TS321_05 [STMICROELECTRONICS]

Low Power Single Operational Amplifier; 低功耗单路运算放大器
TS321_05
型号: TS321_05
厂家: ST    ST
描述:

Low Power Single Operational Amplifier
低功耗单路运算放大器

运算放大器
文件: 总12页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS321  
Low Power Single Operational Amplifier  
Large output voltage swing:  
0 to 3.5V min. (@V = 5V)  
CC  
D
SO-8  
Low supply current: 500µA  
Low input bias current: 20nA  
Low input offset voltage: 2mV max.  
Wide power supply range:  
(Plastic Micropackage  
L
SOT23-5  
Single supply: +3V to +30V  
Dual supplies: 1.5V to 15V  
Stable with high capacitive loads  
(Plastic Package)  
Pin connections (top view)  
Description  
N.C.  
N.C.  
Inverting input  
1
2
3
4
8
7
6
5
The TS321 is intended for cost-sensitive  
-
+
V
CC  
+
applications where space saving is of great  
importance. This bipolar op-amp offers the  
benefits of a reduced component size (SOT23-5  
package), with specifications that match (or are  
better) industry standard devices (like the popular  
LM358A, LM324, etc.). The TS321 has an input  
Non-inverting input  
Output  
N.C.  
V
-
CC  
+
Output  
V
5
4
1
CC  
V
-
2
CC  
common mode range (V ) that includes ground,  
icm  
3
Inverting input  
Non-inverting input  
and therefore can be employed in single supply  
applications.  
Order Codes  
Temperature  
Part Number  
Package  
Packaging  
Marking  
Range  
TS321ILT  
SOT23-5L  
SO8  
Tape & Reel  
K401  
321I  
TS321ID/IDT  
TS321AILT  
Tube or Tape & Reel  
Tape & Reel  
SOT23-5L  
SO8  
K402  
321AI  
K406  
TS321AID/AIDT  
-40°C, +125°C  
TS321IYLT  
Tube or Tape & Reel  
SOT23-5L (automotive grade level)  
SO-8 (automotive grade level)  
Tape & Reel  
TS321AIYLT  
TS321IYD/IYDT  
TS321AIYD/AIYDT  
Tube or Tape & Reel  
December 2005  
Rev. 4  
1/12  
www.st.com  
12  
Typical Application Schematics  
TS321  
1
Typical Application Schematics  
Figure 1. Typical application schematics  
VCC  
6 A  
m
4 A  
m
100 A  
m
Q5  
Q6  
CC  
Q3  
Q2  
Inverting  
input  
Q7  
Q1  
Q4  
R SC  
Q11  
Non-inverting  
input  
Output  
Q13  
Q10  
Q12  
Q8  
Q9  
50 A  
m
GND  
2/12  
TS321  
Absolute Maximum Ratings  
2
Absolute Maximum Ratings  
Table 1.  
Symbol  
Key parameters and their absolute maximum ratings  
Parameter  
Value  
Unit  
V
Supply Voltage  
16 to 32  
-0.3 to +32  
+32  
V
V
V
CC  
Vi  
Input Voltage  
V
Differential Input Voltage  
id  
(1)  
Output Short-circuit Duration - note  
Infinite  
(2)  
I
Input Current - note  
50  
mA  
°C  
in  
T
Operating Free Air Temperature Range  
Storage Temperature Range  
-40 to +125  
-65 to +150  
oper  
T
°C  
stg  
(3)  
Thermal Resistance Junction to Ambient  
R
°C/W  
°C/W  
SOT23-5  
SO8  
250  
125  
thja  
Thermal Resistance Junction to Case  
R
SOT23-5  
SO8  
81  
40  
thjc  
(4)  
HBM: Human Body Model  
300  
200  
V
V
ESD  
(5)  
MM: Machine Model  
1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is  
approximately 40mA independent of the magnitude of VCC  
.
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base  
junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this  
diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the  
Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven  
negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.  
3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all  
amplifiers. All values are typical.  
4. Human body model, 100pF discharged through a 1.5kresistor into pin of device.  
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external  
series resistor (internal resistor < 5), into pin to pin of device.  
3/12  
Electrical Characteristics  
TS321  
3
Electrical Characteristics  
+
-
Table 2.  
Symbol  
V
= +5V, V = Ground, V = 1.4V, T  
= +25°C (unless otherwise specified)  
cc  
cc  
o
amb  
Parameter  
Conditions  
Min. Typ.  
Max.  
Unit  
T
= +25°C  
0.5  
4
2
5
3
amb  
TS321A  
T  
(1)  
V
Input Offset Voltage  
Input Offset Current  
mV  
io  
T
T  
max.  
min.  
amb  
TS321A  
T
T
= +25°C  
2
30  
50  
amb  
I
I
nA  
nA  
io  
T  
T  
T  
min.  
amb  
max.  
max  
T
= +25°C  
20  
150  
200  
(2)  
amb  
Input Bias Current  
ib  
T
T  
min.  
amb  
+
V
T
= +15V, R = 2k, Vo = 1.4V to 11.4V  
CC  
L
Large Signal Voltage  
Gain  
A
= +25°C  
50  
25  
100  
V/mV  
dB  
vd  
amb  
T
T  
T  
amb max.  
min.  
R 10kΩ  
V
s
Supply Voltage  
Rejection Ratio  
+
SVR  
= 5 to 30V  
= +25°C  
CC  
T
65  
110  
amb  
T
V
T
V
= +25°C, V = +5V  
= +30V  
500  
600  
600  
800  
900  
900  
amb  
CC  
CC  
I
Supply Current, no load  
Common Mode Input  
µA  
V
CC  
T  
T  
, V = +5V  
min.  
amb  
= +30  
max.  
CC  
1000  
CC  
V
= +30V  
CC  
V
T
= +25°C  
0
0
V
V
-1.5  
CC  
(3)  
icm  
amb  
Voltage Range  
T
T  
T  
-2  
min.  
amb  
max.  
CC  
R 10kΩ  
Common Mode  
Rejection Ratio  
s
CMR  
dB  
T
= +25°C  
65  
20  
85  
40  
amb  
V
= +1V  
id  
I
Output Current Source  
mA  
source  
V
= +15V, V = +2V  
o
CC  
V
= -1V  
id  
I
Output Sink Current  
V
V
= +15V, V = +2V  
10  
12  
20  
50  
mA  
µA  
sink  
CC  
CC  
o
= +15V, V = +0.2V  
o
I
Short Circuit to Ground  
V
= +15V  
= +30V  
40  
60  
mA  
o
CC  
CC  
V
T
T
= +25°C, R = 2kΩ  
26  
25.5  
27  
27  
28  
amb  
L
T  
T  
min.  
amb max.  
High Level Output  
Voltage  
T
= +25°C, R = 10kΩ  
amb  
L
V
V
OH  
T
V
T  
T  
max.  
26.5  
min.  
amb  
= +5V, R = 2kΩ  
CC  
L
T
= +25°C  
3.5  
3
amb  
T
T  
T  
T  
min.  
amb  
max.  
max.  
R = 10kΩ  
L
Low Level Output  
Voltage  
V
mV  
T
= +25°C  
T  
5
15  
20  
OL  
amb  
T
min.  
amb  
4/12  
TS321  
Electrical Characteristics  
+
-
Table 2.  
Symbol  
V
= +5V, V = Ground, V = 1.4V, T  
= +25°C (unless otherwise specified)  
cc  
cc  
o
amb  
Parameter  
Conditions  
Min. Typ.  
Max.  
Unit  
V
= +15V, V = 0.5 to 3V, R = 2k,  
CC  
i
L
SR  
Slew Rate  
0.4  
V/µs  
C = 100pF, T  
= +25°C, unity gain  
L
amb  
V
V
= 30V, f = 100kHz, T  
= +25°C,  
CC  
amb  
GBP Gain Bandwith Product  
0.8  
60  
MHz  
Degrees  
%
= 10mV, R = 2k, C = 100pF  
in  
L
L
φm  
Phase Margin  
Total Harmonic  
Distortion  
f = 1kHz, A = 20dB, R = 2k, V = 2Vpp,  
V L o  
C = 100pF, T  
THD  
0.015  
= +25°C, V = 30V  
L
amb  
CC  
Equivalent Input Noise  
Voltage  
nV  
en  
f = 1kHz, R = 100, V = 30V  
40  
-----------  
s
CC  
Hz  
1. Vo = 1.4V, Rs = 0W, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V  
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output  
so no loading change exists on the input lines.  
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V.  
The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without  
damage.  
5/12  
Electrical Characteristics  
TS321  
Figure 2.  
I
= f(t)  
Figure 3. AC coupled inverting amplifier  
CC  
Rf  
100k  
W
Rf  
A
= -  
V
R1  
(as shown A = -10)  
R1  
10k  
V
CI  
W
Co  
2V  
PP  
0
eo  
R
6.2k  
R
L
B
W
10k  
W
eI  
R2  
100k  
R3  
100k  
~
V
W
W
CC  
C1  
10 F  
m
Figure 4. Non-inverting DC gain  
Figure 5. AC coupled non-inverting amplifier  
R1  
100k  
R2  
1M  
R2  
R1  
AV= 1 +  
W
W
R2  
= 1 +  
R1  
A
V
W
10k  
A
(As shown V = 101)  
(as shown A = 11)  
V
C1  
0.1 F  
eO  
m
+5V  
1/4  
Co  
TS324  
2V  
PP  
0
eo  
CI  
R
6.2k  
R
L
B
W
10k  
W
R2  
1M  
R3  
1M  
eI  
W
W
~
R4  
R1  
10k  
100k  
R5  
W
W
V
CC  
C2  
10 F  
100k  
W
m
0
eI  
(mV)  
Figure 6. DC summing amplifier  
e1  
100k  
W
eO  
100k  
W
e2  
e3  
100k  
100k  
W
W
100k  
W
e4  
100k  
W
6/12  
TS321  
4
Macromodel  
Macromodel  
Note:  
Please consider following remarks before using this macromodel:  
All models are a trade-off between accuracy and complexity (i.e. simulation time).  
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a  
design approach and help to select surrounding component values.  
A macromodel emulates the NOMINAL performance of a TYPICAL device within  
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the  
macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main  
parameters of the product.  
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature,  
etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not  
reliable in any way.  
** Standard Linear Ics Macromodels, 1993.  
** CONNECTIONS :  
* 1 INVERTING INPUT  
* 2 NON-INVERTING INPUT  
* 3 OUTPUT  
* 4 POSITIVE POWER SUPPLY  
* 5 NEGATIVE POWER SUPPLY  
.SUBCKT TS321 1 2 3 4 5  
***************************  
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F  
* INPUT STAGE  
CIP 2 5 1.000000E-12  
CIN 1 5 1.000000E-12  
EIP 10 5 2 5 1  
EIN 16 5 1 5 1  
RIP 10 11 2.600000E+01  
RIN 15 16 2.600000E+01  
RIS 11 15 2.003862E+02  
DIP 11 12 MDTH 400E-12  
DIN 15 14 MDTH 400E-12  
VOFP 12 13 DC 0  
VOFN 13 14 DC 0  
IPOL 13 5 1.000000E-05  
CPS 11 15 3.783376E-09  
DINN 17 13 MDTH 400E-12  
VIN 17 5 0.000000e+00  
DINR 15 18 MDTH 400E-12  
VIP 4 18 2.000000E+00  
FCP 4 5 VOFP 3.400000E+01  
FCN 5 4 VOFN 3.400000E+01  
FIBP 2 5 VOFN 2.000000E-03  
FIBN 5 1 VOFP 2.000000E-03  
* AMPLIFYING STAGE  
FIP 5 19 VOFP 3.600000E+02  
FIN 5 19 VOFN 3.600000E+02  
RG1 19 5 3.652997E+06  
RG2 19 4 3.652997E+06  
CC 19 5 6.000000E-09  
7/12  
Macromodel  
TS321  
DOPM 19 22 MDTH 400E-12  
DONM 21 19 MDTH 400E-12  
HOPM 22 28 VOUT 7.500000E+03  
VIPM 28 4 1.500000E+02  
HONM 21 27 VOUT 7.500000E+03  
VINM 5 27 1.500000E+02  
EOUT 26 23 19 5 1  
VOUT 23 5 0  
ROUT 26 3 20  
COUT 3 5 1.000000E-12  
DOP 19 25 MDTH 400E-12  
VOP 4 25 2.242230E+00  
DON 24 19 MDTH 400E-12  
VON 24 5 7.922301E-01  
.ENDS  
+
Table 3.  
V
= 3V, V - = 0V, R , C connected to V , T = 25°C (unless otherwise specified)  
CC/2 amb  
CC  
CC  
L
L
Symbol  
Conditions  
Value  
Unit  
V
A
0
100  
300  
0 to +3.5  
+3.5  
5
mV  
V/mV  
µA  
io  
R = 2kΩ  
vd  
L
I
No load, per operator  
CC  
V
V
V
icm  
OH  
R = 2kΩ  
V
L
V
R = 2kΩ  
mV  
OL  
os  
L
I
V = 0V  
40  
mA  
o
GBP  
SR  
R = 2kΩ, C = 100pF  
0.8  
MHz  
V/µs  
Degrees  
L
L
R = 2kΩ, C = 100pF  
0.4  
L
L
m  
R = 2kΩ, C = 100pF  
60  
L
L
8/12  
TS321  
Macromodel  
Figure 7.  
I
= f(t)  
Figure 8. AC coupled inverting amplifier  
CC  
Rf  
100k  
W
Rf  
A
= -  
V
R1  
(as shown A = -10)  
R1  
10k  
V
CI  
W
Co  
2V  
PP  
0
eo  
R
6.2k  
R
L
B
W
10k  
W
eI  
R2  
100k  
R3  
100k  
~
V
W
W
CC  
C1  
10 F  
m
Figure 9. Non-inverting DC gain  
Figure 10. AC coupled non-inverting amplifier  
R1  
100k  
R2  
1M  
R2  
R1  
AV= 1 +  
W
W
R2  
= 1 +  
R1  
A
V
W
10k  
A
(As shown V = 101)  
(as shown A = 11)  
V
C1  
0.1 F  
eO  
m
+5V  
1/4  
Co  
TS324  
2V  
PP  
0
eo  
CI  
R
6.2k  
R
L
B
W
10k  
W
R2  
1M  
R3  
1M  
eI  
W
W
~
R4  
R1  
10k  
100k  
R5  
W
W
V
CC  
C2  
10 F  
100k  
W
m
0
eI  
(mV)  
Figure 11. DC summing amplifier  
e1  
100k  
W
eO  
100k  
W
e2  
e3  
100k  
100k  
W
W
100k  
W
e4  
100k  
W
9/12  
Package Mechanical Data  
TS321  
5
Package Mechanical Data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
5.1  
SO-8 Package  
SO-8 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
MIN.  
MAX.  
A
A1  
A2  
B
1.35  
1.75  
0.053  
0.069  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
10/12  
TS321  
Package Mechanical Data  
5.2  
SOT23-5 Package  
SOT23-5L MECHANICAL DATA  
mm.  
TYP  
mils  
TYP.  
DIM.  
MIN.  
0.90  
0.00  
0.90  
0.35  
0.09  
2.80  
2.60  
1.50  
MAX.  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
3.00  
1.75  
MIN.  
35.4  
0.0  
MAX.  
57.1  
5.9  
A
A1  
A2  
b
35.4  
13.7  
3.5  
51.2  
19.7  
7.8  
C
D
110.2  
102.3  
59.0  
118.1  
118.1  
68.8  
E
E1  
e
0.95  
1.9  
37.4  
74.8  
e1  
L
0.35  
0.55  
13.7  
21.6  
11/12  
Revision history  
TS321  
6
Revision history  
Table 4.  
Date  
Document revision history  
Revision  
Changes  
June 2001  
1
– Initial release.  
– PPAP references inserted in the datasheet see table order  
codes table on page 1.  
July 2005  
2
– ESD protection inserted in Table 1 on page 3  
– Correction of errors in package names and markings in order  
codes table on page 1.  
– Minor grammatical and formatting corrections.  
Sept. 2005  
Dec. 2005  
3
4
– Missing PPAP references inserted see order codes table on  
page 1.  
– Thermal Resistance Junction to Ambient and Thermal  
Resistance Junction to Case information added in Table 1 on  
page 3.  
– Macromodel updated see Chapter 4: Macromodel.  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 12 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
12/12  

相关型号:

TS321_07

Low power single operational amplifier
STMICROELECTR

TS321_08

Low power single operational amplifier
STMICROELECTR

TS321_10

LOW-POWER SINGLE OPERATIONAL AMPLIFIER
TI

TS322600LBBNBXXZC-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBBNBXXZD-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBBNBXXZL-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBDNBXXZC-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBDNBXXZD-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBDNBXXZL-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBFNBXXZC-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBFNBXXZD-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT

TS322600LBFNBXXZL-PF

TCXO/VC-TCXO, 3.2 x 2.5mm, Clipped sine wave
ACT