TSV522IST [STMICROELECTRONICS]

High merit factor (1.15 MHz for 45 μA) CMOS op amps; 高品质因数( 1.15 MHz的45 μA ) CMOS运算放大器
TSV522IST
型号: TSV522IST
厂家: ST    ST
描述:

High merit factor (1.15 MHz for 45 μA) CMOS op amps
高品质因数( 1.15 MHz的45 μA ) CMOS运算放大器

运算放大器
文件: 总27页 (文件大小:749K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSV521, TSV522, TSV524,  
TSV521A, TSV522A, TSV524A  
High merit factor (1.15 MHz for 45 µA) CMOS op amps  
Datasheet preliminary data  
Features  
Gain bandwidth product: 1.15 MHz typ. at 5 V  
Low power consumption: 45 µA typ. at 5 V  
Rail-to-rail input and output  
SC70-5  
Low input bias current: 1 pA typ.  
Supply voltage: 2.7 to 5.5 V  
Low offset voltage: 800 µV max.  
Unity gain stable on 100 pF capacitor  
Automotive grade  
DF  
N
8 2 x 2  
MiniSO8  
Benefits  
Increased lifetime in battery powered  
applications  
Easy interfacing with high impedance sensors  
Related products  
See TSV6x series for lower minimum supply  
voltage (1.5 V)  
QFN16 3 x 3  
TSSOP14  
See LMV82x series for higher gain bandwidth  
products (5.5 MHz)  
The TSV52x series offers an outstanding  
speed/power consumption ratio, 1.15 MHz gain  
bandwidth product while consuming only 45 µA at  
5 V. The devices are housed in the smallest  
industrial packages.  
Applications  
Battery powered applications  
Portable devices  
Automotive signal conditioning  
Active filtering  
These features make the TSV52x family ideal for  
sensor interfaces, battery supplied and portable  
applications. The wide temperature range and  
high ESD tolerance facilitate their use in harsh  
automotive applications.  
Medical instrumentation  
Description  
Table 1.  
Device summary  
The TSV52x series of operational amplifiers  
offers low voltage operation and rail-to-rail input  
and output. The TSV521 device is the single  
version, the TSV522 device the dual version, and  
the TSV524 device the quad version, with pinouts  
compatible with industry standards.  
Standard V  
TSV521  
TSV522  
TSV524  
Enhanced V  
TSV521A  
TSV522A  
TSV524A  
io  
io  
Single  
Dual  
Quad  
June 2012  
Doc ID 022743 Rev 1  
1/27  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
27  
Contents  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Contents  
1
2
3
4
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Common mode voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 15  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Package pin connections  
1
Package pin connections  
Figure 1.  
Pin connections for each package (top view)  
IN+  
VCC-  
IN-  
VCC+  
1
2
3
5
4
OUT  
TSV521  
SC70-5  
OUT1  
VCC+  
OUT2  
IN2-  
3
4
6
5
OUT1  
IN1-  
VCC+  
OUT2  
IN2-  
IN1-  
IN1+  
VCC-  
IN1+  
VCC-  
IN2+  
IN2+  
TSV522  
MiniSO8  
TSV522  
DFN8  
IN1+  
IN4+  
VCC-  
NC  
VCC+  
NC  
IN2+  
IN3+  
TSV524  
QFN16  
TSV524  
TSSOP14  
Doc ID 022743 Rev 1  
3/27  
Absolute maximum ratings and operating conditions  
TSV521, TSV522, TSV524, TSV521A,  
2
Absolute maximum ratings and operating conditions  
Table 2.  
Symbol  
Absolute maximum ratings (AMR)  
Parameter  
Value  
Unit  
(1)  
V
Supply voltage  
6
V
V
CC  
(2)  
V
Differential input voltage  
V
CC  
id  
in  
(3)  
V
Input voltage  
V
- 0.2 to V  
10  
+ 0.2  
CC+  
V
CC-  
(4)  
I
Input current  
mA  
°C  
in  
T
Storage temperature  
-65 to +150  
stg  
(5) (6)  
Thermal resistance junction-to-ambient  
,
SC70-5  
205  
57  
45  
190  
100  
DFN8 2 x 2  
QFN16 3 x 3  
MiniSO8  
R
°C/W  
thja  
TSSOP14  
T
Maximum junction temperature  
150  
4
°C  
kV  
V
j
(7)  
HBM: human body model  
(8)  
MM: machine model  
300  
(9)  
ESD  
CDM: charged device model  
1.5  
kV  
(all packages except SC70-5 and DFN8)  
(9)  
CDM: charged device model (SC70-5 and DFN8)  
Latch-up immunity  
1.3  
kV  
200  
mA  
1. All voltage values, except differential voltages are with respect to network ground terminal.  
2. Differential voltages are the non inverting input terminal with respect to the inverting input terminal.  
3. VCC - Vin must not exceed 6 V, Vin must not exceed 6 V.  
4. Input current must be limited by a resistor in series with the inputs.  
5. Short-circuits can cause excessive heating and destructive dissipation.  
6. Rth are typical values.  
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two  
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin  
combinations with other pins floating.  
9. Charged device model: all pins plus package are charged together to the specified voltage and then  
discharged directly to ground.  
Table 3.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
V
Supply voltage  
2.7 to 5.5  
V
V
CC  
V
Common mode input voltage range  
Operating free air temperature range  
V
- 0.1 to V  
+ 0.1  
CC+  
icm  
CC-  
T
-40 to +125  
°C  
oper  
4/27  
Doc ID 022743 Rev 1  
 
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Electrical characteristics  
3
Electrical characteristics  
Table 4.  
Electrical characteristics at V  
= +2.7 V with V  
= 0 V, V  
= V /2, T = 25 °C, and  
CC+  
CC-  
icm CC  
R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV52xA, T = 25 °C  
800  
2600  
1.5  
µV  
µV  
TSV52xA, -40 °C < T < 125 °C  
TSV52x, T = 25 °C  
V
Offset voltage  
io  
mV  
mV  
µV/°C  
pA  
TSV52x, -40 °C < T < 125 °C  
3.3  
(1)  
ΔV /ΔT Input offset voltage drift  
-40 °C < T < 125 °C  
3
1
18  
io  
(3)  
T = 25 °C  
10  
Input offset current  
I
io  
ib  
(3)  
(V = V /2)  
out  
CC  
-40° C < T < 125 °C  
T = 25 °C  
1
100  
pA  
(3)  
1
10  
pA  
Input bias current  
(V = V /2)  
I
(3)  
out  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
1
100  
pA  
Common mode rejection  
50  
46  
72  
ratio 20 log (ΔV /ΔV )  
ic  
io  
CMR  
dB  
dB  
V
V
= -0.1 V to V +0.1V,  
ic  
CC  
-40 °C < T < 125 °C  
= V /2, R = 1 MΩ  
out  
CC  
L
Large signal voltage gain  
V = 0.5 V to (V - 0.5V),  
out  
T = 25 °C  
90  
60  
105  
A
vd  
CC  
-40 °C < T < 125 °C  
R = 1 MΩ  
L
T = 25 °C  
-40 °C < T < 125 °C  
3
6
35  
50  
V
High level output voltage  
Low level output voltage  
mV  
mV  
OH  
T = 25 °C  
-40 °C < T < 125 °C  
35  
50  
V
OL  
V
= V , T = 25 °C  
12  
8
22  
out  
CC  
I
mA  
mA  
µA  
sink  
V
= V , -40 °C < T < 125 °C  
out  
CC  
I
I
out  
V
= 0 V, T = 25 °C  
12  
8
18  
out  
I
source  
V
= 0 V, -40 °C < T < 125 °C  
out  
T = 25 °C  
30  
30  
51  
51  
Supply current (per channel)  
= V /2, R > 1 MΩ  
CC  
V
out  
CC  
L
-40 °C < T < 125 °C  
AC performance  
GBP  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
R = 10 kΩ, C = 100 pF  
0.62  
1
900  
55  
7
MHz  
kHz  
L
L
F
R = 10 kΩ, C = 100 pF  
L L  
u
Φ
R = 10 kΩ, C = 100 pF  
degrees  
dB  
m
L
L
G
Gain margin  
R = 10 kΩ, C = 100 pF  
L L  
m
R = 10 kΩ, C = 100 pF,  
L
L
SR  
Slew rate  
0.74  
V/µs  
V
= 0.5 V to V - 0.5 V  
out  
CC  
Doc ID 022743 Rev 1  
5/27  
Electrical characteristics  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Table 4.  
Symbol  
Electrical characteristics at V  
= +2.7 V with V  
= 0 V, V  
= V /2, T = 25 °C, and  
CC+  
CC-  
icm CC  
R = 10 kΩ connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
nV  
Equivalent input noise  
voltage  
f = 1 kHz  
f = 10 kHz  
61  
43  
-----------  
e
n
Hz  
Follower configuration, f = 1 kHz,  
in  
Total harmonic distortion +  
noise  
THD+N  
R = 100 kΩ, V = V /2,  
0.003  
%
L
icm  
CC  
BW = 22 kHz, V = 1 V  
out  
pp  
Table 5.  
Symbol  
Electrical characteristics at V  
= +3.3 V with V  
= 0 V, V  
= V /2, T = 25 °C, and  
CC+  
CC-  
icm CC  
R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV52xA, T = 25 °C  
600  
2400  
1.3  
µV  
µV  
TSV52xA, -40 °C < T < 125 °C  
TSV52x, T = 25 °C  
V
Offset voltage  
io  
mV  
TSV52x, -40 °C < T < 125 °C  
3.1  
mV  
(1)  
ΔV /ΔT Input offset voltage drift  
-40 °C < T < 125 °C  
3
18  
µV/°C  
io  
μV  
month  
Long term input offset  
voltage drift  
(2)  
---------------------------  
ΔV  
T = 25 °C  
0.3  
io  
(3)  
T = 25 °C  
1
1
10  
pA  
Input offset current  
I
io  
ib  
(3)  
(V = V /2)  
out  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
100  
pA  
(3)  
1
10  
pA  
Input bias current  
(V = V /2)  
I
(3)  
out  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
1
100  
pA  
Common mode rejection  
51  
47  
73  
ratio 20 log (ΔV /ΔV )  
ic  
io  
CMR  
dB  
dB  
V
V
= -0.1 V to V +0.1 V,  
ic  
CC  
-40 °C < T < 125 °C  
= V /2, R = 1 MΩ  
out  
CC  
L
Large signal voltage gain  
V = 0.5 V to (V - 0.5 V),  
out  
T = 25 °C  
91  
63  
106  
A
vd  
CC  
-40 °C < T < 125 °C  
R = 1 MΩ  
L
T = 25 °C  
-40 °C < T < 125 °C  
3
7
35  
50  
V
High level output voltage  
Low level output voltage  
mV  
mV  
OH  
T = 25 °C  
-40 °C < T < 125 °C  
35  
50  
V
OL  
V
= V , T = 25 °C  
20  
17  
19  
17  
31  
out  
CC  
I
mA  
mA  
µA  
sink  
V
= V , -40 °C < T < 125 °C  
out  
CC  
I
out  
V
= 0 V, T = 25 °C  
27  
out  
I
source  
V
= 0 V, -40 °C < T < 125 °C  
out  
T = 25 °C  
32  
32  
55  
55  
Supply current (per channel)  
= V /2, R > 1 MΩ  
I
CC  
V
out  
CC  
L
-40 °C < T < 125 °C  
6/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Electrical characteristics  
Table 5.  
Symbol  
Electrical characteristics at V  
= +3.3 V with V  
= 0 V, V  
= V /2, T = 25 °C, and  
CC+  
CC-  
icm CC  
R = 10 kΩ connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC performance  
GBP  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
R = 10 kΩ, C = 100 pF  
0.64  
1
900  
55  
7
MHz  
kHz  
L
L
F
R = 10 kΩ, C = 100 pF  
L L  
u
Φ
R = 10 kΩ, C = 100 pF  
degrees  
dB  
m
L
L
G
Gain margin  
R = 10 kΩ, C = 100 pF  
L L  
m
R = 10 kΩ, C = 100 pF,  
L
L
SR  
Slew rate  
0.75  
V/μs  
V
= 0.5 V to V - 0.5 V  
out  
CC  
nV  
Equivalent input noise  
voltage  
f = 1 kHz  
f = 10 kHz  
60  
42  
-----------  
e
n
Hz  
Follower configuration, f = 1 kHz,  
in  
Total harmonic distortion +  
noise  
THD+N  
R = 100 kΩ, V = V /2,  
0.003  
%
L
icm  
CC  
BW = 22 kHz, V = 1 V  
out  
pp  
Table 6.  
Electrical characteristics at V  
= +5 V with V  
= 0 V, V  
= V /2, T = 25 °C,  
icm CC  
CC+  
CC-  
and R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSV52xA, T = 25 °C  
600  
2400  
1
µV  
µV  
TSV52xA, -40 °C < T < 125 °C  
TSV52x, T = 25 °C  
V
Offset voltage  
io  
mV  
TSV52x, -40 °C < T < 125 °C  
2.8  
18  
mV  
(1)  
ΔV /ΔT Input offset voltage drift  
-40 °C < T < 125 °C  
3
µV/°C  
io  
μV  
month  
Long term input offset  
voltage drift  
(2)  
---------------------------  
ΔV  
T = 25 °C  
0.7  
io  
(3)  
T = 25 °C  
1
1
10  
pA  
Input offset current  
I
I
io  
ib  
(3)  
(V = V /2)  
out  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
100  
pA  
(3)  
1
10  
pA  
Input bias current  
(V = V /2)  
(3)  
out  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
1
100  
pA  
Common mode rejection  
54  
50  
63  
58  
76  
ratio 20 log (ΔV /ΔV )  
ic  
io  
CMR1  
CMR2  
dB  
dB  
V
V
= -0.1 V to V +0.1 V,  
ic  
CC  
-40 °C < T < 125 °C  
T = 25 °C  
= V /2, R = 1 MΩ  
out  
CC  
L
Common mode rejection  
84  
ratio 20 log (ΔV /ΔV )  
ic  
io  
V
V
= 1 V to V -1 V,  
ic  
CC  
-40 °C < T < 125 °C  
= V /2, R = 1 MΩ  
out  
CC  
L
Doc ID 022743 Rev 1  
7/27  
Electrical characteristics  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Table 6.  
Symbol  
Electrical characteristics at V  
= +5 V with V  
= 0 V, V  
= V /2, T = 25 °C,  
icm CC  
CC+  
CC-  
and R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Supply voltage rejection  
T = 25 °C  
65  
87  
ratio 20 log (ΔV /ΔV )  
CC  
io  
SVR  
dB  
V
V
= 2.7 V to 5.5 V,  
CC  
out  
-40 °C < T < 125 °C  
60  
= V /2  
CC  
Large signal voltage gain  
= 0.5 V to (V - 0.5 V),  
T = 25 °C  
94  
68  
109  
A
V
dB  
vd  
out  
CC  
-40 °C < T < 125 °C  
R = 1 MΩ  
L
T = 25 °C  
-40 °C < T < 125 °C  
5
9
35  
50  
V
High level output voltage  
Low level output voltage  
mV  
mV  
OH  
T = 25 °C  
-40 °C < T < 125 °C  
35  
50  
V
OL  
V
= V , T = 25 °C  
36  
27  
36  
27  
55  
out  
CC  
I
I
mA  
mA  
µA  
sink  
V
= V , -40 °C < T < 125 °C  
out  
CC  
I
I
out  
V
= 0 V, T = 25 °C  
55  
out  
source  
V
= 0 V, -40 °C < T < 125 °C  
out  
T = 25 °C  
45  
45  
60  
60  
Supply current (per channel)  
= V /2, R > 1 MΩ  
CC  
V
out  
CC  
L
-40 °C < T < 125 °C  
AC performance  
GBP  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
R = 10 kΩ, C = 100 pF  
0.73  
1.15  
900  
55  
MHz  
kHz  
L
L
F
R = 10 kΩ, C = 100 pF  
L L  
u
Φ
R = 10 kΩ, C = 100 pF  
degrees  
dB  
m
L
L
G
Gain margin  
R = 10 kΩ, C = 100 pF  
7
m
L
L
R = 10 kΩ, C = 100 pF,  
L
L
SR  
Slew rate  
0.89  
14  
V/μs  
V
= 0.5 V to V - 0.5V  
out  
CC  
Low-frequency peak-to-  
peak input noise  
e  
Bandwidth: f = 0.1 to 10 Hz  
µV  
n
pp  
Equivalent input noise  
voltage  
f = 1 kHz  
f = 10 kHz  
57  
39  
nV  
-----------  
e
n
Hz  
Follower configuration, f = 1 kHz,  
in  
Total harmonic distortion +  
noise  
THD+N  
R = 100 kΩ, V = V /2,  
0.002  
%
L
icm  
CC  
BW = 22 kHz, V = 1 V  
out  
pp  
1. See Section 4.6: Input offset voltage drift over temperature on page 15.  
2. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
3. Guaranteed by design.  
8/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Electrical characteristics  
Figure 2.  
Supply current vs. supply voltage Figure 3.  
at V = V /2  
Input offset voltage distribution at  
V
= 5 V, V  
= 2.5 V  
icm  
CC  
CC  
icm  
ꢆꢂ  
ꢁꢇ  
ꢁꢂ  
6
DISTRIBUTION AT 4 ꢈ ꢆꢇ # FOR 6  
##  
ꢈ ꢇ 6ꢉ 6  
ꢈ ꢆꢊꢇ 6  
ICM  
IO  
ꢀꢁꢂꢂꢂ ꢀꢃꢂꢂ ꢀꢄꢂꢂ ꢀꢅꢂꢂ ꢀꢆꢂꢂ  
ꢆꢂꢂ ꢅꢂꢂ ꢄꢂꢂ ꢃꢂꢂ ꢁꢂꢂꢂ  
!-ꢂꢂꢅꢄꢁ  
Figure 4.  
Input offset voltage temperature  
coefficient distribution  
Figure 5.  
Input offset voltage vs. input  
common mode voltage at V = 5 V  
CC  
ꢆꢂꢂꢂ  
ꢁꢇꢂꢂ  
ꢁꢂꢂꢂ  
ꢇꢂꢂ  
6
ꢈ 6 ꢌꢆ  
ꢈ ꢇ 6  
ICM ##  
6
##  
4 ꢈ ꢁꢆꢇ #  
4 ꢈ ꢀꢅꢂ #  
ꢀꢇꢂꢂ  
ꢀꢁꢂꢂꢂ  
ꢀꢁꢇꢂꢂ  
ꢀꢆꢂꢂꢂ  
4 ꢈ ꢆꢇ #  
6
ꢈ ꢇꢊꢇ 6  
##  
ꢂꢊꢂ ꢂꢊꢇ ꢁꢊꢂ ꢁꢊꢇ ꢆꢊꢂ ꢆꢊꢇ ꢍꢊꢂ ꢍꢊꢇ ꢅꢊꢂ ꢅꢊꢇ ꢇꢊꢂ ꢇꢊꢇ  
ꢀꢆꢂ ꢀꢁꢃ ꢀꢁꢄ ꢀꢁꢅ ꢀꢁꢆ ꢀꢁꢂ ꢀꢃ ꢀꢄ ꢀꢅ ꢀꢆ  
ꢁꢂ ꢁꢆ ꢁꢅ ꢁꢄ ꢁꢃ ꢆꢂ  
6
ꢎ6ꢏ  
ICM  
!-ꢂꢂꢅꢄꢆ  
!-ꢂꢂꢅꢄꢍ  
Figure 6.  
Input offset voltage vs. temperature Figure 7.  
at V = 5 V  
Output current vs. output voltage at  
V
= 2.7 V  
CC  
CC  
ꢍꢂ  
ꢍꢂꢂꢂ  
4 ꢈ ꢆꢇ #  
,IMIT FOR 436ꢇꢆX!  
4 ꢈ ꢀꢅꢂ #  
ꢆꢇꢂꢂ  
ꢆꢂꢂꢂ  
ꢁꢇꢂꢂ  
ꢁꢂꢂꢂ  
ꢇꢂꢂ  
ꢆꢂ  
,IMIT FOR 436ꢇꢆ8  
4 ꢈ ꢁꢆꢇ #  
ꢁꢂ  
ꢀꢇꢂꢂ  
ꢀꢁꢂꢂꢂ  
ꢀꢁꢇꢂꢂ  
ꢀꢆꢂꢂꢂ  
ꢀꢆꢇꢂꢂ  
ꢀꢍꢂꢂꢂ  
4 ꢈ ꢁꢆꢇ #  
4 ꢈ ꢀꢅꢂ #  
ꢀꢁꢂ  
ꢀꢆꢂ  
ꢀꢍꢂ  
4 ꢈ ꢆꢇ #  
6
ꢈ ꢇ 6ꢉ 6  
ꢈ ꢆꢊꢇ 6  
##  
ICM  
6
ꢈ ꢆꢊꢐ 6  
##  
ꢀꢅꢂ  
ꢀꢆꢂ  
ꢆꢂ  
ꢅꢂ  
ꢄꢂ  
ꢃꢂ  
ꢁꢂꢂ ꢁꢆꢂ  
ꢂꢊꢂ ꢂꢊꢍ ꢂꢊꢇ ꢂꢊꢃ ꢁꢊꢂ ꢁꢊꢍ ꢁꢊꢇ ꢁꢊꢃ ꢆꢊꢂ ꢆꢊꢍ ꢆꢊꢇ  
/UTPUT VOLTAGE ꢎ6ꢏ  
!-ꢂꢂꢅꢄꢅ  
!-ꢂꢂꢅꢄꢇ  
Doc ID 022743 Rev 1  
9/27  
Electrical characteristics  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 8.  
Output current vs. output voltage at Figure 9.  
= 5.5 V  
Bode diagram at V  
= 2.7 V,  
CC  
V
R = 10 kΩ  
CC  
L
ꢍꢇꢂ  
ꢍꢂꢂ  
ꢆꢇꢂ  
ꢆꢂꢂ  
ꢁꢇꢂ  
ꢁꢂꢂ  
ꢇꢂ  
ꢐꢇ  
ꢇꢂ  
4 ꢈ ꢆꢇ #  
ꢅꢂ  
ꢆꢂ  
4 ꢈ ꢀꢅꢂ #  
4 ꢈ ꢀꢅꢂ #  
4 ꢈ ꢆꢇ #  
4 ꢈ ꢁꢆꢇ #  
4 ꢈ ꢁꢆꢇ #  
ꢆꢇ  
'AIN  
ꢀꢇꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢇꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢇꢂ  
ꢀꢍꢂꢂ  
ꢀꢍꢇꢂ  
ꢀꢆꢇ  
ꢀꢇꢂ  
ꢀꢐꢇ  
0HASE  
ꢈ ꢆꢊꢐ 6ꢉ 6 ꢊꢍꢇ 6ꢉ ' ꢈ ꢁꢂꢂ  
4 ꢈ ꢆꢇ #  
ꢀꢆꢂ  
ꢀꢅꢂ  
4 ꢈ ꢁꢆꢇ #  
6
ICM  
##  
ª
ꢉ # ꢈ ꢁꢂꢂ P& 6 ꢈ 6 ꢆ  
, RL ##  
6
ꢈ ꢇꢊꢇ 6  
##  
4 ꢈ ꢀꢅꢂ #  
ꢂꢊꢂ ꢂꢊꢇ ꢁꢊꢂ ꢁꢊꢇ ꢆꢊꢂ ꢆꢊꢇ ꢍꢊꢂ ꢍꢊꢇ ꢅꢊꢂ ꢅꢊꢇ ꢇꢊꢂ ꢇꢊꢇ  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
/UTPUT VOLTAGE ꢎ6ꢏ  
&REQUENCY ꢎK(Zꢏ  
!-ꢂꢂꢅꢄꢄ  
!-ꢂꢂꢅꢄꢐ  
Figure 10. Bode diagram at V  
= 2.7 V,  
Figure 11. Bode diagram at V  
= 5.5 V,  
CC  
CC  
R
= 2 kΩ  
R = 10 kΩ  
L
L
ꢍꢇꢂ  
ꢍꢂꢂ  
ꢆꢇꢂ  
ꢆꢂꢂ  
ꢁꢇꢂ  
ꢁꢂꢂ  
ꢇꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢍꢇꢂ  
ꢅꢂ  
ꢆꢂ  
ꢍꢂꢂ  
ꢆꢇꢂ  
ꢆꢂꢂ  
ꢁꢇꢂ  
ꢁꢂꢂ  
ꢇꢂ  
4 ꢈ ꢀꢅꢂ #  
4 ꢈ ꢆꢇ #  
4 ꢈ ꢀꢅꢂ #  
4 ꢈ ꢆꢇ #  
4 ꢈ ꢁꢆꢇ #  
4 ꢈ ꢁꢆꢇ #  
'AIN  
'AIN  
0HASE  
0HASE  
ꢀꢇꢂ  
ꢀꢇꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢇꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢇꢂ  
ꢀꢍꢂꢂ  
ꢀꢍꢇꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢇꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢇꢂ  
ꢀꢍꢂꢂ  
ꢀꢍꢇꢂ  
ꢀꢆꢂ  
ꢀꢅꢂ  
ꢀꢄꢂ  
ꢀꢆꢂ  
ꢀꢅꢂ  
6
ꢈ ꢆꢊꢐ 6ꢉ 6  
ꢈ ꢁꢊꢍꢇ 6ꢉ ' ꢈ ꢁꢂꢂ  
ICM  
##  
6
ꢈ ꢇꢊꢇ 6ꢉ 6  
ꢈ ꢆꢊꢐꢇ 6ꢉ ' ꢈ ꢁꢂꢂ  
ICM  
##  
ª
ꢉ # ꢈ ꢁꢂꢂ P& 6 ꢈ 6 ꢆ  
, RL ##  
ª
ꢉ # ꢈ ꢁꢂꢂ P& 6 ꢈ 6 ꢆ  
, RL ##  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
&REQUENCY ꢎK(Zꢏ  
&REQUENCY ꢎK(Zꢏ  
!-ꢂꢂꢅꢄꢃ  
!-ꢂꢂꢅꢄꢑ  
Figure 12. Bode diagram at V  
= 5.5 V,  
Figure 13. Noise vs. frequency  
CC  
R = 2 kΩ  
L
ꢅꢇꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢍꢇꢂ  
ꢍꢂꢂ  
ꢆꢇꢂ  
ꢆꢂꢂ  
ꢁꢇꢂ  
ꢁꢂꢂ  
ꢇꢂ  
6
ꢈ ꢇꢊꢇ 6ꢉ 6  
ꢈ ꢆꢊꢐꢇ 6  
ICM  
##  
ꢅꢂꢂ  
ꢍꢇꢂ  
ꢍꢂꢂ  
ꢆꢇꢂ  
ꢆꢂꢂ  
ꢁꢇꢂ  
ꢁꢂꢂ  
ꢇꢂ  
4AMB ꢈ ꢆꢇ #  
4 ꢈ ꢀꢅꢂ #  
4 ꢈ ꢆꢇ #  
'AIN  
4 ꢈ ꢁꢆꢇ #  
0HASE  
ꢀꢇꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢇꢂ  
ꢀꢆꢂꢂ  
ꢀꢆꢇꢂ  
ꢀꢍꢂꢂ  
ꢀꢍꢇꢂ  
ꢀꢆꢂ  
ꢀꢅꢂ  
ꢀꢄꢂ  
6
ꢈ ꢇꢊꢇ 6ꢉ 6 ꢊꢐꢇ 6ꢉ ' ꢈ ꢁꢂꢂ  
ICM  
##  
ꢉ # ꢈ ꢁꢂꢂ P& 6 ꢈ 6 ꢆ  
,
RL ##  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
!-ꢂꢂꢅꢐꢁ  
&REQUENCY ꢎK(Zꢏ  
&REQUENCY ꢎ(Zꢏ  
!-ꢂꢂꢅꢐꢂ  
10/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Electrical characteristics  
Figure 14. Positive slew rate vs. supply  
voltage  
Figure 15. Negative slew rate vs. supply  
voltage  
ꢁꢊꢂ  
ꢉ # ꢈ ꢁꢂꢂ P&  
,
6
ꢒ FROM ꢂꢊꢍ 6 TO 6  
ꢀꢂꢊꢍ 6  
IN  
##  
32 CALCULATED FROM ꢁꢂꢋ TO ꢑꢂꢋ  
ꢂꢊꢑ  
ꢂꢊꢃ  
ꢂꢊꢐ  
ꢂꢊꢄ  
4 ꢈ ꢆꢇ #  
4 ꢈ ꢁꢆꢇ #  
4 ꢈ ꢀꢅꢂ #  
ꢍꢊꢂ  
ꢍꢊꢇ  
ꢅꢊꢂ  
ꢅꢊꢇ  
ꢇꢊꢂ  
ꢇꢊꢇ  
3UPPLY VOLTAGE ꢎ6ꢏ  
!-ꢂꢂꢅꢐꢆ  
Figure 16. THD+N vs. frequency at V = 2.7 V Figure 17. THD+N vs. frequency at V = 5.5 V  
CC  
CC  
6
ꢈ ꢁ 6PP  
6
ꢈ ꢁ 6  
PP  
IN  
'AIN ꢈ ꢁ  
ꢈ 6 ꢌꢆ  
IN  
'AIN ꢈ ꢁ  
6
6
ꢈ 6 ꢌꢆ  
ICM  
##  
ICM  
##  
ꢂꢊꢁ  
ꢂꢊꢁ  
ꢂꢊꢂꢁ  
ꢁ%ꢀꢍ  
ꢂꢊꢂꢁ  
ꢁ%ꢀꢍ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
&REQUENCY ꢎ(Zꢏ  
&REQUENCY ꢎ(Zꢏ  
!-ꢂꢂꢅꢐꢅ  
!-ꢂꢂꢅꢐꢇ  
Figure 18. THD+N vs. output voltage at  
= 2.7 V  
Figure 19. THD+N vs. output voltage at  
= 5.5 V  
V
V
CC  
CC  
ꢂꢊꢁ  
ꢂꢊꢁ  
ꢂꢊꢂꢁ  
ꢁ%ꢀꢍ  
ꢂꢊꢂꢁ  
ꢁ%ꢀꢍ  
F ꢈ ꢁ K(Z  
'AIN ꢈ ꢁ  
F ꢈ ꢁ K(Z  
'AIN ꢈ ꢁ  
"7 ꢈ ꢆꢆ K(Z  
ꢈ 6 ꢌꢆ  
"7 ꢈ ꢆꢆ K(Z  
ꢈ 6 ꢌꢆ  
6
ICM  
##  
6
ICM  
##  
ꢂꢊꢂꢁ  
ꢂꢊꢁ  
ꢁꢂ  
ꢂꢊꢂꢁ  
ꢂꢊꢁ  
ꢁꢂ  
/UTPUT VOLTAGE ꢎ6  
PP  
/UTPUT VOLTAGE ꢎ6  
PP  
!-ꢂꢂꢅꢐꢄ  
!-ꢂꢂꢅꢐꢐ  
Doc ID 022743 Rev 1  
11/27  
Electrical characteristics  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 20. Output impedance versus frequency in closed-loop configuration  
ꢁꢂꢂꢂ  
6
ꢈ ꢆꢊꢐ 6 TO ꢇꢊꢇ 6  
##  
/SCꢊ LEVEL ꢈ ꢂꢊꢂꢄꢇ 6  
' ꢈ ꢁ  
4 ꢈ ꢆꢇ #  
ꢃꢂꢂ  
ꢄꢂꢂ  
ꢅꢂꢂ  
ꢆꢂꢂ  
2-3  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
&REQUENCY ꢎK(Zꢏ  
!-ꢂꢂꢅꢐꢃ  
Figure 21. Response to a 100 mV input step  
Figure 22. Response to a 100 mV input step  
for gain = 1 at V = 5.5 V rising  
for gain = 1 at V = 5.5 V falling  
CC  
CC  
edge  
edge  
VCC = 5.5 V, Vicm = 2.75 V  
R
L = 10 kΩ, CL = 100 pF  
0.5 µs/div., 20 mV/div.  
VCC = 5.5 V, Vicm = 2.75 V  
R
L = 10 kΩ, CL = 100 pF  
0.5 µs/div., 20 mV/div.  
Figure 23. PSRR vs. frequency at V = 2.7 V Figure 24. PSRR vs. frequency at V = 5.5 V  
CC  
CC  
ꢀꢁꢂꢂ  
ꢀꢃꢂ  
ꢀꢄꢂ  
ꢀꢅꢂ  
ꢀꢆꢂ  
ꢀꢁꢂꢂ  
ꢀꢃꢂ  
ꢀꢄꢂ  
ꢀꢅꢂ  
ꢀꢆꢂ  
6
ꢈ ꢇꢊꢇ 6ꢉ 6  
ꢈ ꢆꢊꢐꢇ 6ꢉ ' ꢈ ꢁ  
6
ꢈ ꢆꢊꢐ 6ꢉ 6  
ꢈ ꢁꢊꢍꢇ 6ꢉ ' ꢈ ꢁ  
ICM  
##  
ICM  
ꢉ # ꢈ ꢁꢂꢂ P&6RIPPLE ꢈ ꢁꢂꢂ M6  
##  
ꢉ# ꢈ ꢁꢂꢂ P&ꢉ 6  
,
ꢈ ꢁꢂꢂ M6  
,
PP  
RIPPLE  
PP  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
ꢁꢂꢂꢂꢂꢂ  
ꢁꢂꢂꢂꢂꢂꢂ  
ꢁꢂ  
ꢁꢂꢂ  
ꢁꢂꢂꢂ  
ꢁꢂꢂꢂꢂ  
ꢁꢂꢂꢂꢂꢂ  
ꢁꢂꢂꢂꢂꢂꢂ  
&REQUENCY ꢎ(Zꢏ  
&REQUENCY ꢎ(Zꢏ  
!-ꢂꢂꢅꢐꢑ  
!-ꢂꢂꢅꢃꢂ  
12/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Application information  
4
Application information  
4.1  
Operating voltages  
The amplifiers of the TSV52x series can operate from 2.7 to 5.5 V. Their parameters are  
fully specified for 2.7, 3.3 and 5 V power supplies. However, the parameters are very stable  
in the full V range and several characterization curves show the TSV52x device  
CC  
characteristics at 2.7 V. Additionally, the main specifications are guaranteed in extended  
temperature ranges from -40 to +125 °C.  
4.2  
Common mode voltage range  
The TSV52x devices are built with two complementary PMOS and NMOS input differential  
pairs. The devices have a rail-to-rail input and the input common mode range is extended  
from V  
- 0.1 V to V  
+ 0.1 V.  
CC-  
CC+  
The N channel pair is active for input voltage close to the positive rail typically (V  
to 100 mv above the positive rail.  
- 0.7 V)  
CC+  
The P channel pair is active for input voltage close to the negative rail typically 100 mV  
below the negative rail to V + 0.7 V.  
CC-  
And between V  
+ 0.7 V and V  
- 0.7 V the both N and P pairs are active.  
CC+  
CC-  
When the both pairs work together it allows to increase the speed of the TSV52x device.  
This architecture improves a lot the merit factor of the whole device. In the transition region,  
the performance of CMR, SVR, V (Figure 25 and Figure 26) and THD is slightly degraded.  
io  
Figure 25. Input offset voltage vs. input  
Figure 26. Input offset voltage vs. input  
common mode at V = 2.7 V  
common mode at V = 5.5 V  
CC  
CC  
ꢂꢊꢂ  
ꢀꢂꢊꢁ  
ꢀꢂꢊꢆ  
ꢀꢂꢊꢍ  
ꢀꢂꢊꢅ  
ꢀꢂꢊꢇ  
ꢀꢂꢊꢄ  
ꢀꢂꢊꢐ  
ꢀꢂꢊꢃ  
ꢂꢊꢁ  
ꢂꢊꢂ  
ꢀꢂꢊꢁ  
ꢀꢂꢊꢆ  
ꢀꢂꢊꢍ  
ꢀꢂꢊꢅ  
ꢀꢂꢊꢇ  
ꢀꢂꢊꢄ  
ꢀꢂꢊꢐ  
ꢀꢂꢊꢃ  
ꢂꢊꢂ ꢂꢊꢍ ꢂꢊꢄ ꢂꢊꢑ ꢁꢊꢆ ꢁꢊꢇ ꢁꢊꢃ ꢆꢊꢁ ꢆꢊꢅ ꢆꢊꢐ  
ꢂꢊꢂ ꢂꢊꢇ ꢂꢊꢑ ꢁꢊꢅ ꢁꢊꢃ ꢆꢊꢍ ꢆꢊꢐ ꢍꢊꢆ ꢍꢊꢄ ꢅꢊꢂ ꢅꢊꢇ ꢇꢊꢂ ꢇꢊꢅ  
6
ꢎ6ꢏ  
ICM  
6
ꢎ6ꢏ  
ICM  
!-ꢂꢂꢅꢃꢁ  
!-ꢂꢂꢅꢃꢆ  
Doc ID 022743 Rev 1  
13/27  
 
 
Application information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
4.3  
Rail-to-rail input  
The TSV52x series are guaranteed without phase reversal as shown in Figure 28.  
It is extremely important that the current flowing in the input pin does not exceed 10 mA.  
In order to limit this current a serial resistor can be added on the V path.  
in  
Figure 27. Phase reversal test schematic  
Figure 28. No phase reversal  
ꢇ 6  
6
INP  
?
6
6
##  
##  
6
OUT  
6
6
ꢈ ꢇꢊꢇ 6  
##  
INN  
ꢈ ꢆꢊꢐꢇ 6  
ꢆꢊꢇ 6  
ꢀꢁ  
ꢀꢆꢊꢂ ꢀꢁꢊꢂ  
ꢂꢊꢂ  
ꢁꢊꢂ  
ꢆꢊꢂ  
ꢍꢊꢂ  
ꢅꢊꢂ  
ꢇꢊꢂ  
ꢄꢊꢂ  
6
ꢎ6ꢏ  
INP  
!-ꢂꢂꢅꢃꢍ  
!-ꢂꢂꢅꢃꢅ  
4.4  
4.5  
Rail-to-rail output  
The operational amplifiers output levels can go close to the rails: 35 mV maximum above  
and below the rail when connected to a 10 kΩ resistive load to V /2.  
CC  
Driving resistive and capacitive loads  
To drive high capacitive load, adding in series resistor at the output can improve the stability  
of the device (see Figure 29 for recommended in series value). Once the in series resistor  
has been selected, the stability of the circuit should be tested on bench and simulated with  
simulation models. The R  
is placed in parallel with capacitive load. The R  
and the  
load  
load  
in series resistor create a voltage divider introducing an error proportional to the ratio  
R /R  
. By choosing R as low as possible, this error is generally negligible.  
s
load  
s
14/27  
Doc ID 022743 Rev 1  
 
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 29. In series resistor versus capacitive load  
Application information  
3TABLE  
ꢁꢂꢂ  
5NSTABLE  
ꢁꢂ  
6
ꢈ ꢇ 6ꢉ 6 ꢊꢇ 6ꢉ 4 ꢈ  #ꢉ 2  
LOAD  
ICM  
##  
-INIMUM SERIAL RESISTOR TO BE ADDED TO A GIVEN  
CAPACITIVE LOAD IN ORDER TO ENSURE STABILITY  
ꢂꢊꢁ  
ꢁꢊꢂ  
ꢁꢂꢊꢂ  
ꢁꢂꢂꢊꢂ  
#APACITIVE LOAD ꢎN&ꢏ  
!-ꢂꢂꢅꢃꢇ  
4.6  
Input offset voltage drift over temperature  
The maximum input voltage drift over temperature variation is defined as the offset variation  
related to offset value measured at 25 °C. The operational amplifier is one of the main  
circuits of the signal conditioning chain, and the amplifier input offset is a major contributor  
to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during  
production at application level. The maximum input voltage drift over temperature enables  
the system designer to anticipate the effects of temperature variations.  
The maximum input voltage drift over temperature is computed in Equation 1:  
Equation 1  
ΔVio  
Vio(T) Vio(25° C)  
--------------------------------------------------  
T 25° C  
----------- = max  
ΔT  
with T = -40 °C and 125 °C.  
The datasheet maximum value is guaranteed by measurement on a representative sample  
size ensuring a Cpk greater than 2.  
Doc ID 022743 Rev 1  
15/27  
 
Application information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
4.7  
Long term input offset voltage drift  
In a product reliability evaluation, two types of stress acceleration are usable:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature  
The voltage acceleration has been defined based on JEDEC results, and is defined by:  
Equation 2  
AFV = eβ ⋅ (V V )  
S
U
where:  
A
ß
V
V
is the voltage acceleration factor  
FV  
is the voltage acceleration constant in 1/V, constant technology parameter  
is the stress voltage used for the accelerated test  
is the use voltage for the application  
S
U
The temperature acceleration is driven by the Arrhenius model, and is defined by:  
Equation 3  
Ea  
-----  
1
1
------ – ------  
TU TS  
AFT = e k  
where:  
A
E
k
is the temperature acceleration factor  
FT  
a
is the activation energy of the technology based on failure rate  
is the Boltzmann’s constant  
T
T
is the temperature of the die when V is used  
U
S
U
is the temperature of the die under temperature stress  
The final acceleration factor, A , is the multiplication of these two acceleration factors, which  
F
is:  
Equation 4  
A = A x A  
FV  
F
FT  
Based on this A , calculated following the defined usage temperature and usage voltage of  
F
the product, the 1000 h duration of the stress corresponds to a number of equivalent months  
of usage.  
Equation 5  
Months = A x 1000 h x 12 months / (24h x 365.25 days)  
F
16/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Application information  
For the operational amplifier, a follower stress condition is used for the reliability evaluation,  
with V defined in function of the Maximum operating voltage and the absolute maximum  
CC  
rating (as recommended by the JEDEC standards).  
The V drift, in µV, of the product after 1000 h duration of stress is tracked with parameters  
io  
at different measurement conditions, as for example:  
Equation 6  
V
= max. V with V =V /2  
op icm CC  
CC  
Finally, knowing the calculated number of months and with the measured drift value of the  
V (corresponding to the electrical characteristics of the respective table) after 1000 h  
io  
duration of stress, the ratio of the V drift over the square of months, ΔV in µV/month, is  
io  
io  
defined as the long term drift parameter, the parameter estimating the reliability  
performance of the product.  
Equation 7  
ΔV = V drift / (months)  
io  
io  
4.8  
4.9  
PCB layouts  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
Macromodel  
Accurate macromodels of the TSV52x device are available on STMicroelectronics™ website  
at www.st.com. This model is a trade-off between accuracy and complexity (that is, time  
simulation) of the TSV52x operational amplifiers. It emulates the nominal performance of  
a typical device within the specified operating conditions mentioned in the datasheet. It also  
helps to validate a design approach and to select the appropriate operational amplifier, but it  
does not replace onboard measurements.  
Doc ID 022743 Rev 1  
17/27  
Package information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
18/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Package information  
Figure 30. SC70-5 package outline  
SIDE VIEW  
DIMENSIONS IN MM  
GAUGE PLANE  
COPLANAR LEADS  
SEATING PLANE  
TOP VIEW  
Table 7.  
Ref  
SC70-5 package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
0.80  
0
1.10  
0.10  
1.00  
0.30  
0.22  
2.20  
2.40  
1.35  
0.032  
0.043  
0.004  
0.039  
0.012  
0.009  
0.087  
0.094  
0.053  
0.80  
0.15  
0.10  
1.80  
1.80  
1.15  
0.90  
0.032  
0.006  
0.004  
0.071  
0.071  
0.045  
0.035  
c
D
2.00  
2.10  
1.25  
0.65  
1.30  
0.36  
0.079  
0.083  
0.049  
0.025  
0.051  
0.014  
E
E1  
e
e1  
L
0.26  
0°  
0.46  
8°  
0.010  
0.018  
<
Doc ID 022743 Rev 1  
19/27  
Package information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 31. DFN8 2 x 2 x 0.6, 8 pitch, 0.5 mm package outline  
Table 8.  
Ref.  
DFN8 2 x 2 x 0.6, 8 pitch, 0.5 mm package mechanical data  
Dimensions  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A3  
b
0.51  
0.55  
0.60  
0.05  
0.020  
0.022  
0.024  
0.002  
0.15  
0.25  
2.00  
1.60  
2.00  
0.90  
0.50  
0.006  
0.010  
0.079  
0.063  
0.079  
0.035  
0.020  
0.18  
1.85  
1.45  
1.85  
0.75  
0.30  
2.15  
1.70  
2.15  
1.00  
0.007  
0.073  
0.057  
0.073  
0.030  
0.012  
0.085  
0.067  
0.085  
0.039  
D
D2  
E
E2  
e
L
0.50  
0.08  
0.020  
0.003  
ddd  
20/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Package information  
Figure 32. DFN8 2 x 2 0.6, 8 pitch, 0.5 mm footprint recommendation  
Doc ID 022743 Rev 1  
21/27  
Package information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 33. MiniSO8 package outline  
-INI3/ꢃ,  
Table 9.  
Symbol  
MiniSO8 package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.10  
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
0
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
22/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Figure 34. QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - package outline  
Package information  
6&10.ꢁꢄ,  
Doc ID 022743 Rev 1  
23/27  
Package information  
Table 10.  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - package mechanical data  
Dimensions  
Symbol  
Millimeters  
Min.  
Inches  
Min.  
Nom.  
Max.  
Nom.  
Max.  
A
A1  
A3  
b
0.90  
0.80  
0.00  
1.00  
0.05  
0.035  
0.032  
0.000  
0.039  
0.002  
0.20  
3.00  
3.00  
0.50  
0.008  
0.118  
0.118  
0.020  
0.18  
2.90  
1.50  
2.90  
1.50  
0.30  
3.10  
1.80  
3.10  
1.80  
0.007  
0.114  
0.061  
0.114  
0.061  
0.012  
0.122  
0.071  
0.122  
0.071  
D
D2  
E
E2  
e
L
0.30  
0.50  
0.012  
0.020  
Figure 35. QFN16 - 3 x 3 x 0.9 mm, pad 1.7 - footprint recommendation  
1&.ꢁꢄꢀ&0  
24/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Package information  
Figure 36. TSSOP14 body 4.40 mm, lead pitch 0.65 mm - package outline  
433/0ꢁꢅ  
Table 11.  
Symbol  
TSSOP14 body 4.40 mm, lead pitch 0.65 mm - package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
6.60  
4.50  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
0.05  
0.80  
0.19  
0.09  
4.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1.00  
c
D
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
0.197  
0.252  
E
E1  
e
0.173  
0.0256 BSC  
L
0.45  
0°  
0.75  
L1  
k
8°  
0°  
8°  
aaa  
0.10  
0.018  
0.024  
0.030  
Doc ID 022743 Rev 1  
25/27  
Ordering information  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
6
Ordering information  
Table 12.  
Order codes  
Order code  
TSV521ICT  
Temperature range  
Package  
Packing  
Marking  
SC70-5  
DFN8 2 x 2  
MiniSO8  
K1G  
K1G  
TSV522IQ2T  
TSV522IST  
-40 to 125 °C  
Tape and reel  
K1G  
QFN16 3 x 3  
TSSOP14  
MiniSO8  
K1G  
TSV524IQ4T  
TSV524IPT  
TSV524  
K1H  
TSV522IYST  
TSV524IYPT  
TSV521AICT  
TSV522AIQ2T  
TSV522AIST  
TSV524AIQ4T  
TSV524AIPT  
TSV522AIYST  
TSV524AIYPT  
-40 to 125 °C  
Automotive grade  
Tape and reel  
Tape and reel  
Tape and reel  
(1)  
TSSOP14  
SC70-5  
TSV524Y  
K1K  
DFN8 2 x 2  
MiniSO8  
K1K  
-40 to 125 °C  
K1K  
QFN16 3 x 3  
TSSOP14  
MiniSO8  
K1K  
TSV524A  
K1L  
-40 to 125 °C  
Automotive grade  
(1)  
TSSOP14  
TSV524AY  
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC  
Q001 and Q 002 or equivalent are ongoing.  
7
Revision history  
Table 13.  
Document revision history  
Revision  
Date  
19-Jun-2012  
Changes  
1
Initial release.  
26/27  
Doc ID 022743 Rev 1  
TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022743 Rev 1  
27/27  

相关型号:

TSV524

High merit factor (1.15 MHz for 45 μA) CMOS op amps
STMICROELECTR

TSV524A

High merit factor (1.15 MHz for 45 μA) CMOS op amps
STMICROELECTR

TSV611

Rail-to-rail input/output 11 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611A

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611AICT

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611AILT

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611ICT

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611ILT

Rail-to-rail input/output 11 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV611_10

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV612

Rail-to-rail input/output 11 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV612A

Rail-to-rail input/output 10 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR

TSV612AID/DT

Rail-to-rail input/output 11 μA, 120 kHz CMOS operational amplifiers
STMICROELECTR