TSZ181H [STMICROELECTRONICS]

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers;
TSZ181H
型号: TSZ181H
厂家: ST    ST
描述:

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers

文件: 总26页 (文件大小:2027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSZ181H, TSZ182H  
Datasheet  
Automotive-grade, very high accuracy (25 µV), high bandwidth (3 MHz), high  
temperature (150 °C), zero-drift operational amplifiers  
Features  
AEC-Q100 qualified  
Very high accuracy and stability:  
25 µV max. offset voltage at 25 °C  
44 µV offset voltage over full temperature range  
SOT23-5  
SO8  
Rail-to-rail input and output  
Low supply voltage: 2.2 - 5.5 V  
Low power consumption: 1 mA max. at 5 V  
Gain bandwidth product: 3 MHz  
Extended temperature range: -40 to 150 °C  
Micropackage: SOT23-5, SO8  
Benefits:  
Higher accuracy without calibration  
Accuracy virtually unaffected by temperature change  
Applications  
High accuracy signal conditioning  
Current measurement  
Sensor signal conditioning  
Automotive  
Maturity status link  
TSZ181H, TSZ182H  
Related products  
Description  
For - 40/125 °C  
range  
The TSZ181H and TSZ182H are a single and dual operational amplifier, featuring  
very low offset voltages with virtually zero-drift versus temperature changes. The  
TSZ181H and TSZ182H offer rail-to-rail input and output, excellent speed/power  
consumption ratio, and 3 MHz gain bandwidth product, while consuming just 1 mA at  
5 V. The device operates over an extended range of -40 to +150°C and features an  
ultra-low input bias current. These features make the TSZ181H and TSZ182H ideal  
for high-accuracy high-bandwidth sensor interfaces for automotive environment.  
TSZ181, TSZ182  
DS13229 - Rev 2 - December 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
TSZ181H, TSZ182H  
Package pin connections  
1
Package pin connections  
Figure 1. Pin connections (top view)  
SOT23-5 (TSZ181H)  
SO8 (TSZ182H)  
DS13229 - Rev 2  
page 2/26  
 
 
TSZ181H, TSZ182H  
Absolute maximum ratings and operation conditions  
2
Absolute maximum ratings and operation conditions  
Table 1. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
V
Supply voltage (1)  
V
6
CC  
Differential input voltage (2)  
Input voltage (3)  
V
± V  
V
id  
CC  
V
(V -)-0.2 to (V +)+0.2  
V
in  
CC  
CC  
Input current (4)  
I
10  
mA  
°C  
°C  
in  
T
Storage temperature  
Junction temperature  
-65 to 150  
stg  
T
160  
125  
250  
4
j
SO8  
Thermal resistance junction to ambient (5)(6)  
R
th-ja  
°C/W  
kV  
SOT23-5  
Human body model (HBM) (7)  
ESD  
Charged device model (CDM) (8)  
1.5  
1. All voltage values, except differential voltage, are with respect to network ground terminal.  
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3.  
4. Input current must be limited by a resistor in series with the inputs.  
5. are typical values.  
6. Short-circuits can cause excessive heating and destructive dissipation.  
V
- V must not exceed 6 V, Vin must not exceed 6 V.  
CC in  
R
th  
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin  
combinations with other pins floating.  
8. Charged device model: all pins plus packages are charged together to the specified voltage and then discharged directly to  
ground.  
Table 2. Operating conditions  
Symbol  
Parameter  
Value  
2.2 to 5.5  
Unit  
V
V
Supply voltage  
CC  
V
(V -)-0.1 to (V +)+0.1  
Common mode voltage on input pins  
Operating free-air temperature range  
V
icm  
CC  
CC  
T
-40 to 150  
°C  
DS13229 - Rev 2  
page 3/26  
 
 
 
 
 
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
3
Electrical characteristics  
Table 3. Electrical characteristics (VCC+ = 2.2 V, VCC- = 0 V, Vicm = VCC/2, T = 25 °C, RL=10 kΩ connected to  
VCC/2, unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T=25 °C  
3.5  
35  
54  
V
Input offset voltage  
µV  
IO  
Tmin < T < Tmax  
Tmin < T < Tmax  
T = 25 °C  
Input offset voltage drift(1)  
|∆V /∆T|  
0.15  
200  
400  
400  
600  
µV/°C  
IO  
30  
60  
115  
130  
15  
10  
6
Input bias current(2)(V  
=V /2)  
I
IB  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
pA  
dB  
Input offset current(2) (V  
=V /2)  
I
IO  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
Common-mode rejection ratio(3)  
,
96  
90  
CMR1  
V
= 0 V to V , V =V /2, R >1 MΩ  
Tmin < T < Tmax  
T=25 °C  
ic  
CC  
OUT  
CC  
L
Large signal voltage gain,  
=0.5 V to (V - 0.5 V)  
112  
98  
A
vd  
V
Tmin < T < Tmax  
T=25 °C  
OUT  
CC  
High-level output voltage,  
= V - V  
40  
70  
30  
70  
V
OH  
V
Tmin < T < Tmax  
T = 25 °C  
OH  
CC  
OUT  
mV  
mA  
V
Low-level output voltage  
OL  
Tmin < T < Tmax  
T = 25 °C  
4
I
I
(V  
= V  
)
sink  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
2.37  
3.5  
1.9  
I
OUT  
4
(V  
=0 V)  
source  
OUT  
Tmin < T < Tmax  
T = 25 °C  
Supply current per channel,  
= V /2, R >1 MΩ  
0.7  
1
I
CC  
V
Tmin < T < Tmax  
1.2  
OUT  
CC  
L
AC performance  
Gain bandwidth product,  
R = 10 kΩ, C = 100 pF  
T = 25 °C  
1.6  
1.1  
2.3  
GBP  
MHz  
Tmin < T < Tmax  
L
L
Φ
Phase margin  
Gain margin  
59  
16  
degrees  
dB  
m
R = 10 kΩ, C =100 pF  
L
L
G
m
T=25 °C  
3
4.6  
Slew rate (4)  
Settling time  
S
V/µs  
ns  
R
Tmin < T < Tmax  
To 0.1%, Vin = 0.8 Vpp  
f = 1 kHz  
2.5  
t
500  
50  
s
en  
Equivalent input noise voltage density  
nV/√Hz  
f =10 kHz  
50  
en-pp  
Voltage noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
0.6  
120  
µVpp  
dB  
C
s
Channel separation  
DS13229 - Rev 2  
page 4/26  
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
T = 25 °C  
Tmin < T < Tmax  
Min. Typ. Max.  
Unit  
60  
Initialization time, G = 100(5)  
t
µs  
init  
100  
1. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the  
same temperature.  
2. Guaranteed by design.  
3. CMR is defined as 20xLOG(∆  
/∆ ).  
Vicm Vio  
4. Slew rate value is calculated as the average between positive and negative slew rates.  
5. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and output voltage  
stabilization.  
DS13229 - Rev 2  
page 5/26  
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Table 4. Electrical characteristics (VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, T = 25 °C, RL=10 kΩ connected to  
VCC/2, unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T = 25 °C  
2
30  
49  
V
Input offset voltage  
Input offset voltage drift(1)  
Input bias current (V =V /2)  
µV  
IO  
Tmin < T < Tmax  
Tmin < T < Tmax  
T = 25 °C  
|∆V /∆T|  
0.15  
200  
400  
400  
600  
µV/°C  
IO  
30  
60  
I
IB  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
pA  
Input offset current (2) (V  
=V /2)  
CC  
I
IO  
OUT  
Tmin < T < Tmax  
T = 25 °C  
Common-mode rejection ratio (3)  
,
104  
100  
120  
CMR1  
Vic=0 V to V , V =V /2, R >1 MΩ  
Tmin < T < Tmax  
T = 25 °C,  
CC  
OUT  
CC  
L
106  
104  
132  
Common-mode rejection ratio(3)  
=V /2, R >1 MΩ  
,
ic  
V
= 0 to V -1.8 V  
CC  
dB  
CMR2  
V
Tmin < T < Tmax,  
= 0 to V -2 V  
OUT  
CC  
L
V
ic  
CC  
Large signal voltage gain,  
=0.5 V to (V -0.5 V)  
T = 25 °C  
120  
110  
138  
16  
A
vd  
V
Tmin < T < Tmax  
T = 25 °C  
OUT  
CC  
High-level output voltage,  
= V - V  
40  
70  
30  
70  
V
OH  
V
Tmin < T < Tmax  
T = 25 °C  
OH  
CC  
OUT  
mV  
mA  
11  
V
Low-level output voltage  
OL  
Tmin < T < Tmax  
T = 25 °C  
10  
7.1  
6
15  
I
I
(V  
= V  
)
CC  
sink  
OUT  
Tmin < T < Tmax  
T = 25 °C  
I
OUT  
11  
(V  
=0 V)  
OUT  
source  
Tmin < T < Tmax  
T = 25 °C  
3.8  
Supply current per channel,  
= V /2, R >1 MΩ  
0.7  
1
I
CC  
V
Tmin < T < Tmax  
1.2  
OUT  
CC  
L
AC performance  
Gain bandwidth product,  
R =10 kΩ, C =100 pF  
T = 25 °C  
2
2.8  
GBP  
MHz  
Tmin < T < Tmax  
1.5  
L
L
Φ
Phase margin  
Gain margin  
56  
15  
degrees  
dB  
m
R = 10 kΩ, C = 100 pF  
L
L
G
m
T = 25 °C  
2.6  
2.1  
4.5  
Slew rate(4)  
Settling time  
SR  
V/µs  
ns  
Tmin < T < Tmax  
To 0.1%, Vin = 1.2 Vpp  
f=1 kHz  
t
550  
40  
s
e
n
Equivalent input noise voltage density  
nV/√Hz  
f = 10 kHz  
40  
en-pp  
Voltage noise  
f = 0.1 to 10 Hz  
f=1 kHz  
0.5  
120  
µVpp  
dB  
C
Channel separation  
s
DS13229 - Rev 2  
page 6/26  
 
TSZ181H, TSZ182H  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
T = 25 °C  
Tmin < T < Tmax  
Min. Typ. Max.  
Unit  
60  
Initialization time, G=100 (5)  
t
int  
µs  
100  
1. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the  
same temperature.  
2. Guaranteed by design.  
3. CMR is defined as 20xLOG(∆  
/∆ ).  
Vicm Vio  
4. Slew rate value is calculated as the average between positive and negative slew rates.  
5. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and output voltage  
stabilization.  
DS13229 - Rev 2  
page 7/26  
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Table 5. Electrical characteristics (VCC+ = 5 V, VCC- = 0 V, Vicm=VCC/2, T = 25 °C, RL=10 kΩ connected to  
VCC/2, unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
DC performance  
T = 25 °C  
1
25  
44  
V
Input offset voltage  
µV  
IO  
Tmin < T < Tmax  
Tmin < T < Tmax  
T = 25 °C  
Input offset voltage drift(1)  
Input bias current (2) (V  
|∆V /∆T|  
0.15  
200  
400  
400  
600  
µV/°C  
IO  
30  
60  
I
=V /2)  
IB  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
pA  
Input offset current (2) (V  
=V /2)  
I
IO  
OUT  
CC  
Tmin < T < Tmax  
T = 25 °C  
Common-mode rejection ratio(3)  
,
108 126  
106  
CMR1  
CMR2  
SVR1  
Vic=0 V to V , V =V /2, R >1 MΩ  
Tmin < T < Tmax  
T = 25 °C,  
CC  
OUT  
CC  
L
112  
110  
136  
Common-mode rejection ratio(3)  
V =0 V to V , V =V /2, R >1 MΩ  
,
ic  
V
= 0 to V -1.8 V  
CC  
Tmin < T < Tmax,  
ic  
CC  
OUT  
CC  
L
Vic = 0 to V -2 V  
CC  
Supply voltage rejection ratio  
=2.2 to 5.5 V, V =0 V, R >1 MΩ  
T = 25 °C  
105 123  
104  
dB  
V
Tmin < T < Tmax  
T=25 °C  
CC  
ic  
L
Large signal voltage gain,  
=0.5 V to (V - 0.5 V)  
120 144  
110  
A
vd  
V
OUT  
Tmin < T < Tmax  
CC  
V
V
V
=100 mVp, f=400 MHz  
=100 mVp, f=900 MHz  
=100 mVp, f=1800 MHz  
52  
RF  
RF  
RF  
52  
EMI rejection ratio(5)  
EMIRR  
72  
85  
18  
VRF=100 mVp, f=2400 MHz  
T=25 °C  
High-level output voltage,  
40  
70  
30  
70  
V
OH  
V
OH  
= V - V  
CC OUT  
Tmin < T < Tmax  
T = 25 °C  
mV  
mA  
13  
V
OL  
Low-level output voltage  
Tmin < T < Tmax  
T = 25 °C  
20  
14  
15  
9
29  
25  
I
(V  
= V  
)
CC  
sink  
OUT  
Tmin < T < Tmax  
T = 25 °C  
I
OUT  
I
(V  
=0 V)  
OUT  
source  
Tmin < T < Tmax  
T = 25 °C  
Supply current per channel,  
= V /2, R >1 MΩ  
0.8  
1
I
CC  
V
Tmin < T < Tmax  
1.2  
OUT  
CC  
L
AC performance  
T=25 °C  
2
3
Gain bandwidth product,  
R =10 kΩ, C =100 pF  
GBP  
MHz  
L
L
Tmin < T < Tmax  
1.5  
Φ
Phase margin  
Gain margin  
56  
15  
Degrees  
dB  
m
R =10 kΩ, C =100 pF  
L
L
G
m
Slew rate(6)  
T=25 °C  
2.9  
4.7  
SR  
V/µs  
DS13229 - Rev 2  
page 8/26  
 
TSZ181H, TSZ182H  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Tmin < T < Tmax  
Min. Typ. Max.  
Unit  
Slew rate(6)  
Settling time  
SR  
V/µs  
2.4  
600  
4
To 0.1%, Vin=1.5 Vpp  
To 0.01%, Vin=1 Vpp  
f = 1 kHz  
ns  
µs  
t
s
37  
e
n
Equivalent input noise voltage density  
nV/√Hz  
f = 10 kHz  
37  
en-pp  
Voltage noise  
f=0.1 to 10 Hz  
f = 100 Hz  
0.4  
135  
60  
µVpp  
dB  
C
Channel separation  
s
T = 25 °C  
Initialization time, G=100(7)  
t
µs  
init  
Tmin < T < Tmax  
100  
1. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the  
same temperature.  
2. Guaranteed by design  
3. CMR is defined as 20xLOG(∆  
/∆ ).  
Vicm Vio  
4. SVR is defined as 20xLOG(∆Vcc/∆ ).  
Vio  
5. EMIRR is defined as -20Log(VRF_Peak/∆ ), tested on the MiniSO8 package, RF injection on the IN- pin.  
Vio  
6. Slew rate value is calculated as the average between positive and negative slew rates.  
7. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and output voltage  
stabilization.  
DS13229 - Rev 2  
page 9/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 2. Supply current vs supply voltage  
Figure 3. Input offset voltage distribution at  
VCC = 5 V  
Figure 5. Input offset voltage distribution at  
VCC = 2.2 V  
Figure 4. Input offset voltage distribution at  
VCC = 3.3 V  
Figure 6. Input offset voltage distribution at  
VCC = 5 V, T = 150 °C  
Figure 7. Input offset voltage distribution at  
VCC = 5 V, T = -40 °C  
DS13229 - Rev 2  
page 10/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 8. Input offset voltage distribution at  
VCC=2.2 V, T = 150 °C  
Figure 9. Input offset voltage distribution at  
VCC=2.2 V, T = -40 °C  
Figure 11. Input offset voltage vs input common  
mode at VCC= 5 V  
Figure 10. Input offset voltage vs supply voltage  
Figure 12. Input offset voltage vs input common  
mode at VCC= 3.3 V  
Figure 13. Input offset voltage vs input common  
mode at VCC= 2.2 V  
DS13229 - Rev 2  
page 11/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 15. VOH vs supply voltage  
Figure 14. Input offset voltage vs temperature  
Figure 17. Output current vs output voltage at  
VCC = 5 V  
Figure 16. VOL vs supply voltage  
Figure 18. Output current vs. output voltage at  
VCC = 2.2 V  
Figure 19. Input bias current vs common-mode at  
VCC = 5 V  
DS13229 - Rev 2  
page 12/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 21. Output rail linearity  
Figure 20. Input bias current vs. temperature at  
VCC = 5 V  
Figure 22. Bode diagram at VCC=5 V  
Figure 23. Bode diagram at VCC=2.2 V  
Figure 24. Bode diagram at VCC=3.3 V  
Figure 25. Open loop gain vs frequency  
DS13229 - Rev 2  
page 13/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 27. Negative slew rate vs supply voltage  
Figure 26. Positive slew rate vs supply voltage  
Figure 29. Noise vs frequency  
Figure 28. Noise 0.1 – 10 Hz vs time  
Figure 31. Small signal VCC = 5 V  
Figure 30. Output overshoot vs load capacitance  
DS13229 - Rev 2  
page 14/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 33. Large signal VCC = 5 V  
Figure 32. Small signal VCC = 2.2 V  
Figure 34. Large signal VCC = 2.2 V  
Figure 35. Negative overvoltage recovery  
VCC = 2.2 V  
Figure 36. Positive overvoltage recovery VCC = 5 V  
Figure 37. Output impedance vs frequency  
DS13229 - Rev 2  
page 15/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 39. Settling time negative step (2 V to 0 V)  
Figure 38. Settling time positive step (-2 V to 0 V)  
at t=0  
Figure 40. Settling time positive step (-0.8 V to 0 V)  
Figure 41. Settling time negative step (0.8 V to 0 V)  
0
Figure 42. Maximum output voltage vs frequency  
Figure 43. Crosstalk vs frequency  
DS13229 - Rev 2  
page 16/26  
 
 
 
 
 
 
TSZ181H, TSZ182H  
Electrical characteristics  
Figure 44. PSSR vs frequency  
DS13229 - Rev 2  
page 17/26  
 
TSZ181H, TSZ182H  
Package information  
4
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
4.1  
SO8 package information  
Figure 45. SO8 package outline  
Table 6. SO-8 mechanical data  
mm  
Inches  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
1.75  
0.25  
Min.  
Max.  
0.069  
0.01  
A
A1  
A2  
b
0.1  
1.25  
0.28  
0.17  
4.8  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.15  
0.48  
0.23  
5
0.019  
0.01  
c
D
4.9  
6
0.193  
0.236  
0.154  
0.05  
0.197  
0.244  
0.157  
E
5.8  
6.2  
4
E1  
e
3.8  
3.9  
1.27  
h
0.25  
0.4  
0.5  
0.01  
0.02  
0.05  
L
1.27  
0.016  
L1  
k
1.04  
0.04  
0
8 °  
1 °  
8 °  
DS13229 - Rev 2  
page 18/26  
 
 
 
 
TSZ181H, TSZ182H  
SO8 package information  
mm  
Inches  
Typ.  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Max.  
ccc  
0.1  
0.004  
DS13229 - Rev 2  
page 19/26  
TSZ181H, TSZ182H  
SOT23-5 package information  
4.2  
SOT23-5 package information  
Figure 46. SOT23-5 package outline  
Table 7. SOT23-5 mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Typ.  
Max.  
0.057  
0.006  
0.051  
0.020  
0.008  
0.118  
A
A1  
A2  
B
0.90  
1.20  
0.035  
0.047  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
3.00  
1.75  
0.102  
0.059  
0.118  
0.069  
F
L
0.10  
0.60  
0.004  
0.024  
K
0 degrees  
10 degrees  
0 degrees  
10 degrees  
DS13229 - Rev 2  
page 20/26  
 
 
 
TSZ181H, TSZ182H  
Ordering information  
5
Ordering information  
Table 8. Ordering information  
Order code  
TSZ182HYDT (1)  
TSZ181HYLT (1)  
Package  
SO8  
Packing  
Marking  
TSZ182H  
K229  
Tape and reel  
SOT23-5  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 &  
Q002 or equivalent.  
DS13229 - Rev 2  
page 21/26  
 
 
 
TSZ181H, TSZ182H  
Revision history  
Table 9. Document revision history  
Date  
Version  
Changes  
20-Jan-2020  
1
Initial release.  
Added new part number TSZ181H and new Section 4.2 SOT23-5 package  
information  
09-Dec-2020  
2
Updated package figure on the cover page, Figure 1 and new order code in  
Table 8.  
DS13229 - Rev 2  
page 22/26  
 
 
TSZ181H, TSZ182H  
Contents  
Contents  
1
2
3
4
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Absolute maximum ratings and operation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1  
4.2  
SO8 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
DS13229 - Rev 2  
page 23/26  
TSZ181H, TSZ182H  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical characteristics (VCC+ = 2.2 V, VCC- = 0 V, Vicm = VCC/2, T = 25 °C, RL=10 kΩ connected to VCC/2, unless  
otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics (VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, T = 25 °C, RL=10 kΩ connected to VCC/2, unless  
otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics (VCC+ = 5 V, VCC- = 0 V, Vicm=VCC/2, T = 25 °C, RL=10 kΩ connected to VCC/2, unless  
otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SOT23-5 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
DS13229 - Rev 2  
page 24/26  
TSZ181H, TSZ182H  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Supply current vs supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 5 V, T = 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 5 V, T = -40 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC=2.2 V, T = 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage distribution at VCC=2.2 V, T = -40 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs input common mode at VCC= 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs input common mode at VCC= 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs input common mode at VCC= 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input offset voltage vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
VOH vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
VOL vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output current vs output voltage at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output current vs. output voltage at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs common-mode at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input bias current vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output rail linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC=5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC=2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Bode diagram at VCC=3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Open loop gain vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Positive slew rate vs supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Negative slew rate vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Noise 0.1 – 10 Hz vs time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Noise vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output overshoot vs load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small signal VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small signal VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Large signal VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Large signal VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Negative overvoltage recovery VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Positive overvoltage recovery VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output impedance vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Settling time positive step (-2 V to 0 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Settling time negative step (2 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Settling time positive step (-0.8 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Settling time negative step (0.8 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Maximum output voltage vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Crosstalk vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PSSR vs frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SO8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
DS13229 - Rev 2  
page 25/26  
TSZ181H, TSZ182H  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13229 - Rev 2  
page 26/26  

相关型号:

TSZ181HYLT

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers
STMICROELECTR

TSZ181ILT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ181IQ1T

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ181IYLT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182H

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers
STMICROELECTR

TSZ182HYDT

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers
STMICROELECTR

TSZ182IDT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182IQ2T

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182IST

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182IYDT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182IYST

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR