STW4141_06 [STMICROELECTRONICS]

Single-coil dual-output step-down DC/DC converter for digital base band and multimedia processor supply; 单线圈双输出降压型DC / DC转换器对数字基带和多媒体处理器供应
STW4141_06
型号: STW4141_06
厂家: ST    ST
描述:

Single-coil dual-output step-down DC/DC converter for digital base band and multimedia processor supply
单线圈双输出降压型DC / DC转换器对数字基带和多媒体处理器供应

转换器
文件: 总30页 (文件大小:866K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STw4141  
Single-coil dual-output step-down DC/DC converter  
for digital base band and multimedia processor supply  
Features  
Solution size  
7 x 8 mm  
Single coil dual output switching converter for  
digital core supply & digital I/Os supply  
– Digital I/O supply:VOUT1 @ 200 mA  
– CPU CORE supply:VOUT2 @ 400 mA  
TFBGA 3x3mm  
16 bumps 0.5 mm pitch  
Wide range of fixed output voltage  
configurations available  
Applications  
High efficiency synchronous step down  
converter with up to 92 % for the entire device  
Mobile phones  
Size and cost optimized application board  
(7x8 mm, height 1.2mm) three capacitors and  
only one inductor necessary for both outputs  
PDAs and hand held terminals  
Portable media players  
Digital still camera  
2.7 V to 5.5 V battery input range  
WLAN and Bluetooth applications  
±100mV output voltage accuracy full range in  
PWM (Including Line and Load Transients)  
Description  
900 kHz fixed frequency PWM operation  
PFM mode operation at light load current  
The STw4141 is a single coil dual output  
synchronous step down DC/DC converter that  
requires only four standard external components.  
It operates at a fixed 900 kHz switching frequency  
in PWM mode. The device can operate in PFM  
mode to maintain high efficiency over the full  
range of output currents.  
PWM/PFM switch can be done automatically or  
forced by setting external pins (AUTO and  
MODE/SYNC)  
MODE/SYNC input pin for external clock  
synchronization from 600 kHz to 1.5 MHz  
The STw4141 application requires a very small  
PCB area and offers a very efficient, accurate,  
space and cost saving solution to fulfill the  
requirements of digital baseband or multimedia  
processor supply (CORE & I/O).  
VSEL input pin for VOUT2/VOUT2(red.) selection  
Ultra low shutdown current (Iq<1 µA)  
Short circuit and thermal shutdown protections  
Application test circuit  
L
4.7 µH  
VLX1  
VLX2  
A3  
VIN=2.7V to 5.5V  
VOUT1=1.8V  
PVDD  
VDD  
VOUT1  
FB1  
A2  
B1  
A4  
CIN  
10 µF  
6.3 V  
COUT1  
22 µF  
6.3 V  
D1  
D3  
D4  
C2  
C3  
EN  
VOUT2=1.0V/1.2V  
AUTO  
VOUT2  
FB2  
STw4141  
B4  
VSEL  
COUT2  
22 µF  
6.3 V  
D2  
B2  
MODE/SYNC  
STATE  
C1  
A1  
C4  
B3  
T_MODE  
PGND GND  
June 2006  
Rev 2  
1/30  
www.st.com  
1
Contents  
STw4141  
Contents  
1
2
STw4141 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Settling time of VOUT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Line transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Load transients in AUTO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Load transients in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.10 Switching between PFM and PWM in FORCED mode . . . . . . . . . . . . . . 14  
2.11 Efficiency in PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.12 Efficiency in AUTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.13 Output voltages versus output currents in PWM and PFM . . . . . . . . . . . . 17  
3
4
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PWM and PFM mode operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Current limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Thermal shutdown protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
User mode details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Automatic PWM/PFM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
User selected PWM/PFM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
External clock synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Checking transient response versus external components . . . . . . . . . . . 21  
Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.6.1  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/30  
STw4141  
Contents  
4.6.2  
4.6.3  
4.6.4  
Input capacitor (CIN selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Output capacitors (COUT selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Capacitors selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.7  
PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.7.1  
4.7.2  
PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
TFBGA16 internal bumps access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5
6
7
Package outline and mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3/30  
List of tables  
STw4141  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
STw4141 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Dynamic electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
STw4141 available user modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating mode information (STATE pin - digital output). . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Bill of material: inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Bill of Material: capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
TFBGA 3x3x1.20 16 F4x4 0.50. Package code: L0 - JEDEC/EAIJ . . . . . . . . . . . . . . . . . . 26  
STw4141 order codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4/30  
STw4141  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Pin assignment in TFBGA 3x3 mm - 16 bumps 0.5 mm pitch . . . . . . . . . . . . . . . . . . . . . . . 6  
Smooth start-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Settling time of VOUT2, IOUT1 = 200mA, IOUT2 = 400mA. . . . . . . . . . . . . . . . . . . . . . . . 11  
Line transient, VOUT1 = 1.8V @ 100mA, VOUT2 = 1.2V @ 100mA . . . . . . . . . . . . . . . . . 12  
Load transient in AUTO mode VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V. . . . . . . . . . . . 12  
Load transient in PWM mode, IOUT1 = 1mA to 200mA, IOUT2 = 1mA to 400mA. . . . . . . 13  
Switching between PFM to PWM - VIN = 3.6V, IOUT1 = 10mA, IOUT2 = 10mA. . . . . . . . 14  
Switching between PWM to PFM - VIN = 3.6V, IOUT1 = 10mA, IOUT2 = 10mA. . . . . . . . 14  
Switching regulator efficiency in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Switching regulator efficiency in auto mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. Output voltages versus output currents in PWM and PFM. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12. Automatic PWM/PFM switch schematic example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. PWM/PFM forced mode schematic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 14. Application using external clock synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Board layout track length and width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 16. Demoboard top layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 17. Demoboard assembled with 22 µF output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 18. TFBGA16 ball pad spacing and track parameters to internal pads . . . . . . . . . . . . . . . . . . 24  
Figure 19. PCB routing example using TFBGA16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 20. TFBGA 3x3x1.20 16 F4x4 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5/30  
STw4141 pinout  
STw4141  
1
STw4141 pinout  
Figure 1.  
Pin assignment in TFBGA 3x3 mm - 16 bumps 0.5 mm pitch  
1
1
22  
3
4
4
3
2
2
1
1
4
3
3
4
AA  
BB  
VOUT1  
VOUT2  
GND  
VLX2  
T_MODE  
VSEL  
VLX1  
STATE  
AUTO  
FB2  
PGND  
PVDD  
PGND  
PVDD  
VLX1  
STATE  
AUTO  
FB2  
VLX2  
T_MODE  
VSEL  
VOUT1  
VOUT2  
GND  
A
B
CC  
C
MODE/  
SYNC  
MODE/  
SYNC  
FB1  
VDD  
EN  
D
D
EN  
VDD  
FB1  
D
Bottom view  
Top view  
Table 1.  
Pin  
STw4141 pin description  
Symbol  
Description  
A1  
B1  
PGND  
PVDD  
Power ground  
Power supply voltage  
MODE/SYNC = High to forced PWM mode  
MODE/SYNC = Low to forced PFM mode  
C1  
MODE/SYNC  
MODE/SYNC = 600 kHz - 1.5 MHz external clock synchronization in PWM  
D1  
A2  
FB1  
Feedback 1  
VLX1  
External inductor connection pin 1  
Output STATE pin allow the user to monitor operation mode of the product  
STATE = High - PFM mode  
STATE = Low - PWM mode  
B2  
C2  
STATE  
AUTO  
If not used must be left unconnected.  
PWM/PFM automatic switch control pin  
AUTO = High - PWM/PFM mode automatic switch ENABLED  
AUTO = Low - PWM/PFM mode automatic switch DISABLED  
PWM/PFM mode controlled by MODE/SYNC pin)  
D2  
A3  
B3  
FB2  
Feedback 2  
VLX2  
External inductor connection pin 2  
T_MODE  
Input signal for test mode selection. This pin must be connected to GND.  
Voltage selection input  
VSEL = High - VOUT1 = 1.8V, VOUT2 = 1.2V (valid for STA1)  
VSEL = Low - VOUT1 = 1.8V, VOUT2 = 1.0V (valid for STA1)  
(For other voltage options see Table 1: STw4141 ordering information)  
C3  
VSEL  
D3  
A4  
VDD  
Signal supply voltage  
Output voltage 1  
VOUT1  
6/30  
STw4141  
STw4141 pinout  
Table 1.  
Pin  
STw4141 pin description (continued)  
Symbol  
Description  
B4  
C4  
VOUT2  
GND  
Output voltage 2  
Signal ground  
Enable Input:  
EN = Low - Device in shutdown mode,  
EN = High - Enable device  
D4  
EN  
This pin must be connected either to VDD or GND.  
This is the ground pin related to power signal. This pin should be connected to the board ground  
plane by short and wide track or multiply vias to reduce impedance and EMI.  
PGND pin  
GND pins  
PVDD pin  
This is the ground pin related to analog signal.  
This pin is designed to provide power to the device. This path leads high currents. It should be  
wide and short to minimize track impedance to reduce losses and EMI.  
This pin is designed to provide signal supply voltage to the device. There is no specific  
requirement for its related track design.  
VDD pin  
External coil is connected on those pins. It should be placed as closed as possible to the device  
in order minimize resistances which cause looses. These paths lead high currents.  
VLX1/VLX2 pins  
VOUT1 pin3  
VOUT2 pin  
It is the first output voltage of this device. This path leads high currents. It should be wide and  
short to minimize track impedance to reduce losses and EMI.  
It is the second output voltage of this device. This path leads high currents. It should be wide and  
short to minimize track impedance to reduce losses and EMI.  
FB1 pin  
Intended to measure VOUT1 voltage in order to ensure the regulation of this output.  
Intended to measure VOUT2 voltage in order to ensure the regulation of this output.  
FB2 pin  
This is the enable pin of the device. Pulling this pin to ground, forces the device into shutdown  
mode. Pulling this pin to VDD enables the device. This pin must be terminated.  
ENABLE pin  
The MODE/SYNC pin is a multipurpose pin which provides mode selection and frequency  
synchronization.  
MODE/SYNC pin  
The device can also be synchronized to an external clock signal from 600 kHz to 1.5 MHz by the  
MODE/SYNC pin. During synchronization, the mode is forced to PWM mode and the top switch  
turn-on is synchronized to the rising edge of the external clock.  
This pin allows the device to automatically switch from PWM to PFM mode following load on both  
2 outputs.  
AUTO pin  
STATE pin  
VSEL pin  
This output pin informs user in which state the device is working: PWM or PFM mode.  
This pin is used to reduce VOUT2 (CORE) output voltage in order to reduce the processor power  
consumption when entering into sleep mode.  
7/30  
Electrical characteristics  
STw4141  
2
Electrical characteristics  
2.1  
Absolute maximum ratings  
Absolute maximum ratings are those values beyond which damage to the device may occur.  
Functional operation under these conditions is not implied. All voltages are referenced to  
GND.  
Table 2.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
V
PVDD  
Power supply voltage  
-0.3 to 6  
-0.3 to 6  
VDD  
Signal supply voltage  
V
VEN  
-0.3 to VDD  
-0.3 to VDD  
-0.3 to VDD  
-0.3 to VDD  
-0.3 to VDD  
-0.3 to VOUT1  
Enable input  
V
VSEL  
Voltage selection  
V
VMODE/SYNC  
VAUTO  
VT_MODE  
VSTATE  
Operating mode selection/synchronization input  
PWM/PFM automatic switch selection  
Test mode selection  
V
V
V
Operating mode information  
Output voltage 1, feedback 1  
Output voltage 2, feedback 2  
External inductor connection pin 1  
External inductor connection pin 2  
Operating temperature range  
Maximum operating junction temperature  
Storage temperature range  
V
VOUT1,FB1  
-0.3 to 3.3  
-0.3 to 3.3  
-0.3 to VDD  
V
VOUT2, FB2  
VLX1  
VLX2  
TA  
V
V
-0.3 to 3.3  
-40 to 85  
150  
V
°C  
°C  
°C  
TJ  
TSTG  
-65 to 150  
2.2  
Thermal data  
Table 3.  
Symbol  
Thermal data  
Parameter  
Value  
Unit  
Thermal Resistance Junction-Ambient  
TFBGA 3x3 mm – 16 bumps - 0.5 mm pitch  
RthJA  
150  
°C/W  
8/30  
STw4141  
Electrical characteristics  
2.3  
DC electrical characteristics  
Characteristics measured over recommended operating conditions unless otherwise is  
noted.  
All typical values are referred to TA = 25°C, PVDD = 3.6V, VDD = 3.6V.  
Table 4.  
Symbol  
DC electrical characteristics  
Parameter  
Power supply voltage  
Peak current limit  
Test Conditions  
Min.  
Typ  
Max.  
Unit  
V
PVDD  
ILIM  
2.7  
5.5  
1.6  
A
(1)  
Output voltage 1(2)  
Output voltage 2(2)  
-3  
-3  
+3  
+3  
%
%
VOUT1  
VSEL = VDD,  
MODE/SYNC = VDD  
VOUT2  
VSEL = GND,  
MODE/SYNC = VDD  
Output voltage 2(2)  
-3  
+3  
%
IOUT1  
IOUT2  
Output current 1  
Output current 2  
200  
400  
mA  
mA  
IOUT1 = 0 mA, IOUT2 = 0 mA  
Quiescent current  
(PWM)  
EN = VDD, VSEL = VDD  
MODE/SYNC = VDD,  
AUTO = GND  
600  
90  
1
µA  
µA  
µA  
I
OUT1 = 0 mA, IOUT2 = 0 mA  
Quiescent current  
(PFM)  
EN = VDD, VSEL = VDD  
MODE/SYNC = GND,  
AUTO = GND  
Iq  
EN = GND,  
VSEL = GND  
MODE/SYNC = GND,  
AUTO = GND  
Shutdown current  
5
Enable functions  
VEN  
H
L
Enable threshold high  
Enable threshold low  
0.9  
0.9  
V
V
VEN  
0.4  
0.4  
Mode/sync functions  
MODE/SYNC  
threshold high  
VM/SH  
V
V
MODE/SYNC  
threshold low  
VM/S  
L
VSEL functions  
Voltage selection  
threshold high  
VSEL  
H
0.9  
V
V
Voltage selection  
threshold low  
VSELL  
0.4  
9/30  
Electrical characteristics  
STw4141  
Unit  
Table 4.  
Symbol  
DC electrical characteristics (continued)  
Parameter  
Test Conditions  
Min.  
Typ  
Max.  
Auto functions  
Voltage selection  
threshold high  
VAUTO  
VAUTO  
H
L
0.9  
V
V
Voltage selection  
threshold low  
0.4  
State functions  
Voltage selection  
threshold high  
VSTATE  
H
L
RLmax = 100k, CLmax = 10pF  
RLmax = 100k, CLmax = 10pF  
0.7VOUT1  
V
Voltage selection  
threshold low  
VSTATE  
0.3 VOUT1  
V
1. VOUT1 VOUT2 . This condition must always be valid.  
2. Output voltage accuracy excludes line and load transients  
2.4  
Dynamic electrical characteristics  
Characteristics measured over recommended operating conditions unless otherwise is  
noted.  
All typical values are referred to TA = 25°C, PVDD = 3.6V, VDD = 3.6V.  
Table 5.  
Symbol  
Dynamic electrical characteristics  
Parameter  
Test Conditions  
Min.  
Typ  
Max.  
Unit  
fSW  
Switching frequency  
900  
kHz  
kHz  
µs  
fSYNC  
Ts  
Sync mode frequency  
Settling time (soft start)  
Settling time  
600  
1500  
400  
80  
TS2  
VSEL change from GND to VDD  
µs  
VOUT2 (reduced)/VOUT2  
10/30  
STw4141  
Electrical characteristics  
2.5  
Soft start  
To avoid spikes on battery during STw4141 start-up sequence, a smooth start-up is  
implemented. Reference voltage grows up less than 600 µs until it achieves is final target.  
Therefore, STw4141 start up is smooth and secure for the overall mobile phone.  
Figure 2 illustrates a smooth start up sequence where VIN = 3.6V, VOUT1 = 1.8V@ 200mA,  
VOUT2 =1.2V@400mA.  
Figure 2. Smooth start-up sequence  
2.6  
Settling time of V  
OUT2  
Figure 3.  
Settling time of VOUT2, IOUT1 = 200mA, IOUT2 = 400mA  
11/30  
Electrical characteristics  
STw4141  
2.7  
Line transients  
Figure 4.  
Line transient, VOUT1 = 1.8V @ 100mA, VOUT2 = 1.2V @ 100mA  
2.8  
Load transients in AUTO mode  
Figure 5.  
Load transient in AUTO mode VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V  
12/30  
STw4141  
Electrical characteristics  
2.9  
Load transients in PWM mode  
Figure 6.  
Load transient in PWM mode, IOUT1 = 1mA to 200mA, IOUT2 = 1mA to 400mA  
Load transient output 1 leading output 2  
VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V  
Load transient related to in-phase switching  
VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V  
Load transient related to anti-phase switching  
VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V  
Load transient output 2 leading output 1  
VIN = 3.6V, VOUT1 = 1.8V, VOUT2 = 1.2V  
13/30  
Electrical characteristics  
STw4141  
2.10  
Switching between PFM and PWM in FORCED mode  
Figure 7.  
Switching between PFM to PWM - VIN = 3.6V, IOUT1 = 10mA, IOUT2 = 10mA  
Figure 8.  
Switching between PWM to PFM - VIN = 3.6V, IOUT1 = 10mA, IOUT2 = 10mA  
14/30  
STw4141  
Electrical characteristics  
2.11  
Efficiency in PWM  
The efficiency of a switching regulator is equal to the total output power divided by the input.  
STw4141 has high efficiency up to 92% (for the 2 outputs). Efficiency curve is flat over the  
output current range.  
Figure 9.  
Switching regulator efficiency in PWM mode  
Efficiency in PWM mode @ VIN=2.7V, TA= 25°C  
Efficiency in PWM mode @ VIN=3.6V, TA= 25°C  
100  
100  
90  
90  
80  
80  
70  
70  
60  
60  
50 Efficiency (%)  
50 Efficiency (%)  
40  
30  
20  
10  
0
90-100  
80-90  
70-80  
60-70  
50-60  
40-50  
30-40  
20-30  
10-20  
0-10  
40  
90-100  
80-90  
70-80  
60-70  
50-60  
40-50  
30-40  
20-30  
10-20  
0-10  
30  
20  
10  
0
200  
180  
160  
140  
200  
180  
160  
140  
120  
100  
120  
100  
80  
60  
IOUT1 (mA)  
80  
40  
60  
IOUT1 (mA)  
20  
IOUT2 (mA)  
40  
1
20  
I
OUT2 (mA)  
1
Efficiency vs IOUT1@IOUT2 PWM mode, TA=25°C  
Efficiency vs IOUT1@IOUT2 PWM mode, TA=25°C  
100  
100  
VIN = 3.6V  
VIN = 2.7V  
IOUT2 = 0 mA  
IOUT2 = 0 mA  
90  
90  
IOUT2 = 200 mA  
IOUT2 = 200 mA  
80  
80  
IOUT2 = 400 mA  
IOUT2 = 400 mA  
VOUT1 = 1.8V  
VOUT1 = 1.8V  
70  
VOUT2 = 1.2V  
70  
VOUT2 = 1.2V  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
1
10  
100  
1000  
1
10  
100  
1000  
IOUT1 (mA)  
IOUT1 (mA)  
Efficiency vs IOUT2@IOUT1, PWM mode, TA=25°C  
Efficiency vs IOUT2@IOUT1, PWM mode, TA=25°C  
100  
VIN = 3.6V  
100  
VIN = 2.7V  
IOUT1 = 0 mA  
90  
IOUT1 = 0 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
IOUT1 = 100 mA  
IOUT1 = 100 mA  
IOUT1 = 200 mA  
70  
IOUT1 = 200 mA  
VOUT1 = 1.8V  
VOUT2 = 1.2V  
60  
50  
40  
30  
20  
10  
0
VOUT1 = 1.8V  
VOUT2 = 1.2V  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT2 (mA)  
IOUT2 (mA)  
15/30  
Electrical characteristics  
STw4141  
2.12  
Efficiency in AUTO  
The efficiency of a switching regulator is equal to the total output power divided by the input.  
STw4141 has high efficiency up to 92% (both outputs) and always higher than 70% for  
output currents higher than 1mA.  
Figure 10. Switching regulator efficiency in auto mode  
Efficiency VS output currents IOUT1 and IOUT2, VIN = 2.7V, AUTO mode  
Efficiency VS output currents IOUT1 and IOUT2, VIN = 3.6V, AUTO mode  
100  
100  
90  
80  
90  
80  
70  
60  
70  
60  
50  
Efficiency (%)  
50 Efficiency (%)  
40  
30  
20  
10  
0
90-100  
80-90  
70-80  
60-70  
50-60  
40-50  
30-40  
20-30  
10-20  
0-10  
40  
90-100  
80-90  
70-80  
60-70  
50-60  
40-50  
30-40  
20-30  
10-20  
0-10  
30  
20  
200  
10  
180  
160  
150  
0
120  
120  
90  
80  
60  
I
OUT1 (mA)  
IOUT1 (mA)  
40  
30  
IOUT2 (mA)  
IOUT2 (mA)  
1
1
Efficiency VS IOUT1@IOUT2, AUTO mode, TA = 25°C  
Efficiency VS IOUT1@IOUT2, AUTO mode, TA = 25°C  
100  
100  
VIN = 2.7V  
VIN = 3.6V  
IOUT2 = 0 mA  
IOUT2 = 0 mA  
90  
90  
IOUT2 = 200 mA  
IOUT2 = 200 mA  
80  
80  
IOUT2 = 400 mA  
IOUT2 = 400 mA  
VOUT1 = 1.8V  
70  
70  
VOUT2 = 1.2V  
VOUT1 = 1.8V  
VOUT2 = 1.2V  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
1
10  
100  
1000  
1
10  
100  
1000  
IOUT1 (mA)  
IOUT1 (mA)  
Efficiency VS IOUT2@IOUT1, AUTO mode, TA = 25°C  
Efficiency VS IOUT2@IOUT1, AUTO mode, TA = 25°C  
100  
100  
VIN = 2.7V  
VIN = 3.6V  
IOUT1 = 0 mA  
IOUT1 = 0 mA  
90  
90  
80  
80  
IOUT1 = 100 mA  
IOUT1 = 100 mA  
70  
70  
IOUT1 = 200 mA  
IOUT1 = 200 mA  
60  
60  
VOUT1 = 1.8V  
VOUT1 = 1.8V  
VOUT2 = 1.2V  
50  
50  
40  
30  
20  
10  
0
VOUT2 = 1.2V  
40  
30  
20  
10  
0
1
10  
100  
1000  
1
10  
100  
1000  
IOUT2 (mA)  
IOUT2 (mA)  
16/30  
STw4141  
Electrical characteristics  
2.13  
Output voltages versus output currents in PWM and PFM  
Figure 11. Output voltages versus output currents in PWM and PFM  
VOUT1 VS IOUT1 @ IOUT1 - PWM mode  
VOUT2 VS IOUT2 @ IOUT1 - PWM mode  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.170  
VIN = 3.6V  
VIN = 3.6V  
IOUT1 = 0 mA  
IOUT2 = 0 mA  
IOUT2 = 200 mA  
IOUT1 = 100 mA  
IOUT1 = 200 mA  
IOUT2 = 400 mA  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT1 (mA)  
IOUT2 (mA)  
VOUT1 VS IOUT1 @ IOUT2 - PFM mode  
VOUT2 VS IOUT2 @ IOUT1 - PFM mode  
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.170  
1.830  
1.820  
1.810  
1.800  
1.790  
1.780  
1.770  
VIN = 3.6V  
VIN = 3.6V  
IOUT1 = 0 mA  
IOUT2 = 0 mA  
IOUT2 = 20 mA  
IOUT2 = 40 mA  
IOUT1 = 10 mA  
IOUT1 = 20 mA  
1
10  
100  
1
10  
100  
IOUT2 (mA)  
IOUT1 (mA)  
17/30  
Functional description  
STw4141  
3
Functional description  
Introduction  
The STw4141 is an easy to use, single coil dual outputs step down DC/DC converter  
optimized to supply low-voltage to CPUs or DSPs in cell phones and other miniature devices  
powered by single cell lithium-ion or 3 cell NiMH/NiCd batteries. It provides two different  
output voltages with high efficiency operation in a wide range of output currents. The device  
offers high DC voltage regulation accuracy and load transient response to satisfy  
demanding processor core supply. The converter is based on voltage mode buck  
architecture using PWM and PFM operation modes.  
At light load currents, the device can operate in PFM mode to maintain high efficiency over  
the entire load current range. Switching between PWM and PFM modes can be done  
automatically or can be forced by external pins (AUTO and MODE/SYNC). Externally  
synchronized or fixed frequency (internal oscillator) PWM mode offers full output current  
capability while minimizing interference to sensitive RF and data acquisition circuits.  
PWM and PFM mode operation  
PWM (Pulse Width Modulation) mode is intended for normal load to high load currents.  
Energy is delivered to the load with an accurate and defined frequency of 900 kHz.  
PFM (Pulse Frequency Modulation) mode is intended for low load currents to maintain high  
efficiency conversion.  
Forced mode: When AUTO pin is LOW, the operating mode is selectable by the user itself.  
It means that system controls the behavior of the STw4141 according to processor needs.  
STw4141 is switched from PWM to PFM mode using MODE/SYNC pin (refer to Section 4.1).  
Automatic PWM / PFM switch: When AUTO pin is HIGH, the operating mode is directly  
controlled by internal digital circuit according to processor needs. The device switches from  
PWM to PFM by itself if sum of output currents is lower than approximately 100 mA during at  
least 16 clock cycles. The device can be forced to PWM mode connecting MODE/SYNC to  
HIGH level. (see Section 2.8 and Section 2.9).  
Current limiter  
This protection limits the current flowing through coil. As soon as ILIM is detected, the duty  
cycle is terminated and prevents the coil current against rising above peak current limit.  
There is no reset of device.  
Short circuit protection  
It protects the device against short-circuit at output terminals. When one or both output  
voltages are decreased by 0.7 V below their nominal output values the device enters into  
reset followed by soft start sequence.  
Thermal shutdown protection  
Thermal shutdown protects the device against damage due to overheating when maximum  
operating junction temperature is exceeded. The device is kept in reset until junction  
temperature decreases by 25°C approximately.  
18/30  
STw4141  
Application information  
4
Application information  
4.1  
User mode details  
The following table describes the different user modes available. Depending on the  
application constraints (processor I/O pins available) and expected efficiency, PWM or PFM  
mode are forced or automatically controlled by STw4141 internal digital gates.  
Table 6.  
Mode  
STw4141 available user modes  
User mode/pins  
EN  
AUTO  
MODE/SYNC  
OFF  
Shutdown  
L
H
H
X
L
L
X
L
Forced PFM  
Forced PWM  
H
FORCED  
Forced PWM and synchronized external  
clock  
H
L
CLK  
Auto mode  
H
H
H
H
L
Forced PWM  
H
AUTO  
Forced PWM and synchronized external  
clock  
H
H
CLK  
Table 7.  
Operating mode information (STATE pin - digital output)  
Operation mode  
State pin voltage level  
PFM  
VOUT1  
GND  
PWM  
19/30  
Application information  
STw4141  
4.2  
Automatic PWM/PFM mode  
This user mode is designed to allow STw4141 to switch automatically between PWM and  
PFM modes. This feature improves the application efficiency because STw4141 enters in  
PFM mode according to application processor current consumption.  
Figure 12. Automatic PWM/PFM switch schematic example  
L 4.7 µH  
VLX1  
VLX2  
VIN=2.7V to 5.5V  
PVDD  
VOUT1  
FB1  
A2  
A3  
B1  
A4  
D1  
APE I/O  
VDD  
EN  
CIN  
10 µF  
6.3 V  
COUT1  
22 µF  
6.3 V  
C1  
100 nF  
D3  
D4  
C2  
C3  
VOUT2  
AUTO  
STw4141  
B4  
APE CORE  
FB2  
COUT2  
22 µF  
6.3 V  
C2  
100 nF  
VSEL  
APPLICATION  
PROCESSOR  
D2  
B2  
MODE/SYNC  
STATE  
C1  
A1  
C4  
B3  
T_MODE  
PGND GND  
MODE_INFO  
SLEEP  
GND  
4.3  
User selected PWM/PFM mode  
STw4141 PWM/PFM mode can also be controlled by the application processor. This feature  
is accessible through MODE/SYNC pin state. It is useful to users who want to use STw4141  
with the modem digital processor. Therefore, MODE/SYNC pin is connected to SLEEP  
mobile phone signal.  
Figure 13. PWM/PFM forced mode schematic example  
L 4.7 µH  
VLX1  
VLX2  
VIN=2.7V to 5.5V  
PVDD  
VOUT1  
FB1  
A2  
A3  
B1  
A4  
D1  
APE I/O  
VDD  
EN  
CIN  
10 µF  
6.3 V  
COUT1  
22 µF  
6.3 V  
C1  
100 nF  
D3  
D4  
C2  
C3  
VOUT2  
AUTO  
STw4141  
B4  
APE CORE  
FB2  
COUT2  
22 µF  
6.3 V  
C2  
100 nF  
VSEL  
APPLICATION  
PROCESSOR  
D2  
B2  
MODE/SYNC  
STATE  
C1  
A1  
C4  
B3  
T_MODE  
PGND GND  
MODE_INFO  
PWR_EN  
SLEEP  
GND  
20/30  
STw4141  
Application information  
4.4  
External clock synchronization  
Figure 14. Application using external clock synchronization  
L
4.7 µH  
VLX1  
VLX2  
VIN=2.7V to 5.5V  
PVDD  
VOUT1  
FB1  
A2  
A3  
B1  
A4  
D1  
APE I/O  
VDD  
EN  
CIN  
10 µF  
6.3 V  
COUT1  
22 µF  
6.3 V  
C1  
100 nF  
D3  
D4  
C2  
C3  
VOUT2  
AUTO  
STw4141  
B4  
APE CORE  
FB2  
COUT2  
22 µF  
6.3 V  
C2  
100 nF  
VSEL  
APPLICATION  
PROCESSOR  
D2  
B2  
MODE/SYNC  
STATE  
C1  
A1  
C4  
B3  
T_MODE  
PGND GND  
MODE_INFO  
CLK  
SLEEP  
GND  
4.5  
Checking transient response versus external components  
The regulator loop response can be checked by looking at the load transient response.  
Switching regulators take several cycles to respond to a step in load current. When a load  
step occurs, VOUT is immediately shifted by an amount equal to ILOAD x ESR, where ESR is  
the equivalent series resistance of COUT. ILOAD also begins to charge or discharge COUT  
generating a feedback error signal used by the regulator to return VOUT to its steady-state  
value. In order to improve the transient response, it is better to use two 10 µF ceramic  
capacitors on each output to reduce ESR.  
4.6  
Bill of Material  
4.6.1  
Inductor selection  
The choice of which inductor to use depends on the price and size versus performance  
required with the STw4141 application. Table 7 shows some typical surface mount inductors  
that work well in STw4141 applications.  
Table 8.  
Bill of material: inductor selection  
Value  
Max DC  
current  
(mA)  
RDC  
()  
Size (mm)  
W x L x H  
Part number  
Supplier  
(µH)  
VFL4012A-4R7M1R1  
VFL3012A-4R7MR74  
744031004  
TDK  
TDK  
4.7  
4.7  
4.7  
0.14  
0.16  
1100  
740  
3.5 x 3.7 x 1.2  
2.6 x 2.8 x 1.2  
3.8 x 3.8 x 1.8  
WUERTH  
0.085  
900  
21/30  
Application information  
STw4141  
4.6.2  
Input capacitor (CIN selection)  
Input capacitor of 10 µF ceramic low ESR capacitor should be used to reduce switching  
losses. It should be placed as close as possible to supply pins VDD and PVDD. The  
connection traces should be wide and short to minimize impedance.  
4.6.3  
Output capacitors (COUT selection)  
The selection of COUT is driven by the required ESR to minimize voltage ripple and load  
step transients. There are two possibilities for output capacitors: either a 22 µF is connected  
to ground or two 10 µF ceramic are used to reduce ESR and switching losses. The capacitor  
should be placed as close as possible to VOUTx pins. The connection traces should be wide  
and short to minimize impedance.  
4.6.4  
Capacitors selection  
Table 9.  
Bill of Material: capacitor selection  
Component  
Supplier  
Part number  
Value  
Case size  
GRM188R60J106ME47D  
GRM21BR60J106ME15L  
10 µF, 6.3V  
10 µF, 6.3V  
0603  
0805  
MURATA  
CIN  
TAIYO YUDEN JMK212BJ106MG-T  
10 µF, 6.3V  
0805  
C1608X5R0J106MT  
10 µF, 6.3V  
0603  
TDK  
C2012X5R0J106MT  
10 µF, 6.3V  
0805  
GRM188R60J106ME47D  
2 x 10 µF, 6.3V  
2 x 10 µF, 6.3V  
22 µF, 6.3V  
2 x 0603  
2 x 0805  
0805  
MURATA  
GRM21BR60J106ME15L  
GRM21BR60J226ME15L  
JMK212BJ106MG-T  
JMK212BJ226MG-T  
C1608X5R0J106MT  
C2012X5R0J106MT  
C2012X5R0J226MT  
2 x 10 µF, 6.3V  
22 µF, 6.3V  
2 x 0805  
0805  
COUT1, COUT2 TAYIO YUDEN  
2 x 10 µF, 6.3V  
2 x 10 µF, 6.3V  
22 µF, 6.3V  
2 x 0603  
2 x 0805  
0805  
TDK  
22/30  
STw4141  
Application information  
4.7  
PCB layout considerations  
The Printed Circuit Board layout must include the following consideration:  
Current paths carrying high currents (bold lines in Figure 15) must be wide and short to  
minimize impedance in order to reduce looses and EMI.  
Small currents flow through voltage paths. No specific care is requested about voltage paths  
but it is recommended to follow the general rules for PCB routing to reduce influence of  
external and internal interferences.  
Figure 15. Board layout track length and width  
L 4.7 µH  
HIGH CURRENT PATH  
VLX1  
VLX2  
VIN=2.7V to 5.5V  
VOUT1=1.8V  
PVDD  
VDD  
VOUT1  
FB1  
A2  
A3  
B1  
A4  
CIN  
10 µF  
6.3 V  
COUT1  
22 µF  
6.3 V  
D1  
D3  
D4  
C2  
C3  
EN  
VOUT2=1.0V/1.2V  
AUTO  
VOUT2  
STw4141  
B4  
VSEL  
FB2  
COUT2  
22 µF  
6.3 V  
D2  
B2  
MODE/SYNC  
STATE  
C1  
A1  
C4  
B3  
T_MODE  
PGND GND  
23/30  
Application information  
STw4141  
4.7.1  
PCB layout  
Figure 16 and Figure 17 show the PCB layout. All components are on the top side of the  
board.  
Figure 16. Demoboard top layer  
Figure 17. Demoboard assembled with 22 µF  
output capacitor  
4.7.2  
TFBGA16 internal bumps access  
Pad centers are at 500 µm distance. Pad diameter is 275 µm. The distance between two  
adjacent pad edges is only 225 µm. We recommend a distance for lead-out signals from the  
center of pad matrix by 75 µm wide trace. Isolation distance in this case is 75 µm (see  
Figure 18 and Figure 19).  
Figure 18. TFBGA16 ball pad spacing and track parameters to internal pads  
Grid dot distance :  
with  
A = 500µm  
B = 275µm  
C = 75µm  
24/30  
STw4141  
Application information  
Figure 19. PCB routing example using TFBGA16  
25/30  
Package outline and mechanical data  
STw4141  
5
Package outline and mechanical data  
Table 10. TFBGA 3x3x1.20 16 F4x4 0.50. Package code: L0 - JEDEC/EAIJ  
Ref  
Min.  
Typ.  
Max.  
A
1.01  
0.15  
1.20 (Note 1)  
A1  
A2  
b
0.82  
0.30  
3.00  
1.50  
3.00  
1.50  
0.50  
0.25  
2.85  
0.35  
3.15  
D
D1  
E
2.85  
0.85  
3.15  
E1  
e
ddd  
eee  
fff  
0.08  
0.15  
0.05  
Note:  
1
2
Max mounted height is 1.12 mm. Based on a 0.28 mm ball pad diameter.  
Solder paste is 0.15 mm thickness and 0.28 mm diameter.  
TFBGA stands for Thin Profile Fine Pitch Ball Grid Array.  
Thin profile: The total profile height (DIm A) is measured from the seating plane to the top of  
the component.  
A = 1.01 to 1.20 mm  
Fine pitch < 1.00 mm pitch.  
3
4
The tolerance of position that controls the location of the pattern of balls with respect to  
datums A and B.  
For each ball there is a cylindral tolerance zone eee perpendicular to datum C and located  
on true position with respect to datums A and B as defined by e. The axis perpendicular to  
datum C of each ball must lie within this tolerance zone.  
The tolerance of position that controls the location of the balls within the matrix with respect  
to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C  
and located on true position as defined by e. The axis perpendicular to datum C of each ball  
must lie within the tolerance zone.  
Each tolerance zone fff in the array is contained entirely in the respective above eee zone  
above.  
The axis of each ball must be simultaneously in both tolerance zones.  
5
Leadfree package according to JEDEC JESD-020-C  
26/30  
STw4141  
Package outline and mechanical data  
Figure 20. TFBGA 3x3x1.20 16 F4x4 0.50  
27/30  
Ordering information  
STw4141  
6
Ordering information  
Table 11. STw4141 order codes  
Output voltage options(1)  
Package  
marking  
Part number  
Package  
Packing  
(2)  
VOUT1  
(I/O)  
VOUT2  
VOUT2reduced  
(CORE)  
(CORE)  
STw41411  
STw41411/T  
STw41412  
STw41412/T  
STw41413  
STw41413/T  
STw41414  
STw41414/T  
STw41415  
STw41415/T  
STw41416  
STw41416/T  
STw41417  
STw41417/T  
STA1  
STA1  
STA2  
STA2  
STA3  
STA3  
STA4  
STA4  
STA5  
STA5  
STA6  
STA6  
STA7  
STA7  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.5 V  
1.5 V  
1.2 V  
1.2 V  
1.3 V  
1.3 V  
1.4 V  
1.4 V  
1.5 V  
1.5 V  
1.25 V  
1.25 V  
1.35 V  
1.35 V  
1.3 V  
1.3 V  
1.0 V  
1.0 V  
1.0 V  
1.0 V  
1.2 V  
1.2 V  
1.3 V  
1.3 V  
1.0 V  
1.0 V  
1.0 V  
1.0 V  
1.0 V  
1.0 V  
Tray  
Tape and reel  
Tray  
Tape and reel  
Tray  
Tape and reel  
Tray  
TFBGA  
3x3x1.2  
16 balls  
Tape and reel  
Tray  
Tape and reel  
Tray  
Tape and reel  
Tray  
Tape and reel  
1. The output configuration which will be introduced in production will be only those related to customer design-in.  
2. VOUT1 VOUT2 THIS CONDITION MUST BE ALWAYS VALID.  
28/30  
STw4141  
Revision history  
7
Revision history  
Table 12. Document revision history  
Date  
Revision  
Changes  
24-Jan-2006  
1
Initial release.  
Updates in Table 8: Bill of material: inductor selection  
Updates in Table 9: Bill of Material: capacitor selection  
9-Jun-2006  
2
Moved Ordering information to the end of the document and updated  
the order codes..  
29/30  
STw4141  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
30/30  

相关型号:

STW4141_0606

Single-coil dual-output step-down DC/DC converter for digital base band and multimedia processor supply
STMICROELECTR

STW42N65M5

N-channel 650 V, 0.070 Ω, 33 A MDmesh™ V Power MOSFET in I2PAK, TO-220, TO-220FP, D2PAK and TO-247
STMICROELECTR

STW43NM50N

N-channel 500 V, 0.070 Ω, 37 A MDmesh™ II Power MOSFET TO-247
STMICROELECTR

STW43NM60N

N-channel 600 V, 0.075 Ω, 35 A MDmesh™ II Power MOSFET TO-247
STMICROELECTR

STW43NM60ND

N-channel 600 V, 0.075 Ω, 35 A TO-247 FDmesh™ Power MOSFET (with fast diode
STMICROELECTR

STW43NM60NDD

35A, 600V, 0.095ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247AC, ROHS COMPLIANT, TO-247, 3 PIN
STMICROELECTR

STW4410

2 Step down DC/DC converter/4 LDO/MMC interface power management
STMICROELECTR

STW4410/LF

2 Step down DC/DC converter/4 LDO/MMC interface power management
STMICROELECTR

STW4410T/LF

2 Step down DC/DC converter/4 LDO/MMC interface power management
STMICROELECTR

STW44NM60

TRANSISTOR | MOSFET | N-CHANNEL | 600V V(BR)DSS | 44A I(D) | TO-247AA
ETC

STW4510AE

7-CHANNEL POWER SUPPLY SUPPORT CKT, PBGA84, 6 X 6 MM, 1.20 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, TFBGA-84
STMICROELECTR

STW4510SAE

IC,MULTIPLE REGULATOR CIRCUIT,BGA,84PIN,PLASTIC
STMICROELECTR