VV5404C001 [STMICROELECTRONICS]

Mono and Colour Digital Video CMOS Image Sensors; 黑白和彩色数字视频CMOS图像传感器
VV5404C001
型号: VV5404C001
厂家: ST    ST
描述:

Mono and Colour Digital Video CMOS Image Sensors
黑白和彩色数字视频CMOS图像传感器

传感器 图像传感器
文件: 总54页 (文件大小:752K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VV5404 & VV6404  
Mono and Colour Digital Video CMOS Image Sensors  
FEATURES  
®
DESCRIPTION  
VV5404 and VV6404 are highly integrated CMOS VLSI  
sensors which enables high standards of performance and  
image quality at a very cost-effective price point. The 356 x  
292 monochrome device offers one of the simplest routes  
currently available to design-in of imaging applications, while  
the colour device is ideal for low cost PC camera applications.  
CIF Format mono or colour pixel array  
Up to 30 frames per second operation  
On-chip 8 bit analogue to digital converter  
Low power consumption  
Up to 356 x 292 pixel image size  
Automatic exposure and gain control  
Serial interface control  
Both devices incorporate a comprehensive range of on-board  
controls eliminating the need for additional support chips. On-  
chip A/D conversion provides 8 bit digital output and the  
device set up is fully automatic via the built-in automatic black  
level calibration algorithm.  
Programmable exposure and gain values  
Automatic black level calibration  
4-wire digital video bus  
Exposure and gain settings are programmable and operation  
is controlled via a serial interface.  
Evaluation kit available  
APPLICATIONS  
This sensors offer variable frame rates of up to 30 frames per  
second and a 4 wire digital video bus. The digital interface  
also provides a tri-stateable data qualification clock and frame  
synchronisation signal.  
PC Cameras  
Biometrics  
Inspection Systems  
Hand-held products, in applications such as PDAs, bar code  
scanning or automatic meter reading, will benefit from the low  
power requirements and from the inbuilt sleep and power  
down modes.  
SPECIFICATIONS  
Pixel resolution  
Array size  
356 x 292 (CIF)  
4.272mm x 3.212mm  
12.0 µm x 11.0 µm  
0.1 lux  
The price and performance standards introduced with the  
VV5404 and VV6404 enable use of an imaging solution  
where previously it may not have been practicable on cost  
grounds.  
Pixel size  
Min. illumination  
Exposure control  
Gain control  
Automatic (to 25000:1)  
Automatic (to +20dB)  
BLOCK DIAGRAM  
Signal/Noise ratio 46dB  
Supply voltage  
Supply current  
5.0v DC +/− 5%  
CLKI  
SERIAL  
INTER-  
FACE  
IMAGE  
BLACK  
EXPOSURE  
REGISTERS  
SDA  
SCL  
CLKO  
SIN  
CALIBRATION  
FORMAT  
<75mA  
0oC - 40oC  
(for extended temp. info please con-  
Operating  
temperature  
(ambient)  
D[3:0]  
QCK  
FST  
OUTPUT  
FORMAT  
tact STMicroelectronics)  
VERTICAL  
SHIFT  
PHOTO DIODE  
ARRAY  
REGISTER  
OEB  
Package type  
48LCC  
8-bit  
ADC  
Important:  
SAMPLE & HOLD  
1. A colour co-processor is required to convert the VV6404 sensor’s video  
data stream of raw colourised pixel data into either a CIF or QCIF for-  
mat RGB or YUV colour image.  
2. VV5404 and VV6404 do NOT have any form of automatic exposure  
control. This must be performed externally.  
ANALOG  
VOLTAGE  
REFS.  
GAIN  
HORIZONTAL SHIFT  
REGISTER  
STAGE  
1/54  
CD5404-6404F-A  
VV5404 & VV6404  
Table of Contents  
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1 Image Read-out Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.2 Frame Rate Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3. Exposure Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4. Digital Video Interface Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1 General description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2 Embedded control data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4.2.1 The combined escape and sync character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2.2 The command word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2.3 Supplementary Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3 Video timing reference and status/configuration data. . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3.1 Blank lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3.2 Black line timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3.3 Valid video line timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3.4 Start of frame line timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3.5 End of frame line timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.4 Detection of sensor using data bus state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.5 Resetting the Sensor Via the Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.6 Power-up, Low-power and Sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.6.1 Power-Up/Down (Figure 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.6.2 Low-Power Mode (Figure 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.6.3 Sleep Mode (Figure 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.6.4 Application of the system clock during sensor low-power modes . . . . . . . . . . . . . . . 22  
4.7 Qualification of Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.7.1 Using the External Clock signal applied to CKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.7.2 Data Qualification Clock, QCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.7.3 Frame Start Signal, FST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5. Serial Control Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2 Serial Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.3 Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.4 Message Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.5 The Programmers Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.5.1 DeviceH [000_00002] and DeviceL [000_ 00012] . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.5.2 Status0 [000_00102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.5.3 Line_count_H [000_00112] & Line_count_L [000_01002]. . . . . . . . . . . . . . . . . . . . .31  
5.5.4 Setup0 [001_00002] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.5.5 Setup1 [001_00012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.5.6 Setup2 [001_00102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.5.7 Setup4 [001_01002] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.5.8 Setup5 [001_01012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
5.5.9 Exposure Control Registers [010_00002] - [010_10012]. . . . . . . . . . . . . . . . . . . . . . 35  
5.5.10 ADC Setup Register AS0 [111_01112] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.6 Types of messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.6.1 Single location, single data write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.6.2 Single location, single data read.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
5.6.3 No data write followed by same location read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.6.4 Same location multiple data write.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.6.5 Same location multiple data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.6.6 Multiple location write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.6.7 Multiple location read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
5.7 Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6. Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.8 Synchronising 2 or More Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
7. Detailed specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
7.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
7.2 DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
8. Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
8.1 Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.2 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
8.3 48LCC Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
8.4 VV6404 Sensor Support Circuit Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .50  
8.5 Sensor Support Circuit Component List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
9. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3/54  
CD5404-6404F-A  
VV5404 & VV6404  
1. Introduction  
VV5404 and VV6404 are CIF format CMOS image sensors capable of outputing digital pixel data at frame rates, of  
upto 30 frames per second. The VV5404 is a monochrome part, while the VV6404 has a colour filter applied over the  
sensor array.  
The VV6404 sensor’s video data stream only contains raw colourised pixel data. A colour co-processor  
Important:  
is required to generate for example either a CIF or a QCIF format YUV colour image.  
The 356 x 292 pixel sensors have an on-chip 8-bit analogue to digital converter (Figure 1). The sensors offer very  
flexible digital interface, the main components of which are listed below:  
1. A tri-stateable 4-wire data bus (D[3:0]) for sending both video data and embedded timing references.  
2. A data qualification clock, QCK, which can be programmable via the serial interface to behave in a number of  
different ways (Tri-stateable).  
3. A frame start signal, FST (Tri-stateable).  
4. A 2-wire serial interface (SDA,SCL) for controlling and setting up the device.  
5. The ability to synchronise the operation of multiple cameras - synchronisation input, SIN.  
An 8-bit pixel value is transmitted across the 4 wire tri-stateable databus as series pair of 4-bit nibbles, most significant  
nibble first. Along within the pixel data, codes representing the start and end frames and the start and end of lines are  
embedded within the video data stream to allow the video processor to synchronise with video data the camera  
module is generating. Section 4. defines the format for the output video datastream.  
CLKI  
SERIAL  
INTER-  
FACE  
IMAGE  
BLACK  
EXPOSURE  
REGISTERS  
SDA  
SCL  
CLKO  
SIN  
CALIBRATION  
FORMAT  
D[3:0]  
QCK  
FST  
OUTPUT  
FORMAT  
VERTICAL  
SHIFT  
PHOTO DIODE  
ARRAY  
REGISTER  
OEB  
8-bit  
ADC  
SAMPLE & HOLD  
ANALOG  
VOLTAGE  
REFS.  
GAIN  
HORIZONTAL SHIFT  
REGISTER  
STAGE  
Figure 1 : Block Diagram of VV5404 and VV6404 Image Sensors  
To complement the embedded control sequences a data qualification clock, QCK, and a frame start signal are also  
available. QCK can be set-up to either be:  
1. Disabled  
2. Free-running.  
3. Qualify only the control sequences and the pixel data.  
4. Qualify the pixel data only  
There is also the choice of two different QCK frequencies, where one is twice the frequency of the other.  
4/54  
CD5404-6404F-A  
VV5404 & VV6404  
1. Fast QCK: the falling edge of the clock qualifies the nibble data irrespective of whether it is the most or the least  
significant nibble.  
2. Slow QCK: the rising edge of the clock qualifies the most significant nibbles while the falling edge of the clock  
qualifies the least significant nibbles.  
The FST can be enabled/disabled via the serial interface.  
OEB tri-states all 4 databus lines, D[3:0], the qualification clock, QCK and the frame start signal, FST.  
There are 3 main ways of interfacing to the VV5404 or VV6404 sensor based on the above signals:  
1. The processor capturing the data (or colour co-processor for VV6404) supplies the sensor clock, CKI, and uses  
the embedded control sequences to synchronise with the frame and line level timings. Thus the processor and  
sensor are running off derivatives of the same fundamental clock (4 fsc - 14.31818 MHz). To allow the receiver  
to determine the best sampling position of the video data, during its power-up sequence the sensor outputs a  
101010... sequence on each of its databus lines for the video processor to lock on to.  
2. The video processor uses a free-running QCK supplied by the sensor to sample the incoming video data  
stream. The embedded control sequences are used to synchronise the frame and line level timings. A crystal is  
used to generate the clock for the sensor.  
3. The video processor uses FST and the data only mode for QCK to synchronise to the incoming video data. Pri-  
marily intended for interfacing to frame grabbers.  
The 2-wire serial interface provides complete control over how the sensor is setup and run. Exposure and gain values  
are programmed via this interface. Section 5. defines the communications protocol and the register map of all the  
locations which can be accessed via the serial interface.  
D[3:0]  
Colour  
Co-processor  
(processor)  
Sensor  
CLKI  
SDA  
SCL  
D[3:0]  
QCK  
Colour  
Co-processor  
(processor)  
Sensor  
FST  
SDA  
SCL  
Figure 2 : Interfacing Options  
Using the first two interface options outlined above it is possible to control the sensor and receive video data via a 9-  
wire cable between the sensor and the video processor/colour-processor.  
1. A 4-wire data bus (D[3:0]) for sending both video data and embedded timing references.  
2. A 2-wire serial interface (SDA,SCL).  
3. The clock for the sensor or QCK from the sensor.  
4. VCC and GND power lines.  
The various image read-out and frame rate options are detailed in Sections 2 and 3 respectively.  
CD5404-6404F-A  
5/54  
VV5404 & VV6404  
2. Operating Modes  
2.1 Image Read-out Options  
The output image format is CIF (352 x 288 pixel array). To provide the colour co-processor with the extra information  
it needs for interpolation at the edges of the VV6404 pixel array, an optional border 2 pixels deep on all 4 sides of the  
array can be enabled (Figure 4). The resulting image size of 356 x 292 pixels is the default power up state for this  
camera module. The border option is programmable via the serial interface.  
Border  
Image size (column x row)  
Disabled  
Enabled  
352 x 288  
356 x 292  
Default  
Table 1 : Image Format Selection.  
Even  
Columns  
Odd  
Columns  
(0, 2, 4,...) (1, 3, 5,...)  
Even  
Rows  
(0, 2, 4,...)  
Green  
Red  
Odd  
Rows  
(1, 3, 5,...)  
Blue Green  
Figure 3 : Bayer Colourisation Pattern. (VV6404 only)  
Image read-out is either non-interlaced raster scan, or ‘shuffled’ non-interlaced raster scan.  
The shuffled raster scan order differs from a conventional raster in that the pixels of individual rows are re-ordered,  
with the odd pixels within a row read-out first, followed by the even pixels.  
This ‘shuffled’ read-out within a line, is useful in the VV6404 device as it groups pixels of the same colour (according  
to the Bayer pattern - Figure 3) together, reducing cross talk between the colour channels.  
This option is on by default in both VV5404 and VV6404 sensors and is controllable via the serial interface.  
NOTE:  
2.2 Frame Rate Options  
Two options: 30 fps or 25 fps (Assuming a 7.15909 MHz input clock and the default clock divider setting). The number  
of video lines in for each frame rate is the same (304), the slower frame rate is implemented by extending the line  
period from 393 pixel periods to 471 pixel periods. 30 fps is the default option, the frame rate is programmable via the  
serial interface.  
Frame Rate (fps)  
Frame Timing (Pixels x Lines)  
25  
30  
471 x 304  
393 x 304  
default  
Table 2 : Frame Rate Selection  
6/54  
CD5404-6404F-A  
1
2
3
0
Green Red Green Red  
Blue Green Blue Green  
0
1
2
3
Border Rows and Columns  
Green Red Green Red  
Blue Green Blue Green  
0, 1, 2, 3,...  
... 352, 353, 354, 355  
352 Pixels  
Green Red Green Red  
Blue Green Blue Green  
288  
289  
290  
291  
356 Pixels  
Pixel Array  
Green Red Green Red  
Blue Green Blue Green  
353 354 355  
352  
Figure 4 : VV6404 Colourised Image Format  
VV5404 & VV6404  
3. Exposure Control  
The exposure time for a pixel and the gain of the input amplifier to the 8-bit ADC are programmable via the serial  
interface. The explanation below assumes that the gain and exposure values are updated together as part of a 5 byte  
serial interface auto-increment sequence.  
The exposure is divided into 2 components - coarse and fine. The coarse exposure value sets the number of lines a  
pixel exposes for, while the fine exposure sets the number of additional pixel clock cycles a pixel integrates for. The  
sum of the two gives the overall exposure time for the pixel array.  
30 fps mode: Exposure Time = (Clock Divisor) x (Coarse x 393 + Fine) x (CKI clock period)/  
25 fps mode: Exposure Time = (Clock Divisor) x (Coarse x 471 + Fine) x (CKI clock period)  
30 fps mode  
25 fps mode  
Value  
Units  
Min.  
Max.  
Min.  
Max.  
Coarse  
Fine  
Video Lines  
Pixel Clocks  
0
0
302  
356  
0
0
302  
434  
Table 3 : Coarse and Fine Exposure Ranges.  
If an exposure value is loaded outwith the valid ranges listed in the above table the value is clipped to lie within the  
above ranges.  
Gain Code, G[2:0]  
Amplifier Gain  
0
0
0
1
0
0
1
1
0
1
1
1
1
2
4
8
Table 4 : Main Gain Steps.  
Exposure and gain values are re-timed within the sensor to ensure that a new set of values is only applied to the  
sensor array at the start of each frame. Bit 0 of the Status Register is set high when a new exposure value is written  
via the serial interface but has not yet been applied to the sensor array.  
There is a 1 frame latency between a new exposure value being applied to the sensor array and the results of the  
new exposure value being read-out. The same latency does not exist for the gain value. To ensure that the new  
exposure and gain values are aligned up correctly the sensor delays the application of the new gain value by one  
frame relative to the application of the new exposure value.  
To eliminate the possibility of the sensor array seeing only part of the new exposure and gain setting, if the serial  
interface communications extends over a frame boundary, the internal re-timing of exposure and gain data is disabled  
while writing data to any location in the Exposure page of the serial interface register map. Thus if the 5 bytes of  
exposure and gain data is sent as an auto-increment sequence, it is not possible for the sensor to consume only part  
of the new exposure and gain data.  
8/54  
CD5404-6404F-A  
VV5404 & VV6404  
4. Digital Video Interface Format  
4.1 General description  
The video interface consists of a unidirectional, tri-stateable 4-wire databus. The nibble transmission is synchronised  
to the rising edge of the system clock (Figure 13).  
Read-out Order  
Progressive Scan (Non-interlaced)  
Form of encoding  
Uniformly quantised, PCM, 8 bits per sample  
Correspondence between video  
signal levels and quantisation  
levels:  
Internally valid pixel data is clipped to ensure that 00H and FFH  
values do not occur when pixel data is being output on the data  
bus. This gives 254 possible values for each pixel (1 - 254). The  
video black level corresponds to code 16.  
Table 5 : Video encoding parameters  
Digital video data is 8 bits per sample, transmitted as serial pairs of parallel 4-bit nibbles (most significant nibble first)  
on 4 wires.  
Multiplexed with the sampled pixel data is control information including both video timing references and sensor  
status/configuration data. Video timing reference information takes the form of field start characters, line start  
characters, end of line characters and a line counter.  
Where hexadecimal values are used, they are indicated by a subscript H, such as FFH; other values are decimal.  
4.2 Embedded control data  
To distinguish the control data from the sampled video data all control data is encapsulated in embedded control  
sequences. These are a minimum of 6 words long and includes a combined escape/sync character, 1 control word  
(the ‘command byte’) and 2 words of supplementary data.  
To minimise the susceptibility of the embedded control data to random bit errors redundant coding techniques have  
been used to allow single bit errors in the embedded control words to be corrected. However, more serious corruption  
of control words or the corruption of escape/sync characters cannot be tolerated without loss of sync to the data  
stream. To ensure that a loss of sync is detected a simple set of rules has been devised. The four exceptions to the  
rules are outlined below:  
1. Data containing a command words that has two bit errors.  
2. Data containing two ‘end of line’ codes that are not separated by a ‘start of line’ code.  
3. Data preceding an ‘end of frame’ code before a start of frame’ code has been received.  
4. Data containing line that do not have sequential line numbers (excluding the ‘end of frame’ line).  
If the video processor detects one of these violations then it should abandon the current frame of video.  
4.2.1 The combined escape and sync character  
Each embedded control sequence begins with a combined escape and sync character that is made up of three words.  
The first two of these are FFH FFH- constituting two words that are illegal in normal data. The next word is 00H -  
guaranteeing a clear signal transition that allows a video processor to determine the position of the word boundaries  
in the serial stream of nibbles. Combined escape and sync characters are always followed by a command word -  
making up the four word minimum embedded control sequence.  
4.2.2 The command word  
The word that follows the combined escape/sync characters defines the type of embedded control data. Three of the  
8 bits are used to carry the control information, four are ‘parity bits’ that allow the video processor to detect and correct  
a certain level of errors in the transmission of the command words, the remaining bit is always set to 1 to ensure that  
the command word is never has the value 00H. The coding scheme used allows the correction of single bit errors (in  
the 8-bit sequence) and the detection of 2 bit errors. The three data bits of the command word are interpreted as  
shown in Figure 5.  
9/54  
CD5404-6404F-A  
Nibble X  
Nibble Y  
H
H
Line Code  
1 C C C  
P P P P  
3 2 1 0  
2
1
0
Supplementary Data  
End of Line  
10002 (8H)  
10012 (9H)  
00002 (0H)  
11012 (DH)  
10112 (BH)  
01102 (6H)  
01112 (7H)  
10102 (AH)  
11002 (CH)  
00012 (1H)  
(i) Line Number (L11 MSB)  
Blank Line (BL)  
Black line (BK)  
Visible Line (VL)  
Start of Frame (SOF)  
End of Frame (EOF)  
Reserved  
Bit  
7
0
6
5
4
3
2
1
0
10102 (AH)  
10112 (BH)  
11002 (CH)  
11012 (DH)  
11102 (EH)  
11112 (FH)  
L11 L10 L9 L8 L7 L6  
P
Nibble D3  
Nibble D2  
P
L5 L4 L3 L2 L1 L0  
0
Nibble D1  
Nibble D0  
Odd word parity  
Reserved  
(ii) If Line Code = End of Line then  
or  
1
1
1
1
1
1
1
1
7
1
6
5
4
3
2
1
0
Bit  
C2 C1 C0 P3 P2 P1 P0  
Nibble XH Nibble YH  
Command  
(Line Code)  
Nibble D3 = FH  
Nibble D2 = FH  
1
1
1
1
1
1
1
1
Nibble D1 = FH Nibble D0= FH  
4-wire nibble output mode  
F F F F 0 0 X Y D D D D  
0
H
H
H
H
H
H
H
H
3
2
1
Escape/Sync Sequence  
Figure 5 : Embedded Control Sequence  
Frame Format (Border rows and columns enabled - Default) :  
Black  
Lines  
Blanking  
Lines  
Image Data  
Frame Period (304 Lines)  
Line  
Number  
1
2
3
4
9
10  
11  
12  
303  
0
13  
298  
299  
300  
VL  
301  
302  
303  
0
1
Start of Image (SOF)  
7 Blank Lines (BL)  
292 Visible Lines (VL)  
End of Image (EOF)  
Line  
Code  
BL  
SOF  
BK  
BK  
BL  
BL  
BL  
VL  
VL  
VL  
VL  
VL  
VL  
VL  
EOF  
BL  
SOF  
BK  
2 Black Lines (BK)  
Frame Format (Border rows and columns disabled)) :  
Black  
Lines  
Blanking  
Lines  
Blanking  
Lines  
Image Data  
Frame Period (304 Lines)  
Line  
Number  
1
2
3
4
9
10  
11  
12  
303  
0
13  
298  
299  
300  
301  
302  
303  
BL  
0
1
Start of Image (SOF)  
9 Blank Lines (BL)  
288 Visible Lines (VL) End of Image (EOF)  
Line  
Code  
BL  
SOF  
BK  
BK  
BL  
BL  
BL  
BL  
BL  
VL  
VL  
VL  
VL  
EOF  
BL  
BL  
SOF  
BK  
2 Black Lines (BK)  
Figure 6 : Frame Formats  
Line Format  
Line Period (393 Pixel Periods - 30 fps, 471 Pixel Periods - 25 fps)  
Start of Active Video (SAV)  
End of Active Video (EAV)  
SAV  
Video Data  
Line  
Number  
Null  
Escape/Sync  
Sequence  
Line  
Code  
Escape/Sync  
Sequence  
Line  
Code Characters  
178 Odd Pixels  
178 Even Pixels  
Pixel Number (Shuffled Pixel Data)  
Pixel Number (Unshuffled Pixel Data)  
4-wire Nibble Output Mode, D[3:0]  
3
355  
0
352  
354  
1
0
356 Pixels  
1
177  
178  
354  
355  
FH  
FH  
0H 0H XH YH D3 D2 D1 D0  
FH  
PM PL PM PL  
PM PL PM PL  
PM PL PM PL FH FH FH FH 0H 0H 8H 0H  
(i)  
Blanking Line (BL)  
Black Line (BK)  
Visible Line (VL)  
P = Blanking Level (07H)  
P = Valid Black Pixel Data  
P = Valid Pixel Data  
(ii)  
(iii)  
(iv) Start of Frame (SOF)  
(v) End of Frame (EOF)  
P = Sensor Status Data  
P = Blanking Level (07H)  
PM = Pixel Value - Most Significant Nibble, PL = Pixel Value - Least Significant Nibble, P = 8-bit Pixel Value  
Figure 7 : Line Data Format.  
VV5404 & VV6404  
Parity Checks  
Comment  
P
P
P
P
0
3
2
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
1
0
0
1
Code word un-corrupted  
1
1
0
1
0
1
0
0
1
1
1
0
0
0
P0 corrupted, line code OK  
P1 corrupted, line code OK  
P2 corrupted, line code OK  
P3 corrupted, line code OK  
C0 corrupted, invert sense of C0  
C1 corrupted, invert sense of C1  
C2 corrupted, invert sense of C2  
2-bit error in code word.  
All other codes  
Table 6 : Detection of 1-bit and 2-bit errors in the CommandWord  
The even parity bits are based on the following relationships:  
1. An even number of ones in the 4-bit sequence (C2, C1, C0 and P0).  
2. An even number of ones in the 3-bit sequence (C2, C1, P1).  
3. An even number of ones in the 3-bit sequence (C2, C0, P2).  
4. An even number of ones in the 3-bit sequence (C1, C0, P3).  
Table 6 shows how the parity bits maybe used to detect and correct 1-bit errors and detect 2-bit errors.  
4.2.3  
Supplementary Data  
The last 2 bytes of the embedded control sequence contains supplementary data. This normally contains the current  
line number except if the line code is the end of line, the 2 bytes are padded out using null characters (FFH). The 12  
bit line number is packaged up by splitting it into two 6-bit values. Each 6-bit values is then converted into an 8-bit  
value by adding a zero to the start and an odd word parity bit at the end.  
4.3 Video timing reference and status/configuration data  
The video sequence is made up of lines of data. Each field of data is constructed of the following data lines:  
1. A start of frame line  
2. 2 of ‘black lines’ (used for black level calibration)  
3. 7 (9) of blank lines  
4. 292 (288) active video lines  
5. An end of frame line  
6. 1 (3) blank lines  
The numbers given in () are for when the border rows and columns are not output on the databus.  
Each line of data starts with an embedded control sequence that identifies the line type (as outlined in Table 3). The  
control sequence is then followed by two bytes that, except in the case of the end-of-frame line, contain a coded line  
number. The line number sequences starts with the start-of-frame line at 00H and increments one per line up until the  
end-of-frame line. Each line is terminated with an end-of-line embedded control sequence. The line start embedded  
sequences must be used to recognise data lines as a number of null bytes may be inserted between data lines.  
13/54  
CD5404-6404F-A  
VV5404 & VV6404  
4.3.1 Blank lines  
In addition to padding between data lines, actual blank data lines may appear in the positions indicated above. These  
lines begin with start-of-blank-line embedded control sequences and are constructed identically to active video lines  
except that they will contain only blank bytes (07H).  
4.3.2 Black line timing  
The black lines (which are used for black level calibration) are identical in structure to valid video lines except that  
they begin with a start-of-black line sequence and contain either information from the sensor ‘black lines’ or blank  
bytes (07H).  
4.3.3 Valid video line timing  
All valid video data is contained on active video lines. The pixel data appears as a continuous stream of bytes within  
the active lines. The pixel data may be separated from the line header and end-of-line control sequence by a number  
of ‘blank’ bytes (07H), e.g. when the border lines and pixels are disabled 07H is output in place of pixels 0, 1, 354 and  
355.  
4.3.4 Start of frame line timing  
The start of frame line which begins each video field contains no video data but instead contains the contents of all  
the serial interface registers. This information follows the start-of-line header immediately and is terminated by an  
end-of-line control sequence. To ensure that no escape/sync characters appear in the sensor status/configuration  
information the code 07H is output after each serial interface value. Thus it takes 256 pixel clock periods (512 system  
clocks) to output all 128 of the serial interface registers. The remainder of the 356 pixel periods of the video portion  
of the line is padded out using 07H values. The first two pixel locations are also padded with 07H characters (Figure 8)  
If a serial interface register location is unused then 07H is output. The read-out order of the registers is independent  
of whether the pixel read-out order is shuffled or un-shuffled.  
4.3.5 End of frame line timing  
The end of frame line which begins each video field contains no video data. Its sole purpose is to indicate the end of  
a frame.  
4.4 Detection of sensor using data bus state  
The video processor device must have internal pull-down terminations on the data bus. On power-up a sensor will  
pull all data lines high for a guaranteed period. This scheme allows the presence of a sensor on the interface to be  
detected by the video processor on power-up, and the connection of a sensor to an already power-up interface (a  
‘hot’ connection).  
The absence of a sensor is detected by the video processor seeing more than 32 consecutive nibbles of 0H on the  
data bus. On detecting the absence of a sensor, CKI, should be disabled (held low).  
The presence of a sensor is detected by the video processor seeing more than 32 consecutive nibbles of FH on the  
data bus. On detecting the presence of a sensor, CKI, should be enabled.  
4.5 Resetting the Sensor Via the Serial Interface  
Bit 2 of setup register 0 allows the VV6404 sensor to be reset to its power-on state via the 2-wire serial interface.  
Setting this “Soft Reset” bit causes all of the serial interface registers including the “Soft Reset” bit to be reset to their  
default values. This “Soft Reset” leaves the sensor in low-power mode and thus an “Exit Low-Power Mode” command  
(Section 4.6.2) must be issued via the serial interface before the sensor will start to generate video data (Figure 9).  
4.6 Power-up, Low-power and Sleep modes  
To clarify the state of the interface on power-up and in the case of a ‘hot’ connection of the interface cable the power-  
up state of the bus is defined below.  
14/54  
CD5404-6404F-A  
Start of Active Video  
(SAV)  
End of Active Video  
(EAV)  
Serial Interface Register Values  
Padding  
Start of Frame  
Line Code  
Characters  
Output Databus, D[3:0]  
FH  
0H  
CH 7H 0H 1H 0H 1H 0H 7H 0H 7H 1H 9H 0H 7H 4H 0H 0H 7H  
0H 7H 0H 7H  
0H  
8H 0H  
FH  
FH  
Line  
DeviceH  
DeviceL  
Number 0  
(Register 0) (Register 1)  
Figure 8 : Status Line Data Format.  
D[3:0]  
F
F
9 ,6 ,9 ,6 ...  
H
H
H
H
H
H
Start of Frame Line for the 1st  
frame of valid video data.  
One frame of 9H & 6H data.  
Valid Video data.  
CLKI  
SDA  
SCL  
setup0[0]  
setup0[2]  
Frame  
Number  
N
0
1
2
3
4
5
SR0-SR1  
SR2  
“Soft-Reset” Command. At the end of the command the sensor is reset and enters low-power mode.  
The sensor enters low-power mode.  
SR3-SR4  
SR5-SR6  
“Exit Low Power Mode” Command. Powers-up analogue circuits and initiates the VM6404 sensor’s 4-frame start-up sequence  
1 Frame of alternating 9H & 6H data on D[3:0] for the video processor to determine the best sampling phase for the nibble data  
(D[3:0]).  
SR7-SR8  
4 Frames after the “Exit Low-Power mode” command, the sensor starts outputing valid video data.  
Figure 9 : Resetting the VV6404 Sensor via the Serial Interface.  
VV5404 & VV6404  
PU0  
PU1  
System Power Up or Sensor Hot Plugged  
Sensor Internal-on Reset Triggers, the sensor enters low power mode and D[3:0] is set  
to FH.  
PU2  
Video Processor released from reset.  
PU3  
Video Processor enables the sensor clock, CLKI.  
PU4-PU5  
At least 16 CLKI clock periods after CLKI has been enabled the VP sends a “Soft-Reset”  
command to the sensor via the serial interface. This ensures that if a sensor is present  
then it is in low-power mode.  
PU6  
On detecting 32 consecutive FH values on D[3:0], the Video Processor sets the  
no_camera low.  
PU7-PU8  
PU9  
If present, upload the sensor defect map from E2PROM into the Video Processor  
Video Processor disables the sensor clock, CLKI.  
PU10  
PU11  
PU12  
Video Processor generates the VP_Ready interrupt.  
The host software services the VP_Ready interrupt.  
Host issues command to remove sensor from low-power mode. VP enables the sensor  
clock, CLKI.  
PU13-PU4  
At least 16 CLKI clock periods after CLKI has been enabled the VP sends the “Exit Low-  
Power Mode” command to the sensor via the serial interface. This initiates the sensors  
4 frame start sequence.  
PU15-PU16  
PU17-PU18  
One frame of alternating 9H & 6H data on D[3:0] for the video processor to determine the  
best sampling phase for the nibble data (D[3:0]).  
4 Frames after the “Exit Low-Power Mode” serial comms, the sensor starts outputing  
valid video data.  
Table 7 : System Power-Up or Hot-plugging Device Behaviour  
17/54  
CD5404-6404F-A  
VV5404 & VV6404  
4.6.1 Power-Up/Down (Figure 12)  
On power-up all of the databus lines will go high Immediately (FH), to indicate that the device is “present” and the  
device enters it low-power mode (Section 4.6.2).  
When the Video Processor is reset the following sequence should be executed to ensure that the VM6404 starts to  
generate video data:  
1. After the Video Processor has been released from reset, the sensor clock, CLKI, should be enabled immedi-  
ately  
2. After waiting for at least 16 CLKI clock cycles, a “Soft Reset” command should be issued to the sensor. This is  
necessary to ensure that the sensor is brought into a known state. If the sensor is not present then the serial  
interface communications by Video Processor will not be acknowledged.  
3. Poll for 32 consecutive FH values on the data bus, if this condition is satisfied then the sensor is present. The  
Video processor should set the camera_present flag.  
4. Determine if the serial CMOS E2PROM containing the defectivity map for the sensor is present and down-load  
the values.  
5. Disable the sensor clock CKI.  
6. The Video Processor should generate the VP_Ready interrupt.  
7. Once the host software serviced the VP_Ready interrupt, then the sensor and video processor is ready to gen-  
erate video data.  
8. To enable video data, the host software, sets the low-power mode bit low. The video processor must enable  
CLKI at least 16 CLKI clock cycles before issuing the “Exit Low-Power Mode” command via the serial interface.  
After the “Exit Low-Power Mode” command has been sent the sensor will output for one frame, a continuous stream  
of alternating 9H and 6H values on D[3:0]. By locking onto the resulting 0101/1010 patterns appearing on the data bus  
lines the video processor can determine the best sampling position for the nibble data. After the last 9H 6H pair has  
been output the databus returns to FH until the start of fifth frame after CKI has been enabled when the first active  
frame output. After the video processor has determined the correct sampling position for the data, it should then wait  
for the next start of frame line (SOF).  
If the video processor detects 32 consecutive 0H values on the data bus, then the sensor has been removed. The  
sensor clock, CKI, should be held low.  
4.6.2 Low-Power Mode (Figure 10)  
Under the control of the serial interface the sensor analogue circuitry can be powered down and then be powered up.  
When the low-power bit is set via the serial interface, all the databus lines will go high at the end of the end of frame  
line of the current frame. At this point the analogue circuits in the sensor will power down. The system clock must  
remain active for the duration of low power mode.  
Only the analogue circuits are powered down, the values of the serial interface registers e.g. exposure and gain are  
preserved.  
The internal frame timing is reset to the start of a video frame on exiting low-power mode.  
In a similar manner to the previous section, the first frame after the serial comms contains a continuous stream of  
alternating 9H and 6H to allow the video processor to re-confirm its sampling position. Then three frames latter the  
first start of frame line is generated.  
4.6.3 Sleep Mode (Figure 11)  
Sleep mode is similar to the low-power mode, except that analogue circuitry remains powered. When the sleep  
command is received via the serial interface the pixel array will be put into reset and the data lines all will go high at  
the end of the current frame. Again the system clock must remain active for the duration of sleep mode.  
When sleep mode is disabled, the CMOS sensor’s frame timing is reset to the start of a frame. During the first frame  
after exiting from sleep mode the databus will remain high, while the exposure value propagates through the pixel  
array. At the start of the second frame the first start of field line will be generated.  
18/54  
CD5404-6404F-A  
D[3:0]  
F
9 ,6 ,9 ,6 ...  
F
H
H
H
H
H
H
Start of Frame Line for the 1st  
frame of valid video data.  
One frame of 9H & 6H data.  
Valid Video data.  
CLKI  
SDA  
SCL  
setup0[0]  
Frame  
Number  
N
0
1
2
3
4
5
LP0-LP1  
LP2  
“Enter Low Power Mode” Command.  
At end of current frame, D[3:0] is set to FH and the VM6404 sensor’s analogue circuitry is powered down.  
LP3-LP4  
LP5-LP6  
“Exit Low Power Mode” Command. Powers-up analogue circuits and initiates the VM6404 sensor’s 4-frame start-up sequence  
1 Frame of alternating 9H & 6H data on D[3:0] for the video processor to determine the best sampling phase for the nibble data  
(D[3:0]).  
LP7-LP8  
4 Frames after the “Exit low Power Mode” command, the sensor starts outputing valid video data.  
Figure 10 : Entering and Exiting Low Power Mode.  
D[3:0]  
F
H
Start of Frame Line for the 1st  
frame of valid video data.  
Valid Video data.  
CLKI  
SDA  
SCL  
setup0[1]  
Frame  
Number  
N
0
1
2
3
4
5
SL0-SL1  
SL2  
“Enter Sleep Mode” Command.  
At end of current frame, D[3:0] is set to FH.  
SL3-SL4  
SL6-SL7  
“Exit Sleep Mode” Command. Powers-up analogue circuits and initiates the VM6404 sensor’s 1-frame sleep start-up sequence  
1 Frame after the “Exit Sleep Mode” command, the sensor starts outputing valid video data.  
Figure 11 : Entering and Exiting Sleep Mode.  
5V  
Regulated  
Sensor  
2.8V  
0V  
Power  
Start of Frame Line for the  
1st frame of valid video data.  
One frame of 9H & 6H data.  
D[3:0]  
CLKI  
SDA  
F
F
9 ,6 ,9 ,6 ...  
H
H
H
H
H
H
SCL  
setup0[0]  
setup0[2]  
Frame  
Number  
0
1
3
4
2
Colour Video Processor  
VP dev_reset  
VP_Ready  
Camera_Present  
Figure 12 : System Power-Up or Hot-plugging Device Behaviour  
VV5404 & VV6404  
4.6.4 Application of the system clock during sensor low-power modes  
For successfully entry and exit into and out of low power and ‘sleep’ modes the system clock, CLKI, must remain  
active for the duration of these modes.  
4.7 Qualification of Output Data  
There are two distinct ways for qualifying the data nibbles appearing of the output data bus  
4.7.1 Using the External Clock signal applied to CKI  
The data on the output data bus, changes on the rising edge of CKI. The delay between the video processor supplying  
a rising clock edge and the data on the databus becoming valid, depends on the length of the cable between the  
sensor and the video processor. To allow the video processor to find the best sampling position for the data nibbles,  
via the serial interface the databus can be forced to output continuously 9H, 6H, 9H, 6H,...  
4.7.2 Data Qualification Clock, QCK  
VV6404 provides a data qualification clock for the output bus. There are two frequencies for the qualification clock:  
one runs at the nibble rate and the other at the pixel read-out rate. The falling edge of the fast QCK qualifies every  
nibble irrespective of whether it is most or least significant nibble. For the slow QCK, the rising edge qualifies the most  
significant nibbles in the output data stream and the falling edge qualifies the least significant nibbles in the output  
data stream.  
There are 4 modes of operation of QCK.  
1. Disabled (Always low - (Default)  
2. Free running - qualifies the whole of the output data stream.  
3. Embedded control sequences, status data and pixel data.  
4. Pixel Data Only.  
The operating mode for QCK is set via the serial interface. The QCK output is tristated when OEB is high.In one of  
the modes available via the serial interface the slow version of QCK will appear on the QCK pin while the fast version  
of the same signal will appear on the FST pin.  
In the case where the border rows and columns are disabled, there is simply no qualification pulse at that point in time  
i.e. when pixels 0,1, 354 and 355 are normally output.  
The QCK pin can also be configured to output the state of a serial interface register bit. This feature allows the sensor  
to control external devices, e.g. stepper motors, shutter mechanisms. The configuration details for QCK can be found  
in sections 5.5.7 and 5.5.8 of this document.  
4.7.3 Frame Start Signal, FST  
There are 3 modes of operation for the FST pin programmable via the serial interface:  
1. Disabled (Always Low- Default).  
2. Frame start signal. The FST signal occurs once frame, is high for 356 pixel periods (712 system clock periods)  
and qualifies the data in the start of frame line.  
The FST is tristated when OEB is high.  
The FST pin can also be configured to output the state of a serial interface register bit. This feature allows the sensor  
to control external devices, e.g. stepper motors, shutter mechanisms.  
The configuration details for FST can be found in sections 5.5.7 and 5.5.8 of this document.  
22/54  
CD5404-6404F-A  
Line Format  
Start of Active Video  
(SAV)  
End of Active Video  
(EAV)  
Video Data  
Pixel Data  
4-wire Nibble Output Mode - D[3:0]  
FH  
FH  
D1  
D0  
PM  
PL  
PM  
PL  
PM  
PL  
PM  
PL  
FH  
FH  
Crystal Clock or external clock applied to CKI  
Slow Qualification Clock, QCK  
(i) Free running  
(ii) Control sequences and Pixel Data  
(iii) Pixel Data only  
Fast Qualification Clock, QCK  
(i) Free running  
(ii) Control sequences and Pixel Data  
(iii) Pixel Data only  
PM = Pixel Value - Most Significant Nibble, PL = Pixel Value - Least Significant Nibble, P = 8-bit Pixel Value  
Figure 13 : Qualification of Output Data (Border Rows and Columns Enabled).  
Frame Format (Border rows and columns enabled - Default) :  
Black  
Lines  
Blanking  
Lines  
Image Data  
Frame Period (304 Lines)  
Line  
Number  
1
2
3
4
9
10  
VL  
11  
12  
303  
0
13  
298  
299  
300  
VL  
301  
302  
303  
0
1
Start of Image (SOF)  
7 Blank Lines (BL)  
292 Visible Lines (VL)  
End of Image (EOF)  
Line  
Code  
BL  
SOF  
BK  
BK  
BL  
BL  
BL  
VL  
VL  
VL  
VL  
VL  
VL  
EOF  
BL  
SOF  
BK  
2 Black Lines (BK)  
FST  
QCK  
(i) Free Running  
(ii) Control plus Data  
(iii) Data Only  
Figure 14 : Frame Level Timings for FST and QCK (Border Rows and Columns Enabled).  
Frame Format (Border rows and columns disabled) :  
Black  
Lines  
Blanking  
Lines  
Blanking  
Lines  
Image Data  
Frame Period (304 Lines)  
Line  
Number  
1
2
3
4
9
10  
11  
12  
303  
0
13  
298  
299  
300  
301  
302  
303  
BL  
0
1
Start of Image (SOF)  
9 Blank Lines (BL)  
288 Visible Lines (VL) End of Image (EOF)  
Line  
Code  
BL  
SOF  
BK  
BK  
BL  
BL  
BL  
BL  
BL  
VL  
VL  
VL  
VL  
EOF  
BL  
BL  
SOF  
BK  
2 Black Lines (BK)  
FST  
QCK  
(i) Free Running  
(ii) Control plus Data  
(iii) Data Only  
Figure 15 : Frame Level Timings for FST and QCK (Border Rows and Columns Disabled).  
VV5404 & VV6404  
Frame Format (Border rows and columns enabled in example):  
Blanking  
Lines  
Black  
Lines  
Black  
Lines  
Image Data  
Frame Period (304 Lines)  
Line Number  
1
2
3
9
10  
11  
2
302  
303  
0
300  
301  
302  
303  
0
1
FST  
Start of Frame Line Format:  
Line Period (393 Pixel Periods - 30 fps, 471 Pixel Periods - 25 fps)  
37 (115) Pixels  
356 Pixels  
EAV  
SAV  
4 Pixels  
Status Information  
EAV  
33 (111) Pixels  
FST  
(i) Frame start pulse - qualifies status line information.  
Figure 16 : FST Pin Waveforms.  
26/54  
CD5404-6404F-A  
VV5404 & VV6404  
5. Serial Control Bus  
5.1 General Description  
Writing configuration information to the video sensor and reading both sensor status and configuration information  
back from the sensor is performed via the 2-wire serial interface.  
Communication using the serial bus centres around a number of registers internal to the video sensor. These  
registers store sensor status, set-up, exposure and system information. Most of the registers are read/write allowing  
the receiving equipment to change their contents. Others (such as the chip id) are read only.  
The main features of the serial interface include:  
Variable length read/write messages.  
Indexed addressing of information source or destination within the sensor.  
Automatic update of the index after a read of write message.  
Message abort with negative acknowledge from the master.  
Byte oriented messages.  
The contents of all internal registers accessible via the serial control bus are encapsulated in each start-of-field line -  
see Section 4.3.4.  
5.2 Serial Communication Protocol  
The video processor must perform the role of a communications master and the camera acts as either a slave receiver  
or transmitter.The communication from host to camera takes the form of 8-bit data with a maximum serial clock video  
processor frequency of up to 100 kHz. Since the serial clock is generated by the host it determines the data transfer  
rate. The bus address for the sensor in VV6404 is 20H and for the serial E2PROM containing the defect map it is A0H.  
Data transfer protocol on the bus is shown below.  
Acknowledge  
Start condition  
SDA  
MSB  
1
LSB  
8
SCL  
P
S
7
2
3
4
5
6
A
Address or data byte  
Stop condition  
Figure 17 : Serial Interface Data Transfer Protocol  
5.3  
Data Format  
Information is packed in 8-bit packets (bytes) always followed by an acknowledge bit. The internal data is produced  
by sampling  
at a rising edge of . The external data must be stable during the high period of . The exceptions  
scl scl  
sda  
(S) or  
to this are  
(P) conditions when  
falls or rises respectively, while  
is high.  
start  
stop  
sda  
scl  
A message contains at least two bytes preceded by a  
condition and followed by either a  
or  
stop repeated start,  
start  
followed by another message.  
(Sr),  
The first byte contains the device address byte which includes the data direction  
(r)  
, (~w), bit. The device  
read, , ~write  
address of VV6404 is fixed as 0010_000_[lsb]2. The lsb of the address byte indicates the direction of the message.  
If the lsb is set high then the master will read data from the slave and if the lsb is reset low then the master will write  
data to the slave. After the  
bit is sampled, the data direction cannot be changed, until the next address byte with  
r,~w  
a new  
bit is received.  
r,~w  
The byte following the address byte contains the address of the first data byte (also referred to as the  
). The  
index  
serial interface can address up to 128, byte registers. If the msb of the second byte is set the automatic increment  
feature of the address index is selected.  
27/54  
CD5404-6404F-A  
VV5404 & VV6404  
Sensor acknowledges valid address  
[0]  
Acknowledge from slave  
DATA[7:0]  
A
S
address  
A
A
address[7:1]  
0 0 1 0 0 0 0  
INC  
INDEX[6:0]  
R
Auto increment  
Index bit  
/W bit  
DATA[7:0]  
A
P
Figure 18 : Serial Interface Data Format  
5.4 Message Interpretation  
All serial interface communications with the sensor must begin with a  
condition. If the  
condition is followed  
start  
start  
by a valid address byte then further communications can take place. The sensor will acknowledge the receipt of a  
valid address by driving the wire low. The state of the bit (lsb of the address byte) is stored and the  
sda  
next byte of data, sampled from  
read/~write  
can be interpreted.  
sda,  
During a write sequence the second byte received is an address index and is used to point to one of the internal  
registers. The msbit of the following byte is the flag. If this flag is set then the serial interface will  
index auto increment  
automatically increment the index address by one location after each slave acknowledge. The master can therefore  
send data bytes continuously to the slave until the slave fails to provide an acknowledge or the master terminates the  
write communication with a  
condition or sends a  
,
. If the auto increment feature is used the  
stop  
have to send indexes to accompany the data bytes.  
repeated start (Sr)  
master does  
not  
As data is received by the slave it is written bit by bit to a serial/parallel register. After each data byte has been  
received by the slave, an acknowledge is generated, the data is then stored in the internal register addressed by the  
current index.  
During a read message, the current index is read out in the byte following the device address byte. The next byte read  
from the slave device are the contents of the register addressed by the current index. The contents of this register  
are then parallel loaded into the serial/parallel register and clocked out of the device by  
scl.  
At the end of each byte, in both read and write message sequences, an acknowledge is issued by the receiving  
device. Although VV5404 and VV6404 is always considered to be a slave device, it acts as a transmitter when the  
bus master requests a read from the sensor.  
At the end of a sequence of incremental reads or writes, the terminal index value in the register will be one  
greater  
the last location read from or written to. A subsequent read will use this index to begin retrieving data from the internal  
registers.  
A message can only be terminated by the bus master, either by issuing a stop condition, a repeated start condition  
or by a negative acknowledge after reading a complete byte during a read operation.  
28/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.5 The Programmers Model  
There may be up to 128, 8-bit registers within the camera, accessible by the user via the serial interface. They are  
grouped according to function with each group occupying a 16-byte page of the location address space. There may  
be up to eight such groups, although this scheme is purely a conceptual feature and not related to the actual hardware  
implementation, The primary categories are given below:  
Status Registers (Read Only).  
Setup registers with bit significant functions.  
Exposure parameters that influence output image brightness.  
System functions and analogue test bit significant registers.  
Any internal register that can be written to can also be read from. There are a number of read only registers that  
contain device status information, (e.g. design revision details).  
Names that end with H or L denote the most or least significant part of the internal register. Note that unused locations  
in the H byte are packed with zeroes.  
STMicroelectronics sensors that include a 2-wire serial interface are designed with a common address space. If a  
register parameter is unused in a design, but has been allocated an address in the generic design model, the location  
is referred to as  
. If the user attempts to read from any of these  
locations a default byte will be  
reserved  
reserved  
read back. In VV6404 this data is the LSByte of the device status word, address 000_0000. A write instruction to a  
reserved (but unused) location is illegal and would not be successful as the device would not allocate an internal  
register to the data word contained in the instruction.  
29/54  
CD5404-6404F-A  
VV5404 & VV6404  
A detailed description of each register follows. The address indexes are shown as binary numbers in brackets [].  
Index  
Name  
Length R/W  
Default  
Comments  
000_0000 deviceH  
000_0001 deviceL  
000_0010 status0  
000_0011 line_countH  
000_0100 line_countL  
000_0101 Unused  
000_011x Unused  
000_1xxx Unused  
001_0000 setup0  
001_0001 setup1  
001_0010 setup2  
8
8
8
8
8
RO  
RO  
RO  
RO  
RO  
0001 10012 Chip identification number  
including revision indicator  
0100 00002  
0000 10002  
Current line counter MSB value  
Current line counter LSB value  
8
8
8
R/W 0001 00012  
R/W 1100 00012  
R/W  
31  
Contains pixel counter reset  
value used by external sync.  
001_0011 Reserved  
001_0100 setup4  
001_0101 setup5  
001_011x Unused  
001_1xxx Unused  
010_0000 fineH  
8
8
R/W  
R/W  
0
0
FST and QCK mode selects  
FST and QCK mapping mode.  
8
8
8
8
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
Fine exposure.  
010_0001 fineL  
010_0010 coarseH  
010_0011 coarseL  
010_0100 gain  
302  
Coarse exposure  
0
0
ADC Pre-amp gain Setting  
Clock division  
010_0101 clk_div  
010_0110 Unused  
010_0111 Unused  
010_1xxx Unused  
111_0000 Reserved  
111_0001 Reserved  
111_0010 Reserved  
111_0011 Unused  
111_0100 Reserved  
111_0101 Reserved  
111_0110 cr  
8
8
R/W 0000 00002 Control Register  
111_0111 as0  
R/W 0100 01002 ADC Setup Register  
111_1000 Reserved  
111_1001 Unused  
111_101x Unused  
111_11xx Unused  
Table 8 : Serial Interface Address Map.  
30/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.5.1 DeviceH [000_0000 ] and DeviceL [000_ 0001 ]  
2
2
These registers provide read only information that identifies the sensor type that has been coded as a 12bit number  
and a 4bit mask set revision identifier. The device identification number for VV6404 is 404 i.e. 0001 1001 01002. The  
initial mask revision identifier is 0 i.e. 00002.  
Bits  
Function  
Default  
Comment  
7:0  
Device type identifier  
0001 10012 Most significant 8 bits of the 12 bit code identifying  
the chip type.  
Table 9 : DeviceH [000_0000 ]  
2
Bits  
Function  
Default  
Comment  
7:4  
Device type identifier  
01002  
Least significant 4 bits of the 12 bit code identifying  
the chip type.  
3:0  
Mask set revision identifier  
00002  
Table 10 : DeviceL [000_0001 ]  
2
5.5.2 Status0 [000_00102]  
Bit  
Function  
Default  
Comment  
0
Exposure value update pending  
Gain value update pending  
Clock divisor update pending  
Black cal fail flag  
0
0
0
0
Exposure sent but not yet consumed by the  
exposure controller  
1
2
3
Gain value sent but not yet consumed by the  
exposure controller  
Clock divisor sent but not yet consumed by the  
exposure controller  
If the black calibration has failed this flag will be  
raised. It will stay active until the last line of the  
next  
black calibration.  
successful  
4
Odd/even frame  
Unused  
1
The flag will toggle state on alternate frames  
7:5  
000  
Table 11 : Status0 [000_0010 ]  
2
5.5.3 Line_count_H [000_00112] & Line_count_L [000_01002]  
Register  
Index  
Bits  
Function  
Default  
Comment  
000_00112  
000_01002  
7:0  
7:0  
Current line count MSB  
Current line count LSB  
-
-
Displays current line count  
Table 12 : Current Line Counter Value.  
31/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.5.4 Setup0 [001_00002]  
Bit  
Function  
Default  
Comment  
0
Low Power Mode:  
/On  
1
Powers down the sensor array. The output  
databus goes to FH. On power-up the sensor  
enters low power mode.  
Off  
1
2
Sleep Mode:  
/On  
0
0
1
0
Puts the sensor array into reset. The output  
databus goes to FH.  
Off  
Soft Reset  
/On  
Setting this bit resets the sensor to its power-up  
defaults. This bit is also reset.  
Off  
Frame Rate select:  
25 fps or  
3
30 fps  
Tri-state output data bus  
4
On power up the data output pads D[3:0] are  
enabled by default.  
/Tristate  
Outputs Enabled  
7:5  
unused  
Table 13 : Setup0 [001_0000 ]  
2
5.5.5 Setup1 [001_00012]  
Bit  
Function  
Default  
Comment  
1:0  
Black calibration mode selection  
10  
Black calibration trigger selection. Default  
setting bases decision on result of monitor  
test. See table below  
2
3
reserved  
Enable immediate clock division  
0
0
Allow manual change to clock division to be  
applied immediately  
update.  
/On  
Off  
4
Enable immediate gain update.  
/On  
Allow manual change to gain to be applied  
immediately  
Off  
Enable additional black lines (lines  
3-9) /On  
5
6
0
1
If enabled this bit will also enable the line  
immediately following the end of frame line  
Off  
Border rows and columns:  
Masked or  
These extra pixels/rows are used in colour  
processing  
Output  
Pixel read-out order:  
Unshuffled or  
7
1
It is strongly recommended to use shuffled  
read-out.  
Shuffled  
Table 14 : Setup1 [001_0001 ]  
2
32/54  
CD5404-6404F-A  
VV5404 & VV6404  
Black Cal Mode[1] Black Cal Mode[0]  
Comment  
0
0
1
0
1
0
No black calibration  
trigger black calibration  
Always  
Black calibration triggered by a  
monitor test  
failed  
1
1
Trigger black calibration only if the gain  
setting changes  
Table 15 : Black Calibration Mode  
If the gain change trigger option has been selected then care should be taken when writing the new gain value the  
if  
option has been selected. It is strongly advised that the user should  
write a new gain  
not  
immediate gain update  
value between line 0 (the status line) and line 9 (the last black calibration line). If the gain values are written in a timed  
manner then no restriction applies.  
5.5.6 Setup2 [001_00102]  
Bit  
Function  
Default  
Comment  
5:0  
Pixel counter reset value  
31  
For proper synchronisation this regis-  
ter should be written with the value 30.  
NOTE:  
7:6  
Unused  
Table 16 : Setup2[001_0010 ]  
2
5.5.7 Setup4 [001_01002]  
Bit  
Function  
Default  
Comment  
1:0  
3:2  
5:4  
7:6  
FST/QCK pin modes  
QCK modes  
0
0
0
0
Selection of FST, QCK pin data  
When to output QCK  
Reserved  
reserved for LST modes in other sensors  
FST modes  
Table 17 : Setup4[001_0100 ]  
2
FST/QCK pin mode[1:0]  
FST pin  
QCK pin  
0
0
1
1
0
1
0
1
FST  
FST  
Slow QCK  
Fast QCK  
Slow QCK  
Fast QCK  
Fast QCK  
Invert of Fast QCK  
Table 18 : FST/QCK Pin Selection  
33/54  
CD5404-6404F-A  
VV5404 & VV6404  
QCK mode[1:0]  
QCK state  
0
0
1
0
Off  
0
1
Free Running  
Valid during data and control period of line  
note)  
(see  
1
1
Valid only during data period of line  
Table 19 : QCK Modes  
Note: Not currently verified. Contact STMicroelectronics for further information if this mode is to be used.  
FST mode[1:0]  
FST state  
0
0
1
1
0
1
0
1
Off  
On - qualifies the status line  
Reserved  
Unallocated  
Table 20 : FST Modes  
The option to enable the qclk during the data and control period of the line  
must not be selected if monochrome  
(shuffled or unshuffled) video has been selected.  
5.5.8 Setup5 [001_01012]  
It is important to note that although the output buffer driver strengths can be selected by writing to this register the  
programmed values  
be read back by the serial interface.  
cannot  
Bit  
Function  
Default  
Comment  
0
Map serial interface register bits  
0
values on to the QCK and FST pins  
/On  
Off  
1
2
Serial Interface Bit for QCK pin  
Serial Interface Bit for FST pin  
Output driver strength select  
Output driver strength select  
Unused  
0
0
1
0
0
3
Default setting selects 4mA driver  
Default setting selects 4mA drivers  
4
7:5  
Table 21 : Setup4[001_0101 ]  
2
Mapping Enable  
FST pin  
QCK pin  
0
1
FST  
QCK  
su5[2]  
su5[1]  
Table 22 : FST/QCK Pin Selection  
34/54  
CD5404-6404F-A  
VV5404 & VV6404  
oeb_composite  
su5[4]  
su5[3]  
Comments  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
Drive strength = 2mA  
Default drive strength = 4mA  
Drive strength = 6mA  
unallocated  
Outputs are not being driven therefore  
driver strength is irrelevant  
Table 23 : Output driver strength selection  
5.5.9 Exposure Control Registers [010_00002] - [010_10012]  
There is a set of programmable registers which controls the sensitivity of the sensor. The registers are as follows:  
1. Fine exposure.  
2. Coarse exposure time.  
3. Gain.  
4. Clock division.  
The gain parameter does not affect the integration period rather it amplifies the video signal at the output stage of the  
sensor core.  
The external exposure (coarse, fine, clock division or gain) values do not take effect immediately. Data from  
Note:  
the serial interface is read by the exposure algorithm at the start of a video frame. If the user reads an exposure value  
via the serial interface then the value reported will be the data as yet unconsumed by the exposure algorithm, because  
the serial interface logic locally stores all the data written to the sensor.  
Between writing the exposure data and the point at which the data is consumed by the exposure logic, bit 0 of the  
status register is set. The gain value is updated a frame later than the coarse, fine and clock division parameters,  
since the gain is applied directly at the video output stage and does not require the long set up time of the coarse and  
fine exposure and the clock division.  
To eliminate the possibility of the sensor array seeing only part of the new exposure and gain setting, if the serial  
interface communications extends over a frame boundary, the internal re-timing of exposure and gain data is disabled  
while writing data to any location in the Exposure page of the serial interface register map. Thus if the 5 bytes of  
exposure and gain data is sent as an auto-increment sequence, it is not possible for the sensor to consume only part  
of the new exposure and gain data.  
The range of some parameter values is limited and any value programmed out-with this range will be clipped to the  
maximum allowed.  
35/54  
CD5404-6404F-A  
VV5404 & VV6404  
Register  
Index  
Bits  
Function  
Default  
Comment  
010_00002  
010_00012  
010_00102  
010_00112  
010_01002  
7:0  
7:0  
7:0  
7:0  
2:0  
Fine MSB exposure value  
Fine LSB exposure value  
Coarse MSB exposure value  
Coarse LSB exposure value  
Gain value  
0
Maximum mode dependent: 360  
(30fps) / 438 (25 fps)  
302  
0
Maximum: 302  
000: Gain = 1  
001: Gain = 2  
011: Gain = 4  
111: Gain = 8  
010_01012  
1:0  
Clock divisor value  
0
00: Pixel clock = CLKI clock/2  
01: Pixel clock = CLKI clock/4  
10: Pixel clock = CLKI clock/8  
11: Pixel clock = CLKI clock/16  
Table 24 : Exposure, Clock Rate and Gain Registers  
Bit  
Function  
Default  
Comment  
0
1
2
Standby  
/On  
0
Powers down ALL analogue circuitry  
Off  
Power Down - ADC  
/On  
0
0
Off  
Power Down - ADC Top Reference  
/On  
Off  
5:3  
7:6  
Reserved  
Unused  
Table 25 : Control Register CR [111_0110 ]  
2
Notes:  
1. The enable signal enabling the external ADC functionality is the logical OR of CR0[0] bit and the invert of the  
ADCVDD pin.  
2. The low-power select signal for the analogue circuitry is the logical OR of PD0[0] and Setup0[0].  
36/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.5.10 ADC Setup Register AS0 [111_01112]  
Bit  
Function  
Default  
Comment  
1:0  
ADC Clock Fine Delay Setting  
00  
00: Clock Delay = 0 ns (Default)  
01: Clock Delay = 4 ns  
/ 4 ns / 8 ns / 16 ns  
0 ns  
10: Clock Delay = 8 ns  
11: Clock Delay = 16 ns  
3:2  
5:4  
7:6  
ADC Clock Phase Delay Setting  
0 / / 180 / 270  
01  
00  
1
00: Phase Delay = 0  
°
01: Phase Delay = 90 (Default)  
° 90°  
°
°
°
10: Phase Delay = 180  
11: Phase Delay = 270  
°
°
PCK Clock Fine Delay Setting  
/ 4 ns / 8 ns / 16 ns  
00: Clock Delay = 0 ns (Default)  
01: Clock Delay = 4 ns  
0 ns  
10: Clock Delay = 8 ns  
11: Clock Delay = 16 ns  
Reserved  
Table 26 : ADC Setup Register AS0 [111_0111 ]  
2
37/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.6 Types of messages  
This section gives guidelines on the basic operations to read data from and write data to the serial interface.  
The serial interface supports variable length messages. A message may contain no data bytes, one data byte or many  
data bytes. This data can be written to or read from common or different locations within the sensor. The range of  
instructions available are detailed below.  
Write no data byte, only sets the index for a subsequent read message.  
Single location multiple data write or read for monitoring (real time control)  
Multiple location, multiple data read or write for fast information transfers.  
Examples of these operations are given below. A full description of the internal registers is given in the previous  
section. For all examples the slave address used is 3210 for writing and 3310 for reading. The write address includes  
the read/write bit (the lsb) set to zero while this bit is set in the read address.  
5.6.1 Single location, single data write.  
When a random value is written to the sensor, the message will look like this:  
Device  
address  
Stop  
Ack  
Index  
Data  
Start  
S
32  
A 0  
32  
A
85  
10  
A
P
10  
10  
Figure 19 : Single location, single write.  
In this example, the  
inc  
exposure register (index = 32 ) is set to 85 . The r/w bit is set to zero for writing and the  
10 10  
fineH  
bit (msbit of the index byte) is set to zero to disable automatic increment of the index after writing the value. The  
address index is preserved and may be used by a subsequent read. The write message is terminated with a stop  
condition from the master.  
5.6.2 Single location, single data read.  
A read message always contains the index used to get the first byte.  
Device  
address  
Stop  
Ack  
Index  
Data  
Start  
S
33  
A 0  
32  
A
85  
10  
A
P
10  
10  
Figure 20 : Single location, single read.  
This example assumes that a write message has already taken place and the residual index value is 3210. A value of  
8510 is read from the exposure register. Note that the read message is terminated with a negative acknowledge  
fineH  
(A) from the master: it is not guaranteed that the master will be able to issue a stop condition at any other time during  
a read message. This is because if the data sent by the slave is all zeros, the  
stop condition.  
line cannot rise, which is part of the  
sda  
5.6.3 No data write followed by same location read.  
When a location is to be read, but the value of the stored index is not known, a write message with no data byte must  
be written first, specifying the index. The read message then completes the message sequence. To avoid  
relinquishing the serial to bus to another master a repeated start condition is asserted between the write and read  
messages. In this example, the  
value (index = 36 ) is read as 15 :  
gain  
10 10  
38/54  
CD5404-6404F-A  
VV5404 & VV6404  
No data write  
Read index and data  
36  
A
A
32  
A
33  
15  
10  
A P  
S
36  
Sr  
A
0
0
10  
10  
10  
10  
Figure 21 : No data write followed by same location read.  
As mentioned in the previous example, the read message is terminated with a negative acknowledge (A) from the  
master.  
5.6.4 Same location multiple data write.  
It may be desirable to write a succession of data to a common location. This is useful when the status of a bit,(e.g.  
requesting a new black calibration), must be toggled.  
The message sequence indexes  
register. If bit 1 is toggled low, high low this will initiate a fresh black  
setup1  
calibration. This is achieved by writing three consecutive data bytes to the sensor. There is no requirement to re-send  
the register index before each data byte.  
Toggle “Force Black Cal.”.  
Write  
setup1  
17  
S
32  
A 0  
A
0
A
2
A
0
10  
A P  
10  
10  
10  
10  
Turn off ABC  
Figure 22 : Same location multiple data write.  
5.6.5 Same location multiple data read  
When an exposure related value (  
gain  
the other exposure parameters). To signal the consumption of the written value, a flag is set when any of the exposure  
or gain registers are written and is reset at the start of the next frame. This flag appears in register and may  
,
) is written, it takes effect on the  
fineH, fineL, coarseH, coarse L gain or clk_div  
output at the beginning of the next video frame, (remember that the application of the  
value is a frame later than  
status0  
be monitored by the bus master. To speed up reading from this location, the sensor will repeatedly transmit the current  
value of the register, as long as the master acknowledges each byte read.  
In the next example, a  
exposure value of 0 is written, the status register is addressed (no data byte) and then  
fineH  
constantly read until the master terminates the read message.  
Write  
with zero  
Address the status0 reg.  
fineL  
S
32  
A 0 33  
A
0
A Sr 32  
A
0
A
10  
10  
10  
10  
Read continuously...  
Sr 33  
A 0  
0
A
1
A
1
A
1
A
10  
10  
...until flag reset  
1
A
0
A P  
Figure 23 : Same location multiple data read.  
39/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.6.6 Multiple location write  
If the automatic increment bit is set, (msb of the index byte), then it is possible to write data bytes to consecutive  
adjacent internal registers without having to send explicit indexes prior to sending each data byte. An auto-increment  
write to the black calibration DAC registers with their default values is shown in the following example.  
.
Incremental write  
S
32  
A 1 113  
A
128  
A
128  
16  
A P  
10  
10  
16  
Figure 24 : Multiple location write.  
5.6.7 Multiple location read  
In the same manner, multiple locations can be read with a single read message. In this example the index is written  
first, to ensure the exposure related registers are addressed and then all six are read  
No data write  
A 1 32  
Incremental read  
A 1 32  
S
32  
A Sr  
33  
A
A
fineH  
10  
10  
10  
10  
Incremental read  
A
A
A
A
A P  
fineL  
coarseH  
coarseL  
gain  
clk_div  
Figure 25 : Multiple location read.  
Note that a stop condition is not required after the negative acknowledge from the master.  
40/54  
CD5404-6404F-A  
VV5404 & VV6404  
5.7 Serial Interface Timing  
stop start  
start  
stop  
SDA  
...  
...  
tbuf  
tlow tr  
tf  
thd;sta  
SCL  
thd;sta  
thd;dat  
thigh  
tsu;dat  
tsu;sta  
tsu;sto  
all values referred to the minimum input level (high) = 3.5V, and maximum input level (low) = 1.5V  
Figure 26 : Serial Interface Timing Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Unit  
SCL clock frequency  
fscl  
tbuf  
0
2
100  
-
kHz  
us  
Bus free time between a  
start  
and a  
stop  
start  
Hold time for a repeated  
LOW period of SCL  
HIGH period of SCL  
thd;sta  
tlow  
80  
320  
160  
80  
0
-
us  
us  
us  
us  
us  
ns  
ns  
ns  
us  
pF  
-
thigh  
tsu;sta  
thd;dat  
tsu;dat  
tr  
-
Set-up time for a repeated  
Data hold time  
-
start  
-
Data Set-up time  
0
-
300 (note1)  
300 (note1)  
-
Rise time of SCL, SDA  
Fall time of SCL, SDA  
-
tf  
-
Set-up time for a  
tsu;sto  
Cb  
80  
-
stop  
Capacitive load of each bus line (SCL,  
SDA)  
200  
Table 27 : Serial Interface Timing Characteristics  
NOTE 1: With 200pF capacitive load. It is recommended that pull-up resistors of 2.2k - 4.7k are fitted to both SDA  
and SCL lines.  
41/54  
CD5404-6404F-A  
VV5404 & VV6404  
6. Clock Signal  
VV5404 and VV6404 generate a system clock when a quartz crystal or ceramic resonator circuit is connected to the  
CLKI and CLKO pins. The device can also be driven directly from an external clock source driving CLK.  
If CLKI is generated for the video sensor by the receiving device it must be active during serial interface  
communications for at least 16 clock cycles before the serial communications start bit and for at least 16 cycles after  
the serial communications stop bit.  
The synchronisation input, SIN, synchronises the clock divider logic in addition to the main clock generation and the  
video timing control block.  
.
VV5/6404  
VV5/6404  
Clock  
Source  
31  
31  
C1  
CLKI  
CLKI  
CMOS  
Driver  
R1  
X1  
CLK  
CLK  
CLOCK  
DIVISION  
CLOCK  
DIVISION  
CLKO  
CLKO  
R2  
C2  
32  
32  
R1 = 1 M  
R2 = 510  
C1 = C2 = 47 pF  
X1 = 14.31818 MHz  
Figure 27 : Camera Clock Sources  
For greater flexibility the input frequency can be divided by 2, 4, 8 or 16 to select the pixel clock frequency. The clock  
divisor serial register selects the input clock frequency divisor.  
The clock signal must be a square wave with a 50% (+/- 10%) mark:space ratio. Table 28 specifies the maximum and  
minimum pixel clock frequencies for the module. Table 29 and Table 29 specify the relationship between the input  
clock, CLKI, and the pixel clock frequency for the different settings of the sensor’s internal clock divider.  
MHz  
Minimum Pixel Rate  
Maximum Pixel Rate  
0.44744  
3.57954  
Table 28 : Maximum and Minimum Pixel Rates  
This translates into a maximum input clock frequency of 7.15909 MHz if a clock divisor of 2 is used (the default - Table  
29). Thus if a 14.31818 MHz crystal is used, only the 4, 8 and 16 clock divisors should be used (Table 29).  
42/54  
CD5404-6404F-A  
VV5404 & VV6404  
Clock Div Reg  
Pixel  
Divisor Frequency  
(MHz)  
Frame rate (fps)  
CLKI  
(MHz)  
Comments  
bit 1  
bit 0  
30 fps  
25 fps  
7.15909  
7.15909  
7.15909  
7.15909  
0
0
1
1
0
1
0
1
2
4
3.57954  
1.78977  
0.89489  
0.44744  
30.0  
15.0  
7.50  
3.75  
25.0  
12.5  
Default  
8
6.25  
16  
3.125  
Table 29 : Clock Divisors for an externally generated clock signal.  
Clock Div Reg  
Pixel  
Divisor Frequency  
(MHz)  
Frame rate (fps)  
CLKI  
(MHz)  
Comments  
bit 1  
bit 0  
30 fps  
25 fps  
14.31818  
14.31818  
14.31818  
14.31818  
0
0
1
1
0
1
0
1
2
4
7.15909  
3.57954  
1.78977  
0.89489  
Not Valid  
30.0  
15.0  
7.50  
25.0  
12.5  
6.25  
8
16  
Table 30 : Clock Divisors for a 14.31818 MHz Crystal  
6.8 Synchronising 2 or More Cameras  
A rising edge on the SIN pin re-synchronises the sensor’s internal video timing logic and clock generators to 5 pixels  
before the end of the start of frame control sequence in line 0 (assuming the Setup2 register has been programmed  
correctly with the value 30). By supplying an external timing signal to SIN, with a period equal to 2 frames (see Figure  
28), 2 or more cameras can be synchronised together.  
For proper synchronisation, the pixel counter register Setup2 must be written with 30, which will cause SIN to reset  
the video timing to 5 pixel periods before the end of the start of frame control sequence. SIN is sampled internally by  
the system clock, CKI. If all cameras are supplied with the same clock signal then the reset generated by SIN will  
synchronise all the cameras to the same point in time. However, if the cameras being synchronised are running at  
the same frequency but each camera has its own crystal, then there could be upto one system clock period of skew  
between the cameras. This skew will vary over time due to the slight mis-matches between frequencies of the different  
crystals.  
.
43/54  
CD5404-6404F-A  
VV5404 & VV6404  
Frame Format:  
1st Frame  
2nd Frame  
FST:  
(ii) Off  
(ii) On  
(iii) Sync input at SIN (if external synchronisation required))  
Start of Frame Line Format:  
Line Period (393 Pixel Periods - 30 fps, 471 Pixel Periods - 25 fps)  
37 (115) Pixels  
356 Pixels  
Status Information  
EAV  
33 (111) Pixels  
SAV  
EAV  
4 Pixels  
Synchronisation input (at SIN pin) from the master (e.g. video processor).  
1 Pixel Period  
Output of Slave 2 - Pixel Counter Reset Value = 30.  
EAV  
SAV  
Status Information  
EAV  
Figure 28 : Synchronisation Waveforms  
44/54  
CD5404-6404F-A  
VV5404 & VV6404  
7. Detailed specifications  
7.1 General  
Image Format  
Pixel Size  
356 x 292 pixels (CIF)  
12.0 x 11.0µm  
Array Format  
Exposure control  
CIF  
25000:1 (performed by co-processor)  
Sensor signal / Noise ratio  
Minimum illumination  
Supply Voltage  
46dB  
0.1 lux  
5.0v DC +/-5%  
48LCC  
Package type  
Operating Temp. range  
Serial interface frequency range  
Supply Voltage  
0oC - 40oC*  
0-100kHz  
5.0 V DC +/- 5%  
< 75 mA  
Supply Current  
Package type  
48BGA  
Table 31 : VV5407/6407 Specifications  
* Contact STMicroelectronics for information regarding increased temperature range  
7.2 DC characteristics  
Parameter  
Min.  
Max.  
Notes  
VIL  
VIH  
-0.5v  
0.3 x VDD  
VDD + 0.5v  
0.4V  
Guaranteed input low voltage  
Guaranteed input high voltage  
At max IOL for pad type  
0.7 x VDD  
VOL  
VOH  
2.4v  
VDD - 0.5v  
IOH = 100µA  
At max IOH for pad type  
TJ Junction Temp  
Internal Pullup resistor  
Internal Pulldown resistor  
0 deg C  
35kΩ  
100 deg C  
150kΩ  
35kΩ  
150kΩ  
Table 32 : VV5407/6407 DC Characteristics  
45/54  
CD5404-6404F-A  
VV5404 & VV6404  
8. Physical  
8.1 Pinout Diagram  
30 29 28 27 26 25 24 23 22 21 20 19  
CLKI  
CLKO  
QCK  
D[0]  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
(DNC)  
OEB/SCI  
RESETB  
SIN  
ADCVDD  
TopRef/ADCTop  
D[1]  
VDD3  
VSS3  
D[2]  
VV5/6404  
HOLDPIX  
ADCBot  
ADCVSS (*)  
VVSS  
48 pin LCC  
D[3]  
FST  
8
SDA  
SCL  
(DNC)  
7
VVDD  
43 44 45 46 47 48  
1
2
3
4
5
6
Figure 29 : Pinout  
(DNC) - Do not connect these pins  
(*) - Paddle connections  
46/54  
CD5404-6404F-A  
VV5404 & VV6404  
8.2 Signal Names  
Pin  
Name  
Type  
Description  
POWER SUPPLIES  
1
AVCC  
AGND  
DVDD  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
PWR  
PWR  
PWR  
GND  
GND  
GND  
Core analogue power and reference supplies.  
Core analogue ground and reference supplies.  
Core digital power.  
48  
43  
44  
6
DVSS/Dsub  
AVDD  
Core digital ground.  
Output stage power.  
5
AVSS  
Output stage ground.  
7
VVDD  
Analogue output buffer power.  
Analogue output buffer ground.  
ADC power.  
9
VVSS  
14  
10  
19  
30  
36  
20  
29  
37  
ADCVDD  
ADCVSS  
VDD1  
ADC ground.  
Digital padring & logic power.  
Digital padring & logic power.  
Digital padring & logic power.  
Digital padring & logic ground.  
Digital padring & logic ground.  
Digital padring & logic ground.  
VDD2  
VDD3  
VSS1  
VSS2  
VSS3  
ANALOGUE SIGNALS  
45  
46  
47  
2
VBLOOM  
VBLTW  
VBG  
OA  
OA  
OA  
OA  
Anti-blooming pixel reset voltage  
Bitline test white level reference  
Internally generated bandgap reference voltage 1.22V  
VCM/  
VREF2V5  
Common-mode input for OSA and Internally generated 2.5 V  
reference voltage.  
3
4
VRT  
IA  
Pixel reset voltage  
VCDSH  
AVO  
IA  
8
OA  
IA  
Analogue Test output  
11  
12  
13  
ADCbot  
HoldPix  
TopRef  
Bottom voltage reference for ADC  
Not for Customer use  
IA  
OA  
Internally generally top voltage reference for ADC  
47/54  
CD5404-6404F-A  
VV5404 & VV6404  
Pin  
Name  
Type  
Description  
DIGITAL CONTROL SIGNALS  
18  
15  
16  
SCE  
ID  
Test Pin  
SIN  
ID  
ID  
Frame timing reset (soft reset).  
System Reset. Active Low.  
RESETB  
SERIAL INTERFACE  
42  
41  
SCL  
SDA  
ID  
Serial bus clock (input only).  
BI  
Serial bus data (bidirectional, open drain).  
DIGITAL VIDEO INTERFACE  
39  
38  
35  
34  
D[3]  
D[2]  
D[1]  
D[0]]  
ODT  
Tristateable 4-wire output data bus. D[3] is the most significant bit.  
33  
40  
17  
QCK  
FST  
OEB  
ODT  
ODT  
Tristateable data qualification clock.  
Tristateable Frame start signal.  
Digital output (tristate) enable.  
ID  
SYSTEM CLOCKS  
31  
32  
CLKI  
ID  
Oscillator input.  
Oscillator output.  
CLKO  
OD  
Key  
A
Analogue Input  
D
Digital Input  
OA  
BI  
Analogue Output  
ID  
ID  
Digital input with internal pull-up  
Digital input with internal pull-down  
Digital Output  
Bidirectional  
BI  
Bidirectional with internal pull-up  
Bidirectional with internal pull-down  
OD  
BI  
ODT  
Tristateable Digital Output  
48/54  
CD5404-6404F-A  
VV5404 & VV6404  
8.3 48LCC Mechanical Dimensions  
49/54  
CD5404-6404F-A  
VV5404 & VV6404  
8.4 VV6404 Sensor Support Circuit Schematic Diagram  
DVDD/AVDD  
+5v DC  
C1  
C2  
C3  
0v  
C4  
AGND DGND  
19 30 36 1 43  
6
7 14  
20  
VSS1  
29  
37  
VSS2  
VSS3  
DVSS  
AVSS  
AGND  
VVSS  
ADCVSS  
D[3]  
IC1  
44  
5
(48 pin LCC)  
48  
9
10  
39  
38  
D[3]  
D[2]  
D[1]  
D[0]  
D[2]  
35  
34  
45  
11  
VV5/6404  
D[1]  
ADCbot  
C13  
C14  
C15  
C16  
D[0]  
12  
13  
VBLOOM  
Holdpix  
C4  
C5  
C6  
ADCtop/TopRef  
46  
VBLTW  
VBG  
33  
40  
47  
2
QCK  
FST  
VCM / VREF2V5  
VRT  
17  
16  
15  
OEB  
RESETB  
SIN  
3
AVDD  
C9  
C7  
R3  
R1  
R2  
4
VCDSH  
C10  
C8  
TP1  
31  
32 41 42  
DVDD  
CLKI  
SDA  
SCL  
R4  
R5  
C11  
C12  
8.5  
Sensor Support Circuit Component List  
50/54  
CD5404-6404F-A  
VV5404 & VV6404  
Component  
Part No. / Provisional Value  
Rating / Notes  
IC1  
C1  
VV6404A  
VVL camera chip (48 pin LCC)  
6V tant.  
10.0 F  
µ
C2-C3, C4-C6, C7-C8  
C9-C10  
0.1 F  
µ
10.0 F  
6V tant.  
µ
C11-C12  
C13-C14  
C15  
220pF(*)  
For 3m cable length  
0.1 F  
µ
4.7 F  
6V tant  
6V tant  
µ
C16  
10.0 F  
µ
TDB  
R1-R2  
Voltage divider such that TP1 =  
3.2v  
R3  
33  
R4-R5  
2k2  
Ω( )  
For 3m cable length  
Table 33 : PCB Component List  
Notes:  
1. Use surface mount components throughout.  
2. All ceramic capacitors are type COG.  
3. Keep nodes Supply and Ground pins low impedance and independent.  
4. Keep circuit components close to chip pins (especially de-coupling capacitors).  
5. EMC precautions will be required on D[3:0] if driving a longer cable.  
51/54  
CD5404-6404F-A  
VV5404 & VV6404  
9. Ordering Information  
Part Number  
Description  
Defect specification  
VV5404C001  
CIF resolution monochrome Digital  
CMOS Image Sensor, 48 pin LCC  
package  
zero defects  
VV6404C001  
CIF resolution Colour Digital CMOS  
Image Sensor, 48 pin LCC package  
zero defects  
VV6404C001-B2  
CIF resolution Colour Digital CMOS  
Image Sensor, 48 pin LCC package  
up to 36 defects  
for use when pixel  
defect correction is  
implemented  
STV5404E-001  
STV6404E-001  
Evaluation Kit for VV5404 sensor  
Evaluation Kit for VV6404 sensor  
N/A  
N/A  
52/54  
CD5404-6404F-A  
VV5404 & VV6404  
CD5404-6404F-A  
53/54  
VV5404 & VV6404  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics - All Rights Reserved  
.
asiapacific_sales@vvl.co.uk  
central_europe_sales@vvl.co.uk  
www.vvl.co.uk  
www.st.com  
france_sales@vvl.co.uk  
japan_sales@vvl.co.uk  
nordic_sales@vvl.co.uk  
southern_europe_sales@vvl.co.uk  
uk_eire_sales@vvl.co.uk  
usa_sales@vvl.co.uk  
®
VLSI VISION L  
IMITED  
A company of the ST Microelectronics Group  
54/54  
CD5404-6404F-A  

相关型号:

VV5410

Mono and Colour Digital Video CMOS Image Sensors
STMICROELECTR

VV5410C036

Mono and Colour Digital Video CMOS Image Sensors
STMICROELECTR

VV5430

Monochrome Analog Output CMOS Image Sensors
STMICROELECTR

VV5430C001

Monochrome Analog Output CMOS Image Sensors
STMICROELECTR

VV6300

Integrated CMOS Colour Image Sensor with on-chip ADC.
ETC

VV6404

Mono and Colour Digital Video CMOS Image Sensors
STMICROELECTR

VV6404C001

Mono and Colour Digital Video CMOS Image Sensors
STMICROELECTR

VV6404C001-B2

Mono and Colour Digital Video CMOS Image Sensors
STMICROELECTR

VV6410

DUAL-MODE DIGITAL CAMERA CHIPSET
STMICROELECTR

VV6410C036

DUAL-MODE DIGITAL CAMERA CHIPSET
STMICROELECTR

VV6411

DUAL-MODE DIGITAL CAMERA CHIPSET
STMICROELECTR

VV6411C036

DUAL-MODE DIGITAL CAMERA CHIPSET
STMICROELECTR