TS4956 [STMICROELECTRONICS]

Stereo audio amplifier system with I2C bus interface; 立体声音频放大器系统的I2C总线接口
TS4956
型号: TS4956
厂家: ST    ST
描述:

Stereo audio amplifier system with I2C bus interface
立体声音频放大器系统的I2C总线接口

音频放大器
文件: 总51页 (文件大小:1626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS4956  
Stereo audio amplifier system with I2C bus interface  
Operating from V = 2.7 V to 5.5 V  
CC  
I²C bus control interface  
TS4956 - Flip-Chip18  
38 mW output power @ V = 3.3 V,  
CC  
THD = 1%, F = 1 kHz, with 16Load  
Ultra low consumption in standby mode: 0.5 µA  
Digital volume control range from +12 dB to  
-34 dB  
32-step digital volume control  
2
Stereo loudspeaker option by I C  
8 different output mode selections  
Pop & click reduction circuitry  
Pin connections (top view)  
Flip-chip package, 18 bumps with 300 µm  
PGH  
RIN  
MLO  
GND  
diameter  
Lead-free flip chip package  
LHP-  
RHP+  
Output power limitation on headphone for  
VCC  
VCC  
SDA  
eardrum damage consideration  
BYPASS  
SRN-  
LIN  
I2CVCC  
Description  
MIN  
MIP  
SRP+  
The TS4956 is a complete audio system device  
with three dedicated outputs, one stereo  
GND  
SCL  
headphone, one loudspeaker drive and one mono  
line for a hands-free set. The stereo headphone is  
capable of delivering more than 25 mW per  
channel of continuous average power into 16Ω  
single-ended loads with 0.3% THD+N from a 5 V  
power supply. The device functions are controlled  
via an I²C bus, which minimizes the number of  
external components needed.  
Applications  
Mobile phones (cellular / cordless)  
PDAs  
The overall gain and the different output modes of  
the TS4956 are controlled digitally by the control  
registers which are programmed via the I²C  
interface. It has also an internal thermal shutdown  
protection mechanism.  
Laptop / notebook computers  
Portable audio devices  
Device summary table  
Part Number  
Temperature Range  
Package  
Packing  
Marking  
TS4956EIJT  
-40°C to +85°C  
Lead free flip-chip18  
Tape & Reel  
56  
May 2006  
Rev. 3  
1/51  
www.st.com  
51  
Absolute maximum ratings & operating conditions  
TS4956  
1
Absolute maximum ratings & operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings (AMR)  
Parameter  
Value  
Unit  
(1)  
V
Supply voltage  
6
V
V
CC  
(2)  
V
Input voltage  
G
to V  
ND CC  
i
T
Operating free air temperature range  
Storage temperature  
-40 to + 85  
°C  
oper  
T
-65 to +150  
°C  
stg  
T
Maximum junction temperature  
150  
°C  
j
(3)  
R
Thermal resistance junction to ambient  
200  
°C/W  
thja  
diss  
(4)  
P
Power dissipation  
Internally limited  
(5)  
Susceptibility - human body model  
2
kV  
V
ESD  
Susceptibility - machine model  
150  
200  
260  
Latch-up Latch-up immunity  
Lead temperature (soldering, 10sec)  
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V  
3. Device is protected in case of over temperature by a thermal shutdown activated at 150°C.  
mA  
°C  
4. Exceeding the power derating curves during a long period may involve abnormal operating conditions.  
5. Human body model, 100 pF discharged through a 1.5 kresistor, into pin to VCC device  
Table 2.  
Operating conditions  
Symbol  
Parameter  
Value  
Unit  
(1)  
V
Supply voltage  
Load resistor  
2.7 to 5.5V  
V
CC  
R
Speaker/BTL output (modes 1,2,7)  
8  
L
Headphone, MLO output (modes 3,4,5,6,)  
16  
Load capacitor  
R = 8to 100Ω (Speaker/BTL output - modes 1,2,7)  
500  
400  
L
C
pF  
R = 16to 100(Headphone, MLO output - modes  
L
L
3,4,5,6)  
R > 100Ω  
100  
L
(2)  
R
Flip-chip thermal resistance junction to ambient  
90  
°C/W  
thja  
1. For proper functionality of I2C bus, VCC pins must not be grounded. ESD protection diodes ground data  
and clock wires and cause dysfunction of I2C bus in this condition.  
2. With heat sink surface 120mm2  
Table 3.  
I²C electrical characteristics  
Parameter  
Symbol  
Value  
Unit  
2
(1)  
I CV  
I2C supply voltage  
2.7V to 5.5V  
0.3 I2CVCC  
0.7 I2CVCC  
10  
V
V
CC  
V
V
Maximum low level input voltage on pins SDA, SCL  
Minimum high level input voltage  
ILl  
V
IH  
IN  
I
Maximum input current (pins SDA, SCL), 0.4V < V < 4.5V  
µA  
kHz  
V
in  
F
SCL maximum clock frequency  
400  
SCL  
V
Max low level output voltage, SDA pin, I  
= 3mA  
sink  
0.4  
ol  
1. Must be less or equal than power supply voltage VCC of the device  
2/51  
TS4956  
Typical application schematic  
2
Typical application schematic  
Table 4.  
External components descriptions  
Functional description  
Components  
C , C  
Supply bypass capacitors which provide power supply filtering.  
Bypass capacitor which provides half-supply filtering.  
s1  
s2  
C
C
b
Input capacitors which form together with input impedance Z first-order high pass  
in  
to C  
in1  
in4  
filter to block DC voltage on inputs  
Output capacitor which forms with output load R first-order high pass filter to block  
half-supply voltage on single-ended output.  
L
C
R
out  
1
Resistor to keep C  
charged for better pop performance on single-ended output.  
out  
Figure 1.  
Typical application for the TS4956 (mode 1, 2, 3, 4, 5, 6)  
Vcc  
Cs1  
1µF  
Cs2  
100nF  
TS4956  
MODE3: Gx(MIP+MIN)  
MODE4: GxLIN  
LHPAmplifier  
PHGAmplifier  
RHP Amplifier  
Diff. input +  
Cin1  
Stereo  
A1 MIP  
LHP  
PHG  
RHP  
B6  
A7  
16/32 Ohms  
+
Input Left  
330nF  
Cin2  
Stereo  
A2 MIN  
+
Input Right  
330nF  
Diff. input -  
MODE3: Gx(MIP+MIN)  
MODE4: GxRIN  
Mode  
Select  
D6  
B2  
D2  
E7  
16/32 Ohms  
SE input left  
Cin3  
MODE1: Gx(MIP+MIN)  
MODE2: Gx(LIN+RIN)  
LIN  
RIN  
Stereo  
Speaker Amplifier  
B4  
A5  
+
330nF  
Input Left  
SRP+  
8 Ohms  
SRN-  
SE input right  
Stereo  
Cin4  
MODE5: Gx(MIP+MIN)  
MODE6: Gx(LIN+ RIN)  
MLO Amplifier  
Input Right  
+
Cout  
+
330nF  
MLO  
220µF  
R1  
1k  
16/32 Ohms  
Digital volume  
control  
Bias  
I2C  
BYPASS  
I2CVCC  
Cb  
I2CVCC  
SCL  
1µF  
SDA  
I2CBUS  
3/51  
Typical application schematic  
TS4956  
Figure 2.  
Typical application for the TS4956 (mode 7)  
Vcc  
Cs1  
1µF  
Cs2  
100nF  
TS4956  
LHP Amplifier  
PHGAmplifier  
RHP Amplifier  
Stereo  
Input Left  
A1 MIP  
LHP  
PHG  
RHP  
B6  
A7  
MODE7: BTL - GxRIN  
Stereo  
Input Right  
A2 MIN  
8 Ohms  
Mode  
Select  
D6  
B2  
D2  
E7  
SE input left  
Cin3  
LIN  
RIN  
Stereo  
Input Left  
Speaker Amplifier  
B4  
A5  
+
MODE7: GxLIN  
330nF  
SRP+  
SRN-  
SE input right  
8 Ohms  
Stereo  
Input Right  
Cin4  
MLO Amplifier  
+
330nF  
MLO  
Digital volume  
control  
Bias  
I2C  
BYPASS  
I2CVCC  
Cb  
I2CVCC  
SCL  
1µF  
SDA  
I2CBUS  
4/51  
TS4956  
Typical application schematic  
2.1  
I2C interface  
The TS4956 uses a serial bus, which conforms to the I²C protocol (the TS4956 must be  
powered when it is connected to I²C bus), to control the chip’s functions via two wires: Clock  
and Data.  
The Clock line and the Data line are bidirectional (open-collector) with an external chip pull-  
up resistor (typically 10 k). The maximum clock frequency in fast-mode specified by the I²C  
standard is 400kHz, and this frequency is supported by the TS4956. In this application, the  
TS4956 is always the slave device and the controlling MCU is the master device.  
2
The I2CVCC pin determines the power supply of the TS4956’s I C interface. The voltage  
connected to this pin must be equal or less than the TS4956 power supply voltage V . The  
CC  
minimum value of the I2CVCC voltage is 2.7V.  
2
When the I2CVCC pin is connected to an I C voltage, the TS4956 is ready to communicate  
2
via the I C bus.  
When the I2CVCC pin is connected to the ground, the TS4956 is in total standby mode, with  
an ultra low standby current on the order of a few nanoamperes. In this condition the  
2
2
TS4956 cannot receive I C command from the I C bus.  
In both cases, pins SDA and SCL must respect logic HI or logic LOW thresholds (not  
floating) presented in Table 3 on page 2, in order for the circuit to function properly.  
Table on page 5 summarizes the pin descriptions for the I²C bus interface.  
Table 5.  
Pin  
I²C bus interface: pin descriptions  
Functional description  
SDA  
SCL  
This is the serial data pin  
This is the clock input pin  
2
I2CVCC  
I C interface power supply  
2.1.1  
I²C operation description  
The host MCU can write into the TS4946 control register to control the TS4956 and read  
from the control register to get the current configuration of the TS4956. The TS4956 is  
addressed by a single byte consisting of a 7-bit slave address and an R/W bit. The TS4956  
control register address is $5Dh.  
Table 6.  
A6  
The first byte after the START message for addressing the device  
A5  
A4  
A3  
A2  
A1  
A0  
Rw  
1
0
1
1
1
0
1
X
In order to write data into the TS4956 control register, after the “start” message the MCU  
must send the following data:  
send byte with the I²C 7-bit slave address and with the R/W bit set low  
send the data (control register setting)  
All bytes are sent with MSB bit first. The transfer of written data ends with a “stop” message.  
When transmitting several data, the data can be written with no need to repeat the “start”  
message and addressing byte with the slave address.  
5/51  
Typical application schematic  
TS4956  
In order to read data from the TS4956, after the “start” message, the MCU must send and  
receive the following data:  
send byte with the I²C 7-bit slave address and with the R/W bit set high  
receive the data (control register value)  
All bytes are read with MSB bit first. The transfer of read data is ended with “stop” message.  
When transmitting several data, the data can be read with no need to repeat the “start”  
message and the byte with slave address. In this case the value of control register is read  
repeatedly.  
Figure 3.  
I²C read/write operation  
SLAVE ADDRESS  
CONTROL REGISTERS  
A
A
P
1
S
1
0
1
1
1
0
0
D7 D6 D5 D4 D3  
D2 D1 D0  
SDA  
Output  
Mode settings  
Stop condition  
Volume Control  
settings  
Start condition  
R/W  
Acknowledge  
from Slave  
Acknowledge  
from Slave  
(1)  
Table 7.  
Output mode selection: G from -34.5dB to + 12dB (by steps of 1.5dB)  
Output Mode #  
RHP  
LHP  
Speaker P/N  
Mono L/O  
0
1
2
3
4
5
6
7
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
Gx (MIP + MIN)  
GX (RIN + LIN)  
GX (MIP + MIN)  
G x RIN  
SD  
GX (MIP + MIN)  
G x LIN  
SD  
SD  
SD  
SD  
GX (MIP + MIN)  
GX (RIN + LIN)  
SD  
SD  
SD  
SD  
BTL: G x RIN  
BTL: G x RIN  
G x LIN  
1. SD = Shutdown Mode  
G = Audio Gain  
MIP = Mono Input Positive  
MIN = Mono Input Negative  
RIN = Stereo Input Right  
LIN = Stereo Input Left  
6/51  
TS4956  
Typical application schematic  
2.1.2  
Gain and mode setting operations  
The gain of the TS4956 ranges from -34.5dB to +12 dB. At power-up, output channels are  
set to stand-by mode.  
Table 8.  
G: Gain (dB) #  
-34.5  
Gain settings truth table  
D7 (MSB)  
D6  
D5  
D4  
D3  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-33  
-31.5  
-30  
-28.5  
-27  
-25.5  
-24  
-22.5  
-21  
-19.5  
-18  
-16.5  
-15  
-13.5  
-12  
-10.5  
-9  
-7.5  
-6  
-4.5  
-3  
-1.5  
0
+1.5  
+3  
+4.5  
+6  
+7.5  
+9  
+10.5  
+12  
7/51  
Typical application schematic  
TS4956  
Table 9.  
D2  
Output mode settings truth table  
D1  
D0  
COMMENTS  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OUTPUT MODE 0  
OUTPUT MODE 1  
OUTPUT MODE 2  
OUTPUT MODE3  
OUTPUT MODE 4  
OUTPUT MODE 5  
OUTPUT MODE 6  
OUTPUT MODE 7  
2.1.3  
Acknowledge  
The number of data bytes transferred between the start and the stop conditions from the  
CPU master to the TS4956 slave is unlimited. Each byte of eight bits is followed by one  
acknowledge bit.  
The TS4956 which is addressed, generates an acknowledge after the reception of each  
byte that has been clocked out.  
8/51  
TS4956  
Electrical characteristics  
3
Electrical characteristics  
Table 10.  
Symbol  
V
= +2.7 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
Mode 1, 2, No input signal, no load  
Mode 3, No input signal, no load  
Mode 4, No input signal, no load  
Mode 5, 6, No input signal, no load  
Mode 7, No input signal, no load  
No input signal  
3.4  
4.6  
4.4  
6
I
Supply Current  
Standby Current  
4.4  
5.7  
2.3  
7.4  
2
mA  
µA  
CC  
1.75  
5.7  
I
0.5  
STBY  
No input signal  
Modes 1, 2  
Speaker Output, R = 8Ω  
Mode 3  
5
5
5
5
50  
50  
20  
20  
L
V
Output Offset Voltage  
Headphone Outputs, R = 16Ω  
mV  
OO  
L
Mode 4  
Headphone Outputs, R = 16Ω  
L
Mode 7  
BTL, Speaker Output, R = 8Ω  
L
Modes 3, 4  
THD+N = 1% max, F = 1kHz, R = 16Ω  
THD+N = 1% max, F = 1kHz, R = 32Ω  
Headphone Output Power  
(Phantom Ground mode)  
30  
20  
35  
25  
L
L
BTL, Speaker Output  
Power  
Modes 1, 2, 7  
THD+N = 1% max, F = 1kHz, R = 8Ω  
P
mW  
out  
270  
285  
L
Modes 5, 6  
MLO Output Power  
THD+N = 1% max, F = 1kHz, R = 16Ω  
35  
20  
42  
25  
L
THD+N = 1% max, F = 1kHz, R = 32Ω  
L
G = +1.5dB, 20Hz < F < 20kHz  
Modes 1, 2, 7, R = 8, P = 200mW  
0.5  
0.5  
0.5  
Total Harmonic Distortion  
+ Noise  
L
out  
THD+N  
%
Modes 3, 4, R = 16, P = 15mW  
L
out  
Modes 5, 6, R = 16, P = 30mW  
L
out  
F = 217Hz, G = +1.5dB, V  
= 200mVpp,  
ripple  
Inputs Grounded, C = 1µF  
b
Mode 1, Speaker output, R = 8Ω  
60  
55  
61  
75  
62  
57  
73  
L
Mode 2, Speaker output, R = 8Ω  
L
Power Supply Rejection  
Ratio  
Mode 3, Headphone outputs, R = 16Ω  
PSRR  
dB  
L
(1)  
Mode 4, Headphone outputs, R = 16Ω  
L
Mode 5, MLO output, R = 16Ω  
L
Mode 6, MLO output, R = 16Ω  
L
Mode 7, BTL, Speaker outputs, R = 8Ω  
L
9/51  
Electrical characteristics  
TS4956  
Unit  
Table 10.  
Symbol  
V
= +2.7 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max.  
Mode 4  
F = 1kHz, R = 16Ω, P = 15mW  
50  
50  
L
out  
F = 20Hz to 20kHz, R = 16Ω, P = 15mW  
L
out  
Crosstalk Channel Separation  
dB  
Mode 7  
F = 1kHz, R = 8Ω, P = 200mW  
80  
60  
L
out  
F = 20Hz to 20kHz, R = 8Ω, P = 200mW  
L
out  
A-weighted, G = +1.5dB, THD+N < 0.5%,  
20Hz < F < 20kHz  
Mode 1 - Speaker output, R = 8Ω  
91  
90  
84  
90  
85  
85  
92  
L
Mode 2 - Speaker output, R = 8Ω  
L
Mode 3 - Headphone output, R = 16Ω  
L
SNR  
Signal To Noise Ratio  
dB  
Mode 4 - Headphone output, R = 16Ω  
L
Mode 5 - MLO output, R = 16Ω  
L
Mode 6 - MLO output, R = 16Ω  
Mode 7 - BTL, Speaker output, R = 8,  
L
G = +10.5dB  
G
Digital Gain Range  
Digital Gain Stepsize  
Stepsize Error  
-34.5  
0.1  
+12  
0.6  
dB  
dB  
dB  
1.5  
Differential input  
Differential input impedance (MIP to MIN)  
MIP input impedance referenced to ground  
MIN input impedance referenced to ground  
50  
25.5  
38  
60  
30  
45  
70  
34.5  
62  
Input Impedance, all Gain  
setting  
Z
kΩ  
in  
Stereo input  
RIN input impedance  
LIN input impedance  
25.5  
25.5  
30  
30  
34.5  
34.5  
t
Wake up time  
Standby time  
70  
1
90  
ms  
µs  
WU  
t
STBY  
1. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC @ f = 217Hz.  
10/51  
TS4956  
Electrical characteristics  
Table 11.  
Symbol  
V
= +3.3 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Mode 1, 2, No input signal, no load  
Mode 3, No input signal, no load  
Mode 4, No input signal, no load  
Modes 5, 6, No input signal, no load  
Mode 7, No input signal, no load  
No input signal  
3.6  
4.8  
4.6  
1.8  
6
4.7  
6.2  
6
I
Supply Current  
Standby Current  
mA  
µA  
CC  
2.4  
7.8  
2
I
0.5  
STBY  
No input signal  
Modes 1, 2  
Speaker Output, R = 8Ω  
Mode 3  
5
5
5
5
50  
50  
20  
20  
L
V
Output Offset Voltage  
Headphone Outputs, R = 16Ω  
mV  
OO  
L
Mode 4  
Headphone Outputs, R = 16Ω  
L
Mode 7  
BTL, Speaker Output, R = 8Ω  
L
Modes 3, 4  
THD+N = 1% max, F = 1kHz, R = 16Ω  
THD+N = 1% max, F = 1kHz, R = 32Ω  
Headphone Output Power  
(Phantom Ground Mode)  
(1)  
32  
30  
38  
36  
L
(1)  
L
BTL, Speaker Output  
Power  
Modes 1, 2, 7  
THD+N = 1% max, F = 1kHz, R = 8Ω  
P
mW  
out  
430  
450  
L
Modes 5, 6  
MLO Output Power  
THD+N = 1% max, F = 1kHz, R = 16Ω  
58  
32  
65  
38  
L
THD+N = 1% max, F = 1kHz, R = 32Ω  
L
G = +1.5dB, 20Hz < F < 20kHz  
Total Harmonic Distortion Modes 1, 2, 7, R = 8, P = 300mW  
0.5  
0.5  
0.5  
L
out  
THD+N  
%
+ Noise  
Modes 3, 4, R = 16, P = 15mW  
L out  
Modes 5, 6, R = 16, P = 50mW  
L
out  
F = 217Hz, G = +1.5dB, V  
= 200mVpp,  
ripple  
Inputs Grounded, C = 1µF  
b
Mode 1, Speaker output, R = 8Ω  
63  
57  
63  
77  
64  
58  
74  
L
Mode 2, Speaker output, R = 8Ω  
L
Power Supply Rejection  
Ratio  
Mode 3, Headphone outputs, R = 16Ω  
PSRR  
dB  
L
(2)  
Mode 4, Headphone outputs, R = 16Ω  
L
Mode 5, MLO output, R = 16Ω  
L
Mode 6, MLO output, R = 16Ω  
L
Mode 7, BTL, Speaker outputs, R = 8Ω  
L
Mode 4  
F = 1kHz, R = 16Ω, P = 15mW  
50  
50  
L
out  
F = 20Hz to 20kHz, R = 16Ω, P = 15mW  
L
out  
Crosstalk Channel Separation  
dB  
Mode 7  
F = 1kHz, R = 8Ω, P = 300mW  
80  
60  
L
out  
F = 20Hz to 20kHz, R = 8Ω, P = 300mW  
L
out  
11/51  
Electrical characteristics  
TS4956  
Table 11.  
Symbol  
V
= +3.3 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
A-weighted, G = +1.5dB, THD+N < 0.5%,  
20Hz < F < 20kHz  
Mode 1 - Speaker output, R = 8Ω  
93  
92  
L
Mode 2 - Speaker output, R = 8Ω  
L
Mode 3 - Headphone output, R = 16Ω  
85  
dB  
91  
L
SNR  
Signal To Noise Ratio  
Mode 4 - Headphone output, R = 16Ω  
L
Mode 5 - MLO output, R = 16Ω  
Mode 6 - MLO output, R = 16Ω  
Mode 7 - BTL, Speaker output, R = 8,  
G = +10.5dB  
87  
87  
95  
L
L
G
Digital Gain Range  
Digital Gain Stepsize  
Stepsize Error  
-34.5  
+12  
0.6  
dB  
dB  
dB  
1.5  
0.1  
50  
Differential input  
Differential input impedance (MIP to MIN)  
60  
30  
45  
70  
34.5  
62  
MIP input impedance referenced to ground 25.5  
Input Impedance, all Gain  
setting  
MIN input impedance referenced to ground  
38  
Z
kΩ  
in  
Stereo input  
RIN input impedance  
LIN input impedance  
25.5  
25.5  
30  
30  
34.5  
34.5  
t
Wake up time  
Standby time  
70  
1
90  
ms  
µs  
WU  
t
STBY  
1. Internal power limitation on headphone outputs (see application information).  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC @ F = 217Hz.  
12/51  
TS4956  
Electrical characteristics  
Table 12.  
Symbol  
V
= +5 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
Mode 1, 2, No input signal, no load  
Mode 3, No input signal, no load  
Mode 4, No input signal, no load  
Modes 5, 6, No input signal, no load  
Mode 7, No input signal, no load  
No input signal  
4
5.2  
6.9  
6.8  
2.5  
8.7  
2
5.3  
5.2  
1.9  
6.7  
0.5  
I
Supply Current  
Standby Current  
mA  
µA  
CC  
I
STBY  
No input signal  
Modes 1, 2  
Speaker Output, R = 8Ω  
Mode 3  
5
5
5
5
50  
50  
20  
20  
L
V
Output Offset Voltage  
Headphone Outputs, R = 16Ω  
mV  
OO  
L
Mode 4  
Headphone Outputs, R = 16Ω  
L
Mode 7  
BTL, Speaker Output, R = 8Ω  
L
Modes 3, 4  
THD+N = 1% max, F = 1kHz, R = 16Ω  
THD+N = 1% max, F = 1kHz, R = 32Ω  
Headphone Output Power  
(Phantom Ground Mode)  
(1)  
32  
35  
39  
43  
L
(1)  
L
BTL, Speaker Output  
Power  
Modes 1, 2, 7  
THD+N = 1% max, F = 1kHz, R = 8Ω  
P
mW  
out  
1000 1055  
L
Modes 5, 6  
MLO Output Power  
THD+N = 1% max, F = 1kHz, R = 16Ω  
140  
80  
150  
88  
L
THD+N = 1% max, F = 1kHz, R = 32Ω  
L
G = +1.5dB, 20Hz < F < 20kHz  
Total Harmonic Distortion Modes 1, 2, 7, R = 8, P = 700mW  
0.5  
0.5  
0.5  
L
out  
THD+N  
%
+ Noise  
Modes 3, 4, R = 16, P = 15mW  
L out  
Modes 5, 6, R = 16, P = 100mW  
L
out  
F = 217Hz, G = +1.5dB, V  
= 200mVpp,  
ripple  
Inputs Grounded, C = 1µF  
b
Mode 1, Speaker output, R = 8Ω  
66  
60  
65  
78  
66  
61  
75  
L
Mode 2, Speaker output, R = 8Ω  
L
Power Supply Rejection  
Ratio  
Mode 3, Headphone outputs, R = 16Ω  
PSRR  
dB  
L
(2)  
Mode 4, Headphone outputs, R = 16Ω  
L
Mode 5, MLO output, R = 16Ω  
L
Mode 6, MLO output, R = 16Ω  
L
Mode 7, BTL, Speaker outputs, R = 8Ω  
L
Mode 4  
F = 1kHz, R = 16Ω, P = 15mW  
50  
50  
L
out  
F = 20Hz to 20kHz, R = 16Ω, P = 15mW  
L
out  
Crosstalk Channel Separation  
dB  
Mode 7  
F = 1kHz, R = 8Ω, P = 700mW  
80  
60  
L
out  
F = 20Hz to 20kHz, R = 8Ω, P = 700mW  
L
out  
13/51  
Electrical characteristics  
TS4956  
Table 12.  
Symbol  
V
= +5 V, GND = 0V, T  
= 25°C (unless otherwise specified)  
amb  
CC  
Parameter  
Conditions  
Min. Typ. Max. Unit  
A-weighted, G = +1.5dB, THD+N < 0.5%,  
20Hz < F < 20kHz  
Mode 1 - Speaker output, R = 8Ω  
96  
96  
L
Mode 2 - Speaker output, R = 8Ω  
L
Mode 3 - Headphone output, R = 16Ω  
85  
dB  
91  
L
SNR  
Signal To Noise Ratio  
Mode 4 - Headphone output, R = 16Ω  
L
Mode 5 - MLO output, R = 16Ω  
Mode 6 - MLO output, R = 16Ω  
Mode 7 - BTL, Speaker output, R = 8,  
G = +10.5dB  
90  
90  
98  
L
L
G
Digital Gain Range  
Digital Gain Stepsize  
Stepsize Error  
-34.5  
+12  
0.6  
dB  
dB  
dB  
1.5  
0.1  
50  
Differential input  
Differential input impedance (MIP to MIN)  
60  
30  
45  
70  
34.5  
62  
MIP input impedance referenced to ground 25.5  
Input Impedance, all Gain  
setting  
MIN input impedance referenced to ground  
38  
Z
kΩ  
in  
Stereo input  
RIN input impedance  
LIN input impedance  
25.5  
25.5  
30  
30  
34.5  
34.5  
t
Wake up time  
Standby time  
70  
1
90  
ms  
µs  
WU  
t
STBY  
1. Internal power limitation on headphone outputs (see application information).  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is an added sinus signal to VCC @ F = 217Hz.  
Table 13.  
Output noise V = 2.7V to 5.5V (all inputs grounded)  
CC  
G = +12dB  
Unweighted  
G = +10.5dB  
G = +1.5dB  
Unweighted  
Unweighted  
filter  
(20Hz -  
20kHz)  
filter  
A-weighted  
filter  
A-weighted  
filter  
filter  
(20Hz -  
20kHz)  
A-weighted  
filter  
(20Hz -  
20kHz)  
V
(µV)  
V
(µV)  
V
(µV)  
V
(µV)  
V
(µV)  
V
(µV)  
out  
out  
out  
out  
out  
out  
Mode1 - SPK out  
Mode2 - SPK out  
Mode3 - LHP, RHP  
Mode4 - LHP, RHP  
Mode5 - MLO  
54  
80  
67  
100  
45  
66  
67  
55  
29  
53  
65  
29  
99  
80  
43  
80  
96  
42  
75  
68  
35  
66  
73  
35  
111  
100  
52  
45  
45  
23  
45  
45  
23  
69  
67  
34  
66  
67  
34  
97  
Mode6 - MLO  
106  
52  
Mode7 - BTL, SPK out  
14/51  
TS4956  
Electrical characteristics  
Figure 4.  
THD+N vs. output power  
Figure 5.  
THD+N vs. output power  
10  
10  
Vcc=5V  
F=20kHz  
Mode 1, 2 - SPK out  
RL = 8Ω, G = +10.5dB  
BW < 125kHz  
Vcc=5V  
F=20kHz  
Mode 1, 2 - SPK out  
RL = 8Ω, G = +1.5dB  
BW < 125kHz  
Tamb = 25°C  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Tamb = 25  
°
C
1
1
Vcc=2.7V  
F=20kHz  
0.1  
0.1  
Vcc=2.7V  
F=20kHz  
Vcc=5V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
0.01  
0.1  
1
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 6.  
THD+N vs. output power  
Figure 7.  
THD+N vs. output power  
10  
10  
Mode 1, 2 - SPK out  
RL = 16Ω, G = +1.5dB  
BW < 125kHz  
Tamb = 25  
Mode 1, 2 - SPK out  
RL = 16Ω, G = +10.5dB  
BW < 125kHz  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
°
C
Tamb = 25°C  
1
0.1  
1
0.1  
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
Vcc=5V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
0.01  
0.01  
0.01  
0.1  
Output power (W)  
1
0.01  
0.1  
1
Output power (W)  
Figure 8.  
THD+N vs. output power  
Figure 9.  
THD+N vs. output power  
10  
10  
Mode 3 - LHP, RHP  
RL = 16, G = +10.5dB  
BW < 125kHz  
Mode 3 - LHP, RHP  
RL = 16, G = +1.5dB  
BW < 125kHz  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
1
1
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
0.1  
0.1  
Vcc=5V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
Output power (W)  
0.1  
1E-3  
0.01  
Output power (W)  
0.1  
15/51  
Electrical characteristics  
TS4956  
Figure 10. THD+N vs. output power  
Figure 11. THD+N vs. output power  
10  
10  
Mode 3 - LHP, RHP  
Mode 3 - LHP, RHP  
RL = 32  
BW < 125kHz  
Tamb = 25  
, G = +1.5dB  
RL = 32  
BW < 125kHz  
Tamb = 25  
, G = +10.5dB  
°
C
°
C
1
1
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
0.1  
0.1  
Vcc=5V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3.3V Vcc=5V  
F=20kHz F=20kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V Vcc=5V  
F=20kHz F=20kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1E-3  
0.01  
0.1  
Output power (W)  
Output power (W)  
Figure 12. THD+N vs. output power  
Figure 13. THD+N vs. output power  
10  
10  
Mode 4 - LHP, RHP  
RL = 16Ω, G = +10.5dB  
BW < 125kHz  
Mode 4 - LHP, RHP  
RL = 16, G = +1.5dB  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
1
0.1  
1
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=5V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
0.1  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
Output power (W)  
0.1  
1E-3  
0.01  
Output power (W)  
0.1  
Figure 14. THD+N vs. output power  
Figure 15. THD+N vs. output power  
10  
10  
Mode 4 - LHP, RHP  
RL = 32Ω, G = +1.5dB  
BW < 125kHz  
Mode 4 - LHP, RHP  
RL = 32Ω, G = +10.5dB  
BW < 125kHz  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
1
0.1  
1
0.1  
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=5V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1E-3  
0.01  
0.1  
Output power (W)  
Output power (W)  
16/51  
TS4956  
Electrical characteristics  
Figure 16. THD+N vs. output power  
Figure 17. THD+N vs. output power  
10  
10  
Mode 5, 6 - MLO  
RL = 16, G = +1.5dB  
BW < 125kHz  
Mode 5, 6 - MLO  
RL = 16, G = +10.5dB  
BW < 125kHz  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
Vcc=5V  
F=1kHz  
Vcc=5V  
F=1kHz  
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
0.1  
0.01  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=2.7V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output power (W)  
Output power (W)  
Figure 18. THD+N vs. output power  
Figure 19. THD+N vs. output power  
10  
10  
Mode 5, 6 - MLO  
RL = 32Ω, G = +10.5dB  
BW < 125kHz  
Mode 5, 6 - MLO  
RL = 32Ω, G = +1.5dB  
BW < 125kHz  
Vcc=5V  
F=20kHz  
Vcc=5V  
F=20kHz  
Tamb = 25°C  
Tamb = 25°C  
Vcc=5V  
F=1kHz  
Vcc=5V  
F=1kHz  
1
0.1  
1
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
0.1  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=3.3V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1E-3  
0.01  
0.1  
Output power (W)  
Output power (W)  
Figure 20. THD+N vs. output power  
Figure 21. THD+N vs. output power  
10  
10  
Vcc=5V  
F=20kHz  
Mode 7 - BTL, SPK out  
RL = 16Ω, G = +10.5dB  
BW < 125kHz  
Mode 7 - BTL, SPK out  
RL = 8Ω, G = +10.5dB  
BW < 125kHz  
Tamb = 25°C  
Vcc=5V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Tamb = 25°C  
1
1
0.1  
Vcc=2.7V  
F=20kHz  
Vcc=2.7V  
F=20kHz  
Vcc=3.3V  
F=20kHz  
Vcc=2.7V  
F=1kHz  
0.1  
Vcc=5V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=2.7V  
F=1kHz  
Vcc=3.3V  
F=1kHz  
Vcc=5V  
F=1kHz  
0.01  
0.01  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
Output power (W)  
Output power (W)  
17/51  
Electrical characteristics  
TS4956  
Figure 22. THD+N vs. frequency  
Figure 23. THD+N vs. frequency  
10  
10  
Mode 1, 2 - SPK out  
Mode 1, 2 - SPK out  
RL = 8  
RL = 8  
G = +1.5dB  
G = +10.5dB  
BW < 125kHz  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
0.1  
Vcc=5V  
Po=700mW  
Vcc=5V  
Po=700mW  
Vcc=3.3V  
Po=300mW  
Vcc=3.3V  
Po=300mW  
Vcc=2.7V  
Po=200mW  
Vcc=2.7V  
Po=200mW  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. THD+N vs. frequency  
Figure 25. THD+N vs. frequency  
10  
10  
Mode 1, 2 - SPK out  
Mode 1, 2 - SPK out  
RL = 16  
RL = 16  
G = +10.5dB  
G = +1.5dB  
BW < 125kHz  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
Vcc=5V  
Po=400mW  
Vcc=5V  
Po=400mW  
Vcc=3.3V  
Po=200mW  
Vcc=3.3V  
Po=200mW  
Vcc=2.7V  
Po=120mW  
Vcc=2.7V  
Po=120mW  
0.1  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 26. THD+N vs. frequency  
Figure 27. THD+N vs. frequency  
10  
10  
Mode 3 - LHP, RHP  
Mode 3 - LHP, RHP  
RL = 16  
RL = 16Ω  
G = +10.5dB  
G = +1.5dB  
BW < 125kHz  
BW < 125kHz  
Tamb = 25  
°
C
Tamb = 25°C  
1
1
0.1  
Vcc=3.3V  
Po=15mW  
Vcc=3.3V  
Po=15mW  
Vcc=2.7V  
Po=15mW  
Vcc=2.7V  
Po=15mW  
0.1  
Vcc=5V  
Vcc=5V  
Po=15mW  
Po=15mW  
10000  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000  
20  
100  
1000  
Frequency (Hz)  
18/51  
TS4956  
Electrical characteristics  
Figure 28. THD+N vs. frequency  
Figure 29. THD+N vs. frequency  
10  
10  
Mode 3 - LHP, RHP  
Mode 3 - LHP, RHP  
RL = 32  
RL = 32  
G = +1.5dB  
G = +10.5dB  
BW < 125kHz  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
Vcc=3.3V  
Po=10mW  
Vcc=3.3V  
Po=10mW  
Vcc=2.7V  
Po=10mW  
Vcc=2.7V  
Po=10mW  
0.1  
0.01  
Vcc=5V  
Po=10mW  
Vcc=5V  
Po=10mW  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000  
20  
100  
1000  
Frequency (Hz)  
10000  
Figure 30. THD+N vs. frequency  
Figure 31. THD+N vs. frequency  
10  
10  
Mode 4 - LHP, RHP  
Mode 4 - LHP, RHP  
RL = 16  
RL = 16  
G = +10.5dB  
BW < 125kHz  
G = +1.5dB  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
Vcc=5V  
Po=15mW  
Vcc=5V  
Po=15mW  
Vcc=3.3V  
Po=15mW  
Vcc=2.7V  
Po=15mW  
Vcc=3.3V  
Po=15mW  
Vcc=2.7V  
Po=15mW  
0.1  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 32. THD+N vs. frequency  
Figure 33. THD+N vs. frequency  
10  
10  
Mode 4 - LHP, RHP  
Mode 4 - LHP, RHP  
RL = 32  
RL = 32Ω  
G = +1.5dB  
G = +10.5dB  
BW < 125kHz  
BW < 125kHz  
Tamb = 25  
°
C
Tamb = 25°C  
1
1
0.1  
Vcc=5V  
Vcc=5V  
Po=10mW  
Po=10mW  
Vcc=3.3V  
Po=10mW  
Vcc=3.3V  
Po=10mW  
Vcc=2.7V  
Po=10mW  
Vcc=2.7V  
Po=10mW  
0.1  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
19/51  
Electrical characteristics  
TS4956  
Figure 34. THD+N vs. frequency  
Figure 35. THD+N vs. frequency  
10  
10  
Mode 5, 6 - MLO  
Mode 5, 6 - MLO  
RL = 16  
RL = 16  
G = +1.5dB  
BW < 125kHz  
G = +10.5dB  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
0.1  
1
0.1  
Vcc=5V  
Po=100mW  
Vcc=5V  
Po=100mW  
Vcc=3.3V  
Po=50mW  
Vcc=2.7V  
Po=30mW  
Vcc=3.3V  
Po=50mW  
Vcc=2.7V  
Po=30mW  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Figure 36. THD+N vs. frequency  
Figure 37. THD+N vs. frequency  
10  
10  
Mode 5, 6 - MLO  
Mode 5, 6 - MLO  
RL = 32  
RL = 32  
G = +10.5dB  
BW < 125kHz  
G = +1.5dB  
BW < 125kHz  
Tamb = 25°C  
Vcc=5V  
Po=60mW  
Tamb = 25°C  
1
0.1  
1
Vcc=5V  
Po=60mW  
Vcc=3.3V  
Po=30mW  
Vcc=2.7V  
Po=20mW  
Vcc=3.3V  
Po=30mW  
Vcc=2.7V  
Po=20mW  
0.1  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 38. THD+N vs. frequency  
Figure 39. THD+N vs. frequency  
10  
10  
Mode 7 - BTL, SPK out  
Mode 7 - BTL, SPK out  
RL = 16  
RL = 8  
G = +10.5dB  
BW < 125kHz  
G = +10.5dB  
BW < 125kHz  
Tamb = 25°C  
Tamb = 25°C  
1
1
0.1  
Vcc=5V  
Po=700mW  
Vcc=5V  
Po=400mW  
Vcc=3.3V  
Po=300mW  
Vcc=2.7V  
Po=200mW  
Vcc=3.3V  
Po=200mW  
Vcc=2.7V  
Po=120mW  
0.1  
0.01  
0.01  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
20/51  
TS4956  
Electrical characteristics  
Figure 40. Output power vs. power supply  
voltage  
Figure 41. Output power vs. power supply  
voltage  
1400  
1600  
Mode 1, 2, 7  
BTL, SPK out  
F = 1kHz  
BW < 125 kHz  
Tamb = 25°C  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Mode 1, 2, 7  
1400  
1200  
1000  
800  
600  
400  
200  
0
BTL, SPK out  
F = 1kHz  
BW < 125 kHz  
RL=8  
RL=8  
Tamb = 25°C  
RL=16  
RL=16  
RL=32  
5.0  
RL=32  
5.0  
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.5  
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.5  
Figure 42. Output power vs. power supply  
voltage  
Figure 43. Output power vs. power supply  
voltage  
70  
50  
RL=32Ω  
RL=32  
60  
40  
30  
20  
10  
0
50  
RL=16Ω  
RL=16  
40  
30  
Mode 3, 4  
LHP, RHP  
F = 1kHz  
BW < 125 kHz  
Mode 3, 4  
LHP, RHP  
F = 1kHz  
BW < 125 kHz  
Tamb = 25  
20  
RL=64Ω  
RL=64  
4.0  
10  
Tamb = 25°C  
°C  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
Vcc (V)  
Vcc (V)  
Figure 44. Output power vs. power supply  
voltage  
Figure 45. Output power vs. power supply  
voltage  
200  
280  
Mode 5, 6  
MLO  
F = 1kHz  
BW < 125 kHz  
Mode 5, 6  
MLO  
180  
240  
200  
160  
120  
80  
F = 1kHz  
BW < 125 kHz  
160  
RL=16  
140  
120  
100  
80  
RL=16  
Tamb = 25°C  
Tamb = 25°C  
RL=32  
RL=32  
60  
40  
40  
20  
RL=64  
5.0  
RL=64  
5.0  
0
0
2.5  
3.0  
3.5  
4.0  
Vcc (V)  
4.5  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
Vcc (V)  
21/51  
Electrical characteristics  
TS4956  
Figure 46. Output power vs. load resistance  
Figure 47. Output power vs. load resistance  
1400  
1600  
Mode 1, 2, 7  
Mode 1, 2, 7  
1300  
BTL, SPK out  
1200  
1400  
1200  
1000  
800  
600  
400  
200  
0
BTL, SPK out  
F = 1kHz  
BW < 125 kHz  
Vcc=5.5V  
F = 1kHz  
Vcc=5.5V  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
BW < 125 kHz  
Tamb = 25  
°
C
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
Vcc=3.3V  
Vcc=2.7V  
Vcc=2.7V  
8
12  
16  
20  
24  
28  
32  
8
12  
16  
20  
24  
28  
32  
Load resistance (  
)
Load resistance (  
)
Figure 48. Output power vs. load resistance  
Figure 49. Output power vs. load resistance  
90  
70  
Mode 3, 4  
LHP, RHP  
F = 1kHz  
Mode 3, 4  
LHP, RHP  
F = 1kHz  
80  
60  
50  
40  
30  
20  
10  
0
Vcc=5.5V  
Vcc=5.5V  
70  
60  
50  
40  
30  
20  
10  
0
BW < 125 kHz  
Tamb = 25°C  
BW < 125 kHz  
Tamb = 25°C  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
Vcc=3.3V  
Vcc=2.7V  
Vcc=2.7V  
16 20 24 28 32 36 40 44 48 52 56 60 64  
16 20 24 28 32 36 40 44 48 52 56 60 64  
Load resistance (  
)
Load resistance (  
)
Figure 50. Output power vs. load resistance  
Figure 51. Output power vs. load resistance  
200  
300  
Mode 5, 6  
MLO  
F = 1kHz  
BW < 125 kHz  
Tamb = 25  
Mode 5, 6  
MLO  
F = 1kHz  
BW < 125 kHz  
Tamb = 25°C  
180  
250  
Vcc=5.5V  
160  
140  
120  
100  
80  
Vcc=5.5V  
°
C
200  
150  
100  
50  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
Vcc=3.3V  
60  
Vcc=2.7V  
Vcc=2.7V  
40  
40  
20  
0
0
16  
24  
32  
48  
56  
64  
16  
24  
32  
40  
48  
56  
64  
Load resistance ()  
Load resistance ()  
22/51  
TS4956  
Electrical characteristics  
Figure 52. PSRR vs. frequency  
Figure 56. PSRR vs. frequency  
0
0
Mode 1 - SPK out  
Vcc = 2.7V  
Mode 1 - SPK out  
Vcc = 3.3V  
G=+12dB, +10.5dB  
G=+1.5dB  
-20 RL  
Inp. grounded  
Vripple = 200mVpp  
8, Cb = 1µF  
-20  
RL  
Inp. grounded  
Vripple = 200mVpp  
8, Cb = 1µF  
G=+12dB  
G=+6dB  
G=+10.5dB  
G=+1.5dB  
-40  
-40  
G=+6dB  
-60  
-60  
G=-18dB  
G=-9dB  
-80  
-80  
G=-9dB  
G=-34.5dB  
G=-18dB  
G=-34.5dB  
-100  
-100  
20  
100  
1000  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 53. PSRR vs. frequency  
Figure 57. PSRR vs. frequency  
0
0
Mode 1 - SPK out  
Vcc = 5V  
Mode 2 - SPK out  
Vcc = 2.7V  
-10  
-20  
-40  
RL  
Inp. grounded  
Vripple = 200mVpp  
8
Ω, Cb = 1  
µ
F
RL  
8, Cb = 1µF  
G=+12dB  
-20  
Inp. grounded  
G=+6dB  
-30 Vripple = 200mVpp  
G=+10.5dB  
G=+10.5dB  
G=+1.5dB  
-40  
-50  
-60  
-70  
G=+6dB  
G=+12dB  
-60  
-80  
G=-18dB  
G=-9dB  
10000  
G=+1.5dB  
-80  
G=-18dB  
1000  
G=-9dB  
G=-34.5dB  
G=-34.5dB  
-100  
-90  
20  
100  
1000  
10000  
20  
100  
Frequency (Hz)  
Frequency (Hz)  
Figure 54. PSRR vs. frequency  
Figure 58. PSRR vs. frequency  
0
0
Mode 2 - SPK out  
Vcc = 3.3V  
Mode 2 - SPK out  
Vcc = 5V  
-10  
-10  
RL  
8Ω, Cb = 1µF  
RL  
8, Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
G=+12dB  
Inp. grounded  
Vripple = 200mVpp  
Inp. grounded  
G=+12dB, +10.5dB  
G=+6dB  
G=+10.5dB  
-30 Vripple = 200mVpp  
G=+6dB  
-40  
-50  
-60  
-70  
G=+1.5dB  
G=+1.5dB  
G=-9dB  
10000  
-80  
G=-34.5dB  
100  
G=-9dB  
10000  
G=-18dB  
G=-34.5dB  
G=-18dB  
1000  
-90  
20  
1000  
20  
100  
Frequency (Hz)  
Frequency (Hz)  
23/51  
TS4956  
Electrical characteristics  
Figure 60. PSRR vs. frequency  
Figure 63. PSRR vs. frequency  
0
0
-10  
-20  
Mode 3 - LHP, RHP  
Vcc = 2.7V  
Mode 3 - LHP, RHP  
Vcc = 3.3V  
-10  
RL  
Inp. grounded  
Vripple = 200mVpp  
16Ω, Cb = 1µF  
RL  
16Ω, Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Inp. grounded  
-30 Vripple = 200mVpp  
-40  
G=+10.5dB  
G=+12dB  
G=+10.5dB  
G=+12dB  
G=+1.5dB  
G=+6dB  
G=+1.5dB  
G=+6dB  
-50  
-60  
-70  
-80  
-90  
G=-34.5dB  
10000  
G=-18dB  
10000  
G=-9dB  
G=-9dB  
G=-18dB  
100  
G=-34.5dB  
20  
1000  
20  
100  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 61. PSRR vs. frequency  
Figure 64. PSRR vs. frequency  
0
0
Mode 3 - LHP, RHP  
Vcc = 5V  
Mode 4 - LHP, RHP  
Vcc = 2.7V  
-10  
-10  
RL  
16Ω, Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
Inp. grounded  
Vripple = 200mVpp  
16Ω, Cb = 1µF  
-20  
Inp. grounded  
-30 Vripple = 200mVpp  
G=+10.5dB  
G=+10.5dB  
G=+1.5dB  
-40  
G=+12dB  
G=+1.5dB  
G=+6dB  
G=+12dB  
-50  
G=+6dB  
-60  
-70  
G=-9dB  
-80  
G=-34.5dB  
G=-34.5dB  
1000  
G=-18dB  
G=-9dB  
G=-18dB  
-90  
20  
100  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 62. PSRR vs. frequency  
Figure 65. PSRR vs. frequency  
0
0
Mode 4 - LHP, RHP  
Vcc = 3.3V  
Mode 4 - LHP, RHP  
-10  
-10  
Vcc = 5V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
16Ω, Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
16Ω, Cb = 1µF  
Inp. grounded  
Inp. grounded  
Vripple = 200mVpp  
G=+1.5dB  
Vripple = 200mVpp  
G=+1.5dB  
G=+10.5dB  
G=+6dB  
G=+10.5dB  
G=+12dB  
G=+12dB  
G=+6dB  
G=-34.5dB  
10000  
G=-18dB  
20  
G=-34.5dB  
10000  
G=-18dB  
G=-9dB  
G=-9dB  
20  
100  
1000  
Frequency (Hz)  
100  
1000  
Frequency (Hz)  
24/51  
TS4956  
Electrical characteristics  
Figure 66. PSRR vs. frequency  
Figure 69. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Mode 5 - MLO  
Vcc = 2.7V  
Mode 5 - MLO  
Vcc = 3.3V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
Inp. grounded  
Vripple = 200mVpp  
16Ω, Cb = 1µF  
RL  
16Ω, Cb = 1µF  
G=+12dB  
G=+6dB  
Inp. grounded  
Vripple = 200mVpp  
G=+10.5dB  
G=+10.5dB  
G=+12dB G=+6dB  
G=+1.5dB  
G=-18dB  
10000  
G=-9dB  
G=+1.5dB  
G=-9dB  
G=-18dB  
G=-34.5dB  
G=-34.5dB  
20  
100  
1000  
10000  
20  
100  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 67. PSRR vs. frequency  
Figure 70. PSRR vs. frequency  
0
0
Mode 5 - MLO  
Vcc = 5V  
Mode 6 - MLO  
Vcc = 2.7V  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
16Ω, Cb = 1  
µ
F
G=+12dB  
G=+6dB  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
Inp. grounded  
Vripple = 200mVpp  
16, Cb = 1µF  
Inp. grounded  
Vripple = 200mVpp  
G=+10.5dB  
G=+10.5dB  
G=-9dB  
G=+12dB  
G=+6dB  
G=+1.5dB  
G=-18dB  
G=-34.5dB  
G=+1.5dB  
100  
G=-18dB  
G=-9dB  
G=-34.5dB  
10000  
20  
1000  
20  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
Figure 68. PSRR vs. frequency  
Figure 71. PSRR vs. frequency  
0
0
Mode 6 - MLO  
Vcc = 3.3V  
Mode 6 - MLO  
-10  
-10  
Vcc = 5V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
Inp. grounded  
Vripple = 200mVpp  
16Ω, Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
Inp. grounded  
Vripple = 200mVpp  
16, Cb = 1µF  
G=+12dB  
G=+6dB  
G=+12dB  
G=+6dB  
G=+1.5dB  
G=+10.5dB  
G=+10.5dB  
G=+1.5dB  
G=-9dB  
G=-34.5dB  
G=-34.5dB  
G=-18dB  
G=-9dB  
G=-18dB  
20  
100  
1000  
Frequency (Hz)  
10000  
20  
100  
1000  
10000  
Frequency (Hz)  
25/51  
TS4956  
Electrical characteristics  
Figure 72. PSRR vs. frequency  
Figure 75. PSRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Mode 7 - BTL, SPK out  
Vcc = 2.7V  
Mode 7 - BTL, SPK out  
Vcc = 3.3V  
-10  
RL  
8
Ω, Cb = 1  
µF  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
RL  
8, Cb = 1µF  
Inp. grounded  
Vripple = 200mVpp  
Inp. grounded  
G=+12dB  
G=+6dB  
Vripple = 200mVpp  
G=+12dB  
G=+6dB  
G=+10.5dB  
G=+10.5dB  
G=+1.5dB  
G=+1.5dB  
G=-34.5dB  
G=-34.5dB  
G=-9dB  
100  
G=-18dB  
G=-9dB  
100  
G=-18dB  
1000  
20  
1000  
10000  
20  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 73. PSRR vs. frequency  
Figure 76. CMRR vs. frequency  
0
0
Mode 1 - SPK out  
Vcc = 2.7V, 3.3V, 5V  
Mode 7 - BTL, SPK out  
-10  
Vcc = 5V  
-20  
G=+12dB  
G=+10.5dB  
RL  
Cin = 470  
Vic = 200mVpp  
8, Cb = 1µF  
RL  
8
Ω, Cb = 1  
µ
F
-20  
-40  
µ
F
Inp. grounded  
Vripple = 200mVpp  
-30  
-40  
G=+10.5dB  
G=+6dB  
G=+12dB  
G=+6dB  
-50  
G=+1.5dB  
-60  
-60  
-70  
G=+1.5dB  
G=-9dB  
10000  
-80  
-80  
G=-9dB  
10000  
-90  
G=-34.5dB  
100  
G=-18dB  
G=-18dB  
1000  
G=-34.5dB  
100  
-100  
-100  
20  
1000  
Frequency (Hz)  
Frequency (Hz)  
Figure 74. CMRR vs. frequency  
Figure 77. CMRR vs. frequency  
0
0
Mode 3 - LHP, RHP  
Vcc = 2.7V, 3.3V, 5V  
Mode 5 - MLO  
G=+12dB  
Vcc = 2.7V, 3.3V, 5V  
RL 16 , Cb = 1  
Cin = 470  
Vic = 200mVpp  
RL  
Cin = 470  
Vic = 200mVpp  
8, Cb = 1µF  
-20  
-40  
G=+12dB  
G=+10.5dB  
-20  
-40  
µF  
G=+10.5dB  
G=+6dB  
µ
F
µ
F
G=+6dB  
-60  
-60  
G=+1.5dB  
G=-9dB  
10000  
-80  
-80  
G=+1.5dB G=-9dB  
G=-18dB  
G=-18dB  
1000  
Frequency (Hz)  
G=-34.5dB  
100  
G=-34.5dB  
10000  
-100  
-100  
100  
1000  
Frequency (Hz)  
26/51  
TS4956  
Electrical characteristics  
Figure 78. SNR vs. power supply voltage  
Figure 81. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
Weighted filter type A  
Unweighted filter (20Hz to 20 kHz)  
Mode 1, SPK out  
Weighted filter type A  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Unweighted filter (20Hz to 20 kHz)  
Mode 1, SPK out  
G = +10.5dB, RL = 8  
THD+N < 0.5%  
G = +1.5dB, RL = 8  
THD+N < 0.5%  
Tamb = 25  
°
C
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
Vcc (V)  
5
Figure 79. SNR vs. power supply voltage  
Figure 82. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Weighted filter type A  
Unweighted filter (20Hz to 20 kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20 kHz)  
Mode 1, SPK out  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
Mode 1, SPK out  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
Vcc (V)  
5
Figure 80. SNR vs. power supply voltage  
Figure 83. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 2, SPK out  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 2, SPK out  
G = +10.5dB, RL = 8  
THD+N < 0.5%  
G = +1.5dB, RL = 8  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
Vcc (V)  
5
27/51  
TS4956  
Electrical characteristics  
Figure 84. SNR vs. power supply voltage  
Figure 87. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
Weighted filter type A  
76  
Weighted filter type A  
76  
74  
72  
74  
72  
Unweighted filter (20Hz to 20kHz)  
Unweighted filter (20Hz to 20kHz)  
Mode 2, SPK out  
70  
Mode 2, SPK out  
70  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
68  
66  
64  
62  
60  
68  
66  
64  
62  
60  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 85. SNR vs. power supply voltage  
Figure 88. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 3 - LHP, RHP  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
Mode 3 - LHP, RHP  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 86. SNR vs. power supply voltage  
Figure 89. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 3 - LHP, RHP  
G = +1.5dB, RL = 32  
THD+N < 0.5%  
Mode 3 - LHP, RHP  
G = +10.5dB, RL = 32  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
28/51  
TS4956  
Electrical characteristics  
Figure 90. SNR vs. power supply voltage  
Figure 93. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Unweighted filter (20Hz to 20kHz)  
Mode 4 - LHP, RHP  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
Mode 4 - LHP, RHP  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
Tamb = 25  
°
C
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 91. SNR vs. power supply voltage  
Figure 94. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 5 - MLO  
G = +1.5dB, RL = 32  
THD+N < 0.5%  
Mode 4 - LHP, RHP  
G = +10.5dB, RL = 32  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 92. SNR vs. power supply voltage  
Figure 95. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 5 - MLO  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
Mode 5 - MLO  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
29/51  
TS4956  
Electrical characteristics  
Figure 96. SNR vs. power supply voltage  
Figure 99. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 5 - MLO  
G = +1.5dB, RL = 32  
THD+N < 0.5%  
Mode 5 - MLO  
G = +10.5dB, RL = 32  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 97. SNR vs. power supply voltage  
Figure 100. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 6 - MLO  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 6 - MLO  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
G = +1.5dB, RL = 16  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 98. SNR vs. power supply voltage  
Figure 101. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Weighted filter type A  
Unweighted filter (20Hz to 20kHz)  
Mode 6 - MLO  
G = +1.5dB, RL = 32  
THD+N < 0.5%  
Mode 6 - MLO  
G = +10.5dB, RL = 32  
THD+N < 0.5%  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
30/51  
TS4956  
Electrical characteristics  
Figure 102. SNR vs. power supply voltage  
Figure 105. SNR vs. power supply voltage  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
Weighted filter type A  
76  
Weighted filter type A  
76  
74  
72  
74  
72  
Unweighted filter (20Hz to 20kHz)  
Unweighted filter (20Hz to 20kHz)  
Mode 7 - BTL, SPKout  
70  
Mode 7 - BTL, SPKout  
70  
G = +10.5dB, RL = 8  
THD+N < 0.5%  
G = +10.5dB, RL = 16  
THD+N < 0.5%  
68  
66  
64  
62  
60  
68  
66  
64  
62  
60  
Tamb = 25  
°C  
Tamb = 25  
°C  
2.7  
3.3  
Vcc (V)  
5
2.7  
3.3  
5
Vcc (V)  
Figure 103. Current consumption vs. power  
supply voltage  
Figure 106. Standby current consumption vs.  
power supply voltage  
8
0.5  
No loads  
Mode7  
No loads  
Tamb = 25°C  
Tamb = 25°C  
7
6
5
4
3
2
1
0
Mode3  
0.4  
0.3  
0.2  
0.1  
0.0  
Mode4  
Mode 1,2  
Mode 5,6  
1
0
1
2
3
4
5
6
0
2
3
4
5
Vcc (V)  
Vcc (V)  
Figure 107. Frequency response mode 3, 4  
Figure 104. Frequency response mode 1, 2, 7  
12  
12  
Mode 3, 4  
LHP, RHP  
Cin = 330nF  
10  
8
10  
8
Mode 1, 2, 7  
BTL, SPK out  
Cin = 330nF  
Tamb 25 °C  
G=+12dB, RL=16,32Ω  
G=+12dB, RL=16Ω  
G=+12dB, RL=8Ω  
Tamb 25 °C  
6
6
G=+6dB, RL=16,32Ω  
4
G=+6dB, RL=16Ω  
G=+6dB, RL=8Ω  
4
2
2
0
G=+1.5dB, RL=16,32Ω  
0
G=+1.5dB, RL=16Ω  
G=+1.5dB, RL=8Ω  
1000 10000  
Frequency (Hz)  
-2  
-2  
100  
1000  
Frequency (Hz)  
10000  
100  
31/51  
TS4956  
Electrical characteristics  
Figure 108. Frequency response modes 5, 6  
Figure 111. Frequency response modes 5, 6  
12  
12  
10  
10  
G=+12dB, RL=32Ω  
G=+12dB, RL=32  
G=+12dB, RL=16  
8
8
6
G=+12dB, RL=16Ω  
6
4
2
4
2
0
0
G=+6dB, RL=32Ω  
G=+6dB, RL=32  
G=+6dB, RL=16  
-2  
-2  
-4  
-6  
-8  
-10  
G=+6dB, RL=16Ω  
-4  
Mode 5, 6 - MLO  
Mode 5, 6 - MLO  
Cin = 330nF  
Cout = 470  
Tamb 25  
G=+1.5dB, RL=32Ω  
G=+1.5dB, RL=32  
G=+1.5dB, RL=16  
Cin = 330nF  
Cout = 220µF  
Tamb 25 °C  
-6  
-8  
µ
F
G=+1.5dB, RL=16Ω  
°
C
-10  
100  
1000  
Frequency (Hz)  
10000  
100  
1000  
Frequency (Hz)  
10000  
Figure 109. Power dissipation vs. output  
power (per channel)  
Figure 112. Power dissipation vs. output  
power (per channel)  
200  
180  
160  
140  
300  
250  
200  
THD+N=1%  
120  
100  
80  
60  
40  
20  
0
THD+N=1%  
RL=8  
RL=8  
150  
100  
50  
Mode 1, 2, 7  
BTL, SPK out  
Vcc = 2.7V  
F = 1kHz  
THD+N < 10%  
Mode 1, 2, 7  
BTL, SPK out  
Vcc = 3.3V  
F = 1kHz  
THD+N < 10%  
RL=16  
RL=16  
200  
0
0
50  
100  
150 200 250 300 350 400  
0
100  
300  
400  
500  
600  
Output Power (mW)  
Output Power (mW)  
Figure 110. Power dissipation vs. output  
power (per channel)  
Figure 113. Power dissipation vs. output  
power (per channel)  
700  
650  
600  
550  
500  
900  
800  
700  
600  
450  
400  
THD+N=1%  
THD+N=1%  
RL=8  
RL=8  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
Mode 1, 2, 7  
BTL, SPK out  
Vcc = 5.5V  
Mode 1, 2, 7  
BTL, SPK out  
Vcc = 5V  
F = 1kHz  
THD+N < 10%  
RL=16  
RL=16  
400  
F = 1kHz  
THD+N < 10%  
0
0
200 400 600 800 1000 1200 1400 1600 1800  
0
200  
600  
800  
1000 1200 1400  
Output Power (mW)  
Output Power (mW)  
32/51  
TS4956  
Electrical characteristics  
Figure 114. Power dissipation vs. output  
power (per channel)  
Figure 117. Power dissipation vs. output  
power (per channel)  
90  
130  
120  
THD+N=1%  
80  
70  
60  
50  
40  
30  
20  
10  
0
THD+N=1%  
110  
100  
RL=16  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL=16  
RL=32  
RL=32  
Mode 3, 4 - LHP, RHP  
Vcc = 2.7V  
F = 1kHz  
Mode 3, 4 - LHP, RHP  
Vcc = 3.3V  
F = 1kHz  
THD+N < 10%  
THD+N < 10%  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
Output Power (mW)  
Output Power (mW)  
Figure 115. Power dissipation vs. output  
power (per channel)  
Figure 118. Power dissipation vs. output  
power (per channel)  
220  
260  
240  
200  
THD+N=1%  
180  
THD+N=1%  
220  
200  
180  
160  
140  
120  
100  
80  
RL=16  
160  
140  
120  
100  
80  
RL=16  
RL=32  
RL=32  
60  
Mode 3, 4 - LHP, RHP  
Vcc = 5V  
Mode 3, 4 - LHP, RHP  
Vcc = 5.5V  
F = 1kHz  
60  
40  
40  
F = 1kHz  
20  
20  
THD+N < 10%  
THD+N < 10%  
0
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
Output Power (mW)  
Output Power (mW)  
Figure 116. Power dissipation vs. output  
power  
Figure 119. Power dissipation vs. output  
power  
24  
22  
20  
18  
40  
35  
30  
16  
25  
THD+N=1%  
14  
THD+N=1%  
20  
12  
10  
8
RL=16  
RL=16  
15  
10  
5
Mode 5, 6 - MLO  
Vcc = 3.3V  
F = 1kHz  
Mode 5, 6 - MLO  
6
Vcc = 2.7V  
F = 1kHz  
THD+N < 10%  
RL=32  
4
RL=32  
2
THD+N < 10%  
0
0
0
10 20 30 40 50 60 70 80 90 100  
0
10  
20  
30  
40  
50  
60  
70  
Output Power (mW)  
Output Power (mW)  
33/51  
TS4956  
Electrical characteristics  
Figure 120. Power dissipation vs. output  
power  
Figure 123. Power dissipation vs. output  
power  
90  
80  
70  
60  
100  
90  
80  
70  
THD+N=1%  
60  
THD+N=1%  
50  
RL=16  
50  
40  
30  
20  
10  
0
RL=16  
40  
30  
20  
10  
0
Mode 5, 6 - MLO  
Vcc = 5V  
F = 1kHz  
Mode 5, 6 - MLO  
Vcc = 5.5V  
F = 1kHz  
RL=32  
50  
RL=32  
THD+N < 10%  
THD+N < 10%  
0
20 40 60 80 100 120 140 160 180 200 220 240  
0
100  
150  
200  
250  
300  
Output Power (mW)  
Output Power (mW)  
Figure 121. Power derating curves  
Figure 124. Crosstalk vs. frequency  
1.6  
1.4  
0
Vcc = 5V, 3.3V, 2.7V  
Mode 4  
LHP -> RHP  
-10  
Heat sink surface = 125mm2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RHP -> LHP  
Tamb = 25  
°
C
RL=32  
Po=10mW  
RL=16  
Po=15mW  
No Heat sink  
25  
100  
1000  
Frequency (Hz)  
10000  
0
50  
75  
100  
C)  
125  
150  
Ambiant Temperature (  
°
Figure 122. Crosstalk vs. frequency  
0
Mode 4  
-10  
RL = 8  
BTL out -> SPK out  
SPK out -> BTL out  
Tamb = 25°C  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Vcc=5V  
Po=700mW  
Vcc=3.3V  
Po=300mW  
Vcc=2.7V  
Po=200mW  
100  
1000  
10000  
Frequency (Hz)  
34/51  
TS4956  
Application information  
4
Application information  
The TS4956 integrates 4 monolithic power amplifiers and has one differential input and two  
single-ended inputs. The output amplifiers can be configured in 7 different modes as one SE  
(single-ended) capacitively-coupled output, two phantom ground headphone outputs and  
two BTL outputs. Figure 1 on page 3 and Figure 2 on page 4 shows schemes of these  
configurations and Table 7 on page 6 describes these configurations in different modes.  
This chapter gives information on how to configure the TS4956 in application.  
4.1  
Output configurations  
4.1.1  
Shutdown  
When the device is in shutdown mode, all of the device’s outputs are in a high impedance  
state.  
4.1.2  
Single-ended output configuration (modes 5 and 6)  
When the device is woken-up via the I²C interface, output amplifier on output MLO is biased  
to the V /2 voltage. In this configuration an output capacitor, C , on the single-ended  
CC  
out  
output is needed to block the V /2 voltage and couples the audio signal to the load.  
CC  
V
/2 voltage is present on this output in all modes (modes 1 to 7) to keep the output  
CC  
capacitor C charged and to improve pop performance on this output during the switching  
out  
between any given mode to Mode 5 or 6.  
When the device is in Mode 5 or 6 where the single-ended output MLO is active, all other  
outputs are in a high impedance state.  
4.1.3  
Phantom ground output configuration (modes 3 and 4)  
In a phantom ground output configuration (modes 3 and 4) the internal buffer is connected  
to PHG pin and biased to the V /2 voltage. Output amplifiers (pins LHP and RHP) are also  
CC  
biased to the V /2 voltage. One end of the load is connected to output amplifier and one to  
CC  
the PHG buffer. Therefore, no output capacitors are needed. The advantage of the PHG  
output configuration is fewer external components compared with a SE configuration.  
However, note that in this configuration, the device has higher power dissipation (see  
Section 4.3: Power dissipation and efficiency on page 37).  
All other inactive outputs are in the high impedance state except for the MLO output, which  
is biased to V /2 voltage.  
CC  
To achieve better crosstalk results in this case, each speaker should be connected with  
separate PHG wire (2 speakers connected with 4 wires) as shown in Figure 1 on page 3  
(instead of using only one common PHG wire for both speakers, i.e. 2 speakers connected  
with 3 wires).  
35/51  
TS4956  
Application information  
4.1.4  
BTL output configuration (modes 1, 2, 7)  
In a BTL (Bridge Tied Load) output configuration (modes 1, 2 and 4), active outputs are  
biased to the V /2 voltage. All other inactive outputs are in the high impedance state  
CC  
except for the MLO output, which is biased to V /2 voltage.  
CC  
BTL means that each end of the load is connected to two single-ended output amplifiers.  
Therefore we have:  
single-ended output 1 = V  
single-ended output 2 = V  
= V (V)  
out  
out1  
out2  
= -V (V)  
out  
and  
V
- V  
= 2V (V)  
out1  
out2 out  
For the same power supply voltage, the output voltage amplitude is 2 times higher than the  
output voltage in the single-ended or phantom ground configurations and the output power  
is 4 times higher than the output power in the single-ended or phantom ground  
configurations.  
4.2  
Power limitation in the phantom ground configuration  
A power limitation is imposed on the headphones in mode 3 and 4. Limitation of output  
power is achieved by limiting the output voltage and output current on each amplifier.  
The maximum value of the output voltage, V  
, is set to a value of 1.65V in order to  
out max  
reach a maximum output power of the sinusoidal signal of around 40mW per channel with a  
32load resistance and THD+N<1%.  
The maximum value of output current I  
is set to value 70mA in order to reach a  
out max  
maximum output power of the sinusoidal signal of around 40mW per channel with a 16Ω  
load resistance and THD+N<1%.  
The maximum output power with these voltage and current limitations is reached with load  
values more than 16and less than 32as explained by Figure 125.  
Figure 48 shows the functionality of the power limitation with different load resistances.  
Figure 125. Voltage and current limitation on headphones  
RL=32 Ohms  
Vout  
RL=24 Ohms  
VpeakMAX=1.65V  
RL=16 Ohms  
IpeakMAX=70mA Iout  
36/51  
TS4956  
Application information  
4.3  
Power dissipation and efficiency  
Hypotheses:  
Voltage and current in the load are sinusoidal (V and I ).  
out out  
Supply voltage is a pure DC source (V ).  
CC  
Regarding the load we have:  
and  
Vout = VPEAKsinωt(V)  
Vout  
Iout = ----------(A)  
RL  
and  
V2PEAK  
Pout = ----------------- (A )  
2RL  
4.3.1  
Single-ended output configuration (modes 5 and 6)  
The average current delivered by the supply voltage is:  
πVPEAK  
VPEAK  
1
2π  
IccAVG = ------ ----------------- sin(t )dt = ----------------- (A )  
RL  
πRL  
0
Figure 126. Current delivered by supply voltage in the single-ended output configuration  
The power delivered by supply voltage is:  
Psupply = VCC CC  
I
(W)  
AVG  
So, the power dissipation by single-ended amplifier is  
Pdiss = PsupplyPout(W)  
2VCC  
Pdiss = ------------------ Pout Pout(W)  
π RL  
and the maximum value is obtained when:  
Pdiss  
= 0  
Pout  
37/51  
TS4956  
Application information  
and its value is:  
V2CC  
π2RL  
Pdiss  
= ------------- (W )  
MAX  
Note:  
This maximum value depends only on power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply:  
Pout πVPEAK  
η = ------------------ = --------------------  
Psupply 2VCC  
The maximum theoretical value is reached when V  
= V /2, so  
CC  
PEAK  
π
η = -- = 78.5%  
4
4.3.2  
Phantom ground output configuration (modes 3, 4):  
The average current delivered by the supply voltage is:  
πVPEAK  
2VPEAK  
1
π
IccAVG = -- ----------------- sin(t )dt = --------------------(A)  
RL  
πRL  
0
Figure 127. Current delivered by supply voltage in the phantom ground output  
configuration  
The power delivered by supply voltage is:  
Psupply = VCC CC  
I
(W)  
AVG  
Then, the power dissipation by each amplifier is  
2 2VCC  
Pdiss  
=
---------------------- P  
Pout(W)  
out  
π RL  
and the maximum value is obtained when:  
Pdiss  
= 0  
Pout  
and its value is:  
2V2CC  
Pdiss  
= --------------(W)  
π2RL  
MAX  
Note:  
This maximum value depends only on the power supply voltage and load values.  
38/51  
TS4956  
Application information  
The efficiency is the ratio between the output power and the power supply:  
Pout πVPEAK  
η = ------------------ = --------------------  
Psupply 4VCC  
The maximum theoretical value is reached when V  
= V /2, so  
CC  
PEAK  
π
η = -- = 39.25%  
8
The TS4956 has in modes 3 and 4 two active output power amplifiers. Each amplifier  
produces heat due to its power dissipation. Therefore the maximum die temperature is the  
sum of each amplifier’s maximum power dissipation. It is calculated as follows:  
P
P
= power dissipation due to the first power amplifier.  
= power dissipation due to the second power amplifier.  
diss 1  
diss 2  
Total P  
= P  
+ P  
(W)  
diss 2  
diss  
diss 1  
In most cases, P  
= P  
, giving:  
diss 2  
diss 1  
TotalPdiss = 2Pdiss1  
4 2VCC  
TotalPdiss = ---------------------- P out 2Pout(W)  
π RL  
4.3.3  
BTL output configuration (modes 1, 2, 7):  
The average current delivered by the supply voltage is:  
πVPEAK  
2VPEAK  
1
π
IccAVG = -- ----------------- sin(t )dt = --------------------(A)  
RL  
πRL  
0
Figure 128. Current delivered by supply voltage in the BTL output configuration  
The power delivered by supply voltage is:  
Psupply = VCC CC  
I
(W)  
AVG  
Then, the power dissipation by each amplifier is  
2 2VCC  
Pdiss = ---------------------- P out Pout(W)  
π RL  
39/51  
TS4956  
Application information  
and the maximum value is obtained when:  
Pdiss  
= 0  
Pout  
and its value is:  
2V2CC  
Pdiss  
= --------------(W)  
π2RL  
MAX  
Note:  
This maximum value depends only on power supply voltage and load values.  
The efficiency is the ratio between the output power and the power supply:  
Pout  
πVPEAK  
4VCC  
η = ------------------ = --------------------  
Psupply  
The maximum theoretical value is reached when V  
= V , so  
PEAK  
CC  
π
η = -- = 78.5%  
4
The TS4956 has one active output BTL power amplifier when in modes 1 and 2. In mode 7,  
the TS49656 has two active output BTL power amplifiers.  
Each amplifier produces heat due to its power dissipation. Therefore the maximum die  
temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as  
follows:  
P
P
= power dissipation due to the first BTL power amplifier.  
= power dissipation due to the second BTL power amplifier.  
diss 1  
diss 2  
Total P  
= P  
+ P  
(W)  
diss 2  
diss  
diss 1  
In most cases, P  
= P  
, giving:  
diss 2  
diss 1  
TotalPdiss = 2Pdiss1  
4 2VCC  
TotalPdiss = ---------------------- P out 2Pout (W)  
π RL  
40/51  
TS4956  
Application information  
4.4  
Low frequency response  
4.4.1  
Input capacitor C  
in  
The input coupling capacitor blocks the DC part of the input signal at the amplifier input. In  
the low-frequency region, C starts to have an effect. C with Z forms a first-order, high-  
in  
in  
in  
pass filter with -3 dB cut-off frequency.  
1
-----------------------  
FCL  
=
(Hz)  
2πZinCin  
Z is the input impedance of the corresponding input.  
in  
Note:  
For all inputs, the impedance value remains constant for all gain settings. This means that  
the lower cut-off frequency doesn’t change with the gain setting. Note also that 30 kis a  
typical value and there is tolerance around this value. Using Figure 129 you can easily  
establish the C value required for a -3dB cut-off frequency.  
in  
Figure 129. 3dB lower cut off frequency vs. input capacitance  
100  
All gain setting  
Tamb=25°C  
Minimum Input  
Impedance  
Typical Input  
Impedance  
10  
Maximum Input  
Impedance  
0.1  
1
Input Capacitor Cin (µF)  
4.4.2  
Output capacitor C  
out  
In the single-ended configuration an external output coupling capacitor, C , is needed.  
out  
This coupling capacitor C , together with the output load R , forms a first-order high-pass  
out  
L
filter with -3 dB cut off frequency.  
1
FCL = -------------------------- (H z )  
2πRLCout  
See Figure 130 to establish the C value for a -3dB cut-off frequency required.  
out  
These two first-order filters form a second-order high-pass filter. The -3 dB cut-off frequency  
of these two filters should be the same, so the following formula should be respected:  
1
1
----------------------- --------------------------  
2πZinCin 2πRLCout  
41/51  
TS4956  
Application information  
Figure 130. 3dB lower cut off frequency vs. output capacitance  
100  
10  
1
All gain setting  
Tamb = 25  
°
C
RL=16  
RL=32  
100  
1000  
F)  
Output capacitor Cout (  
µ
4.5  
Single-ended input configuration in modes 1, 3 and 5  
It is possible to use the differential inputs MIP and MIN of the TS4956 as one single-ended  
input in modes where the differential inputs are active (modes 1, 3 and 5).  
The schematic in Figure 131 shows this configuration.  
Figure 131. Single-ended input in modes 1, 3 and 5 for a typical application  
Vcc  
A
B
C
D
E
F
A
B
C
D
E
F
Cs1  
1µF  
Cs2  
100nF  
TS4956  
LHPAmplifier  
PHGAmplifier  
RHP Amplifier  
MODE3: GxMIP  
MODE3: GxMIP  
Cin1  
Stereo  
A1 MIP  
LHP  
PHG  
RHP  
B6  
A7  
16/32 Ohms  
16/32 Ohms  
+
Input Left  
330nF  
Cin2  
Stereo  
A2 MIN  
+
Input Right  
330nF  
Mode  
D6  
B2  
D2  
E7  
Select  
LIN  
RIN  
Stereo  
Speaker Amplifier  
SRP+  
B4  
A5  
MODE1: GxMIP  
8 Ohms  
Input Left  
SRN-  
MLO Amplifier  
Stereo  
MODE5: GxMIP  
Input Right  
Cout  
+
MLO  
220µF  
R1  
1k  
16/32 Ohms  
Digital volume  
control  
Bias  
I2C  
BYPASS  
I2CVCC  
Cb  
I2CVCC  
SCL  
1µF  
SDA  
I2CBUS  
42/51  
TS4956  
Application information  
4.6  
Decoupling of the circuit  
Two capacitors are needed to properly bypass the TS4956 — a power supply capacitor C  
s
and a bias voltage bypass capacitor C .  
b
C has a strong influence on the THD+N at high frequencies (above 7 kHz) and indirectly on  
s
the power supply disturbances.  
With a C value of about 1 µF, you can expect to obtain THD+N performances similar to  
s
those shown in the datasheet.  
If C is lower than 1 µF, THD+N increases in high frequency and disturbances on power  
s
supply rail are less filtered.  
On the contrary, if C is higher than 1 µF, disturbances on the power supply rail are more  
s
filtered.  
C has an influence on THD+N at lower frequencies, but its value has critical impact on the  
b
final result of PSRR with inputs grounded at lower frequencies:  
If C is lower than 1 µF, THD+N increases at lower frequencies and the PSRR  
b
worsens upwards.  
If C is higher than 1 µF, the benefit on THD+N and PSRR in the lower  
b
frequency range is small.  
The value of C also has an influence on startup time.  
b
4.7  
Power On Reset  
When power is applied to V , an internal Power On Reset holds the TS4956 in a reset  
CC  
state (shutdown) until the supply voltage reaches its nominal value. The Power On Reset  
has a typical threshold of 1.75 V.  
During this reset state the output configuration is the same as in the shutdown mode.  
43/51  
TS4956  
Application information  
4.8  
Notes on PSRR measurements  
4.8.1  
What is PSRR?  
The PSRR is the Power Supply Rejection Ratio. The PSRR of a device is the ratio between  
a power supply disturbance and the result on the output. In other words, the PSRR is the  
ability of a device to minimize the impact of power supply disturbance to the output.  
4.8.2  
How we measure the PSRR?  
The PSRR was measured with the TS4956 in the configuration shown in the schematic in  
Figure 132  
Figure 132. Configuration schematic of TS4956 for PSRR measurement  
A
B
C
D
E
F
A
B
C
D
E
F
Vripple  
Vcc  
TS4956  
Diff. input +  
Cin1  
LHPAmplifier  
PHG Amplifier  
RHP Amplifier  
10 Ohms  
Stereo  
A1 MIP  
LHP  
PHG  
RHP  
B6  
A7  
MODE7  
+
Input Left  
330nF  
RL  
16 Ohms  
Cin2  
Stereo  
A2 MIN  
RL  
8Ohms  
+
Input Right  
330nF  
10 Ohms  
10 Ohms  
10 Ohms  
RL  
16 Ohms  
Diff. input -  
Mode  
Select  
SE input left  
Cin3  
D6  
B2  
D2  
E7  
LIN  
RIN  
Stereo  
Speaker Amplifier  
SRP+  
B4  
A5  
+
330nF  
Input Left  
RL  
8Ohms  
SRN-  
MLO Amplifier  
Stereo  
Cin4  
Input Right  
+
Cout  
+
330nF  
MLO  
SE inputright  
220µF  
RL  
16 Ohms  
Digital volume  
control  
Bias  
I2C  
BYPASS  
I2CVCC  
Cb  
I2CVCC  
SCL  
1µF  
SDA  
I2CBUS  
Main operating principles of TS4956 for purposes of PSRR measurement:  
The DC voltage supply (V ) is fixed  
CC  
The AC sinusoidal ripple voltage (V  
) is fixed  
ripple  
No bypass capacitor C is used  
s
The PSRR value for each frequency is calculated as:  
RMS(Output)  
PSRR = 20Log  
(dB)  
----------------------------------  
RMS(Vripple)  
RMS is a rms selective measurement.  
44/51  
TS4956  
Application information  
4.9  
Pop and click performance  
The TS4956 has internal pop and click reduction circuitry which eliminates the output  
transients, such as for example during switch-on or switch-off phases, or during a switch  
from one output mode to another, or when changing the volume. The performance of this  
circuitry is closely linked to the values of the input capacitor C , the output capacitor C  
in  
out  
(for single-ended configuration) and the bias voltage bypass capacitor C .  
b
The values of C and C are determined by the lower cut-off frequency value requested.  
in  
out  
The value of C will affect the THD+N and PSRR values in lower frequencies.  
b
The TS4956 is optimized to have low pop and click in the typical schematic configurations  
(see Figure 1 on page 3 and Figure 2 on page 4).  
4.10  
Thermal shutdown  
The TS4956 device has internal thermal shutdown protection in the event of extreme  
temperatures. Thermal shutdown is active when the device reaches temperature 150°C.  
45/51  
TS4956  
Application information  
4.11  
Evaluation board  
An evaluation board for the TS4956 is available.  
For more information about this evaluation board, please refer to the Application Note,  
which can be found on www.st.com.  
Figure 133. Schematic of the evaluation board available for the TS4956Figure 133.  
I2CVCC  
Vcc  
Vcc  
Cn5  
Cn2  
Cn1  
3
2
1
TS4956 POWER SUPPLY  
I2CSUPPLY  
Cs1  
1µF  
Cs2  
100nF  
TS4956  
Diff. input +  
JP1  
LHP Amplifier  
PHG Amplifier  
RHPAmplifier  
Cin1  
Stereo  
Input Left  
7
5
MIP  
LHP  
PHG  
RHP  
1
2
+
4
3
2
1
330nF  
PHONEJACK STEREO  
1
JP6  
Cin2  
2
3
1
2
3
Stereo  
Input Right  
MIN  
+
J2  
Diff. input -  
330nF  
Mode  
Select  
15  
6
SE input left  
Cin3  
LIN  
Stereo  
Input Left  
Speaker Amplifier  
SRP+  
4
1
2
JP4  
+
330nF  
1
2
JP2  
Cin4  
10  
16  
SRN-  
MLOAmplifier  
Stereo  
Input Right  
RIN  
3
1
2
+
C2  
+
330nF  
JP5  
JP3  
MLO  
1
2
SE input right  
220µF  
R7  
1K  
Digital volume  
control  
Bias  
I2C  
BYPASS  
I2CVCC  
C1  
1µF  
I2CVCC  
Cn3  
Cn4  
I2CVCC I2CVCC  
R5  
10K  
R6  
10K  
I2CVCC  
SCL  
SDA  
SCL SDA  
SCL  
SDA  
I2C BUS  
R4  
180R  
SDA  
1A  
16  
15  
1
2
T1  
BS170  
KP1040  
GND2  
J1  
5
9
4
8
3
7
2
6
1
GND  
DTR  
TXD  
RTS  
D1  
1B  
R2  
1K  
3
14  
DSR  
1N4148  
4
13  
KP1040  
DB9  
R1  
2k2  
GND2  
D2  
1C  
R3  
5
6
12  
11  
1K  
1N4148  
KP1040  
GND2  
46/51  
TS4956  
Package mechanical data  
5
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
5.1  
18-bump flip-chip package  
2500 µm  
Die size: 2.5x2.4 mm 30µm  
Die height (including bumps): 600µm  
Bumps diameter: 315µm 50µm  
Bump diameter before reflow: 300µm 10µm  
Bumps height: 250µm 40µm  
Die height: 350µm 20µm  
Pitch: 500µm 50µm  
2400 µm  
Coplanarity: 50µm max  
750µm  
500µm  
866µm  
866µm  
600 µm  
Figure 134. Footprint recommendations  
47/51  
TS4956  
Package mechanical data  
Figure 135. Pin out (top view)  
Figure 136. Marking (top view)  
E
7
PGH  
MLO  
GND  
LHP-  
RHP+  
6
5
56 X  
YWW  
VCC  
VCC  
SDA  
RIN  
BYPASS  
SRN-  
LIN  
4
3
I2CVCC  
MIN  
MIP  
A
Markings are:  
– ST logo  
SRP+  
2
1
GND  
SCL  
– First two letters give part number code:56  
– Third letter gives assembly plant code: X  
– Three digit date code: YWW  
B
C
D
E
– Lead-free EcoPack symbol: E  
– The dot marks pin A1  
Figure 137. Tape & reel schematic (top view)  
1.5  
4
1
1
A
A
8
Die size X + 70µm  
4
All dimensions are in mm  
User direction of feed  
Device orientation  
The devices are oriented in the carrier pocket with pin number 1A adjacent to the sprocket  
holes.  
48/51  
TS4956  
Package mechanical data  
5.2  
Daisy chain sample  
The daisy chain sample features pins connected two by two. The schematic in Figure 138  
illustrates the way that the pins are connected to each other. This sample is used for testing  
continuity on board. Your PCB needs to be designed the opposite way, so that pins that are  
unconnected in the daisy chain sample, are connected on your PCB. If you do this, by  
simply connecting a Ohmmeter between pin A1 and pin A3, the soldering process continuity  
can be tested.  
Figure 138. Top view of daisy chain sample  
2.5 mm  
7
6
5
2.2 mm  
4
3
2
1
A
B
C
D
E
Table 14.  
Order code for daisy chain sample  
Part Number  
Temperature Range  
Package  
Marking  
TSDC02JT  
-40, +85°C  
Flip-Chip18  
DC2  
49/51  
TS4956  
Revision history  
6
Revision history  
Table 15.  
Date  
Document revision history  
Revision  
Changes  
Nov. 2005  
1
2
3
First release corresponding to the preliminary data version.  
cancellation the back coating sale type.  
Final datasheet.  
Dec. 2005  
May 2006  
50/51  
TS4956  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
51/51  

相关型号:

TS4956EIJT

Stereo audio amplifier system with I2C bus interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TS495T22IGT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T2XCHT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T2YCKT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T32CFT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T33CET

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T33IKT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T33ILT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T3XIAT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495T3XIHT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495TX3CDT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS

TS495TX5CDT

Parallel - 3Rd Overtone Quartz Crystal, 49.5MHz Nom, HC-49/US, 2 PIN

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CTS