VOUT1 = 2.5V,  
VOUT2 = 1.8V  
Fig. 26 Sequencing Startup Waveform, VOUT1 = 2.5V,  
VOUT2 = 1.8V  
Transient Response  
SPM1004 uses Constant-On-Time (COT) control and achieves excellent transient performance. The following table  
summarizes the measured data for each output voltage when the load current undergoes a 3A step between 2A and  
5A. The slew rate for the load current change is 1A/µs. The measured transient waveforms are given from Fig. 27 to  
Fig. 34.  
Table 2. Output Voltage Transient Response  
Test Conditions: CIN = 3 x 47µF ceramic capacitor, COUT = 4 × 47µF ceramic capacitor  
3A Load Step (2A to 5A) at 1A/µs  
Module Part Number  
VIN  
VOUT  
Voltage Deviation (mV)  
Recovery Time (µs)  
SPM1004-5V0  
SPM1004-3V3  
SPM1004-2V5  
SPM1004-1V8  
SPM1004-1V5  
SPM1004-1V2  
SPM1004-1V0  
SPM1004-0V8  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
12V  
5V  
30  
25  
25  
20  
20  
20  
20  
20  
75  
50  
50  
50  
50  
30  
30  
25  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
0.8V  
The following figures show the typical output voltage waveforms when the load current undergoes a step change  
between 2A and 5A (3A step), showing that the SPM1004 series achieves excellent dynamic performance.  
Version 3.3  
February 19, 2016  
Page 21 of 28  
SPM1004  
VIN = 12V  
VOUT = 5.0V  
VIN = 12V  
VOUT = 3.3V  
VOUT  
(20 mV/div)  
VOUT  
(20 mV/div)  
IOUT  
(2 A/div)  
IOUT  
(2 A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Fig. 27 SPM1004-5V0, VIN = 12V, VOUT = 5V  
Fig. 28 SPM1004-3V3, VIN = 12V, VOUT = 3.3V  
VIN = 12V  
VOUT = 1.8V  
VIN = 12V  
VOUT = 2.5V  
VOUT  
(20 mV/div)  
VOUT  
(20 mV/div)  
IOUT  
(2 A/div)  
IOUT  
(2 A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Fig. 30 SPM1004-1V8, VIN = 12V, VOUT = 1.8V  
Fig. 29 SPM1004-2V5, VIN = 12V, VOUT = 2.5V  
VIN = 12V  
VOUT = 1.5V  
VIN = 12V  
VOUT = 1.2V  
VOUT  
(20 mV/div)  
VOUT  
(20 mV/div)  
IOUT  
(2 A/div)  
IOUT  
(2 A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Fig. 31 SPM1004-1V5, VIN = 12V, VOUT = 1.5V  
Fig. 32 SPM1004-1V2, VIN = 12V, VOUT = 1.2V  
Version 3.3  
February 19, 2016  
Page 22 of 28  
SPM1004  
VIN = 12V  
VOUT = 1.0V  
VIN = 12V  
VOUT = 0.8V  
VOUT  
(20 mV/div)  
VOUT  
(20 mV/div)  
IOUT  
IOUT  
(2 A/div)  
(2 A/div)  
Time (200 µs/div)  
Time (200 µs/div)  
Fig. 33 SPM1004-1V0, VIN = 12V, VOUT = 1.0V  
Fig. 34 SPM1004-0V8, VIN = 12V, VOUT = 0.8V  
Over Current Protection  
For protection against over-current faults, SPM1004 will shut down when the load current is higher than the over-  
current protection (OCP) level. During an over-current condition, the SPM1004 will operate in hiccup mode and will try  
to restart automatically. The hiccup operation will continue until the over-current condition is removed or the input  
power is removed.  
Fig. 35 shows the output voltage and output current waveforms during over-current protection operation for  
SPM1004-1V8. When the over-current condition is removed, the output voltage recovers automatically to the nominal  
voltage, as shown in Fig. 36.  
IOUT  
(5 A/div)  
IOUT  
(5 A/div)  
VOUT  
(1 V/div)  
VOUT  
(1 V/div)  
Time (20 ms/div)  
Time (20 ms/div)  
Fig. 35 VOUT and IOUT Waveforms During Over-current  
Shutdown  
Fig. 36 Recovery from Over-current Shutdown  
Input protection  
In most applications the input power source provides current limiting (typically fold-back or hiccup mode) and as long  
as the average fault current is limited to approximately 10A or less, no further protection is required.  
If the SPM1004 is powered from a battery or other high current source, it is recommended to include an external fuse  
(maximum 10A) in the input to the module. The SPM1004 includes full protection against output overcurrent or short-  
circuit, and the fuse will not operate under any output overload condition. For more information refer to PM_AN-2  
“Input Protection”.  
Version 3.3  
February 19, 2016  
Page 23 of 28  
 
 
SPM1004  
Thermal Considerations  
The absolute maximum junction temperature is 150°C but it is recommended to keep the operating temperature well  
below this value. Maximum recommended case temperature is 115°C, which corresponds to a junction temperature  
of approximately 122°C.  
The thermal resistance from case to ambient (θCA) depends on the PCB layout as well as the amount of cooling airflow.  
When mounted on the EVM, θCA is approximately 12°C/watt in still air. Please refer to the EVM User Guide for EVM  
PCB layout information.  
SPM1004 implements an internal thermal shutdown to protect itself against over-temperature conditions. When the  
junction temperature of the power MOSFET is above 170°C, the power module stops operating to protect itself from  
thermal damage. When the MOSFET temperature reduces to 155°C (hysteresis of 15°C), the SPM1004 will restart  
automatically.  
Layout Considerations  
To achieve the best electrical and thermal performance, an optimized PCB layout is required. Some considerations for  
the PCB layout are:  
Use large copper areas for power planes (PVIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress;  
Place ceramic input and output capacitors close to the module pins to minimize high frequency noise;  
Place any additional output capacitors between the main ceramic capacitor and the load (see note on page 19);  
Connect AGND plane and PGND plane at a single point;  
Place resistors and capacitors connected to SENSE, VADJ, and SS pins as close as possible to their respective pins;  
Do not connect PHASE pins to any other components;  
Use multiple vias to connect the power planes to internal layers.  
Refer to SPM1004 Evaluation Module (EVM) User Manual for suggested PCB layout.  
Version 3.3  
February 19, 2016  
Page 24 of 28  
SPM1004  
MECHANICAL DATA  
Package Dimensions and PCB pads  
ALL DIMENSIONS IN MILLIMETERS  
Version 3.3  
February 19, 2016  
Page 25 of 28  
SPM1004  
Tape and Reel Packaging Information  
Fig. 37 Tape Dimensions and Loading Information  
Fig. 38 Reel Dimensions  
Version 3.3  
February 19, 2016  
Page 26 of 28  
SPM1004  
0.10-1.3 N  
Fig. 39 Peel Speed and Strength of Cover Tape  
Note:  
1. The peel speed shall be approximately 300mm/min.  
2. The peel force of the top cover tape shall be between 0.1N and 1.3N.  
Storage and handling  
Moisture barrier bag  
The modules are packed in a reel, and then an aluminum foil moisture barrier bag is used to pack the reel in order to  
prevent moisture absorption. Silica gel is put into the aluminum moisture barrier bag as absorbent material.  
Storage  
SPM1004 is classified MSL level 3 according to JEDEC J-STD-033 and J-STD-020 standards, with a floor life of 168 hours  
after the outer bag is opened. Any unused SPM1004 modules should be resealed in the original moisture barrier bag  
as soon as possible. If the module’s floor life exceeds 168 hours, the modules should be dehumidified before use by  
baking in an oven at 125°C/1% RH (e.g. hot nitrogen gas atmosphere) for 48 hours.  
Handling precautions  
1. Handle carefully to avoid unnecessary mechanical stress. Excessive external stress may cause damage.  
2. Normal ESD handling procedures are recommended to be used whenever handling the module.  
3. If cleaning the module is necessary, use isopropyl alcohol solution at normal room temperature. Avoid the use of  
other solvents.  
Version 3.3  
February 19, 2016  
Page 27 of 28  
SPM1004  
Reflow soldering  
Fig. 40 Recommended Reflow Solder Profile (Lead-free)  
Ordering Information  
Output Voltage  
5.0V  
Module Part Number  
Pad Finish  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Au (RoHS)  
Package Type  
LGA  
Temperature Range  
SPM1004-5V0C  
SPM1004-3V3C  
SPM1004-2V5C  
SPM1004-1V8C  
SPM1004-1V5C  
SPM1004-1V2C  
SPM1004-1V0C  
SPM1004-0V8C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
-40˚C to 85˚C  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
0.8V  
LGA  
LGA  
LGA  
LGA  
LGA  
LGA  
LGA  
Version 3.3  
February 19, 2016  
Page 28 of 28  

相关型号:

SPM1004-1V5C

DC-DC Regulated Power Supply Module, 1 Output, 9.9W, Hybrid, LGA-73
SUMIDA

SPM1004-1V8C

DC-DC Regulated Power Supply Module, 1 Output, 11.88W, Hybrid, LGA-73
SUMIDA

SPM1004-2V5C

12V Input 6A Output Power Supply in Inductor (PSI2) Module
SUMIDA

SPM1004-3V3C

12V Input 6A Output Power Supply in Inductor (PSI2) Module
SUMIDA

SPM1004-5V0C

DC-DC Regulated Power Supply Module, 1 Output, 33W, Hybrid, LGA-73
SUMIDA

SPM10040T-100M

SMD/SMT 电感器(线圈)
TDK

SPM10040T-100M-HZR

SMD/SMT 电感器(线圈)
TDK

SPM10040T-150M-HZ

General Purpose Inductor,
TDK

SPM10040T-150M-HZR

SMD/SMT 电感器(线圈)
TDK

SPM10040T-1R0M

SMD/SMT 电感器(线圈)
TDK

SPM10040T-1R0M-HZ

General Purpose Inductor,
TDK

SPM10040T-1R0M-HZR

SMD/SMT 电感器(线圈)
TDK