TS419 [STMICROELECTRONICS]

360mW MONO AMPLIFIER WITH STANDBY MODE; 360MW单声道放大器,待机模式
TS419
型号: TS419
厂家: ST    ST
描述:

360mW MONO AMPLIFIER WITH STANDBY MODE
360MW单声道放大器,待机模式

消费电路 商用集成电路 音频放大器 视频放大器 光电二极管
文件: 总32页 (文件大小:991K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS419  
TS421  
360mW MONO AMPLIFIER WITH STANDBY MODE  
OPERATING FROM Vcc=2V to 5.5V  
PIN CONNECTIONS (top view)  
STANDBY MODE ACTIVE HIGH (TS419) or  
LOW (TS421)  
TS419IDT: SO8  
OUTPUT POWER into 16: 367mW @ 5V  
with 10% THD+N max or 295mW @5V and  
110mW @3.3V with 1% THD+N max.  
LOW CURRENT CONSUMPTION: 2.5mA max  
High Signal-to-Noise ratio: 95dB(A) at 5V  
PSRR: 56dB typ. at 1kHz, 46dB at 217Hz  
SHORT CIRCUIT LIMITATION  
TS419IST, TS419-xIST: MiniSO8  
8
7
6
5
1
2
3
4
Standby  
Bypass  
V
OUT2  
GND  
ON/OFF click reduction circuitry  
VIN  
+
V
CC  
OUT1  
Available in SO8, MiniSO8 & DFN 3x3  
VIN-  
V
DESCRIPTION  
The TS419/TS421 is a monaural audio power am-  
plifier driving in BTL mode a 16 or 32earpiece or  
receiver speaker. The main advantage of this con-  
figuration is to get rid of bulky ouput capacitors.  
Capable of descending to low voltages, it delivers  
up to 220mW per channel (into 16loads) of con-  
tinuous average power with 0.2% THD+N in the  
audio bandwidth from a 5V power supply.  
TS419IQT, TS419-xIQT: DFN8  
1
2
3
4
GND  
8
7
6
5
Vcc  
VOUT 2  
VOUT 1  
VIN-  
STANDBY  
BYPASS  
VIN+  
An externally controlled standby mode reduces  
the supply current to 10nA (typ.). The TS419/  
TS421 can be configured by external gain-setting  
resistors or used in a fixed gain version.  
TS421IDT: SO8  
TS421IST, TS421-xIST: MiniSO8  
APPLICATIONS  
16/32 ohms earpiece or receiver speaker driver  
Mobile and cordless phones (analog / digital)  
PDAs & computers  
Portable appliances  
ORDER CODE  
Temp.  
Package  
Part  
Number  
Range:  
Gain Marking  
D
S
Q
I
TS421IQT, TS421-xIQT: DFN8  
TS419  
external TS419I  
external TS421I  
external K19A  
TS421  
TS419  
1
2
3
4
GND  
8
7
6
5
Vcc  
TS419-2  
TS419-4  
TS419-8  
TS421  
tba tba x2/6dB  
K19B  
VOUT 2  
VOUT 1  
VIN-  
tba tba x4/12dB K19C  
tba tba x8/18dB K19D  
STANDBY  
BYPASS  
-40, +85°C  
VIN+  
external K21A  
TS421-2  
TS421-4  
TS421-8  
tba tba x2/6dB K21B  
tba tba x4/12dB K21C  
tba tba x8/18dB K21D  
MiniSO & DFN only available in Tape & Reel with T suffix.  
SO is available in Tube (D) and in Tape & Reel (DT)  
June 2003  
1/32  
TS419-TS421  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
V
6
V
V
Supply voltage  
CC  
V
-0.3V to VCC +0.3V  
-65 to +150  
150  
Input Voltage  
i
T
Storage Temperature  
°C  
°C  
stg  
T
Maximum Junction Temperature  
j
Thermal Resistance Junction to Ambient  
R
°C/W  
thja  
SO8  
MiniSO8  
DFN8  
175  
215  
70  
2)  
Power Dissipation  
0.71  
0.58  
1.79  
SO8  
MiniSO8  
DFN8  
Pd  
W
3)  
ESD  
ESD  
1.5  
100  
200  
250  
kV  
V
Human Body Model (pin to pin): TS419 , TS421  
Machine Model - 220pF - 240pF (pin to pin)  
Latch-up Latch-up Immunity (All pins)  
Lead Temperature (soldering, 10sec)  
Output Short-Circuit to Vcc or GND  
mA  
°C  
4)  
continous  
1. All voltage values are measured with respect to the ground pin.  
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.  
3. TS419 stands 1.5KV on all pins except standby pin which stands 1KV.  
4. Attention must be paid to continous power dissipation (V x 300mA). Exposure of the IC to a short circuit for an extended time period is  
DD  
dramatically reducing product life expectancy.  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
Unit  
V
Supply Voltage  
Load Resistor  
2 to 5.5  
16  
V
CC  
R
L
T
Operating Free Air Temperature Range  
-40 to + 85  
°C  
oper  
Load Capacitor  
R = 16 to 100Ω  
C
400  
100  
pF  
V
L
L
R > 100Ω  
L
V
GND to V -1V  
Common Mode Input Voltage Range  
ICM  
CC  
Standby Voltage Input  
1.5 V  
V  
V
STB  
CC  
1)  
TS421 ACTIVE / TS419 in STANDBY  
TS421 in STANDBY / TS419 ACTIVE  
V
STB  
GND V  
0.4  
STB  
Thermal Resistance Junction to Ambient  
SO8  
MiniSO8  
150  
190  
41  
R
°C/W  
s
THJA  
2)  
DFN8  
3)  
T
0.12  
wu  
Wake-up time from standby to active mode (Cb = 1µF)  
1. The minimum current consumption (I  
) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature range.  
STANDBY  
2. When mounted on a 4-layer PCB  
3. For more details on T , please refer to application note section on Wake-up time page 28.  
WU  
2/32  
TS419-TS421  
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS  
CC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
V
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
R
Input Resistance  
20  
kΩ  
IN  
Gain value for Gain TS419/TS421-2  
Gain value for Gain TS419/TS421-4  
Gain value for Gain TS419/TS421-8  
6dB  
12dB  
18dB  
G
dB  
APPLICATION COMPONENTS INFORMATION  
Components  
Functional Description  
Inverting input resistor which sets the closed loop gain in conjunction with R  
. This resistor also  
FEED  
R
C
IN  
IN  
forms a high pass filter with C (fcl = 1 / (2 x Pi x R x C )). Not needed in fixed gain versions.  
IN  
IN  
IN  
Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal  
Feedback resistor which sets the closed loop gain in conjunction with R .  
IN  
R
FEED  
A = Closed Loop Gain= 2xR  
/R . Not needed in fixed gain versions.  
FEED IN  
V
C
Supply Bypass capacitor which provides power supply filtering.  
Bypass capacitor which provides half supply filtering.  
S
C
B
TYPICAL APPLICATION SCHEMATICS:  
3/32  
TS419-TS421  
ELECTRICAL CHARACTERISTICS  
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
1.8  
10  
Max.  
2.5  
Unit  
mA  
nA  
Supply Current  
No input signal, no load  
I
CC  
Standby Current  
No input signal, V  
=GND for TS421  
=Vcc for TS419  
I
1000  
STANDBY  
STANDBY  
STANDBY  
No input signal, V  
Output Offset Voltage  
Voo  
5
25  
mV  
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
190  
207  
258  
270  
295  
367  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
L
166  
240  
THD+N = 10% Max, F = 1kHz, R = 32Ω  
P
mW  
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 10% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =2)  
v
R = 32Ω, P = 150mW, 20Hz F 20kHz  
THD + N  
0.15  
0.2  
%
L
out  
R = 16Ω, P = 220mW, 20Hz F 20kHz  
L
out  
1)  
Power Supply Rejection Ratio (A =2)  
v
PSRR  
50  
85  
56  
98  
dB  
dB  
F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1µF  
1)  
Signal-to-Noise Ratio (Filter Type A, A =2)  
v
SNR  
(R = 32Ω, THD +N < 0.5%, 20Hz F 20kHz)  
L
Phase Margin at Unity Gain  
Φ
58  
18  
Degrees  
dB  
M
R = 16, C = 400pF  
L
L
Gain Margin  
GM  
GBP  
SR  
R = 16, C = 400pF  
L
L
Gain Bandwidth Product  
R = 16Ω  
1.1  
0.4  
MHz  
L
Slew Rate  
R = 16Ω  
V/µS  
L
1. Guaranteed by design and evaluation.  
4/32  
TS419-TS421  
ELECTRICAL CHARACTERISTICS  
CC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1)  
V
Symbol  
Parameter  
Min.  
Typ.  
1.8  
10  
Max.  
2.5  
Unit  
mA  
nA  
Supply Current  
No input signal, no load  
I
CC  
Standby Current  
No input signal, V  
=GND for TS421  
=Vcc for TS419  
I
1000  
STANDBY  
STANDBY  
STANDBY  
No input signal, V  
Output Offset Voltage  
Voo  
5
25  
mV  
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
75  
81  
102  
104  
113  
143  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
L
65  
91  
THD+N = 10% Max, F = 1kHz, R = 32Ω  
P
mW  
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 10% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =2)  
v
R = 32Ω, P = 50mW, 20Hz F 20kHz  
THD + N  
0.15  
0.2  
%
L
out  
R = 16Ω, P = 70mW, 20Hz F 20kHz  
L
out  
Power Supply Rejection Ratio  
PSRR  
50  
82  
56  
94  
dB  
dB  
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF  
Signal-to-Noise Ratio (Weighted A, A =2)  
v
SNR  
(R = 32Ω, THD +N < 0.5%, 20Hz F 20kHz)  
L
Phase Margin at Unity Gain  
Φ
58  
Degrees  
dB  
M
R = 16, C = 400pF  
L
L
Gain Margin  
GM  
GBP  
SR  
18  
R = 16, C = 400pF  
L
L
Gain Bandwidth Product  
R = 16Ω  
1.1  
0.4  
MHz  
V/µS  
L
Slew Rate  
R = 16Ω  
L
1.  
All electrical values are guaranted with correlation measurements at 2V and 5V  
5/32  
TS419-TS421  
ELECTRICAL CHARACTERISTICS  
V
CC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1)  
Symbol  
Parameter  
Min.  
Typ.  
1.7  
10  
Max.  
2.5  
Unit  
mA  
nA  
Supply Current  
No input signal, no load  
I
CC  
Standby Current  
No input signal, V  
=GND for TS421  
=Vcc for TS419  
I
1000  
STANDBY  
STANDBY  
STANDBY  
No input signal, V  
Output Offset Voltage  
Voo  
5
25  
mV  
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
37  
41  
52  
50  
55  
70  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
L
32  
44  
THD+N = 10% Max, F = 1kHz, R = 32Ω  
P
mW  
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 10% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =2)  
v
R = 32Ω, P = 30mW, 20Hz F 20kHz  
THD + N  
0.15  
0.2  
%
L
out  
R = 16Ω, P = 40mW, 20Hz F 20kHz  
L
out  
Power Supply Rejection Ratio (A =2)  
v
PSRR  
50  
80  
56  
91  
dB  
dB  
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF  
Signal-to-Noise Ratio (Weighted A, A =2)  
v
SNR  
(R = 32Ω, THD +N < 0.5%, 20Hz F 20kHz)  
L
Phase Margin at Unity Gain  
Φ
58  
Degrees  
dB  
M
R = 16, C = 400pF  
L
L
Gain Margin  
GM  
GBP  
SR  
18  
R = 16, C = 400pF  
L
L
Gain Bandwidth Product  
R = 16Ω  
1.1  
0.4  
MHz  
V/µS  
L
Slew Rate  
R = 16Ω  
L
1.  
All electrical values are guaranted with correlation measurements at 2V and 5V  
6/32  
TS419-TS421  
ELECTRICAL CHARACTERISTICS  
VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
1.7  
10  
Max.  
2.5  
Unit  
mA  
nA  
Supply Current  
No input signal, no load  
I
CC  
Standby Current  
No input signal, V  
=GND for TS421  
=Vcc for TS419  
I
1000  
STANDBY  
STANDBY  
STANDBY  
No input signal, V  
Output Offset Voltage  
Voo  
5
25  
mV  
No input signal, RL = 16 or 32Ω, Rfeed=20kΩ  
Output Power  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
20  
23  
30  
26  
30  
40  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
L
19  
24  
THD+N = 10% Max, F = 1kHz, R = 32Ω  
P
mW  
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 10% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =2)  
v
R = 32Ω, P = 13mW, 20Hz F 20kHz  
THD + N  
0.1  
%
L
out  
0.15  
R = 16Ω, P = 20mW, 20Hz F 20kHz  
L
out  
1)  
Power Supply Rejection Ratio (A =2)  
v
PSRR  
49  
80  
54  
89  
dB  
dB  
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF  
1)  
Signal-to-Noise Ratio (Weighted A, A =2)  
v
SNR  
(R = 32Ω, THD +N < 0.5%, 20Hz F 20kHz)  
L
Phase Margin at Unity Gain  
Φ
58  
20  
Degrees  
dB  
M
R = 16, C = 400pF  
L
L
Gain Margin  
GM  
GBP  
SR  
R = 16, C = 400pF  
L
L
Gain Bandwidth Product  
R = 16Ω  
1.1  
0.4  
MHz  
L
Slew Rate  
R = 16Ω  
V/µS  
L
1. Guaranteed by design and evaluation.  
7/32  
TS419-TS421  
Index of Graphs  
Description  
Figure  
Page  
Common Curves  
Open Loop Gain and Phase vs Frequency  
Current Consumption vs Power Supply Voltage  
Current Consumption vs Standby Voltage  
Output Power vs Power Supply Voltage  
Output Power vs Load Resistor  
Power Dissipation vs Output Power  
Power Derating vs Ambiant Temperature  
Output Voltage Swing vs Supply Voltage  
Low Frequency Cut Off vs Input Capacitor  
Curves With 6dB Gain Setting (Av=2)  
THD + N vs Output Power  
1 to 12  
13  
9 to 10  
11  
14 to 19  
20 to 23  
24 to 27  
28 to 31  
32  
11 to 12  
12  
12 to 13  
13 to 14  
14  
33  
14  
34  
14  
35 to 43  
44 to 46  
47 to 48  
49 to 50  
51 to 55  
15 to 16  
16  
THD + N vs Frequency  
Signal to Noise Ratio vs Power Supply Voltage  
Noise Floor  
17  
17  
PSRR vs Frequency  
17 to 18  
Curves With 12dB Gain Setting (Av=4)  
THD + N vs Output Power  
56 to 64  
65 to 67  
68 to 69  
70 to 71  
72 to 76  
19 to 20  
20  
THD + N vs Frequency  
Signal to Noise Ratio vs Power Supply Voltage  
Noise Floor  
21  
21  
PSRR vs Frequency  
21 to 22  
Curves With 18dB Gain Setting (Av=8)  
THD + N vs Output Power  
77 to 85  
86 to 88  
89 to 90  
91 to 92  
93 to 97  
23 to 24  
24  
THD + N vs Frequency  
Signal to Noise Ratio vs Power Supply Voltage  
Noise Floor  
25  
25  
PSRR vs Frequency  
25 to 26  
Note : All measurements made with Rin=20kΩ, Cb=1µF, and Cin=10µF unless otherwise specified.  
8/32  
TS419-TS421  
Fig. 1: Open Loop Gain and Phase vs  
Frequency  
Fig. 2: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
RL = 8  
Tamb = 25  
Vcc = 2V  
RL = 8  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
Gain  
Gain  
°C  
Phase  
Phase  
20  
0
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 3: Open Loop Gain and Phase vs  
Frequency  
Fig. 4: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 2V  
ZL = 8 +400pF  
Tamb = 25  
Vcc = 5V  
ZL = 8 +400pF  
Tamb = 25  
80  
60  
40  
20  
0
80  
Gain  
Gain  
°C  
°C  
60  
40  
20  
0
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 5: Open Loop Gain and Phase vs  
Frequency  
Fig. 6: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
RL = 16Ω  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
RL = 16  
Gain  
Gain  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
9/32  
TS419-TS421  
Fig. 7: Open Loop Gain and Phase vs  
Frequency  
Fig. 8: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
ZL = 16+400pF  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
ZL = 16  
+400pF  
Gain  
Gain  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 9: Open Loop Gain and Phase vs  
Frequency  
Fig. 10: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
RL = 32Ω  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
RL = 32  
Gain  
Gain  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 11: Open Loop Gain and Phase vs  
Frequency  
Fig. 12: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
Vcc = 2V  
ZL = 32+400pF  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
ZL = 32  
+400pF  
Gain  
Gain  
Tamb = 25  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
10/32  
TS419-TS421  
Fig. 13: Current Consumption vs Power Supply  
Voltage  
Fig. 14: Current Consumption vs Standby  
Voltage  
2.0  
2.0  
1.5  
1.0  
0.5  
0.0  
No load  
Ta=85°C  
1.5  
Ta=85°C  
Ta=25°C  
Ta=-40°C  
Ta=25°C  
Ta=-40°C  
1.0  
0.5  
0.0  
TS419  
Vcc = 5V  
No load  
0
1
2
3
4
5
0
1
2
3
4
5
Power Supply Voltage (V)  
Standby Voltage (V)  
Fig. 15: Current Consumption vs Standby  
Voltage  
Fig. 16: Current Consumption vs Standby  
Voltage  
2.0  
1.5  
2.0  
Ta=85°C  
1.5  
Ta=85°C  
Ta=25°C  
Ta=25°C  
1.0  
0.5  
0.0  
1.0  
Ta=-40°C  
Ta=-40°C  
0.5  
TS419  
Vcc = 3.3V  
No load  
TS419  
Vcc = 2V  
No load  
0.0  
0
1
2
3
0
1
2
Standby Voltage (V)  
Standby Voltage (V)  
Fig. 17: Current Consumption vs Standby  
Voltage  
Fig. 18: Current Consumption vs Standby  
Voltage  
2.5  
2.0  
Ta=85°C  
Ta=25°C  
Ta=25°C  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1.0  
0.5  
0.0  
Ta=85°C  
Ta=-40°C  
Ta=-40°C  
TS421  
Vcc = 5V  
No load  
TS421  
Vcc = 3.3V  
No load  
0
1
2
3
4
5
0
1
2
3
Standby Voltage (V)  
Standby Voltage (V)  
11/32  
TS419-TS421  
Fig. 19: Current Consumption vs Standby  
Voltage  
Fig. 20: Output Power vs Power Supply  
Voltage  
2.0  
550  
Ta=85°C  
RL = 8  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
THD+N=1%  
1.5  
Ta=25°C  
THD+N=10%  
1.0  
Ta=-40°C  
0.5  
TS421  
Vcc = 2V  
No load  
THD+N=0.1%  
0.0  
0
2.0  
0
1
2
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Standby Voltage (V)  
Fig. 21: Output Power vs Power Supply  
Voltage  
Fig. 22: Output Power vs Power Supply  
Voltage  
500  
RL = 32  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
300  
250  
200  
150  
100  
50  
RL = 16  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
450  
400  
350  
300  
250  
200  
150  
100  
50  
THD+N=1%  
THD+N=1%  
THD+N=10%  
THD+N=10%  
THD+N=0.1%  
THD+N=0.1%  
0
2.0  
0
2.0  
2.5  
3.0  
3.5  
Vcc (V)  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
Vcc (V)  
4.0  
4.5  
5.0  
5.5  
Fig. 23: Output Power vs Power Supply  
Voltage  
Fig. 24: Output Power vs Load Resistor  
500  
200  
Vcc = 5V  
F = 1kHz  
BW < 125kHz  
Tamb = 25  
RL = 64  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
450  
THD+N=10%  
THD+N=1%  
400  
350  
300  
250  
200  
150  
100  
50  
150  
100  
50  
°C  
THD+N=1%  
THD+N=10%  
THD+N=0.1%  
THD+N=0.1%  
0
0
2.0  
8
16  
24  
32  
40  
48  
56  
64  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Load Resistance (  
)
Vcc (V)  
12/32  
TS419-TS421  
Fig. 25: Output Power vs Load Resistor  
Fig. 26: Output Power vs Load Resistor  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
Vcc = 2.5V  
F = 1kHz  
BW < 125kHz  
Vcc = 3.3V  
F = 1kHz  
THD+N=10%  
THD+N=1%  
BW < 125kHz  
Tamb = 25  
150  
Tamb = 25°C  
°
C
THD+N=1%  
THD+N=10%  
100  
50  
0
THD+N=0.1%  
THD+N=0.1%  
8
16  
24  
32  
40  
48  
56  
64  
8
16  
24  
32  
40  
48  
56  
64  
Load Resistance (  
)
Load Resistance ( )  
Fig. 27: Output Power vs Load Resistor  
Fig. 28: Power Dissipation vs Output Power  
600  
50  
Vcc=5V  
F=1kHz  
THD+N<1%  
Vcc = 2V  
F = 1kHz  
BW < 125kHz  
Tamb = 25  
45  
THD+N=10%  
THD+N=1%  
500  
40  
35  
30  
25  
20  
15  
10  
5
°C  
RL=8Ω  
400  
300  
RL=16Ω  
200  
THD+N=0.1%  
100  
RL=32Ω  
0
0
0
50  
100  
150  
200  
250  
300  
350  
8
16  
24  
32  
40  
48  
56  
64  
Load Resistance (  
)
Output Power (mW)  
Fig. 29: Power Dissipation vs Output Power  
Fig. 30: Power Dissipation vs Output Power  
140  
300  
Vcc=3.3V  
Vcc=2.5V  
F=1kHz  
THD+N<1%  
F=1kHz  
THD+N<1%  
120  
250  
RL=8Ω  
100  
80  
60  
40  
20  
0
RL=8  
200  
150  
100  
50  
RL=16  
RL=16  
RL=32  
RL=32  
30  
Output Power (mW)  
0
0
10  
20  
40  
50  
60  
0
30  
60  
90  
120  
150  
Output Power (mW)  
13/32  
TS419-TS421  
Fig. 31: Power Dissipation vs Output Power  
Fig. 32: Power Derating Curves  
100  
Vcc=2V  
F=1kHz  
THD+N<1%  
80  
60  
40  
20  
0
RL=8Ω  
RL=16  
RL=32  
0
5
10  
15  
20  
25  
30  
35  
Output Power (mW)  
Fig. 33: Output Voltage Swing For One Amp. vs  
Power Supply Voltage  
Fig. 34: Low Frequency Cut Off vs Input  
Capacitor for fixed gain versions  
5.0  
Tamb=25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Amps. in BTL  
RL=8  
RL=16  
RL=32  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
14/32  
TS419-TS421  
Fig. 35: THD + N vs Output Power  
Fig. 36: THD + N vs Output Power  
10  
10  
1
RL = 16  
RL = 8  
F = 20Hz  
Av = 2  
F = 20Hz  
Av = 2  
1
0.1  
Cb = 1  
BW < 22kHz  
Tamb = 25°C  
µF  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
Vcc=2V  
Vcc=2V  
°C  
Vcc=2.5V  
0.1  
Vcc=2.5V  
0.01  
1E-3  
0.01  
1E-3  
Vcc=3.3V  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=5V  
100  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
Fig. 37: THD + N vs Output Power  
Fig. 38: THD + N vs Output Power  
10  
10  
RL = 8  
RL = 32  
F = 1kHz  
Av = 2  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
F = 20Hz  
Av = 2  
1
0.1  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
1
0.1  
Vcc=2V  
°
C
°C  
Vcc=2.5V  
Vcc=2V  
Vcc=2.5V  
0.01  
1E-3  
0.01  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=3.3V  
10  
Output Power (mW)  
Vcc=5V  
1
100  
1
10  
Output Power (mW)  
Fig. 39: THD + N vs Output Power  
Fig. 40: THD + N vs Output Power  
10  
10  
RL = 32  
RL = 16  
F = 1kHz  
Av = 2  
F = 1kHz  
Av = 2  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2V  
°C  
°C  
Vcc=2V  
Vcc=2.5V  
Vcc=2.5V  
0.01  
1E-3  
0.01  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=3.3V  
Vcc=5V  
100  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
15/32  
TS419-TS421  
Fig. 41: THD + N vs Output Power  
Fig. 42: THD + N vs Output Power  
10  
10  
RL = 8  
RL = 16Ω  
F = 20kHz  
Av = 2  
F = 20kHz  
Av = 2  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µ
F
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2V  
°
C
Vcc=2V  
°C  
1
1
Vcc=2.5V  
Vcc=2.5V  
0.1  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=3.3V  
0.1  
1
10  
Output Power (mW)  
1
10  
Output Power (mW)  
Fig. 43: THD + N vs Output Power  
Fig. 44: THD + N vs Frequency  
10  
RL=8  
Av=2  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
RL = 32  
F = 20kHz  
Av = 2  
µF  
Vcc=2V, Po=28mW  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
°C  
0.1  
Vcc=2V  
°C  
1
Vcc=2.5V  
0.01  
0.1  
Vcc=5V, Po=300mW  
Vcc=5V  
100  
Vcc=3.3V  
20  
100  
1000  
10000 20k  
1
10  
Frequency (Hz)  
Output Power (mW)  
Fig. 45: THD + N vs Frequency  
Fig. 46: THD + N vs Frequency  
RL=32Ω  
Av=2  
RL=16  
Av=2  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
Cb = 1µF  
Bw < 125kHz  
Tamb = 25  
0.1  
°
C
Vcc=2V, Po=20mW  
0.1  
Vcc=5V, Po=220mW  
Vcc=2V, Po=13mW  
Vcc=5V, Po=150mW  
0.01  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
16/32  
TS419-TS421  
Fig. 47: Signal to Noise Ratio vs Power Supply  
VoltagewithUnweightedFilter(20Hzto20kHz)  
Fig. 48: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
100  
105  
Av = 2  
Av = 2  
Cb = 1  
THD+N < 0.5%  
Tamb = 25  
µF  
Cb = 1  
THD+N < 0.5%  
Tamb = 25°C  
µF  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
RL=32  
RL=32Ω  
°C  
RL=8  
RL=8Ω  
RL=16  
RL=16Ω  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 49: Noise Floor  
Fig. 50: Noise Floor  
30  
30  
Standby=OFF  
Standby=OFF  
20  
10  
0
RL>=16  
Vcc=5V  
Av=2  
20  
10  
0
RL>=16  
Vcc=2V  
Av=2  
Cb = 1µF  
Cb = 1µF  
Input Grounded  
Bw < 125kHz  
Tamb=25  
Input Grounded  
Bw < 125kHz  
Tamb=25°C  
Standby=ON  
Standby=ON  
°
C
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Fig. 51: PSRR vs Input Capacitor  
Fig. 52: PSRR vs Power Supply Voltage  
0
0
Vripple = 100mVrms  
Rfeed = 20kΩ  
Input = floating  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vripple = 200mVpp  
Av = 2, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
Tamb = 25°C  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
Cin = 1µF, 220nF  
-40  
Vcc = 2V  
-50  
-60  
-70  
Cin = 100nF  
1000  
Vcc = 5V, 3.3V & 2.5V  
-80  
100  
1000  
10000  
Frequency (Hz)  
100000  
100  
10000  
Frequency (Hz)  
100000  
17/32  
TS419-TS421  
Fig. 53: PSRR vs Bypass Capacitor  
Fig. 54: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Av = 2  
Vripple = 200mVpp  
Av = 2  
-10  
-10  
Input = Grounded  
Cb = Cin = 1µF  
RL >= 16Ω  
Input = Grounded  
Cb = 4.7µF  
Cin = 1µF  
RL >= 16Ω  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
Tamb = 25°C  
Tamb = 25°C  
Vcc = 2V  
-40  
-50  
-60  
-70  
Vcc = 2V  
Vcc = 5V, 3.3V & 2.5V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Fig. 55: PSRR vs Bypass Capacitor  
0
Vripple = 200mVpp  
Av = 2  
-10  
Input = Grounded  
Cb = 10µF  
-20  
Cin = 1µF  
-30  
-40  
-50  
-60  
-70  
RL >= 16Ω  
Tamb = 25°C  
Vcc = 2V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
Frequency (Hz)  
18/32  
TS419-TS421  
Fig. 56: THD + N vs Output Power  
Fig. 57: THD + N vs Output Power  
10  
10  
1
RL = 16  
RL = 8  
F = 20Hz  
Av = 4  
F = 20Hz  
Av = 4  
1
0.1  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
Vcc=2V  
°C  
°C  
Vcc=2.5V  
Vcc=2V  
0.1  
Vcc=2.5V  
0.01  
1E-3  
0.01  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=5V  
100  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
Fig. 58: THD + N vs Output Power  
Fig. 59: THD + N vs Output Power  
10  
10  
RL = 8  
RL = 32  
F = 1kHz  
Av = 4  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
F = 20Hz  
Av = 4  
1
0.1  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
1
0.1  
Vcc=2V  
°
C
°C  
Vcc=2.5V  
Vcc=2V  
Vcc=2.5V  
0.01  
1E-3  
0.01  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=3.3V  
10  
Output Power (mW)  
Vcc=5V  
1
100  
1
10  
Output Power (mW)  
Fig. 60: THD + N vs Output Power  
Fig. 61: THD + N vs Output Power  
10  
10  
RL = 16  
RL = 32  
F = 1kHz  
Av = 4  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
F = 1kHz  
Av = 4  
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
1
0.1  
Vcc=2V  
Vcc=2.5V  
Vcc=2V  
°C  
°C  
Vcc=2.5V  
0.01  
1E-3  
0.01  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=3.3V  
Vcc=5V  
100  
1
10  
Output Power (mW)  
1
10  
Output Power (mW)  
19/32  
TS419-TS421  
Fig. 62: THD + N vs Output Power  
Fig. 63: THD + N vs Output Power  
10  
10  
RL = 8  
RL = 16  
F = 20kHz  
Av = 4  
F = 20kHz  
Av = 4  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2V  
°C  
°C  
Vcc=2V  
1
Vcc=2.5V  
1
Vcc=2.5V  
Vcc=5V  
100  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=3.3V  
0.1  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
Fig. 64: THD + N vs Output Power  
Fig. 65: THD + N vs Frequency  
10  
RL=8  
Av=4  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
RL = 32  
F = 20kHz  
Av = 4  
µF  
Vcc=2V, Po=28mW  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
°C  
Vcc=2V  
0.1  
°C  
1
Vcc=2.5V  
0.1  
Vcc=5V, Po=300mW  
Vcc=5V  
100  
0.01  
Vcc=3.3V  
20  
100  
1000  
10000 20k  
1
10  
Frequency (Hz)  
Output Power (mW)  
Fig. 66: THD + N vs Frequency  
Fig. 67: THD + N vs Frequency  
RL=32  
RL=16  
Av=4  
Av=4  
Cb = 1µF  
Bw < 125kHz  
Tamb=25  
Cb = 1µF  
Bw < 125kHz  
Tamb = 25°C  
Vcc=2V, Po=20mW  
0.1  
°
C
0.1  
Vcc=2V, Po=13mW  
Vcc=5V, Po=150mW  
0.01  
0.01  
Vcc=5V, Po=220mW  
1000  
20  
100  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
20/32  
TS419-TS421  
Fig. 68: Signal to Noise Ratio vs Power Supply  
VoltagewithUnweightedFilter(20Hzto20kHz)  
Fig. 69: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
90  
100  
Av = 4  
Av = 4  
Cb = 1µF  
Cb = 1µF  
RL=32Ω  
RL=32Ω  
THD+N < 0.5%  
Tamb = 25°C  
THD+N < 0.5%  
Tamb = 25°C  
95  
90  
85  
80  
75  
85  
80  
75  
70  
RL=8Ω  
RL=8Ω  
RL=16Ω  
RL=16Ω  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 70: Noise Floor  
Fig. 71: Noise Floor  
40  
40  
Standby=OFF  
Standby=OFF  
30  
20  
10  
0
RL>=16  
Vcc=5V  
Av=4  
30  
20  
10  
0
RL>=16  
Vcc=2V  
Av=4  
Cb = 1µF  
Cb = 1µF  
Input Grounded  
Bw < 125kHz  
Tamb=25  
Input Grounded  
Bw < 125kHz  
Tamb=25°C  
°
C
Standby=ON  
Standby=ON  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Fig. 72: PSRR vs Power Supply Voltage  
Fig. 73: PSRR vs Input Capacitor  
0
0
Vripple = 100mVrms  
Rfeed = 40kΩ  
Input = floating  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vripple = 200mVpp  
Av = 4, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
Tamb = 25°C  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-20  
Cin = 1µF, 220nF  
-30  
-40  
Vcc = 2V  
-50  
-60  
-70  
Vcc = 5V, 3.3V & 2.5V  
Cin = 100nF  
1000  
-80  
100  
1000  
10000  
Frequency (Hz)  
100000  
100  
10000  
Frequency (Hz)  
100000  
21/32  
TS419-TS421  
Fig. 74: PSRR vs Bypass Capacitor  
Fig. 75: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Av = 4  
Input = Grounded  
Cb = Cin = 1µF  
RL >= 16Ω  
Vripple = 200mVpp  
Av = 4  
Input = Grounded  
-20 Cb = 4.7µF  
Cin = 1µF  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
Tamb = 25°C  
RL >= 16Ω  
Tamb = 25°C  
-30  
Vcc = 2V  
Vcc = 2V  
-40  
-50  
-60  
Vcc = 5V, 3.3V & 2.5V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Fig. 76: PSRR vs Bypass Capacitor  
0
Vripple = 200mVpp  
Av = 4  
-10  
Input = Grounded  
-20  
-30  
-40  
-50  
-60  
Cb = 10µF  
Cin = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vcc = 2V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
Frequency (Hz)  
22/32  
TS419-TS421  
Fig. 77: THD + N vs Output Power  
Fig. 78: THD + N vs Output Power  
10  
10  
1
RL = 16  
F = 20Hz  
Av = 8  
RL = 8  
F = 20Hz  
Av = 8  
Cb = 1µF  
BW < 22kHz  
Tamb = 25  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
1
0.1  
°C  
Vcc=2V  
°C  
Vcc=2V  
Vcc=2.5V  
0.1  
0.01  
Vcc=2.5V  
Vcc=3.3V  
0.01  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=5V  
100  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
Fig. 79: THD + N vs Output Power  
Fig. 80: THD + N vs Output Power  
10  
10  
RL = 32  
RL = 8Ω  
F = 20Hz  
Av = 8  
F = 1kHz  
Av = 8  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µ
F
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
1
0.1  
1
0.1  
°
C
°C  
Vcc=2V  
Vcc=2V  
Vcc=2.5V  
Vcc=2.5V  
Vcc=3.3V  
Vcc=5V  
100  
Vcc=5V  
Vcc=3.3V  
10  
0.01  
0.01  
1
10  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 81: THD + N vs Output Power  
Fig. 82: THD + N vs Output Power  
10  
10  
RL = 32  
RL = 16  
F = 1kHz  
Av = 8  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
F = 1kHz  
Av = 8  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
1
0.1  
1
0.1  
Vcc=2V  
Vcc=2.5V  
Vcc=2V  
°C  
°C  
Vcc=2.5V  
0.01  
Vcc=5V  
100  
Vcc=3.3V  
Vcc=3.3V  
Vcc=5V  
100  
0.01  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
23/32  
TS419-TS421  
Fig. 83: THD + N vs Output Power  
Fig. 84: THD + N vs Output Power  
10  
10  
RL = 8  
Av = 8, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 20kHz  
RL = 16  
F = 20kHz  
Av = 8  
µF  
°C  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2V  
Vcc=2V  
°
C
Vcc=2.5V  
Vcc=2.5V  
1
1
Vcc=3.3V  
Vcc=5V  
100  
Vcc=5V  
100  
Vcc=3.3V  
1
10  
1
10  
Output Power (mW)  
Output Power (mW)  
Fig. 85: THD + N vs Output Power  
Fig. 86: THD + N vs Frequency  
10  
RL=8Ω  
Av=8  
Cb = 1µF  
Bw < 125kHz  
Tamb = 25°C  
RL = 32  
F = 20kHz  
Av = 8  
Vcc=2V, Po=28mW  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2V  
°C  
0.1  
1
Vcc=2.5V  
Vcc=5V, Po=300mW  
Vcc=5V  
100  
Vcc=3.3V  
0.1  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
1
10  
Output Power (mW)  
Fig. 87: THD + N vs Frequency  
Fig. 88: THD + N vs Frequency  
RL=32  
RL=16  
Av=8  
Av=8  
Cb = 1µF  
Bw < 125kHz  
Tamb=25  
Cb = 1µF  
Bw < 125kHz  
Tamb = 25  
Vcc=2V, Po=20mW  
Vcc=2V, Po=13mW  
°
C
°
C
0.1  
0.1  
Vcc=5V, Po=150mW  
0.01  
0.01  
Vcc=5V, Po=220mW  
1000 10000 20k  
20  
100  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
24/32  
TS419-TS421  
Fig. 89: Signal to Noise Ratio vs Power Supply  
VoltagewithUnweightedFilter(20Hzto20kHz)  
Fig. 90: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
90  
95  
Av = 8  
Cb = 1µF  
THD+N < 0.5%  
Av = 8  
Cb = 1µF  
THD+N < 0.5%  
85  
80  
75  
70  
65  
60  
RL=32Ω  
RL=32Ω  
90  
85  
80  
75  
70  
Tamb = 25°C  
Tamb = 25°C  
RL=8Ω  
RL=8Ω  
RL=16Ω  
RL=16Ω  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 91: Noise Floor  
Fig. 92: Noise Floor  
70  
60  
70  
60  
Standby=OFF  
Standby=OFF  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
RL>=16  
Vcc=5V  
Av=8  
RL>=16  
Vcc=2V  
Av=8  
Cb = 1µF  
Cb = 1µF  
Input Grounded  
Bw < 125kHz  
Input Grounded  
Bw < 125kHz  
Tamb=25  
°
C
Tamb=25°C  
Standby=ON  
Standby=ON  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Fig. 93: PSRR vs Power Supply Voltage  
Fig. 94: PSRR vs Input Capacitor  
0
0
Vripple = 100mVrms  
Rfeed = 80kΩ  
Input = floating  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vripple = 200mVpp  
Av = 8, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
Tamb = 25°C  
-10  
-10  
-20  
-30  
-40  
-50  
-20  
Cin = 1µF, 220nF  
-30  
-40  
Vcc = 2V  
-50  
-60  
-70  
Vcc = 5V, 3.3V & 2.5V  
Cin = 100nF  
1000  
100  
1000  
10000  
Frequency (Hz)  
100000  
100  
10000  
Frequency (Hz)  
100000  
25/32  
TS419-TS421  
Fig. 95: PSRR vs Bypass Capacitor  
Fig. 96: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
Av = 8  
Input = Grounded  
Cb = Cin = 1µF  
RL >= 16Ω  
-10  
-20  
-30  
-40  
-50  
-60  
Av = 8  
-10  
Input = Grounded  
Cb = 4.7µF  
Cin = 1µF  
RL >= 16Ω  
Tamb = 25°C  
-20  
-30  
-40  
-50  
Tamb = 25°C  
Vcc = 2V  
Vcc = 2V  
Vcc = 5V, 3.3V & 2.5V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Fig. 97: PSRR vs Bypass Capacitor  
0
Vripple = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
Av = 8  
Input = Grounded  
Cb = 10µF  
Cin = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vcc = 2V  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
Frequency (Hz)  
26/32  
TS419-TS421  
APPLICATION INFORMATION  
In the high frequency region, you can limit the  
bandwidth by adding a capacitor (Cfeed) in  
parallel with Rfeed. It forms a low-pass filter with a  
-3dB cut off frequency .  
BTL Configuration Principle  
The TS419 & TS420 are monolithic power  
amplifiers with a BTL output type. BTL (Bridge  
Tied Load) means that each end of the load is  
connected to two single-ended output amplifiers.  
Thus, we have:  
1
FCH  
=
(Hz)  
2π Rfeed Cfeed  
Power dissipation and efficiency  
Hypothesis:  
Single ended output 1 = Vout1 = Vout (V)  
Single ended output 2 = Vout2 = -Vout (V)  
• Load voltage and current are sinusoidal (Vout  
and Iout)  
• Supply voltage is a pure DC source (Vcc)  
And Vout1 - Vout2 = 2Vout (V)  
The output power is :  
Regarding the load we have:  
2
(2 VoutRMS  
RL  
)
Pout =  
(W)  
VOUT = VPEAK sinωt (V)  
and  
For the same power supply voltage, the output  
power in BTL configuration is four times higher  
than the output power in single ended  
configuration.  
VOUT  
IOUT  
=
(A)  
RL  
and  
Gain In Typical Application Schematic  
2
(cf. page 3 of TS419-TS421 datasheet)  
VPEAK  
2RL  
POUT  
=
(W)  
In the flat region (no C effect), the output voltage  
IN  
of the first stage is:  
Then, the average current delivered by the supply  
voltage is:  
Rfeed  
Vout1= −Vin  
(V)  
Rin  
VPEAK  
IccAVG = 2  
(A)  
For the second stage : Vout2 = -Vout1 (V)  
πRL  
The differential output voltage is  
Rfeed  
The power delivered by the supply voltage is:  
Psupply = Vcc Icc (W)  
AVG  
Vout2Vout1= 2Vin  
(V)  
Rin  
Then, the power dissipated by the amplifier is:  
Pdiss = Psupply - Pout (W)  
The differential gain named gain (Gv) for more  
convenient usage is :  
2 2 Vcc  
Pdiss =  
POUT POUT (W)  
Vout2Vout1  
Rfeed  
Rin  
π RL  
Gv =  
= 2  
Vin  
and the maximum value is obtained when:  
Remark : Vout2 is in phase with Vin and Vout1 is  
phased 180° with Vin. This means that the positive  
terminal of the loudspeaker should be connected  
to Vout2 and the negative to Vout1.  
Pdiss  
= 0  
POUT  
and its value is:  
Low and high frequency response  
2Vcc2  
π2RL  
Pdissmax =  
(W)  
In the low frequency region, C starts to have an  
IN  
effect. C forms with R a high-pass filter with a  
IN  
IN  
-3dB cut off frequency .  
Remark : This maximum value is only dependent  
upon power supply voltage and load values.  
1
FCL  
=
(Hz)  
2πRinCin  
27/32  
TS419-TS421  
The efficiency is the ratio between the output  
power and the power supply  
Due to process tolerances, the range of the  
wake-up time is :  
0.12xCb < T  
< 0.18xC (s) with C in µF  
B B  
POUT  
π VPEAK  
WU  
η =  
=
Psupply  
4Vcc  
Note : When the standby command is set, the time  
to put the device in shutdown mode is a few  
microseconds.  
The maximum theoretical value is reached when  
Vpeak = Vcc, so  
Pop performance  
π
= 78.5%  
Pop performance is intimately linked with the size  
of the input capacitor Cin and the bias voltage  
bypass capacitor C .  
4
Decoupling of the circuit  
B
Two capacitors are needed to bypass properly the  
TS419/TS421. A power supply bypass capacitor  
The size of C is dependent on the lower cut-off  
frequency and PSRR values requested. The size  
IN  
C and a bias voltage bypass capacitor C .  
S
B
of C is dependent on THD+N and PSRR values  
B
C has particular influence on the THD+N in the  
requested at lower frequencies.  
S
high frequency region (above 7kHz) and an  
indirect influence on power supply disturbances.  
With 1µF, you can expect similar THD+N  
performances to those shown in the datasheet.  
Moreover, C determines the speed with which the  
amplifier turns ON. The slower the speed is, the  
softer the turn ON noise is.  
B
The charge time of C is directly proportional to  
the internal generator resistance 150k..  
In the high frequency region, if C is lower than  
F, it increases THD+N and disturbances on the  
power supply rail are less filtered.  
B
S
Then, the charge time constant for C is  
B
τ = 150kxC (s)  
On the other hand, if C is higher than 1µF, those  
B
B
S
As C is directly connected to the non-inverting  
disturbances on the power supply rail are more  
filtered.  
B
input (pin 2 & 3) and if we want to minimize, in  
amplitude and duration, the output spike on Vout1  
(pin 5), C must be charged faster than C . The  
C
has an influence on THD+N at lower  
B
IN  
B
frequencies, but its function is critical to the final  
result of PSRR (with input grounded and in the  
lower frequency region).  
equivalent charge time constant of C is:  
IN  
τ
= (Rin+Rfeed)xC (s)  
IN  
IN  
Thus we have the relation:  
< τ (s)  
If C is lower than 1µF, THD+N increases at lower  
τ
B
IN  
B
frequencies and PSRR worsens.  
Proper respect of this relation allows to minimize  
the pop noise.  
If C is higher than 1µF, the benefit on THD+N at  
lower frequencies is small, but the benefit to PSRR  
is substantial.  
B
Remark : Minimizing C and C benefits both the  
IN  
B
pop phenomena, and the cost and size of the  
application.  
Note that C has a non-negligible effect on PSRR  
IN  
at lower frequencies. The lower the value of C ,  
IN  
the higher the PSRR.  
Application : Differential inputs BTL power  
amplifier.  
Wake-up Time: T  
WU  
The schematic on figure 98, shows how to design  
the TS419/21 to work in a differential input mode.  
When standby is released to put the device ON,  
the bypass capacitor C will not be charged  
B
immediatly. As C is directly linked to the bias of  
B
R 2  
the amplifier, the bias will not work properly until  
Thegainoftheamplifieris:  
G VDIFF = 2  
the C voltage is correct. The time to reach this  
R 1  
B
voltage is called wake-up time or T  
equal to:  
and typically  
In order to reach optimal  
performances of the differential function, R and  
WU  
1
T
=0.15xC (s) with C in µF.  
B B  
R should be matched at 1% max.  
WU  
2
28/32  
TS419-TS421  
Fig. 98 : Differential Input Amplifier  
Configuration  
Note : This formula is true only if:  
1
FCB  
=
(Hz )  
942000 × CB  
is ten times lower than F .  
L
The following bill of material is an example of a  
differential amplifier with a gain of 2 and a -3dB  
lower cuttoff frequency of about 80Hz.  
Components :  
Designator  
Part Type  
R1  
R2  
C
20k / 1%  
20k / 1%  
100nF  
Input capacitance C can be calculated by the  
following formula using the -3dB lower frequency  
C =C  
1µF  
B
S
required. (F is the lower frequency required)  
U1  
TS419/21  
L
1
C ≈  
(F )  
2π R1 FL  
29/32  
TS419-TS421  
PACKAGE MECHANICAL DATA  
SO-8 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
MIN.  
MAX.  
A
A1  
A2  
B
1.35  
1.75  
0.053  
0.069  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
30/32  
TS419-TS421  
PACKAGE MECHANICAL DATA  
31/32  
TS419-TS421  
PACKAGE MECHANICAL DATA  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
http://www.st.com  
32/32  

相关型号:

TS419-2

360mW MONO AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS419-2IST

360mW mono audio amplifier with active high standby mode
STMICROELECTR

TS419-4

360mW MONO AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS419-4IST

暂无描述
STMICROELECTR

TS419-8

360mW MONO AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS419-8IQT

0.367W, 1 CHANNEL, AUDIO AMPLIFIER, DSO8, MLFP-8
STMICROELECTR

TS419-8IST

360mW mono audio amplifier with active high standby mode
STMICROELECTR

TS420

4A SCRs
STMICROELECTR

TS420-400

4A, 400V, SCR, TO-220AB
STMICROELECTR

TS420-400B

4A, 400V, SCR, PLASTIC, DPAK-3
STMICROELECTR

TS420-400B-TR

4A, 400V, SCR
STMICROELECTR

TS420-400T

4A, 400V, SCR, TO-220AB, PLASTIC, TO-220AB, 3 PIN
STMICROELECTR