STM32F446ZE [STMICROELECTRONICS]

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 512kB Flash/1284KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces;
STM32F446ZE
型号: STM32F446ZE
厂家: ST    ST
描述:

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 512kB Flash/1284KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces

文件: 总202页 (文件大小:3058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F446xC/E  
ARM® Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 512kB Flash/128+4KB RAM,  
USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces  
Datasheet - production data  
Features  
&"'!  
®
®
Core: ARM 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Fl ash memory, frequency up to 180 MHz,  
MPU, 225 DMIPS/1.25 DMIPS/MHz  
(Dhrystone 2.1), and DSP instructions  
Memories  
LQFP64 (10 × 10mm)  
LQFP100 (14 × 14mm)  
LQFP144 (20 x 20 mm)  
UFBGA144 (7 x 7 mm)  
UFBGA144 (10 x 10 mm)  
WLCSP 81  
Up to 114 I/O ports with interrupt capability  
– Up to 111 fast I/Os up to 90 MHz  
– Up to 112 5 V-tolerant I/Os  
Up to 20 communication interfaces  
– SPDIF-Rx  
– 512 kB of Flash memory  
– 128 KB of SRAM  
– Flexible external memory controller with up  
to 16-bit data bus:  
2
– Up to 4 × I C interfaces (SMBus/PMBus)  
– Up to 4 USARTs/2 UARTs (11.25 Mbit/s,  
ISO7816 interface, LIN, IrDA, modem  
control)  
– Up to 4 SPIs (45 Mbits/s), 3 with muxed I S  
for audio class accuracy via internal audio  
PLL or external clock  
SRAM,PSRAM,SDRAM/LPSDR SDRAM,  
Flash NOR/NAND memories  
2
– Dual mode Quad SPI interface  
LCD parallel interface, 8080/6800 modes  
Clock, reset and supply management  
– 1.7 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– 2 x SAI (serial audio interface)  
– 2 × CAN (2.0B Active)  
– 4-to-26 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC (1%  
accuracy)  
– SDIO interface  
– Consumer electronics control (CEC) I/F  
Advanced connectivity  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
Low power  
– USB 2.0 full-speed device/host/OTG  
controller with on-chip PHY  
– USB 2.0 high-speed/full-speed  
device/host/OTG controller with dedicated  
DMA, on-chip full-speed PHY and ULPI  
– Dedicated USB power rail enabling on-chip  
PHYs operation throughout the entire MCU  
power supply range  
– Sleep, Stop and Standby modes  
– V  
supply for RTC, 20×32 bit backup  
BAT  
registers + optional 4 KB backup SRAM  
3×12-bit, 2.4 MSPS ADC: up to 24 channels  
and 7.2 MSPS in triple interleaved mode  
2×12-bit D/A converters  
General-purpose DMA: 16-stream DMA  
controller with FIFOs and burst support  
Up to 17 timers: 2x watchdog, 1x SysTick timer  
and up to twelve 16-bit and two 32-bit timers up  
to 180 MHz, each with up to 4 IC/OC/PWM or  
pulse counter  
8- to 14-bit parallel camera interface up to  
54 Mbytes/s  
CRC calculation unit  
RTC: subsecond accuracy, hardware calendar  
96-bit unique ID  
Table 1. Device summary  
Debug mode  
Reference  
Part number  
– SWD & JTAG interfaces  
– Cortex -M4 Trace Macrocell™  
STM32F446MC, STM32F446ME,  
STM32F446RC, STM32F446RE,  
STM32F446VC, STM32F446VE,  
STM32F446ZC, STM32F446ZE.  
®
STM32F446xC/E  
September 2016  
DocID027107 Rev 6  
1/202  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F446xC/E  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
Compatibility with STM32F4 family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 17  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.10 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.11 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 21  
3.12 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.15 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.16 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.17 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.17.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.17.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 27  
3.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 28  
3.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.20  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/202  
DocID027107 Rev 6  
STM32F446xC/E  
Contents  
3.21.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.21.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.21.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.21.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.21.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.21.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.23 Universal synchronous/asynchronous receiver transmitters (USART) . . 34  
3.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.25 HDMI (high-definition multimedia interface) consumer  
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.27 SPDIF-RX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.28 Serial Audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.29 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.30 Serial Audio Interface PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 36  
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 37  
3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37  
3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.36 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.37 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.39 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.40 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.41 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4
5
6
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.1.1  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DocID027107 Rev 6  
3/202  
5
Contents  
STM32F446xC/E  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Operating conditions at power-up / power-down (regulator ON) . . . . . . 79  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 79  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 80  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110  
6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 116  
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
6.3.23  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
BAT  
6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 172  
6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 173  
6.3.29 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
4/202  
DocID027107 Rev 6  
STM32F446xC/E  
Contents  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
LQFP144 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
UFBGA144 7 x 7 mm package information . . . . . . . . . . . . . . . . . . . . . . 186  
UFBGA144 10 x 10 mm package information . . . . . . . . . . . . . . . . . . . . 189  
WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
A.1  
A.2  
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 197  
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 199  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
DocID027107 Rev 6  
5/202  
5
List of figures  
STM32F446xC/E  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Compatible board for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
STM32F446xC/E block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
STM32F446xC/E and Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 23  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CAP_1 CAP_2  
Figure 9.  
Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization. . . . . . . . . . . . . . . . . . . . . . . . 27  
CAP_1 CAP_2  
Figure 10. STM32F446xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 11. STM32F446xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 12. STM32F446xC LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 13. STM32F446xC/xE WLCSP81 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 14. STM32F446xC/xE UFBGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 15. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 18. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 20. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
EXT  
Figure 21. Typical V  
current consumption  
BAT  
(RTC ON/backup RAM OFF and LSE in low power mode) . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 22. Typical V current consumption  
BAT  
(RTC ON/backup RAM OFF and LSE in high drive mode). . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 23. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 24. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 25. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 26. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 27. LACC  
versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
HSI  
Figure 28. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LSI  
Figure 29. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 30. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 31. FT I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 32. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 33. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
2
Figure 34. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
2
Figure 35. FMPI C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 36. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 37. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 38. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
2
(1)  
Figure 39. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
2
(1)  
Figure 40. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 41. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 42. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 43. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 138  
Figure 44. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
6/202  
DocID027107 Rev 6  
STM32F446xC/E  
List of figures  
Figure 45. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Figure 46. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 47. Power supply and reference decoupling (V  
Figure 48. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 146  
). . . . . . . . . . . . . . . . 147  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 49. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 153  
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 155  
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 54. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 55. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 57. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 58. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 59. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 60. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 168  
Figure 61. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 168  
Figure 62. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 63. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 64. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 65. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 66. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 176  
Figure 68. LQFP64 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 69. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 179  
Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 72. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 182  
Figure 74. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 75. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 78. UQFP144 7 x 7 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . 188  
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Figure 81. UQFP144 10 x 10 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . 191  
Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Figure 84. WLCSP81 10 x 10 mm marking example (package top view) . . . . . . . . . . . . . . . . . . . . . 194  
Figure 85. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 197  
Figure 86. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 197  
Figure 87. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 198  
Figure 88. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
DocID027107 Rev 6  
7/202  
7
List of tables  
STM32F446xC/E  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F446xC/E features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 25  
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Voltage regulator modes in stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
STM32F446xx pin and ball descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
STM32F446xC/E register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 78  
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Operating conditions at power-up/power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . . 79  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 79  
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled except prefetch) or RAM. . . . . . . 83  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled with prefetch) or RAM . . . . . . . . . 84  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 86  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 89  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 90  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 91  
BAT  
Typical current consumption in Run mode, code with data processing  
running from Flash memory or RAM, regulator ON  
(ART accelerator enabled except prefetch), VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Typical current consumption in Run mode, code with data processing running  
Table 31.  
from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . . 94  
Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . . 95  
Typical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 96  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
8/202  
DocID027107 Rev 6  
STM32F446xC/E  
List of tables  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Flash memory programming with V  
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
2
FMPI C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
QSPI dynamic characteristics in SDR Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
QSPI dynamic characteristics in DDR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
ADC static accuracy at f  
ADC static accuracy at f  
ADC static accuracy at f  
= 18 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
= 30 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
= 36 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
BAT  
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
Table 87.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 155  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
Table 88.  
Table 89.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 157  
Table 90.  
Table 91.  
DocID027107 Rev 6  
9/202  
10  
List of tables  
STM32F446xC/E  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 100. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 101. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 102. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 103. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 104. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 105. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 106. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 175  
Table 107. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 176  
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 183  
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 187  
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 190  
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193  
Table 117. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 118. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 119. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
10/202  
DocID027107 Rev 6  
STM32F446xC/E  
Introduction  
1
Introduction  
This document provides the description of the STM32F446xC/E products.  
The STM32F446xC/E document should be read in conjunction with the STM32F4xx  
reference manual.  
®
®
For information on the Cortex -M4 core, please refer to the Cortex -M4 programming  
manual (PM0214), available from the www.st.com.  
DocID027107 Rev 6  
11/202  
40  
 
 
Description  
STM32F446xC/E  
2
Description  
®
®
The STM32F446xC/E devices are based on the high-performance ARM Cortex -M4 32-bit  
RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a  
®
Floating point unit (FPU) single precision which supports all ARM single-precision data-  
processing instructions and data types. It also implements a full set of DSP instructions and  
a memory protection unit (MPU) which enhances application security.  
The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory  
up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an  
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB  
buses and a 32-bit multi-AHB bus matrix.  
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose  
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.  
They also feature standard and advanced communication interfaces.  
2
Up to four I Cs;  
2
2
Four SPIs, three I Ss full simplex. To achieve audio class accuracy, the I S peripherals  
can be clocked via a dedicated internal audio PLL or via an external clock to allow  
synchronization;  
Four USARTs plus two UARTs;  
An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with  
the ULPI), both with dedicated power rails allowing to use them throughout the entire  
power range;  
Two CANs;  
Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be  
clocked via a dedicated internal audio PLL;  
An SDIO/MMC interface;  
Camera interface;  
HDMI-CEC;  
SPDIF Receiver (SPDIFRx);  
QuadSPI.  
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a  
camera interface for CMOS sensors. Refer to Table 2: STM32F446xC/E features and  
peripheral counts for the list of peripherals available on each part number.  
The STM32F446xC/E devices operates in the –40 to +105 °C temperature range from a 1.7  
to 3.6 V power supply.  
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor  
(refer to Section 3.16.2: Internal reset OFF). A comprehensive set of power-saving mode  
allows the design of low-power applications.  
The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins.  
The set of included peripherals changes with the device chosen.  
12/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Description  
These features make the STM32F446xC/E microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Table 2. STM32F446xC/E features and peripheral counts  
STM32F44 STM32F44 STM32F44 STM32F44 STM32F44 STM32F44 STM32F44 STM32F44  
Peripherals  
6MC  
6ME  
6RC  
6RE  
6VC  
6VE  
6ZC  
6ZE  
Flash memory in Kbytes  
256  
512  
256  
512  
256  
512  
256  
512  
System  
128 (112+16)  
SRAM in  
Kbytes  
Backup  
4
(1)  
FMC memory controller  
No  
Yes  
General-  
purpose  
10  
2
Timers  
Advanced-  
control  
Basic  
2
4/3 (simplex)  
4/1 FMP +  
4/2  
2
(2)  
SPI / I S  
2
I C  
USART/UART  
USB OTG FS  
USB OTG HS  
CAN  
Yes (6-Endpoints)  
Yes (8-Endpoints)  
Communication  
interfaces  
2
2
SAI  
SDIO  
Yes  
1
SPDIF-Rx  
HDMI-CEC  
1
(3)  
Quad SPI  
1
Camera interface  
GPIOs  
Yes  
63  
14  
50  
16  
81  
16  
114  
24  
3
12-bit ADC  
Number of channels  
12-bit DAC  
Number of channels  
Yes  
2
Maximum CPU frequency  
Operating voltage  
180 MHz  
(4)  
1.8 to 3.6 V  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
Operating temperatures  
Packages  
LQFP144  
UFBGA144  
WLCSP81  
LQFP64  
LQFP100  
DocID027107 Rev 6  
13/202  
40  
 
 
Description  
STM32F446xC/E  
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the  
NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used  
since Port G is not available in this package.  
2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.  
3. For the LQFP64 package, the Quad SPI is available with limited features.  
4.  
V
/V  
minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external  
DD DDA  
power supply supervisor (refer to Section 3.16.2: Internal reset OFF).  
2.1  
Compatibility with STM32F4 family  
The STM32F446xC/xV is software and feature compatible with the STM32F4 family.  
The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products  
but some slight changes have to be done on the PCB board.  
Figure 1. Compatible board design for LQFP100 package  
670ꢀꢇ)ꢂꢂꢃ[[  
670ꢀꢇ)ꢂꢉꢅꢋ670ꢀꢇ)ꢂꢄꢅꢈOLQH  
ꢅꢁ  
ꢅꢆ  
ꢅꢃ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢇ  
ꢅꢄ  
3'ꢄꢄꢈꢈ  
3'ꢄꢉꢈꢈ  
3'ꢊꢈꢈ  
670ꢀꢇ)ꢂꢉꢆꢋ670ꢀꢇ)ꢂꢄꢆꢈOLQH  
670ꢀꢇ)ꢂꢇꢆꢋ670ꢀꢇ)ꢂꢀꢆꢈOLQH  
670ꢀꢇ)ꢂꢇꢊꢋ670ꢀꢇ)ꢂꢀꢊꢈOLQH  
ꢅꢁ  
ꢅꢆ  
ꢅꢃ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢇ  
ꢅꢄ  
3'ꢄꢄꢈꢈ  
3'ꢄꢉꢈꢈ  
3'ꢊꢈꢈ  
3%ꢄꢄꢈQRWꢈDYDLODEOHꢈDQ\PRUH  
5HSODFHGꢈE\ꢈ9&$3ꢄ  
3'ꢁꢈꢈ  
3'ꢁꢈꢈ  
3%ꢄꢅꢈꢈ  
3%ꢄꢂꢈꢈ  
3%ꢄꢀ   
3%ꢄꢇꢈꢈ  
3%ꢄꢅꢈꢈ  
3%ꢄꢂꢈꢈ  
3%ꢄꢀ   
3%ꢄꢇꢈꢈ  
966 9''  
966 9''  
06ꢀꢀꢁꢂꢃ9ꢄ  
14/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Description  
Figure 2. Compatible board for LQFP64 package  
670ꢀꢇ)ꢂꢉꢅꢋ670ꢀꢇ)ꢂꢄꢅꢈOLQH  
670ꢀꢇ)ꢂꢂꢃ[[  
ꢅꢀ ꢅꢇ ꢅꢄ ꢅꢉ ꢂꢊ  
ꢂꢁ  
ꢅꢀ ꢅꢇ ꢅꢄ ꢅꢉ ꢂꢊ  
9''  
9&$3ꢇ  
9''  
9''  
ꢂꢁ  
ꢂꢆ  
ꢈꢂꢃ  
ꢈꢂꢅ  
ꢈꢂꢂ  
ꢈꢂꢀ  
ꢂꢇ  
ꢂꢄ  
ꢂꢉ  
ꢀꢊ  
ꢀꢁ  
ꢀꢆ  
ꢀꢃ  
ꢀꢅ  
ꢀꢂ  
ꢀꢀ  
9''  
ꢂꢆ  
966  
3$ꢄꢀ  
3$ꢄꢇ  
3$ꢄꢄ  
3$ꢄꢉ  
3$ꢊ  
3$ꢁ  
3&ꢊ  
3&ꢁ  
3&ꢆ  
ꢈꢂꢃ 3$ꢄꢀ  
ꢈꢂꢅ 3$ꢄꢇ  
ꢈꢂꢂ 3$ꢄꢄ  
ꢈꢂꢀ 3$ꢄꢉ  
ꢂꢇ 3$ꢊ  
ꢂꢄ 3$ꢁ  
ꢂꢉ 3&ꢊ  
ꢀꢊ 3&ꢁ  
ꢀꢁ 3&ꢆ  
ꢀꢆ 3&ꢃ  
966  
966  
3&ꢃ  
ꢀꢃ  
ꢀꢅ  
ꢀꢂ  
ꢀꢀ  
3%ꢄꢅ  
3%ꢄꢂ  
3%ꢄꢀ  
3%ꢄꢇ  
3%ꢄꢄꢈQRWꢈDYDLODEOHꢈDQ\PRUHꢈ  
5HSODFHGꢈE\ꢈ9&$3ꢄ  
3%ꢄꢅ  
3%ꢄꢂ  
3%ꢄꢀ  
3%ꢄꢇ  
ꢇꢁ ꢇꢊ ꢀꢉ ꢀꢄ ꢀꢇ  
ꢇꢁ ꢇꢊ ꢀꢉ ꢀꢄ ꢀꢇ  
9&ꢈꢈ$ꢈꢈ3ꢈꢈꢈLQFUHDVHGꢈWRꢈꢂꢌꢆꢈ—I  
(65ꢈꢄꢈŸꢈRUꢈEHORZꢈꢄꢈ  
9''  
966  
966  
9''  
06ꢀꢀꢁꢂꢅ9ꢇ  
Figure 3 shows the STM32F446xx block diagram.  
DocID027107 Rev 6  
15/202  
40  
 
$+%ꢇ  
                                                                                                      
ꢄꢁꢉ0+]  
                                                                                                      
$+%ꢄꢈꢄꢁꢉ0+]  
                                                                                                  
9''  ꢃꢂꢅꢀWRꢀꢊꢂꢆ9  
966  
9&$3  
*3,2ꢀ3257ꢀ%
*3,2ꢀ3257ꢀ&  
7,0(5ꢀꢃ  
ꢀꢄꢀ3:0
ꢀꢄꢀ3:0
7,0(5ꢀꢅ  
7,0(5ꢀꢑ  
8  
6$57ꢀꢃ  
6$57ꢀꢆ  
63  
,ꢃꢄ,ꢁ6
63,ꢀꢈ
6$,ꢀꢁ  
                                                               
Description  
STM32F446xC/E  
Figure 3. STM32F446xC/E block diagram  
-7567ꢈ-7',ꢐ  
&/.ꢐꢈ1(>ꢀꢎꢉ@ꢐꢈ$>ꢇꢀꢎꢉ@ꢐꢈ'>ꢀꢄꢎꢉ@  
12(1ꢐꢈ1:(1ꢐꢈ1%/>ꢄꢎꢉ@  
6'&/.(>ꢄꢎꢉ@ꢐꢈ6'1(>ꢄꢎꢉ@  
15$6ꢐꢈ1&$6ꢐꢈ1$'9  
1:$,7ꢐꢈ,171  
-7&.ꢋ6:&/.  
-7$*ꢈꢑꢈ6:  
(70  
038 )38  
19,&  
ꢍ)0&ꢎ  
(;7ꢀ0(0ꢀ&7/ꢀꢀ  
-7'2ꢋ6:'ꢐꢈ-7'2  
65$0ꢐ365$0ꢐ125ꢒ)/$6+  
1$1'ꢒ)/$6+ꢐꢈ6'5$0  
75$&(&.  
75$&('ꢍꢀꢎꢉꢏ  
$50  
&257(;ꢀ0ꢈ  
ꢃꢅꢇ0+]ꢀꢀ  
,ꢒ%86  
&/.ꢐꢈ&6Dꢐꢈ&6Eꢐꢈꢈ'>ꢆꢎꢉ@  
4XDG63,  
'ꢒ%86  
6ꢒ%86  
)/$6+ꢀꢉꢃꢁN%ꢀꢀ  
9''86%ꢈ ꢈꢀꢌꢀꢈ72ꢈꢀꢌꢃꢈ9  
'ꢓꢐꢈ'ꢒ  
8/3,ꢈꢎꢈ&/.ꢐꢈ'ꢍꢆꢎꢉꢏꢐ  
ꢈ',5ꢐꢈ673ꢈ1;7  
,'ꢐꢈ9%86  
&$0(5$  
,7)  
+6<1&ꢐꢈ96<1&  
3,;&.ꢐꢈ'ꢍꢄꢀꢎꢉꢏ  
86%  
'0$ꢄ  
),)2  
65$0ꢃꢀꢃꢃꢁ.%  
65$0ꢁꢀꢃꢆ.%  
27*ꢀ+6  
9''86%ꢈ ꢈꢀꢌꢀꢈ72ꢈꢀꢌꢃꢈ9  
'ꢓꢐꢈ'ꢒ  
,'ꢐꢈ9%86  
86%  
ꢅꢀ6WUHDPV  
),)2  
ꢅꢀ6WUHDPV  
),)2  
*3ꢌ'0$ꢁ  
*3ꢌ'0$ꢃ  
27*ꢀ)6  
325  
5HVHW  
,QW  
6833/<ꢀ  
683(59,6,21  
325ꢄ3'5ꢄ  
9
''$ ꢐꢈ966$  
%25  
15(6(7  
39'  
#9''$  
#9''$  
5&ꢀ+6  
5&ꢀ/6  
3$ꢍꢄꢅꢎꢉꢏ  
3%ꢍꢄꢅꢎꢉꢏ  
*3,2ꢀ3257ꢀ$  
32:(5ꢀ01*7  
92/7ꢂꢀ5(*ꢂ  
3//ꢃꢐ3//ꢁꢐ3//ꢊ  
ꢊꢂꢊ9ꢀ72ꢀꢃꢂꢁ9  
5(6(7ꢏ  
&/2&.  
&75/ꢀꢀ  
3&ꢍꢄꢅꢎꢉꢏ  
3'ꢍꢄꢅꢎꢉꢏ  
#9''  
;7$/ꢀ26&ꢀꢀ  
ꢈꢌꢃꢆ0+]  
26&,1  
26&287  
*3,2ꢀ3257ꢀ'  
3(ꢍꢄꢅꢎꢉꢏ  
3)ꢍꢄꢅꢎꢉꢏ  
*3,2ꢀ3257ꢀ(  
:'*ꢊꢁ.ꢀꢀ  
6WDQGE\ꢀLQWHUIDFH  
#9%$7  
*3,2ꢀ3257ꢀ)  
9%$7  ꢃꢂꢅꢀWRꢀꢊꢂꢆ9  
3*ꢍꢄꢅꢎꢉꢏ  
3+ꢍꢉꢏ  
*3,2ꢀ3257ꢀ*  
26&ꢀꢇB,1  
;7$/ꢀꢊꢁN+]  
26&ꢀꢇB287  
*3,2ꢀ3257ꢀ+  
57&  
$:8  
%.3ꢈ5(*  
$/$50B287  
&5&  
67$03ꢄ  
67$03ꢇ  
ꢈ.%ꢀ%.35$0  
ꢀꢇE  
ꢂꢈ&+ꢐꢈ(75ꢈDVꢈ$)  
ꢂꢈ&+ꢐꢈ(75ꢈDVꢈ$)  
ꢂꢈ&+ꢐꢈ(75ꢈDVꢈ$)  
ꢂꢈ&+ D Vꢈ$)  
7,0(5ꢁ  
ꢄꢃE  
7,0(5ꢊ  
ꢄꢃE  
ꢄꢄꢂꢈ$)  
*3'0$ꢇ  
*3'0$ꢄ  
(;7ꢀ,7ꢀ:.83  
7,0(5ꢈ  
'ꢍꢆꢎꢉꢏ  
ꢀꢇE  
7,0(5ꢉ  
&0'ꢐꢈ&.ꢈDVꢈ$)  
6',2ꢀꢄꢀ00&  
$+%ꢋ$3%ꢄ  
$+%ꢋ$3%ꢇ  
ꢄꢃE  
ꢂꢈ3:0ꢐꢈꢂꢈ3:0ꢐ  
(75ꢐꢈ%.,1ꢈDVꢈ$)  
ꢄꢃE  
ꢇꢈ&+ꢈDVꢈ$)  
7,0(5ꢃꢁ  
ꢄꢃE  
ꢄꢈ&+ꢈDVꢈ$)  
7,0(5ꢃꢊ  
ꢄꢃE  
ꢄꢃE  
ꢂꢈ3:0ꢐꢈꢂꢈ3:0ꢐ  
(75ꢐꢈ%.,1ꢈDVꢈ$)  
ꢄꢃE  
ꢄꢈ&+ꢈDVꢈ$)  
7,0(5ꢃꢈ  
ꢇꢈ&+ꢈDVꢈ$)  
VPFDUG  
5;ꢐꢈ7;ꢐꢈ6&.ꢐꢈꢈ  
86$57ꢁ  
86$57ꢊ  
8$57ꢈ  
ꢄꢈ&+ꢈDVꢈ$)  
ꢄꢃE  
LU'$  
VPFDUG  
LU'$  
&76ꢐꢈ576ꢈDVꢈ$)  
7,0(5ꢃꢇ  
5;ꢐꢈ7;ꢐꢈ6&.  
&76ꢐꢈ576ꢈDVꢈ$)  
ꢄꢃE  
ꢄꢈ&+ꢈDVꢈ$)  
7,0(5ꢃꢃ  
:LQ:$7&+'2*  
5;ꢐꢈ7;ꢈDVꢈ$)  
5;ꢐꢈ7;ꢐꢈ6&.ꢐ  
&76ꢐꢈ576ꢈDVꢈ$)  
VPFDUG  
LU'$  
5;ꢐꢈ7;ꢈDVꢈ$)  
8$57ꢉ  
63',)  
5;ꢐꢈ7;ꢐꢈ6&.ꢐ  
&76ꢐꢈ576ꢈDVꢈ$)  
VPFDUG  
8  
LU'$  
63',)B5;>ꢀꢎꢉ@ꢈDVꢈ$)  
026,ꢐꢈ0,62  
6&.ꢐꢈ166ꢈDVꢈ$)  
+'0,B&(&ꢈD Vꢈ$)  
+'0,ꢌ&(&  
63,ꢁꢄ,ꢁ6  
026,ꢐꢈ0,62  
026,ꢐꢈ0,62ꢐꢈ6&.  
166ꢋ:6ꢐꢈ0&.ꢈDVꢈ$)  
ꢄꢃE  
ꢄꢃE  
6&.ꢐꢈ166ꢈDVꢈ$)  
7,0(5ꢆ  
7,0(5ꢋ  
026,ꢐꢈ0,62ꢐꢈ6&.  
166ꢋ:6ꢐꢈ0&.ꢈDVꢈ$)  
6'ꢐꢈ6&.ꢐꢈ)6  
0&/.ꢈDVꢈ$)  
6$,ꢀꢃ  
63,ꢊꢄ,ꢁ6  
6'ꢐꢈ6&.ꢐꢈ)6  
0&/.ꢈDVꢈ$)  
6&/ꢐꢈ6'$ꢐꢈ60%$/ꢈDVꢈ$)  
6&/ꢐꢈ6'$ꢐꢈ60%$/ꢈDVꢈ$)  
6&/ꢐꢈ6'$ꢐꢈ60%$/ꢈDVꢈ$)  
,ꢁ&ꢃꢄ60%86  
#9''$  
9''5()B$'&  
,ꢁ&ꢁꢄ60%86  
,ꢁ&ꢊꢄ60%86  
)03,ꢁ&ꢃ  
7(03ꢀ6(1625  
ꢁꢈ$,1ꢈFRPPRQ  
WRꢈWKHꢈꢀꢈ$'&V  
$'&ꢃ  
$'&ꢁ  
#9''$  
ꢁꢈ$,1ꢈFRPPRQ  
WRꢈWKHꢈ$'&ꢄꢈꢑꢈꢇ  
6&/ꢐꢈ6'$ꢐꢈ60ꢈ%$/ꢈDVꢈ$)  
'$&ꢃ  
'$&ꢁ  
,)  
,7)  
ꢁꢈ$,1ꢈWRꢈ$'&ꢀ  
$'&ꢀꢊ  
7;ꢐꢈ5;  
7;ꢐꢈ5;  
E[&$1ꢃ  
E[&$1ꢁ  
'$&ꢄꢈDVꢈ$)  
'$&ꢇꢈDVꢈ$)  
06ꢀꢀꢁꢂꢉ9ꢀ  
16/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Functional overview  
3
Functional overview  
3.1  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU core is a 32-bit RISC processor that features exceptional  
code-efficiency, delivering the high-performance expected from an ARM core in the memory  
size usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F446xC/E family is compatible with all ARM tools and software.  
Figure 3 shows the general block diagram of the STM32F446xC/E family.  
Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.  
Note:  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
standard ARM Cortex -M4 with FPU processors. It balances the inherent performance  
®
®
advantage of the ARM Cortex -M4 with FPU over Flash memory technologies, which  
normally requires the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 225 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 180 MHz.  
3.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
DocID027107 Rev 6  
17/202  
40  
 
 
 
 
Functional overview  
STM32F446xC/E  
3.4  
3.5  
Embedded Flash memory  
The devices embed a Flash memory of 512KB available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
3.6  
3.7  
Embedded SRAM  
All devices embed:  
Up to 128Kbytes of system SRAM.  
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.  
4 Kbytes of backup SRAM  
This area is accessible only from the CPU. Its content is protected against possible  
unwanted write accesses, and is retained in Standby or VBAT mode.  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and  
the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a  
seamless and efficient operation even when several high-speed peripherals work  
simultaneously.  
18/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Functional overview  
Figure 4. STM32F446xC/E and Multi-AHB matrix  
$50  
&RUWH[ꢒ0ꢂ  
*3  
'0$ꢄ  
*3  
'0$ꢇ  
86%ꢈ27*  
+6  
6ꢉ 6ꢄ 6ꢇ  
6ꢀ  
6ꢂ 6ꢅ  
6ꢃ  
,&2'(  
)ODVK  
PHPRU\  
'&2'(  
65$0ꢄ  
ꢄꢄꢇꢈ.E\WH  
65$0ꢇ  
ꢄꢃꢈ.E\WH  
$+%ꢇ  
SHULSKHUDOV  
$3%ꢄ  
$+%ꢄ  
SHULSKHUDOV  
$3%ꢇ  
)0&ꢈH[WHUQDO  
0HP&WOꢋ4XDG63,  
%XVꢈPDWUL[ꢒ6  
-3ꢀꢀꢁꢂꢃ6ꢄ  
3.8  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DocID027107 Rev 6  
19/202  
40  
 
 
Functional overview  
STM32F446xC/E  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
DAC  
SDIO  
Camera interface (DCMI)  
ADC  
SAI1/SAI2  
SPDIF Receiver (SPDIFRx)  
QuadSPI  
3.9  
Flexible memory controller (FMC)  
All devices embed an FMC. It has seven Chip Select outputs supporting the following  
modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the  
possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the  
Cortex-M4 code area.  
Functionality overview:  
8-,16-bit data bus width  
Read FIFO for SDRAM controller  
Write FIFO  
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.  
LCD parallel interface  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
3.10  
Quad SPI memory interface (QUADSPI)  
All devices embed a Quad SPI memory interface, which is a specialized communication  
interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode  
through registers, external flash status register polling mode and memory mapped mode.  
Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access.  
Code execution is supported. The opcode and the frame format are fully programmable.  
Communication can be either in Single Data Rate or Dual Data Rate.  
20/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Functional overview  
3.11  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
®
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex -  
M4 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.12  
3.13  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16  
MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application  
can then select as system clock either the RC oscillator or an external 4-26 MHz clock  
source. This clock can be monitored for failure. If a failure is detected, the system  
automatically switches back to the internal RC oscillator and a software interrupt is  
generated (if enabled). This clock source is input to a PLL thus allowing to increase the  
frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is  
available when necessary (for example if an indirectly used external oscillator fails).  
Several prescalers allow the configuration of the two AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB  
buses is 180 MHz while the maximum frequency of the high-speed APB domains is  
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.  
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio  
2
class performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
DocID027107 Rev 6  
21/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
3.14  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory  
2
through a serial (UART, I C, CAN, SPI and USB) communication interface. Refer to  
application note AN2606 for details.  
3.15  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset  
DDA  
SSA  
blocks, RCs and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
Note:  
V
/V  
minimum value of 1.7 V is obtained with the use of an external power supply  
DD DDA  
supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator  
configuration mode versus device operating mode to identify the packages supporting this  
option.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
V
can be connected either to VDD or an external independent power supply (3.0  
DDUSB  
to 3.6V) for USB transceivers.  
For example, when device is powered at 1.8V, an independent power supply 3.3V can  
be connected to V  
. When the V  
is connected to a separated power supply,  
DDUSB  
DDUSB  
it is independent from V or V  
but it must be the last supply to be provided and the  
DD  
DDA  
first to disappear. The following conditions VDDUSB must be respected:  
During power-on phase (V < VDD_MIN), VDDUSB should be always lower than  
VDD  
DD  
During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower  
than VDD  
VDDUSB rising and falling time rate specifications must be respected.  
In operating mode phase, V  
could be lower or higher than VDD:  
DDUSB  
– If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by  
are operating between V and V .The V  
V
DDUSB  
DDUSB_MIN  
DDUSB_MAX  
DDUSB  
supply both USB transceiver (USB OTG_HS and USB OTG_FS).  
– If only one USB transceiver is used in the application, the GPIOs associated to  
the other USB transceiver are still supplied by V  
.
DDUSB  
– If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered  
by V are operating between V and V  
.
DD_MAX  
DDUSB  
DD_MIN  
22/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Functional overview  
Figure 5. V  
connected to an external independent power supply  
DDUSB  
9''86%B0$;  
86% IXQFWLRQDOꢀDUHD  
9''86%  
9''86%B0,1  
86%ꢈQRQꢈ  
IXQFWLRQDOꢈ  
DUHD  
86%ꢈQRQꢈ  
IXQFWLRQDOꢈ  
DUHD  
9''ꢈ ꢈ9''$  
9''B0,1  
WLPH  
3RZHUꢒGRZQ  
2SHUDWLQJꢈPRGH  
3RZHUꢒRQ  
06ꢀꢆꢅꢊꢉ9ꢄ  
3.16  
Power supply supervisor  
3.16.1  
Internal reset ON  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other package, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default BOR  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes. The device remains in reset mode when V is below a specified threshold,  
DD  
V
or V  
, without the need for an external reset circuit.  
POR/PDR  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.16.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.  
An external power supply supervisor should monitor V and should maintain the device in  
DD  
reset mode as long as V is below a specified threshold. PDR_ON should be connected to  
DD  
VSS, to allows device to operate down to 1.7v. Refer to Figure 6: Power supply supervisor  
interconnection with internal reset OFF.  
DocID027107 Rev 6  
23/202  
40  
 
 
 
 
 
 
Functional overview  
STM32F446xC/E  
Figure 6. Power supply supervisor interconnection with internal reset OFF  
sꢀꢀ  
^dDϯϮ&ϰϰϲdž  
sꢂꢃd  
ꢃƉƉůŝĐĂƚŝŽŶꢁƌĞƐĞƚ  
ƐŝŐŶĂůꢁ;ŽƉƚŝŽŶĂůͿ  
WꢀZͺKE  
s^^  
WꢀZꢁŶŽƚꢁĂĐƚŝǀĞꢁ͗ꢁϭ͘ϳǀфꢁsꢀꢀфϯ͘ϲǀ  
D^ϯϯϴϰϰsϭ  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.7 V.  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no more supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled  
The brownout reset (BOR) circuitry must be disabled  
The embedded programmable voltage detector (PVD) is disabled  
V
functionality is no more available and V  
pin should be connected to V  
.
DD  
BAT  
BAT  
All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through  
the PDR_ON signal.  
3.17  
3.17.1  
24/202  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Functional overview  
There are three power modes configured by software when the regulator is ON:  
MR mode used in Run/sleep modes or in Stop modes  
In Run/Sleep mode  
The MR mode is used either in the normal mode (default mode) or the over-drive  
mode (enabled by software). Different voltages scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
The over-drive mode allows operating at a higher frequency than the normal mode  
for a given voltage scaling.  
In Stop modes  
The MR can be configured in two ways during stop mode:  
MR operates in normal mode (default mode of MR in stop mode)  
MR operates in under-drive mode (reduced leakage mode).  
LPR is used in the Stop modes:  
The LP regulator mode is configured by software when entering Stop mode.  
Like the MR mode, the LPR can be configured in two ways during stop mode:  
LPR operates in normal mode (default mode when LPR is ON)  
LPR operates in under-drive mode (reduced leakage mode).  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.  
Two external ceramic capacitors should be connected on V  
All packages have the regulator ON feature.  
and V  
pin.  
CAP_1  
CAP_2  
(1)  
Table 3. Voltage regulator configuration mode versus device operating mode  
Voltage regulator  
Run mode  
Sleep mode  
Stop mode  
Standby mode  
configuration  
Normal mode  
MR  
MR  
-
MR  
MR  
-
MR or LPR  
-
Over-drive  
mode(2)  
-
-
-
Under-drive mode  
MR or LPR  
-
Power-down  
mode  
-
-
Yes  
1. ‘-’ means that the corresponding configuration is not available.  
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.  
3.17.2  
Regulator OFF  
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is  
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply  
externally a V voltage source through V  
and V  
pins.  
12  
CAP_1  
CAP_2  
DocID027107 Rev 6  
25/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should  
be replaced by two 100 nF decoupling capacitors.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
The over-drive and under-drive modes are not available.  
Figure 7. Regulator OFF  
9ꢄꢇ  
([WHUQDOꢈ9&$3BꢄꢋꢇꢈSRZHUꢈ  
$SSOLFDWLRQꢈUHVHWꢈ  
VLJQDOꢈꢍRSWLRQDOꢏꢈꢈ  
VXSSO\ꢈVXSHUYLVRU  
([WꢌꢈUHVHWꢈFRQWUROOHUꢈDFWLYHꢈ  
ꢈꢈ  
ZKHQꢈ9&$3Bꢄꢋꢇꢈꢈꢔꢈ0LQꢈ9ꢄꢇ  
9''  
3$ꢉ  
9''  
1567ꢈꢈ  
%<3$66B5(*  
9ꢄꢇ  
9&$3Bꢄ  
9&$3Bꢇ  
DLꢄꢁꢂꢊꢁ9ꢀ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 8).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 9).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application.  
12  
26/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Functional overview  
Figure 8. Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢈ ꢈꢄꢌꢆꢈ9ꢈRUꢈꢄꢌꢁꢈ9  
9&$3Bꢄꢋ9&$3Bꢇ  
9ꢄꢇ  
0LQꢈ9ꢄꢇ  
WLPH  
1567  
DLꢄꢁꢂꢊꢄI  
WLPH  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 9. Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢈ ꢈꢄꢌꢆꢈ9ꢈRUꢈꢄꢌꢁꢈ9ꢈꢈ  
9&$3Bꢄꢋ9&$3Bꢇ  
9ꢄꢇ  
0LQꢈ9ꢄꢇ  
WLPH  
WLPH  
1567  
3$ꢉꢈDVVHUWHGꢈH[WHUQDOO\ꢈꢈ  
DLꢄꢁꢂꢊꢇH  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
3.17.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal reset ON/OFF availability  
Package  
LQFP64  
LQFP100  
Regulator ON  
Regulator OFF Internal reset ON Internal reset OFF  
Yes  
No Yes No  
DocID027107 Rev 6  
27/202  
40  
 
 
 
 
Functional overview  
STM32F446xC/E  
Table 4. Regulator ON/OFF and internal reset ON/OFF availability  
Package  
Regulator ON  
Regulator OFF Internal reset ON Internal reset OFF  
LQFP144  
UFBGA144  
WLCSP81  
Yes  
No  
Yes  
Yes  
PDR_ON  
set to VDD  
PDR_ON  
set to VSS  
Yes  
Yes  
BYPASS_REG  
set to Vss  
BYPASS_REG  
set to VDD  
3.18  
Real-time clock (RTC), backup SRAM and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
4 Kbytes of backup SRAM  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC provides a programmable alarm and programmable  
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is  
also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data  
which need to be retained in VBAT and standby mode. This memory area is disabled by  
default to minimize power consumption (see Section 3.19: Low-power modes). It can be  
enabled by software.  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 3.19: Low-power  
modes).  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
Like backup SRAM, the RTC and backup registers are supplied through a switch that is  
powered either from the V supply when present or from the V  
pin.  
DD  
BAT  
28/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Functional overview  
3.19  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled.  
The voltage regulator can be put either in main regulator mode (MR) or in low-power  
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator  
modes in stop mode):  
Normal mode (default mode when MR or LPR is enabled)  
Under-drive mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /  
tamper / time stamp events, the USB OTG FS/HS wakeup).  
Table 5. Voltage regulator modes in stop mode  
Voltage regulator  
Main regulator (MR)  
Low-power regulator (LPR)  
configuration  
Normal mode  
MR ON  
LPR ON  
Under-drive mode  
MR in under-drive mode  
LPR in under-drive mode  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain and the backup SRAM when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event  
occurs.  
The standby mode is not supported when the embedded voltage regulator is bypassed  
and the 1.2 V domain is controlled by an external power.  
3.20  
VBAT operation  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when no external battery and an external supercapacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
DocID027107 Rev 6  
29/202  
40  
 
 
 
 
Functional overview  
STM32F446xC/E  
Note:  
When the microcontroller is supplied from V , external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is not connected to V (Internal Reset OFF), the V  
functionality is  
DD  
BAT  
no more available and V  
pin should be connected to VDD.  
BAT  
30/202  
DocID027107 Rev 6  
STM32F446xC/E  
Functional overview  
3.21  
Timers and watchdogs  
The devices include two advanced-control timers, eight general-purpose timers, two basic  
timers and two watchdog timers.  
All timer counters can be frozen in debug mode.  
Table 6 compares the features of the advanced-control, general-purpose and basic timers.  
Table 6. Timer feature comparison  
Max  
Max  
timer  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter  
resolution  
Counter Prescaler  
Complementary interface  
Timer  
type  
factor  
output  
clock  
(MHz)  
clock  
(MHz)(1)  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
Advanced- TIM1,  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
0
Yes  
No  
No  
No  
No  
No  
No  
No  
90  
45  
45  
90  
90  
45  
45  
45  
180  
control  
TIM8  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
TIM2,  
TIM5  
90/180  
90/180  
180  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
TIM3,  
TIM4  
Anyinteger  
between 1  
and 65536  
TIM9  
Up  
Up  
Up  
Up  
Up  
General  
purpose  
Anyinteger  
between 1  
and 65536  
TIM10,  
TIM11  
No  
180  
Anyinteger  
between 1  
and 65536  
TIM12  
No  
90/180  
90/180  
90/180  
Anyinteger  
between 1  
and 65536  
TIM13,  
TIM14  
No  
Anyinteger  
between 1  
and 65536  
TIM6,  
TIM7  
Basic  
Yes  
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR  
register.  
DocID027107 Rev 6  
31/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
3.21.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
3.21.2  
General-purpose timers (TIMx)  
There are ten synchronized general-purpose timers embedded in the STM32F446xC/E  
devices (see Table 6 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5,  
TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent  
channels for input capture/output compare, PWM or one-pulse mode output. This gives  
up to 16 input capture/output compare/PWMs on the largest packages.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9  
and TIM12 have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers. They can also be used as simple time bases.  
3.21.3  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
DocID027107 Rev 6  
32/202  
 
 
 
STM32F446xC/E  
Functional overview  
3.21.4  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
3.21.5  
3.21.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
3.22  
Inter-integrated circuit interface (I2C)  
Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support  
the standard (up to 100 KHz) and fast (up to 400 KHz) modes.  
One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus  
(up to 1MHz) modes.  
They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as  
slave).  
A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 7).  
Table 7. Comparison of I2C analog and digital filters  
-
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
DocID027107 Rev 6  
33/202  
40  
 
 
 
 
 
 
Functional overview  
STM32F446xC/E  
3.23  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver  
transmitters (UART4, and UART5).  
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to  
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate  
at up to 5.62 bit/s.  
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS  
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication  
capability. All interfaces can be served by the DMA controller.  
(1)  
Table 8. USART feature comparison  
Max. baud  
Max. baud  
SPI  
LIN maste  
r
USART Standard  
Modem  
irD Smartcard rate in Mbit/s rate in Mbit/s  
APB  
name  
features (RTS/CTS)  
A
(ISO 7816) (oversamplin (oversamplin mapping  
g by 16)  
g by 8)  
APB2  
(max.  
90 MHz)  
USART1  
USART2  
USART3  
UART4  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
-
5.62  
11.25  
APB1  
(max.  
45 MHz)  
2.81  
2.81  
2.81  
2.81  
5.62  
5.62  
5.62  
5.62  
5.62  
11.25  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
UART5  
-
-
APB2  
(max.  
USART6  
X
X
90 MHz)  
1. X = feature supported.  
3.24  
Serial peripheral interface (SPI)  
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and  
SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the  
DMA controller.  
34/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Functional overview  
The SPI interface can be configured to operate in TI mode for communications in master  
mode and slave mode.  
3.25  
3.26  
HDMI (high-definition multimedia interface) consumer  
electronics control (CEC)  
The devices embeds a HDMI-CEC controller that provides hardware support of consumer  
electronics control (CEC) (Appendix supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead.  
Inter-integrated sound (I2S)  
2
Three standard I S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They  
can be operated in master or slave mode, in simplex communication modes, and can be  
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio  
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the  
2
I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
All I2Sx can be served by the DMA controller.  
3.27  
SPDIF-RX Receiver Interface (SPDIFRX)  
The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958  
and IEC-61937. These standards support simple stereo streams up to high sample rate,  
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up  
to 5.1).  
The main features of the SPDIF-RX are the following:  
Up to 4 inputs available  
Automatic symbol rate detection  
Maximum symbol rate: 12.288 MHz  
Stereo stream from 32 to 192 kHz supported  
Supports Audio IEC-60958 and IEC-61937, consumer applications  
Parity bit management  
Communication using DMA for audio samples  
Communication using DMA for control and user channel information  
Interrupt capabilities  
The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and  
decode the incoming data stream.  
The user can select the wanted SPDIF input, and when a valid signal will be available, the  
SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize  
frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and  
associated status flags.  
DocID027107 Rev 6  
35/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF  
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.  
3.28  
Serial Audio interface (SAI)  
The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio  
interfaces based on two independent audio sub blocks which can operate as transmitter or  
receiver with their FIFO. Many audio protocols are supported by each block: I2S standards,  
LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output, supporting audio sampling  
frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in  
slave mode. The SAIs use a PLL to achieve audio class accuracy.  
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of  
the sampling frequency.  
The two sub blocks can be configured in synchronous mode when full-duplex mode is  
required.  
SAI1 and SA2 can be served by the DMA controller.  
3.29  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S and SAI applications. It allows  
2
to achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
2
The PLLI2S configuration can be modified to manage an I S/SAI sample rate change  
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
In addition to the audio PLL, a master clock input pin can be used to synchronize the  
2
I S/SAI flow with an external PLL (or Codec output).  
3.30  
3.31  
Serial Audio Interface PLL(PLLSAI)  
An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case  
the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or  
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.  
The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the  
system PLL is programmed with factors not multiple of 48MHz.  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
36/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Functional overview  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
3.32  
3.33  
Controller area network (bxCAN)  
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1  
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated for each CAN.  
Universal serial bus on-the-go full-speed (OTG_FS)  
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power  
rails allowing its use throughout the entire power range. The major features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
6 bidirectional endpoints  
12 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.34  
Universal serial bus on-the-go high-speed (OTG_HS)  
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.  
The USB OTG HS supports both full-speed and high-speed operations. It integrates the  
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)  
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an  
external PHY device connected to the ULPI is required.  
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG  
1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power  
rails allowing its use throughout the entire power range.  
DocID027107 Rev 6  
37/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
The major features are:  
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
8 bidirectional endpoints  
16 host channels with periodic OUT support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is  
connected to the microcontroller ULPI port through 12 signals. It can be clocked using  
the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
for OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.35  
Digital camera interface (DCMI)  
The devices embed a camera interface that can connect with camera modules and CMOS  
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera  
interface can sustain a data transfer rate up to 94.5 Mbyte/s (in 14-bit mode) at 54 MHz.  
Its features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports continuous mode or snapshot (a single frame) mode  
Capability to automatically crop the image black & white.  
3.36  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.  
3.37  
Analog-to-digital converters (ADCs)  
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16  
external channels, performing conversions in the single-shot or scan mode. In scan mode,  
automatic conversion is performed on a selected group of analog inputs.  
38/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Functional overview  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.  
3.38  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the same input channel as V , ADC1_IN18, which is used to convert the  
BAT  
sensor output voltage into a digital value. When the temperature sensor and V  
BAT  
conversion are enabled at the same time, only V  
conversion is performed.  
BAT  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.39  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 10-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA streams.  
3.40  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
DocID027107 Rev 6  
39/202  
40  
 
 
 
Functional overview  
STM32F446xC/E  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
3.41  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F446xx through a small number of ETM pins to an external hardware trace port  
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer that runs the debugger software. TPA  
hardware is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
40/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Pinout and pin description  
4
Pinout and pin description  
Figure 10. STM32F446xC/xE LQFP64 pinout  
ꢃꢂ ꢃꢀ ꢃꢇ ꢃꢄ ꢃꢉ ꢅꢊ ꢅꢁ ꢅꢆ ꢅꢃ ꢅꢅ ꢅꢂ ꢅꢀ ꢅꢇ ꢅꢄ ꢅꢉ ꢂꢊ  
ꢂꢁ  
9''  
966  
3$ꢄꢀ  
3$ꢄꢇ  
3$ꢄꢄ  
3$ꢄꢉ  
3$ꢊ  
3$ꢁ  
3&ꢊ  
3&ꢁ  
3&ꢆ  
9%$7  
3&ꢄꢀ  
3&ꢄꢂꢒ26&ꢀꢇB,1  
3&ꢄꢅꢒ26&ꢀꢇB287  
3+ꢉꢒ26&B,1  
ꢂꢆ  
ꢂꢃ  
ꢂꢅ  
ꢂꢂ  
ꢂꢀ  
ꢂꢇ  
ꢂꢄ  
ꢂꢉ  
ꢀꢊ  
ꢀꢁ  
ꢀꢆ  
ꢀꢃ  
ꢀꢅ  
ꢀꢂ  
ꢀꢀ  
3+ꢄꢒ26&B287  
1567  
ꢃꢈꢈ  
ꢆꢈꢈ  
ꢁꢈꢈ  
ꢊꢈꢈ  
ꢄꢉ  
ꢄꢄ  
ꢄꢇ  
ꢄꢀ  
ꢄꢂ  
ꢄꢅ  
ꢄꢃ  
3&ꢉ  
3&ꢄ  
3&ꢇ  
3&ꢀ  
/4)3ꢃꢂ  
3&ꢃ  
966$ꢋ95()ꢒ  
9''$ꢋ95()ꢓ  
3$ꢉ  
3%ꢄꢅ  
3%ꢄꢂ  
3%ꢄꢀ  
3%ꢄꢇ  
3$ꢄ  
3$ꢇ  
ꢄꢆ ꢄꢁ ꢄꢊ ꢇꢉ ꢇꢄ ꢇꢇ ꢇꢀ ꢇꢂ ꢇꢅ ꢇꢃ ꢇꢆ ꢇꢁ ꢇꢊ ꢀꢉ ꢀꢄ ꢀꢇ  
06ꢀꢄꢄꢂꢊ9ꢀ  
1. The above figure shows the package top view.  
DocID027107 Rev 6  
41/202  
66  
 
 
 
Pinout and pin description  
STM32F446xC/E  
Figure 11. STM32F446xC/xE LQFP100 pinout  
0%ꢃ  
0%ꢀ  
0%ꢂ  
0%ꢉ  
0%ꢈ  
ꢇꢉ  
ꢇꢂ  
ꢇꢀ  
ꢇꢃ  
ꢇꢄ  
ꢇꢅ  
ꢈꢆ  
ꢈꢁ  
ꢈꢇ  
ꢈꢈ  
ꢈꢉ  
ꢈꢂ  
ꢈꢀ  
ꢈꢃ  
ꢈꢄ  
ꢈꢅ  
ꢉꢆ  
ꢉꢁ  
ꢉꢇ  
ꢉꢈ  
ꢉꢉ  
ꢉꢂ  
ꢉꢀ  
ꢉꢃ  
ꢉꢄ  
6$$  
633  
6#!0?ꢃ  
0!ꢄꢀ  
0!ꢄꢃ  
0!ꢄꢄ  
0!ꢄꢅ  
0!ꢆ  
0!ꢁ  
0#ꢆ  
0#ꢁ  
0#ꢇ  
6"!4  
0#ꢄꢀ  
0#ꢄꢂꢊ/3#ꢀꢃ?).  
0#ꢄꢉꢊ/3#ꢀꢃ?/54  
633  
6$$  
0(ꢅꢊ/3#?).  
0(ꢄꢊ/3#?/54  
.234  
ꢄꢅ  
ꢄꢄ  
ꢄꢃ  
ꢄꢀ  
0#ꢈ  
,1&0ꢄꢅꢅ  
ꢄꢂ  
ꢄꢉ  
ꢄꢈ  
ꢄꢇ  
ꢄꢁ  
ꢄꢆ  
ꢃꢅ  
ꢃꢄ  
ꢃꢃ  
ꢃꢀ  
ꢃꢂ  
ꢃꢉ  
0$ꢄꢉ  
0$ꢄꢂ  
0$ꢄꢀ  
0$ꢄꢃ  
0$ꢄꢄ  
0$ꢄꢅ  
0$ꢆ  
0#ꢅ  
0#ꢄ  
0#ꢃ  
0#ꢀ  
6$$  
633!ꢋ62%&ꢊ  
62%&ꢌ  
6$$!  
0$ꢁ  
0"ꢄꢉ  
0"ꢄꢂ  
0"ꢄꢀ  
0"ꢄꢃ  
0!ꢅ  
0!ꢄ  
0!ꢃ  
-3ꢀꢄꢄꢉꢄ6ꢂ  
1. The above figure shows the package top view.  
42/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Pinout and pin description  
Figure 12. STM32F446xC LQFP144 pinout  
3(   
3(   
3(   
3(   
3(   
9%$7  
3&ꢄꢀ  
3&ꢄꢂ  
3&ꢄꢅ  
3)ꢉ  
ꢄꢉꢁ  
ꢄꢉꢆ  
ꢄꢉꢃ  
ꢄꢉꢅ  
ꢄꢉꢂ  
ꢄꢉꢀ  
ꢄꢉꢇ  
ꢄꢉꢄ  
ꢄꢉꢉ  
ꢊꢊ  
ꢊꢁ  
ꢊꢆ  
ꢊꢃ  
ꢊꢅ  
ꢊꢂ  
ꢊꢀ  
ꢊꢇ  
ꢊꢄ  
ꢊꢉ  
ꢁꢊ  
ꢁꢁ  
ꢁꢆ  
ꢁꢃ  
ꢁꢅ  
ꢁꢂ  
ꢁꢀ  
ꢁꢇ  
ꢁꢄ  
ꢁꢉ  
ꢆꢊ  
ꢆꢁ  
ꢆꢆ  
ꢆꢃ  
ꢆꢅ  
ꢆꢂ  
ꢆꢀ  
9
9
9
''  
66  
&$3B  
3$   
3$   
3$   
3$   
3$   
3$   
3&ꢊ  
3&ꢁ  
3&ꢆ  
3&ꢃ  
9
ꢄꢉ  
ꢄꢄ  
ꢄꢇ  
ꢄꢀ  
ꢄꢂ  
ꢄꢅ  
ꢄꢃ  
ꢄꢆ  
ꢄꢁ  
ꢄꢊ  
ꢇꢉ  
ꢇꢄ  
ꢇꢇ  
ꢇꢀ  
ꢇꢂ  
ꢇꢅ  
ꢇꢃ  
ꢇꢆ  
ꢇꢁ  
ꢇꢊ  
ꢀꢉ  
ꢀꢄ  
ꢀꢇ  
ꢀꢀ  
ꢀꢂ  
ꢀꢅ  
ꢀꢃ  
3)ꢄ  
3)ꢇ  
3)ꢀ  
3)ꢂ  
''86%  
66  
3)ꢅ  
9
9
9
3)ꢃ  
3)ꢆ  
3*ꢁ  
3*ꢆ  
3*ꢃ  
3*ꢅ  
3*ꢂ  
3*ꢀ  
3*ꢇ  
3'ꢄꢅ  
3'ꢄꢂ  
66  
''  
/4)3ꢄꢂꢂ  
3)ꢁ  
3)ꢊ  
3)ꢄꢉ  
3+ꢉ  
3+ꢄ  
15 67  
3&ꢉ  
3&ꢄ  
3&ꢇ  
3&ꢀ  
9
9
''  
66  
3'ꢄꢀ  
3'ꢄꢇ  
3'ꢄꢄ  
3'ꢄꢉ  
3'ꢊ  
9
''  
9
66$  
9
9
3'ꢁ  
5()ꢓ  
3% ꢄꢅ  
3% ꢄꢂ  
3% ꢄꢀ  
3% ꢄꢇ  
''$  
3$   
3$   
3$   
DLꢄꢁꢂꢊꢃF  
1. The above figure shows the package top view.  
DocID027107 Rev 6  
43/202  
66  
 
Pinout and pin description  
STM32F446xC/E  
Figure 13. STM32F446xC/xE WLCSP81 ballout  
9''  
3&ꢄꢇ  
3'ꢂ  
3'ꢆ  
3%ꢀ  
3%ꢅ  
%227ꢉ  
9''  
3(ꢂ  
$
%
3'5B  
21  
966  
3$ꢄꢅ  
3'ꢉ  
3'ꢃ  
3%ꢂ  
3%ꢆ  
966  
9%$7  
3$ꢄꢄ  
3&ꢊ  
9&$3Bꢇ  
3$ꢄꢀ  
3$ꢄꢂ  
3&ꢄꢉ  
3'ꢄ  
3%ꢃ  
3'ꢇ  
3%ꢁ  
3(ꢀ  
3%ꢊ  
3(ꢇ  
3&ꢄꢀ  
3&ꢄꢂ  
3&ꢄꢅ  
&
'
3&ꢄꢄ  
15(6(7  
9''  
86%  
3$ꢁ  
3&ꢆ  
3$ꢄꢉ  
3&ꢁ  
3$ꢄꢇ  
3$ꢊ  
3$ꢆ  
3%ꢉ  
3(ꢊ  
3$ꢀ  
3$ꢅ  
3$ꢃ  
3$ꢇ  
966$  
3$ꢄ  
3&ꢇ  
3&ꢀ  
966  
3+ꢉ  
3+ꢄ  
3&ꢉ  
(
)
*
+
-
3&ꢃ  
3'ꢄꢀ  
3'ꢄꢇ  
3%ꢄꢅ  
3%ꢄꢇ  
3%ꢄꢀ  
9''  
3%ꢄꢉ  
3(ꢄꢉ  
3%ꢄ  
3%ꢇ  
3$ꢂ  
3&ꢂ  
966  
3(ꢁ  
3(ꢆ  
9''  
3$ꢉ  
9''$  
3'ꢄꢄ  
3%ꢄꢂ  
%<3$66B  
5(*  
9&$3Bꢄ  
06Yꢀꢀꢅꢄꢁ9ꢇ  
1. The above figure shows the package top view.  
44/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Pinout and pin description  
Figure 14. STM32F446xC/xE UFBGA144 ballout  
ꢄꢉ  
ꢄꢄ  
ꢄꢇ  
3&ꢄꢀ  
3(ꢀ  
3(ꢇ  
3(ꢄ  
3(ꢉ  
3%ꢂ  
3%ꢀ  
3'ꢃ  
3'ꢆ  
3$ꢄꢅ  
3$ꢄꢂ  
3$ꢄꢀ  
$
3&ꢄꢂ  
3(ꢂ  
3(ꢅ  
3(ꢃ  
3%ꢊ  
3%ꢅ  
3*ꢄꢅ  
3*ꢄꢂ  
3*ꢄꢀ  
966  
3*ꢄꢇ  
3'ꢅ  
3&ꢄꢄ  
3&ꢄꢉ  
3$,ꢇ  
%
9''  
86%  
3&ꢄꢅ  
9%$7  
966  
3)ꢀ  
3)ꢉ  
9''  
3)ꢂ  
3)ꢄ  
3)ꢇ  
3)ꢅ  
3%ꢁ  
3%ꢃ  
3%ꢆ  
966  
3*ꢄꢄ  
3*ꢄꢉ  
3*ꢊ  
3'ꢂ  
3'ꢀ  
3'ꢇ  
3&ꢄꢇ  
3'ꢄ  
3'ꢉ  
3$ꢄꢄ  
3$ꢊ  
3$ꢁ  
&
3+ꢉ  
%227ꢉ  
3$ꢄꢉ  
3&ꢊ  
3&ꢁ  
3*ꢁ  
3*ꢃ  
'
3'5B  
21  
3+ꢄ  
(
1567  
3)ꢆ  
3)ꢊ  
3&ꢄ  
3$ꢉ  
3$ꢄ  
3$ꢇ  
3)ꢃ  
3)ꢁ  
9''  
966  
9''  
9''  
9''  
9''  
966  
9''  
9''  
9''  
966  
9''  
9&$3Bꢇ  
3'ꢄꢄ  
9''  
966  
3*ꢆ  
3&ꢆ  
3&ꢃ  
3*ꢅ  
)
3)ꢄꢉ  
*
%<3$66  
B5(*  
9&$3Bꢄ  
3(ꢄꢄ  
3&ꢀ  
3&ꢂ  
3&ꢅ  
3%ꢉ  
3&ꢇ  
3$ꢂ  
3$ꢅ  
3$ꢃ  
+
-
3&ꢉ  
966$  
3%ꢇ  
3)ꢄꢀ  
3)ꢄꢇ  
3*ꢄ  
3*ꢉ  
3)ꢄꢅ  
3(ꢄꢉ  
3(ꢊ  
3(ꢁ  
3(ꢄꢇ  
3(ꢄꢀ  
3(ꢄꢂ  
3'ꢄꢉ  
3'ꢊ  
3'ꢁ  
3*ꢂ  
3'ꢄꢀ  
3'ꢄꢇ  
3*ꢀ  
3'ꢄꢂ  
3%ꢄꢂ  
3*ꢇ  
3'ꢄꢅ  
3%ꢄꢅ  
95()ꢒ  
95()ꢓ  
.
/
9''$  
3$ꢀ  
3$ꢆ  
3%ꢄ  
3)ꢄꢄ  
3)ꢄꢂ  
3(ꢆ  
3(ꢄꢅ  
3%ꢄꢉ  
3%ꢄꢄ  
3%ꢄꢇ  
3%ꢄꢀ  
0
06Yꢀꢃꢅꢄꢊ9ꢇ  
1. The above picture shows the package top view.  
DocID027107 Rev 6  
45/202  
66  
 
 
Pinout and pin description  
STM32F446xC/E  
Table 9. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
B
Input / output pin  
5 V tolerant I/O  
5V tolerant IO, I2C FM+ option  
3.3 V tolerant I/O directly connected to ADC  
Dedicated BOOT0 pin  
I/O structure  
Notes  
RST  
Bidirectional reset pin with weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 10. STM32F446xx pin and ball descriptions  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TRACECLK, SPI4_SCK,  
SAI1_MCLK_A,  
QUADSPI_BK1_IO2,  
FMC_A23, EVENTOUT  
-
1
D7 A3  
1
PE2  
I/O FT  
-
-
TRACED0, SAI1_SD_B,  
FMC_A19, EVENTOUT  
-
-
2
3
D6 A2  
A9 B2  
2
3
PE3  
PE4  
I/O FT  
I/O FT  
-
-
-
-
TRACED1, SPI4_NSS,  
SAI1_FS_A, FMC_A20,  
DCMI_D4, EVENTOUT  
TRACED2, TIM9_CH1,  
SPI4_MISO, SAI1_SCK_A,  
FMC_A21, DCMI_D6,  
EVENTOUT  
-
4
-
B3  
4
PE5  
I/O FT  
-
-
46/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TRACED3, TIM9_CH2,  
SPI4_MOSI, SAI1_SD_A,  
FMC_A22, DCMI_D7,  
EVENTOUT  
-
5
-
B4  
5
PE6  
I/O FT  
-
-
1
2
6
7
B9 C2  
C8 A1  
6
7
VBAT  
PC13  
S
-
-
-
-
-
I/O FT  
I/O FT  
EVENTOUT  
TAMP_1/WKUP1  
PC14-  
OSC32_IN(PC14)  
3
4
-
8
9
-
C9 B1  
D9 C1  
8
-
-
-
-
-
EVENTOUT  
EVENTOUT  
OSC32_IN  
PC15-  
OSC32_OUT(PC15)  
9
I/O FT  
I/O FT  
I/O FT  
I/O FT  
OSC32_OUT  
I2C2_SDA, FMC_A0,  
EVENTOUT  
-
-
-
C3  
C4  
D4  
10  
11  
12  
PF0  
PF1  
PF2  
-
-
-
I2C2_SCL, FMC_A1,  
EVENTOUT  
-
-
I2C2_SMBA, FMC_A2,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E2  
E3  
E4  
D2  
D3  
13  
14  
15  
16  
17  
PF3  
PF4  
PF5  
VSS  
VDD  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
FMC_A3, EVENTOUT  
ADC3_IN9  
FMC_A4, EVENTOUT  
ADC3_IN14  
-
FMC_A5, EVENTOUT  
ADC3_IN15  
10  
11  
S
S
-
-
-
-
-
-
TIM10_CH1, SAI1_SD_B,  
QUADSPI_BK1_IO3,  
EVENTOUT  
-
-
-
-
-
-
-
-
F3  
F2  
G3  
18  
19  
PF6  
PF7  
PF8  
I/O FT  
I/O FT  
I/O FT  
-
-
ADC3_IN4  
ADC3_IN5  
TIM11_CH1,  
SAI1_MCLK_B,  
QUADSPI_BK1_IO2,  
EVENTOUT  
SAI1_SCK_B,TIM13_CH1,  
QUADSPI_BK1_IO0,  
EVENTOUT  
-
-
20  
21  
-
-
ADC3_IN6  
ADC3_IN7  
SAI1_FS_B, TIM14_CH1,  
QUADSPI_BK1_IO1,  
EVENTOUT  
-
-
-
-
G2  
G1  
PF9  
I/O FT  
I/O FT  
-
22  
23  
PF10  
-
-
DCMI_D11, EVENTOUT  
EVENTOUT  
ADC3_IN8  
OSC_IN  
5
12 E9 D1  
PH0-OSC_IN(PH0) I/O FT  
DocID027107 Rev 6  
47/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
PH1-  
OSC_OUT(PH1)  
6
7
13 F9 E1  
14 D8 F1  
24  
25  
I/O FT  
-
-
EVENTOUT  
-
OSC_OUT  
-
RS  
NRST  
PC0  
I/O  
T
SAI1_MCLK_B,  
OTG_HS_ULPI_STP,  
FMC_SDNWE,  
8
9
15 G9 H1  
26  
I/O FT  
-
ADC123_IN10  
EVENTOUT  
SPI3_MOSI/I2S3_SD,  
SAI1_SD_A,  
SPI2_MOSI/I2S2_SD,  
EVENTOUT  
16  
-
H2  
27  
28  
29  
PC1  
PC2  
PC3  
I/O FT  
I/O FT  
I/O FT  
-
-
-
ADC123_IN11  
ADC123_IN12  
ADC123_IN13  
SPI2_MISO,  
OTG_HS_ULPI_DIR,  
FMC_SDNE0, EVENTOUT  
10 17 E8 H3  
SPI2_MOSI/I2S2_SD,  
OTG_HS_ULPI_NXT,  
FMC_SDCKE0,  
11 18 F8 H4  
EVENTOUT  
-
-
19 H9  
G8  
-
30  
-
VDD  
VSS  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12 20 F7  
J1  
K1  
L1  
31  
-
VSSA  
VREF-  
VREF+  
VDDA  
-
-
-
-
-
21  
32  
13 22 H8 M1 33  
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS,  
ADC123_IN0,  
WKUP0/TAMP_2  
14 23 J9  
J2  
34  
PA0-WKUP(PA0)  
I/O FT  
-
UART4_TX, EVENTOUT  
TIM2_CH2, TIM5_CH2,  
USART2_RTS,  
UART4_RX,  
15 24 G7 K2  
35  
36  
PA1  
PA2  
I/O FT  
I/O FT  
-
-
ADC123_IN1  
ADC123_IN2  
QUADSPI_BK1_IO3,  
SAI2_MCLK_B,  
EVENTOUT  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1, USART2_TX,  
SAI2_SCK_B, EVENTOUT  
16 25 E7  
L2  
48/202  
DocID027107 Rev 6  
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM2_CH4, TIM5_CH4,  
TIM9_CH2, SAI1_FS_A,  
USART2_RX,  
17 26 E6 M2 37  
PA3  
I/O FT  
-
ADC123_IN3  
OTG_HS_ULPI_D0,  
EVENTOUT  
18 27  
-
J8  
-
G4  
H5  
F4  
38  
-
VSS  
BYPASS_REG  
VDD  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
-
-
19 28  
39  
S
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
ADC12_IN4,  
DAC_OUT1  
20 29 H7  
J3  
40  
PA4  
I/O TC  
-
OTG_HS_SOF,  
DCMI_HSYNC,  
EVENTOUT  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK/I2S1_CK,  
OTG_HS_ULPI_CK,  
EVENTOUT  
ADC12_IN5,  
DAC_OUT2  
21 30 F6 K3  
41  
42  
PA5  
PA6  
I/O TC  
I/O FT  
-
-
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN, SPI1_MISO,  
I2S2_MCK, TIM13_CH1,  
DCMI_PIXCLK,  
22 31 G6 L3  
ADC12_IN6  
ADC12_IN7  
EVENTOUT  
TIM1_CH1N, TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI/I2S1_SD,  
TIM14_CH1,  
23 32 E5 M3 43  
PA7  
I/O FT  
-
FMC_SDNWE,  
EVENTOUT  
I2S1_MCK, SPDIFRX_IN2,  
FMC_SDNE0, EVENTOUT  
24 33 J7  
J4  
44  
45  
PC4  
PC5  
I/O FT  
I/O FT  
-
-
ADC12_IN14  
ADC12_IN15  
USART3_RX,  
SPDIFRX_IN3,  
FMC_SDCKE0,  
EVENTOUT  
25 34  
-
K4  
DocID027107 Rev 6  
49/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM1_CH2N, TIM3_CH3,  
TIM8_CH2N,  
SPI3_MOSI/I2S3_SD,  
UART4_CTS,  
OTG_HS_ULPI_D1,  
SDIO_D1, EVENTOUT  
26 35 F5  
L4  
46  
PB0  
PB1  
I/O FT  
-
-
ADC12_IN8  
ADC12_IN9  
TIM1_CH3N, TIM3_CH4,  
TIM8_CH3N,  
OTG_HS_ULPI_D2,  
SDIO_D2, EVENTOUT  
27 36 H6 M4 47  
I/O FT  
I/O FT  
TIM2_CH4, SAI1_SD_A,  
SPI3_MOSI/I2S3_SD,  
QUADSPI_CLK,  
OTG_HS_ULPI_D4,  
SDIO_CK, EVENTOUT  
PB2-BOOT1  
(PB2)  
28 37 J6  
J5  
48  
-
-
-
-
SAI2_SD_B,  
FMC_SDNRAS,  
DCMI_D12, EVENTOUT  
-
-
-
M5 49  
PF11  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
L5  
-
50  
51  
52  
PF12  
VSS  
VDD  
-
-
-
FMC_A6, EVENTOUT  
-
-
-
S
S
-
-
-
-
G5  
FMPI2C1_SMBA,  
FMC_A7, EVENTOUT  
-
-
-
-
-
-
-
-
-
K5  
53  
PF13  
PF14  
PF15  
I/O FT  
I/O FTf  
I/O FTf  
-
-
-
-
-
-
FMPI2C1_SCL, FMC_A8,  
EVENTOUT  
M6 54  
FMPI2C1_SDA, FMC_A9,  
EVENTOUT  
L6  
55  
-
-
-
-
-
-
K6  
J6  
56  
57  
PG0  
PG1  
I/O FT  
I/O FT  
-
-
FMC_A10, EVENTOUT  
FMC_A11, EVENTOUT  
-
-
TIM1_ETR, UART5_RX,  
QUADSPI_BK2_IO0,  
FMC_D4, EVENTOUT  
-
-
-
38 J5 M7 58  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM1_CH1N, UART5_TX,  
QUADSPI_BK2_IO1,  
FMC_D5, EVENTOUT  
39 H5 L7  
40 G5 K7  
59  
60  
TIM1_CH1,  
QUADSPI_BK2_IO2,  
FMC_D6, EVENTOUT  
50/202  
DocID027107 Rev 6  
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
H6  
G6  
61  
62  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM1_CH2N,  
-
-
-
-
41 J4  
J7  
H8  
J8  
63  
64  
65  
66  
67  
PE10  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
QUADSPI_BK2_IO3,  
FMC_D7, EVENTOUT  
-
-
-
-
TIM1_CH2, SPI4_NSS,  
SAI2_SD_B, FMC_D8,  
EVENTOUT  
42  
43  
44  
-
-
-
TIM1_CH3N, SPI4_SCK,  
SAI2_SCK_B, FMC_D9,  
EVENTOUT  
TIM1_CH3, SPI4_MISO,  
SAI2_FS_B, FMC_D10,  
EVENTOUT  
K8  
L8  
TIM1_CH4, SPI4_MOSI,  
SAI2_MCLK_B, FMC_D11,  
EVENTOUT  
-
-
45  
46  
-
-
PE14  
PE15  
I/O FT  
I/O FT  
-
-
-
-
TIM1_BKIN, FMC_D12,  
EVENTOUT  
M8 68  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
SAI1_SCK_A,  
29 47 H4 M9 69  
PB10  
I/O FT  
-
-
USART3_TX,  
OTG_HS_ULPI_D3,  
EVENTOUT  
TIM2_CH4, I2C2_SDA,  
USART3_RX, SAI2_SD_A,  
EVENTOUT  
-
-
-
M10 70  
PB11  
I/O FT  
-
-
30 48 J3  
31 49 H3  
H7  
-
71  
-
VCAP_1  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
32 50 J2 G7  
72  
VDD  
TIM1_BKIN, I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
SAI1_SCK_B,  
USART3_CK, CAN2_RX,  
OTG_HS_ULPI_D5,  
33 51 G4 M11 73  
PB12  
I/O FT  
-
-
OTG_HS_ID, EVENTOUT  
DocID027107 Rev 6  
51/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM1_CH1N,  
SPI2_SCK/I2S2_CK,  
34 52 H2 M12 74  
35 53 J1 L11 75  
36 54 G3 L12 76  
PB13  
I/O FT  
I/O FT  
-
-
USART3_CTS, CAN2_TX, OTG_HS_VBUS  
OTG_HS_ULPI_D6,  
EVENTOUT  
TIM1_CH2N, TIM8_CH2N,  
SPI2_MISO,  
PB14(1)  
USART3_RTS,  
TIM12_CH1,  
-
OTG_HS_DM, EVENTOUT  
RTC_REFIN, TIM1_CH3N,  
TIM8_CH3N,  
PB15(1)  
PD8  
I/O FT  
I/O FT  
-
-
SPI2_MOSI/I2S2_SD,  
TIM12_CH2, OTG_HS_DP,  
EVENTOUT  
-
-
USART3_TX,  
SPDIFRX_IN1, FMC_D13,  
EVENTOUT  
-
55  
-
L9  
77  
USART3_RX, FMC_D14,  
EVENTOUT  
-
-
56  
57  
-
-
K9  
J9  
78  
79  
PD9  
I/O FT  
I/O FT  
-
-
-
-
USART3_CK, FMC_D15,  
EVENTOUT  
PD10  
FMPI2C1_SMBA,  
USART3_CTS,  
-
-
-
58 H1 H9  
80  
PD11  
PD12  
PD13  
I/O FT  
I/O FTf  
I/O FTf  
-
-
-
QUADSPI_BK1_IO0,  
SAI2_SD_A, FMC_A16,  
EVENTOUT  
-
-
-
TIM4_CH1,  
FMPI2C1_SCL,  
USART3_RTS,  
59 G2 L10 81  
QUADSPI_BK1_IO1,  
SAI2_FS_A, FMC_A17,  
EVENTOUT  
TIM4_CH2,  
FMPI2C1_SDA,  
QUADSPI_BK1_IO3,  
SAI2_SCK_A, FMC_A18,  
EVENTOUT  
60 G1 K10 82  
-
-
-
-
-
-
G8  
F8  
83  
84  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
52/202  
DocID027107 Rev 6  
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM4_CH3,  
FMPI2C1_SCL,  
SAI2_SCK_A, FMC_D0,  
EVENTOUT  
-
-
61  
62  
-
-
K11 85  
K12 86  
PD14  
PD15  
I/O FTf  
I/O FTf  
-
-
-
-
TIM4_CH4,  
FMPI2C1_SDA, FMC_D1,  
EVENTOUT  
-
-
-
-
-
-
J12 87  
J11 88  
PG2  
PG3  
I/O FT  
I/O FT  
-
-
FMC_A12, EVENTOUT  
FMC_A13, EVENTOUT  
-
-
FMC_A14/FMC_BA0,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
J10 89  
H12 90  
H11 91  
H10 92  
PG4  
PG5  
PG6  
PG7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
FMC_A15/FMC_BA1,  
EVENTOUT  
QUADSPI_BK1_NCS,  
DCMI_D12, EVENTOUT  
USART6_CK, FMC_INT,  
DCMI_D13, EVENTOUT  
SPDIFRX_IN2,  
USART6_RTS,  
-
-
-
G11 93  
PG8  
I/O FT  
-
-
FMC_SDCLK, EVENTOUT  
-
-
-
-
-
-
-
-
-
94  
-
VSS  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
F10  
E1 C11 95  
VDDUSB  
TIM3_CH1, TIM8_CH1,  
FMPI2C1_SCL,  
37 63 F1 G12 96  
PC6  
I/O FTf  
-
I2S2_MCK, USART6_TX,  
SDIO_D6, DCMI_D0,  
EVENTOUT  
-
TIM3_CH2, TIM8_CH2,  
FMPI2C1_SDA,  
SPI2_SCK/I2S2_CK,  
I2S3_MCK, SPDIFRX_IN1,  
USART6_RX, SDIO_D7,  
DCMI_D1, EVENTOUT  
38 64 F2 F12 97  
PC7  
PC8  
I/O FTf  
I/O FT  
-
-
-
-
TRACED0, TIM3_CH3,  
TIM8_CH3, UART5_RTS,  
USART6_CK, SDIO_D0,  
DCMI_D2, EVENTOUT  
39 65 F3 F11 98  
DocID027107 Rev 6  
53/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
MCO2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S_CKIN, UART5_CTS,  
QUADSPI_BK1_IO0,  
SDIO_D1, DCMI_D3,  
EVENTOUT  
40 66 D1 E11 99  
PC9  
I/O FT  
-
-
MCO1, TIM1_CH1,  
I2C3_SCL, USART1_CK,  
OTG_FS_SOF,  
41 67 E2 E12 100  
PA8  
PA9  
I/O FT  
I/O FT  
-
-
-
EVENTOUT  
TIM1_CH2, I2C3_SMBA,  
SPI2_SCK/I2S2_CK,  
SAI1_SD_B, USART1_TX,  
DCMI_D0, EVENTOUT  
42 68 F4 D12 101  
OTG_FS_VBUS  
TIM1_CH3, USART1_RX,  
OTG_FS_ID, DCMI_D1,  
EVENTOUT  
43 69 E3 D11 102  
44 70 C1 C12 103  
45 71 E4 B12 104  
PA10  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH4, USART1_CTS,  
CAN1_RX, OTG_FS_DM,  
EVENTOUT  
PA11(1)  
PA12(1)  
TIM1_ETR, USART1_RTS,  
SAI2_FS_B, CAN1_TX,  
OTG_FS_DP, EVENTOUT  
-
-
-
-
JTMS-SWDIO,  
EVENTOUT  
46 72 D2 A12 105 PA13(JTMS-SWDIO) I/O FT  
-
73 C2 G9 106  
VCAP_2  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
47 74 B1 G10 107  
48 75 A1 F9 108  
VDD  
JTCK-SWCLK,  
EVENTOUT  
49 76 C3 A11 109 PA14(JTCK-SWCLK) I/O FT  
-
-
JTDI,  
TIM2_CH1/TIM2_ETR,  
HDMI_CEC,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
UART4_RTS, EVENTOUT  
50 77 B2 A10 110  
PA15(JTDI)  
I/O FT  
-
-
54/202  
DocID027107 Rev 6  
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
SPI3_SCK/I2S3_CK,  
USART3_TX, UART4_TX,  
QUADSPI_BK1_IO1,  
SDIO_D2, DCMI_D8,  
EVENTOUT  
51 78 D3 B11 111  
52 79 D4 B10 112  
53 80 A2 C10 113  
PC10  
PC11  
I/O FT  
I/O FT  
-
-
-
-
SPI3_MISO, USART3_RX,  
UART4_RX,  
QUADSPI_BK2_NCS,  
SDIO_D3, DCMI_D4,  
EVENTOUT  
I2C2_SDA,  
SPI3_MOSI/I2S3_SD,  
USART3_CK, UART5_TX,  
SDIO_CK, DCMI_D9,  
EVENTOUT  
PC12  
PD0  
I/O FT  
I/O FT  
-
-
-
-
SPI4_MISO,  
SPI3_MOSI/I2S3_SD,  
CAN1_RX, FMC_D2,  
EVENTOUT  
-
-
81 B3 E10 114  
82 C4 D10 115  
SPI2_NSS/I2S2_WS,  
CAN1_TX, FMC_D3,  
EVENTOUT  
PD1  
PD2  
I/O FT  
I/O FT  
-
-
-
-
TIM3_ETR, UART5_RX,  
SDIO_CMD, DCMI_D11,  
EVENTOUT  
54 83 D5 E9 116  
TRACED1,  
SPI2_SCK/I2S2_CK,  
USART2_CTS,  
QUADSPI_CLK,  
FMC_CLK, DCMI_D5,  
EVENTOUT  
-
84  
-
D9 117  
PD3  
I/O FT  
-
-
USART2_RTS, FMC_NOE,  
EVENTOUT  
-
-
85 A3 C9 118  
PD4  
PD5  
I/O FT  
I/O FT  
-
-
-
-
USART2_TX, FMC_NWE,  
EVENTOUT  
86  
-
B9 119  
-
-
-
-
-
-
E7 120  
F7 121  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DocID027107 Rev 6  
55/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
SPI3_MOSI/I2S3_SD,  
SAI1_SD_A, USART2_RX,  
FMC_NWAIT, DCMI_D10,  
EVENTOUT  
-
-
87 B4 A8 122  
88 A4 A9 123  
PD6  
PD7  
I/O FT  
I/O FT  
-
-
-
-
USART2_CK,  
SPDIFRX_IN0, FMC_NE1,  
EVENTOUT  
SPDIFRX_IN3,  
USART6_RX,  
QUADSPI_BK2_IO2,  
SAI2_FS_B,  
-
-
-
E8 124  
PG9  
I/O FT  
-
-
FMC_NE2/FMC_NCE3,  
DCMI_VSYNC,  
EVENTOUT  
SAI2_SD_B, FMC_NE3,  
DCMI_D2, EVENTOUT  
-
-
-
-
-
-
D8 125  
C8 126  
PG10  
PG11  
I/O FT  
I/O FT  
-
-
-
-
SPI4_SCK, SPDIFRX_IN0,  
DCMI_D3, EVENTOUT  
SPI4_MISO,  
SPDIFRX_IN1,  
USART6_RTS, FMC_NE4,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
B8 127  
D7 128  
C7 129  
PG12  
PG13  
PG14  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TRACED2, SPI4_MOSI,  
USART6_CTS, FMC_A24,  
EVENTOUT  
TRACED3, SPI4_NSS,  
USART6_TX,  
QUADSPI_BK2_IO3,  
FMC_A25, EVENTOUT  
-
-
-
-
-
-
-
130  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
F6 131  
USART6_CTS,  
FMC_SDNCAS,  
-
-
-
B7 132  
PG15  
I/O FT  
-
-
DCMI_D13, EVENTOUT  
JTDO/TRACESWO,  
TIM2_CH2, I2C2_SDA,  
SPI1_SCK/I2S1_CK,  
SPI3_SCK/I2S3_CK,  
EVENTOUT  
PB3(JTDO/TRACES  
WO)  
55 89 A5 A7 133  
I/O FT  
-
-
56/202  
DocID027107 Rev 6  
STM32F446xC/E  
Pin Number  
Pinout and pin description  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
NJTRST, TIM3_CH1,  
I2C3_SDA, SPI1_MISO,  
SPI3_MISO,  
SPI2_NSS/I2S2_WS,  
EVENTOUT  
56 90 B5 A6 134  
PB4(NJTRST)  
I/O FT  
-
-
-
-
TIM3_CH2, I2C1_SMBA,  
SPI1_MOSI/I2S1_SD,  
SPI3_MOSI/I2S3_SD,  
CAN2_RX,  
57 91 A6 B6 135  
PB5  
I/O FT  
OTG_HS_ULPI_D7,  
FMC_SDCKE1,  
DCMI_D10, EVENTOUT  
TIM4_CH1, HDMI_CEC,  
I2C1_SCL, USART1_TX,  
CAN2_TX,  
QUADSPI_BK1_NCS,  
FMC_SDNE1, DCMI_D5,  
EVENTOUT  
58 92 C5 C6 136  
PB6  
I/O FT  
-
-
TIM4_CH2, I2C1_SDA,  
USART1_RX,  
59 93 B6 D6 137  
60 94 A7 D5 138  
61 95 C6 C5 139  
PB7  
BOOT0  
PB8  
I/O FT  
-
-
-
SPDIFRX_IN0, FMC_NL,  
DCMI_VSYNC,  
-
VPP  
-
EVENTOUT  
I
B
-
TIM2_CH1/TIM2_ETR,  
TIM4_CH3, TIM10_CH1,  
I2C1_SCL, CAN1_RX,  
SDIO_D4, DCMI_D6,  
EVENTOUT  
I/O FT  
TIM2_CH2, TIM4_CH4,  
TIM11_CH1, I2C1_SDA,  
SPI2_NSS/I2S2_WS,  
SAI1_FS_B, CAN1_TX,  
SDIO_D5, DCMI_D7,  
EVENTOUT  
62 96 C7 B5 140  
PB9  
I/O FT  
-
-
TIM4_ETR,  
SAI2_MCLK_A,  
FMC_NBL0, DCMI_D2,  
EVENTOUT  
-
-
97  
98  
-
-
A5 141  
A4 142  
PE0  
PE1  
I/O FT  
I/O FT  
-
-
-
-
FMC_NBL1, DCMI_D3,  
EVENTOUT  
DocID027107 Rev 6  
57/202  
66  
Pinout and pin description  
STM32F446xC/E  
Table 10. STM32F446xx pin and ball descriptions (continued)  
Pin Number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
63 99 B7 E6  
-
VSS  
PDR_ON  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B8 E5 143  
64 100 A8 F5 144  
1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB  
58/202  
DocID027107 Rev 6  
Table 11. Alternate function  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
TIM2_CH1/  
TIM2_ETR  
USART2_  
CTS  
UART4_  
TX  
EVENT  
OUT  
PA0  
PA1  
-
-
TIM5_CH1  
TIM5_CH2  
TIM8_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_  
RTS  
UART4_  
RX  
QUADSPI_  
BK1_IO3  
SAI2_  
MCLK_B  
EVENT  
OUT  
TIM2_CH2  
USART2_  
TX  
SAI2_  
SCK_B  
EVENT  
OUT  
PA2  
PA3  
-
-
TIM2_CH3  
TIM2_CH4  
TIM5_CH3  
TIM5_CH4  
TIM9_CH1  
TIM9_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_  
FS_A  
USART2_  
RX  
OTG_HS_  
ULPI_D0  
EVENT  
OUT  
-
-
SPI3_NSS  
/
I2S3_WS  
SPI1_NSS/I  
2S1_WS  
USART2_  
CK  
OTG_HS_  
SOF  
DCMI_  
HSYNC  
EVENT  
OUT  
PA4  
-
-
-
-
-
-
-
-
-
TIM2_CH1/  
TIM2_ETR  
TIM8_  
CH1N  
SPI1_SCK/I  
2S1_CK  
OTG_HS_  
ULPI_CK  
EVENT  
OUT  
PA5  
PA6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
BKIN  
TIM8_  
BKIN  
I2S2_  
MCK  
DCMI_  
PIXCLK  
EVENT  
OUT  
TIM3_CH1  
SPI1_MISO  
TIM13_CH1  
-
-
SPI1_MOSI  
TIM1_  
CH1N  
TIM8_  
CH1N  
FMC_  
SDNWE  
EVENT  
OUT  
PA7  
-
TIM3_CH2  
-
/
-
-
-
-
TIM14_CH1  
-
-
-
I2S1_SD  
Port A  
I2C3_  
SCL  
USART1_  
CK  
OTG_FS_  
SOF  
EVENT  
OUT  
PA8  
PA9  
MCO1  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_  
SMBA  
SPI2_SCK  
/I2S2_CK  
SAI1_  
SD_B  
USART1_  
TX  
EVENT  
OUT  
-
-
-
-
-
-
DCMI_D0  
USART1_  
RX  
OTG_FS_  
ID  
EVENT  
OUT  
PA10  
PA11  
PA12  
PA13  
PA14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D1  
USART1_  
CTS  
OTG_FS_  
DM  
EVENT  
OUT  
CAN1_RX  
-
-
-
-
USART1_  
RTS  
SAI2_  
FS_B  
OTG_FS_  
DP  
EVENT  
OUT  
CAN1_TX  
JTMS-  
SWDIO  
EVENT  
OUT  
-
-
-
-
-
-
-
-
JTCK-  
SWCLK  
EVENT  
OUT  
-
SPI3_  
NSS/  
I2S3_WS  
TIM2_CH1/  
TIM2_ETR  
HDMI_  
CEC  
SPI1_NSS/  
I2S1_WS  
UART4_RT  
S
EVENT  
OUT  
PA15  
JTDI  
-
-
-
-
-
-
-
-
-
 
 
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
SPI3_MOS  
I/  
I2S3_SD  
TIM8_  
CH2N  
UART4_  
CTS  
OTG_HS_  
ULPI_D1  
EVENT  
OUT  
PB0  
PB1  
PB2  
-
-
TIM1_CH2N TIM3_CH3  
TIM1_CH3N TIM3_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
SDIO_D1  
SDIO_D2  
SDIO_CK  
-
-
-
-
-
-
TIM8_  
CH3N  
OTG_HS_  
ULPI_D2  
EVENT  
OUT  
-
-
-
SPI3_MOS  
I/  
I2S3_SD  
SAI1_  
SD_A  
QUADSPI_  
CLK  
OTG_HS_  
ULPI_D4  
EVENT  
OUT  
-
TIM2_CH4  
-
-
JTDO/  
SPI3_SCK  
I2C2_  
SDA  
SPI1_SCK  
/I2S1_CK  
EVENT  
OUT  
PB3 TRACES TIM2_CH2  
WO  
-
-
-
-
/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2S3_CK  
I2C3_  
SDA  
SPI3_  
MISO  
SPI2_NSS/  
I2S2_WS  
EVENT  
OUT  
PB4  
PB5  
NJTRST  
-
-
-
TIM3_CH1  
TIM3_CH2  
SPI1_MISO  
-
SPI3_  
MOSI/  
I2S3_SD  
I2C1_  
SMBA  
SPI1_MOSI  
/I2S1_SD  
OTG_HS_  
ULPI_D7  
FMC_  
SDCKE1  
DCMI_  
D10  
EVENT  
OUT  
-
CAN2_RX  
HDMI_  
CEC  
I2C1_  
SCL  
USART1_  
TX  
QUADSPI_  
BK1_NCS  
FMC_  
SDNE1  
EVENT  
OUT  
PB6  
PB7  
PB8  
PB9  
-
-
-
-
-
-
-
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
CAN2_TX  
-
-
-
-
-
DCMI_D5  
-
-
-
-
-
I2C1_  
SDA  
USART1_  
RX  
SPDIF_  
RX0  
DCMI_  
VSYNC  
EVENT  
OUT  
-
-
-
-
-
FMC_NL  
SDIO_D4  
SDIO_D5  
-
Port B  
TIM2_CH1/  
TIM2_ETR  
TIM10_  
CH1  
I2C1_  
SCL  
EVENT  
OUT  
-
-
-
-
-
CAN1_RX  
CAN1_TX  
-
DCMI_D6  
DCMI_D7  
-
TIM2_  
CH2  
TIM11_  
CH1  
I2C1_  
SDA  
SPI2_NSS/  
I2S2_WS  
SAI1_  
FS_B  
EVENT  
OUT  
I2C2_  
SCL  
SPI2_SCK/  
I2S2_CK  
SAI1_  
SCK_A  
USART3_  
TX  
OTG_HS_  
ULPI_D3  
EVENT  
OUT  
PB10  
PB11  
TIM2_CH3  
TIM2_CH4  
-
-
I2C2_  
SDA  
USART3_  
RX  
SAI2_  
SD_A  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_  
SMBA  
SPI2_NSS/  
I2S2_WS  
SAI1_  
SCK_B  
USART3_  
CK  
OTG_HS_  
ULPI_D5  
OTG_  
HS_ID  
EVENT  
OUT  
PB12  
TIM1_BKIN  
-
-
-
CAN2_RX  
SPI2_SCK/  
I2S2_CK  
USART3_  
CTS  
OTG_HS_  
ULPI_D6  
EVENT  
OUT  
PB13  
PB14  
PB15  
-
-
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
-
-
-
-
-
-
-
-
-
-
-
CAN2_TX  
TIM12_CH1  
TIM12_CH2  
-
-
-
-
-
-
-
-
-
-
TIM8_  
CH2N  
USART3_  
RTS  
OTG_  
HS_DM  
EVENT  
OUT  
SPI2_MISO  
-
-
RTC_  
REFIN  
TIM8_  
CH3N  
SPI2_MOSI  
/I2S2_SD  
OTG_  
HS_DP  
EVENT  
OUT  
-
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
SAI1_  
MCLK_B  
OTG_HS_  
ULPI_STP  
FMC_  
SDNWE  
EVENT  
OUT  
PC0  
PC1  
PC2  
PC3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_MOS  
SPI3_MOSI  
/I2S3_SD  
SAI1_  
SD_A  
EVENT  
OUT  
I
-
-
/I2S2_SD  
OTG_HS_  
ULPI_DIR  
FMC_  
SDNE0  
EVENT  
OUT  
SPI2_MISO  
-
-
-
-
SPI2_MOSI  
OTG_HS_  
ULPI_NXT  
FMC_  
SDCKE0  
EVENT  
OUT  
/
I2S2_SD  
SPDIF_  
RX2  
FMC_  
SDNE0  
EVENT  
OUT  
PC4  
PC5  
-
-
-
-
-
-
-
-
-
-
I2S1_MCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_  
RX  
SPDIF_  
RX3  
FMC_  
SDCKE0  
EVENT  
OUT  
-
FMPI2C1  
_SCL  
USART6_T  
X
EVENT  
OUT  
-
-
-
-
-
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TIM8_CH1  
TIM8_CH2  
TIM8_CH3  
TIM8_CH4  
I2S2_MCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
SDIO_D6  
SDIO_D7  
SDIO_D0  
SDIO_D1  
DCMI_D0  
DCMI_D1  
DCMI_D2  
DCMI_D3  
-
-
-
-
PC6  
PC7  
PC8  
PC9  
FMPI2C1 SPI2_SCK/  
_SDA  
SPDIF_  
RX1  
USART6_R  
X
EVENT  
OUT  
I2S3_MCK  
I2S2_CK  
Port C  
TRACE  
D0  
UART5_  
RTS  
USART6_C  
K
EVENT  
OUT  
-
-
-
-
I2C3_  
SDA  
UART5_  
CTS  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
MCO2  
I2S_CKIN  
-
SPI3_SCK  
USART3_  
TX  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
PC10  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/
UART4_TX  
UART4_RX  
UART5_TX  
-
-
-
-
-
-
SDIO_D2  
SDIO_D3  
SDIO_CK  
DCMI_D8  
DCMI_D4  
DCMI_D9  
-
-
-
I2S3_CK  
SPI3_  
MISO  
USART3_  
RX  
QUADSPI_  
BK2_NCS  
EVENT  
OUT  
SPI3_  
MOSI/  
I2S3_SD  
I2C2_  
SDA  
USART3_  
CK  
EVENT  
OUT  
-
EVENT  
OUT  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
SPI3_  
MOSI/  
I2S3_SD  
EVENT  
OUT  
PD0  
-
-
-
-
-
SPI4_MISO  
-
-
CAN1_RX  
-
-
FMC_D2  
-
-
-
SPI2_NSS/  
I2S2_WS  
EVENT  
OUT  
PD1  
PD2  
PD3  
PD4  
PD5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_TX  
-
-
-
-
-
-
-
-
-
-
-
FMC_D3  
SDIO_CMD  
FMC_CLK  
FMC_NOE  
FMC_NWE  
-
-
-
-
-
DCMI_  
D11  
EVENT  
OUT  
TIM3_ETR  
-
UART5_RX  
-
TRACE  
D1  
SPI2_SCK/  
I2S2_CK  
USART2_  
CTS  
QUADSPI_  
CLK  
DCMI_  
D5  
EVENT  
OUT  
-
-
-
-
-
-
USART2_  
RTS  
EVENT  
OUT  
-
-
-
-
-
-
-
-
USART2_  
TX  
EVENT  
OUT  
SPI3_  
MOSI/  
I2S3_SD  
SAI1_  
SD_A  
USART2_  
RX  
FMC_  
NWAIT  
DCMI_  
D10  
EVENT  
OUT  
PD6  
-
-
-
-
-
-
-
-
-
-
USART2_  
CK  
SPDIF_  
RX0  
EVENT  
OUT  
PD7  
PD8  
PD9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NE1  
FMC_D13  
FMC_D14  
FMC_D15  
FMC_A16  
FMC_A17  
FMC_A18  
FMC_D0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port D  
USART3_  
TX  
SPDIF_  
RX1  
EVENT  
OUT  
-
-
USART3_  
RX  
EVENT  
OUT  
-
-
-
-
-
-
-
USART3_  
CK  
EVENT  
OUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
FMPI2C1  
_SMBA  
USART3_  
CTS  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
-
SAI2_SD_A  
FMPI2C1  
_SCL  
USART3_  
RTS  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
SAI2_FS_A  
FMPI2C1  
_SDA  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
-
-
-
SAI2_SCK_A  
FMPI2C1  
_SCL  
SAI2_  
SCK_A  
EVENT  
OUT  
-
-
-
-
FMPI2C1  
_SDA  
EVENT  
OUT  
-
FMC_D1  
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
SAI2_  
MCLK_A  
FMC_  
NBL0  
EVENT  
OUT  
PE0  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PE8  
PE9  
-
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D2  
-
-
-
-
-
-
-
-
-
-
-
FMC_  
NBL1  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D3  
TRACE  
CLK  
SAI1_  
MCLK_A  
QUADSPI_  
BK1_IO2  
EVENT  
OUT  
-
-
SPI4_SCK  
-
-
-
-
-
-
FMC_A23  
FMC_A19  
FMC_A20  
FMC_A21  
FMC_A22  
FMC_D4  
FMC_D5  
FMC_D6  
FMC_D7  
-
TRACE  
D0  
SAI1_  
SD_B  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACE  
D1  
SAI1_  
FS_A  
EVENT  
OUT  
-
-
SPI4_NSS  
-
DCMI_D4  
TRACE  
D2  
SAI1_  
SCK_A  
EVENT  
OUT  
-
TIM9_CH1  
SPI4_MISO  
-
DCMI_D6  
TRACE  
D3  
SAI1_  
SD_A  
EVENT  
OUT  
-
TIM9_CH2  
SPI4_MOSI  
-
DCMI_D7  
QUADSPI_  
BK2_IO0  
EVENT  
OUT  
-
-
-
-
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
-
-
-
-
-
-
-
-
-
-
-
-
UART5_RX  
-
-
-
-
Port E  
QUADSPI_  
BK2_IO1  
EVENT  
OUT  
UART5_TX  
QUADSPI_  
BK2_IO2  
EVENT  
OUT  
-
-
QUADSPI_  
BK2_IO3  
EVENT  
OUT  
PE10  
PE11  
SAI2_  
SD_B  
EVENT  
OUT  
-
TIM1_CH2  
-
-
-
SPI4_NSS  
-
-
-
-
-
FMC_D8  
-
-
SAI2_  
SCK_B  
EVENT  
OUT  
PE12  
PE13  
PE14  
PE15  
-
-
-
-
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
-
-
SPI4_SCK  
SPI4_MISO  
SPI4_MOSI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D9  
FMC_D10  
FMC_D11  
FMC_D12  
-
-
-
-
-
-
-
-
SAI2_  
FS_B  
EVENT  
OUT  
SAI2_  
MCLK_B  
EVENT  
OUT  
EVENT  
OUT  
-
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
I2C2_  
SDA  
EVENT  
OUT  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
PF8  
PF9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_  
SCL  
EVENT  
OUT  
FMC_A1  
I2C2_  
SMBA  
EVENT  
OUT  
FMC_A2  
EVENT  
OUT  
-
FMC_A3  
-
-
-
-
EVENT  
OUT  
-
FMC_A4  
EVENT  
OUT  
-
FMC_A5  
TIM10_  
CH1  
SAI1_  
SD_B  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
-
-
-
-
-
TIM11_  
CH1  
SAI1_  
MCLK_B  
QUADSPI_  
BK1_IO2  
EVENT  
OUT  
-
Port F  
SAI1_  
SCK_B  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
TIM13_CH1  
SAI1_  
FS_B  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
-
TIM14_CH1  
DCMI_  
D11  
EVENT  
OUT  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_  
SDNRAS  
DCMI_  
D12  
EVENT  
OUT  
-
SAI2_SD_B  
EVENT  
OUT  
-
-
-
-
-
FMC_A6  
FMC_A7  
FMC_A8  
FMC_A9  
-
-
-
-
FMPI2C1  
_SMBA  
EVENT  
OUT  
FMPI2C1  
_SCL  
EVENT  
OUT  
FMPI2C1  
_SDA  
EVENT  
OUT  
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
EVENT  
OUT  
EVENT  
OUT  
FMC_A14/  
FMC_BA0  
EVENT  
OUT  
FMC_A15/  
FMC_BA1  
EVENT  
OUT  
QUADSPI_  
BK1_NCS  
DCMI_  
D12  
EVENT  
OUT  
-
USART6_C  
K
DCMI_  
D13  
EVENT  
OUT  
-
FMC_INT  
Port G  
SPDIFRX_ USART6_R  
IN2 TS  
FMC_  
SDCLK  
EVENT  
OUT  
-
-
SPDIFRX_ USART6_R QUADSPI_  
IN3  
FMC_NE2/  
FMC_NCE3 VSYNC  
DCMI_  
EVENT  
OUT  
SAI2_FS_B  
SAI2_SD_B  
(1)  
X
BK2_IO2  
EVENT  
OUT  
-
-
-
FMC_NE3  
-
DCMI_D2  
SPI4_  
SCK  
SPDIFRX_  
IN0  
EVENT  
OUT  
PG11  
PG12  
PG13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D3  
-
-
-
SPI4_  
MISO  
SPDIFRX_ USART6_R  
IN1  
EVENT  
OUT  
FMC_NE4  
FMC_A24  
-
-
TS  
TRACE  
D2  
SPI4_  
MOSI  
USART6_C  
TS  
EVENT  
OUT  
-
TRACE  
D3  
SPI4_  
NSS  
USART6_T QUADSPI_  
EVENT  
OUT  
PG14  
PG15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A25  
-
-
-
X
BK2_IO3  
USART6_C  
TS  
FMC_  
SDNCAS  
DCMI_  
D13  
EVENT  
OUT  
-
-
-
Table 11. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
SAI2/  
AF11  
AF12  
AF13  
DCMI  
AF14  
AF15  
SYS  
SPI2/3/  
USART1/  
2/3/UART  
5/SPDIFR  
X
SAI/  
CAN1/2  
Port  
FMC/  
SDIO/  
OTG2_FS  
TIM8/9/  
10/11/  
CEC  
I2C1/2/3 SPI1/2/3/ SPI2/3/4/  
/4/CEC  
USART6/ TIM12/13/ QUADSPI/  
UART4/5/ 14/ OTG2_HS/  
SPDIFRX QUADSPI OTG1_FS  
TIM1/2  
TIM3/4/5  
OTG1_FS  
-
4
SAI1  
EVENT  
OUT  
PH0  
PH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port H  
EVENT  
OUT  
1.  
The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.  
STM32F446xC/E  
Memory mapping  
5
Memory mapping  
The memory map is shown in Figure 15  
Figure 15. Memory map  
5HVHUYHG  
ꢉ[(ꢉꢄꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[))))ꢈ))))  
&RUWH[ꢒ0ꢂꢈLQWHUQDOꢈ  
SHULSKHUDOV  
ꢉ[(ꢉꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[(ꢉꢉ)ꢈ))))  
ꢉ[ꢃꢉꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[')))ꢈ))))  
$+%ꢀ  
5HVHUYHG  
ꢉ[ꢅꢉꢉꢃꢈꢉ&ꢉꢉꢈꢒꢈꢉ[ꢅ)))ꢈ))))  
ꢉ[ꢅꢉꢉꢃꢈꢉ%))  
$+%ꢇ  
ꢉ[))))ꢈ))))  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢆ  
&RUWH[ꢒ0ꢂ  
,QWHUQDOꢈ  
ꢉ[ꢅꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢁꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢂ)))ꢈ))))  
ꢉ[ꢂꢉꢉꢆꢈ))))  
5HVHUYHG  
SHULSKHUDOV  
ꢉ[(ꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[')))ꢈ))))  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢃ  
)0&  
ꢉ['ꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[&)))ꢈ))))  
$+%ꢄ  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢅ  
)0&ꢋ4XDG63,  
ꢉ[$ꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢊ)))ꢈ))))  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢂ  
)0&ꢈEDQNꢈꢀꢈ  
DQGꢈ4XDG63,  
ꢉ[ꢂꢉꢉꢇꢈꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢄꢈꢃ&ꢉꢉꢈꢒꢈꢉ[ꢂꢉꢉꢄꢈ))))  
5HVHUYHG  
ꢉ[ꢂꢉꢉꢄꢈꢃ%))  
ꢉ[ꢁꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢆ)))ꢈ))))  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢀ  
)0&ꢈEDQNꢈꢄꢈ  
ꢉ[ꢃꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢅ)))ꢈ))))  
$3%ꢇ  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢇ  
3HULSKHUDOV  
ꢉ[ꢂꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢀ)))ꢈ))))  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢄ  
65$0  
5HVHUYHG  
5HVHUYHG  
ꢉ[ꢇꢉꢉꢀꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢀ)))ꢈ))))  
ꢉ[ꢇꢉꢉꢇꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢇꢉꢉꢇꢈ))))  
ꢉ[ꢇꢉꢉꢄꢈ&ꢉꢉꢉꢈꢒꢈꢉ[ꢇꢉꢉꢄꢈ))))  
ꢉ[ꢂꢉꢉꢄꢈꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢉꢈꢁꢉꢉꢉꢈꢒꢈꢉ[ꢂꢉꢉꢉꢈ))))  
ꢉ[ꢂꢉꢉꢉꢈꢆ)))  
ꢉ[ꢇꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢄ)))ꢈ))))  
5HVHUYHG  
65$0ꢈꢍꢄꢃꢈ.%ꢈDOLDVHG  
%\ꢈELWꢒEDQGLQJ  
65$0ꢈꢍꢄꢄꢇꢈ.%ꢈDOLDVHG  
%\ꢈELWꢒEDQGLQJ  
ꢅꢄꢇꢒ0E\WH  
%ORFNꢈꢉ  
65$0  
ꢉ[ꢇꢉꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢇꢉꢉꢄꢈ%)))  
ꢉ[ꢉꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢄ)))ꢈ&ꢉꢉꢁꢈꢒꢈꢉ[ꢄ)))ꢈ))))  
ꢉ[ꢄ)))ꢈ&ꢉꢉꢉꢈꢒꢈꢉ[ꢄ)))ꢈ&ꢉꢉ)  
5HVHUYHG  
2SWLRQꢈ%\WHV  
5HVHUYHG  
ꢉ[ꢄ)))ꢈꢆ$ꢄꢉꢈꢒꢈꢉ[ꢄ)))ꢈꢆ)))  
ꢉ[ꢄ)))ꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢄ)))ꢈꢆ$ꢉ)  
ꢉ[ꢄ))(ꢈ&ꢉꢉꢁꢈꢒꢈꢉ[ꢄ))(ꢈ))))  
ꢉ[ꢄ))(ꢈ&ꢉꢉꢉꢈꢒꢈꢉ[ꢄ))(ꢈ&ꢉꢉ)  
6\VWHPꢈPHPRU\  
5HVHUYHG  
2SWLRQꢈE\WHV  
$3%ꢄ  
5HVHUYHG  
ꢉ[ꢄꢉꢉꢄꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢄ))(ꢈ%)))  
ꢉ[ꢄꢉꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢄꢉꢉꢉꢈ))))  
5HVHUYHG  
5HVHUYHG  
)ODVKꢈPHPRU\  
5HVHUYHG  
ꢉ[ꢉꢁꢇꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢉ)))ꢈ))))  
ꢉ[ꢉꢁꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢉꢁꢄ)ꢈ))))ꢈꢈ  
ꢉ[ꢉꢉꢇꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢉꢆ))ꢈ))))  
$OLDVHGꢈWRꢈ)ODVKꢐꢈV\VWHP  
PHPRU\ꢈRUꢈ65$0ꢈGHSHQGLQJ  
RQꢈWKHꢈ%227ꢈSLQV  
ꢉ[ꢂꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢉꢉꢉꢉꢈꢉꢉꢉꢉꢈꢒꢈꢉ[ꢉꢉꢄ)ꢈ))))  
06ꢀꢀꢁꢂꢄ9ꢄ  
DocID027107 Rev 6  
67/202  
71  
 
 
 
Memory mapping  
STM32F446xC/E  
(1)  
Table 12. STM32F446xC/E register boundary addresses  
Bus  
Boundary address  
Peripheral  
-
0xE00F FFFF - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xD000 0000 - 0xDFFF FFFF  
0xC000 0000 - 0xCFFF FFFF  
0xA000 2000 - 0x0xBFFF FFFF  
0xA000 1000 - 0x0xA000 1FFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x0x7FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00- 0x5FFF FFFF  
0x5006 0800- 0x500F 07FF  
0x5005 0400 - 0x5006 07FF  
0x5005 0000 - 0x5005 03FF  
0x5004 0000- 0x5004 FFFF  
0x5000 0000 - 0X5003 FFFF  
Reserved  
Cortex-M4  
Cortex-M4 internal peripherals  
FMC bank 6  
FMC bank 5  
Reserved  
QuadSPI control register  
FMC control register  
QuadSPI  
AHB3  
FMC bank 3  
Reserved  
FMC bank 1  
Reserved  
-
Reserved  
Reserved  
AHB2  
DCMI  
Reserved  
USB OTG FS  
68/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Memory mapping  
(1)  
Table 12. STM32F446xC/E register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
-
0x4008 0000- 0x4FFF FFFF  
0x4004 0000 - 0x4007 FFFF  
0x4002 BC00- 0x4003 FFFF  
0x4002 B000 - 0x4002 BBFF  
0x4002 9400 - 0x4002 AFFF  
0x4002 9000 - 0x4002 93FF  
0x4002 8C00 - 0x4002 8FFF  
0x4002 8800 - 0x4002 8BFF  
0x4002 8400 - 0x4002 87FF  
0x4002 8000 - 0x4002 83FF  
0x4002 6800 - 0x4002 7FFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0X4002 5000 - 0X4002 5FFF  
0x4002 4000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0X4002 3400 - 0X4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2C00 - 0x4002 2FFF  
0x4002 2800 - 0x4002 2BFF  
0x4002 2400 - 0x4002 27FF  
0x4002 2000 - 0x4002 23FF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0X4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
USB OTG HS  
Reserved  
DMA2  
DMA1  
Reserved  
BKPSRAM  
Flash interface register  
AHB1  
RCC  
Reserved  
CRC  
Reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
DocID027107 Rev 6  
69/202  
71  
Memory mapping  
STM32F446xC/E  
(1)  
Table 12. STM32F446xC/E register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
-
0x4001 6C00- 0x4001 FFFF  
0x4001 6800 - 0x4001 6BFF  
0x4001 5C00 - 0x4001 5FFF  
0x4001 6000 - 0x4001 67FF  
0x4001 5800 - 0x4001 5BFF  
0x4001 5400 - 0x4001 57FF  
0x4001 5000 - 0x4001 53FF  
0x4001 4C00 - 0x4001 4FFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
Reserved  
SAI2  
Reserved  
SAI1  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
APB2  
SYSCFG  
SPI4  
SPI1  
SDIO  
Reserved  
ADC1 - ADC2 - ADC3  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
70/202  
DocID027107 Rev 6  
STM32F446xC/E  
Memory mapping  
(1)  
Table 12. STM32F446xC/E register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
-
0x4000 8000- 0x4000 FFFF  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
DAC  
PWR  
HDMI-CEC  
CAN2  
CAN1  
FMPI2C1  
I2C3  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
SPDIFRX  
SPI3 / I2S3  
SPI2 / I2S2  
Reserved  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
1. The grey color is used for reserved boundary addresses.  
DocID027107 Rev 6  
71/202  
71  
Electrical characteristics  
STM32F446xC/E  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 16.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 17.  
Figure 16. Pin loading conditions  
Figure 17. Pin input voltage  
-#5 PIN  
-#5 PIN  
6
# ꢍ ꢉꢅ P&  
).  
-3ꢄꢆꢅꢄꢄ6ꢃ  
-3ꢄꢆꢅꢄꢅ6ꢃ  
72/202  
DocID027107 Rev 6  
 
 
 
 
 
 
 
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 18. Power supply scheme  
9%$7  
%DFNXSꢈFLUFXLWU\  
9%$7  
ꢄꢌꢃꢅꢈWRꢈꢀꢌꢃ9  
ꢍ26&ꢀꢇ.ꢐ57&ꢐ  
3RZHUꢈ  
VZLWFK  
:DNHXSꢈORJLF  
%DFNXSꢈUHJLVWHUVꢐ  
EDFNXSꢈ5$0ꢏ  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢄ  
9&$3Bꢇ  
.HUQHOꢈORJLFꢈ  
ꢍ&38ꢐꢈGLJLWDOꢈ  
ꢑꢈ5$0ꢏꢈꢈ  
ꢇꢈîꢈꢇꢌꢇꢈ—)  
9''  
9''  
ꢄꢋꢇꢋꢌꢌꢌꢄꢄꢋꢄꢇ  
9ROWDJHꢈ  
UHJXODWRU  
ꢄꢇꢈîꢈꢄꢉꢉꢈQ)  
ꢓꢈꢄꢈîꢈꢂꢌꢆꢈ—)  
966  
ꢄꢋꢇꢋꢌꢌꢌꢄꢄꢋꢄꢇ  
ꢍꢇꢏ  
%<3$66B5(*  
)ODVKꢈPHPRU\  
9''86%  
27*  
)6  
ꢍꢇꢏ  
9''86%  
3+<  
ꢄꢉꢉꢈQ)  
ꢓꢈꢄꢈ—)  
5HVHWꢈ  
FRQWUROOHU  
3'5B21  
9''$  
9''  
95()  
95()ꢓ  
$QDORJꢎ  
5&Vꢐꢈ  
3//ꢐꢌꢌ  
ꢄꢉꢉꢈQ)  
ꢓꢈꢄꢈ—)  
ꢄꢉꢉꢈQ)  
ꢓꢈꢄꢈ—)  
$'&  
95()ꢒ  
966$  
06Yꢀꢀꢉꢆꢇ9ꢄ  
1. VDDA and VSSA must be connected to VDDand VSS, respectively.  
2. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and  
associated DP/DM GPIOs. Its value is independent from the VDD and VDDA values, but must be the last  
supply to be provided and the first to disappear. If VDD is different from VDDUSB and only one on-chip OTG  
PHY is used, the second OTG PHY GPIOs (DP/DM) are still supplied at VDDUSB (3.3V).  
3. VDDUSB is available only on WLCSP81, UFBGA144 and LQFP144 packages. For packages where VDDUSB  
pin is not available, it is internally connected to VDD  
.
4. VCAP_2 pad is not available on LQFP64.  
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
DocID027107 Rev 6  
73/202  
175  
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
6.1.7  
Current consumption measurement  
Figure 19. Current consumption measurement scheme  
,''B9%$7  
9%$7  
,''  
9''  
9''$  
9''86%  
06Yꢀꢃꢅꢅꢆ9ꢄ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,  
Table 14: Current characteristics, and Table 15: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 13. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD,  
VDD–VSS  
–0.3  
4.0  
(1)  
VDDUSB and VBAT  
)
Input voltage on FT & FTf pins(2)  
VSS–0.3 VDD+4.0  
V
Input voltage on TTa pins  
VSS–0.3  
4.0  
4.0  
9.0  
50  
VIN  
Input voltage on any other pin  
V
SS–0.3  
Input voltage on BOOT0 pin  
VSS  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
mV  
-
|VSSX VSS  
|
50  
see Section 6.3.15:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed  
injected current.  
74/202  
DocID027107 Rev 6  
 
 
 
 
 
 
 
STM32F446xC/E  
Symbol  
Electrical characteristics  
Table 14. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
Σ IVDDUSB  
IVDD  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Total current into VDDUSB power line (source)  
240  
- 240  
25  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
Output current sourced by any I/Os and control pin  
Total output current sunk by sum of all I/Os and control pins (2)  
Total output current sunk by sum of all USB I/Os  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT, FTf, RST and B pins  
100  
IVSS  
- 100  
25  
IIO  
- 25  
mA  
120  
ΣIIO  
25  
-120  
–5/+0(3)  
±5(4)  
±25  
IINJ(PIN)  
Injected current on TTa pins  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified  
maximum value.  
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 13 for the maximum allowed input voltage value.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 15. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
125  
°C  
°C  
Maximum junction temperature  
DocID027107 Rev 6  
75/202  
175  
 
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 16. General operating conditions  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max  
Unit  
Power Scale 3 (VOS[1:0] bits in  
PWR_CR register = 0x01),  
Regulator ON, over-drive OFF  
0
-
-
-
-
-
120  
Over-  
drive  
OFF  
144  
168  
168  
180  
Power Scale 2 (VOS[1:0] bits  
in PWR_CR register = 0x10),  
Regulator ON  
0
Over-  
drive  
ON  
fHCLK  
Internal AHB clock frequency  
Over-  
drive  
OFF  
MHz  
Power Scale 1 (VOS[1:0] bits  
in PWR_CR register= 0x11),  
Regulator ON  
0
Over-  
drive  
ON  
Over-drive OFF  
Over-drive ON  
Over-drive OFF  
Over-drive ON  
0
0
0
0
-
-
-
-
42  
45  
84  
90  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
76/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Symbol  
Electrical characteristics  
Table 16. General operating conditions (continued)  
Parameter Min Typ  
Conditions(1)  
Max  
Unit  
VDD  
Standard operating voltage  
-
1.7(2)  
1.7(2)  
-
-
3.6  
Analog operating voltage  
2.4  
3.6  
(ADC limited to 1.2 M samples)  
(3)(4)  
(5)  
VDDA  
Must be the same potential as VDD  
Analog operating voltage  
2.4  
-
(ADC limited to 2.4 M samples)  
VBAT  
Backup operating voltage  
USB supply voltage (supply  
-
1.65  
1.7  
-
-
3.6  
3.6  
USB not used  
VDDUSB voltage for PA11,PA12, PB14  
and PB15 pins)  
USB used  
3
-
3.6  
Power Scale 3 ((VOS[1:0] bits in  
PWR_CR register = 0x01), 120 MHz 1.08 1.14  
HCLK max frequency  
1.20  
V
Power Scale 2 ((VOS[1:0] bits in  
PWR_CR register = 0x10), 144 MHz  
HCLK max frequency with over-drive  
OFF or 168 MHz with over-drive ON  
Regulator ON: 1.2 V internal  
voltage on VCAP_1/VCAP_2 pins  
1.20 1.26  
1.32  
1.40  
V12  
Power Scale 1 ((VOS[1:0] bits in  
PWR_CR register = 0x11), 168 MHz  
1.26 1.32  
HCLK max frequency with over-drive  
OFF or 180 MHz with over-drive ON  
Max frequency 120 MHz  
Max frequency 144 MHz  
Max frequency 168 MHz  
2 V VDD 3.6 V  
1.7 V VDD 2 V  
-
1.10 1.14  
1.20 1.26  
1.26 1.32  
1.20  
1.32  
1.38  
5.5  
Regulator OFF: 1.2 V external  
voltage must be supplied from  
external regulator on  
VCAP_1/VCAP_2 pins(6)  
–0.3  
–0.3  
–0.3  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Input voltage on RST, FTf and  
FT pins(7)  
5.2  
VIN  
V
Input voltage on TTa pins  
V
DDA+0.3  
9
Input voltage on BOOT0 pin  
-
LQFP64  
-
345  
417  
476  
606  
392  
417  
85  
WLCSP81  
-
Power dissipation at TA = 85 °C  
LQFP100  
-
PD  
for suffix 6 or TA = 105 °C for  
mW  
suffix 7(8)  
LQFP 144  
-
UFBGA144 (7x7)  
UFBGA144(10x10)  
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
6 suffix version  
-
-
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for 6 suffix  
version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7 suffix  
version  
Junction temperature range  
7 suffix version  
DocID027107 Rev 6  
77/202  
175  
Electrical characteristics  
STM32F446xC/E  
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.  
2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:  
Internal reset OFF).  
3. When the ADC is used, refer to Table 74: ADC characteristics.  
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
VDDA can be tolerated during power-up and power-down operation.  
6. The over-drive mode is not supported when the internal regulator is OFF.  
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
Table 17. Limitations depending on the operating power supply range  
Maximum Flash  
Maximum HCLK  
memory access  
frequency vs Flash  
Operating  
Possible Flash  
memory  
operations  
powersupply ADC operation frequency with  
I/O operation  
memory wait states  
range  
no wait states  
(fFlashmax  
(1)(2)  
)
168 MHz with 8 wait  
states and over-drive  
OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to Conversion time  
– No I/O  
compensation  
20 MHz(4)  
22 MHz  
24 MHz  
30 MHz  
2.1 V(3)  
up to 1.2 Msps  
180 MHz with 8 wait  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.1 to Conversion time  
2.4 V up to 1.2 Msps  
– No I/O  
compensation  
180 MHz with 7 wait – I/O  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.4 to Conversion time  
2.7 V up to 2.4 Msps  
compensation  
works  
180 MHz with 5 wait – I/O  
states and over-drive  
ON  
32-bit erase and  
program  
operations  
VDD = 2.7 to Conversion time  
3.6 V(5)  
up to 2.4 Msps  
compensation  
works  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:  
Internal reset OFF).  
4. Prefetch is not available.  
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+  
pins will be degraded between 2.7 and 3 V.  
6.3.2  
VCAP_1/VCAP_2 external capacitor  
Stabilization for the main regulator is achieved by connecting external capacitor C  
to the  
EXT  
V
and V  
pin. For packages supporting only 1 V  
pin, the 2 C  
capacitors are  
CAP_1  
CAP_2  
CAP  
EXT  
replaced by a single capacitor. C  
is specified in Table 18.  
EXT  
78/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 20. External capacitor C  
EXT  
&
(65  
5ꢈ/HDN  
06ꢄꢊꢉꢂꢂ9ꢇ  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 18. VCAP_1/VCAP_2 operating conditions  
Symbol  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF  
< 2 Ω  
Capacitance of external capacitor with a  
single VCAP pin available  
CEXT  
ESR  
4.7 µF  
ESR of external capacitor with a single  
VCAP pin available  
< 1 Ω  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
6.3.3  
Operating conditions at power-up / power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 19. Operating conditions at power-up/power-down (regulator ON)  
Symbol  
Parameter  
Min  
Max  
VDD rise time rate  
20  
20  
tVDD  
VDD fall time rate  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 20. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
VCAP_1 and VCAP_2 rise time rate Power-up  
CAP_1 and VCAP_2 fall time rate Power-down  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
tVCAP  
V
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
DocID027107 Rev 6  
79/202  
175  
 
 
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
6.3.5  
Reset and power control block characteristics  
The parameters given in Table 21 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
Table 21. reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
-
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
2.76 2.82  
2.66 2.71  
2.93 2.99  
2.84 3.02  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
V
V
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
V
V
(1)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
Falling edge  
1.60  
1.64  
-
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
Rising edge  
V
(1)  
VPDRhyst  
PDR hysteresis  
-
40  
-
mV  
V
Falling edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
VBOR2  
VBOR3  
Rising edge  
V
Falling edge  
V
Brownout level 2  
threshold  
Rising edge  
V
Falling edge  
V
Brownout level 3  
threshold  
Rising edge  
V
(1)  
VBORhyst  
BOR hysteresis  
-
100  
1.5  
-
mV  
TRSTTEMPO  
POR reset temporization -  
0.5  
3.0  
ms  
(1)(2)  
80/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
Table 21. reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
InRush current on  
voltage regulator power-  
on (POR or wakeup  
from Standby)  
(1)  
IRUSH  
-
-
160  
-
200  
5.4  
mA  
µC  
InRush energy on  
voltage regulator power- VDD = 1.7 V, TA = 105 °C,  
on (POR or wakeup  
from Standby)  
(1)  
ERUSH  
-
IRUSH = 171 mA for 31 µs  
1. Guaranteed based on test during characterization.  
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant  
when first instruction is read by the user application code.  
6.3.6  
Over-drive switching characteristics  
When the over-drive mode switches from enabled to disabled or disabled to enabled, the  
system clock is stalled during the internal voltage set-up.  
The over-drive switching characteristics are given in Table 22. They are sbject to general  
operating conditions for T .  
A
(1)  
Table 22. Over-drive switching characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HSI  
-
45  
-
HSE max for 4 MHz  
and min for 26 MHz  
Over_drive switch  
enable time  
45  
-
100  
Tod_swen  
External HSE  
50 MHz  
-
-
40  
20  
-
-
-
µs  
HSI  
HSE max for 4 MHz  
and min for 26 MHz.  
Over_drive switch  
disable time  
20  
80  
Tod_swdis  
External HSE  
50 MHz  
-
15  
-
1. Guaranteed based on test during characterization.  
6.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 19: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
DocID027107 Rev 6  
81/202  
175  
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted both to f frequency and V range  
HCLK  
DD  
(see Table 17: Limitations depending on the operating power supply range).  
Regulator ON  
The voltage scaling and over-drive mode are adjusted to f  
frequency as follows:  
HCLK  
Scale 3 for f  
120 MHz  
HCLK  
Scale 2 for 120 MHz < f  
Scale 1 for 144 MHz < f  
144 MHz  
HCLK  
HCLK  
PCLK1  
180 MHz. The over-drive is only ON at 180 MHz.  
= f /4, and f = f /2.  
The system clock is HCLK, f  
HCLK  
PCLK2  
HCLK  
External clock frequency is 8 MHz and PLL is ON when f  
is higher than 16 MHz.  
HCLK  
Flash is enabled except if explicitly mentioned as disable.  
The maximum values are obtained for V = 3.6 V and a maximum ambient  
DD  
temperature (T ), and the typical values for T = 25 °C and V = 3.3 V unless  
A
A
DD  
otherwise specified.  
82/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Table 23. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from Flash memory (ART accelerator enabled except prefetch) or RAM  
Max(2)  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
180  
168  
150  
144(6)  
120  
90  
72  
65  
59  
54  
40  
30  
21  
12  
10  
6
83.0(5)  
71.0  
63.6  
58.4  
44.9  
35.3  
25.5  
16.2  
14.41  
11.4  
9.5  
100.0  
95.3  
85.4  
78.8  
62.1  
50.7  
39.2  
28.1  
26.17  
23.1  
20.3  
18.9  
18.1  
59.0  
51.4  
47.8  
44.7  
36.8  
31.8  
26.9  
22.1  
21.24  
18.9  
17.8  
17.23  
16.94  
110.0(5)  
101.0  
100.8  
91.2  
External clock,  
PLL ON,  
73.2  
all peripherals  
enabled(3)(4)  
60.0  
60  
46.8  
30  
36.0  
25  
32.4  
16  
25.2  
HSI, PLL OFF,  
all peripherals  
enabled  
8
3
22.5  
4
2.3  
1.8  
32  
29  
26  
24  
18  
14  
10  
6
8.3  
21.1  
Supply  
2
7.7  
20.5  
IDD  
current in  
RUN mode  
mA  
180  
168  
150  
144(6)  
120  
90  
42.0(5)  
35.5  
31.5  
29.2  
23.3  
19.0  
14.7  
10.7  
9.96  
8.7  
75.0(5)  
55.7  
51.9  
External clock,  
PLL ON,  
48.6  
40.4  
all Peripherals  
disabled(3)  
35.1  
60  
29.9  
30  
24.9  
25  
5
24.02  
21.9  
16  
3
HSI, PLL OFF,  
all peripherals  
disabled(3)  
8
2
8.1  
20.9  
4
1.7  
1.4  
7.64  
7.4  
20.32  
20.03  
2
1. Code and data processing running from SRAM1 using boot pins.  
2. Guaranteed based on test during characterization.  
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
5. Tested in production.  
6. Overdrive OFF  
DocID027107 Rev 6  
83/202  
175  
 
 
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
Table 24. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from Flash memory (ART accelerator enabled with prefetch) or RAM  
Max(2)  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
180  
168(5)  
150  
144(5)  
120  
90  
86  
79  
73  
68  
54  
42  
29  
16  
13  
8
93.0  
85.1  
79.6  
73.5  
59.3  
47.23  
33.7  
20.8  
18.4  
13.8  
10.8  
9.1  
115.0  
111.2  
104.8  
97.3  
79.7  
65.50  
49.5  
34.0  
31.2  
25.0  
21.1  
18.9  
17.8  
75.0  
67.5  
65.8  
61.9  
53.7  
46.0  
36.4  
27.1  
25.40  
21.8  
19.4  
18.10  
17.39  
125.0  
117.7  
111.2  
103.3  
84.7  
70.10  
53.4  
37.4  
34.5  
28.3  
24.2  
22.0  
20.9  
86.0  
72.6  
70.8  
66.8  
58.0  
50.0  
40.1  
30.2  
28.54  
25.0  
22.5  
21.17  
20.50  
External clock,  
PLL ON,  
all peripherals  
enabled(3)(4)  
60  
30  
25  
16  
HSI, PLL OFF,  
all peripherals  
enabled(3)(4)  
8
5
4
3.0  
2.1  
46  
43  
41  
38  
32  
26  
18  
10  
9
Supply  
2
8.1  
IDD  
current in  
RUN mode  
mA  
180  
168  
150  
144(5)  
120  
90  
55.0  
49.6  
48.2  
43.6  
37.3  
30.7  
22.8  
14.9  
13.55  
11.1  
9.5  
External clock,  
PLL ON,  
all Peripherals  
disabled(3)  
60  
30  
25  
16  
5
HSI, PLL OFF,  
all peripherals  
disabled(3)  
8
3
4
2.4  
1.8  
8.34  
7.77  
2
1. Code and data processing running from SRAM1 using boot pins.  
2. Guaranteed based on test during characterization.  
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
5. Overdrive OFF  
84/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
Table 25. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled)  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA=  
25 °C  
TA=85 °C TA=105 °C  
180  
168(4)  
150  
144(4)  
120  
90  
81  
74  
69  
63  
51  
40  
28  
16  
13  
8
89.0  
80.2  
74.9  
69.3  
56.3  
45.32  
33.1  
20.8  
18.4  
13.8  
10.8  
9.1  
110.0  
105.7  
99.5  
92.4  
76.1  
63.19  
48.7  
34.0  
31.2  
25.0  
21.1  
19.0  
17.9  
69.0  
61.9  
60.3  
56.9  
50.2  
43.6  
35.6  
27.0  
25.36  
21.8  
19.4  
18.12  
17.42  
120.0  
112.0  
105.6  
98.1  
81.1  
67.63  
52.6  
37.4  
34.5  
28.2  
24.2  
22.0  
20.9  
79.0  
67.1  
65.4  
61.6  
54.4  
47.5  
39.2  
30.1  
28.47  
24.9  
22.5  
21.17  
20.51  
External clock,  
PLL ON,  
all peripherals  
enabled(2)(3)  
60  
30  
25  
16  
8
5
4
3.0  
2.1  
41  
38  
37  
34  
29  
24  
17  
10  
8
Supply  
External clock,  
PLL ON,  
2
8.1  
IDD  
current in  
RUN mode  
mA  
180  
168  
150  
144(4)  
120  
90  
47.0  
43.2  
41.8  
39.3  
34.3  
28.8  
22.0  
14.8  
13.51  
11.1  
9.5  
all Peripherals  
disabled(2)(3)  
HSI, PLL OFF,  
all peripherals  
disabled(3)  
60  
30  
25  
16  
5
HSI, PLL OFF,  
all Peripherals  
disabled(3)  
8
3
4
2.3  
1.8  
8.35  
7.78  
2
1. Guaranteed based on test during characterization unless otherwise specified.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for  
the analog part.  
4. Overdrive OFF  
DocID027107 Rev 6  
85/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
(1)  
Table 26. Typical and maximum current consumption in Sleep mode  
Max  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
TA = 25  
°C  
TA = 25  
°C  
TA = 25  
°C  
180  
168(2)  
150  
144(2)  
120  
90  
51.2  
46.8  
42.2  
38.6  
29.3  
22.8  
16.3  
10.1  
9.0  
59.00  
53.94  
49.26  
45.37  
35.70  
29.17  
22.41  
16.03  
14.92  
13.10  
12.31  
11.63  
11.23  
77.25  
66.48  
60.84  
55.47  
42.49  
34.78  
27.12  
19.72  
18.41  
15.1  
102.00  
79.40  
73.41  
66.96  
51.46  
43.12  
External  
clock,  
PLL ON,  
Flash on  
Supply  
current in  
Sleep  
mode  
all  
IDD  
peripherals  
enabled  
60  
34.83  
26.86  
25.38  
22.3  
mA  
30  
25  
16  
6.5  
HSI, PLL  
off, Flash  
on  
8
5.2  
13.5  
20.4  
4
4.5  
12.5  
19.3  
2
4.1  
12.0  
18.8  
86/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 26. Typical and maximum current consumption in Sleep mode (continued)  
Max  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
TA = 25  
°C  
TA = 25  
°C  
TA = 25  
°C  
180  
168(2)  
150  
144(2)  
120  
90  
11.36  
10.20  
9.53  
8.90  
7.35  
6.39  
5.28  
4.43  
4.23  
8.3  
17.59  
16.19  
15.59  
14.87  
13.24  
12.40  
11.17  
10.31  
10.12  
13.44  
12.25  
11.60  
11.08  
9.64  
28.2  
22.0  
51.6  
31.8  
21.1  
30.9  
19.7  
28.4  
Flash on  
16.5  
23.3  
15.3  
21.9  
60  
14.1  
20.7  
30  
13.1  
19.6  
25  
12.85  
30.72  
25.16  
24.27  
23.25  
20.95  
19.77  
18.69  
17.66  
17.43  
30.72  
25.16  
24.27  
23.25  
20.95  
19.77  
18.69  
17.66  
17.43  
19.30  
37.20  
28.80  
27.84  
26.28  
23.72  
22.57  
21.32  
20.40  
20.17  
37.20  
28.80  
27.84  
26.28  
23.72  
22.57  
21.32  
20.40  
20.17  
180  
168(2)  
150  
144(2)  
120  
90  
7.3  
6.7  
External  
clock, PLL Deep  
on all Power  
peripherals Down  
Flash in  
6.1  
Supply  
current in  
Sleep  
IDD  
4.7  
mA  
mode  
3.8  
8.80  
disabled  
mode  
60  
2.8  
7.74  
30  
2.0  
6.89  
25  
1.8  
6.70  
180  
168(2)  
150  
144(2)  
120  
90  
8.3  
13.44  
12.25  
11.60  
11.08  
9.64  
7.3  
6.7  
6.1  
Flash in  
STOP  
mode  
4.7  
3.8  
8.80  
60  
2.8  
7.74  
30  
2.0  
6.89  
25  
1.8  
6.70  
DocID027107 Rev 6  
87/202  
175  
Electrical characteristics  
STM32F446xC/E  
(1)  
Table 26. Typical and maximum current consumption in Sleep mode (continued)  
Max  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
TA = 25  
°C  
TA = 25  
°C  
TA = 25  
°C  
16  
8
3.89  
2.45  
1.69  
1.28  
1.0  
4.93  
3.29  
2.56  
2.22  
6.65  
6.93  
6.90  
6.88  
6.7  
11.72  
11.66  
11.60  
11.57  
16.54  
16.48  
16.43  
16.41  
16.5  
18.54  
18.46  
18.40  
18.37  
19.50  
19.45  
19.39  
19.37  
19.5  
Flash on  
4
2
16  
8
Flash in  
Deep  
Power  
Down  
mode  
Supply  
current in  
HSI, PLL  
off, all  
0.9  
IDD  
mA  
Sleep  
mode  
peripherals  
disabled  
4
0.9  
2
0.9  
16  
8
1.0  
Flash in  
STOP  
mode  
0.9  
6.9  
16.5  
19.5  
4
0.9  
6.9  
16.4  
19.4  
2
0.9  
6.9  
16.4  
19.4  
1. Guaranteed based on test during characterization unless otherwise specified.  
2. Overdrive OFF  
88/202  
DocID027107 Rev 6  
STM32F446xC/E  
Electrical characteristics  
Table 27. Typical and maximum current consumptions in Stop mode  
Max  
VDD = 3.6 V  
TA =  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C 25 °C(1) 85 °C 105 °C(1)  
Flash memory in Stop mode, all  
oscillators OFF, no independent 0.234  
watchdog  
1.2  
1
10  
9.5  
8.5  
6
16  
15  
14  
12  
Supply current in  
Stop mode with  
voltage regulator in  
main regulator mode  
Flash memory in Deep power  
down mode, all oscillators OFF, 0.205  
no independent watchdog  
IDD_STOP_NM  
(normal  
Flash memory in Stop mode, all  
mode)  
Supply current in  
Stop mode with  
voltage regulator in  
Low Power regulator  
mode  
oscillators OFF, no independent  
watchdog  
0.15  
0.95  
0.9  
Flash memory in Deep power  
down mode, all oscillators OFF, 0.121  
no independent watchdog  
mA  
Supply current in  
Stop mode with  
voltage regulator in  
main regulator and  
under-drive mode  
Flash memory in Deep power  
down mode, main regulator in  
under-drive mode, all oscillators  
OFF, no independent watchdog  
0.119  
0.4  
3
3
5
5
IDD_STOP_UD  
M(under-  
drive mode)  
Supply current in  
Stop mode with  
voltage regulator in  
Low Power regulator  
and under-drive  
mode  
Flash memory in Deep power  
down mode, Low Power  
regulator in under-drive mode,  
all oscillators OFF, no  
0.055  
0.35  
independent watchdog  
1. Data based on characterization, tested in production.  
DocID027107 Rev 6  
89/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Table 28. Typical and maximum current consumptions in Standby mode  
Typ(1)  
Max(2)  
TA =  
TA =  
TA =  
TA = 25 °C  
Symbol  
Parameter  
Conditions  
25 °C 85 °C 105 °C Unit  
VDD  
1.7 V  
=
VDD  
2.4 V  
=
VDD =  
3.3 V  
VDD = 3.3 V  
Backup SRAM ON, and LSE  
oscillator in low power mode  
2.43  
3.44  
4.12  
7
6
20  
17  
36  
31  
Backup SRAM OFF, RTC ON  
and LSE oscillator in low  
power mode  
1.81  
3.32  
2.57  
2.81  
4.33  
3.59  
3.33  
4.95  
4.16  
Backup SRAM ON, RTC ON  
and LSE oscillator in high  
drive mode  
8
7
21  
18  
37  
32  
Supply  
IDD_STBY current in  
Standby mode  
µA  
Backup SRAM OFF, RTC ON  
and LSE oscillator in high  
drive mode  
Backup SRAM ON, RTC and  
LSE OFF  
2.03  
1.28  
2.73  
1.97  
3.5  
6(3)  
5(3)  
19  
16  
35(3)  
30(3)  
Backup SRAM OFF, RTC  
and LSE OFF  
2.03  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed based on test during characterization unless otherwise specified.  
3. Tested in production.  
90/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
Table 29. Typical and maximum current consumptions in V  
mode  
Max(2)  
BAT  
Typ  
TA =  
85 °C  
TA =  
105 °C  
TA = 25 °C  
Symbol Parameter  
Conditions(1)  
Unit  
VBAT  
=
1.7 V  
VBAT  
=
3.3 V  
VBAT  
2.4 V  
=
VBAT = 3.6 V  
Backup SRAM ON, RTC ON  
and LSE oscillator in low power  
mode  
1.46  
0.72  
2.24  
1.50  
1.62  
1.83  
1.00  
2.64  
1.86  
6
3
-
11  
5
-
Backup SRAM OFF, RTC ON  
0.85  
2.40  
1.64  
and LSE oscillator in low power  
mode  
Backup SRAM ON, RTC ON  
Backup  
and LSE oscillator in high drive  
mode  
domain  
supply  
IDD_VBAT  
µA  
current  
Backup SRAM OFF, RTC ON  
-
-
and LSE oscillator in high drive  
mode  
Backup SRAM ON, RTC and  
LSE OFF  
0.74  
0.05  
0.75  
0.05  
0.78  
0.05  
5
2
10  
4
Backup SRAM OFF, RTC and  
LSE OFF  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed based on test during characterization.  
Figure 21. Typical V  
current consumption  
BAT  
(RTC ON/backup RAM OFF and LSE in low power mode)  
DocID027107 Rev 6  
91/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 22. Typical V  
current consumption  
BAT  
(RTC ON/backup RAM OFF and LSE in high drive mode)  
Additional current consumption  
The MCU is placed under the following conditions:  
All I/O pins are configured in analog mode.  
The Flash memory access time is adjusted to fHCLK frequency.  
The voltage scaling is adjusted to fHCLK frequency as follows:  
Scale 3 for f  
120 MHz,  
HCLK  
Scale 2 for 120 MHz < f  
Scale 1 for 144 MHz < f  
144 MHz  
HCLK  
HCLK  
PCLK1  
180 MHz. The over-drive is only ON at 180 MHz.  
The system clock is HCLK, f  
= f  
/4, and f  
= f  
/2.  
HCLK  
HCLK  
PCLK2  
HSE crystal clock frequency is 8 MHz.  
Flash is enabled except if explicitly mentioned as disable.  
When the regulator is OFF, V12 is provided externally as described in Table 16:  
General operating conditions  
T = 25 °C.  
A
92/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
Table 30. Typical current consumption in Run mode, code with data processing  
running from Flash memory or RAM, regulator ON  
(ART accelerator enabled except prefetch), VDD=1.7 V  
(1)  
Max  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
168  
150  
144  
120  
90  
65.11  
58.31  
53.14  
39.58  
29.99  
20.37  
11.37  
9.65  
70.0  
62.8  
79.7  
73.4  
69.9  
60.7  
45.23  
35.2  
28.4  
17.8  
42.4  
39.4  
36.0  
32.9  
30.0  
24.4  
15.0  
12.57  
90.0  
79.9  
75.3  
71.4  
49.34  
38.2  
33.2  
24.3  
48.5  
43.8  
41.9  
40.8  
36.5  
30.2  
22.0  
19.06  
57.1  
47.2  
All Peripherals  
enabled  
34.70  
25.2  
60  
30  
12.9  
Supply current in  
Run mode from  
VDD supply  
25  
10.9  
IDD  
mA  
168  
150  
144  
120  
90  
29.74  
25.81  
24.57  
17.69  
13.58  
9.41  
32.43  
29.12  
26.61  
22.09  
15.92  
11.05  
6.64  
All Peripherals  
disabled  
60  
30  
5.44  
25  
4.73  
5.72  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
DocID027107 Rev 6  
93/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Table 31. Typical current consumption in Run mode, code with data processing running  
(1)  
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)  
VDD=3.3 V  
VDD=1.7 V  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
IDD12  
IDD  
IDD12  
IDD  
168  
150  
144  
120  
90  
61.72  
51.69  
51.45  
38.94  
29.48  
19.23  
10.41  
8.83  
1.6  
1.5  
1.5  
1.3  
1.1  
1.0  
0.9  
0.8  
1.6  
1.5  
1.5  
1.3  
1.2  
1.0  
0.9  
0.8  
60.15  
55.46  
50.94  
40.66  
28.18  
20.05  
11.26  
9.56  
1.5  
1.4  
1.3  
1.2  
1.0  
0.8  
0.7  
0.6  
1.5  
1.4  
1.3  
1.2  
1.0  
0.8  
0.7  
0.6  
All Peripherals  
enabled  
60  
30  
Supply current in  
Run mode from  
V12 and VDD  
supply  
25  
IDD12 / IDD  
mA  
168  
150  
144  
120  
90  
31.44  
28.67  
25.51  
19.06  
14.83  
10.16  
5.41  
30.06  
27.38  
23.37  
21.73  
14.74  
10.30  
5.64  
All Peripherals  
disabled  
60  
30  
25  
4.599  
4.80  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
94/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 32. Typical current consumption in Sleep mode, regulator ON, V =1.7 V  
DD  
Max  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
168  
150  
144  
120  
90  
43.7  
39.2  
35.7  
26.5  
20.0  
13.6  
7.4  
47.5  
42.7  
38.8  
28.6  
21.91  
15.2  
8.5  
66.5  
60.7  
55.3  
41.8  
33.85  
25.8  
18.4  
16.9  
21.2  
20.4  
18.6  
14.9  
13.6  
12.5  
11.3  
11.09  
79.3  
73.3  
66.9  
51.6  
43.20  
34.9  
27.0  
25.5  
31.9  
31.0  
28.5  
23.4  
22.1  
20.8  
19.7  
19.42  
All Peripherals  
enabled Flash  
on  
60  
30  
Supply current in  
Sleep mode from  
VDD supply  
25  
6.3  
7.5  
IDD  
mA  
168  
150  
144  
120  
90  
7.3  
8.6  
6.6  
7.94  
7.3  
6.0  
All Peripherals  
disabled, flash  
on  
4.6  
5.5  
3.6  
4.6  
60  
2.6  
3.4  
30  
1.8  
2.7  
25  
1.6  
2.49  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
DocID027107 Rev 6  
95/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
(1)  
Table 33. Typical current consumption in Sleep mode, regulator OFF  
VDD=3.3 V  
VDD=1.7 V  
Unit  
-
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
IDD12  
IDD  
IDD12  
IDD  
180  
168  
150  
144  
120  
90  
47.605  
44.35  
40.58  
35.68  
27.30  
20.69  
13.88  
7.66  
1.2  
1.0  
0.9  
0.9  
0.9  
0.8  
0.7  
0.7  
0.7  
1.2  
0.9  
0.9  
0.9  
0.9  
0.8  
0.7  
0.7  
0.7  
NA  
41.53  
39.96  
34.60  
29.11  
19.78  
13.36  
7.85  
6.66  
NA  
NA  
0.8  
0.8  
0.7  
0.7  
0.6  
0.6  
0.6  
0.5  
NA  
0.8  
0.8  
0.7  
0.7  
0.6  
0.6  
0.6  
0.5  
All Peripherals  
enabled  
60  
30  
Supply current  
in Sleep mode  
from V12 and  
VDD supply  
25  
6.49  
IDD12/IDD  
mA  
180  
168  
150  
144  
120  
90  
8.71  
7.00  
8.42  
7.61  
6.99  
5.95  
3.96  
2.80  
1.74  
1.52  
6.88  
6.29  
All Peripherals  
disabled  
4.87  
3.78  
60  
2.66  
30  
1.65  
25  
1.45  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
I/O system current consumption  
The current consumption of the I/O system has two components: static and  
dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
96/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 35: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
(1)  
Table 34. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
frequency  
(fsw)  
2 MHz  
8 MHz  
0.0  
0.2  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
0.6  
VDD = 3.3 V  
1.1  
(2)  
C= CINT  
1.3  
1.8  
1.9  
I/O switching  
Current  
IDDIO  
mA  
0.1  
8 MHz  
0.4  
VDD = 3.3 V  
CEXT = 0 pF  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
1.23  
2.43  
2.93  
3.86  
4.07  
C = CINT + CEXT  
+ CS  
DocID027107 Rev 6  
97/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
(1)  
Table 34. Switching output I/O current consumption (continued)  
I/O toggling  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
frequency  
(fsw)  
2 MHz  
8 MHz  
0.18  
0.67  
2.09  
3.6  
VDD = 3.3 V  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
CEXT = 10 pF  
C = CINT + CEXT  
+ CS  
4.5  
7.8  
9.8  
0.26  
1.01  
3.14  
6.39  
10.68  
0.33  
1.29  
4.23  
11.02  
I/O switching  
Current  
IDDIO  
mA  
VDD = 3.3 V  
8 MHz  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT  
+ CS  
VDD = 3.3 V  
8 MHz  
CEXT = 33 pF  
C = CINT + Cext  
+ CS  
25 MHz  
50 MHz  
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
2. This test is performed by cutting the LQFP144 package pin (pad removal).  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
HCLK is the system clock. f  
= f  
/4, and f  
= f  
/2.  
PCLK1  
HCLK  
PCLK2  
HCLK  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
f
f
= 180 MHz (Scale1 + over-drive ON), f  
= 120 MHz (Scale 3)"  
= 144 MHz (Scale 2),  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
98/202  
DocID027107 Rev 6  
STM32F446xC/E  
Electrical characteristics  
Table 35. Peripheral current consumption  
IDD(Typ Appli)  
Peripheral  
Unit  
Scale 1 +  
OverDrive  
Scale 2  
Scale 3  
GPIOA  
2.29  
2.29  
2.14  
2.13  
1.89  
1.89  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
2.33  
2.17  
1.93  
2.34  
2.19  
1.94  
2.39  
2.19  
1.93  
GPIOF  
2.31  
2.14  
1.91  
AHB1  
GPIOG  
GPIOH  
CRC  
2.36  
2.19  
1.94  
µA/MHz  
2.13  
1.98  
1.75  
0.53  
0.51  
0.46  
BKPSRAM  
DMA1(1)  
DMA2(1)  
OTG_HS+ULPI  
DCMI  
0.76  
0.72  
0.65  
2.39N + 4.13  
2.39N + 4.45  
45.45  
3.74  
2.23N+3.56  
2.19N+3.72  
42.08  
3.42  
1.97N+3.51  
2.00N+3.66  
37.28  
3.01  
AHB2  
AHB3  
µA/MHz  
µA/MHz  
OTGFS  
FMC  
30.04  
16.15  
16.78  
27.88  
15.01  
15.60  
24.69  
13.33  
13.84  
QSPI  
DocID027107 Rev 6  
99/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Table 35. Peripheral current consumption (continued)  
IDD(Typ Appli)  
Peripheral  
Unit  
Scale 1 +  
OverDrive  
Scale 2  
Scale 3  
TIM2  
TIM3  
18.18  
14.49  
15.18  
16.91  
2.69  
2.56  
7.07  
4.96  
5.09  
1.07  
1.89  
1.93  
6.91  
4.20  
4.22  
4.13  
4.04  
3.98  
3.91  
3.76  
5.51  
6.58  
5.91  
0.71  
2.96  
16.92  
13.47  
14.11  
15.69  
2.47  
2.44  
6.56  
4.64  
4.72  
1.00  
1.78  
1.81  
6.44  
3.83  
3.94  
3.89  
3.78  
3.69  
3.61  
3.53  
5.19  
6.14  
5.56  
0.69  
2.72  
15.07  
12.00  
12.50  
14.07  
2.20  
2.17  
5.83  
4.07  
4.27  
0.93  
1.57  
1.67  
5.80  
3.40  
3.50  
3.40  
3.33  
3.33  
3.17  
3.13  
4.57  
5.43  
4.90  
0.60  
2.40  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
WWDG  
SPI2(2)  
SPI3(2)  
SPDIFRX  
USART2  
USART3  
UART4  
UART5  
I2C1  
APB1  
µA/MHz  
I2C2  
I2C3  
FMPI2C1  
CAN1  
CAN2  
CEC  
DAC  
100/202  
DocID027107 Rev 6  
STM32F446xC/E  
Electrical characteristics  
Table 35. Peripheral current consumption (continued)  
IDD(Typ Appli)  
Peripheral  
Unit  
Scale 1 +  
OverDrive  
Scale 2  
Scale 3  
TIM1  
17.51  
18.40  
4.53  
4.53  
4.69  
4.70  
4.66  
9.06  
1.97  
1.88  
1.51  
8.17  
5.07  
5.37  
3.89  
3.74  
8.15  
16.28  
17.10  
4.21  
4.21  
4.35  
4.35  
4.31  
8.38  
1.89  
1.75  
1.40  
7.64  
4.75  
5.06  
3.64  
3.49  
8.10  
14.43  
15.22  
3.72  
3.72  
3.85  
3.87  
3.82  
7.47  
1.67  
1.57  
1.23  
6.77  
4.22  
4.50  
3.17  
3.10  
7.13  
TIM8  
USART1  
USART6  
ADC1  
ADC2  
ADC3  
SDIO  
APB2  
SPI1  
µA/MHz  
SPI4  
SYSCFG  
TIM9  
TIM10  
TIM11  
SAI1  
SAI2  
Bus Matrix  
1. N = Number of strean enable (1..8)  
2. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.  
6.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
DocID027107 Rev 6  
101/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Table 36. Low-power mode wakeup timings  
Conditions  
Symbol  
Parameter  
Typ(1)  
Max(1)  
Unit  
CPU  
clock  
cycle  
(2)  
tWUSLEEP  
Wakeup from Sleep  
-
6
6
Wakeup from Sleep  
with Flash memory in  
Deep power down  
mode  
(1)  
TWUSLEEPFDSM  
-
33.5  
12.8  
50  
15  
Main regulator is ON  
Main regulator is ON and Flash  
memory in Deep power down mode  
104.9  
115  
Wakeup from Stop  
mode with MR/LP  
regulator in normal  
mode  
(2)  
tWUSTOP  
Low power regulator is ON  
20.6  
28  
µs  
Low power regulator is ON and  
Flash memory in Deep power down  
mode  
112.8  
120  
Main regulator in under-drive mode  
(Flash memory in Deep power-  
down mode)  
110  
140  
Wakeup from Stop  
mode with MR/LP  
regulator in Under-drive  
mode  
(2)  
tWUSTOP  
Low power regulator in under-drive  
mode  
114.4  
325  
128  
400  
(Flash memory in Deep power-  
down mode)  
Wakeup from Standby  
mode  
(2)(3)  
tWUSTDBY  
-
1. Guaranteed based on test during characterization.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
instruction.  
3. tWUSTDBY maximum value is given at –40 °C.  
6.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 23.  
The characteristics given in Table 37 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 16.  
102/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
Table 37. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
-
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
-
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 24.  
The characteristics given in Table 38 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 16.  
Table 38. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
VLSEL  
tw(LSE)  
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
-
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
OSC32_IN input capacitance(1)  
-
-
200  
Cin(LSE)  
-
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
-
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
DocID027107 Rev 6  
103/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 23. High-speed external clock source AC timing diagram  
6
(3%(  
ꢐ  
ꢄꢅ ꢐ  
(3%,  
6
T
T
T
7ꢎ(3%ꢏ  
T
T
7ꢎ(3%ꢏ  
Rꢎ(3%ꢏ  
Fꢎ(3%ꢏ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢀꢃ&  
AIꢄꢇꢉꢃꢁ  
Figure 24. Low-speed external clock source AC timing diagram  
9
/6(+  
ꢊꢉꢕ  
 
9
/6(/  
W
W
W
:ꢍ/6(ꢏ  
W
W
:ꢍ/6(ꢏ  
Uꢍ/6(ꢏ  
Iꢍ/6(ꢏ  
7
/6(  
I
/6(BH[W  
([WHUQDO  
,
/
26&ꢀꢇB,1  
FORFNꢈVRXUFH  
670ꢀꢇ)  
DLꢄꢆꢅꢇꢊ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 39. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
104/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 39. HSE 4-26 MHz oscillator characteristics  
Symbol  
fOSC_IN  
RF  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Oscillator frequency  
Feedback resistor  
-
-
4
-
-
26  
-
MHz  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 ,  
CL=5 pF@25 MHz  
-
-
450  
530  
-
-
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 ,  
CL=10 pF@25 MHz  
(2)  
ACCHSE  
-
-500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is Guaranteed based on test during characterization. It is measured for a  
standard crystal resonator and it can vary significantly with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 25). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 25. Typical application with an 8 MHz crystal  
5HVRQDWRUꢈZLWK  
LQWHJUDWHGꢈFDSDFLWRUV  
&
/ꢄ  
I
26&B,1  
+6(  
%LDVꢈ  
FRQWUROOHG  
JDLQ  
ꢁꢈ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢍꢄꢏ  
670ꢀꢇ)  
5
(;7  
&
/ꢇ  
DLꢄꢆꢅꢀꢉ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 40. In  
the application, the resonator and the load capacitors have to be placed as close as  
DocID027107 Rev 6  
105/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
Feedback resistor  
LSE current consumption  
LSE accuracy  
-
-
18.4  
-
1
MΩ  
µA  
IDD  
-
-
-
-
(2)  
ACCLSE  
-
-500  
500  
0.56  
1.5  
-
ppm  
Startup low-power mode  
Startup high-drive mode  
VDD is stabilized  
-
-
-
-
Maximum critical crystal  
gm  
Gm_crit_max  
µA/V  
s
-
(3)  
tSU(LSE)  
startup time  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is guaranteed based on test during characterization. It is  
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 26. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢈZLWK  
LQWHJUDWHGꢈFDSDFLWRUV  
&
/ꢄ  
I
26&ꢀꢇB,1  
/6(  
%LDVꢈ  
FRQWUROOHG  
JDLQ  
ꢀꢇꢌꢆꢃꢁꢈN+]  
UHVRQDWRU  
5
)
26&ꢀꢇB287  
670ꢀꢇ)  
&
/ꢇ  
DLꢄꢆꢅꢀꢄ  
106/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
6.3.10  
Internal clock source characteristics  
The parameters given in Table 41 and Table 42 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 16.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 41. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
-
-
16  
-
MHz  
%
User-trimmed with the RCC_CR  
register(2)  
-
-
1
TA = - 40 to 105 °C(3)  
TA = - 10 to 85 °C(3)  
TA = 25 °C(4)  
- 8  
- 4  
- 1  
-
-
-
4.5  
4
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
1
HSI oscillator  
startup time  
(2)  
tsu(HSI)  
-
-
-
-
2.2  
60  
4
µs  
HSI oscillator  
power consumption  
(2)  
IDD(HSI)  
80  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed based on test during characterization.  
4. Factory calibrated, parts not soldered.  
Figure 27. LACC  
versus temperature  
HSI  
ꢅꢑꢅꢈ  
ꢅꢑꢅꢂ  
ꢅꢑꢅꢃ  
ꢊꢂꢅ  
ꢃꢉ  
ꢄꢅꢉ  
ꢄꢃꢉ  
4! ꢎ #ꢏ  
ꢊꢅꢑꢅꢃ  
ꢊꢅꢑꢅꢂ  
ꢊꢅꢑꢅꢈ  
ꢊꢅꢑꢅꢁ  
-IN  
-AX  
4YPICAL  
-3ꢀꢅꢂꢆꢃ6ꢄ  
1. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
107/202  
175  
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 42. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
LSI oscillator power consumption  
(3)  
IDD(LSI)  
-
0.4  
0.6  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed based on test during characterization..  
3. Guaranteed by design.  
Figure 28. ACC versus temperature  
LSI  
-3ꢄꢆꢅꢄꢀ6ꢄ  
6.3.11  
PLL characteristics  
The parameters given in Table 43 and Table 44 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
Table 43. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
-
-
0.95(2)  
12.5  
1
-
2.10  
180  
MHz  
MHz  
fPLL_OUT  
PLL multiplier output clock  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
-
-
48  
-
75  
MHz  
MHz  
PLL VCO output  
100  
432  
108/202  
DocID027107 Rev 6  
 
 
 
 
 
 
STM32F446xC/E  
Symbol  
Electrical characteristics  
Table 43. Main PLL characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
75  
100  
-
-
-
200  
300  
-
tLOCK  
PLL lock time  
µs  
RMS  
25  
peak  
to  
peak  
Cycle-to-cycle jitter  
-
-
-
150  
15  
-
-
-
System clock  
120 MHz  
RMS  
Jitter(3)  
ps  
peak  
to  
Period Jitter  
200  
peak  
Cycle to cycle at 1 MHz  
on 1000 samples  
Bit Time CAN jitter  
-
330  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
-
-
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design.  
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed based on test during characterization.  
Table 44. PLLI2S (audio PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
fPLLI2S_OUT  
fVCO_OUT  
PLLI2S input clock(1)  
-
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
MHz  
MHz  
MHz  
PLLI2S multiplier output clock  
PLLI2S VCO output  
-
-
-
100  
75  
100  
-
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLI2S lock time  
µs  
-
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
-
ps  
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
90  
-
-
ps  
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
400  
DocID027107 Rev 6  
109/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Table 44. PLLI2S (audio PLL) characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
-
mA  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed based on test during characterization.  
Table 45. PLLISAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLSAI_IN  
fPLLSAI_OUT  
fVCO_OUT  
PLLSAI input clock(1)  
-
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
MHz  
MHz  
MHz  
PLLSAI multiplier output clock  
PLLSAI VCO output  
-
-
-
100  
75  
100  
-
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLSAI lock time  
µs  
-
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
ps  
Main SAI clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
-
-
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
FS clock jitter  
400  
ps  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLSAI power consumption on  
VDD  
(4)  
IDD(PLLSAI)  
-
-
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLSAI power consumption on  
VDDA  
(4)  
IDDA(PLLSAI)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed based on test during characterization.  
6.3.12  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.  
110/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Symbol  
Electrical characteristics  
Table 46. SSCG parameters constraint  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
-
0.25  
-
-
-
-
10  
2
KHz  
%
Peak modulation depth  
-
MODEPER * INCSTEP  
1. Guaranteed by design.  
2
151  
-
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
PLL_IN  
MOD  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
DocID027107 Rev 6  
111/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Figure 29 and Figure 30 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 29. PLL output clock waveforms in center spread mode  
&REQUENCY ꢎ0,,?/54ꢏ  
MD  
&ꢅ  
MD  
4IME  
TMODE  
ꢃXTMODE  
AIꢄꢇꢃꢆꢄ  
Figure 30. PLL output clock waveforms in down spread mode  
)UHTXHQF\ꢈꢍ3//B287ꢏ  
)ꢉ  
ꢇ[PG  
7LPH  
WPRGH  
ꢇ[WPRGH  
DLꢄꢆꢇꢊꢇE  
6.3.13  
Memory characteristics  
Flash memory  
The characteristics are given at TA = - 40 to 105 °C unless otherwise specified.  
The devices are shipped to customers with the Flash memory erased.  
Table 47. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
-
-
-
5
8
-
IDD  
Supply current Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
mA  
12  
112/202  
DocID027107 Rev 6  
 
 
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
Min(1) Typ Max(1) Unit  
Table 48. Flash memory programming  
Symbol  
tprog  
Parameter  
Conditions  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
Word programming time  
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
8
16  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
5.5  
8
11  
s
Program/eraseparallelism  
(PSIZE) = x 32  
16  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed based on test during characterization.  
2. The maximum programming time is measured after 100K erase operations.  
Table 49. Flash memory programming with V  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
Double word programming  
-
16  
230  
490  
875  
3.5  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
-
ms  
VPP = 8.5 V  
-
tME  
Mass erase time  
-
-
s
Vprog  
Programming voltage  
-
2.7  
3.6  
V
DocID027107 Rev 6  
113/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
Table 49. Flash memory programming with V (continued)  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
VPP  
VPP voltage range  
-
7
-
9
-
V
Minimum current sunk on  
the VPP pin  
IPP  
-
-
10  
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
-
1
hour  
1. Guaranteed by design.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 50. Flash memory endurance and data retention  
Symbol  
Parameter  
Conditions  
Value  
Unit  
-
-
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND  
Endurance  
10  
Kcycles  
Years  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
30  
10  
20  
tRET  
Data retention  
1. Guaranteed based on test during characterization.  
2. Cycling performed over the whole temperature range.  
6.3.14  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 51. They are based on the EMS levels and classes  
defined in application note AN1709.  
114/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
Level/  
Table 51. EMS characteristics  
Parameter  
Symbol  
Conditions  
Class  
VDD = 3.3 V, LQFP144, TA =  
+25 °C, fHCLK = 168 MHz, conforms  
to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP144,  
TA = +25 °C, fHCLK = 168 MHz,  
conforms to IEC 61000-4-2  
VEFTB  
4B  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
DocID027107 Rev 6  
115/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Max vs.  
Table 52. EMI characteristics  
Conditions  
Monitored  
frequency band  
[fHSE/fCPU  
]
Symbol  
Parameter  
Unit  
8/180 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
0.1 to 30 MHz  
11  
10  
11  
3
VDD = 3.3 V, TA = 25 °C, LQFP144  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering disabled.  
dBµV  
-
dBµV  
-
SEMI  
Peak level  
24  
25  
20  
4
VDD = 3.3 V, TA = 25 °C, LQFP144  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering enabled  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI level  
6.3.15  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 53. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Electrostatic  
Conditions  
Class  
Unit  
value(1)  
VESD(HBM) discharge voltage  
(human body model)  
TA = + 25 °C conforming to ANSI/JEDEC JS-001  
2
2000  
TA = + 25 °C conforming to ANSI/ESD STM5.3.1,  
LQFP64, LQFP100, WLCSP81 packages  
C4  
500  
250  
V
Electrostatic  
VESD(CDM) discharge voltage  
(charge device model)  
TA = + 25 °C conforming to ANSI/ESD STM5.3.1,  
LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10)  
packages  
C3  
1. Guaranteed based on test during characterization.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
116/202  
DocID027107 Rev 6  
 
 
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 54. Electrical sensitivities  
Conditions  
Symbol  
Parameter  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.16  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –  
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 55.  
(1)  
Table 55. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0 pin  
–0  
–0  
NA  
NA  
Injected current on NRST pin  
Injected current on PE2, PE3,PE4, PE5, PE6, PC13, PC14,  
PF10, PH0, PH1, NRST, PC0, PC1, PC2, PC3, PG15, PB3,  
PB4, PB5, PB6, PB7, PB8, PB9, PE0, PE1  
IINJ  
–0  
NA  
mA  
Injected current on any other FT and FTf pins  
Injected current on any other pins  
-5  
NA  
+5  
–5  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
DocID027107 Rev 6  
117/202  
175  
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
6.3.17  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are  
derived from tests performed under the conditions summarized in Table 16. All I/Os are  
CMOS and TTL compliant.  
Table 56. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.35VDD–0.04(1)  
FT, FTf, TTa and NRST I/O  
input low level voltage  
1.7 VVDD3.6 V  
-
-
(2)  
0.3VDD  
1.75 V VDD  
3.6 V,  
– 40 °CTA ≤  
105 °C  
VIL  
V
-
-
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1(1)  
1.7 V VDD 3.6 V,  
0 °C TA 105 °C  
-
-
-
0.45VDD+0.3(1)  
FT, FTf, TTa and NRST I/O  
input high level voltage(4)  
1.7 VVDD3.6 V  
-
-
(2)  
0.7VDD  
1.75 VVDD 3.6 V,  
– 40 °CTA 105 °C  
VIH  
V
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(1)  
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
FT, FTf, TTa and NRST I/O  
input hysteresis  
1.7 VVDD3.6 V  
-
-
10%VDD  
100m  
-
-
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VHYS  
V
BOOT0 I/O input hysteresis  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
-
-
-
-
I/O input leakage current (3) VSS VIN VDD  
-
-
1
3
Ilkg  
µA  
I/O FT input leakage current  
VIN = 5 V  
(4)  
118/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Symbol  
Electrical characteristics  
Table 56. I/O static characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
30  
40  
50  
Weakpull-up  
RPU  
equivalent  
VIN = VSS  
resistor(5)  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
7
10  
40  
14  
50  
kΩ  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
30  
Weak pull-  
down  
RPD  
VIN = VDD  
equivalent  
resistor(6)  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
7
-
10  
5
14  
-
(7)  
CIO  
I/O pin capacitance  
-
pF  
1. Guaranteed by design.  
2. Tested in production.  
3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O  
current injection susceptibility  
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection  
susceptibility  
5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the  
series resistance is minimum (~10% order).  
6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
7. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 31.  
DocID027107 Rev 6  
119/202  
175  
Electrical characteristics  
STM32F446xC/E  
Figure 31. FT I/O input characteristics  
9,/ꢋ9,+ꢈꢍ9ꢏ  
ꢇꢌꢅꢇ  
77/ꢈUHTXLUHPHQWꢈ  
9,+PLQꢈ ꢈꢇ9  
ꢇꢌꢉ  
ꢄꢌꢊꢇ  
ꢄꢌꢆ  
ꢄꢌꢇꢇ  
ꢄꢌꢄꢊ  
$UHDꢈQRWꢈ  
GHWHUPLQHG  
ꢄꢌꢉꢃꢅ  
ꢉꢌꢁ  
77/ꢈUHTXLUHPHQWꢈ9,/PD[ꢈ  
 ꢈꢉꢌꢁ9  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢌꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢇꢂꢊ9''  
ꢉꢌꢅꢅ  
ꢉꢌꢅꢄ  
9''ꢈꢍ9ꢏ  
ꢄꢌꢆ  
ꢇꢌꢉ  
ꢇꢌꢂ  
ꢇꢌꢆ  
ꢀꢌꢀ  
ꢀꢌꢃ  
06ꢀꢀꢆꢂꢃ9ꢄ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14 and PC15 which can  
OL OH  
sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the speed  
should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 14).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 14).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 16. All I/Os are CMOS and TTL compliant.  
120/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Table 57. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(1)  
VOL  
Output low level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
V
(3)  
VOH  
VOL  
VOH  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
VDD–0.4  
-
2.7 V VDD 3.6 V  
(1)  
(3)  
TTL port(2)  
IIO =+ 8mA  
-
0.4  
V
2.4  
-
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
IIO = +20 mA  
V
(3)  
VDD–1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
VOH  
-
0.4(4)  
(1)  
IIO = +6 mA  
V
(3)  
VDD–0.4(4)  
-
1.8 V VDD 3.6 V  
(1)  
VOL  
-
0.4(5)  
IIO = +4 mA  
V
VOH  
VDD–0.4(5)  
-
(3)  
1.7 V VDD 3.6V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 14 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data.  
5. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 32 and  
Table 58, respectively.  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 16.  
(1)(2)  
Table 58. I/O AC characteristics  
OSPEEDR  
y[1:0] bit  
value(1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
8
4
3
MHz  
ns  
00  
Output high to low level fall  
time and output low to high  
level rise time  
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V  
to 3.6 V  
-
-
100  
tr(IO)out  
DocID027107 Rev 6  
121/202  
175  
 
 
 
Electrical characteristics  
OSPEEDR  
STM32F446xC/E  
(1)(2)  
Table 58. I/O AC characteristics  
(continued)  
y[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD2.7 V  
CL = 50 pF, VDD1.8 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD1.8 V  
CL = 10 pF, VDD1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
10  
fmax(IO)out Maximum frequency(3)  
MHz  
50  
20  
12.5  
10  
01  
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
20  
10  
50(4)  
100(4)  
fmax(IO)out Maximum frequency(3)  
25  
50  
MHz  
10  
42.5  
6
Output high to low level fall  
time and output low to high  
level rise time  
4
tf(IO)out  
tr(IO)out  
/
ns  
10  
6
100(4)  
50  
42.5  
180(4)  
100  
72.5  
4
fmax(IO)out Maximum frequency(3)  
MHz  
11  
6
Output high to low level fall  
time and output low to high  
level rise time  
7
tf(IO)out  
tr(IO)out  
/
ns  
ns  
2.5  
3.5  
4
Pulse width of external  
signals detected by the EXTI  
controller  
-
tEXTIpw  
-
10  
-
-
122/202  
DocID027107 Rev 6  
STM32F446xC/E  
Electrical characteristics  
1. Guaranteed by design.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 32.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
Figure 32. I/O AC characteristics definition  
ꢊꢉꢕ  
ꢄꢉꢕ  
ꢅꢉꢕ  
ꢅꢉꢕ  
ꢊꢉꢕ  
W
ꢄꢉꢕ  
W
(;7(51$/  
287387  
21ꢈ&/  
Uꢍ,2ꢏRXW  
Iꢍ,2ꢏRXW  
7
0D[LPXPꢈIUHTXHQF\ꢈLVꢈDFKLHYHGꢈLIꢈꢍW ꢓꢈW ꢏꢈ”ꢈꢍꢇꢋꢀꢏ7ꢈDQGꢈLIꢈWKHꢈGXW\ꢈF\FOHꢈLVꢈꢍꢂꢅꢒꢅꢅꢕꢏꢈ  
Uꢈ  
I
ZKHQꢈORDGHGꢈE\ꢈ&  
/
ꢈVSHFLILHGꢈLQꢈWKHꢈWDEOHꢈ³ꢈ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢌꢈ  
DLꢄꢂꢄꢀꢄG  
6.3.18  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 56: I/O static characteristics).  
PU  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 16.  
Table 59. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RPU  
Weak pull-up equivalent resistor(1)  
NRST Input filtered pulse  
VIN = VSS  
-
30  
-
40  
-
50  
kΩ  
ns  
ns  
µs  
(2)  
VF(NRST)  
100  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
Internal Reset source  
300  
20  
-
-
-
TNRST_OUT Generated reset pulse duration  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design.  
DocID027107 Rev 6  
123/202  
175  
 
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 33. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢈFLUFXLW  
ꢍꢄꢏ  
5
38  
ꢍꢇꢏ  
,QWHUQDOꢈ5HVHW  
1567  
)LOWHU  
ꢉꢌꢄꢈ—)  
670ꢀꢇ)  
DLꢄꢂꢄꢀꢇF  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 59. Otherwise the reset is not taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
6.3.19  
TIM timer characteristics  
The parameters given in Table 60 are guaranteed by design.  
Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 60. TIMx characteristics  
Symbol  
Parameter  
Conditions(3)  
Min  
Max  
Unit  
AHB/APBx prescaler=1 or  
2 or 4, fTIMxCLK = 180 MHz  
1
-
tTIMxCLK  
tres(TIM)  
Timer resolution time  
AHB/APBx prescaler>4,  
1
-
tTIMxCLK  
fTIMxCLK = 90 MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
0
-
f
TIMxCLK/2  
16/32  
MHz  
bit  
fTIMxCLK = 180 MHz  
ResTIM  
Timer resolution  
Maximum possible count with  
32-bit counter  
tMAX_COUNT  
-
-
65536 × 65536  
tTIMxCLK  
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR  
register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.  
6.3.20  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL too are mapped as not “true”  
open-drain. When configured as open-drain, the PMOS connected between the I/O pin and  
V
is disabled, but is still present.  
DD  
124/202  
DocID027107 Rev 6  
 
 
 
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
2
The I C characteristics are described in Table 61. Refer also to Section 6.3.17: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 61. I C characteristics  
Standard mode  
Fast mode I2C(1)(2)  
I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
-
-
1.3  
0.6  
100  
-
-
µs  
-
-
-
-
SDA data hold time  
3450(3)  
3.45  
900(4)  
0.9  
tv(SDA, ACK) Data, ACK valid time  
-
-
ns  
tr(SDA)  
SDA and SCL rise time  
tr(SCL)  
-
1000  
-
300  
tf(SDA)  
SDA and SCL fall time  
tf(SCL)  
-
300  
-
300  
th(STA)  
tsu(STA)  
Start condition hold time  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
µs  
µs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Pulse width of the spikes  
that are suppressed by the  
analog filter for standard and  
fast mode  
tSP  
-
-
-
0.05  
-
0.09(5)  
400  
µs  
pF  
Capacitive load for each bus  
line  
Cb  
400  
Guaranteed based on test during characterization.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to  
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode  
clock.  
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
5. The minimum width of the spikes filtered by the analog filter is above tSP(max).  
DocID027107 Rev 6  
125/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
2
Figure 34. I C bus AC waveforms and measurement circuit  
s
s
''B,ꢇ&  
''B,ꢇ&  
670ꢀꢇ)[[  
6'$  
6&/  
53  
53  
56  
56  
,ð&ꢈEXV  
67$57ꢈ5(3($7('  
67$57  
67$57  
W
VXꢍ67$ꢏ  
6'$  
W
W
W
Uꢍ6'$ꢏ  
Iꢍ6'$ꢏ  
VXꢍ6'$ꢏ  
W
6723  
Zꢍ672ꢎ67$ꢏ  
W
W
W
Zꢍ6&/+ꢏ  
Kꢍ6'$ꢏ  
Kꢍ67$ꢏ  
6&/  
W
W
W
Uꢍ6&/ꢏ  
VXꢍ672ꢏ  
W
Zꢍ6&//ꢏ  
Iꢍ6&/ꢏ  
DLꢄꢂꢊꢆꢊF  
1. RS = series protection resistor.  
2. RP = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
126/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
FMPI2C characteristics  
The FMPI2C characteristics are described in Table 62.  
Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output  
alternate function characteristics (SDA and SCL).  
2
(1)  
Table 62. FMPI C characteristics  
Standard mode Fast mode  
Fast+ mode  
Min Max  
-
Parameter  
Unit  
Min  
Max  
Min  
Max  
17  
fFMPI2CC  
FMPI2CCLK frequency  
2
-
8
-
-
16(2)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
4.7  
4.0  
0.25  
0
-
1.3  
0.6  
0.10  
0
-
-
0.5  
0.26  
0.05  
0
-
-
-
tsu(SDA)  
tH(SDA)  
SDA setup time  
-
-
-
-
-
SDA data hold time  
-
tv(SDA,ACK) Data, ACK valid time  
-
3.45  
-
0.9  
-
0.45  
tr(SDA)  
SDA and SCL rise time  
tr(SCL)  
-
0.100  
-
0.30  
-
0.12  
tf(SDA)  
us  
SDA and SCL fall time  
tf(SCL)  
-
0.30  
-
0.30  
-
0.12  
th(STA)  
Start condition hold time  
4
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
0.26  
0.26  
0.26  
0.5  
-
-
-
-
Repeated Start condition  
setup time  
tsu(STA)  
4.7  
4
tsu(STO)  
Stop condition setup time  
tw(STO:STA)  
Stop to Start condition time  
(bus free)  
4.7  
Pulse width of the spikes that  
are suppressed by the  
analog filter for standard and  
fast mode  
tSP  
-
-
-
0.05  
-
0.09  
400  
0.05  
-
0.09  
Capacitive load for each bus  
Line  
Cb  
400  
550(3)  
pF  
1. Guaranteed based on test during characterization.  
2. When tr(SDA,SCL)<=110ns.  
3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:  
tr(SDA/SCL) = 0.8473 x Rp x Cload  
Rp(min) = (VDD -VOL(max)) / IOL(max)  
DocID027107 Rev 6  
127/202  
175  
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
2
Figure 35. FMPI C timing diagram and measurement circuit  
s
s
''B,ꢇ&  
''B,ꢇ&  
670ꢀꢇ)[[  
6'$  
6&/  
53  
53  
56  
56  
,ð&ꢈEXV  
67$57ꢈ5(3($7('  
67$57  
67$57  
W
VXꢍ67$ꢏ  
6'$  
W
W
W
Uꢍ6'$ꢏ  
Iꢍ6'$ꢏ  
VXꢍ6'$ꢏ  
W
6723  
Zꢍ672ꢎ67$ꢏ  
W
W
W
Zꢍ6&/+ꢏ  
Kꢍ6'$ꢏ  
Kꢍ67$ꢏ  
6&/  
W
W
W
Uꢍ6&/ꢏ  
VXꢍ672ꢏ  
W
Zꢍ6&//ꢏ  
Iꢍ6&/ꢏ  
DLꢄꢂꢊꢆꢊF  
128/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 63 for SPI are derived from tests  
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage  
conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30pF  
Measurement points are done at CMOS levels: 0.5VDD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 63. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master full duplex/receiver mode,  
2.7 VVDD3.6 V  
45  
SPI1/4  
Master transmitter  
1.71V <VDD< 3.6V  
SPI1/4  
45  
Master  
1.71V <VDD< 3.6V  
SPI1/2/3/4  
22.5  
fSCK  
SPI clock frequency  
-
-
MHz  
Slave transmitter/  
full duplex mode  
SPI1/4  
1/tc(SCK)  
45  
45  
2.7V <VDD< 3.6V  
Slave receiver mode  
SPI1/4  
1.71V <VDD< 3.6V  
Slave mode  
SPI1/2/3/4  
1.71V <VDD< 3.6V  
22.5(2)  
70  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
DocID027107 Rev 6  
129/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
(1)  
Table 63. SPI dynamic characteristics (continued)  
Parameter Conditions Min  
Symbol  
Typ  
Max  
Unit  
tw(SCKH)  
tw(SCKL)  
tsu(NSS) NSS setup time  
SCK high and low time Master mode, SPI presc = 2  
TPCLK - 1.5 TPCLK TPCLK + 1.5  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
4TPCLK  
-
-
th(NSS)  
tsu(MI)  
tsu(SI)  
th(MI)  
NSS hold time  
2TPCLK  
4
3
4
2
7
5
-
-
-
-
-
-
-
-
Data input setup time  
Slave mode  
Master mode  
-
Data input hold time  
th(SI)  
Slave mode  
-
ns  
ta(SO  
)
Data output access time Slave mode  
Data output disable time Slave mode  
21  
12  
tdis(SO)  
Slave mode (after enable edge),  
2.7V VDD 3.6V  
-
-
7.5  
7.5  
-
22  
10.5  
-
Data output valid/hold  
time  
tv(SO)  
Slave mode (after enable edge),  
1.7 V VDD 3.6 V  
Data output valid/hold  
time  
th(SO)  
Slave mode (after enable edge)  
5
tv(MO)  
th(MO)  
Data output valid time  
Data output hold time  
Master mode (after enable edge)  
Master mode (after enable edge)  
-
1.5  
-
5
-
0
1. Guaranteed based on test during characterization.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%.  
Figure 36. SPI timing diagram - slave mode and CPHA = 0  
166ꢈLQSXW  
W68ꢍ166ꢏ  
W
Kꢍ166ꢏ  
WFꢍ6&.ꢏ  
&3+$ ꢉ  
&32/ ꢉ  
W
Zꢍ6&.+ꢏ  
&3+$ ꢉ  
&32/ ꢄ  
WZꢍ6&./ꢏ  
W
WUI66&&..  
W9ꢍ62ꢏ  
WKꢍ62ꢏ  
WGLVꢍ62ꢏ  
WDꢍ62ꢏ  
0,62  
06%ꢈ287  
%,7ꢃꢈ287  
%,7ꢄꢈ,1  
/6%ꢈ287  
287387  
WVXꢍ6,ꢏ  
026,  
,1387  
06%ꢈ,1  
/6%ꢈ,1  
WKꢍ6,ꢏ  
DLꢄꢂꢄꢀꢂF  
130/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Figure 37. SPI timing diagram - slave mode and CPHA = 1  
166ꢈLQSXW  
W68ꢍ166ꢏ  
WKꢍ166ꢏ  
WFꢍ6&.ꢏ  
&3+$ ꢄ  
&32/ ꢉ  
&3+$ ꢄ  
&32/ ꢄ  
WZꢍ6&.+ꢏ  
WZꢍ6&./ꢏ  
WUꢍ6&.ꢏ  
WIꢍ6&.ꢏ  
WKꢍ62ꢏ  
WGLVꢍ62ꢏ  
WYꢍ62ꢏ  
WDꢍ62ꢏ  
0,62  
06%ꢈ287  
06%ꢈ,1  
%,7ꢃꢈ287  
/6%ꢈ287  
287387  
WKꢍ6,ꢏ  
WVXꢍ6,ꢏ  
026,  
,1387  
/6%ꢈ,1  
%,7ꢈꢄꢈ,1  
DLꢄꢂꢄꢀꢅE  
Figure 38. SPI timing diagram - master mode  
+LJK  
166ꢈLQSXW  
W
Fꢍ6&.ꢏ  
&3+$   
&32/ ꢉ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢉ  
&3+$   
&32/ ꢄ  
W
W
W
W
Zꢍ6&.+ꢏ  
Zꢍ6&./ꢏ  
Uꢍ6&.ꢏ  
Iꢍ6&.ꢏ  
W
VXꢍ0,ꢏ  
0,62  
,1387  
%,7ꢃꢈ,1  
/6%ꢈ,1  
06%ꢈ,1  
W
Kꢍ0,ꢏ  
026,  
287387  
%,7ꢄꢈ287  
/6%ꢈ287  
06%ꢈ287  
W
W
Kꢍ02ꢏ  
Yꢍ02ꢏ  
DLꢄꢂꢄꢀꢃF  
DocID027107 Rev 6  
131/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
QSPI interface characteristics  
Unless otherwise specified, the parameters given in Table 64 for QSPI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
AHB  
DD  
conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C=20pF  
Measurement points are done at CMOS levels: 0.5VDD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 64. QSPI dynamic characteristics in SDR Mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write mode  
1.71 VVDD3.6 V  
-
-
90  
Cload = 15 pF  
fSCK  
QSPI clock frequency  
Read mode  
2.7V <VDD< 3.6V  
Cload = 15 pF  
MHz  
1/tc(SCK)  
-
-
90  
1.71 VVDD3.6 V  
-
-
48  
tw(CKH)  
tw(CKL)  
ts(IN)  
(T(CK) / 2) - 2  
-
T(CK) / 2  
QSPI clock high and low  
-
T(CK) / 2  
-
-
(T(CK) / 2) +2  
Data input setup time  
Data input hold time  
-
-
-
-
2
4.5  
-
-
-
ns  
th(IN)  
-
tv(OUT) Data output valid time  
th(OUT) Data output hold time  
1.5  
-
3
-
0
1. Guaranteed based on test during characterization.  
(1)  
Table 65. QSPI dynamic characteristics in DDR Mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write mode  
1.71 VVDD3.6 V  
-
-
60  
Cload = 15 pF  
fSCK  
Read mode  
2.7V <VDD< 3.6V  
Cload = 15 pF  
QSPI clock frequency  
MHz  
1/tc(SCK)  
60  
48  
-
-
-
-
1.71 VVDD3.6 V  
132/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 65. QSPI dynamic characteristics in DDR Mode (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(CKH)  
tw(CKL)  
ts(IN)  
(T(CK) / 2) - 2  
-
-
T(CK) / 2  
QSPI clock high and low  
-
T(CK) / 2  
(T(CK) / 2) +2  
Data input setup time  
Data input hold time  
-
-
0
5.5  
-
-
-
-
th(IN)  
-
ns  
2.7V <VDD< 3.6V  
5.5  
8
-
6.5  
9.5  
-
tv(OUT) Data output valid time  
1.71V <VDD< 3.6V  
-
-
th(OUT) Data output hold time  
3.5  
1. Guaranteed based on test during characterization.  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 66 for the I S interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 66. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
-
256 x 8K 256 x Fs(2) MHz  
Master data  
Slave data  
-
-
64 x Fs  
64 x Fs  
70  
fCK  
I2S clock frequency  
MHz  
%
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
DocID027107 Rev 6  
133/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
2
(1)  
Table 66. I S dynamic characteristics (continued)  
Parameter Conditions Min  
Symbol  
Max  
Unit  
tv(WS)  
th(WS)  
tsu(WS)  
-
WS valid time  
WS hold time  
Master mode  
Master mode  
Slave mode  
-
1
5.5  
-
1
-
WS setup time  
PCM short pulse Slave mode(3)  
2
-
th(WS)  
Slave mode  
3
-
WS hold time  
-
PCM short pulse Slave mode(3)  
Master receiver  
1.5  
3
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
-
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
ns  
Slave receiver  
2.5  
4
Master receiver  
-
Slave receiver  
1
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
16  
4.5  
-
-
5
1
-
1. Guaranteed based on test during characterization.  
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).  
3. Measurement done with respect to I2S_CK rising edge.  
Note:  
Refer to the I2S section of RM0390 reference manual for more details on the sampling  
frequency (F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
134/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
2
(1)  
Figure 39. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
receive  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
ai14881b  
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 40. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
t
v(WS)  
h(WS)  
w(CKL)  
t
t
h(SD_MT)  
v(SD_MT)  
SD  
transmit  
receive  
LSB transmit(2)  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
LSB receive(2)  
Bitn receive  
LSB receive  
ai14884b  
SD  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID027107 Rev 6  
135/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 67 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are performed at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (SCK,SD,WS).  
(3)  
(1)  
Table 67. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
SAI Main clock output  
-
256 x 8K  
256 x Fs  
128 x Fs(3)  
128 x Fs(3)  
MHz  
Master data: 32 bits  
-
-
fCK  
SAI clock frequency(2)  
FS valid time  
MHz  
%
Slave data: 32 bits  
Master mode  
-
-
14  
2.7 V VDD 3.6 V  
tv(FS)  
Master mode  
17.5  
1.71 V VDD 3.6 V  
th(FS)  
tsu(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
7
1
1
1
1
5
1
-
-
-
-
-
-
-
th(FS)  
Slave mode  
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
ns  
Slave trasmitter (after enable edge  
2.7 V VDD 3.6 V  
-
9.5  
tv(SD_B_ST) Data output valid time  
th(SD_B_ST) Data output hold time  
tv(SD_B_ST) Data output valid time  
th(SD_B_ST) Data output hold time  
Slave transmitter (after enable edge  
1.71 V VDD 3.6 V  
-
6
-
16  
-
Slave transmitter (after enable edge  
Master transmitter (after enable edge  
2.7 V VDD 3.6 V  
15  
Master transmitter (after enable edge  
1.71 V VDD 3.6 V  
-
18  
-
Master transmitter (after enable edge  
7
1. Guaranteed based on test during characterization.  
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)  
3. With Fs = 192 KHz  
136/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 41. SAI master timing waveforms  
ꢄꢋF  
3#+  
3!)?3#+?8  
T
Hꢎ&3ꢏ  
3!)?&3?8  
ꢎOUTPUTꢏ  
T
T
T
Hꢎ3$?-4ꢏ  
Vꢎ&3ꢏ  
Vꢎ3$?-4ꢏ  
3!)?3$?8  
ꢎTRANSMITꢏ  
3LOT N  
3LOT Nꢌꢃ  
T
T
Hꢎ3$?-2ꢏ  
SUꢎ3$?-2ꢏ  
3!)?3$?8  
ꢎRECEIVEꢏ  
3LOT N  
-3ꢀꢃꢇꢇꢄ6ꢄ  
Figure 42. SAI slave timing waveforms  
ꢄꢋF  
3#+  
3!)?3#+?8  
T
T
T
Hꢎ&3ꢏ  
Wꢎ#+(?8ꢏ  
Wꢎ#+,?8ꢏ  
3!)?&3?8  
ꢎINPUTꢏ  
T
T
T
Hꢎ3$?34ꢏ  
SUꢎ&3ꢏ  
Vꢎ3$?34ꢏ  
3!)?3$?8  
ꢎTRANSMITꢏ  
3LOT N  
3LOT Nꢌꢃ  
T
T
Hꢎ3$?32ꢏ  
SUꢎ3$?32ꢏ  
3!)?3$?8  
ꢎRECEIVEꢏ  
3LOT N  
-3ꢀꢃꢇꢇꢃ6ꢄ  
USB OTG full speed (FS) characteristics  
This interface is present in both the USB OTG HS and USB OTG FS controllers.  
Table 68. USB OTG full speed startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB OTG full speed transceiver startup time  
1
µs  
1. Guaranteed by design.  
DocID027107 Rev 6  
137/202  
175  
 
 
 
Electrical characteristics  
Symbol  
STM32F446xC/E  
Table 69. USB OTG full speed DC electrical characteristics  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG full speed  
VDDUSB transceiver operating  
voltage  
-
3.0(2)  
-
3.6  
V
Differential input  
sensitivity  
I(USB_FS_DP/DM,  
USB_HS_DP/DM)  
(3)  
VDI  
0.2  
0.8  
1.3  
-
-
-
-
Input  
levels  
Differential common mode  
range  
(3)  
VCM  
Includes VDI range  
2.5  
2.0  
V
V
Single ended receiver  
threshold  
(3)  
VSE  
-
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩto 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
(4)  
RL of 15 kΩto VSS  
2.8  
PA11, PA12, PB14, PB15  
(USB_FS_DP/DM,  
USB_HS_DP/DM)  
17  
0.65  
1.5  
21  
1.1  
1.8  
24  
2.0  
2.1  
RPD  
VIN = VDDUSB  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
kΩ  
PA12, PB15  
(USB_FS_DP,  
USB_HS_DP)  
VIN = VSS  
RPU  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
VIN = VSS  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed  
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design.  
RL is the load connected on the USB OTG full speed drivers.  
4.  
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state  
(floating input), not as alternate function. A typical 200 µA current consumption of the  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 and PB13 when the feature is enabled.  
Note:  
Figure 43. USB OTG full speed timings: definition of data signal rise and fall time  
&URVVRYHU  
SRLQWV  
'LIIHUHQWLDO  
GDWDꢈOLQHV  
9&56  
966  
W
W
U
I
DLꢄꢂꢄꢀꢆ  
138/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 70. USB OTG full speed electrical characteristics  
Driver characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
Output driver impedance(3)  
-
Driving high or  
low  
ZDRV  
28  
44  
Ω
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching  
impedance is included in the embedded driver.  
USB high speed (HS) characteristics  
Unless otherwise specified, the parameters given in Table 73 for ULPI are derived from  
tests performed under the ambient temperature, fHCLK frequency summarized in Table 72  
and V supply voltage conditions summarized in Table 71, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified  
Capacitive load C = 30 pF, unless otherwise specified  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Table 71. USB HS DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
USB OTG HS operating voltage  
1.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
(1)  
Table 72. USB HS clock timing parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fHCLK value to guarantee proper operation of  
USB HS interface  
-
30  
-
-
MHz  
FSTART_8BIT  
FSTEADY  
DSTART_8BIT  
DSTEADY  
Frequency (first transition)  
8-bit ±10%  
54  
59.97  
40  
60  
60  
50  
50  
66  
60.03  
60  
MHz  
MHz  
%
Frequency (steady state) ±500 ppm  
Duty cycle (first transition)  
8-bit ±10%  
Duty cycle (steady state) ±500 ppm  
49.975  
50.025  
%
Time to reach the steady state frequency and  
duty cycle after the first transition  
tSTEADY  
-
-
1.4  
ms  
DocID027107 Rev 6  
139/202  
175  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F446xC/E  
(1)  
Table 72. USB HS clock timing parameters (continued)  
Parameter  
Min  
Typ  
Max  
Unit  
tSTART_DEV  
Peripheral  
Host  
-
-
-
-
5.6  
-
Clock startup time after the  
de-assertion of SuspendM  
ms  
tSTART_HOST  
PHY preparation time after the first transition  
of the input clock  
tPREP  
-
-
-
µs  
1. Guaranteed by design.  
Figure 44. ULPI timing diagram  
#LOCK  
T
T
(#  
3#  
#ONTROL )N  
ꢎ5,0)?$)2ꢒ  
5,0)?.84ꢏ  
T
T
($  
3$  
DATA )N  
ꢎꢁꢊBITꢏ  
T
T
$#  
$#  
#ONTROL OUT  
ꢎ5,0)?340ꢏ  
T
$$  
DATA OUT  
ꢎꢁꢊBITꢏ  
AIꢄꢇꢀꢈꢄC  
(1)  
Table 73. Dynamic characteristics: USB ULPI  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
tSC  
tHC  
tSD  
tHD  
Control in (ULPI_DIR, ULPI_NXT) setup time  
Control in (ULPI_DIR, ULPI_NXT) hold time  
Data in setup time  
-
-
-
-
1
-
-
-
-
-
-
-
1.5  
1.5  
1.5  
Data in hold time  
-
ns  
2.7 V < VDD < 3.6 V,  
CL = 20 pF  
-
-
6
6
8.5  
tDC/tDD Data/control output delay  
1.71 V < VDD < 3.6 V,  
CL = 15 pF  
11.5  
1. Guaranteed based on test during characterization.  
CAN (controller area network) interface  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANx_TX and CANx_RX).  
140/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
6.3.21  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 74 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 16.  
Table 74. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
-
-
-
3.6  
VDDA  
-
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
V
VREF-  
Negative reference voltage  
-
0
V
V
DDA = 1.7(1) to 2.4 V  
DDA = 2.4 to 3.6 V  
0.6  
15  
30  
18  
MHz  
MHz  
fADC  
ADC clock frequency  
0.6  
36  
fADC = 30 MHz,  
12-bit resolution  
-
-
-
-
-
1764  
17  
kHz  
1/fADC  
V
(2)  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
-
-
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
See Equation 1 for  
details  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
κΩ  
κΩ  
pF  
(2)(4)  
RADC  
-
-
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
fADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
fADC = 30 MHz  
-
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
-
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
-
2
f
ADC = 30 MHz  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
12-bit resolution  
ADC = 30 MHz  
10-bit resolution  
Total conversion time (including fADC = 30 MHz  
f
(2)  
tCONV  
µs  
sampling time)  
8-bit resolution  
ADC = 30 MHz  
6-bit resolution  
f
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
DocID027107 Rev 6  
141/202  
175  
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
Table 74. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
12-bit resolution  
Single ADC  
-
-
2
Msps  
12-bit resolution  
Sampling rate  
-
-
3.75  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
-
-
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:  
Internal reset OFF).  
2. Guaranteed based on test during characterization.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 74.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
RAIN = ---------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
(1)  
Table 75. ADC static accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
LSB  
Gain error  
VDDA VREF < 1.2 V  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed based on test during characterization.  
142/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
a
(1)  
Table 76. ADC static accuracy at f  
= 30 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±3  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
Gain error  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed based on test during characterization.  
(1)  
Table 77. ADC static accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
V
DDA = 2.4 to 3.6 V,  
LSB  
Gain error  
VREF = 1.7 to 3.6 V  
Differential linearity error  
Integral linearity error  
VDDA VREF < 1.2 V  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed based on test during characterization.  
(1)  
Table 78. ADC dynamic accuracy at f  
Parameter  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
10.3  
64  
10.4  
64.2  
65  
-
-
-
-
bits  
fADC =18 MHz  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
dB  
THD  
Total harmonic distortion  
-67  
-72  
1. Guaranteed based on test during characterization.  
(1)  
Table 79. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
10.8  
67  
-
-
-
-
bits  
fADC =36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
68  
dB  
THD  
Total harmonic distortion  
- 70  
- 72  
1. Guaranteed based on test during characterization.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
DocID027107 Rev 6  
143/202  
175  
 
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.17 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
Figure 45. ADC accuracy characteristics  
6
6
$$!  
2%&ꢌ  
;ꢄ,3"  
ꢎOR  
DEPENDING ON PACKAGEꢏ=  
)$%!,  
ꢂꢅꢆꢈ  
ꢂꢅꢆꢈ  
%
'
ꢂꢅꢆꢉ  
ꢂꢅꢆꢂ  
ꢂꢅꢆꢀ  
ꢎꢃꢏ  
%
4
ꢎꢀꢏ  
ꢎꢄꢏ  
%
%
/
,
%
$
ꢄ, 3"  
)$%!,  
ꢂꢉꢈ  
ꢂꢅꢆꢀ ꢂꢅꢆꢂ ꢂꢅꢆꢉ ꢂꢅꢆꢈ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 76.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
144/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Figure 46. Typical connection diagram using the ADC  
670ꢀꢇ)  
9
''  
6DPSOHꢈDQGꢈKROGꢈ$'&ꢈ  
9
7
FRQYHUWHU  
ꢉꢌꢃꢈ9  
ꢍꢄꢏ  
$,1  
ꢍꢄꢏ  
5
5
$'&  
$,1[  
ꢄꢇꢒELW  
FRQYHUWHU  
9
ꢉꢌꢃꢈ9  
7
9
$,1  
&
ꢍꢄꢏ  
$'&  
&
SDUDVLWLF  
, “ꢄꢈ—$  
/
DLꢄꢆꢅꢀꢂ  
1. Refer to Table 74 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
DocID027107 Rev 6  
145/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 47 or Figure 48,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 47. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
670ꢀꢇ)  
95()ꢍꢄꢏ  
ꢄꢈ—)ꢈꢋꢋꢈꢄꢉꢈQ)  
9''$  
ꢄꢈ—)ꢈꢋꢋꢈꢄꢉꢈQ)  
ꢍꢄꢏ  
966$ꢋ95()ꢓ  
DLꢄꢆꢅꢀꢅE  
1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144,  
and WLCSP81. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
146/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 48. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢇ)  
ꢍꢄꢏ  
95()ꢓꢋ9''$  
ꢄꢈ—)ꢈꢋꢋꢈꢄꢉꢈQ)  
ꢍꢄꢏ  
95()ꢒꢋ966$  
DLꢄꢆꢅꢀꢃF  
1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144,  
and WLCSP81. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
6.3.22  
Temperature sensor characteristics  
Table 80. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
Startup time  
-
-
10  
-
(2)  
tSTART  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed based on test during characterization.  
2. Guaranteed by design.  
Table 81. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
DocID027107 Rev 6  
147/202  
175  
 
 
 
 
Electrical characteristics  
STM32F446xC/E  
6.3.23  
V
monitoring characteristics  
BAT  
Table 82. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
- 1  
-
+ 1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.24  
Reference voltage  
The parameters given in Table 83 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
Table 83. internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
-
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
Table 84. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B  
Symbol  
6.3.25  
DAC electrical characteristics  
Table 85. DAC characteristics  
Conditions Min Typ Max Unit  
Symbol  
Parameter  
Comments  
Analog supply  
voltage  
VDDA  
-
1.7(1)  
1.7(1)  
-
-
3.6  
3.6  
V
V
-
Reference supply  
voltage  
VREF+  
-
VREF+ VDDA  
148/202  
DocID027107 Rev 6  
 
 
 
 
 
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
Table 85. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Comments  
VSSA  
Ground  
-
0
5
-
-
0
-
V
-
Connected  
to VSSA  
-
-
DAC  
output  
buffer ON  
(2)  
RLOAD  
Resistive load  
kΩ  
Connected  
to VDDA  
25  
-
-
-
-
When the buffer is OFF, the  
Minimum resistive load  
Impedance output  
with buffer OFF  
(2)  
RO  
-
15  
kΩ between DAC_OUT and VSS  
to have a 1% accuracy is  
1.5 MΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the  
buffer is ON).  
(2)  
CLOAD  
Capacitive load  
-
-
-
-
-
50  
-
Lower DAC_OUT  
voltage with buffer  
ON  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT  
min(2)  
0.2  
V
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
VREF+ = 3.6 V and (0x1C7) to  
(0xE38) at VREF+ = 1.7 V  
Higher DAC_OUT  
voltage with buffer  
ON  
DAC_OUT  
max(2)  
VDDA  
– 0.2  
-
-
-
-
-
-
-
0.5  
-
V
mV  
V
Lower DAC_OUT  
voltage with buffer  
OFF  
DAC_OUT  
min(2)  
-
It gives the maximum output  
excursion of the DAC.  
Higher DAC_OUT  
voltage with buffer  
OFF  
VREF  
DAC_OUT  
max(2)  
+
1LSB  
With no load, worst code  
(0x800) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
-
-
170 240  
DAC DC VREF  
current  
consumption in  
quiescent mode  
(Standby mode)  
(4)  
IVREF+  
µA  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
-
-
-
-
-
-
50  
75  
With no load, middle code  
(0x800) on the inputs  
280 380  
475 625  
µA  
µA  
DAC DC VDDA  
current  
(4)  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
IDDA  
consumption in  
quiescent mode(3)  
Differential non  
linearity Difference  
between two  
consecutive code-  
1LSB)  
Given for the DAC in 10-bit  
configuration.  
-
-
-
-
-
-
±0.5 LSB  
DNL(4)  
Given for the DAC in 12-bit  
configuration.  
±2  
LSB  
DocID027107 Rev 6  
149/202  
175  
Electrical characteristics  
STM32F446xC/E  
Comments  
Table 85. DAC characteristics (continued)  
Symbol  
Parameter  
Integral non  
Conditions  
Min Typ Max Unit  
Given for the DAC in 10-bit  
configuration.  
-
-
-
±1  
LSB  
linearity(difference  
between  
measured value at  
Code i and the  
value at Code i on  
a line drawn  
between Code 0  
and last Code  
1023)  
INL(4)  
Given for the DAC in 12-bit  
configuration.  
-
-
-
±4  
LSB  
Offset error  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
-
-
-
-
-
-
-
-
±10 mV  
(difference  
between  
measured value at  
Code (0x800) and  
the ideal value =  
VREF+/2)  
Given for the DAC in 10-bit at  
Offset(4)  
±3  
LSB  
VREF+ = 3.6 V  
Given for the DAC in 12-bit at  
VREF+ = 3.6 V  
±12 LSB  
Gain  
Given for the DAC in 12-bit  
configuration  
Gain error  
±0.5  
%
µs  
dB  
error(4)  
Total Harmonic  
Distortion  
(4  
tSETTLING  
CLOAD 50 pF,  
RLOAD 5 kΩ  
-
-
-
-
3
-
6
-
)
Buffer ON  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
-
Max frequency for  
a correct  
DAC_OUT change  
when small  
variation in the  
input code (from  
code i to i+1LSB)  
Update  
rate(2)  
MS/ CLOAD 50 pF,  
-
-
-
1
s
RLOAD 5 kΩ  
Wakeup time from  
off state (Setting  
the ENx bit in the  
DAC Control  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest  
and highest possible ones.  
(4)  
tWAKEUP  
-
-
-
-
6.5  
10  
µs  
register)  
Power supply  
rejection ratio (to  
VDDA) (static DC  
measurement)  
PSRR+ (2)  
- 67 - 40  
dB No RLOAD, CLOAD = 50 pF  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:  
Internal reset OFF).  
2. Guaranteed by design.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed based on test during characterization.  
150/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Figure 49. 12-bit buffered/non-buffered DAC  
%XIIHUHGꢋQRQꢒEXIIHUHGꢈ'$&  
%XIIHUꢍꢄꢏ  
5/2$'  
ꢄꢇꢒELW  
GLJLWDOꢈWRꢈ  
DQDORJ  
'$&[B287  
FRQYHUWHU  
&/2$'  
DLꢄꢆꢄꢅꢆG  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
DocID027107 Rev 6  
151/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
6.3.26  
FMC characteristics  
Unless otherwise specified, the parameters given in Table 86 to Table 93 for the FMC  
interface are derived from tests performed under the ambient temperature, f frequency  
HCLK  
and V supply voltage conditions summarized in Table 15, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitance load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 50 through Figure 53 represent asynchronous waveforms and Table 86 through  
Table 93 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
In all timing tables, the T  
is the HCLK clock period.  
HCLK  
152/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
T
Wꢎ.%ꢏ  
&-#?.%  
T
T
T
Hꢎ.%?./%ꢏ  
Wꢎ./%ꢏ  
Vꢎ./%?.%ꢏ  
&-#?./%  
&-#?.7%  
TVꢎ!?.%ꢏ  
T
Hꢎ!?./%ꢏ  
&-#?!;ꢃꢉꢓꢅ=  
!DDRESS  
TVꢎ",?.%ꢏ  
T
Hꢎ",?./%ꢏ  
&-#?.",;ꢄꢓꢅ=  
T
Hꢎ$ATA?.%ꢏ  
T
T
SUꢎ$ATA?./%ꢏ  
Hꢎ$ATA?./%ꢏ  
T
SUꢎ$ATA?.%ꢏ  
$ATA  
&-#?$;ꢄꢉꢓꢅ=  
T
Vꢎ.!$6?.%ꢏ  
T
Wꢎ.!$6ꢏ  
ꢎꢄꢏ  
&-#?.!$6  
&-#?.7!)4  
THꢎ.%?.7!)4ꢏ  
TSUꢎ.7!)4?.%ꢏ  
-3ꢀꢃꢇꢉꢀ6ꢄ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
DocID027107 Rev 6  
153/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
(1)(2)  
read timings  
Parameter  
FMC_NE low time  
Symbol  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
2THCLK – 2 2 THCLK + 0.5  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
0
1
2THCLK - 1  
2THCLK + 0.5  
th(NE_NOE)  
tv(A_NE)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
0
-
-
0.5  
th(A_NOE)  
Address hold time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NOE high  
Data to FMC_NEx high setup time  
Data to FMC_NOEx high setup time  
Data hold time after FMC_NOE high  
Data hold time after FMC_NEx high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
-
tv(BL_NE)  
-
2
ns  
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
0
-
THCLK - 2  
-
THCLK - 2  
-
0
0
-
-
-
0
-
THCLK +1  
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
7THCLK + 1  
7THCLK  
tw(NOE)  
tw(NWAIT)  
FMC_NWE low time  
FMC_NWAIT low time  
5THCLK – 1  
THCLK – 0.5  
5THCLK + 1  
ns  
-
-
tsu(NWAIT_NE)  
FMC_NWAIT valid before FMC_NEx high 5THCLK+ 1.5  
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK + 1  
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
154/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
T
Wꢎ.%ꢏ  
&-#?.%X  
&-#?./%  
&-#?.7%  
T
T
Wꢎ.7%ꢏ  
T
Hꢎ.%?.7%ꢏ  
Vꢎ.7%?.%ꢏ  
T
THꢎ!?.7%ꢏ  
Vꢎ!?.%ꢏ  
&-#?!;ꢃꢉꢓꢅ=  
!DDRESS  
T
T
Vꢎ",?.%ꢏ  
Hꢎ",?.7%ꢏ  
&-#?.",;ꢄꢓꢅ=  
.",  
T
T
Vꢎ$ATA?.%ꢏ  
Hꢎ$ATA?.7%ꢏ  
$ATA  
&-#?$;ꢄꢉꢓꢅ=  
T
Vꢎ.!$6?.%ꢏ  
T
Wꢎ.!$6ꢏ  
ꢎꢄꢏ  
&-#?.!$6  
&-#?.7!)4  
THꢎ.%?.7!)4ꢏ  
TSUꢎ.7!)4?.%ꢏ  
-3ꢀꢃꢇꢉꢂ6ꢄ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
(1)(2)  
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
Parameter  
Min  
Max  
Unit  
FMC_NE low time  
3 THCLK - 2 3 THCLK +0.5  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
THCLK – 0.5 THCLK + 0.5  
THCLK  
THCLK+ 0.5  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
THCLK + 0.5  
-
-
0
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NWE high  
Data to FMC_NEx low to Data valid  
THCLK - 0.5  
-
ns  
-
1
THCLK + 0.5  
-
-
THCLK + 2  
th(Data_NWE) Data hold time after FMC_NWE high  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK + 0.5  
-
-
-
0
tw(NADV)  
FMC_NADV low time  
THCLK+ 0.5  
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
155/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK - 0.5  
8THCLK + 1  
tw(NWE)  
6THCLK - 0.5 6THCLK + 1  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
6THCLK - 0.5  
4THCLK + 2  
-
-
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms  
T
Wꢎ.%ꢏ  
&-#? .%  
&-#?./%  
T
T
Hꢎ.%?./%ꢏ  
Vꢎ./%?.%ꢏ  
T
Wꢎ./%ꢏ  
T
&-#?.7%  
T
Hꢎ!?./%ꢏ  
Vꢎ!?.%ꢏ  
&-#? !;ꢃꢉꢓꢄꢈ=  
!DDRESS  
.",  
T
T
Vꢎ",?.%ꢏ  
Hꢎ",?./%ꢏ  
&-#? .",;ꢄꢓꢅ=  
T
Hꢎ$ATA?.%ꢏ  
T
SUꢎ$ATA?.%ꢏ  
T
T
T
Hꢎ$ATA?./%ꢏ  
Vꢎ!?.%ꢏ  
!DDRESS  
SUꢎ$ATA?./%ꢏ  
$ATA  
&-#? !$;ꢄꢉꢓꢅ=  
T
T
Hꢎ!$?.!$6ꢏ  
Vꢎ.!$6?.%ꢏ  
T
Wꢎ.!$6ꢏ  
&-#?.!$6  
&-#?.7!)4  
THꢎ.%?.7!)4ꢏ  
TSUꢎ.7!)4?.%ꢏ  
-3ꢀꢃꢇꢉꢉ6ꢄ  
156/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)(2)  
Table 90. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol Parameter Min  
FMC_NE low time 3THCLK – 2 3THCLK+0.5  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
ttw(NOE)  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2THCLK – 0.5  
2THCLK  
THCLK – 1  
THCLK + 0.5  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
-
-
2
2
0
THCLK – 0.5 THCLK + 0.5  
FMC_AD(address) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
0
-
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FMC_NOE high  
FMC_BL time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
THCLK – 0.5  
-
-
0
-
2
-
tsu(Data_NE)  
Data to FMC_NEx high setup time  
THCLK + 1.5  
tsu(Data_NOE) Data to FMC_NOE high setup time  
THCLK + 1  
-
th(Data_NE)  
th(Data_NOE)  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
0
0
-
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
(1)(2)  
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK - 1  
5THCLK – 1  
8THCLK + 2  
tw(NOE)  
5THCLK + 1  
-
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK + 1.5  
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK + 1  
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
157/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms  
T
Wꢎ.%ꢏ  
&-#? .%X  
&-#?./%  
T
T
Wꢎ.7%ꢏ  
T
Hꢎ.%?.7%ꢏ  
Vꢎ.7%?.%ꢏ  
&-#?.7%  
T
T
Hꢎ!?.7%ꢏ  
Vꢎ!?.%ꢏ  
&-#? !;ꢃꢉꢓꢄꢈ=  
!DDRESS  
T
T
Vꢎ",?.%ꢏ  
Hꢎ",?.7%ꢏ  
&-#? .",;ꢄꢓꢅ=  
.",  
T
T
Hꢎ$ATA?.7%ꢏ  
T
Vꢎ!?.%ꢏ  
!DDRESS  
Vꢎ$ATA?.!$6ꢏ  
$ATA  
&-#? !$;ꢄꢉꢓꢅ=  
T
T
Hꢎ!$?.!$6ꢏ  
Vꢎ.!$6?.%ꢏ  
T
Wꢎ.!$6ꢏ  
&-#?.!$6  
&-#?.7!)4  
THꢎ.%?.7!)4ꢏ  
TSUꢎ.7!)4?.%ꢏ  
-3ꢀꢃꢇꢉꢈ6ꢄ  
158/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
(1)(2)  
Table 92. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
4THCLK - 2 4THCLK+0.5  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
THCLK  
2THCLK  
THCLK  
-
THCLK + 0.5  
2THCLK + 0.5  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
0
1
0.5  
THCLK – 0.5 THCLK+ 0.5  
ns  
FMC_AD(adress) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
THCLK – 2  
-
th(A_NWE)  
th(BL_NWE)  
Address hold time after FMC_NWE high  
FMC_BL hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
THCLK  
-
THCLK–2  
-
tv(BL_NE)  
-
2
tv(Data_NADV)  
th(Data_NWE)  
1. CL = 30 pF.  
FMC_NADV high to Data valid  
-
THCLK + 1.5  
-
Data hold time after FMC_NWE high  
THCLK + 0.5  
2. Guaranteed based on test during characterization.  
(1)(2)  
Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
9THCLK  
9THCLK + 0.5  
tw(NWE)  
7THCLK  
7THCLK + 2  
-
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
6THCLK + 1.5  
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
4THCLK – 1  
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
Synchronous waveforms and timings  
Figure 54 through Figure 57 represent synchronous waveforms and Table 94 through  
Table 97 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable;  
MemoryType = FMC_MemoryType_CRAM;  
WriteBurst = FMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
DocID027107 Rev 6  
159/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
In all timing tables, the T  
is the HCLK clock period (with maximum  
HCLK  
FMC_CLK = 90 MHz).  
Figure 54. Synchronous multiplexed NOR/PSRAM read timings  
"53452. ꢍ ꢅ  
T
T
Wꢎ#,+ꢏ  
Wꢎ#,+ꢏ  
&-#?#,+  
$ATA LATENCY ꢍ ꢅ  
Dꢎ#,+,ꢊ.%X,ꢏ  
T
TDꢎ#,+(ꢊ.%X(ꢏ  
&-#?.%X  
T
T
Dꢎ#,+,ꢊ.!$6,ꢏ  
Dꢎ#,+,ꢊ.!$6(ꢏ  
&-#?.!$6  
T
TDꢎ#,+(ꢊ!)6ꢏ  
Dꢎ#,+,ꢊ!6ꢏ  
&-#?!;ꢃꢉꢓꢄꢈ=  
T
TDꢎ#,+(ꢊ./%(ꢏ  
Dꢎ#,+,ꢊ./%,ꢏ  
&-#?./%  
T
T
T
Hꢎ#,+(ꢊ!$6ꢏ  
Dꢎ#,+,ꢊ!$)6ꢏ  
T
T
T
SUꢎ!$6ꢊ#,+(ꢏ  
SUꢎ!$6ꢊ#,+(ꢏ  
Dꢎ#,+,ꢊ!$6ꢏ  
Hꢎ#,+(ꢊ!$6ꢏ  
&-#?!$;ꢄꢉꢓꢅ=  
!$;ꢄꢉꢓꢅ=  
T
$ꢄ  
$ꢃ  
T
SUꢎ.7!)46ꢊ#,+(ꢏ  
Hꢎ#,+(ꢊ.7!)46ꢏ  
&-#?.7!)4  
ꢎ7!)4#&' ꢍ ꢄBꢒ  
7!)40/, ꢌ ꢅBꢏ  
T
T
SUꢎ.7!)46ꢊ#,+(ꢏ  
Hꢎ#,+(ꢊ.7!)46ꢏ  
&-#?.7!)4  
ꢎ7!)4#&' ꢍ ꢅBꢒ  
7!)40/, ꢌ ꢅBꢏ  
T
T
Hꢎ#,+(ꢊ.7!)46ꢏ  
SUꢎ.7!)46ꢊ#,+(ꢏ  
-3ꢀꢃꢇꢉꢇ6ꢄ  
160/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)(2)  
Table 94. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK  
-
2.5  
-
td(CLKL-NExL)  
td(CLKH_NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
THCLK - 0.5  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
0
0
-
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NOE low  
-
2.5  
-
THCLK  
-
2
ns  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
THCLK – 0.5  
-
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
0.5  
-
0
FMC_A/D[15:0] valid data before FMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
1
-
FMC_A/D[15:0] valid data after FMC_CLK high  
3.5  
1
-
-
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
3.5  
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
161/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Figure 55. Synchronous multiplexed PSRAM write timings  
"53452. ꢍ ꢅ  
T
T
Wꢎ#,+ꢏ  
Wꢎ#,+ꢏ  
&-#?#,+  
$ATA LATENCY ꢍ ꢅ  
Dꢎ#,+,ꢊ.%X,ꢏ  
T
T
Dꢎ#,+(ꢊ.%X(ꢏ  
&-#?.%X  
T
T
Dꢎ#,+,ꢊ.!$6,ꢏ  
Dꢎ#,+,ꢊ.!$6(ꢏ  
&-#?.!$6  
T
Dꢎ#,+(ꢊ!)6ꢏ  
T
T
Dꢎ#,+,ꢊ!6ꢏ  
&-#?!;ꢃꢉꢓꢄꢈ=  
T
Dꢎ#,+(ꢊ.7%(ꢏ  
Dꢎ#,+,ꢊ.7%,ꢏ  
&-#?.7%  
T
T
T
Dꢎ#,+,ꢊ!$)6ꢏ  
T
Dꢎ#,+,ꢊ$ATAꢏ  
Dꢎ#,+,ꢊ$ATAꢏ  
Dꢎ#,+,ꢊ!$6ꢏ  
&-#?!$;ꢄꢉꢓꢅ=  
!$;ꢄꢉꢓꢅ=  
$ꢄ  
$ꢃ  
&-#?.7!)4  
ꢎ7!)4#&' ꢍ ꢅBꢒ  
7!)40/, ꢌ ꢅBꢏ  
T
T
Hꢎ#,+(ꢊ.7!)46ꢏ  
SUꢎ.7!)46ꢊ#,+(ꢏ  
T
Dꢎ#,+(ꢊ.",(ꢏ  
&-#?.",  
-3ꢀꢃꢇꢉꢁ6ꢄ  
162/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Electrical characteristics  
(1)(2)  
Table 95. Synchronous multiplexed PSRAM write timings  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FMC_CLK period, VDD range= 2.7 to 3.6 V  
2THCLK - 1  
-
2.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK + 0.5  
-
2
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
2
-
THCLK  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
-
0
-
ns  
THCLK - 0.5  
-
3
-
0
-
3
-
0
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
THCLK - 0.5  
-
4
0
-
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
163/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings  
T
T
Wꢎ#,+ꢏ  
Wꢎ#,+ꢏ  
&-#?#,+  
T
T
Dꢎ#,+(ꢊ.%X(ꢏ  
Dꢎ#,+,ꢊ.%X,ꢏ  
$ATA LATENCY ꢍ ꢅ  
Dꢎ#,+,ꢊ.!$6(ꢏ  
&-#?.%X  
T
T
Dꢎ#,+,ꢊ.!$6,ꢏ  
&-#?.!$6  
&-#?!;ꢃꢉꢓꢅ=  
T
T
Dꢎ#,+(ꢊ!)6ꢏ  
Dꢎ#,+,ꢊ!6ꢏ  
T
T
Dꢎ#,+(ꢊ./%(ꢏ  
Dꢎ#,+,ꢊ./%,ꢏ  
&-#?./%  
T
T
SUꢎ$6ꢊ#,+(ꢏ  
Hꢎ#,+(ꢊ$6ꢏ  
T
T
Hꢎ#,+(ꢊ$6ꢏ  
SUꢎ$6ꢊ#,+(ꢏ  
&-#?$;ꢄꢉꢓꢅ=  
&-#?.7!)4  
$ꢄ  
$ꢃ  
T
T
T
SUꢎ.7!)46ꢊ#,+(ꢏ  
Hꢎ#,+(ꢊ.7!)46ꢏ  
ꢎ7!)4#&' ꢍ ꢄBꢒ  
7!)40/, ꢌ ꢅBꢏ  
T
T
Hꢎ#,+(ꢊ.7!)46ꢏ  
SUꢎ.7!)46ꢊ#,+(ꢏ  
&-#?.7!)4  
ꢎ7!)4#&' ꢍ ꢅBꢒ  
7!)40/, ꢌ ꢅBꢏ  
T
SUꢎ.7!)46ꢊ#,+(ꢏ  
Hꢎ#,+(ꢊ.7!)46ꢏ  
-3ꢀꢃꢇꢉꢆ6ꢄ  
(1)(2)  
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
FMC_CLK low to FMC_NEx low (x=0..2)  
2THCLK  
-
t(CLKL-NExL)  
-
2.5  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
THCLK – 0.5  
-
0
-
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
2.5  
-
THCLK  
ns  
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
-
2
-
THCLK – 0.5  
tsu(DV-CLKH)  
th(CLKH-DV)  
FMC_D[15:0] valid data before FMC_CLK high  
FMC_D[15:0] valid data after FMC_CLK high  
1
-
3.5  
1
-
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
-
3.5  
-
164/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
Figure 57. Synchronous non-multiplexed PSRAM write timings  
T
T
Wꢎ#,+ꢏ  
Wꢎ#,+ꢏ  
&-#?#,+  
T
T
Dꢎ#,+,ꢊ.%X,ꢏ  
&-#?.%X  
Dꢎ#,+(ꢊ.%X(ꢏ  
$ATA LATENCY ꢍ ꢅ  
Dꢎ#,+,ꢊ.!$6(ꢏ  
T
T
Dꢎ#,+,ꢊ.!$6,ꢏ  
&-#?.!$6  
&-#?!;ꢃꢉꢓꢅ=  
&-#?.7%  
T
Dꢎ#,+(ꢊ!)6ꢏ  
T
T
Dꢎ#,+,ꢊ!6ꢏ  
TDꢎ#,+(ꢊ.7%(ꢏ  
Dꢎ#,+,ꢊ.7%,ꢏ  
T
T
Dꢎ#,+,ꢊ$ATAꢏ  
Dꢎ#,+,ꢊ$ATAꢏ  
&-#?$;ꢄꢉꢓꢅ=  
$ꢄ  
$ꢃ  
&-#?.7!)4  
ꢎ7!)4#&' ꢍ ꢅBꢒ 7!)40/, ꢌ ꢅBꢏ  
&-#?.",  
T
T
Dꢎ#,+(ꢊ.",(ꢏ  
SUꢎ.7!)46ꢊ#,+(ꢏ  
T
Hꢎ#,+(ꢊ.7!)46ꢏ  
-3ꢀꢃꢇꢈꢅ6ꢄ  
DocID027107 Rev 6  
165/202  
175  
 
Electrical characteristics  
STM32F446xC/E  
(1)(2)  
Table 97. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK – 1  
-
2.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK – 0.5  
-
2
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
2
-
0
ns  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
-
3
-
THCLK + 1  
-
2.5  
-
3
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
THCLK + 1.5  
-
1.5  
0
-
-
1. CL = 30 pF.  
2. Guaranteed based on test during characterization.  
NAND controller waveforms and timings  
Figure 58 through Figure 61 represent synchronous waveforms, and Table 98 and Table 99  
provide the corresponding timings. The results shown in this table are obtained with the  
following FMC configuration:  
COM.FSMC_SetupTime = 0x01;  
COM.FMC_WaitSetupTime = 0x03;  
COM.FMC_HoldSetupTime = 0x02;  
COM.FMC_HiZSetupTime = 0x01;  
ATT.FMC_SetupTime = 0x01;  
ATT.FMC_WaitSetupTime = 0x03;  
ATT.FMC_HoldSetupTime = 0x02;  
ATT.FMC_HiZSetupTime = 0x01;  
Bank = FMC_Bank_NAND;  
MemoryDataWidth = FMC_MemoryDataWidth_16b;  
ECC = FMC_ECC_Enable;  
ECCPageSize = FMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the T  
is the HCLK clock period.  
DocID027107 Rev 6  
HCLK  
166/202  
 
STM32F446xC/E  
Electrical characteristics  
Figure 58. NAND controller waveforms for read access  
&-#?.#%X  
!,% ꢎ&-#?!ꢄꢇꢏ  
#,% ꢎ&-#?!ꢄꢈꢏ  
&-#?.7%  
T
THꢎ./%ꢊ!,%ꢏ  
Dꢎ!,%ꢊ./%ꢏ  
&-#?./% ꢎ.2%ꢏ  
&-#?$;ꢄꢉꢓꢅ=  
T
T
Hꢎ./%ꢊ$ꢏ  
SUꢎ$ꢊ./%ꢏ  
-3ꢀꢃꢇꢈꢇ6ꢄ  
Figure 59. NAND controller waveforms for write access  
&-#?.#%X  
!,% ꢎ&-#?!ꢄꢇꢏ  
#,% ꢎ&-#?!ꢄꢈꢏ  
T
T
Hꢎ.7%ꢊ!,%ꢏ  
Dꢎ!,%ꢊ.7%ꢏ  
&-#?.7%  
&-#?./% ꢎ.2%ꢏ  
&-#?$;ꢄꢉꢓꢅ=  
T
T
Hꢎ.7%ꢊ$ꢏ  
Vꢎ.7%ꢊ$ꢏ  
-3ꢀꢃꢇꢈꢁ6ꢄ  
DocID027107 Rev 6  
167/202  
175  
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 60. NAND controller waveforms for common memory read access  
&-#?.#%X  
!,% ꢎ&-#?!ꢄꢇꢏ  
#,% ꢎ&-#?!ꢄꢈꢏ  
T
T
Hꢎ./%ꢊ!,%ꢏ  
Dꢎ!,%ꢊ./%ꢏ  
&-#?.7%  
&-#?./%  
T
Wꢎ./%ꢏ  
T
T
Hꢎ./%ꢊ$ꢏ  
SUꢎ$ꢊ./%ꢏ  
&-#?$;ꢄꢉꢓꢅ=  
-3ꢀꢃꢇꢈꢆ6ꢄ  
Figure 61. NAND controller waveforms for common memory write access  
&-#?.#%X  
!,% ꢎ&-#?!ꢄꢇꢏ  
#,% ꢎ&-#?!ꢄꢈꢏ  
T
T
T
Hꢎ./%ꢊ!,%ꢏ  
Dꢎ!,%ꢊ./%ꢏ  
Wꢎ.7%ꢏ  
&-#?.7%  
&-#?. /%  
T
Dꢎ$ꢊ.7%ꢏ  
T
T
Vꢎ.7%ꢊ$ꢏ  
Hꢎ.7%ꢊ$ꢏ  
&-#?$;ꢄꢉꢓꢅ=  
-3ꢀꢃꢇꢇꢅ6ꢄ  
(1)  
Table 98. Switching characteristics for NAND Flash read cycles  
Parameter Min Max  
FMC_NOE low width 4THCLK – 0.5 4THCLK + 0.5  
Symbol  
Unit  
tw(N0E)  
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high  
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high  
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
1. CL = 30 pF.  
9
-
2.5  
-
ns  
-
3THCLK - 0.5  
3THCLK – 2  
-
168/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Electrical characteristics  
(1)  
Table 99. Switching characteristics for NAND Flash write cycles  
Symbol  
tw(NWE)  
tv(NWE-D)  
Parameter  
FMC_NWE low width  
Min  
Max  
Unit  
4THCLK - 2  
0
4THCLK  
ns  
ns  
ns  
ns  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
FMC_D[15-0] valid before FMC_NWE high  
FMC_ALE valid before FMC_NWE low  
FMC_NWE high to FMC_ALE invalid  
-
-
-
th(NWE-D)  
3THCLK – 1  
5THCLK – 3  
-
td(D-NWE)  
td(ALE-NWE)  
th(NWE-ALE)  
1. CL = 30 pF.  
3THCLK - 0.5 ns  
ns  
3THCLK – 2  
-
SDRAM waveforms and timings  
Figure 62. SDRAM read access waveforms (CL = 1)  
&-#?3$#,+  
TDꢎ3$#,+,?!DD#ꢏ  
THꢎ3$#,+,?!DD2ꢏ  
TDꢎ3$#,+,?!DD2ꢏ  
2OW N  
#OLꢄ  
#OLꢃ  
#OLI  
#OLN  
&-#?!>ꢄꢇꢎꢉ@  
THꢎ3$#,+,?!DD#ꢏ  
THꢎ3$#,+,?3.$%ꢏ  
THꢎ3$#,+,?.#!3ꢏ  
TDꢎ3$#,+,?3.$%ꢏ  
&-#?3$.%;ꢄꢓꢅ=  
TDꢎ3$#,+,?.2!3ꢏ  
THꢎ3$#,+,?.2!3ꢏ  
&-#?3$.2!3  
&-#?3$.#!3  
TDꢎ3$#,+,?.#!3ꢏ  
&-#?3$.7%  
&-#?$;ꢀꢄꢓꢅ=  
TSUꢎ3$#,+(?$ATAꢏ  
THꢎ3$#,+(?$ATAꢏ  
$ATAꢄ $ATAꢃ $ATAI  
$ATAN  
-3ꢀꢃꢇꢉꢄ6ꢃ  
DocID027107 Rev 6  
169/202  
175  
 
 
Electrical characteristics  
Symbol  
STM32F446xC/E  
(1)(2)  
Table 100. SDRAM read timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
2THCLK-0.5  
2THCLK+0.5  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
td(SDCLKL_ SDNE)  
th(SDCLKL_SDNE)  
1
4
-
-
-
3
Chip select valid time  
Chip select hold time  
-
1.5  
-
ns  
0
-
td(SDCLKL_SDNRAS) SDNRAS valid time  
th(SDCLKL_SDNRAS) SDNRAS hold time  
td(SDCLKL_SDNCAS) SDNCAS valid time  
th(SDCLKL_SDNCAS) SDNCAS hold time  
1.5  
-
0
-
0.5  
-
0
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.  
2. Guaranteed based on test during characterization.  
(1)(2)  
Max  
Table 101. LPSDR SDRAM read timings  
Symbol  
tw(SDCLK)  
Parameter  
Min  
Unit  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
2THCLK - 0.5  
2THCLK + 0.5  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
1
5
-
-
-
3
3
-
td(SDCLKL_ SDNE)  
th(SDCLKL_SDNE)  
Chip select valid time  
Chip select hold time  
-
ns  
0
-
td(SDCLKL_SDNRAS) SDNRAS valid time  
th(SDCLKL_SDNRAS) SDNRAS hold time  
td(SDCLKL_SDNCAS) SDNCAS valid time  
th(SDCLKL_SDNCAS) SDNCAS hold time  
2
-
0
-
2
-
0
1. CL = 10 pF.  
2. Guaranteed based on test during characterization.  
170/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 63. SDRAM write access waveforms  
&-#?3$#,+  
TDꢎ3$#,+,?!DD#ꢏ  
THꢎ3$#,+,?!DD2ꢏ  
TDꢎ3$#,+,?!DD2ꢏ  
2OW N  
#OLꢄ  
#OLꢃ  
#OLI  
#OLN  
&-#?!>ꢄꢇꢎꢉ@  
THꢎ3$#,+,?!DD#ꢏ  
THꢎ3$#,+,?3.$%ꢏ  
TDꢎ3$#,+,?3.$%ꢏ  
&-#?3$.%;ꢄꢓꢅ=  
TDꢎ3$#,+,?.2!3ꢏ  
THꢎ3$#,+,?.2!3ꢏ  
&-#?3$.2!3  
&-#?3$.#!3  
&-#?3$.7%  
THꢎ3$#,+,?.#!3ꢏ  
THꢎ3$#,+,?.7%ꢏ  
TDꢎ3$#,+,?.#!3ꢏ  
TDꢎ3$#,+,?.7%ꢏ  
TDꢎ3$#,+,?$ATAꢏ  
$ATAꢄ  
$ATAꢃ  
$ATAI  
$ATAN  
&-#?$;ꢀꢄꢓꢅ=  
TDꢎ3$#,+,?.",ꢏ  
&-#?.",;ꢀꢓꢅ=  
THꢎ3$#,+,?$ATAꢏ  
-3ꢀꢃꢇꢉꢃ6ꢃ  
(1)(2)  
Table 102. SDRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
F(SDCLK)  
Frequency of operation  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
-
90  
MHz  
tw(SDCLK)  
2THCLK - 0.5  
2THCLK + 0.5  
td(SDCLKL _Data)  
th(SDCLKL _Data)  
td(SDCLK _Add)  
-
0.5  
-
2
-
3
td(SDCLKL _SDNWE)) SDNWE valid time  
th(SDCLKL_SDNWE)) SDNWE hold time  
-
1.5  
-
0
-
ns  
td(SDCLKL_SDNE))  
th(SDCLKL_SDNE)  
Chip select valid time  
Chip select hold time  
1.5  
-
0
-
td(SDCLKL_SDNRAS) SDNRAS valie time  
th(SDCLKL_SDNRAS) SDNRAS hold time  
td(SDCLKL_SDNCAS) SDNCAS valid time  
th(SDCLKL_SDNCAS) SDNCAS hold time  
1
0
-
-
1
0
-
1. CL = 10 pF on data and address line. CL=15 pF on FMC_SDCLK.  
2. Guaranteed based on test during characterization.  
DocID027107 Rev 6  
171/202  
175  
 
 
Electrical characteristics  
Symbol  
STM32F446xC/E  
(1)(2)  
Max  
Table 103. LPSDR SDRAM write timings  
Parameter  
Min  
Unit  
F(SDCLK)  
Frequency of operation  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
-
84  
MHz  
tw(SDCLK)  
2THCLK - 0.5  
2THCLK + 0.5  
td(SDCLKL _Data)  
th(SDCLKL _Data)  
td(SDCLK _Add)  
-
0.5  
-
5
-
3
3
-
td(SDCLKL _SDNWE)) SDNWE valid time  
th(SDCLKL_SDNWE)) SDNWE hold time  
-
0
-
ns  
td(SDCLKL_SDNE))  
th(SDCLKL_ SDNE)  
Chip select valid time  
Chip select hold time  
2.5  
-
0
-
td(SDCLKL_SDNRAS) SDNRAS valid time  
th(SDCLKL_SDNRAS) SDNRAS hold time  
td(SDCLKL_SDNCAS) SDNCAS valid time  
td(SDCLKL_SDNCAS) SDNCAS hold time  
2
-
0
-
2
-
0
1. CL = 10 pF.  
2. Guaranteed based on test during characterization.  
6.3.27  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 104 for DCMI are derived  
from tests performed under the ambient temperature, fHCLK frequency and VDD supply  
voltage summarized in Table 16, with the following configuration:  
DCMI_PIXCLK polarity: falling  
DCMI_VSYNC and DCMI_HSYNC polarity: high  
Data formats: 14 bits  
Table 104. DCMI characteristics  
Parameter  
Frequency ratio DCMI_PIXCLK/f  
Symbol  
Min  
Max  
Unit  
-
-
-
0.4  
54  
70  
-
-
HCLK  
DCMI_PIXCLK Pixel clock input  
MHz  
%
DPixel  
tsu(DATA)  
th(DATA)  
Pixel clock input duty cycle  
30  
1
Data input setup time  
Data input hold time  
3.5  
-
tsu(HSYNC)  
tsu(VSYNC)  
th(HSYNC)  
th(VSYNC)  
ns  
DCMI_HSYNC/DCMI_VSYNC input setup time  
DCMI_HSYNC/DCMI_VSYNC input hold time  
2
0
-
-
172/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Electrical characteristics  
Figure 64. DCMI timing diagram  
ꢄꢋ'&0,B3,;&/.  
'&0,B3,;&/.  
'&0,B+6<1&  
'&0,B96<1&  
'$7$>ꢉꢎꢄꢀ@  
WKꢍ+6<1&ꢏ  
WVXꢍ+6<1&ꢏ  
WKꢍ+6<1&ꢏ  
WVXꢍ96<1&ꢏ  
WVXꢍ'$7$ꢏ WKꢍ'$7$ꢏ  
06ꢀꢇꢂꢄꢂ9ꢇ  
6.3.28  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 105 for the SDIO are derived  
from tests performed under the ambient temperature, f frequency and V supply  
PCLK2  
DD  
voltage conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Figure 65. SDIO high-speed mode  
T
T
R
F
T
#
T
T
7ꢎ#+(ꢏ  
7ꢎ#+,ꢏ  
#+  
T
T
/6  
/(  
$ꢒ #-$  
ꢎOUTPUTꢏ  
T
T
)(  
)35  
$ꢒ #-$  
ꢎINPUTꢏ  
AIꢄꢂꢁꢁꢇ  
DocID027107 Rev 6  
173/202  
175  
 
 
 
Electrical characteristics  
STM32F446xC/E  
Figure 66. SD default mode  
#+  
T
T
/6$  
/($  
$ꢒ #-$  
ꢎOUTPUTꢏ  
AIꢄꢂꢁꢁꢁ  
(1)(2)  
Table 105. Dynamic characteristics: SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
0
-
-
-
50  
8/3  
-
MHz  
-
-
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
1
-
-
-
-
4.5  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
12.5  
-
13  
-
11  
CMD, D inputs (referenced to CK) in SD default mode  
2.5  
5.5  
-
-
-
-
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp =25MHz  
fpp =25MHz  
ns  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
-
3.5  
-
4
-
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =24MHz  
fpp =24MHz  
2
1. Guaranteed based on test during characterization.  
2. VDD = 2.7 to 3.6 V.  
174/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Electrical characteristics  
(1)(2)  
Table 106. Dynamic characteristics: eMMC characteristics V = 1.7 V to 1.9 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
0
-
-
-
50  
8/3  
-
MHz  
-
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
0.5  
7.5  
-
-
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
13.5  
-
14.5  
-
12  
1. Guaranteed based on test during characterization.  
2. VDD = 2.7 to 3.6 V.  
6.3.29  
RTC characteristics  
Table 107. RTC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
DocID027107 Rev 6  
175/202  
175  
 
 
 
Package information  
STM32F446xC/E  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP64 package information  
Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline  
6($7,1*ꢈ3/$1(  
&
ꢉꢌꢇꢅꢈPP  
*$8*(ꢈ3/$1(  
FFF  
&
'
'ꢄ  
'ꢀ  
/
/ꢄ  
ꢀꢀ  
ꢂꢁ  
ꢀꢇ  
ꢂꢊ  
ꢃꢂ  
E
ꢄꢆ  
ꢄꢃ  
3,1ꢈꢄ  
,'(17,),&$7,21  
H
ꢅ:B0(B9ꢀ  
1. Drawing is not to scale  
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.050  
1.350  
0.170  
0.090  
-
0.0020  
0.0531  
0.0067  
0.0035  
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
176/202  
DocID027107 Rev 6  
 
 
 
 
 
STM32F446xC/E  
Package information  
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
D
D1  
D3  
E
11.800  
12.000  
10.000  
7.500  
12.000  
10.000  
7.500  
0.500  
0.600  
1.000  
3.5°  
12.200  
0.4646  
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
0.0236  
0.0394  
3.5°  
0.4803  
9.800  
10.200  
0.3858  
0.4016  
-
-
-
-
11.800  
12.200  
0.4646  
0.4803  
E1  
E3  
e
9.800  
10.200  
0.3858  
0.4016  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
K
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 68. LQFP64 Recommended footprint  
ꢂꢁ  
ꢀꢀ  
ꢅꢑꢀ  
ꢅꢑꢉ  
ꢂꢆ  
ꢀꢃ  
ꢄꢃꢑꢇ  
ꢄꢅꢑꢀ  
ꢄꢅꢑꢀ  
ꢇꢑꢁ  
ꢄꢇ  
ꢈꢂ  
ꢄꢑꢃ  
ꢄꢈ  
ꢄꢃꢑꢇ  
AIꢄꢂꢆꢅꢆC  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
DocID027107 Rev 6  
177/202  
199  
 
Package information  
STM32F446xC/E  
Device marking for LQFP64  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 69. LQFP64 marking example (package top view)  
5HYLVLRQꢈFRGH  
3URGXFWꢈLGHQWLILFDWLRQꢍꢄꢏ  
$
670ꢀꢁ)ꢂꢂꢃ  
5(7ꢃ  
'DWHꢈFRGH  
< ::  
3LQꢈꢄꢈLGHQWLILHU  
06Yꢀꢃꢅꢂꢊ9ꢄ  
1. Parts marked as “ES”, "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
178/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Package information  
7.2  
LQFP100 package information  
Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢅꢑꢃꢉ MM  
'!5'% 0,!.%  
CCC  
ꢇꢉ  
#
$
,
$ꢄ  
$ꢀ  
,ꢄ  
ꢉꢄ  
ꢉꢅ  
ꢇꢈ  
ꢄꢅꢅ  
ꢃꢈ  
0). ꢄ  
)$%.4)&)#!4)/.  
ꢃꢉ  
E
ꢄ,?-%?6ꢉ  
1. Drawing is not to scale.  
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
DocID027107 Rev 6  
179/202  
199  
 
 
 
 
Package information  
STM32F446xC/E  
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat  
package mechanical data (continued)  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint  
ꢇꢉ  
ꢉꢄ  
ꢇꢈ  
ꢉꢅ  
ꢅꢑꢉ  
ꢅꢑꢀ  
ꢄꢈꢑꢇ ꢄꢂꢑꢀ  
ꢄꢅꢅ  
ꢃꢈ  
ꢄꢑꢃ  
ꢃꢉ  
ꢄꢃꢑꢀ  
ꢄꢈꢑꢇ  
AIꢄꢂꢆꢅꢈC  
1. Dimensions are expressed in millimeters.  
180/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Package information  
Device marking for LQFP100 package  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 72. LQFP100 marking example (package top view)  
3URGXFWꢈLGHQWLILFDWLRQꢍꢄꢏ  
670ꢀꢁ)ꢂꢂꢃ  
5HYLVLRQꢈFRGH  
9&7ꢃꢄꢄ  
$
'DWHꢈFRGH  
< ::  
3LQꢈꢄꢈLGHQWLILHU  
06Yꢀꢃꢅꢂꢆ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID027107 Rev 6  
181/202  
199  
 
Package information  
STM32F446xC/E  
7.3  
LQFP144 package information.  
Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline  
ꢉꢌꢇꢅꢈPP  
*$8*(ꢈ3/$1(  
FFF  
&
'
/
'ꢄ  
/ꢄ  
'ꢀ  
ꢄꢉꢁ  
ꢆꢀ  
ꢄꢉ
ꢆꢇ  
ꢀꢆ  
ꢄꢂꢂ  
ꢀꢃ  
3,1ꢈꢄ  
,'(17,),&$7,21  
H
ꢄ$B0(B9ꢂ  
1. Drawing is not to scale.  
182/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Symbol  
Package information  
Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.689  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID027107 Rev 6  
183/202  
199  
 
Package information  
STM32F446xC/E  
Figure 74. LQFP144 recommended footprint  
ꢄꢌꢀꢅ  
ꢄꢉꢁ  
ꢆꢀ  
ꢄꢉꢊ  
ꢆꢇ  
ꢉꢌꢀꢅ  
ꢉꢌꢅ  
ꢄꢊꢌꢊ  
ꢄꢆꢌꢁꢅ  
ꢇꢇꢌꢃ  
ꢄꢂꢂ  
ꢀꢆ  
ꢀꢃ  
ꢄꢊꢌꢊ  
ꢇꢇꢌꢃ  
DLꢄꢂꢊꢉꢅH  
1. Dimensions are expressed in millimeters.  
184/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Package information  
Device marking for LQFP144 package  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 75. LQFP144 marking example (package top view)  
2SWLRQDOꢈJDWHꢈPDUN  
5HYLVLRQꢈFRGH  
3URGXFWꢈLGHQWLILFDWLRQꢍꢄꢏ  
$
670ꢀꢁ)ꢂꢂꢃ=(7ꢃ  
'DWHꢈFRGH  
< ::  
3LQꢈꢄꢈLGHQWLILHU  
06Yꢀꢃꢅꢂꢁ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID027107 Rev 6  
185/202  
199  
 
Package information  
STM32F446xC/E  
7.4  
UFBGA144 7 x 7 mm package information  
Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline  
= 6HDWLQJꢈSODQH  
GGG =  
$ꢂ  
$ꢇ  
$
$ꢀ  
$ꢄ  
$
(ꢄ  
;
$ꢄꢈEDOOꢈ  
$ꢄꢈEDOOꢈ  
(
LGHQWLILHU LQGH[ꢈDUHD  
H
)
)
'ꢄ  
'
H
<
0
ꢄꢇ  
‘EꢈꢍꢄꢂꢂꢈEDOOVꢏ  
%27720ꢈ9,(:  
723ꢈ9,(:  
‘ HHH  
0
0
= < ;  
=
‘ III  
$ꢉ$6B0(B9ꢇ  
1. Drawing is not in scale.  
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.450  
6.950  
5.450  
-
0.370  
0.320  
7.050  
5.550  
7.050  
5.550  
-
0.0106  
0.0091  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0146  
0.0126  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
186/202  
DocID027107 Rev 6  
 
 
 
 
STM32F446xC/E  
Package information  
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
'SDG  
'VP  
ꢃϬꢃ^ͺ&Wͺsϭ  
Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.50 mm  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.120 mm  
DocID027107 Rev 6  
187/202  
199  
 
 
 
Package information  
STM32F446xC/E  
Device marking for UFBGA144 7 x 7 mm package  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 78. UQFP144 7 x 7 mm marking example (package top view)  
3URGXFWꢈ  
LGHQWLILFDWLRQꢍꢄꢏ  
670ꢀꢁ)  
ꢂꢂꢃ=(+ꢃ  
'DWHꢈFRGH  
< ::  
%DOOꢈꢈ$ꢄꢈ  
LQGHQWLILHU  
$GGLWLRQDOꢈ  
LQIRUPDWLRQ  
$
06Yꢀꢆꢊꢅꢀ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
188/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Package information  
7.5  
UFBGA144 10 x 10 mm package information  
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline  
& 6HDWLQJꢈSODQH  
GGG =  
$ꢂ  
$ꢇ  
$
$ꢀ  
$ꢄ  
$
(ꢄ  
$
$ꢄꢈEDOOꢈ  
$ꢄꢈEDOOꢈ  
(
LGHQWLILHU LQGH[ꢈDUHD  
H
)
)
'ꢄ  
'
H
%
0
ꢄꢇ  
‘EꢈꢍꢄꢂꢂꢈEDOOVꢏ  
‘ HHH 0 & $ %  
‘ III 0 &  
%27720ꢈ9,(:  
723ꢈ9,(:  
$ꢉꢇ<B0(B9ꢄ  
1. Drawing is not to scale.  
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
0.050  
0.270  
0.360  
9.950  
8.750  
9.950  
8.750  
0.750  
0.530  
0.080  
0.450  
0.080  
0.320  
0.400  
10.000  
8.800  
10.000  
8.800  
0.800  
0.600  
0.110  
0.500  
0.110  
0.370  
0.440  
10.050  
8.850  
10.050  
8.850  
0.850  
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0236  
0.0043  
0.0197  
-
0.0106  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0146  
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
DocID027107 Rev 6  
189/202  
199  
 
 
 
Package information  
STM32F446xC/E  
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
F
0.550  
0.600  
0.650  
0.080  
0.150  
0.080  
0.0177  
0.0197  
0.0217  
0.0039  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
'SDG  
'VP  
ꢃϬϮzͺ&Wͺsϭ  
Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.80 mm  
0.400 mm  
0.550 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.400 mm  
Between 0.100 mm and 0.125 mm  
0.120 mm  
190/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Package information  
Device marking for UFBGA144 10 x 10 mm package  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 81. UQFP144 10 x 10 mm marking example (package top view)  
3URGXFWꢈ  
LGHQWLILFDWLRQꢍꢄꢏ  
670ꢀꢁ)ꢂꢂꢃ  
=(-ꢃ  
$GGLWLRQDOꢈ  
LQIRUPDWLRQ  
$
'DWHꢈFRGH  
< ::  
%DOOꢈꢈ$ꢄꢈ  
LQGHQWLILHU  
06Yꢀꢆꢊꢅꢂ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID027107 Rev 6  
191/202  
199  
 
 
Package information  
STM32F446xC/E  
7.6  
WLCSP81 package information  
Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale  
package outline  
EEE =  
$ꢄꢈEDOO  
ORFDWLRQꢈꢈ  
Hꢄ  
$ꢄꢈEDOO  
ORFDWLRQꢈꢈ  
'
H
$
H
'HWDLOꢈ$  
(
Hꢇ  
-
*
DDD  
$ꢀ  
$ꢇ  
)
%RWWRPꢈYLHZ  
%XPSꢈVLGH  
7RSꢈYLHZꢈ  
:DIHUꢈEDFNꢈVLGH  
$
6LGHꢈYLHZ  
'HWDLOꢈ$  
URWDWHGꢈE\ꢈꢊꢉƒ  
$ꢄ  
HHH  
=
=
E
; <  
6HDWLQJꢈSODQH  
T
T
=
=
FFFꢈ0  
GGGꢈ0  
$ꢉꢇ7B0(B9ꢀ  
1. Drawing is not to scale.  
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
-
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
-
0.600  
-
-
0.0236  
-
0.170  
0.380  
0.025  
0.250  
3.693  
3.815  
0.400  
3.200  
3.200  
-
-
0.0067  
0.0150  
0.0010  
0.0098  
0.1454  
0.1502  
0.0157  
0.1260  
0.1260  
-
-
-
-
-
-
-
-
-
0.220  
0.280  
0.0087  
0.0110  
3.658  
3.728  
0.1440  
0.1468  
E
3.780  
3.850  
0.1488  
0.1516  
e
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
192/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Package information  
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data (continued)  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
-
Min  
Typ  
Max  
-
F
-
-
-
-
-
-
-
0.2465  
-
-
-
-
-
-
-
0.0097  
G
0.3075  
-
0.0121  
-
aaa  
bbb  
ccc  
ddd  
eee  
-
-
-
-
-
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
-
-
-
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale  
package recommended footprint  
'SDG  
'VP  
$ꢉꢇ7B)3B9ꢄ  
Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
Pitch  
Dpad  
0.4 mm  
0.225 mm  
0.290 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
DocID027107 Rev 6  
193/202  
199  
 
 
Package information  
STM32F446xC/E  
Device marking for WLCSP81 package  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 84. WLCSP81 10 x 10 mm marking example (package top view)  
3LQꢈꢄꢈLGHQWLILHU  
670ꢀꢁ)  
3URGXFWꢈ  
LGHQWLILFDWLRQꢍꢄꢏ  
ꢂꢂꢃ0&<ꢃ  
$GGLWLRQDOꢈ  
LQIRUPDWLRQ  
'DWHꢈFRGH  
< ::  
$
06Yꢀꢆꢊꢅꢅ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
194/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Package information  
7.7  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 117. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm  
46  
42  
33  
51  
48  
48  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
UFBGA144 - 7 × 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA144 - 10 × 10 mm / 0.8 mm pitch  
Thermal resistance junction-ambient  
WLCSP81  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DocID027107 Rev 6  
195/202  
199  
 
 
Part numbering  
STM32F446xC/E  
8
Part numbering  
Table 118. Ordering information scheme  
STM32  
Example:  
F
446 V  
C
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
446= STM32F446xC/E,  
Pin count  
M = 81 pins  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
C=256 Kbytes of Flash memory  
E=512 Kbytes of Flash memory  
Package  
H = UFBGA (7 x 7 mm)  
J = UFBGA (10 x 10 mm)  
T = LQFP  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
196/202  
DocID027107 Rev 6  
 
 
 
STM32F446xC/E  
Application block diagrams  
Appendix A  
Application block diagrams  
A.1  
USB OTG full speed (FS) interface solutions  
Figure 85. USB controller configured as peripheral-only and used in Full speed mode  
9''  
9''86%  
ꢅꢈ9ꢈWRꢈ9''86%  
9ROWDJHꢈUHJXODWRUꢍꢄꢏ  
9%86  
'0  
3$ꢄꢄꢋ3%ꢄꢂ  
3$ꢄꢇꢋ3%ꢄꢅ  
26&B,1  
'3  
966  
26&B287  
06Yꢀꢃꢅꢅꢁ9ꢄ  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
Figure 86. USB controller configured as host-only and used in full speed mode  
6$$  
%.  
'0)/  
#URRENT LIMITER  
ꢉ 6 0WR  
ꢎꢄꢏ  
POWER SWITCH  
/VERCURRENT  
'0)/ꢌ)21  
34-ꢂꢅ&ꢁXX  
6"53  
$-  
0!ꢄꢄꢋꢋ0"ꢄꢂ  
/3#?).  
$0  
0!ꢄꢃꢋ0"ꢄꢉ  
633  
/3#?/54  
-3ꢄꢆꢅꢅꢄ6ꢂ  
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
DocID027107 Rev 6  
197/202  
199  
 
 
 
 
Application block diagrams  
STM32F446xC/E  
Figure 87. USB controller configured in dual mode and used in full speed mode  
6$$  
ꢉ 6 TO 6$$  
VOLTAGE REGULATOR  
ꢎꢄꢏ  
6$$  
%.  
'0)/  
ꢉ 6 0WR  
#URRENT LIMITER  
POWER SWITCH  
ꢎꢃꢏ  
/VERCURRENT  
'0)/ꢌ)21  
34-ꢂꢅ&ꢁXX  
6"53  
0!ꢆꢋ0"ꢄꢀ  
$-  
0!ꢄꢄꢋ0"ꢄꢂ  
/3#?).  
$0  
ꢎꢀꢏ  
0!ꢄꢃꢋ0"ꢄꢉ  
0!ꢄꢅꢋ0"ꢄꢃ  
)$  
/3#?/54  
6
33  
-3ꢄꢆꢅꢅꢃ6ꢀ  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
3. The ID pin is required in dual role only.  
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
198/202  
DocID027107 Rev 6  
 
STM32F446xC/E  
Application block diagrams  
A.2  
USB OTG high speed (HS) interface solutions  
Figure 88. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode  
34-ꢂꢅ&ꢁXX  
$0  
&3 0(9  
NOT CONNECTED  
$-  
53" (3  
/4' #TRL  
$0  
5,0)?#,+  
$-  
5,0)?$;ꢇꢓꢅ=  
ꢎꢃꢏ  
)$  
53"  
5,0)?$)2  
5,0)?340  
CONNECTOR  
6"53  
633  
5,0)  
5,0)?.84  
(IGH SPEED  
/4' 0(9  
84ꢄ  
0,,  
ꢃꢂ OR ꢃꢈ -(Z 84ꢎꢄꢏ  
-#/ꢄ OR -#/ꢃ  
8)  
-3ꢄꢆꢅꢅꢉ6ꢃ  
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the  
STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example  
of a possible connection.  
2. The ID pin is required in dual role only.  
DocID027107 Rev 6  
199/202  
199  
 
 
Revision history  
STM32F446xC/E  
Revision history  
Table 119. Document revision history  
Changes  
Date  
Revision  
17-Feb-2015  
1
Initial release.  
Added note 2 inside Table 2  
Updated Table 11, Table 23, Table 24, Table 25, Table 26, Table 30,  
Table 51, Table 52, Table 53, and Table 61  
16-Mar-2015  
2
Added condition inside Typical and maximum current consumption and  
Additional current consumption  
Added FMPI2C characteristics  
Added Table 62 and Figure 35  
Updated:  
Section 6.3.15: Absolute maximum ratings (electrical sensitivity)  
Section 7: Package information  
Table 2: STM32F446xC/E features and peripheral counts  
Table 13: STM32F446xC/xE WLCSP81 ballout  
Figure 53: ESD absolute maximum ratings  
Figure 54: Synchronous multiplexed NOR/PSRAM read timings  
Added:  
29-May-2015  
3
Figure 78: UQFP144 7 x 7 mm marking example (package top view),  
Figure 81: UQFP144 10 x 10 mm marking example (package top  
view),  
Figure 84: WLCSP81 10 x 10 mm marking example (package top  
view)  
Updated:  
Figure 14: STM32F446xC/xE UFBGA144 ballout  
Table 10: STM32F446xx pin and ball descriptions  
Table 18: VCAP_1/VCAP_2 operating conditions  
Section 3.15: Power supply schemes  
Section 6.3.2: VCAP_1/VCAP_2 external capacitor  
Added:  
10-Aug-2015  
4
Figure 5: VDDUSB connected to an external independent power  
supply  
– Notes 3 and 4 below Figure 18: Power supply scheme  
200/202  
DocID027107 Rev 6  
 
 
STM32F446xC/E  
Revision history  
Table 119. Document revision history (continued)  
Revision Changes  
Date  
Updated:  
Introduction;  
Table 2: STM32F446xC/E features and peripheral counts  
Table 43: Main PLL characteristics  
– Title of Table 45: PLLISAI characteristics  
Table 109: LQPF100, 14 x 14 mm 100-pin low-profile quad flat  
package mechanical data  
03-Nov-2015  
5
Table 118: Ordering information scheme  
Figure 10: STM32F446xC/xE LQFP64 pinout  
Figure 11: STM32F446xC/xE LQFP100 pinout  
Added:  
Figure 77: UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine  
pitch ball grid array package recommended footprint  
Figure 111: UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine  
pitch ball grid array package mechanical data  
Updated:  
Section 7: Package information;  
Table 30: Typical current consumption in Run mode, code with data  
processing running from Flash memory or RAM, regulator ON (ART  
accelerator enabled except prefetch), VDD=1.7 V  
02-Sep-2016  
6
Table 74: ADC characteristics  
Table 85: DAC characteristics  
Added:  
– Note 3 in Figure 33: Recommended NRST pin protection  
– Note 4 in Table 41: HSI oscillator characteristics  
DocID027107 Rev 6  
201/202  
201  
STM32F446xC/E  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
202/202  
DocID027107 Rev 6  

相关型号:

STM32F446ZET6

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 512kB Flash/1284KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces
STMICROELECTR

STM32F469

LCD-TFT display controller (LTDC) on STM32 MCUs
STMICROELECTR

STM32F479

LCD-TFT display controller (LTDC) on STM32 MCUs
STMICROELECTR

STM32F479AG

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479AI

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479BG

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479BI

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479IG

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479II

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479NG

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479NI

8- to 14-bit parallel camera interface up to 54 Mbytes
STMICROELECTR

STM32F479VG

带DSP和FPU的高性能高级系列ARM Cortex-M4 MCU,具有1 MB Flash、180 MHz CPU、ART加速器、Chrom-ART加速器、TFT、带SDRAM的FMC、双QSPI、TFT和MIPI-DSI
STMICROELECTR