STOTG04E [STMICROELECTRONICS]

USB-OTG Full-speed Transceiver; USB- OTG全速收发器
STOTG04E
型号: STOTG04E
厂家: ST    ST
描述:

USB-OTG Full-speed Transceiver
USB- OTG全速收发器

文件: 总26页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STOTG04E  
USB-OTG Full-speed Transceiver  
Feature summary  
Meets USB specification Rev. 2.0 And on-the-  
go supplement to the USB 2.0 specification  
Analog car kit-compatible  
Four operating modes: USB, I2C, UART and  
Audio  
QFN24 (4mmx4mm)  
Configurable using I2C serial interface  
Capable of 12Mbit/s full-speed and 1.5Mbit/s  
low-speed modes of operation  
Description  
Standard digital interface compliant with the  
OTG transceiver specification  
The STOTG04 is a USB On-The-Go full-speed  
transceiver. It provides complete physical layer  
(PHY) solution for any USB-OTG device. It  
contains VBUS charge pump and comparators, ID  
line detector and interrupt generator, and the USB  
differential driver and receivers. The STOTG04  
transceiver is suitable for mobile and battery  
powered devices because of its low power  
consumption and power-down operating mode.  
Supports the session request protocol (SRP)  
and host negotiation protocol (HNP)  
35mA typical VBUS charge pump output current  
for 3.3V supply voltage  
Ability to control external charge pump for  
higher VBUS currents  
Integrated pull-up/-down resistors  
The transceiver is capable of operation in several  
different modes. It can operate in basic USB-OTG  
mode, as an I2C and UART transceiver, or in  
audio mode. Behavior of the transceiver is fully  
configurable through the two-wire I2C serial bus.  
The transceiver supports session request protocol  
and host negotiation protocol.  
6kV ESD Protection on all USB pins (contact  
discharge)  
+1.6V to +3.6V Digital power supply and +2.7V  
to +5.5V analog supply voltage range  
Power-down mode with very low power  
consumption for battery powered devices  
The applications are mobile phones, PDAs, MP3  
players, printers and digital cameras.  
Applications  
Mobile phones  
PDAs  
MP3 players  
Digital cameras  
Printers  
Order code  
Part number  
Package  
QFN24 (4mm x 4mm)  
Packaging  
STOTG04EQTR  
October 2006  
4000 parts per reel  
Rev. 3  
1/26  
www.st.com  
26  
Contents  
STOTG04E  
Contents  
1
2
3
4
5
6
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Charge pump characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
BUS  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ID Line detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Driver and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.7.1 Power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.7.2 USB Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.7.3 UART and I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.7.4 Audio mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.8  
6.9  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
I C Bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.10 Device address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.11 Bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.12 External charge pump switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/26  
STOTG04E  
Pin configuration  
1
Pin configuration  
Figure 1. Pin connections (Bottom View )  
Table 1.  
PlN N°  
Pin description  
SYMBOL  
ADR_PSW  
SDA  
I/O  
I/O  
I/O  
NAME AND FUNCTION  
Least significant bit of the I2C address of the transceiver input latched on reset;  
PSW output enabling or disabling an external charge pump  
1
2
I2C serial data (1)  
I2C clock  
Active low logic reset  
Active low interrupt signal (open-drain)  
Mode of the transceiver (0 = low-speed, 1 = full-speed) (2)  
Internal voltage regulator output; an external decoupling capacitor should be  
connected (3)  
3
4
5
6
SCL  
RESET/  
INT/  
I
I
O
I
SPEED  
VTRM  
7
8
Power  
I
SUSPEND  
Power down input (0 = active mode, 1 = power down) (See Table 8)  
Output enable of the differential driver in the USB mode, I2C data enable in the  
I2C mode or interrupt output  
9
OE_TP_INT/  
I/O  
10  
11  
12  
VM  
VP  
RCV  
O
O
O
-
D– single-ended receiver output  
D+ single-ended receiver output  
Differential receiver output  
Not Connected  
ExpPad  
Single-ended zero input/output in the DAT_SE0 transmit mode, negative data  
input/output in the single-ended transmit mode or TXD in the UART mode  
Data input/output in the DAT_SE0 transmit mode, positive data input/output in  
the single-ended transmit mode or RXD in the UART mode  
Negative data line in the USB mode, I2C clock output in the I2C mode or serial  
data output in the UART mode  
13  
14  
15  
SE0_VM  
DAT_VP  
D-  
I/O  
I/O  
I/O  
Positive data line in the USB mode, I2C serial data in the I2C mode or serial data  
input in the UART mode  
16  
D+  
I/O  
17  
18  
19  
GND  
ID  
VBUS  
Power Common analog and digital ground  
I/O  
I/O  
ID pin of the USB connector used for protocol identification  
VBUS line of the USB interface – it needs an external capacitor of 4.7µF  
3/26  
Pin configuration  
STOTG04E  
PlN N°  
SYMBOL  
I/O  
NAME AND FUNCTION  
VBAT  
20  
21  
22  
23  
24  
Power Analog power supply voltage (+2.7V to +5.5V)  
CAP1  
CAP2  
CGND  
VIF  
I/O  
I/O  
External capacitor pin for the charge pump  
External capacitor pin for the charge pump  
Power Ground for the charge pump  
Power Logic power supply (+1.6V to 3.6V)  
(1) Input and open-drain output  
(2) Input with internal pull-up resistor  
(3) Internal regulator can be bypassed by connecting V  
to this pin when the V  
is in range of 2.7V to 3.6V  
BAT  
BAT  
Figure 2. Functional diagram  
4/26  
STOTG04E  
Maximum ratings  
2
Maximum ratings  
Table 2.  
Absolute maximum ratings  
Parameter  
Symbol  
VIF  
Value  
Unit  
Logic Supply Voltage  
-0.5 to + 4.5  
-0.5 to + 6.5  
-0.5 to + 4.5  
V
V
VBAT  
Analog Supply Voltage  
VDCDIG  
TSTG  
DC Input Voltage on any logic interface pin  
Storage Temperature Range  
V
-65 to + 150  
°C  
Human Body Model  
Contact Discharge (*)  
± ± 8  
± ± 6  
Electrostatic discharge voltage  
on USB pins  
VESD  
kV  
(*) In accordance to IEC61000-4-2, level 3.  
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional Operation under these con-  
ditions is not implied.  
Table 3.  
Thermal data  
Symbol  
Parameter  
Value  
Unit  
RthJA  
Thermal Resistance Junction-Ambient  
59  
°C/W  
Table 4.  
Symbol  
VIF  
Recommended operating condition  
Parameter  
Min.  
1.6  
2.7  
-40  
100  
1
Typ.  
Max.  
3.6  
Unit  
V
Logic Supply Voltage  
1.8  
3.3  
VBAT  
TA  
Analog Supply Voltage  
5.5  
V
Operating Temperature Range  
Charge pump external capacitor  
Charge pump tank capacitor  
Voltage regulator external capacitor  
Data lines impedance matching resistor  
+85  
470  
6.5  
°C  
nF  
µF  
µF  
CEXT  
CT  
220  
4.7  
1
CTRM  
RS  
20  
Table 5.  
Symbol  
ESD Performance  
Parameter  
Value  
Unit  
Air discharge (10 pulses)  
Contact discharge (10 pulses)  
Air discharge (10 pulses)  
± ± 8  
± ± 6  
± ± 2  
± ± 2  
IEC-61000-4-2 (D+, D-, VBUS, ID)  
ESD  
kV  
IEC-61000-4-2 (other pins)  
Contact discharge (10 pulses)  
5/26  
Electrical characteristics  
STOTG04E  
3
Electrical characteristics  
Table 6.  
Electrical characteristics  
Characteristics measured over recommended operating conditions unless otherwise is  
noted. All typical values are referred to TA = 25°C, VIF = 1.8V, VBAT = 3.3V, RS = 20,  
C
EXT = 220nF, CT = 4.7µF and CTRM = 1µF  
Symbol  
Parameter Test Conditions  
Min.  
Typ.  
Max. Unit  
Active mode (1,2)  
Power down mode  
Transceiver current while  
transmitting and receiving (1, 2)  
Charge pump current, ILOAD = 8mA  
0.6  
1.6  
1
mA  
µA  
IIF  
Digital Part Supply Current  
Operating Supply Current  
4.5  
17  
7
mA  
µA  
IBAT  
25  
1
Power down mode (4)  
LOGIC INPUTS AND OUTPUTS  
IOH = -100µA  
IOH = -2mA  
IOL = 100µA  
IOL = 2mA  
VIF-0.15  
VIF-0.40  
V
V
VOH  
VOL  
HIGH level output voltage  
LOW level output voltage  
0.15  
0.40  
V
V
VIH  
VIL  
0.7VIF  
HIGH level input voltage  
LOW level input voltage  
Input leakage current  
Off-state output current  
V
0.3VIF  
V
ILKG  
IOZ  
VBUS  
VBUS  
-1  
-5  
1
5
µA  
µA  
VBUS output voltage  
ILOAD = 8mA  
4.4  
4.9  
3
5.25  
200  
60  
V
VBUS_LKG VBUS leakage voltage  
VBUS_RIP VBUS output ripple  
No Load  
mV  
mV  
ILOAD = 8mA, CT = 4.7µF  
30  
Charge-pump switching  
fCP  
0.5  
40  
0.8  
1.5  
MHz  
frequency (2)  
RVBUS  
IVBUS  
VBUS input impedance  
Maximum VBUS source current CEXT = 220 nF, VBUS > 4.4V  
76  
35  
100  
kΩ  
mA  
20  
VBUS valid comparator  
threshold  
Session valid comparator  
threshold for both A and B  
devices  
Low to high transition  
High to low transition  
Low to high transition  
4.40  
4.40  
0.8  
VBUS_VLD  
V
2.0  
2.0  
VSES_VLD  
V
High to low transition  
0.8  
281  
656  
RVBUS_PU VBUS charge pull-up resistance  
640  
VBUS discharge pull-down  
RVBUS_PD  
1260  
resistance  
ID  
VID_BIAS  
RID_PU  
RID_GND  
RID_FLOAT  
RCP_ID = 140k, ± VBAT 5V  
ID pin bias voltage  
1.3  
70  
1.9  
3.0  
130  
10  
V
ID pin pull-up resistance  
105  
kΩ  
kΩ  
ID line short resistance to detect id_gnd state  
ID line short resistance to detect id_float state  
800  
6/26  
STOTG04E  
Electrical characteristics  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
DIFFERENTIAL DRIVER  
ZDRV  
Excluding external RS  
RLH = 14.25k, ± VTRM = 3.3V  
LH = 14.25k, ± VTRM = 2.7V  
RLL = 1.425kΩ  
CLOAD = 50 to 600pF  
Output Impedance  
8
16  
24  
3.6  
3.0  
0.3  
2.0  
V
V
V
V
2.8  
2.6  
0
VOH_DRV  
HIGH level output voltage  
R
VOL_DRV  
VCRS  
LOW level output voltage  
Driver crossover voltage  
1.3  
1.67  
DIFFERENTIAL AND SINGLE-ENDED RECEIVERS  
Differential receiver input  
sensitivity (VD+ - VD-)  
VDI  
VCM = 0.8 to 2.5V  
-200  
200  
mV  
V
Low to high transition  
High to low transition  
0.8  
0.8  
1.5  
1.6  
1.1  
2.0  
2.0  
SE receivers switching  
threshold  
VSE-TH  
RIN  
CIN  
Input resistance  
PU/PD resistor deactivated  
MΩ  
pF  
Input capacitance  
10  
30  
Bus Idle  
Receiving mode  
900  
1425  
1300 1575  
2200 3090  
Data line pull-up resistance on  
pin D+  
Data line pull-up resistance on  
pin D-  
RPU_D+  
RPU_D-  
900  
1300 1575  
RPD  
Data line pull-down resistance  
Data line leakage voltage  
14.25  
17.0  
200  
24.8  
342  
kΩ  
mV  
VDT_LKG  
RPU_EXT = 300kΩ  
CAR KIT INTERRUPT DETECTOR  
VCR_INT_TH  
Car kit Interrupt threshold  
I2C AND UART MODES – D+ AND D- PINS  
0.4  
0.6  
V
VOH  
VOL  
IOH= -2mA  
IOL = 2mA  
HIGH level output voltage (3)  
LOW level output voltage  
HIGH level input voltage  
LOW level input voltage  
2.4  
0
3.6  
0.4  
V
V
V
V
VIH  
2.0  
VIL  
0.8  
RDP_I2C  
SDA line internal pull-up resist.  
1425  
2200 3090  
VOLTAGE REGULATOR  
VBAT = 3.3 to 5V, no load; 2V7en=0  
VBAT = 2.8 to 5V, no load; 2V7en=1  
VBAT = 3.6V, VTRM > 3V; 2V7en=0  
3.0  
2.6  
3.3  
3.6  
2.9  
20  
V
V
VTRM  
ITRM  
Internal power supply voltage  
2.75  
mA  
mA  
Voltage regulator output  
current  
VBAT = 3.0V, VTRM >2.6V; 2V7en=1  
10  
(1) Transmitting and receiving at 12Mbit/s, loads of 50pF on D+ and D- pins, no capacitive loads on VP and VM pins  
(2) Not tested in production; characterization only  
(3) Except D+ pin in the I2C mode where this pin is open-drain with internal pull-up resistor  
(4) See paragraph 6.7.1  
7/26  
Electrical characteristics  
STOTG04E  
Table 7.  
Symbol  
Switching characteristics  
Over recommended operating conditions unless otherwise is noted. All the typical values are  
referred to TA = 25°C, VIF = 1.8V, VBAT = 3.3V, RS = 20, CEXT = 220nF, CT = 4.7µF, and  
CTRM = 1µF  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
TVBUS_RISE VBUS rise time  
ILOAD = 8mA, CT = 10µF  
1
100  
ms  
DIFFERENTIAL DRIVER  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
Full-speed mode, CLOAD = 50pF  
Low-speed mode, CLOAD = 600pF  
4
75  
4
8.5  
110  
8.5  
20  
300  
20  
tR  
tF  
Data signal rise time  
Data signal rise time  
ns  
ns  
ns  
ns  
ns  
ns  
75  
110  
300  
38  
Propagation delay of the driver,  
rising edge; DAT_SE0 mode  
280  
55  
tP_DRV_R  
Propagation delay of the driver,  
rising edge; VP_VM mode  
300  
38  
Propagation delay of the driver,  
falling edge; DAT_SE0 mode  
280  
55  
tP_DRV_F  
Propagation delay of the driver,  
rising edge; VP_VM mode  
300  
111.11  
Rise and fall time matching (tR/ Full-speed mode  
90  
80  
tRFM  
tF) excluding the first transition  
from the idle state  
%
Low-speed mode  
125  
SINGLE-ENDED RECEIVERS  
Full-speed mode, input slope 15ns  
Low-speed mode, input slope  
150ns  
Full-speed mode, input slope 15ns  
Low-speed mode, input slope  
150ns  
18  
18  
18  
18  
Propagation delay of the SE  
receiver, rising edge  
tP_SE_R  
ns  
ns  
Propagation delay of the SE  
receiver, falling edge  
tP_SE_F  
DIFFERENTIAL RECEIVER  
Propagation delay of the SE  
Full-speed mode, input slope 15ns  
Low-speed mode, input slope  
150ns  
Full-speed mode, input slope 15ns  
Low-speed mode, input slope  
150ns  
24  
24  
24  
24  
tP_DIF_R  
ns  
ns  
receiver, rising edge  
Propagation delay of the SE  
receiver, falling edge  
tP_DIF_F  
DIGITAL INTERFACE  
tSET_OE  
Output enable setup time  
50  
0
ns  
ns  
Output to input bus turnaround  
time (1, 2)  
Output to input bus turnaround  
time (1, 2)  
tTA_OI  
5
5
tTA_IO  
0
ns  
I2C BUS (3)  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
4.7  
4.0  
tHIGH  
µs  
Rise time of both SDA and SCL  
signals  
tIICR  
1000  
ns  
8/26  
STOTG04E  
Electrical characteristics  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max. Unit  
Fall time of both SDA and SCL  
signals  
Setup time for a repeated START  
condition  
Hold time for the START and  
repeated START conditions  
tIICF  
300  
ns  
µs  
µs  
tSU_STA  
4.7  
4.0  
tHD_STA  
tSU_DAT  
tHD_DAT  
tSU_STO  
Data setup time  
Data hold time  
250  
0
ns  
µs  
Setup time for the STOP  
condition  
Bus free time between a STOP  
and START condition  
4.0  
4.7  
µs  
µs  
tBUF  
NOTE 1: Parameter applies to the OE_TP_INT/, DAT_VP, and SE0_VM signals  
NOTE 2: Not tested in production; characterization only  
NOTE 3: Requirements defined by the I2C-Bus Specification, version 2.1  
9/26  
Charge pump characteristics  
STOTG04E  
4
Charge pump characteristics  
Figure 3.  
Output characteristics  
Figure 4.  
Output ripple  
10/26  
STOTG04E  
Timing diagrams  
5
Timing diagrams  
Figure 5. Rise and fall times  
Figure 6. Differential driver propagation delay  
Figure 7. Differential receiver propagation delay  
11/26  
Timing diagrams  
STOTG04E  
Figure 8. Output enable setup time  
tSET_OE  
VIH  
OE_TP_INT/  
VIL  
VIH  
DAT_VP  
SE0_VM  
USB Idle State  
Data to Transmit  
VIL  
Figure 9. Bus turnaround time  
tTA_OI  
VIH  
OE_TP_INT/  
tTA_IO  
VIL  
VIH  
DAT_VP  
SE0_VM  
output  
input  
output  
VIL  
Figure 10. I2C BUS timing  
tLOW  
tIIC_F  
tHIGH  
tIIC_R  
tHD_STA  
tSU_STO  
SCL  
SDA  
S
Sr  
P
S
tIIC_F  
tHD_STA  
tSU_DAT  
tHD_DAT  
tSU_STA  
tIIC_R  
tBUF  
12/26  
STOTG04E  
Timing diagrams  
Figure 11. Block diagram  
V B A T  
A D R _ P S W  
S C L  
C A P 1  
C A P 2  
V B U S  
C h a r g e  
P u m p  
S D A  
O s c illa to r  
V B A T  
S P E E D  
S U S P E N D  
B a n d g a p  
R e f e r e n c e  
V T R M  
O E _ T P _ IN T /  
D A T _ V P  
S E 0 _ V M  
D +  
D -  
R C V  
V P  
V B A T  
V T R M  
V o lt a g e  
R e g u la to r  
V M  
V B A T  
ID  
I N T /  
R E S E T /  
13/26  
Block description  
STOTG04E  
6
Block description  
The STOTG04 integrates a charge pump and comparators for the VBUS, ID line detector and interrupt  
switch, differential data driver, differential and single-ended receivers, low dropout voltage regulator and  
control logic. The STOTG04 provides a complete solution for connection of a digital USB OTG controller  
to the physical Universal Serial Bus.  
6.1  
Charge pump  
The VBUS line voltage is provided using the internal charge pump. It is capable of sourcing up to 35mA  
load current. The charge pump can be powered by voltage from 2.7V to 5.5V. It needs two capacitors for  
its operation: an external capacitor of 220nF connected between the CAP1 and CAP2 pins and a 4.7µF  
decoupling tank capacitor on the VBUS. If an application needs current that is higher than 35mA, an  
external charge pump or a switch controlled by the ADR_PSW pin may be used.  
6.2  
V
Comparators  
BUS  
These comparators monitor the VBUS voltage. They provide current status information for the VBUS line.  
VBUS valid status means that the voltage is above VBUS_VLD. Session valid status means that the VBUS  
voltage is above VSES_VLD level.  
6.3  
Voltage regulator  
An internal low-dropout voltage regulator provides power for the bus drivers and receivers. The regulator  
needs an external capacitor of 1µF on the VTRM pin for proper operation. The regulator can provide 3.3V  
or 2.75V output voltages according to 2V7_en bit in Control Register 3.  
The regulator can be bypassed by tying the VTRM pin to the VBAT power supply voltage when the analog  
supply voltage is in the range of 3.0V (or 2.7V) to 3.6V.  
6.4  
ID Line detector  
This block senses ID line status. It is capable of detecting three different line states:  
• pin floating;  
• pin tied to ground;  
• pin grounded via a 140kresistor.  
The ID detector can also generate an interrupt by shorting the pin to ground.  
6.5  
Driver and receivers  
The driver can operate in several different modes. It can act as a simple low-speed and full-speed  
differential USB driver, as two independent single-ended drivers in the UART mode, or as an open-drain  
driver in the I2C mode.  
This block contains one differential receiver for the USB operation mode and two single-ended receivers  
for USB signaling as well as UART and I2C receivers.  
14/26  
STOTG04E  
Block description  
6.6  
Control logic  
This block controls the behavior of whole chip. It communicates with the external environment via the I2C  
serial bus. The control logic block consists of I2C slave interface, configuration and status registers, and  
some glue logic.  
6.7  
Modes of operation  
The STOTG04 can operate in two different power modes and in three operating modes. They can be  
controlled by logic signals and control registers.  
6.7.1 Power modes  
When there is no need for the USB function, the STOTG04 reduces power consumption by implementing  
the Power-down mode. The power modes can be controlled by the Suspend Bit of Control Register 1 or/  
and the SUSPEND pin (see Table 8).  
Table 8.  
Power modes  
SUSPEND BIT  
SUSPEND PIN  
Power Mode  
0
X
1
X
0
1
normal operation  
power-down  
Although in power down mode all analog blocks should be switched off, some of them could be turned on  
by bits in the control registers having higher priority than suspend bit. In order to obtain minimum power  
consumption in power down mode the device must be configured has shown in Table 9. The digital part is  
fully static so that it almost does not consume power. All of the interrupts (except BDIS_ACON) are fully  
operational in Power-down mode, as is the I2C interface.  
Table 9.  
Power down mode setup  
SUSPEND BIT  
SUSPEND PIN  
Control register 1  
Control register 2  
Control register 3  
1
1
X1X0XX0-  
00XX00X0  
-XXXX0XX  
X = Don’t care  
- = Reserved  
Bit order: 0...7  
6.7.2 USB Modes  
The STOTG04 transceiver has two basic USB operational modes. These modes define how the digital IO  
pins of the transceiver will be used. Independently of USB operating mode, some signals always have the  
same function (see Table 10).  
Table 10. Digital interface signals  
Signal  
Function  
RCV  
VP  
VM  
Differential receiver output  
D+ single-ended receiver output  
D- single-ended receiver output  
OE_TP_INT/  
Output enable signal of the differential driver  
The RCV signal is active in the VP_VM mode only. Its output driver is controlled by the OE_TP_INT/  
signal. Operating modes are described below. The meanings of the DAT_VP and SE0_VM signals  
depend on the mode of operation. Both of these signals can be bidirectional or unidirectional. The  
15/26  
Block description  
STOTG04E  
direction is controlled by bidi_en Bit of Control Register 3 (described later). When these signals are  
bidirectional, the direction is controlled by the OE_TP_INT/ signal (see Tables 11 and 12).  
The actual mode of operation is controlled by the dat_se0 Bit of Control Register 1 (see Tables 11 and 12)  
Table 11. DAT_SE0 (dat_se0 = 1)  
bidi_en  
OE/*  
DAT_VP  
Differential driver input  
Differential receiver output  
Differential driver input  
SE0_VM  
SE0 driver input  
SE0 detector output  
SE0 driver input  
0
1
X
1
0
Table 12. VP_VM (dat_se0 = 0)  
bidi_en  
OE/*  
DAT_VP  
SE0_VM  
0
1
X
D+ driver input  
D+ receiver output  
D+ driver input  
D- driver input  
D- receiver output  
D- driver input  
1
0
* State of the OE_TP_INT/ signal.  
In the USB mode of operation it is necessary to control the rise and fall times of the transmission driver.  
These times are different for low-speed and full-speed USB settings. Selection of actual USB speed can  
be done using the bit speed of Control Register 1 or/and the SPEED pin (see table 13).  
Table 13. USB Speed selection  
speed bit  
SPEED Pin  
USB Mode  
low-speed  
full-speed  
0
X
1
X
0
1
2
6.7.3 UART and I C modes  
The actual mode of operation is selectable by the transp_en and uart_en Bits of Control Register 1 (see  
table 14).  
Table 14. Transceiver modes  
transp_en  
uart_en  
STOTG04 Mode  
0
0
1
1
0
1
0
1
USB  
UART  
I2C  
UART (1)  
(1) In reality, it is not possible to set both these bits at the same time. In this case, only uart_en bit will remain set.  
In the I2C mode the D+ and D- lines act respectively as I2C SDA and SCL signals when the OE_TP_INT/  
signal is low. The transceiver automatically enables the pull-up resistor on the SDA line in this mode. The  
internal I2C slave interface of the transceiver does not react to commands from the master.  
Communication addressed to the STOTG04 device is mirrored to the D+ pin and responses from this pin  
are mirrored back to the SDA pin. The D– pin mirrors the SCL clock.  
In the UART mode it is possible to select driver direction on both the D+ and D– pins. The selection is  
done using the bdir[1] and bdir[0] Bits of Control Register 3 (see table 15).  
16/26  
STOTG04E  
Block description  
Table 15. UART Drivers direction  
bdir[1]  
bdir[0]  
DAT_VP ±D+  
SE0_VM D-  
0
0
1
1
0
1
0
1
6.7.4 Audio mode  
In this mode the transceiver has to release all of its drivers and pull-up/pull-down resistors on the D+, D-  
and ID pins, leaving them in a high impedance state. This allows these lines to be used for transmission  
of audio signals. The transceiver should not provide voltage on its VBUS output in this mode. Conditions  
described in Table 16 force the transceiver into the audio mode.  
Table 16. Audio mode setup  
transp_en bit  
uart_en bit  
OE_TP_INT/ signal  
Control Register 2  
0
0
1
00000000  
6.8  
Registers  
The STOTG04 transceiver device is controlled using register settings (see Table 17). These registers can  
be set and read via the I2C bus.  
Table 17. Register set  
Acc (1)  
Addr (2)  
Register  
Size (bits)  
Description  
Vendor ID  
Product ID  
Control 1  
Control 2  
Control 3  
16  
16  
8
8
8
8
8
8
8
r
r
00h  
02h  
04h 05h  
06h 07h  
12h 13h  
08h  
STMicroelectronics ID (0483h) - LSB first  
ID of the STOTG04 (A0C4h) - LSB first  
First Control Register  
Second Control Register  
Third Control Register  
r/s/c  
r/s/c  
r/s/c  
r
r/s/c  
r/s/c  
r/s/c  
Interrupt Source  
Interrupt Latch  
Interrupt Mask False  
Interrupt Mask True  
Current state of signals generating interrupts  
0Ah 0Bh Latched source that generated interrupt  
0Ch 0Dh Enables interrupts on falling edge  
0Eh 0Fh Enables interrupts on rising edge  
(1) Access type can be: read (r), set (s), clear (c).  
(2) The first address is to set, the second one to clear bits.  
When writing to the set address, any “1” will set the associated Bit to logic “1”. When writing to the clear  
address, any “1” will set the associated Bit to logic “0”. It is possible to read from any address, whether it  
is a set or clear address. See Tables 18, 19, 20, 21 for bit setting details.  
17/26  
Block description  
STOTG04E  
Table 18. Control register 1  
R(1)  
Name  
Bit  
Description  
0 = low-speed mode  
1 = full-speed mode  
0 = normal operation  
1 = power-down mode  
0 = VP_VM mode  
Speed  
0
1
Suspend  
dat_se0  
1
2
1
0
1 = DAT_SE0 mode  
Enable transparent I2C mode  
Enable A-device to connect if B-device disconnect detected  
When set and suspend = 1, then OE_TP_INT/ becomes  
interrupt output  
Enable UART mode (higher priority than transp_en bit)  
Reserved  
transp_en  
3
4
0
0
bdis_acon_en  
oe_int_en  
uart_en  
5
0
0
6
7
(1) State of the bit after reset.  
Setting the bdis_acon_en bit enables automatic switching of the D+ pull-up resistor when the device  
receives an SE0 longer than half of the bit period. This function should not be used in low-speed  
operation.  
Table 19. Control register 2  
Name  
Bit  
R
Description  
dp_pull-up  
dm_pull-up  
dp_pull-down  
dm_pull-down  
id_gnd_drv  
vbus_drv  
0
1
2
3
4
5
0
0
1
1
0
0
Connect D+ pull-up  
Connect D- pull-up  
Connect D+ pull-down  
Connect D- pull-down  
Connect ID pin to ground  
Provide power to VBUS  
Discharge VBUS through a resistor to ground  
Charge VBUS through a resistor  
vbus_dischrg  
vbus_chrg  
6
7
0
0
It is not possible to set vbus_drv, vbus_dischrg and vbus_chrg at the same time; the bit having higher  
priority will remain set while the others will be cleared. Vbus_drv has higher priority than vbus_dischrg  
which has higher priority than vbus_chrg.  
Table 20. Control register 3  
Name  
Bit  
R
Description  
0
1
0
0
Reserved  
rec_bias_en  
bidi_en  
Enables transmitter bias even during USB receive  
When set, then DAT_VP and SE0_VM pins become bidirectional  
otherwise they are inputs only  
2
1
bdir[0]  
bdir[1]  
audio_en  
3
4
5
0
1
0
Direction of the drivers between DAT_VPDP and  
SE0_VMDM in the UART mode  
Enables car-kit interrupt detector  
Enables external charge pump control on the ADR_PSW pin.  
Disables internal charge pump.  
Enables 2.7V voltage regulation instead of 3.3V  
psw_en  
2V7_en  
6
7
0
0
18/26  
STOTG04E  
Block description  
Table 21. Interrupt registers (*)  
Name  
Bit  
R
Description  
A-device VBUS valid comparator  
vbus_vld  
sess_vld  
dp_hi  
id_gnd  
dm_hi  
0
1
2
3
4
5
0
0
0
0
0
0
Session valid comparator  
D+ pin is asserted high during SRP  
ID pin grounded  
D- pin is asserted high  
ID pin floating  
id_float  
Set when bdis_acon_en bit is set and transceiver asserts dp_pull-up after  
detecting B-device disconnect  
bdis_acon  
6
0
cr_int  
7
0
Car-kit interrupt  
(*) Bit order is the same for all four interrupt related registers. Meaning of each register is described in Table 17.  
2
6.9  
I C Bus interface  
All of the STOTG04 transceiver registers are accessible through the I2C bus (see Figure 12). The device  
contains a slave controller which provides communication with an external master. The I2C interface  
consists of three pins:  
• SDA (Serial Data);  
• SCL (Serial Clock);  
• ADR_PSW (is the LSB of the device address).  
6.10 Device address  
The USB-OTG transceiver has following 7-bit I2C device address:  
0
1
0
1
1
0
adr  
The adr bit represents current state of the ADR_PSW device pin. It means that the address can be either  
2Ch or 2Dh according to the ADR_PSW pin.  
6.11 Bus protocol  
Any device that sends data to the bus is defined as the transmitter. Any device that reads the data is the  
receiver. The device that controls data transfers is the bus master, while the transmitter or receiver is the  
slave device. The master initiates data transfers and provides the serial clock. The STOTG04 is always  
the slave device.  
Operation of the I2C bus is described by following figure 12.  
19/26  
Block description  
STOTG04E  
Figure 12. Basic operation of the I2C Bus  
Start condition is identified by a falling edge of the SDA signal while the SCL is stable at high level. The  
start condition must precede any data transfer on the bus.  
Stop condition is identified by a rising edge of the SDA signal while the SCL is stable at high level. The  
stop condition terminates any communication between device and master.  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter releases the SDA  
line after sending eight data bits. During the ninth clock period the receiver pulls the SDA line low to  
acknowledge the receipt of the eight data bits. If the receiver is a slave device and it does not generate  
acknowledge bit then the bus master can generate the stop condition in order to abort the transfer.  
Below is described format of I2C commands. All tables use common format and symbols. Every data  
word consists of eight bits with most significant bit first and least significant bit last.  
Symbols used in the tables are:  
• S – start condition  
• P – stop condition  
• A – acknowledge bit  
• N – negative acknowledge  
WRITE Command to the transceiver device is described by following table. It is possible to write into  
several consecutive registers during one write command.  
S
Device address  
A
0
A
Reg. address K  
Data (K+N)  
A
P
Data (K)  
Data (K+1)  
A
..  
A
READ command consists of dummy write to set proper address of a register followed by real read  
sequence.  
S
S
Device address  
Device address  
A
0
A
Reg. address K  
Data (K)  
Data (K+N)  
A
P
A
1
A
A
Data (K+1)  
Data (K+2)  
...  
N
P
20/26  
STOTG04E  
Block description  
6.12 External charge pump switch  
The ADR_PSW pin has two functions. State of this pin is always latched into a register on the rising edge  
of the RESET/ signal. The latched value is used as a least significant bit of the I2C address. After the  
address is latched, this pin can be set as an output by setting the PSW_EN bit of the Control Register 3.  
Output value of the pin can be controlled by the VBUS_DRV bit of the Control Register 2. The output is  
active low when the pin is high during reset; otherwise the output is active high.  
When the PSW_EN bit is set the internal charge pump is switched off.  
Example connection of an external charge pump is shown in following figure. When the charge pump  
control signal would be active high, the ADR_PSW pin should be pulled down instead of high.  
Figure 13. External charge pump application  
21/26  
Package mechanical data  
STOTG04E  
7
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.  
These packages have a Lead-free second level interconnect. The category of second Level  
Interconnect is marked on the package and on the inner box label, in compliance with JEDEC  
Standard JESD97. The maximum ratings related to soldering conditions are also marked on  
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:  
www.st.com.  
22/26  
STOTG04E  
Package mechanical data  
QFN24 (4x4) MECHANICAL DATA  
mm.  
mils  
DIM.  
MIN.  
TYP  
MAX.  
MIN.  
TYP.  
MAX.  
A
A1  
b
1.00  
39.4  
0.00  
0.18  
3.9  
0.05  
0.30  
4.1  
0.0  
7.1  
2.0  
11.8  
161.4  
88.6  
161.4  
88.6  
D
153.5  
76.8  
153.5  
76.8  
D2  
E
1.95  
3.9  
2.25  
4.1  
E2  
e
1.95  
2.25  
0.50  
19.7  
L
0.40  
0.60  
15.7  
23.6  
23/26  
Package mechanical data  
STOTG04E  
Tape & Reel QFNxx/DFNxx (4x4) MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
330  
MIN.  
MAX.  
12.992  
0.519  
A
C
12.8  
20.2  
99  
13.2  
0.504  
0.795  
3.898  
D
N
101  
3.976  
0.567  
T
14.4  
Ao  
Bo  
Ko  
Po  
P
4.35  
4.35  
1.1  
4
0.171  
0.171  
0.043  
0.157  
0.315  
8
24/26  
STOTG04E  
Revision history  
8
Revision history  
Table 22. Revision history  
Date  
Revision  
Changes  
13-Jan-2006  
01-Feb-2006  
1
2
First Release.  
Mistake on Table 1.  
Added details in paragraph 6.7.1, comments to table 19 and description in  
paragraph 6.12.  
17-Oct-2006  
3
25/26  
STOTG04E  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

STOTG04EQTR

USB-OTG Full-speed Transceiver
STMICROELECTR

STOTG04ES

USB-OTG Full-speed Transceiver
STMICROELECTR

STOTG04ESQTR

USB-OTG Full-speed Transceiver
STMICROELECTR

STP-0100-2115

Toroidal Power Transformer, 100VA, ROHS COMPLIANT
BEL

STP-0150-2115

Toroidal Power Transformer, 150VA, ROHS COMPLIANT
BEL

STP-0200-2115

Toroidal Power Transformer, 200VA, ROHS COMPLIANT
BEL

STP-0250-2115

Power in the Round 100 VA to 2000 VA
BEL

STP-0300-2115

Toroidal Power Transformer, 300VA, ROHS COMPLIANT
BEL

STP-0400-2115

Power in the Round 100 VA to 2000 VA
BEL

STP-0500-2115

Power in the Round 100 VA to 2000 VA
BEL

STP-0600-2115

Power in the Round 100 VA to 2000 VA
BEL

STP-0800-2115

Power in the Round 100 VA to 2000 VA
BEL