STM32F401CDU6 [STMICROELECTRONICS]

Clock, reset and supply management;
STM32F401CDU6
型号: STM32F401CDU6
厂家: ST    ST
描述:

Clock, reset and supply management

时钟 CD 外围集成电路
文件: 总135页 (文件大小:2072K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F401xD STM32F401xE  
ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS,  
512KB Flash/96KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces  
Datasheet - production data  
Features  
)%*$  
®
®
Core: ARM 32-bit Cortex -M4 CPU with  
FPU, Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 84 MHz,  
memory protection unit,  
UFBGA100  
(7 × 7 mm)  
UFQFPN48  
(7 × 7 mm)  
LQFP100 (14 × 14 mm
(3.06 x 3.06 mm) LQFP64 (10 × 10 mm)  
WLCSP49  
105 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1),  
and DSP instructions  
Debug mode  
– Serial wire debug (SWD) & JTAG  
Memories  
interfaces  
– up to 512 Kbytes of Flash memory  
– up to 96 Kbytes of SRAM  
®
– Cortex -M4 Embedded Trace Macrocell™  
Up to 81 I/O ports with interrupt capability  
Clock, reset and supply management  
– Up to 78 fast I/Os up to 42 MHz  
– All I/O ports are 5 V-tolerant  
– 1.7 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– 4-to-26 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
Up to 12 communication interfaces  
2
– Up to 3 x I C interfaces (SMBus/PMBus)  
– Up to 3 USARTs (2 x 10.5 Mbit/s,  
1 x 5.25 Mbit/s), ISO 7816 interface, LIN,  
IrDA, modem control)  
Power consumption  
– Up to 4 SPIs (up to 42Mbit/s at  
– Run: 146 µA/MHz (peripheral off)  
f
= 84 MHz), SPI2 and SPI3 with muxed  
CPU  
2
full-duplex I S to achieve audio class  
accuracy via internal audio PLL or external  
clock  
– Stop (Flash in Stop mode, fast wakeup  
time): 42 µA Typ @ 25C; 65 µA max  
@25 °C  
– SDIO interface  
– Stop (Flash in Deep power down mode,  
fast wakeup time): down to 10 µA @ 25 °C;  
30 µA max @25 °C  
– Advanced connectivity: USB 2.0 full-speed  
device/host/OTG controller with on-chip  
PHY  
CRC calculation unit  
– Standby: 2.4 µA @25 °C / 1.7 V without  
RTC; 12 µA @85 °C @1.7 V  
96-bit unique ID  
– V  
supply for RTC: 1 µA @25 °C  
BAT  
RTC: subsecond accuracy, hardware calendar  
All packages (WLCSP49, LQFP64/100,  
1×12-bit, 2.4 MSPS A/D converter: up to 16  
®
channels  
UFQFPN48, UFBGA100) are ECOPACK 2  
General-purpose DMA: 16-stream DMA  
controllers with FIFOs and burst support  
Table 1. Device summary  
Up to 11 timers: up to six 16-bit, two 32-bit  
timers up to 84 MHz, each with up to four  
IC/OC/PWM or pulse counter and quadrature  
(incremental) encoder input, two watchdog  
timers (independent and window) and a  
SysTick timer  
Reference  
Part number  
STM32F401CD,  
STM32F401RD, STM32F401VD  
STM32F401xD  
STM32F401CE,  
STM32F401RE, STM32F401VE  
STM32F401xE  
January 2015  
DocID025644 Rev 3  
1/135  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F401xD STM32F401xE  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 15  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.12 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.14 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.15 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.15.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.15.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.15.3 Regulator ON/OFF and internal power supply supervisor availability . . 25  
3.16 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25  
3.17 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.18  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.19 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.19.1 Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.19.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
Contents  
3.19.3 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.19.4 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.19.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.20 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.21 Universal synchronous/asynchronous receiver transmitters (USART) . . 29  
3.22 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.23 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.24 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.25 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 31  
3.26 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 31  
3.27 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.28 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
VCAP1/VCAP2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Operating conditions at power-up/power-down (regulator ON) . . . . . . . 63  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 63  
Embedded reset and power control block characteristics . . . . . . . . . . . 64  
DocID025644 Rev 3  
3/135  
4
Contents  
STM32F401xD STM32F401xE  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 84  
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 89  
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.22  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
BAT  
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.24 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 113  
6.3.25 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
7.1  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
7.1.1  
WLCSP49, 3.06 x 3.06 mm, 0.4 mm pitch wafer level chip  
size package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
UFQFPN48, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 119  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package . . . . . . . . 122  
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package . . . . . . 125  
UFBGA100, 7 x 7 mm, 0.5 mm pitch package . . . . . . . . . . . . . . . . . . 128  
7.2  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
7.2.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
4/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F401xD/xE features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 25  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
STM32F401xD/xE pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
STM32F401xD register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 61  
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 63  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 63  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
DD  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V. . . 67  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.3 V . . 67  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory . . . . . . . . . . . . . . . . 68  
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Typical and maximum current consumptions in Stop mode - V =1.8 V. . . . . . . . . . . . . . 69  
DD  
Typical and maximum current consumption in Stop mode - V =3.3 V. . . . . . . . . . . . . . . 70  
DD  
Typical and maximum current consumption in Standby mode - V =1.8 V. . . . . . . . . . . . 70  
DD  
Typical and maximum current consumption in Standby mode - V =3.3 V. . . . . . . . . . . . 70  
DD  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 71  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
(1)  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
DocID025644 Rev 3  
5/135  
6
List of tables  
STM32F401xD STM32F401xE  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Flash memory programming with V voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
PP  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
EMS characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
EMI characteristics for WLCSP49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EMI characteristics for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SCL frequency (f  
= 42 MHz, V = V  
= 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 99  
PCLK1  
DD  
DD_I2C  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ADC accuracy at f  
ADC accuracy at f  
ADC accuracy at f  
= 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
= 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 109  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 109  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
BAT  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
STM32F401xCE WLCSP49 wafer level chip size package mechanical data. . . . . . . . . . 116  
WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 118  
UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . . 119  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 123  
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 126  
UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Device order codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
6/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F401xD/xE block diagram  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 20  
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Startup in regulator OFF: slow V slope -  
DD  
power-down reset risen after V  
/V  
stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 24  
CAP_1 CAP_2  
Figure 9.  
Startup in regulator OFF mode: fast V slope -  
DD  
power-down reset risen before V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . 24  
CAP_1 CAP_2  
Figure 10. STM32F401xD/xE WLCSP49 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. STM32F401xD/xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 12. STM32F401xD/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 13. STM32F401xD/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 14. STM32F401xD/xE UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 15. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 16. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 17. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 18. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 20. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
EXT  
Figure 21. Typical V  
current consumption (LSE and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
BAT  
Figure 22. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 23. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 24. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 25. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 26. ACC  
versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
HSI  
Figure 27. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
LSI  
Figure 28. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 29. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 30. FT I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 31. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 32. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
2
Figure 33. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
(1)  
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
(1)  
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
2
(1)  
Figure 37. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
2
(1)  
Figure 38. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 39. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 106  
Figure 40. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 41. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 42. Power supply and reference decoupling (V  
Figure 43. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 111  
). . . . . . . . . . . . . . . . 111  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 44. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 45. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 46. WLCSP49 wafer level chip size package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
DocID025644 Rev 3  
7/135  
8
List of figures  
STM32F401xD STM32F401xE  
Figure 47. WLCSP49 0.4 mm pitch wafer level chip size recommended footprint . . . . . . . . . . . . . . 117  
Figure 48. Example of WLCSP49 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 49. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 50. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 51. Example of UFQFPN48 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 52. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 122  
Figure 53. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 54. Example of LQFP64 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 55. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 125  
Figure 56. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 57. Example of LQPF100 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 58. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 59. Recommended PCB design rules for pads (0.5 mm-pitch BGA) . . . . . . . . . . . . . . . . . . . 129  
Figure 60. Example of UFBGA100 marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
8/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
Introduction  
1
Introduction  
This datasheet provides the description of the STM32F401xD/xE line of microcontrollers.  
The STM32F401xD/xE datasheet should be read in conjunction with RM0368 reference  
manual which is available from the STMicroelectronics website www.st.com. It includes all  
information concerning Flash memory programming.  
For information on the Cortex -M4 core, please refer to the Cortex -M4 programming  
manual (PM0214) available from www.st.com.  
DocID025644 Rev 3  
9/135  
54  
 
Description  
STM32F401xD STM32F401xE  
2
Description  
®
®
The STM32F401XD/XE devices are based on the high-performance ARM Cortex -M4 32-  
®
bit RISC core operating at a frequency of up to 84 MHz. Its Cortex -M4 core features a  
Floating point unit (FPU) single precision which supports all ARM single-precision data-  
processing instructions and data types. It also implements a full set of DSP instructions and  
a memory protection unit (MPU) which enhances application security.  
The STM32F401xD/xE incorporate high-speed embedded memories (512 Kbytes of Flash  
memory, 96 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.  
All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers  
including one PWM timer for motor control, two general-purpose 32-bit timers. They also  
feature standard and advanced communication interfaces.  
2
Up to three I Cs  
Up to four SPIs  
2
2
Two full duplex I Ss. To achieve audio class accuracy, the I S peripherals can be  
clocked via a dedicated internal audio PLL or via an external clock to allow  
synchronization.  
Three USARTs  
SDIO interface  
USB 2.0 OTG full speed interface  
Refer to for the peripherals available for each part number.  
The STM32F401xD/xE operate in the –40 to +105 °C temperature range from a 1.7 (PDR  
OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design  
of low-power applications.  
These features make the STM32F401xD/xE microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Mobile phone sensor hub  
Figure 3 shows the general block diagram of the devices.  
10/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Description  
Table 2. STM32F401xD/xE features and peripheral counts  
Peripherals  
STM32F401xD  
STM32F401xE  
Flash memory in Kbytes  
384  
512  
SRAM in Kbytes  
Timers  
System  
96  
7
General-  
purpose  
Advanced-  
control  
1
4/2 (full  
duplex)  
4/2 (full  
duplex)  
SPI/ I2S  
3/2 (full duplex)  
3/2 (full duplex)  
I2C  
3
3
Communication  
interfaces  
USART  
SDIO  
-
1
-
1
USB OTG FS  
GPIOs  
1
1
36  
10  
50  
81  
36  
10  
50  
81  
12-bit ADC  
Number of channels  
16  
16  
Maximum CPU frequency  
Operating voltage  
84 MHz  
1.7 to 3.6 V  
Ambient temperatures: –40 to +85 °C/–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
UFBGA100 WLCSP49  
Operating temperatures  
Package  
WLCSP49  
UFBGA100  
LQFP100  
LQFP64  
LQFP64  
UFQFPN48  
LQFP100 UFQFPN48  
DocID025644 Rev 3  
11/135  
54  
 
 
Description  
STM32F401xD STM32F401xE  
2.1  
Compatibility with STM32F4 series  
The STM32F401xD/xE are fully software and feature compatible with the STM32F4 series  
(STM32F42x, STM32F43x, STM32F41x, STM32F405 and STM32F407)  
The STM32F401xD/xE can be used as drop-in replacement of the other STM32F4 products  
but some slight changes have to be done on the PCB board.  
Figure 1. Compatible board design for LQFP100 package  
670ꢀꢅ)ꢂ[ꢁ  
670ꢀꢅ)ꢂꢉꢆꢋ670ꢀꢅ)ꢂꢁꢆꢈOLQH  
670ꢀꢅ)ꢂꢉꢄꢋ670ꢀꢅ)ꢂꢁꢄꢈOLQH  
670ꢀꢅ)ꢂꢅꢄꢋ670ꢀꢅ)ꢂꢀꢄꢈOLQH  
670ꢀꢅ)ꢂꢅꢊꢋ670ꢀꢅ)ꢂꢀꢊꢈOLQH  
ꢆꢇ  
ꢆꢄ  
ꢆꢃ  
ꢆꢆ  
ꢆꢂ  
ꢆꢀ  
ꢆꢅ  
ꢆꢁ  
3'ꢁꢁꢈꢈ  
3'ꢁꢉꢈꢈ  
3'ꢊꢈꢈ  
ꢆꢇ  
ꢆꢄ  
ꢆꢃ  
ꢆꢆ  
ꢆꢂ  
ꢆꢀ  
ꢆꢅ  
ꢆꢁ  
3'ꢁꢁꢈꢈ  
3'ꢁꢉꢈꢈ  
3'ꢊꢈꢈ  
3%ꢁꢁꢈQRWꢈDYDLODEOHꢈDQ\PRUH  
5HSODFHGꢈE\ꢈ9&$3ꢁ  
3'ꢇꢈꢈ  
3'ꢇꢈꢈ  
3%ꢁꢆꢈꢈ  
3%ꢁꢂꢈꢈ  
3%ꢁꢀ   
3%ꢁꢅꢈꢈ  
3%ꢁꢆꢈꢈ  
3%ꢁꢂꢈꢈ  
3%ꢁꢀ   
3%ꢁꢅꢈꢈ  
966 9''  
966 9''  
06ꢀꢁꢂꢃꢄ9ꢅ  
12/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Description  
Figure 2. Compatible board design for LQFP64 package  
670ꢀꢅ)ꢂꢉꢆꢋ670ꢀꢅ)ꢂꢁꢆꢈOLQH  
670ꢀꢅ)ꢂ[ꢁ  
ꢆꢀ ꢆꢅ ꢆꢁ ꢆꢉ ꢂꢊ  
ꢆꢀ ꢆꢅ ꢆꢁ ꢆꢉ ꢂꢊ  
ꢂꢇ  
ꢂꢇ  
ꢂꢄ  
9''  
9&$3ꢅ  
9''  
9''  
966  
3$ꢁꢀ  
3$ꢁꢅ  
3$ꢁꢁ  
3$ꢁꢉ  
3$ꢊ  
9''  
ꢂꢄ  
ꢈꢂꢃ  
ꢈꢂꢆ  
ꢈꢂꢂ  
ꢈꢂꢀ  
ꢂꢅ  
ꢂꢁ  
ꢂꢉ  
ꢀꢊ  
ꢀꢇ  
ꢈꢂꢃ 3$ꢁꢀ  
ꢈꢂꢆ 3$ꢁꢅ  
ꢈꢂꢂ 3$ꢁꢁ  
ꢈꢂꢀ 3$ꢁꢉ  
ꢂꢅ 3$ꢊ  
ꢂꢁ 3$ꢇ  
ꢂꢉ 3&ꢊ  
ꢀꢊ 3&ꢇ  
ꢀꢇ 3&ꢄ  
ꢀꢄ 3&ꢃ  
966  
966  
3$ꢇ  
3&ꢊ  
3&ꢇ  
3&ꢄ  
3&ꢃ  
3%ꢁꢆ  
3%ꢁꢂ  
3%ꢁꢀ  
3%ꢁꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢆ  
ꢀꢂ  
ꢀꢀ  
3%ꢁꢆ  
3%ꢁꢂ  
3%ꢁꢀ  
3%ꢁꢅ  
3%ꢁꢁꢈQRWꢈDYDLODEOHꢈDQ\PRUHꢈ  
5HSODFHGꢈE\ꢈ9&$3ꢁ  
ꢀꢃ  
ꢀꢆ  
ꢀꢂ  
ꢀꢀ  
ꢅꢇ ꢅꢊ ꢀꢉ ꢀꢁ ꢀꢅ  
ꢅꢇ ꢅꢊ ꢀꢉ ꢀꢁ ꢀꢅ  
9&ꢈꢈ$ꢈꢈ3ꢈꢈꢈLQFUHDVHGꢈWRꢈꢂꢌꢄꢈ—I  
(65ꢈꢁꢈŸꢈRUꢈEHORZꢈꢁꢈ  
9''  
966  
966  
9''  
06ꢀꢁꢂꢃꢇ9ꢅ  
DocID025644 Rev 3  
13/135  
54  
 
7HPSHUDWXUHꢈVHQVRU  
Description  
STM32F401xD STM32F401xE  
Figure 3. STM32F401xD/xE block diagram  
1-7567ꢈ-7',ꢎ  
-7&.ꢋ6:&/.  
-7$*ꢈꢏꢈ6:  
(70  
038  
19,&  
-7'2ꢋ6:'ꢎꢈ-7'2  
75$&(&/.  
75$&('>ꢀꢍꢉ@  
$50ꢈ&RUWH[ꢐ0ꢂ'ꢐ%86  
ꢇꢂꢈ0+]  
,ꢐ%86  
)38  
ꢆꢁꢅꢈ.%ꢈ  
)ODVK  
6ꢐ%86  
ꢊꢃꢈ.%ꢈ65$0  
$0  
53"  
/4' &3  
ꢇꢈ6WUHDPV  
'0$ꢅ  
$-  
$+%ꢅꢈꢇꢂꢈ0+]  
),)2  
)$ꢋ 6"53ꢋ 3/&  
$+%ꢁꢈꢈ ꢂꢈ0+]  
ꢇꢈ6WUHDPV  
),)2  
3RZHUꢈPDQDJPW  
'0$ꢁ  
9''  
9ROWDJH  
9''ꢈ ꢈꢁꢌꢄꢈWRꢈꢀꢌꢃꢈ9  
UHJXODWRU  
ꢀꢌꢀꢈWRꢈꢁꢌꢅꢈ9  
ꢀ0$2 /&&ꢁ  
ꢂꢃꢄ TO ꢅꢃꢆ 6  
ꢀ0$2 /.ꢁ  
#9''  
966  
9&$3  
#9''$  
5&ꢈ+6  
5&ꢈ/6  
325ꢈ  
UHVHW  
6XSSO\  
VXSHUYLVLRQ  
325ꢋ3'5  
%25  
3$>ꢁꢆꢍꢉ@  
3%>ꢁꢆꢍꢉ@  
3&>ꢁꢆꢍꢉ@  
*3,2ꢈ3257ꢈ$  
*3,2ꢈ3257ꢈ%  
*3,2ꢈ3257ꢈ&  
,QW  
9''$ꢎꢈ966$  
1567  
3//ꢁꢏꢅ  
39'  
#9''  
#9''$  
*3,2ꢈ3257ꢈ'  
*3,2ꢈ3257ꢈ(  
3'>ꢁꢆꢍꢉ@  
3(>ꢁꢆꢍꢉ@  
26&B,1  
;7$/ꢈ26&  
ꢂꢐꢈꢁꢃ0+]  
26&B287  
5HVHWꢈꢏ  
:'*ꢈꢈ ꢅ.  
FORFN  
FRQWURO  
3:5  
LQWHUIDFH  
9%$7ꢈ ꢈꢁꢌꢃꢆꢈWRꢈꢀꢌꢃꢈ9  
3+>ꢁꢍꢉ@  
*3,2ꢈ3257ꢈ+  
#9  
%$7  
26&ꢀꢅB,1  
26&ꢀꢅB287  
;7$/ꢅꢈN+]  
57&  
$:8  
%DFNXSUHJLVWHU  
$/$50B287  
67$03ꢁꢈ  
&5&  
ꢂꢈFKDQQHOVꢎꢈ(75ꢈDVꢈ$)  
ꢂꢈFKDQQHOVꢎꢈ(75ꢈDVꢈ$)  
ꢂꢈFKDQQHOVꢎꢈ(75ꢈDVꢈ$)  
7,0ꢅ  
ꢀꢅE  
ꢁꢃE  
7,0ꢀ  
7,0ꢂ  
'0$ꢅ  
'0$ꢁ  
XSꢈWRꢈꢇꢁꢈ$)ꢈ  
ꢁꢃE  
ꢀꢅE  
(;7ꢈ,7ꢈ:.83  
$;ꢈꢉꢊ=  
#-$ꢋ #+ AS !&  
$+%ꢋ$3%ꢅ $+%ꢋ$3%ꢁ  
ꢂꢈFKDQQHOV  
7,0ꢆ  
3$)/ ꢇ --#  
ꢂꢈFRPSOꢌꢈFKDQQHOVꢈ7,0ꢁB&+ꢁ>ꢁꢍꢂ@1ꢎ  
ꢂꢈFKDQQHOVꢈ7,0ꢁB&+ꢁ>ꢁꢍꢂ@(75ꢎ  
%.,1ꢈDVꢈ$)  
ꢁꢃE  
ꢁꢃE  
7,0ꢁꢈꢋꢈ3:0  
VPFDUG  
LU'$  
5;ꢎꢈ7;ꢈDVꢈ$)  
86$57ꢅ  
63ꢅꢋ,ꢅ6ꢅ  
63ꢀꢋ,ꢅ6ꢀ  
&76ꢎꢈ576ꢈDVꢈ$)  
ꢅꢈFKDQQHOVꢈDVꢈ$)  
7,0ꢊ  
026,ꢋ6'ꢎꢈ0,62ꢋ6'BH[Wꢎꢈ6&.ꢋ&.  
166ꢋ:6ꢎꢈ0&.ꢈDVꢈ$)  
ꢁꢈFKDQQHOꢈDVꢈ$)  
ꢁꢃE  
ꢁꢃE  
7,0ꢁꢉ  
::'*  
026,ꢋ6'ꢎꢈ0,62ꢋ6'BH[Wꢎꢈ6&.ꢋ&.  
166ꢋ:6ꢎꢈ0&.ꢈDVꢈ$)  
ꢁꢈFKDQQHOꢈDVꢈ$)  
7,0ꢁꢁ  
VPFDUG  
LU'$  
6&/ꢎꢈ6'$ꢎꢈ60%$ꢈDVꢈ$)  
6&/ꢎꢈ6'$ꢎꢈ60%$ꢈDVꢈ$)  
6&/ꢎꢈ6'$ꢎꢈ60%$ꢈDVꢈ$)  
,ꢅ&ꢁꢋ60%86  
,ꢅ&ꢅꢋ60%86  
5;ꢎꢈ7;ꢎꢈ&.ꢎ  
86$57ꢁ  
&76ꢎꢈ576ꢈDVꢈ$)  
VPFDUG  
LU'$  
5;ꢎꢈ7;ꢎꢈ&.ꢈDVꢈ$)ꢈ  
86$57ꢃ  
,ꢅ&ꢀꢋ60%86  
026,ꢎꢈ0,62ꢎ  
6&.ꢎꢈ166ꢈDVꢈ$)  
026,ꢎꢈ0,62ꢎ  
6&.ꢎꢈ166ꢈDVꢈ$)  
63,ꢁ  
63,ꢂ  
9''5()B$'&  
ꢁꢃꢈDQDORJꢈLQSXWVꢈ  
$'&ꢁ  
,)  
#9''$  
06ꢀꢀꢄꢁꢄ9ꢁ  
1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked  
from TIMxCLK up to 42 MHz.  
14/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Functional overview  
3
Functional overview  
3.1  
ARM® Cortex®-M4 with FPU core with embedded Flash and  
SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU 32-bit RISC processor features exceptional code-  
efficiency, delivering the high-performance expected from an ARM core in the memory size  
usually associated with 8- and 16-bit devices. The processor supports a set of DSP  
instructions which allow efficient signal processing and complex algorithm execution. Its  
single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F401xD/xE devices are compatible with all ARM tools and software.  
Figure 3 shows the general block diagram of the STM32F401xD/xE.  
®
®
Note:  
Cortex -M4 with FPU is binary compatible with Cortex -M3.  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
®
standard ARM Cortex -M4 with FPU processors. It balances the inherent performance  
®
advantage of the ARM Cortex -M4 with FPU over Flash memory technologies, which  
normally requires the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 105 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 84 MHz.  
3.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
DocID025644 Rev 3  
15/135  
54  
 
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
3.4  
3.5  
Embedded Flash memory  
The devices embed 512 Kbytes of Flash memory available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
3.6  
3.7  
Embedded SRAM  
All devices embed:  
96 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed  
with 0 wait states  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves  
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient  
operation even when several high-speed peripherals work simultaneously.  
16/135  
DocID025644 Rev 3  
 
 
 
 
STM32F401xD STM32F401xE  
Functional overview  
Figure 4. Multi-AHB matrix  
$50  
&RUWH[ꢐ0ꢂ  
*3  
'0$ꢅ  
*3  
'0$ꢁ  
6ꢉ  
6ꢁ  
6ꢅ  
6ꢀ  
6ꢂ  
6ꢆ  
,&2'(  
0ꢉ  
0ꢁ  
)ODVK  
ꢆꢁꢅꢈN%  
'&2'(  
65$0ꢁꢈ  
0ꢅ  
0ꢀ  
0ꢂ  
ꢊꢃꢈ.E\WHV  
$+%  
$3%ꢁ  
$3%ꢅ  
SHULSKꢁ  
$+%  
SHULSKꢅ  
%XVꢈPDWUL[ꢐ6  
06ꢀꢁꢂꢊꢉ9ꢁ  
3.8  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
SD/SDIO/MMC host interface  
ADC  
DocID025644 Rev 3  
17/135  
54  
 
 
Functional overview  
STM32F401xD STM32F401xE  
3.9  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the  
®
Cortex -M4 with FPU.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.10  
3.11  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 21 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The  
application can then select as system clock either the RC oscillator or an external 4-26 MHz  
clock source. This clock can be monitored for failure. If a failure is detected, the system  
automatically switches back to the internal RC oscillator and a software interrupt is  
generated (if enabled). This clock source is input to a PLL thus allowing to increase the  
frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is  
available when necessary (for example if an indirectly used external oscillator fails).  
Several prescalers allow the configuration of the two AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB  
buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.  
The maximum allowed frequency of the low-speed APB domain is 42 MHz.  
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class  
2
performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
18/135  
DocID025644 Rev 3  
 
 
 
 
STM32F401xD STM32F401xE  
Functional overview  
3.12  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using either USART1(PA9/10), USART2(PD5/6), USB OTG FS in device mode (PA11/12)  
through DFU (device firmware upgrade), I2C1(PB6/7), I2C2(PB10/3), I2C3(PA8/PB4),  
SPI1(PA4/5/6/7), SPI2(PB12/13/14/15) or SPI3(PA15, PC10/11/12).  
For more detailed information on the bootloader, refer to Application Note: AN2606,  
STM32™ microcontroller system memory boot mode.  
3.13  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor  
DD  
(POR/PDR) disabled, provided externally through V pins. Requires the use of an  
DD  
external power supply supervisor connected to the VDD and PDR_ON pins.  
V
= 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
SSA DDA  
and PLL. V  
and V  
must be connected to V and V , respectively, with  
SSA DD SS  
DDA  
decoupling technique.  
V = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
Refer to Figure 18: Power supply scheme for more details.  
DocID025644 Rev 3  
19/135  
54  
 
 
Functional overview  
STM32F401xD STM32F401xE  
3.14  
Power supply supervisor  
3.14.1  
Internal reset ON  
This feature is available for V operating voltage range 1.8 V to 3.6 V.  
DD  
The internal power supply supervisor is enabled by holding PDR_ON high.  
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes.  
The device remains in reset mode when V is below a specified threshold, V  
or  
POR/PDR  
DD  
V
, without the need for an external reset circuit.  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.14.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to  
low.  
An external power supply supervisor should monitor V and should maintain the device in  
DD  
reset mode as long as V is below a specified threshold. PDR_ON should be connected to  
DD  
this external power supply supervisor. Refer to Figure 5: Power supply supervisor  
interconnection with internal reset OFF.  
(1)  
Figure 5. Power supply supervisor interconnection with internal reset OFF  
9''  
([WHUQDOꢀ9''ꢀSRZHUꢀVXSSO\ꢀVXSHUYLVRU  
([WꢌꢈUHVHWꢈFRQWUROOHUꢈDFWLYHꢈZKHQ  
9''ꢈꢓꢈꢁꢌꢄꢈ9ꢈꢈ  
3'5B21  
$SSOLFDWLRQꢈUHVHW  
VLJQDOꢈꢑRSWLRQDOꢒ  
1567  
9''  
06ꢀꢁꢀꢇꢀ9ꢀ  
1. The PRD_ON pin is only available in the WLCSP49 and UFBGA100 packages.  
DocID025644 Rev 3  
20/135  
 
 
 
 
 
 
STM32F401xD STM32F401xE  
Functional overview  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.7 V (see Figure 6).  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
Figure 6. PDR_ON control with internal reset OFF  
9
''  
3'5ꢈ ꢈꢁꢌꢄꢈ9ꢈꢈ  
WLPH  
5HVHWꢈE\ꢈRWKHUꢈVRXUFHꢈWKDQꢈ  
SRZHUꢈVXSSO\ꢈVXSHUYLVRUꢈꢈ  
1567  
3'5B21  
3'5B21  
WLPH  
06ꢁꢊꢉꢉꢊ9ꢃ  
3.15  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
3.15.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
DocID025644 Rev 3  
21/135  
54  
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
There are three power modes configured by software when the regulator is ON:  
MR is used in the nominal regulation mode (With different voltage scaling in Run)  
In Main regulator mode (MR mode), different voltage scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
LPR is used in the Stop modes  
The LP regulator mode is configured by software when entering Stop mode.  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Depending on the package, one or two external ceramic capacitors should be connected on  
the V and V pins. The V pin is only available for the LQFP100 and  
CAP_1  
CAP_2  
CAP_2  
UFBGA100 packages.  
All packages have the regulator ON feature.  
3.15.2  
Regulator OFF  
The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG  
pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode  
allows to supply externally a V12 voltage source through V  
and V  
pins.  
CAP_1  
CAP_2  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency. Refer to Table 14: General operating  
conditions.  
The two 2.2 µF V  
ceramic capacitors should be replaced by two 100 nF decoupling  
CAP  
capacitors. Refer to Figure 18: Power supply scheme.  
When the regulator is OFF, there is no more internal monitoring on V12. An external power  
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin  
should be used for this purpose, and act as power-on reset on V12 power domain.  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power  
domain which is not reset by the NRST pin.  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
22/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Functional overview  
Figure 7. Regulator OFF  
9ꢁꢅ  
([WHUQDOꢈ9&$3BꢁꢋꢅꢈSRZHUꢈ  
$SSOLFDWLRQꢈUHVHWꢈ  
VLJQDOꢈꢑRSWLRQDOꢒꢈꢈ  
VXSSO\ꢈVXSHUYLVRU  
([WꢌꢈUHVHWꢈFRQWUROOHUꢈDFWLYHꢈ  
ꢈꢈ  
ZKHQꢈ9&$3Bꢁꢋꢅꢈꢈꢓꢈ0LQꢈ9ꢁꢅ  
9''  
3$ꢉ  
9''  
1567ꢈꢈ  
%<3$66B5(*  
9ꢁꢅ  
9&$3Bꢁ  
9&$3Bꢅ  
DLꢁꢇꢂꢊꢇ9ꢀ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 8).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 9).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application  
12  
DocID025644 Rev 3  
23/135  
54  
 
Functional overview  
STM32F401xD STM32F401xE  
Figure 8. Startup in regulator OFF: slow V slope -  
DD  
power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢈ ꢈꢁꢌꢄꢈ9  
9&$3Bꢁꢋ9&$3Bꢅ  
9ꢁꢅ  
0LQꢈ9ꢁꢅ  
WLPH  
1567  
WLPH  
06Yꢀꢁꢁꢄꢊ9ꢁ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 9. Startup in regulator OFF mode: fast V slope -  
DD  
power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢈ ꢈꢁꢌꢄꢈ9ꢈꢈ  
9&$3Bꢁꢋ9&$3Bꢅ  
9ꢁꢅ  
0LQꢈ9ꢁꢅ  
WLPH  
WLPH  
1567  
3$ꢉꢈDVVHUWHGꢈH[WHUQDOO\ꢈꢈ  
06Yꢀꢁꢁꢇꢉ9ꢁ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
24/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Functional overview  
3.15.3  
Regulator ON/OFF and internal power supply supervisor availability  
Table 3. Regulator ON/OFF and internal power supply supervisor availability  
Power supply  
supervisor ON  
Power supply  
supervisor OFF  
Package  
Regulator ON  
Regulator OFF  
UFQFPN48  
WLCSP49  
Yes  
No  
Yes  
No  
Yes  
Yes  
Yes  
No  
PDR_ON external  
PDR_ON set to VDD  
control(1)  
LQFP64  
Yes  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
LQFP100  
Yes  
Yes  
Yes  
UFBGA100  
BYPASS_REG set to BYPASS_REG set to  
VSS VDD  
PDR_ON external  
PDR_ON set to VDD  
control (1)  
1. Refer to Section 3.14: Power supply supervisor  
3.16  
Real-time clock (RTC) and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC features a reference clock detection, a more precise  
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC  
provides a programmable alarm and programmable periodic interrupts with wakeup from  
Stop and Standby modes. The sub-seconds value is also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 3.17: Low-power  
modes).  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
DocID025644 Rev 3  
25/135  
54  
 
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
The RTC and backup registers are supplied through a switch that is powered either from the  
supply when present or from the V pin.  
V
DD  
BAT  
3.17  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/  
tamper/ time stamp events).  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event  
occurs.  
Standby mode is not supported when the embedded voltage regulator is bypassed and  
the 1.2 V domain is controlled by an external power.  
3.18  
VBAT operation  
The VBAT pin allows to power the device V  
domain from an external battery, an external  
BAT  
super-capacitor, or from V when no external battery and an external super-capacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The VBAT pin supplies the RTC and the backup registers.  
Note:  
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events  
do not exit it from V  
operation. When PDR_ON pin is not connected to V (internal  
BAT  
DD  
Reset OFF), the V  
functionality is no more available and VBAT pin should be connected  
BAT  
to V  
.
DD  
26/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Functional overview  
3.19  
Timers and watchdogs  
The devices embed one advanced-control timer, seven general-purpose timers and two  
watchdog timers.  
All timer counters can be frozen in debug mode.  
Table 4 compares the features of the advanced-control and general-purpose timers.  
Table 4. Timer feature comparison  
Max.  
Max.  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter Counter Prescaler  
Complementary interface timer  
Timer  
resolution  
type  
factor  
output  
clock  
(MHz) (MHz)  
clock  
Any  
Up,  
integer  
Advanced-  
control  
TIM1  
16-bit  
Down, between1  
Up/down  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
Yes  
84  
42  
42  
84  
84  
84  
84  
84  
84  
84  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM2,  
TIM5  
32-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
No  
Up/down  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
Up/down  
and  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM9  
Up  
65536  
Any  
integer  
between1  
and  
TIM1  
0,  
TIM11  
Up  
No  
65536  
3.19.1  
Advanced-control timers (TIM1)  
The advanced-control timer (TIM1) can be seen as three-phase PWM generators  
multiplexed on 4 independent channels. It has complementary PWM outputs with  
programmable inserted dead times. It can also be considered as a complete general-  
purpose timer. Its 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
DocID025644 Rev 3  
27/135  
54  
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
If configured as standard 16-bit timers, it has the same features as the general-purpose  
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 supports independent DMA request generation.  
3.19.2  
General-purpose timers (TIMx)  
There are seven synchronizable general-purpose timers embedded in the  
STM32F401xD/xE (see Table 4 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F401xD/xE devices are 4 full-featured general-purpose timers: TIM2, TIM5,  
TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature four  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. This gives up to 15 input capture/output compare/PWMs.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10 and TIM11  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured  
general-purpose timers. They can also be used as simple time bases.  
3.19.3  
3.19.4  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
28/135  
DocID025644 Rev 3  
 
 
 
STM32F401xD STM32F401xE  
Functional overview  
3.19.5  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
3.20  
Inter-integrated circuit interface (I2C)  
2
Up to three I C bus interfaces can operate in multimaster and slave modes. They can  
support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus  
frequency can be increased up to 1 MHz. For more details about the complete solution,  
please contact your local ST sales representative.They also support the 7/10-bit addressing  
mode and the 7-bit dual addressing mode (as slave). A hardware CRC  
generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 5).  
Table 5. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
50 ns  
Programmable length from 1 to 15 I2C peripheral clocks  
3.21  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed three universal synchronous/asynchronous receiver transmitters  
(USART1, USART2 and USART6).  
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to  
communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to  
5.25 bit/s.  
USART1 and USART2 also provide hardware management of the CTS and RTS signals,  
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All  
interfaces can be served by the DMA controller.  
DocID025644 Rev 3  
29/135  
54  
 
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
Table 6. USART feature comparison  
Max. baud  
Max. baud  
Smartcard rate in Mbit/s rate in Mbit/s  
USART Standard Modem  
SPI  
master  
APB  
(ISO 7816) (oversampling (oversampling mapping  
LIN  
irDA  
name  
features (RTS/CTS)  
by 16)  
by 8)  
APB2  
(max.  
84 MHz)  
USART1  
USART2  
USART6  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
5.25  
10.5  
APB1  
(max.  
42 MHz)  
2.62  
5.25  
5.25  
10.5  
APB2  
(max.  
N.A  
84 MHz)  
3.22  
3.23  
3.24  
Serial peripheral interface (SPI)  
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1 and SPI4 can communicate at up to 42 Mbit/s, SPI2 and SPI3  
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies  
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification  
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.  
The SPI interface can be configured to operate in TI mode for communications in master  
mode and slave mode.  
Inter-integrated sound (I2S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available. They can be  
operated in master or slave mode, in full duplex and simplex communication modes and  
can be configured to operate with a 16-/32-bit resolution as an input or output channel.  
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of  
2
the I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
2
All I Sx can be served by the DMA controller.  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S application. It allows to  
2
achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance.  
2
The PLLI2S configuration can be modified to manage an I S sample rate change without  
disabling the main PLL (PLL) used for the CPU.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 kHz to 192 kHz.  
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S  
flow with an external PLL (or Codec output).  
30/135  
DocID025644 Rev 3  
 
 
 
 
STM32F401xD STM32F401xE  
Functional overview  
3.25  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
3.26  
Universal serial bus on-the-go full-speed (OTG_FS)  
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator. The major features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
4 bidirectional endpoints  
8 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.27  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.  
3.28  
Analog-to-digital converter (ADC)  
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,  
performing conversions in the single-shot or scan mode. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
DocID025644 Rev 3  
31/135  
54  
 
 
 
 
Functional overview  
STM32F401xD STM32F401xE  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4 or TIM5 timer.  
3.29  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the ADC_IN16 input channel which is used to convert the sensor output  
voltage into a digital value. Refer to the reference manual for additional information.  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.30  
3.31  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F401xD/xE through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed  
channel available. Real-time instruction and data flow activity can be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
32/135  
DocID025644 Rev 3  
 
 
 
STM32F401xD STM32F401xE  
Pinouts and pin description  
4
Pinouts and pin description  
Figure 10. STM32F401xD/xE WLCSP49 pinout  
9''  
966  
%227ꢉ  
3%ꢇ  
3%ꢂ  
3%ꢆ  
3%ꢀ  
3$ꢁꢀ  
3$ꢁꢅ  
3$ꢁꢆ  
9''  
3$ꢁꢉ  
3$ꢁꢂ  
966  
3$ꢁꢁ  
$
%
&
3'5  
B21  
9%$7  
3&ꢁꢂꢐꢈ  
26&ꢀꢅB,1  
3&ꢁꢆꢐꢈ  
26&ꢀꢅB287  
3%ꢊ  
3%ꢃ  
3+ꢉꢐꢈ  
3+ꢁꢐꢈ  
'
966  
3%ꢁꢉ  
3$ꢄ  
3$ꢊ  
3%ꢁꢅ  
9''  
3$  
3%ꢁꢆ  
3%ꢁꢂ  
3&ꢁꢀ  
3$ꢅ  
3%ꢄ  
3$ꢀ  
3$ꢃ  
26&B,1 26&B287  
966$  
1567  
(
)
95()ꢐ  
9''$  
3$ꢉ  
3$ꢆ  
95()ꢔ  
*
3$ꢁ  
3%ꢁ  
3%  
9&$3ꢁ 3%ꢁꢀ  
3$ꢂ  
3%ꢉ  
06ꢀꢂꢊꢄꢃ9ꢁ  
1. The above figure shows the package bump side.  
DocID025644 Rev 3  
33/135  
54  
 
 
Pinouts and pin description  
STM32F401xD STM32F401xE  
Figure 11. STM32F401xD/xE UFQFPN48 pinout  
ꢍꢄ ꢍꢈ ꢍꢆ  
ꢍꢌ ꢍꢍ ꢍꢅ ꢍꢎ ꢍꢂ ꢍꢊ  
ꢅꢑ ꢅꢄ ꢅꢈ  
ꢅꢆ  
6$$  
633  
0!ꢂꢅ  
0!ꢂꢎ  
0!ꢂꢂ  
0!ꢂꢊ  
0!ꢑ  
6"!4  
0#ꢂꢅ  
0#ꢂꢍꢏ/3#ꢅꢎ?).  
0#ꢂꢌꢏ/3#ꢅꢎ?/54  
ꢅꢌ  
ꢅꢍ  
ꢅꢅ  
0(ꢊꢏ/3#?).  
ꢅꢎ  
ꢅꢂ  
0(ꢂꢏ/3#?/54  
5&1&0.ꢍꢄ  
ꢅꢊ  
ꢎꢑ  
.234  
633!ꢇ62%&ꢏ  
6$$!ꢇ62%&ꢐ  
0!ꢄ  
ꢎꢄ  
ꢎꢈ  
0"ꢂꢌ  
0"ꢂꢍ  
0!ꢊ  
0!ꢂ  
0!ꢎ  
ꢂꢊ  
ꢂꢂ  
ꢂꢎ  
ꢎꢆ  
0"ꢂꢅ  
0"ꢂꢎ  
ꢎꢌ  
ꢎꢍ  
ꢂꢅ ꢂꢍ ꢂꢌ ꢂꢆ  
ꢂꢈ ꢂꢄ ꢂꢑ ꢎꢊ  
ꢎꢂ ꢎꢎ ꢎꢅ  
-3ꢅꢂꢂꢌꢊ6ꢎ  
1. The above figure shows the package top view.  
34/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Pinouts and pin description  
Figure 12. STM32F401xD/xE LQFP64 pinout  
ꢆꢍ ꢆꢅ ꢆꢎ ꢆꢂ ꢆꢊ ꢌꢑ ꢌꢄ ꢌꢈ ꢌꢆ ꢌꢌ ꢌꢍ ꢌꢅ ꢌꢎ ꢌꢂ ꢌꢊ ꢍꢑ  
ꢍꢄ  
6$$  
633  
0!ꢂꢅ  
0!ꢂꢎ  
0!ꢂꢂ  
0!ꢂꢊ  
0!ꢑ  
6"!4  
ꢍꢈ  
ꢍꢆ  
ꢍꢌ  
ꢍꢍ  
ꢍꢅ  
ꢍꢎ  
ꢍꢂ  
ꢍꢊ  
ꢅꢑ  
ꢅꢄ  
ꢅꢈ  
ꢅꢆ  
ꢅꢌ  
ꢅꢍ  
ꢅꢅ  
0#ꢂꢅ  
0#ꢂꢍꢏ/3#ꢅꢎ?).  
0#ꢂꢌꢏ/3#ꢅꢎ?/54  
0(ꢊꢏ/3#?).  
0(ꢂꢏ/3#?/54  
.234  
0!ꢄ  
0#ꢊ  
,1&0ꢆꢍ  
0#ꢑ  
0#ꢂ  
0#ꢄ  
0#ꢎ  
ꢂꢊ  
ꢂꢂ  
ꢂꢎ  
ꢂꢅ  
ꢂꢍ  
ꢂꢌ  
ꢂꢆ  
0#ꢈ  
0#ꢅ  
0#ꢆ  
633!ꢇ62%&ꢏ  
6$$!ꢇ62%&ꢐ  
0!ꢊ  
0"ꢂꢌ  
0"ꢂꢍ  
0"ꢂꢅ  
0"ꢂꢎ  
0!ꢂ  
0!ꢎ  
ꢂꢈ ꢂꢄ ꢂꢑ ꢎꢊ ꢎꢂ ꢎꢎ ꢎꢅ ꢎꢍ ꢎꢌ ꢎꢆ ꢎꢈ ꢎꢄ ꢎꢑ ꢅꢊ ꢅꢂ ꢅꢎ  
-3ꢅꢂꢂꢍꢑ6ꢎ  
1. The above figure shows the package top view.  
DocID025644 Rev 3  
35/135  
54  
 
Pinouts and pin description  
STM32F401xD STM32F401xE  
Figure 13. STM32F401xD/xE LQFP100 pinout  
0%ꢎ  
0%ꢅ  
0%ꢍ  
0%ꢌ  
0%ꢆ  
6"!4  
0#ꢂꢅ  
ꢈꢌ  
ꢈꢍ  
ꢈꢅ  
ꢈꢎ  
ꢈꢂ  
ꢈꢊ  
ꢆꢑ  
ꢆꢄ  
ꢆꢈ  
ꢆꢆ  
ꢆꢌ  
ꢆꢍ  
ꢆꢅ  
ꢆꢎ  
ꢆꢂ  
ꢆꢊ  
ꢌꢑ  
ꢌꢄ  
ꢌꢈ  
ꢌꢆ  
ꢌꢌ  
ꢌꢍ  
ꢌꢅ  
ꢌꢎ  
ꢌꢂ  
6$$  
633  
6#!0ꢎ  
0!ꢂꢅ  
0!ꢂꢎ  
0!ꢂꢂ  
0!ꢂꢊ  
0!ꢑ  
0!ꢄ  
0#ꢑ  
0#ꢄ  
0#ꢈ  
0#ꢂꢍꢏ/3#ꢅꢎ?).  
0#ꢂꢌꢏ/3#ꢅꢎ?/54  
633  
6$$  
0(ꢊꢏ/3#?).  
0(ꢂꢏ/3#?/54  
.234  
ꢂꢊ  
ꢂꢂ  
ꢂꢎ  
ꢂꢅ  
ꢂꢍ  
ꢂꢌ  
ꢂꢆ  
ꢂꢈ  
ꢂꢄ  
ꢂꢑ  
ꢎꢊ  
ꢎꢂ  
ꢎꢎ  
ꢎꢅ  
ꢎꢍ  
ꢎꢌ  
0#ꢆ  
,1&0ꢂꢊꢊ  
0$ꢂꢌ  
0$ꢂꢍ  
0$ꢂꢅ  
0$ꢂꢎ  
0$ꢂꢂ  
0$ꢂꢊ  
0$ꢑ  
0#ꢊ  
0#ꢂ  
0#ꢎ  
0#ꢅ  
6$$  
633!ꢇ62%&ꢏ  
62%&ꢐ  
6$$!  
0$ꢄ  
0"ꢂꢌ  
0"ꢂꢍ  
0"ꢂꢅ  
0"ꢂꢎ  
0!ꢊ  
0!ꢂ  
0!ꢎ  
-3ꢅꢂꢂꢌꢂ6ꢎ  
1. The above figure shows the package top view.  
36/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Pinouts and pin description  
Figure 14. STM32F401xD/xE UFBGA100 pinout  
ꢁꢉ  
ꢁꢁ  
ꢁꢅ  
3'ꢆ  
3'ꢃ  
3$ꢁꢅ  
3$ꢁꢁ  
3$ꢁꢉ  
3&ꢊ  
%227ꢉ  
3%ꢄ  
3'ꢄ  
3%ꢀ  
3'ꢀ  
3'ꢅ  
3$ꢁꢀ  
3&ꢁꢉ  
9&$3ꢅ  
3$ꢇ  
3%ꢇ  
3$ꢁꢆ  
3'ꢁ  
3(ꢁ  
3%ꢂ  
3'ꢂ  
3$ꢁꢂ  
3&ꢁꢅ  
3(ꢀ  
3(ꢂ  
$
%
&
3%ꢊ  
3(ꢉ  
966  
3%ꢃ  
3%ꢆ  
3(ꢅ  
3(ꢆ  
3(ꢃ  
3&ꢁꢀ  
$17,B7$03  
9''  
3'ꢉ  
3&ꢁꢁ  
3$ꢊ  
3&ꢁꢂ  
26&ꢀꢅB,1  
'
(
3&ꢄ  
3&ꢃ  
3&ꢇ  
%<3$66B5(*  
3&ꢁꢆ  
9%$7  
26&ꢀꢅB287  
3+ꢉ  
26&B,1  
966  
966  
)
966  
3+ꢁ  
*
9''  
3'ꢁꢂ  
3'ꢁꢁ  
3%ꢁꢂ  
9''  
3'ꢁꢀ  
3'ꢁꢉ  
3%ꢁꢀ  
3%ꢁꢅ  
3(ꢁꢆ  
9''  
26&B287  
+
-
3'ꢁꢆ  
3'ꢁꢅ  
3%ꢁꢆ  
3%ꢁꢉ  
3(ꢁꢀ  
3'5B21  
3&ꢅ  
3&ꢉ  
1567  
3&ꢁ  
966$  
95()ꢐ  
3$ꢆ  
3$ꢃ  
3$ꢄ  
3&ꢂ  
3&ꢆ  
3%ꢉ  
3$ꢅ  
3$ꢀ  
3$ꢂ  
3'ꢊ  
3(ꢁꢉ  
3(ꢊ  
3%ꢁꢁ  
3(ꢁꢅ  
3(ꢁꢁ  
3&ꢀ  
.
/
3%ꢅ  
3%ꢁ  
9&$3ꢁ  
3(ꢁꢂ  
3(ꢇ  
3(ꢄ  
95()ꢔ  
9''$  
3$ꢉ  
:.83  
3$ꢁ  
0
06ꢀꢀꢁꢆꢅ9ꢁ  
1. This figure shows the package top view  
DocID025644 Rev 3  
37/135  
54  
 
Pinouts and pin description  
STM32F401xD STM32F401xE  
Table 7. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
B
Input/ output pin  
5 V tolerant I/O  
Dedicated BOOT0 pin  
I/O structure  
Notes  
NRST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 8. STM32F401xD/xE pin definitions  
Pin Number  
Pin name  
Additional  
functions  
(function  
Alternate functions  
after reset)(1)  
SPI4_SCK, TRACECLK,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
1
2
3
B2  
A1  
B1  
PE2  
PE3  
PE4  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TRACED0, EVENTOUT  
SPI4_NSS, TRACED1,  
EVENTOUT  
SPI4_MISO, TIM9_CH1,  
TRACED2, EVENTOUT  
-
-
-
-
-
-
4
5
C2  
D2  
PE5  
PE6  
I/O FT  
I/O FT  
-
-
-
-
SPI4_MOSI, TIM9_CH2,  
TRACED3, EVENTOUT  
-
-
-
-
-
-
-
-
D3  
C4  
E2  
VSS  
VDD  
VBAT  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
1
B7  
1
6
RTC_TAMP1,  
RTC_OUT, RTC_TS  
(2) (3)  
2
D5  
2
7
C1  
PC13  
I/O FT  
EVENTOUT,  
38/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Pinouts and pin description  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
PC14-  
OSC32_IN  
(PC14)  
(2) (3)  
(4)  
3
4
C7  
C6  
3
4
8
9
D1  
I/O FT  
EVENTOUT  
EVENTOUT  
OSC32_IN  
PC15-  
(2) (3)  
(4)  
E1 OSC32_OUT I/O FT  
(PC15)  
OSC32_OUT  
-
-
-
-
-
-
10 F2  
11 G2  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
PH0-OSC_IN  
(PH0)  
(4)  
5
6
D7  
D6  
5
6
12 F1  
13 G1  
I/O FT  
I/O FT  
EVENTOUT  
EVENTOUT  
OSC_IN  
PH1-  
OSC_OUT  
(PH1)  
(4)  
OSC_OUT  
7
-
E7  
7
8
9
14 H2  
15 H1  
16 J2  
NRST  
PC0  
I/O FT  
I/O FT  
I/O FT  
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
ADC1_IN10  
ADC1_IN11  
-
-
-
PC1  
SPI2_MISO, I2S2ext_SD,  
EVENTOUT  
-
-
-
10 17 J3  
11 18 K2  
PC2  
PC3  
I/O FT  
I/O FT  
-
-
ADC1_IN12  
ADC1_IN13  
SPI2_MOSI/I2S2_SD,  
EVENTOUT  
-
-
-
8
-
-
19  
-
-
VDD  
VSSA/VREF-  
VSSA  
S
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E6 12 20  
-
-
-
-
-
-
-
J1  
K1  
-
-
VREF-  
9
-
-
13  
-
VDDA/VREF+  
VREF+  
-
21 L1  
22 M1  
-
F7  
-
VDDA  
USART2_CTS,  
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, EVENTOUT  
(5)  
10 F6 14 23 L2  
11 G7 15 24 M2  
12 E5 16 25 K3  
PA0  
PA1  
PA2  
I/O FT  
I/O FT  
I/O FT  
ADC1_IN0, WKUP  
ADC1_IN1  
USART2_RTS, TIM2_CH2,  
TIM5_CH2, EVENTOUT  
-
-
USART2_TX, TIM2_CH3,  
TIM5_CH3, TIM9_CH1,  
EVENTOUT  
ADC1_IN2  
DocID025644 Rev 3  
39/135  
54  
Pinouts and pin description  
STM32F401xD STM32F401xE  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
USART2_RX, TIM2_CH4,  
TIM5_CH4, TIM9_CH2,  
EVENTOUT  
13 E4 17 26 L3  
PA3  
I/O FT  
-
ADC1_IN3  
-
-
-
-
18 27  
19 28  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
BYPASS_  
REG  
-
-
-
-
E3  
I
FT  
-
-
-
-
SPI1_NSS,  
14 G6 20 29 M3  
15 F5 21 30 K4  
PA4  
PA5  
I/O FT  
I/O FT  
SPI3_NSS/I2S3_WS,  
USART2_CK, EVENTOUT  
ADC1_IN4  
SPI1_SCK,  
-
TIM2_CH1/TIM2_ETR,  
EVENTOUT  
ADC1_IN5  
SPI1_MISO, TIM1_BKIN,  
TIM3_CH1, EVENTOUT  
16 F4 22 31 L4  
17 F3 23 32 M4  
PA6  
PA7  
I/O FT  
I/O FT  
-
-
ADC1_IN6  
ADC1_IN7  
SPI1_MOSI, TIM1_CH1N,  
TIM3_CH2, EVENTOUT  
-
-
-
-
24 33 K5  
25 34 L5  
PC4  
PC5  
I/O FT  
I/O FT  
-
-
EVENTOUT  
EVENTOUT  
ADC1_IN14  
ADC1_IN15  
TIM1_CH2N, TIM3_CH3,  
EVENTOUT  
18 G5 26 35 M5  
PB0  
PB1  
I/O FT  
I/O FT  
-
-
ADC1_IN8  
ADC1_IN9  
TIM1_CH3N, TIM3_CH4,  
EVENTOUT  
19 G4 27 36 M6  
20 G3 28 37 L6  
PB2  
PE7  
PE8  
PE9  
PE10  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
EVENTOUT  
BOOT1  
-
-
-
-
-
-
-
-
-
-
-
-
38 M7  
39 L7  
40 M8  
41 L8  
TIM1_ETR, EVENTOUT  
TIM1_CH1N, EVENTOUT  
TIM1_CH1, EVENTOUT  
TIM1_CH2N, EVENTOUT  
-
-
-
-
SPI4_NSS, TIM1_CH2,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
42 M9  
43 L9  
44 M10  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
SPI4_SCK, TIM1_CH3N,  
EVENTOUT  
SPI4_MISO, TIM1_CH3,  
EVENTOUT  
40/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
Pinouts and pin description  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
SPI4_MOSI, TIM1_CH4,  
EVENTOUT  
-
-
-
-
-
-
45 M11  
46 M12  
PE14  
PE15  
I/O FT  
I/O FT  
-
-
-
-
TIM1_BKIN, EVENTOUT  
SPI2_SCK/I2S2_CK,  
I2C2_SCL, TIM2_CH3,  
EVENTOUT  
21 E3 29 47 L10  
PB10  
I/O FT  
I/O FT  
-
-
-
-
-
-
K9  
PB11  
VCAP1  
VSS  
-
-
-
-
EVENTOUT  
-
-
-
-
22 G2 30 48 L11  
23 D3 31 49 F12  
24 F2 32 50 G12  
S
S
S
-
-
-
-
-
-
VDD  
SPI2_NSS/I2S2_WS,  
I2C2_SMBA, TIM1_BKIN,  
EVENTOUT  
25 E2 33 51 L12  
PB12  
I/O FT  
-
-
SPI2_SCK/I2S2_CK,  
TIM1_CH1N, EVENTOUT  
26 G1 34 52 K12  
27 F1 35 53 K11  
28 E1 36 54 K10  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
SPI2_MISO, I2S2ext_SD,  
TIM1_CH2N, EVENTOUT  
-
SPI2_MOSI/I2S2_SD,  
TIM1_CH3N, EVENTOUT  
RTC_REFIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
55  
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
EVENTOUT  
-
-
-
-
-
-
-
-
56 K8  
57 J12  
58 J11  
59 J10  
60 H12  
61 H11  
62 H10  
EVENTOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
EVENTOUT  
EVENTOUT  
TIM4_CH1, EVENTOUT  
TIM4_CH2, EVENTOUT  
TIM4_CH3, EVENTOUT  
TIM4_CH4, EVENTOUT  
I2S2_MCK, USART6_TX,  
TIM3_CH1, SDIO_D6,  
EVENTOUT  
-
-
-
-
37 63 E12  
38 64 E11  
PC6  
PC7  
I/O FT  
I/O FT  
-
-
-
-
I2S3_MCK, USART6_RX,  
TIM3_CH2, SDIO_D7,  
EVENTOUT  
DocID025644 Rev 3  
41/135  
54  
Pinouts and pin description  
STM32F401xD STM32F401xE  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
USART6_CK, TIM3_CH3,  
SDIO_D0, EVENTOUT  
-
-
-
-
39 65 E10  
PC8  
PC9  
I/O FT  
I/O FT  
-
-
-
-
I2S_CKIN, I2C3_SDA,  
TIM3_CH4, SDIO_D1,  
MCO_2, EVENTOUT  
40 66 D12  
I2C3_SCL, USART1_CK,  
TIM1_CH1, OTG_FS_SOF,  
MCO_1, EVENTOUT  
29 D1 41 67 D11  
PA8  
I/O FT  
-
-
I2C3_SMBA, USART1_TX,  
TIM1_CH2, EVENTOUT  
30 D2 42 68 D10  
31 C2 43 69 C12  
PA9  
I/O FT  
I/O FT  
-
-
OTG_FS_VBUS  
-
USART1_RX, TIM1_CH3,  
OTG_FS_ID, EVENTOUT  
PA10  
USART1_CTS, USART6_TX,  
TIM1_CH4, OTG_FS_DM,  
EVENTOUT  
32 C1 44 70 B12  
PA11  
PA12  
I/O FT  
-
-
USART1_RTS, USART6_RX,  
TIM1_ETR, OTG_FS_DP,  
EVENTOUT  
33 C3 45 71 A12  
34 B3 46 72 A11  
I/O FT  
I/O FT  
-
-
-
-
PA13 (JTMS-  
SWDIO)  
JTMS-SWDIO, EVENTOUT  
-
-
-
73 C11  
VCAP2  
VSS  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
35 B1 47 74 F11  
36  
-
-
48 75 G11  
VDD  
B2  
-
-
-
VDD  
PA14 (JTCK-  
SWCLK)  
37 A1 49 76 A10  
I/O FT  
-
JTCK-SWCLK, EVENTOUT  
-
JTDI, SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
TIM2_CH1/TIM2_ETR, JTDI,  
EVENTOUT  
38 A2 50 77 A9  
PA15 (JTDI) I/O FT  
-
-
SPI3_SCK/I2S3_CK,  
SDIO_D2, EVENTOUT  
-
-
-
-
51 78 B11  
52 79 C10  
53 80 B10  
PC10  
PC11  
I/O FT  
I/O FT  
-
-
-
-
I2S3ext_SD, SPI3_MISO,  
SDIO_D3, EVENTOUT  
SPI3_MOSI/I2S3_SD,  
SDIO_CK, EVENTOUT  
-
-
-
-
PC12  
PD0  
I/O FT  
I/O FT  
-
-
-
-
-
81 C9  
EVENTOUT  
42/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
Pinouts and pin description  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
-
-
-
-
-
82 B9  
PD1  
PD2  
I/O FT  
I/O FT  
-
-
EVENTOUT  
-
-
TIM3_ETR, SDIO_CMD,  
EVENTOUT  
54 83 C8  
SPI2_SCK/I2S2_CK,  
USART2_CTS, EVENTOUT  
-
-
-
84 B8  
PD3  
I/O FT  
-
-
-
-
-
-
-
-
85 B7  
86 A6  
PD4  
PD5  
I/O FT  
I/O FT  
-
-
USART2_RTS, EVENTOUT  
USART2_TX, EVENTOUT  
-
-
SPI3_MOSI/I2S3_SD,  
USART2_RX, EVENTOUT  
-
-
-
-
-
-
87 B6  
88 A5  
PD6  
PD7  
I/O FT  
I/O FT  
-
-
-
-
USART2_CK, EVENTOUT  
JTDO-SWO, SPI1_SCK,  
SPI3_SCK/I2S3_CK,  
I2C2_SDA, TIM2_CH2,  
EVENTOUT  
PB3  
39 A3 55 89 A8  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
(JTDO-SWO)  
NJTRST, SPI1_MISO,  
SPI3_MISO, I2S3ext_SD,  
I2C3_SDA, TIM3_CH1,  
EVENTOUT  
PB4  
(NJTRST)  
40 A4 56 90 A7  
SPI1_MOSI,  
SPI3_MOSI/I2S3_SD,  
I2C1_SMBA, TIM3_CH2,  
EVENTOUT  
41 B4 57 91 C5  
42 C4 58 92 B5  
PB5  
PB6  
-
-
-
-
I2C1_SCL, USART1_TX,  
TIM4_CH1, EVENTOUT  
I/O FT  
I/O FT  
I2C1_SDA, USART1_RX,  
TIM4_CH2, EVENTOUT  
43 D4 59 93 B4  
44 A5 60 94 A4  
PB7  
-
-
-
BOOT0  
I
B
-
VPP  
I2C1_SCL, TIM4_CH3,  
TIM10_CH1, SDIO_D4,  
EVENTOUT  
45 B5 61 95 A3  
46 C5 62 96 B3  
PB8  
PB9  
I/O FT  
I/O FT  
-
-
-
-
SPI2_NSS/I2S2_WS,  
I2C1_SDA, TIM4_CH4,  
TIM11_CH1, SDIO_D5,  
EVENTOUT  
-
-
-
-
-
-
97 C3  
98 A2  
PE0  
PE1  
I/O FT  
I/O FT  
-
-
TIM4_ETR, EVENTOUT  
EVENTOUT  
-
-
DocID025644 Rev 3  
43/135  
54  
Pinouts and pin description  
STM32F401xD STM32F401xE  
Table 8. STM32F401xD/xE pin definitions (continued)  
Pin Number  
Pin name  
(function  
Additional  
functions  
Alternate functions  
after reset)(1)  
47 A6 63 99  
-
H3  
-
VSS  
PDR_ON  
VDD  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
-
B6  
-
-
48 A7 64 100  
S
1. Function availability depends on the chosen device.  
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3  
mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F401xx reference manual.  
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
5. If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode),  
then PA0 is used as an internal Reset (active low)  
44/135  
DocID025644 Rev 3  
Table 9. Alternate function mapping  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
TIM2_CH1/  
TIM2_ETR  
USART2_  
CTS  
EVENT  
OUT  
PA0  
-
TIM5_CH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_  
RTS  
EVENT  
OUT  
PA1  
PA2  
-
TIM2_CH2 TIM5_CH2  
-
-
USART2_  
EVENT  
OUT  
-
TIM2_CH3 TIM5_CH3 TIM9_CH1  
TIM2_CH4 TIM5_CH4 TIM9_CH2  
-
-
TX  
USART2_  
EVENT  
OUT  
PA3  
-
-
-
RX  
SPI3_NSS/  
I2S3_WS  
USART2_  
EVENT  
OUT  
PA4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_NSS  
SPI1_SCK  
-
CK  
TIM2_CH1/  
TIM2_ETR  
EVENT  
OUT  
PA5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_  
MISO  
EVENT  
OUT  
PA6  
-
TIM1_BKIN TIM3_CH1  
TIM1_CH1N TIM3_CH2  
-
SPI1_  
MOSI  
-
-
-
-
-
-
EVENT  
OUT  
PA7  
-
-
USART1_  
CK  
OTG_FS_  
SOF  
EVENT  
OUT  
PA8  
MCO_1  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
-
-
-
-
-
-
-
-
I2C3_SCL  
-
I2C3_  
SMBA  
USART1_  
TX  
OTG_FS_  
VBUS  
EVENT  
OUT  
PA9  
-
-
-
-
-
-
-
-
-
-
-
-
--  
-
-
-
-
-
-
-
-
USART1_  
RX  
OTG_FS_I  
D
EVENT  
OUT  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
-
-
-
-
-
-
-
USART1_ USART6_  
CTS TX  
OTG_FS_  
DM  
EVENT  
OUT  
-
-
USART1_ USART6_  
RTS  
OTG_FS_  
DP  
EVENT  
OUT  
-
-
RX  
JTMS_  
SWDIO  
EVENT  
OUT  
-
-
-
-
-
-
-
JTCK_  
SWCLK  
EVENT  
OUT  
-
-
-
-
-
-
-
TIM2_CH1/  
TIM2_ETR  
SPI3_NSS/  
I2S3_WS  
EVENT  
OUT  
JTDI  
SPI1_NSS  
-
 
 
Table 9. Alternate function mapping (continued)  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
EVENT  
OUT  
PB0  
-
-
-
TIM1_CH2N TIM3_CH3  
TIM1_CH3N TIM3_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PB1  
PB2  
-
-
EVENT  
OUT  
-
-
-
-
JTDO-  
SWO  
SPI3_SCK/  
I2S3_CK  
EVENT  
OUT  
PB3  
TIM2_CH2  
-
SPI1_SCK  
I2C2_SDA  
SPI1_  
MISO  
I2S3ext_S  
D
EVENT  
OUT  
PB4  
JTRST  
-
TIM3_CH1  
TIM3_CH2  
TIM4_CH1  
TIM4_CH2  
SPI3_MISO  
I2C3_SDA  
I2C1_  
SMBA  
SPI1  
_MOSI  
SPI3_MOSI/  
I2S3_SD  
EVENT  
OUT  
PB5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART1_  
TX  
EVENT  
OUT  
PB6  
-
I2C1_SCL  
I2C1_SDA  
-
-
-
-
-
-
-
-
-
-
USART1_  
RX  
EVENT  
OUT  
PB7  
-
SDIO_  
D4  
EVENT  
OUT  
PB8  
-
TIM4_CH3 TIM10_CH1 I2C1_SCL  
TIM4_CH4 TIM11_CH1 I2C1_SDA  
-
-
-
-
-
-
-
SPI2_NSS/I  
2S2_WS  
SDIO_  
D5  
EVENT  
OUT  
PB9  
-
SPI2_SCK/I  
2S2_CK  
EVENT  
OUT  
PB10  
PB12  
PB13  
PB14  
PB15  
TIM2_CH3  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
-
-
-
-
-
-
-
-
-
I2C2_SCL  
-
-
-
-
-
I2C2_  
SMBA  
SPI2_NSS/I  
2S2_WS  
EVENT  
OUT  
SPI2_SCK/I  
2S2_CK  
EVENT  
OUT  
-
-
-
EVENT  
OUT  
SPI2_MISO I2S2ext_SD  
RTC_  
REFN  
SPI2_MOSI  
-
EVENT  
OUT  
/I2S2_SD  
Table 9. Alternate function mapping (continued)  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PC1  
PC2  
-
-
-
-
SPI2_  
MISO  
EVENT  
OUT  
-
-
-
-
I2S2ext_SD  
SPI2_MOSI  
/I2S2_SD  
EVENT  
OUT  
PC3  
-
-
-
-
-
EVENT  
OUT  
PC4  
-
-
-
-
-
-
EVENT  
OUT  
PC5  
-
-
-
-
-
-
USART6_  
TX  
SDIO_  
D6  
EVENT  
OUT  
PC6  
-
--  
TIM3_CH1  
-
I2S2_MCK  
-
USART6_  
RX  
SDIO_  
D7  
EVENT  
OUT  
PC7  
-
TIM3_CH2  
-
-
I2S3_MCK  
USART6_  
CK  
SDIO_  
D0  
EVENT  
OUT  
PC8  
-
-
-
-
-
-
-
-
-
TIM3_CH3  
-
-
-
-
SDIO_  
D1  
EVENT  
OUT  
PC9  
MCO_2  
TIM3_CH4  
I2C3_SDA  
I2S_CKIN  
-
-
-
-
-
-
-
-
SPI3_SCK/  
I2S3_CK  
SDIO_  
D2  
EVENT  
OUT  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2S3ext_  
SD  
SDIO_  
D3  
EVENT  
OUT  
SPI3_MISO  
SPI3_MOSI/  
I2S3_SD  
SDIO_  
CK  
EVENT  
OUT  
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
Table 9. Alternate function mapping (continued)  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
EVENT  
OUT  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PD1  
PD2  
-
SDIO_  
CMD  
EVENT  
OUT  
TIM3_ETR  
-
SPI2_SCK/  
I2S2_CK  
USART2_  
CTS  
EVENT  
OUT  
PD3  
-
--  
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_  
RTS  
EVENT  
OUT  
PD4  
-
-
-
USART2_  
TX  
EVENT  
OUT  
PD5  
-
-
-
-
-
-
-
-
-
-
-
-
SPI3_MOSI  
/I2S3_SD  
USART2_  
RX  
EVENT  
OUT  
PD6  
-
USART2_  
CK  
EVENT  
OUT  
PD7  
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PD8  
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PD9  
-
EVENT  
OUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
EVENT  
OUT  
-
EVENT  
OUT  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
Table 9. Alternate function mapping (continued)  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
EVENT  
OUT  
PE0  
-
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PE1  
PE2  
TIM1_CH2N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACECL  
K
EVENT  
OUT  
-
SPI4_SCK  
EVENT  
OUT  
PE3 TRACED0  
PE4 TRACED1  
PE5 TRACED2  
PE6 TRACED3  
-
-
-
EVENT  
OUT  
-
-
SPI4_NSS  
EVENT  
OUT  
-
TIM9_CH1  
SPI4_MISO  
EVENT  
OUT  
-
TIM9_CH2  
SPI4_MOSI  
EVENT  
OUT  
PE7  
PE8  
-
-
-
-
-
-
-
-
-
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
EVENT  
OUT  
PE9  
-
EVENT  
OUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
EVENT  
OUT  
SPI4_NSS  
SPI4_SCK  
SPI4_MISO  
SPI4_MOSI  
-
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
Table 9. Alternate function mapping (continued)  
AF00  
AF01  
AF02  
AF03  
AF04  
AF05  
AF06  
AF07  
AF08  
AF09  
AF10  
AF11  
AF12 AF13 AF14 AF15  
Port  
TIM9/  
TIM10/  
TIM11  
SPI1/SPI2/  
I2S2/SPI3/  
I2S3/SPI4  
SPI3/I2S3/  
USART1/ USART6  
USART2  
TIM3/  
TIM4/ TIM5  
I2C1/I2C2/  
I2C3  
SPI2/I2S2/  
SPI3/ I2S3  
I2C2/  
I2C3  
SYS_AF  
TIM1/TIM2  
OTG1_FS  
SDIO  
EVENT  
OUT  
PH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PH1  
STM32F401xD STM32F401xE  
Memory mapping  
5
Memory mapping  
The memory map is shown in Figure 15.  
Figure 15. Memory map  
5HVHUYHG  
ꢉ[(ꢉꢁꢉꢈꢉꢉꢉꢉꢈꢐꢈꢉ[))))ꢈ))))  
&RUWH[ꢐ0ꢂꢈLQWHUQDOꢈ  
SHULSKHUDOV  
ꢉ[(ꢉꢉꢉꢈꢉꢉꢉꢉꢈꢐꢈꢉ[(ꢉꢉ)ꢈ))))  
ꢉ[')))ꢈ))))  
5HVHUYHG  
ꢉ[ꢆꢉꢉꢂꢈꢉꢉꢉꢉꢈ  
ꢉ[ꢆꢉꢉꢀꢈ))))  
$+%ꢅ  
ꢉ[ꢆꢉꢉꢉꢈꢉꢉꢉꢉ  
5HVHUYHG  
ꢉ[ꢂꢉꢉꢅꢈꢃꢇꢉꢉꢈꢐꢈꢉ[ꢂ)))ꢈ))))  
ꢉ[ꢂꢉꢉꢅꢈꢃꢄ))  
ꢉ[))))ꢈ))))  
ꢆꢁꢅꢐ0E\WH  
ꢈEORFNꢈꢄ  
&RUWH[ꢐ0ꢂꢕV  
LQWHUQDO  
SHULSKHUDOV  
$+%ꢁ  
ꢉ[(ꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[')))ꢈ))))  
ꢆꢁꢅꢐ0E\WH  
ꢈEORFNꢈꢃ  
1RWꢈXVHG  
ꢉ[&ꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[%)))ꢈ))))  
ꢉ[ꢂꢉꢉꢅꢈꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢁꢈꢂ&ꢉꢉꢈꢐꢈꢉ[ꢂꢉꢉꢁꢈ))))  
5HVHUYHG  
ꢉ[ꢂꢉꢉꢁꢈꢂ%))  
5HVHUYHG  
ꢉ[ꢃꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢆ)))ꢈ))))  
$3%ꢅ  
ꢆꢁꢅꢐ0E\WH  
ꢈEORFNꢈꢅ  
3HULSKHUDOV  
ꢉ[ꢂꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢀ)))ꢈ))))  
ꢆꢁꢅꢐ0E\WH  
ꢈEORFNꢈꢁ  
65$0  
5HVHUYHG  
65$0ꢈꢑꢊꢃꢈ.%ꢈDOLDVHG  
E\ꢈELWꢐEDQGLQJꢒ  
ꢉ[ꢅꢉꢉꢁꢈꢇꢉꢉꢉꢈꢐꢈꢉ[ꢀ)))ꢈ))))  
ꢉ[ꢅꢉꢉꢉꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢅꢉꢉꢁꢈꢄ)))  
ꢉ[ꢁ)))ꢈ&ꢉꢉꢇꢈꢐꢈꢉ[ꢁ)))ꢈ))))  
ꢉ[ꢂꢉꢉꢁꢈꢉꢉꢉꢉ  
ꢉ[ꢂꢉꢉꢉꢈꢄꢂꢉꢉꢈꢐꢈꢉ[ꢂꢉꢉꢉꢈ))))  
ꢉ[ꢂꢉꢉꢉꢈꢄꢀ))  
ꢉ[ꢅꢉꢉꢉꢈꢉꢉꢉꢉ  
ꢉ[ꢁ)))ꢈ))))  
5HVHUYHG  
5HVHUYHG  
ꢆꢁꢅꢐ0E\WH  
ꢈEORFNꢈꢉ  
&RGH  
2SWLRQꢈE\WHV  
ꢉ[ꢁ)))ꢈ&ꢉꢉꢉꢈꢐꢈꢉ[ꢁ)))ꢈ&ꢉꢉꢄ  
ꢉ[ꢁ)))ꢈꢄ$ꢁꢉꢈꢐꢈꢉ[ꢁ)))ꢈ%)))  
ꢉ[ꢁ)))ꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢁ)))ꢈꢄ$ꢉ)  
ꢉ[ꢉꢇꢉꢇꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢁ))(ꢈ))))ꢈ  
ꢉ[ꢉꢇꢉꢉꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢉꢇꢉꢄꢈ))))ꢈ  
ꢉ[ꢉꢉꢉꢇꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢉꢄ))ꢈ))))  
5HVHUYHG  
6\VWHPꢈPHPRU\  
ꢉ[ꢉꢉꢉꢉꢈꢉꢉꢉꢉ  
5HVHUYHG  
)ODVKꢈPHPRU\  
5HVHUYHG  
$3%ꢁ  
$OLDVHGꢈWRꢈ)ODVKꢎꢈV\VWHP  
PHPRU\ꢈRUꢈ65$0ꢈGHSHQGLQJ  
RQꢈWKHꢈ%227ꢈSLQV  
ꢉ[ꢉꢉꢉꢉꢈꢉꢉꢉꢉꢈꢐꢈꢉ[ꢉꢉꢉꢄꢈ))))  
ꢉ[ꢂꢉꢉꢉꢈꢉꢉꢉꢉ  
06ꢀꢁꢊꢄꢉ9ꢁ  
DocID025644 Rev 3  
51/135  
54  
 
 
Memory mapping  
STM32F401xD STM32F401xE  
Table 10. STM32F401xD register boundary addresses  
Bus  
Boundary address  
Peripheral  
0xE010 0000 - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0x5004 0000 - 0xDFFF FFFF  
0x5000 0000 - 0x5003 FFFF  
0x4002 6800 - 0x4FFF FFFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0x4002 5000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0x4002 3400 - 0x4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2000 - 0x4002 2FFF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1400 - 0x4002 1BFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
®
Cortex -M4  
Cortex-M4 internal peripherals  
Reserved  
USB OTG FS  
Reserved  
DMA2  
AHB2  
DMA1  
Reserved  
Flash interface register  
RCC  
Reserved  
CRC  
AHB1  
Reserved  
GPIOH  
Reserved  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
52/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Memory mapping  
Table 10. STM32F401xD register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 4C00- 0x4001 FFFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7400 - 0x4000 FFFF  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
SYSCFG  
SPI4/I2S4  
SPI1  
SDIO  
APB2  
Reserved  
ADC1  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
Reserved  
DocID025644 Rev 3  
53/135  
54  
Memory mapping  
STM32F401xD STM32F401xE  
Table 10. STM32F401xD register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4000 7000 - 0x4000 73FF  
0x4000 6000 - 0x4000 6FFF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 4800 - 0x4000 53FF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1000 - 0x4000 27FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
PWR  
Reserved  
I2C3  
I2C2  
I2C1  
Reserved  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM5  
TIM4  
TIM3  
TIM2  
54/135  
DocID025644 Rev 3  
STM32F401xD STM32F401xE  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3 σ).  
6.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2 σ).  
6.1.3  
6.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 16.  
Figure 16. Pin loading conditions  
-#5 PIN  
# ꢒ ꢌꢊ P&  
-3ꢂꢑꢊꢂꢂ6ꢎ  
DocID025644 Rev 3  
55/135  
114  
 
 
 
 
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 17.  
Figure 17. Input voltage measurement  
-#5 PIN  
6
).  
-3ꢂꢑꢊꢂꢊ6ꢎ  
56/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 18. Power supply scheme  
9%$7  
%DFNXSꢈFLUFXLWU\  
9%$7ꢈ  
ꢁꢌꢃꢆꢈWRꢈꢀꢌꢃ9  
ꢑ26&ꢀꢅ.ꢎ57&ꢎ  
:DNHXSꢈORJLF  
3RZHUꢈ  
VZLWFK  
%DFNXSꢈUHJLVWHUVꢒ  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢁ  
9&$3Bꢅ  
.HUQHOꢈORJLFꢈ  
ꢑ&38ꢎꢈGLJLWDOꢈ  
ꢏꢈ5$0ꢒꢈꢈ  
ꢅꢈîꢈꢅꢌꢅꢈ—) RU ꢁꢈîꢈꢂꢌꢄꢈ—)  
9''  
9''  
ꢁꢋꢅꢋꢌꢌꢌꢂ  
9ROWDJHꢈ  
UHJXODWRU  
ꢃꢈîꢈꢁꢉꢉꢈQ)  
ꢔꢈꢁꢈîꢈꢂꢌꢄꢈ—)  
966  
ꢁꢋꢅꢋꢌꢌꢌꢂ   
)ODVKꢈPHPRU\  
%<3$66B5(*  
3'5B21  
9''$  
5HVHWꢈ  
FRQWUROOHU  
9''  
95()  
95()ꢔ  
$QDORJꢍ  
5&Vꢎꢈ  
3//ꢎꢌꢌ  
ꢁꢉꢉꢈQ)  
ꢔꢈꢁꢈ—)  
ꢁꢉꢉꢈQ)  
ꢔꢈꢁꢈ—)  
$'&  
95()ꢐ  
966$  
06ꢀꢁꢂꢇꢇ9ꢅ  
1. To connect PDR_ON pin, refer to Section 3.14: Power supply supervisor.  
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
3. VCAP_2 pad is only available on LQFP100 and UFBGA100 packages.  
4. VDDA=VDD and VSSA=VSS  
.
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
DocID025644 Rev 3  
57/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.1.7  
Current consumption measurement  
Figure 19. Current consumption measurement scheme  
)
?6  
$$ "!4  
6
"!4  
)
$$  
6
$$  
6
$$!  
AIꢂꢍꢂꢎꢆ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,  
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 11. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD and  
VDD–VSS  
–0.3  
4.0  
(1)  
VBAT  
)
Input voltage on FT pins(2)  
VSS–0.3 VDD+4.0  
V
VIN  
Input voltage on any other pin  
V
SS–0.3  
4.0  
9.0  
50  
Input voltage for BOOT0  
VSS  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
mV  
|VSSX VSS  
|
50  
see Section 6.3.14:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed  
injected current.  
58/135  
 
 
 
 
STM32F401xD STM32F401xE  
Symbol  
Electrical characteristics  
Table 12. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
IVDD  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
160  
-160  
100  
-100  
25  
IVSS  
IIO  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT pins (4)  
-25  
mA  
120  
-120  
ΣIIO  
(3)  
–5/+0  
IINJ(PIN)  
Injected current on NRST and B pins (4)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
±25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 13. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
125  
Maximum junction temperature  
°C  
Maximum lead temperature during soldering  
(WLCSP49, LQFP64/100, UFQFPN48,  
UFBGA100)  
TLEAD  
see note (1)  
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS  
directive 2011/65/EU, July 2011).  
DocID025644 Rev 3  
59/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 14. General operating conditions  
Symbol  
Parameter  
Conditions  
Min Typ  
Max Unit  
Power Scale3: Regulator ON,  
0
0
-
-
60  
VOS[1:0] bits in PWR_CR register = 0x01  
fHCLK Internal AHB clock frequency  
Power Scale2: Regulator ON,  
84  
MHz  
VOS[1:0] bits in PWR_CR register = 0x10  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
0
0
-
-
-
42  
84  
VDD  
Standard operating voltage  
1.7(1)  
3.6  
Analog operating voltage  
1.7(1)  
-
2.4  
(ADC limited to 1.2 M samples)  
VDDA  
(4)  
Must be the same potential as VDD  
(2)(3)  
Analog operating voltage  
2.4  
-
-
3.6  
3.6  
(ADC limited to 2.4 M samples)  
VBAT  
Backup operating voltage  
1.65  
VOS[1:0] bits in PWR_CR register = 0x01  
Max frequency 60 MHz  
1.08(5) 1.14 1.20(5)  
1.20(5) 1.26 1.32(5)  
Regulator ON: 1.2 V internal  
voltage on VCAP_1/VCAP_2 pins  
V
V12  
VOS[1:0] bits in PWR_CR register = 0x10  
Max frequency 84 MHz  
Regulator OFF: 1.2 V external Max. frequency 60 MHz.  
voltage must be supplied on  
Max. frequency 84 MHz.  
VCAP_1/VCAP_2 pins  
1.1  
1.2  
1.14  
1.2  
V12  
1.26 1.32  
2 V VDD 3.6 V  
–0.3  
-
-
-
-
-
-
-
-
5.5  
5.2  
9
Input voltage on RST and FT  
pins(6)  
VIN  
VDD 2 V  
–0.3  
Input voltage on BOOT0 pin  
UFQFPN48  
0
-
625  
392  
313  
465  
323  
WLCSP49  
-
Maximum allowed package  
PD  
LQFP64  
-
mW  
power dissipation for suffix 7(7)  
LQFP100  
-
UFBGA100  
-
60/135  
 
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 14. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min Typ  
Max Unit  
Maximum power dissipation  
Low power dissipation(8)  
Maximum power dissipation  
Low power dissipation(8)  
6 suffix version  
–40  
–40  
–40  
–40  
–40  
–40  
-
-
-
-
-
-
85  
Ambient temperature for 6  
suffix version  
105  
TA  
105  
°C  
125  
Ambient temperature for 7  
suffix version  
105  
125  
TJ  
Junction temperature range  
7 suffix version  
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal  
reset OFF).  
2. When the ADC is used, refer to Table 66: ADC characteristics.  
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA  
can be tolerated during power-up and power-down operation.  
5. Guaranteed by test in production  
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
Table 15. Features depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
Possible  
Flash  
memory  
operations  
Clock output  
frequency on  
I/O pins(3)  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
8-bit erase  
and program  
operations  
only  
Conversion  
time up to  
1.2 Msps  
VDD =1.7 to  
2.1 V(4)  
84 MHz with 4 – No I/O  
wait states compensation  
20 MHz(5)  
up to 30 MHz  
up to 30 MHz  
Conversion  
time up to  
1.2 Msps  
16-bit erase  
and program  
operations  
VDD = 2.1 to  
2.4 V  
84 MHz with 3 – No I/O  
22 MHz  
24 MHz  
wait states  
compensation  
Conversion  
time up to  
2.4 Msps  
– I/O  
16-bit erase  
and program  
operations  
VDD = 2.4 to  
2.7 V  
84 MHz with 3  
wait states  
compensation up to 48 MHz  
works  
– up to  
84 MHz  
when VDD  
3.0 to 3.6 V  
=
Conversion  
time up to  
2.4 Msps  
– I/O  
compensation  
works  
32-bit erase  
and program  
operations  
VDD = 2.7 to  
3.6 V(6)  
84 MHz with 2  
wait states  
30 MHz  
– up to  
48 MHz  
when VDD  
=
2.7 to 3.0 V  
DocID025644 Rev 3  
61/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. Refer to for frequencies vs. external load.  
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal  
reset OFF).  
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.  
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of  
D- and D+ pins will be degraded between 2.7 and 3 V.  
6.3.2  
VCAP1/VCAP2 external capacitors  
Stabilization for the main regulator is achieved by connecting external capacitor C  
to the  
EXT  
VCAP1 and VCAP2 pin. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors  
are replaced by a single capacitor.  
C
is specified in Table 16.  
EXT  
Figure 20. External capacitor C  
EXT  
&
(65  
5ꢈ/HDN  
06ꢁꢊꢉꢂꢂ9ꢅ  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 16. VCAP1/VCAP2 operating conditions  
Parameter  
Symbol  
Conditions  
Capacitance of external capacitor with available  
VCAP1 and VCAP2 pins  
CEXT  
2.2 µF  
< 2 Ω  
4.7 µF  
< 1 Ω  
ESR of external capacitor with available VCAP1 and  
VCAP2 pins  
ESR  
CEXT  
ESR  
Capacitance of external capacitor with a single VCAP  
pin available  
ESR of external capacitor with a single VCAP pin  
available  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
62/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
6.3.3  
Operating conditions at power-up/power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 17. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 18. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
Note:  
This feature is only available for UFBGA100 package.  
DocID025644 Rev 3  
63/135  
114  
 
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3.5  
Embedded reset and power control block characteristics  
The parameters given in Table 19 are derived from tests performed under ambient  
temperature and V supply voltage @ 3.3V.  
DD  
Table 19. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
V
2.76 2.82  
Programmable voltage  
detector level selection  
VPVD  
2.66 2.71  
2.93 2.99  
2.84 3.02  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
(2)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
1.60(1)  
1.64  
-
Falling edge  
Rising edge  
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
(2)  
VPDRhyst  
PDR hysteresis  
40  
-
mV  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
VBOR2  
VBOR3  
Brownout level 2  
threshold  
V
Brownout level 3  
threshold  
(2)  
VBORhyst  
BOR hysteresis  
POR reset timing  
100  
1.5  
-
mV  
ms  
TRSTTEMPO  
0.5  
3.0  
(2)(3)  
64/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 19. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
InRush current on  
voltage regulator power-  
on (POR or wakeup from  
Standby)  
(2)  
IRUSH  
-
160  
-
200  
5.4  
mA  
µC  
InRush energy on  
voltage regulator power-  
on (POR or wakeup from IRUSH = 171 mA for 31 µs  
Standby)  
V
DD = 1.7 V, TA = 105 °C,  
(2)  
ERUSH  
-
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first  
instruction is fetched by the user application code.  
6.3.6  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 19: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at VDD or VSS (no load).  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted to both f  
frequency and VDD ranges  
HCLK  
(refer to Table 15: Features depending on the operating power supply range).  
The voltage scaling is adjusted to f frequency as follows:  
HCLK  
Scale 3 for f  
60 MHz  
HCLK  
Scale 2 for 60 MHz < f  
84 MHz  
HCLK  
The system clock is HCLK, f  
= f  
/2, and f  
= f  
.
PCLK1  
HCLK  
PCLK2  
HCLK  
External clock is 4 MHz and PLL is on  
The maximum values are obtained for V = 3.6 V and a maximum ambient  
DD  
temperature (T ), and the typical values for T = 25 °C and V = 3.3 V unless  
A
A
DD  
otherwise specified.  
DocID025644 Rev 3  
65/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Table 20. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA=  
25 °C  
TA= 25 °C TA=85 °C TA=105 °C  
84  
60  
40  
20  
84  
60  
40  
20  
21.8  
15.8  
11.4  
6.0  
23.1  
16.5  
11.9  
6.3  
24.1  
17.5  
12.9  
7.3  
25.3(4)  
18.7  
13.9  
8.3  
External clock,  
all peripherals  
enabled(2)(3)  
Supply current  
in Run mode  
IDD  
mA  
12.7  
9.2  
13.5  
10.5  
7.1  
14.5  
11.5  
8.1  
16.3(4)  
12.8  
9.1  
External clock,  
all peripherals  
disabled(3)  
6.7  
3.6  
3.8  
4.8  
5.8  
1. Guaranteed by characterization, not tested in production unless otherwise specified  
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
4. Tested in production.  
Table 21. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA= 25 °C TA=85 °C TA=105 °C  
84  
60  
40  
20  
84  
60  
40  
20  
22.0  
16.0  
11.6  
6.2  
23.1  
16.9  
12.1  
6.5  
24.1  
17.9  
13.1  
7.5  
25.3  
19.8  
14.1  
8.5  
External clock,  
all peripherals  
enabled(2)(3)  
Supply current  
in Run mode  
IDD  
mA  
12.9  
9.5  
14.0  
10.5  
7.3  
15.0  
11.5  
8.3  
16.3  
12.8  
9.3  
External clock,  
all peripherals  
disabled(3)  
6.9  
3.8  
4.0  
5.0  
6.0  
1. Guaranteed by characterization, not tested in production unless otherwise specified  
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
66/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 22. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V  
DD  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
84  
60  
40  
30  
20  
84  
60  
40  
30  
20  
23.2  
15.1  
10.8  
8.8  
24.5  
16.3  
12.1  
10.0  
8.0  
25.6  
17.4  
13.2  
11.1  
9.0  
26.6  
18.4  
14.2  
12.2  
10.1  
15.7  
11.5  
9.4  
External clock,  
all peripherals enabled(2)(3)  
6.9  
Supply current  
in Run mode  
IDD  
mA  
12.3  
8.2  
13.6  
9.4  
14.7  
10.5  
8.3  
External clock,  
6.0  
7.3  
all peripherals disabled(3)  
4.9  
6.2  
7.2  
8.3  
4.0  
5.1  
6.1  
7.2  
1. Guaranteed by characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
Table 23. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.3 V  
DD  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
84  
60  
40  
30  
20  
84  
60  
40  
30  
20  
23.4  
15.3  
11.0  
9.0  
24.7  
16.5  
12.3  
10.2  
8.2  
25.8  
17.6  
13.4  
11.3  
9.2  
26.8  
18.6  
14.4  
12.4  
10.3  
15.9  
11.7  
9.6  
External clock,  
all peripherals enabled(2)(3)  
7.1  
Supply current  
in Run mode  
IDD  
mA  
12.5  
8.4  
13.8  
9.6  
14.9  
10.7  
8.5  
External clock,  
6.2  
7.5  
all peripherals disabled(3)  
5.1  
6.4  
7.4  
8.5  
4.2  
5.3  
6.3  
7.4  
1. Guaranteed by characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
DocID025644 Rev 3  
67/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
.
Table 24. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
84  
60  
40  
30  
20  
84  
60  
40  
30  
20  
31.1  
21.7  
15.5  
12.6  
9.8  
32.2  
22.1  
16.1  
13.1  
10.1  
21.3  
15.3  
11.2  
9.2  
34.3  
23.2  
17.1  
14.1  
11.1  
23.4  
16.3  
12.2  
10.2  
8.2  
36.3  
24.2  
18.1  
15.1  
12.1  
25.4  
17.3  
13.3  
11.2  
9.2  
External clock,  
all peripherals enabled(2)(3)  
Supply current  
in Run mode  
IDD  
mA  
20.2  
14.9  
10.6  
8.8  
External clock,  
all peripherals disabled(3)  
6.9  
7.2  
1. Guaranteed by characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
Table 25. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
84  
60  
40  
30  
20  
84  
60  
40  
30  
20  
32.5  
22.2  
16.0  
12.9  
10.2  
21.6  
15.3  
11.2  
9.0  
33.3  
23.3  
17.1  
14.1  
11.1  
22.4  
16.4  
12.3  
10.2  
8.2  
34.3  
24.3  
18.1  
15.1  
12.1  
23.5  
17.4  
13.3  
11.2  
9.2  
35.4  
25.3  
19.2  
16.1  
13.1  
24.5  
18.4  
14.3  
12.3  
10.2  
External clock,  
all peripherals enabled(2)(3)  
Supply current  
in Run mode  
IDD  
mA  
External clock,  
all peripherals disabled(3)  
7.3  
1. Guaranteed by characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
68/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 26. Typical and maximum current consumption in Sleep mode  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
84  
60  
40  
30  
20  
84  
60  
40  
30  
20  
16.6  
10.8  
8.3  
6.8  
5.9  
5.3  
3.7  
2.9  
2.7  
2.7  
17.4  
11.2  
9.0  
7.1  
6.1  
6.1  
4.1  
3.1  
3.1  
3.1  
18.4  
12.3  
10.0  
8.1  
19.5  
13.3  
11.0  
9.1  
External clock,  
all peripherals enabled(2)(3)  
7.1  
8.1  
Supply current  
in Sleep mode  
IDD  
mA  
7.1  
8.2  
5.1  
6.1  
External clock,  
4.1  
5.1  
all peripherals disabled(3)(4)  
4.1  
5.1  
4.1  
5.1  
1. Guaranteed by characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
4. Same current consumption for fHCLK at 30 MHz and 20 MHz due to VCO running slower at 30 MHz.  
Table 27. Typical and maximum current consumptions in Stop mode - V =1.8 V  
DD  
Max(1)  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA = TA = TA =  
25 °C 25 °C 85 °C 105 °C  
Main regulator usage  
Flash in Stop mode, all  
oscillators OFF, no  
independent watchdog  
109  
41  
135  
65  
440  
310 530(2)  
345 530  
260 510(2)  
230 460  
650  
Low power regulator usage  
IDD_STOP  
µA  
Main regulator usage  
Flash in Deep power  
down mode, all oscillators  
OFF, no independent  
watchdog  
72  
12  
10  
95  
36  
27  
Low power regulator usage  
Low power low voltage regulator usage  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by test in production.  
DocID025644 Rev 3  
69/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Table 28. Typical and maximum current consumption in Stop mode - V =3.3 V  
DD  
Max(1)  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA = TA = TA =  
25 °C 25 °C 85 °C 105 °C  
Main regulator usage  
Flash in Stop mode, all  
oscillators OFF, no  
independent watchdog  
111  
42  
140  
65  
450  
330  
670  
560  
Low power regulator usage  
IDD_STOP  
µA  
Main regulator usage  
Flash in Deep power  
down mode, all oscillators  
OFF, no independent  
watchdog  
73  
12  
10  
100  
36  
360  
270  
230  
560  
520  
470  
Low power regulator usage  
Low power low voltage regulator usage  
28  
1. Guaranteed by characterization, not tested in production.  
Table 29. Typical and maximum current consumption in Standby mode - V =1.8 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA = TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
Low-speed oscillator (LSE) and RTC ON  
RTC and LSE OFF  
2.4  
1.8  
4.0  
12.0  
24.0  
Supply current in  
Standby mode  
IDD_STBY  
µA  
3.0(3) 11.0  
23.0(3)  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed by characterization, not tested in production unless otherwise specified.  
3. Guaranteed by test in production.  
Table 30. Typical and maximum current consumption in Standby mode - V =3.3 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
Low-speed oscillator (LSE) and RTC ON  
RTC and LSE OFF  
2.8  
2.1  
5.0  
14.0  
28.0  
Supply current in  
Standby mode  
IDD_STBY  
µA  
4.0(3) 13.0  
27.0(3)  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed by characterization, not tested in production unless otherwise specified.  
3. Guaranteed by test in production.  
70/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 31. Typical and maximum current consumptions in V  
mode  
BAT  
Typ  
Max(2)  
TA = TA =  
TA = 25 °C  
Symbol Parameter  
Conditions(1)  
85 °C 105 °C Unit  
VBAT = 3.6 V  
VBAT = VBAT= VBAT  
1.7 V 2.4 V 3.3 V  
=
Backup  
DD_VBAT domainsupply  
current  
Low-speed oscillator (LSE) and RTC ON 0.66  
0.76  
0.1  
0.97  
0.1  
3.0  
2.0  
5.0  
4.0  
I
µA  
RTC and LSE OFF  
0.1  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed by characterization, not tested in production.  
Figure 21. Typical V  
current consumption (LSE and RTC ON)  
BAT  
ꢎꢃꢌ  
ꢂꢃꢆꢌ6  
ꢂꢃꢈ6  
ꢂꢃꢄ6  
ꢎ6  
ꢎꢃꢍ6  
ꢎꢃꢈ6  
ꢅ6  
ꢂꢃꢌ  
ꢊꢃꢌ  
ꢅꢃꢅ6  
ꢅꢃꢆ6  
ꢊ #  
ꢎꢌ #  
ꢌꢌ #  
ꢄꢌ #  
ꢂꢊꢌ #  
4EMPERATURE  
-3ꢅꢊꢍꢑꢊ6ꢂ  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
DocID025644 Rev 3  
71/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 33: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
72/135  
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 32. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
frequency (fSW  
)
2 MHz  
8 MHz  
0.05  
0.15  
0.45  
0.85  
1.00  
1.40  
0.10  
0.35  
1.05  
2.20  
2.40  
3.55  
0.20  
0.65  
1.85  
2.45  
4.70  
8.80  
0.25  
1.00  
3.45  
7.15  
11.55  
0.32  
1.27  
3.88  
12.34  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
2 MHz  
VDD = 3.3 V  
C = CINT  
8 MHz  
VDD = 3.3 V  
CEXT = 0 pF  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
2 MHz  
C = CINT + CEXT + CS  
I/O switching  
current  
IDDIO  
8 MHz  
mA  
VDD = 3.3 V  
CEXT =10 pF  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
2 MHz  
C = CINT + CEXT + CS  
8 MHz  
VDD = 3.3 V  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT + CS  
VDD = 3.3 V  
CEXT = 33 pF  
8 MHz  
25 MHz  
50 MHz  
C = CINT + CEXT + CS  
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
DocID025644 Rev 3  
73/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
The ART accelerator is ON.  
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.  
HCLK is the system clock at 84 MHz. f = f /2, and f = f .  
HCLK  
PCLK1  
HCLK  
PCLK2  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
Table 33. Peripheral current consumption  
Peripheral  
IDD (typ)  
Unit  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
CRC  
1.55  
1.55  
1.55  
1.55  
1.55  
1.55  
0.36  
20.24  
21.07  
11.19  
8.57  
8.33  
11.19  
0.71  
3.33  
3.10  
2.62  
2.86  
1.90  
1.67  
0.71  
AHB1  
µA/MHz  
(up to 84MHz)  
DMA1  
DMA2  
TIM2  
TIM3  
TIM4  
TIM5  
PWR  
USART2  
I2C1/2/3  
SPI2(1)  
SPI3(1)  
I2S2  
APB1  
µA/MHz  
(up to 42MHz)  
I2S3  
WWDG  
AHB2  
OTG_FS  
23.93  
µA/MHz  
(up to 84MHz)  
74/135  
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 33. Peripheral current consumption (continued)  
Peripheral  
IDD (typ)  
Unit  
TIM1  
TIM9  
5.71  
2.86  
1.79  
2.02  
2.98  
1.19  
3.10  
2.86  
5.95  
1.31  
0.71  
TIM10  
TIM11  
ADC1(2)  
SPI1  
APB2  
µA/MHz  
(up to 84MHz)  
USART1  
USART6  
SDIO  
SPI4  
SYSCFG  
1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.  
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6  
mA for the analog part.  
6.3.7  
Wakeup time from low-power modes  
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 34. Low-power mode wakeup timings(1)  
Min(1) Typ(1) Max(1)  
Symbol  
Parameter  
Unit  
CPU  
clock  
cycle  
(2)  
Wakeup from Sleep mode  
-
4
6
tWUSLEEP  
Wakeup from Stop mode, usage of main regulator  
-
-
-
-
13.5  
105  
21  
14.5  
111  
33  
Wakeup from Stop mode, usage of main regulator, Flash  
memory in Deep power down mode  
(2)  
µs  
tWUSTOP  
Wakeup from Stop mode, regulator in low power mode  
Wakeup from Stop mode, regulator in low power mode,  
Flash memory in Deep power down mode  
113  
130  
(2)(3)  
Wakeup from Standby mode  
-
314  
407  
µs  
tWUSTDBY  
1. Guaranteed by characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.  
3. WUSTDBY maximum value is given at –40 °C.  
t
DocID025644 Rev 3  
75/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3.8  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 54. However, the recommended clock input  
waveform is shown in Figure 22.  
The characteristics given in Table 35 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 14.  
Table 35. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 54. However, the recommended clock input  
waveform is shown in Figure 23.  
The characteristics given in Table 36 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 14.  
76/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 36. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
-
-
50  
Cin(LSE)  
OSC32_IN input capacitance(1)  
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
Figure 22. High-speed external clock source AC timing diagram  
6
(3%(  
ꢓ  
ꢂꢊ ꢓ  
(3%,  
6
T
T
T
7ꢀ(3%ꢁ  
T
T
7ꢀ(3%ꢁ  
Rꢀ(3%ꢁ  
Fꢀ(3%ꢁ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢅꢎ&  
AIꢂꢈꢌꢎꢄ  
DocID025644 Rev 3  
77/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 23. Low-speed external clock source AC timing diagram  
6
,3%(  
ꢑꢊꢓ  
ꢓ  
6
,3%,  
T
T
T
7ꢀ,3%ꢁ  
T
T
7ꢀ,3%ꢁ  
Rꢀ,3%ꢁ  
Fꢀ,3%ꢁ  
4
,3%  
F
,3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3#ꢅꢎ?).  
34-ꢅꢎ&  
AIꢂꢈꢌꢎꢑ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 37. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 37. HSE 4-26 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
4
-
-
26  
-
MHz  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 Ω,  
-
-
450  
530  
-
-
CL=5 pF @25 MHz  
IDD  
HSE current consumption  
µA  
VDD=3.3 V,  
ESR= 30 Ω,  
CL=10 pF @25 MHz  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
-
1
-
mA/V  
ms  
(2)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design, not tested in production.  
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 24). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
78/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 24. Typical application with an 8 MHz crystal  
5HVRQDWRUꢈZLWK  
LQWHJUDWHGꢈFDSDFLWRUV  
&
/ꢁ  
I
26&B,1  
+6(  
%LDVꢈ  
FRQWUROOHG  
JDLQ  
ꢇꢈ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢑꢁꢒ  
670ꢀꢅ)  
5
(;7  
&
/ꢅ  
DLꢁꢄꢆꢀꢉ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 38. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
Feedback resistor  
-
-
-
-
18.4  
-
MΩ  
IDD  
LSE current consumption  
-
-
1
µA  
Gm_crit_max Maximum critical crystal gm  
Startup  
0.56 µA/V  
(2)  
tSU(LSE)  
startup time  
VDD is stabilized  
2
-
s
1. Guaranteed by design, not tested in production.  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in  
production. It is measured for a standard crystal resonator and it can vary significantly with the crystal  
manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
DocID025644 Rev 3  
79/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 25. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢈZLWK  
LQWHJUDWHGꢈFDSDFLWRUV  
&
/ꢁ  
I
26&ꢀꢅB,1  
/6(  
%LDVꢈ  
FRQWUROOHG  
JDLQ  
ꢀꢅꢌꢄꢃꢇꢈN+]  
UHVRQDWRU  
5
)
26&ꢀꢅB287  
670ꢀꢅ)  
&
/ꢅ  
DLꢁꢄꢆꢀꢁ  
6.3.9  
Internal clock source characteristics  
The parameters given in Table 39 and Table 40 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 14.  
DD  
High-speed internal (HSI) RC oscillator  
L
(1)  
Table 39. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
-
16  
-
MHz  
%
User-trimmed with the RCC_CR  
register(2)  
-
-
1
TA = –40 to 105 °C(3) –8  
-
-
-
4.5  
4
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
Factory-  
calibrated  
TA = –10 to 85 °C(3)  
–4  
–1  
TA = 25 °C  
1
HSI oscillator  
startup time  
(2)  
tsu(HSI)  
-
-
2.2  
60  
4
µs  
HSI oscillator  
power consumption  
(2)  
IDD(HSI)  
80  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production  
3. Guaranteed by characterization, not tested in production  
80/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Figure 26. ACC versus temperature  
HSI  
ꢊꢃꢊꢆ  
ꢊꢃꢊꢍ  
ꢊꢃꢊꢎ  
ꢏꢍꢊ  
ꢎꢌ  
ꢂꢊꢌ  
ꢂꢎꢌ  
4! ꢀ #ꢁ  
ꢏꢊꢃꢊꢎ  
ꢏꢊꢃꢊꢍ  
ꢏꢊꢃꢊꢆ  
ꢏꢊꢃꢊꢄ  
-IN  
-AX  
4YPICAL  
-3ꢅꢊꢍꢑꢎ6ꢂ  
1. Guaranteed by characterization, not tested in production.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 40. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.4  
0.6  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
DocID025644 Rev 3  
81/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 27. ACC  
versus temperature  
LSI  
-3ꢂꢑꢊꢂꢅ6ꢂ  
6.3.10  
PLL characteristics  
The parameters given in Table 41 and Table 42 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
Table 41. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
0.95(2)  
24  
1
-
2.10  
84  
MHz  
MHz  
fPLL_OUT  
PLL multiplier output clock  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
48  
75  
MHz  
MHz  
PLL VCO output  
192  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 192 MHz  
VCO freq = 432 MHz  
tLOCK  
PLL lock time  
µs  
ps  
-
RMS  
25  
peak  
to  
Cycle-to-cycle jitter  
Period Jitter  
-
-
-
150  
15  
-
-
-
peak  
System clock  
84 MHz  
Jitter(3)  
RMS  
peak  
to  
200  
peak  
82/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 41. Main PLL characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
-
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
-
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design, not tested in production.  
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed by characterization, not tested in production.  
Table 42. PLLI2S (audio PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
fPLLI2S_OUT  
fVCO_OUT  
PLLI2S input clock(1)  
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
PLLI2S multiplier output clock  
PLLI2S VCO output  
-
MHz  
192  
75  
100  
-
-
VCO freq = 192 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLI2S lock time  
µs  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48 KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
ps  
-
-
-
-
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
400  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
-
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design, not tested in production.  
3. Value given with main PLL running.  
4. Guaranteed by characterization, not tested in production.  
DocID025644 Rev 3  
83/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3.11  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences(see Table 49: EMI characteristics for WLCSP49). It is available only on the  
main PLL.  
Table 43. SSCG parameters constraint  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
Peak modulation depth  
-
0.25  
-
-
-
-
10  
2
KHz  
%
MODEPER * INCSTEP  
215-1  
-
1. Guaranteed by design, not tested in production.  
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
MOD  
PLL_IN  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2,002%(peak)  
84/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Figure 28 and Figure 29 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 28. PLL output clock waveforms in center spread mode  
&REQUENCY ꢀ0,,?/54ꢁ  
MD  
&ꢊ  
MD  
4IME  
TMODE  
ꢎXTMODE  
AIꢂꢈꢎꢑꢂ  
Figure 29. PLL output clock waveforms in down spread mode  
&REQUENCY ꢀ0,,?/54ꢁ  
&ꢊ  
ꢎXMD  
4IME  
TMODE  
ꢎXTMODE  
AIꢂꢈꢎꢑꢎ  
6.3.12  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 105 °C unless otherwise specified.  
A
The devices are shipped to customers with the Flash memory erased.  
Table 44. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
-
5
8
-
-
-
IDD  
Supply current  
mA  
12  
DocID025644 Rev 3  
85/135  
114  
 
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Table 45. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
8
16  
11  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
5.5  
4
s
Program/eraseparallelism  
(PSIZE) = x 32  
8
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed by characterization, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
Table 46. Flash memory programming with V voltage  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
Double word programming  
-
-
-
-
-
16  
230  
100(2)  
µs  
ms  
s
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
490  
VPP = 8.5 V  
875  
tME  
Mass erase time  
1.750  
86/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 46. Flash memory programming with V voltage (continued)  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Vprog  
VPP  
Programming voltage  
VPP voltage range  
2.7  
7
-
-
3.6  
9
V
V
Minimum current sunk on  
the VPP pin  
IPP  
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 47. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
1. Guaranteed by characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 48. They are based on the EMS levels and classes  
defined in application note AN1709.  
DocID025644 Rev 3  
87/135  
114  
 
 
Electrical characteristics  
Symbol  
STM32F401xD STM32F401xE  
Table 48. EMS characteristics for LQFP100 package  
Level/  
Class  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, WLCSP49,  
TA = +25 °C, fHCLK = 84 MHz,  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP100, WLCSP49,  
TA = +25 °C, fHCLK = 84 MHz,  
conforms to IEC 61000-4-4  
VEFTB  
When the application is exposed to a noisy environment, it is recommended to avoid pin  
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,  
PA2, on LQFP100 packages and PDR_ON on WLCSP49.  
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as  
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than  
50 mm on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
88/135  
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 49. EMI characteristics for WLCSP49  
Max vs.  
[fHSE/fCPU  
]
Monitored  
frequency band  
Symbol  
Parameter  
Conditions  
Unit  
8/84 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
-4  
-4  
dBµV  
-
VDD = 3.6 V, TA = 25 °C, conforming to  
IEC61967-2  
SEMI  
Peak level  
130 MHz to 1 GHz  
SAE EMI Level  
-2  
1.5  
Table 50. EMI characteristics for LQFP100  
Max vs.  
[fHSE/fCPU  
]
Monitored  
Conditions  
Symbol  
Parameter  
Unit  
frequency band  
8/84 MHz  
0.1 to 30 MHz  
19  
19  
11  
30 to 130 MHz  
dBµV  
-
VDD = 3.6 V, TA = 25 °C, conforming to  
IEC61967-2  
SEMI  
Peak level  
130 MHz to 1 GHz  
SAE EMI Level  
3.5  
6.3.14  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DocID025644 Rev 3  
89/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Maximum  
Table 51. ESD absolute maximum ratings  
Conditions  
Symbol  
Ratings  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) A114  
TA = +25 °C conforming to JESD22-  
VESD(HBM)  
2
2000  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C conforming to  
ANSI/ESD STM5.3.1  
II  
400  
1. Guaranteed by characterization, not tested in production.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 52. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.15  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins  
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator  
frequency deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 53.  
90/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 53. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0 pin  
Injected current on NRST pin  
–0  
–0  
NA  
NA  
Injected current on PB3, PB4, PB5, PB6,  
PB7, PB8, PB9, PC13, PC14, PC15, PH1,  
PDR_ON, PC0, PC1,PC2, PC3, PD1,  
PD5, PD6, PD7, PE0, PE2, PE3, PE4,  
PE5, PE6  
IINJ  
–0  
NA  
mA  
Injected current on any other FT pin  
Injected current on any other pins  
–5  
–5  
NA  
+5  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
6.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 54 are derived from tests  
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL  
compliant.  
Table 54. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.35VDD–0.04(1)  
FT, and NRST I/O input low  
level voltage  
1.7 VVDD3.6 V  
-
-
(2)  
0.3VDD  
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VIL  
V
-
-
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
-
-
-
0.45VDD+0.3(1)  
-
FT and NRST I/O input high  
level voltage(5)  
1.7 VVDD3.6 V  
(2)  
0.4VDD  
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VIH  
V
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(1)  
-
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
DocID025644 Rev 3  
91/135  
114  
 
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Table 54. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT and NRST I/O input  
hysteresis  
10%  
VDD  
1.7 VVDD3.6 V  
-
-
V
(3)  
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VHYS  
BOOT0 I/O input hysteresis  
-
100  
-
mV  
µA  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
I/O input leakage current (4)  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
I/O FT input leakage current (5)  
All pins  
except for  
PA10  
(OTG_FS_ID  
)
30  
7
40  
10  
40  
50  
14  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
VIN = VSS  
PA10  
(OTG_FS_ID  
)
kΩ  
All pins  
except for  
PA10  
(OTG_FS_ID  
)
30  
Weak pull-down  
equivalent  
RPD  
VIN = VDD  
resistor(7)  
PA10  
(OTG_FS_ID  
)
7
-
10  
5
14  
-
(8)  
CIO  
I/O pin capacitance  
-
pF  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by test in production.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O  
current injection susceptibility  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 53: I/O current injection  
susceptibility  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the  
series resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization, not tested in production.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 30.  
92/135  
STM32F401xD STM32F401xE  
Electrical characteristics  
Figure 30. FT I/O input characteristics  
9,/ꢋ9,+ꢈꢑ9ꢒ  
ꢅꢌꢆꢅ  
77/ꢈUHTXLUHPHQWꢈ  
9,+PLQꢈ ꢈꢅ9  
ꢅꢌꢉ  
ꢁꢌꢊꢅ  
ꢁꢌꢄ  
ꢁꢌꢅꢅ  
ꢁꢌꢁꢊ  
$UHDꢈQRWꢈ  
GHWHUPLQHG  
ꢁꢌꢉꢃꢆ  
ꢉꢌꢇ  
77/ꢈUHTXLUHPHQWꢈ9,/PD[ꢈ  
 ꢈꢉꢌꢇ9  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢁꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢂꢃꢅ9''  
ꢉꢌꢆꢆ  
ꢉꢌꢆꢁ  
9''ꢈꢑ9ꢒ  
ꢁꢌꢄ  
ꢅꢌꢉ  
ꢅꢌꢂ  
ꢅꢌꢄ  
ꢀꢌꢀ  
ꢀꢌꢃ  
06ꢀꢀꢄꢂꢃ9ꢁ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14 and PC15 which can  
OL OH  
sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the  
speed should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 12).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 12).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 55 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 14. All I/Os are CMOS and TTL compliant.  
DocID025644 Rev 3  
93/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Table 55. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(1)  
VOL  
VOH  
VOL  
VOH  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
V
(3)  
(1)  
(3)  
VDD–0.4  
-
2.7 V VDD 3.6 V  
TTL port(2)  
IIO =+8 mA  
-
0.4  
V
2.4  
-
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
IIO = +20 mA  
V
(3)  
VDD–1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
VOH  
-
0.4(4)  
(1)  
IIO = +6 mA  
V
(3)  
VDD–0.4(4)  
-
1.8 V VDD 3.6 V  
(1)  
VOL  
-
0.4(5)  
IIO = +4 mA  
V
VOH  
VDD–0.4(5)  
-
(3)  
1.7 V VDD 3.6 V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
4. Guaranteed by characterization results, not tested in production.  
5. Guaranteed by design, not tested in production..  
.
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 31 and ,  
respectively.  
Unless otherwise specified, the parameters given in Table 56 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 14.  
(1)(2)  
Table 56. I/O AC characteristics  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
Output high to low level fall  
MHz  
8
00  
4
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V to  
3.6 V  
time and output low to high  
level rise time  
-
-
100  
ns  
tr(IO)out  
94/135  
 
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
(1)(2)  
Table 56. I/O AC characteristics  
(continued)  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.70 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD2.70 V  
CL = 40 pF, VDD1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
MHz  
50  
fmax(IO)out Maximum frequency(3)  
20  
10  
01  
Output high to low level fall  
time and output low to high  
level rise time  
20  
ns  
6
tf(IO)out  
tr(IO)out  
/
10  
50(4)  
25  
fmax(IO)out Maximum frequency(3)  
MHz  
100(4)  
50(4)  
6
10  
Output high to low level fall  
time and output low to high  
level rise time  
10  
ns  
4
tf(IO)out  
tr(IO)out  
/
6
100(4)  
50(4)  
MHz  
Fmax(IO)out Maximum frequency(3)  
180(4)  
100(4)  
11  
4
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
2.5  
4
Pulse width of external signals  
-
tEXTIpw detected by the EXTI  
controller  
10  
-
-
ns  
1. Guaranteed by characterization, not tested in production.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 31.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
DocID025644 Rev 3  
95/135  
114  
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 31. I/O AC characteristics definition  
ꢊꢉꢖ  
ꢁꢉꢖ  
ꢆꢉꢖ  
ꢆꢉꢖ  
ꢊꢉꢖ  
W
ꢁꢉꢖ  
W
(;7(51$/  
287387  
21ꢈ&/  
Uꢑ,2ꢒRXW  
Iꢑ,2ꢒRXW  
7
0D[LPXPꢈIUHTXHQF\ꢈLVꢈDFKLHYHGꢈLIꢈꢑW ꢔꢈW ꢒꢈ”ꢈꢑꢅꢋꢀꢒ7ꢈDQGꢈLIꢈWKHꢈGXW\ꢈF\FOHꢈLVꢈꢑꢂꢆꢐꢆꢆꢖꢒꢈ  
Uꢈ  
I
ZKHQꢈORDGHGꢈE\ꢈ&  
/
ꢈVSHFLILHGꢈLQꢈWKHꢈWDEOHꢈ³ꢈ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢌꢈ  
DLꢁꢂꢁꢀꢁG  
6.3.17  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 54).  
PU  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 14. Refer to Table 54: I/O static characteristics for the values of VIH and VIL for  
NRST pin.  
Table 57. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-up equivalent  
resistor(1)  
RPU  
VIN = VSS  
30  
40  
50  
kΩ  
(2)  
VF(NRST)  
NRST Input filtered pulse  
-
-
-
100  
-
ns  
ns  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
300  
Internal Reset  
source  
TNRST_OUT Generated reset pulse duration  
20  
-
-
µs  
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design, not tested in production.  
96/135  
 
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Figure 32. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢈFLUFXLW  
ꢑꢁꢒ  
5
38  
ꢑꢅꢒ  
,QWHUQDOꢈ5HVHW  
1567  
)LOWHU  
ꢉꢌꢁꢈ—)  
670ꢀꢅ)  
DLꢁꢂꢁꢀꢅF  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 57. Otherwise the reset is not taken into account by the device.  
6.3.18  
TIM timer characteristics  
The parameters given in Table 58 are guaranteed by design.  
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 58. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
tTIMxCLK  
1
-
-
or 2 or 4, fTIMxCLK  
84 MHz  
=
11.9  
ns  
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
1
11.9  
0
-
AHB/APBx prescaler>4,  
fTIMxCLK = 84 MHz  
-
fTIMxCLK/2  
MHz  
MHz  
bit  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 84 MHz  
0
42  
ResTIM  
Timer resolution  
-
16/32  
16-bit counter clock  
period when internal clock  
is selected  
tCOUNTER  
fTIMxCLK = 84 MHz  
0.0119  
780  
µs  
65536 ×  
65536  
tTIMxCLK  
S
-
-
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 84 MHz  
51.1  
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.  
2. Guaranteed by design, not tested in production.  
3. The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE  
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise  
TIMxCLK >= 4x PCLKx.  
DocID025644 Rev 3  
97/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3.19  
Communications interfaces  
I2C interface characteristics  
2
The I2C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is  
disabled, but is still present.  
2
The I C characteristics are described in Table59. Refer also to Section 6.3.16: I/O port  
characteristics for more details on the input/output alternate function characteristics (SDA  
and SCL).  
2
The I C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400  
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the  
complete solution, please contact your local ST sales representative.  
2
Table 59. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
0
-
-
-
-
1.3  
0.6  
100  
0
-
µs  
-
-
SDA data hold time  
900(3)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
-
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
µs  
µs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to  
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode  
clock.  
3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
98/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
2
Figure 33. I C bus AC waveforms and measurement circuit  
s
s
''B,ꢅ&  
''B,ꢅ&  
670ꢀꢅ)[[  
6'$  
6&/  
53  
53  
56  
56  
,ð&ꢈEXV  
67$57ꢈ5(3($7('  
67$57  
67$57  
W
VXꢑ67$ꢒ  
6'$  
W
W
W
Uꢑ6'$ꢒ  
Iꢑ6'$ꢒ  
VXꢑ6'$ꢒ  
W
6723  
Zꢑ672ꢍ67$ꢒ  
W
W
W
Zꢑ6&/+ꢒ  
Kꢑ6'$ꢒ  
Kꢑ67$ꢒ  
6&/  
W
W
W
Uꢑ6&/ꢒ  
VXꢑ672ꢒ  
W
Zꢑ6&//ꢒ  
Iꢑ6&/ꢒ  
DLꢁꢂꢊꢄꢊF  
1. RS = series protection resistor.  
2. RP = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
(1)(2)  
Table 60. SCL frequency (f  
= 42 MHz, VDD = VDD_I2C = 3.3 V)  
I2C_CCR value  
PCLK1  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x8019  
0x8021  
0x8032  
0x0096  
0x012C  
0x02EE  
20  
1. RP = External pull-up resistance, fSCL = I2C speed  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
DocID025644 Rev 3  
99/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 61 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 14, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 61. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode, SPI1/4,  
2.7 V < VDD < 3.6 V  
42  
Slave mode, SPI1/4,  
2.7 V < VDD < 3.6 V  
42  
38(2)  
21  
fSCK  
Slave transmitter/full-duplex mode,  
SPI1/4, 2.7 V < VDD < 3.6 V  
SPI clock frequency  
-
-
MHz  
1/tc(SCK)  
Master mode, SPI1/2/3/4,  
1.7 V < VDD < 3.6 V  
Slave mode, SPI1/2/3/4,  
1.7 V < VDD < 3.6 V  
21  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
70  
%
tw(SCKH)  
tw(SCKL)  
TPCLK  
SCK high and low time Master mode, SPI presc = 2  
TPCLK1.5  
TPCLK+1.5 ns  
tsu(NSS)  
th(NSS)  
tsu(MI)  
tsu(SI)  
th(MI)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
4TPCLK  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2TPCLK  
0
2.5  
6
-
Data input setup time  
Data input hold time  
Slave mode  
-
Master mode  
-
th(SI)  
Slave mode  
2.5  
9
-
ta(SO  
)
Data output access time Slave mode  
Data output disable time Slave mode  
20  
13  
tdis(SO)  
8
Slave mode (after enable edge),  
2.7 V < VDD < 3.6 V  
-
9.5  
9.5  
-
13  
17  
-
ns  
ns  
ns  
ns  
tv(SO)  
Data output valid time  
Data output hold time  
Slave mode (after enable edge),  
1.7 V < VDD < 3.6 V  
-
Slave mode (after enable edge),  
2.7 V < VDD < 3.6 V  
5.5  
3.5  
th(SO)  
Slave mode (after enable edge),  
1.7 V < VDD < 3.6 V  
-
-
100/135  
 
STM32F401xD STM32F401xE  
Electrical characteristics  
(1)  
Table 61. SPI dynamic characteristics (continued)  
Symbol  
Parameter  
Data output valid time Master mode (after enable edge)  
Master mode (after enable edge)  
Conditions  
Min  
Typ  
Max  
Unit  
tv(MO)  
th(MO)  
-
3
-
5
-
ns  
ns  
2
Data output hold time  
1. Guaranteed by characterization, not tested in production.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%  
Figure 34. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 35. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
DocID025644 Rev 3  
101/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
(1)  
Figure 36. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTPUT  
t
t
v(MO)  
h(MO)  
ai14136  
102/135  
 
STM32F401xD STM32F401xE  
Electrical characteristics  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 62 for the I S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 14, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 62. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256x8K 256xFs(2)  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64xFs  
fCK  
MHz  
%
64xFs  
DCK  
tv(WS)  
I2S clock frequency duty cycle Slave receiver  
30  
0
70  
6
-
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
th(WS)  
0
tsu(WS)  
1
-
th(WS)  
Slave mode  
0
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
7.5  
2
-
Data input setup time  
Data input hold time  
-
ns  
0
-
0
-
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Slave transmitter (after enable edge)  
-
27  
Data output valid time  
Data output hold time  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
20  
-
2.5  
1. Guaranteed by characterization, not tested in production.  
2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).  
Note:  
Refer to the I2S section of the reference manual for more details on the sampling frequency  
(F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
DocID025644 Rev 3  
103/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
2
(1)  
Figure 37. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 38. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
104/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
USB OTG full speed (FS) characteristics  
This interface is present in USB OTG FS controller.  
Table 63. USB OTG FS startup time  
Parameter  
USB OTG FS transceiver startup time  
Symbol  
Max  
Unit  
(1)  
tSTARTUP  
1
µs  
1. Guaranteed by design, not tested in production.  
Table 64. USB OTG FS DC electrical characteristics  
Symbol  
VDD  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG FS operating  
voltage  
3.0(2)  
0.2  
-
-
-
3.6  
-
V
(3)  
VDI  
Differential input sensitivity  
I(USB_FS_DP/DM)  
Includes VDI range  
Input  
Differential common mode  
range  
(3)  
levels  
VCM  
0.8  
2.5  
V
Single ended receiver  
threshold  
(3)  
VSE  
1.3  
-
2.0  
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩ to 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
V
(4)  
RL of 15 kΩ to VSS  
2.8  
PA11, PA12  
(USB_FS_DM/DP)  
17  
0.65  
1.5  
21  
1.1  
1.8  
24  
2.0  
2.1  
RPD  
VIN = VDD  
PA9 (OTG_FS_VBUS)  
kΩ  
PA11, PA12  
(USB_FS_DM/DP)  
VIN = VSS  
VIN = VSS  
RPU  
PA9 (OTG_FS_VBUS)  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design, not tested in production.  
RL is the load connected on the USB OTG FS drivers.  
4.  
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating  
input), not as alternate function. A typical 200 µA current consumption of the embedded  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 when the feature is enabled.  
Note:  
DocID025644 Rev 3  
105/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 39. USB OTG FS timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 65. USB OTG FS electrical characteristics(1)  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
6.3.20  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 66 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 14.  
Table 66. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
0.6  
-
3.6  
VDDA  
18  
V
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
-
V
V
DDA = 1.7(1) to 2.4 V  
DDA = 2.4 to 3.6 V  
ADC = 30 MHz,  
15  
30  
MHz  
MHz  
fADC  
ADC clock frequency  
V
0.6  
36  
f
-
-
-
-
-
1764  
17  
kHz  
1/fADC  
V
(2)  
12-bit resolution  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
See Equation 1 for  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
kΩ  
kΩ  
pF  
details  
(2)(4)  
RADC  
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
106/135  
 
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 66. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
f
f
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
ADC = 30 MHz  
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
2
fADC = 30 MHz  
12-bit resolution  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
f
ADC = 30 MHz  
10-bit resolution  
Total conversion time (including  
sampling time)  
fADC = 30 MHz  
8-bit resolution  
(2)  
tCONV  
µs  
fADC = 30 MHz  
6-bit resolution  
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
Msps  
12-bit resolution  
-
-
-
-
2
Single ADC  
12-bit resolution  
Sampling rate  
3.75  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2:  
Internal reset OFF).  
2. Guaranteed by characterization, not tested in production.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.  
Equation 1: R  
max formula  
AIN  
(k 0,5)  
RAIN = -------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
DocID025644 Rev 3  
107/135  
114  
 
Electrical characteristics  
STM32F401xD STM32F401xE  
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
(1)  
Table 67. ADC accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
(1)  
Table 68. ADC accuracy at f  
= 30 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±4  
fADC = 30 MHz,  
RAIN < 10 kΩ,  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
±1.5  
±1.5  
±1  
Gain error  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
(1)  
Table 69. ADC accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
108/135  
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
(1)  
Table 70. ADC dynamic accuracy at f  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
10.4  
64.2  
65  
-
-
-
-
bits  
fADC =18 MHz  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
dB  
THD  
Total harmonic distortion  
-67  
-72  
1. Guaranteed by characterization, not tested in production.  
(1)  
Table 71. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
10.8  
67  
-
-
-
-
bits  
fADC = 36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
68  
dB  
THD  
Total harmonic distortion  
-70  
-72  
1. Guaranteed by characterization, not tested in production.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.16 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
DocID025644 Rev 3  
109/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 40. ADC accuracy characteristics  
6
6
$$!  
2%&ꢐ  
;ꢂ,3"  
ꢀOR  
DEPENDING ON PACKAGEꢁ=  
)$%!,  
ꢍꢊꢑꢆ  
ꢍꢊꢑꢆ  
%
'
ꢍꢊꢑꢌ  
ꢍꢊꢑꢍ  
ꢍꢊꢑꢅ  
ꢀꢎꢁ  
%
4
ꢀꢅꢁ  
ꢀꢂꢁ  
%
%
/
,
%
$
ꢂ, 3"  
)$%!,  
ꢍꢌꢆ  
ꢍꢊꢑꢅ ꢍꢊꢑꢍ ꢍꢊꢑꢌ ꢍꢊꢑꢆ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 68.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 41. Typical connection diagram using the ADC  
670ꢀꢅ)  
9
''  
6DPSOHꢈDQGꢈKROGꢈ$'&ꢈ  
9
7
FRQYHUWHU  
ꢉꢌꢃꢈ9  
ꢑꢁꢒ  
$,1  
ꢑꢁꢒ  
5
5
$'&  
$,1[  
ꢁꢅꢐELW  
FRQYHUWHU  
9
ꢉꢌꢃꢈ9  
7
9
$,1  
&
ꢑꢁꢒ  
$'&  
&
SDUDVLWLF  
, “ꢁꢈ—$  
/
DLꢁꢄꢆꢀꢂ  
1. Refer to Table 66 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
110/135  
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 42 or Figure 43,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 42. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32F  
V
REF+  
(See note 1)  
1 µF // 10 nF  
V
V
DDA  
1 µF // 10 nF  
/V  
SSA REF-  
(See note 1)  
ai17535  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
REF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
V
.
Figure 43. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢅ)  
9
ꢋ9  
5()ꢔ ''$  
ꢑ6HHꢈQRWHꢈꢁꢒ  
ꢁꢈ—)ꢈꢋꢋꢈꢁꢉꢈQ)  
9
ꢋ9  
5()± 66$  
ꢑ6HHꢈQRWHꢈꢁꢒ  
DLꢁꢄꢆꢀꢃ  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
.
DocID025644 Rev 3  
111/135  
114  
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
6.3.21  
Temperature sensor characteristics  
Table 72. Temperature sensor characteristics  
Parameter  
VSENSE linearity with temperature  
Symbol  
Min  
Typ Max  
Unit  
(1)  
TL  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
Startup time  
-
-
10  
-
(2)  
tSTART  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
Table 73. Temperature sensor calibration values  
Parameter  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
Symbol  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
6.3.22  
V
monitoring characteristics  
BAT  
Table 74. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.23  
Embedded reference voltage  
The parameters given in Table 75 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
Table 75. Embedded internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
-
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
112/135  
 
 
 
 
 
 
 
 
STM32F401xD STM32F401xE  
Electrical characteristics  
Table 75. Embedded internal reference voltage (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production  
Table 76. Internal reference voltage calibration values  
Symbol  
Parameter  
Memory address  
Raw data acquired at temperature of  
30 °C VDDA = 3.3 V  
VREFIN_CAL  
0x1FFF 7A2A - 0x1FFF 7A2B  
6.3.24  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 77 for the SDIO/MMC interface  
are derived from tests performed under the ambient temperature, f  
frequency and V  
PCLK2  
DD  
supply voltage conditions summarized in Table 14, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Figure 44. SDIO high-speed mode  
t
t
r
f
t
C
t
t
W(CKH)  
W(CKL)  
CK  
t
t
OV  
OH  
D, CMD  
(output)  
t
t
ISU  
IH  
D, CMD  
(input)  
ai14887  
DocID025644 Rev 3  
113/135  
114  
 
 
 
Electrical characteristics  
STM32F401xD STM32F401xE  
Figure 45. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
(1)(2)  
Table 77. Dynamic characteristics: SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
0
-
-
-
48  
8/3  
-
MHz  
-
fpp = 48MHz  
fpp = 48MHz  
8.5  
8.3  
9
ns  
ns  
ns  
ns  
ns  
Clock high time  
10  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp = 48MHz  
fpp = 48MHz  
3.5  
0
-
-
-
-
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp = 48MHz  
fpp = 48MHz  
-
4.5  
-
7
-
3
CMD, D inputs (referenced to CK) in SD default mode  
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp = 24MHz  
fpp = 24MHz  
1.5  
0.5  
-
-
-
-
CMD, D outputs (referenced to CK) in SD default mode  
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =24MHz  
fpp =24MHz  
-
4.5  
-
6.5  
-
3.5  
1. Data based on characterization results, not tested in production.  
2. VDD = 2.7 to 3.6 V.  
6.3.25  
RTC characteristics  
Table 78. RTC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
114/135  
 
 
 
 
STM32F401xD STM32F401xE  
Package characteristics  
7
Package characteristics  
7.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
DocID025644 Rev 3  
115/135  
133  
 
 
Package characteristics  
STM32F401xD STM32F401xE  
7.1.1  
WLCSP49, 3.06 x 3.06 mm, 0.4 mm pitch wafer level chip  
size package  
Figure 46. WLCSP49 wafer level chip size package outline  
Eꢂ  
&
!ꢂ BALL LOCATION  
!
'
$ETAIL !  
Eꢎ  
%
E
'
!
!ꢎ  
E
"UMP SIDE  
3IDE VIEW  
!ꢅ  
&RONT VIEW  
$
"UMP  
!ꢂ  
EEE  
:
B
3EATING PLANE  
.OTE ꢂ  
%
$ETAIL !  
!ꢂ ORIENTATION  
REFERENCE  
ꢀROTATED ꢑꢊ ꢁ  
.OTE ꢎ  
7AFER BACK SIDE  
1. Drawing is not to scale.  
!ꢊ8-?-%?6ꢂ  
Table 79. STM32F401xCE WLCSP49 wafer level chip size package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.525  
-
0.555  
0.175  
0.585  
-
0.0207  
-
0.0219  
0.0069  
0.0230  
-
A1  
116/135  
DocID025644 Rev 3  
 
 
 
STM32F401xD STM32F401xE  
Package characteristics  
Table 79. STM32F401xCE WLCSP49 wafer level chip size package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A2  
A3(2)  
b(3)  
D
-
0.380  
0.025  
0.250  
3.029  
3.029  
0.400  
2.400  
2.400  
0.3145  
0.3145  
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
0.0150  
0.0010  
0.0098  
0.1193  
0.1193  
0.0157  
0.0945  
0.0945  
0.0124  
0.0124  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
0.220  
0.280  
0.0087  
0.0110  
2.994  
3.064  
0.1179  
0.1206  
E
2.994  
3.064  
0.1179  
0.1206  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
G
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 47. WLCSP49 0.4 mm pitch wafer level chip size recommended footprint  
'SDG  
'VP  
06ꢁꢇꢊꢃꢆ9ꢅ  
DocID025644 Rev 3  
117/135  
133  
 
 
Package characteristics  
STM32F401xD STM32F401xE  
Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
Pitch  
0.4 mm  
260 µm max. (circular)  
220 µm recommended  
Dpad  
Dsm  
300 µm min. (for 260 µm diameter pad)  
PCB pad design  
Non-solder mask defined via underbump allowed  
Device marking  
Figure 48. Example of WLCSP49 marking (top view)  
%DOOꢈꢁꢈ  
LQGHQWLILHU  
3URGXFWꢈLGHQWLILFDWLRQꢑꢁꢒ  
)ꢀꢁꢂ&'ꢃ  
5HYLVLRQꢈFRGH  
'DWHꢈFRGH  
< :: 5  
06Yꢀꢄꢅꢁꢃ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
118/135  
DocID025644 Rev 3  
 
 
 
 
STM32F401xD STM32F401xE  
Package characteristics  
7.1.2  
UFQFPN48, 7 x 7 mm, 0.5 mm pitch package  
Figure 49. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline  
3LQꢈꢁꢈLGHQWLILHU  
ODVHUꢈPDUNLQJꢈDUHD  
'
$
(
<
(
6HDWLQJꢈ  
SODQH  
7
GGG  
$ꢁ  
E
H
'HWDLOꢈ<  
'
([SRVHGꢈSDGꢈ  
DUHD  
'ꢅ  
/
ꢂꢇ  
&ꢈꢉꢌꢆꢉꢉ[ꢂꢆƒ  
SLQꢁꢈFRUQHU  
5ꢈꢉꢌꢁꢅꢆꢈW\Sꢌ  
'HWDLOꢈ=  
(ꢅ  
ꢂꢇ  
=
$ꢉ%ꢊB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
Table 81. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
E
D2  
E2  
L
DocID025644 Rev 3  
119/135  
133  
 
 
 
Package characteristics  
STM32F401xD STM32F401xE  
Table 81. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
T
b
e
-
0.200  
-
0.152  
0.250  
0.500  
-
0.300  
-
-
0.0079  
-
0.0060  
0.0098  
0.0197  
-
0.0118  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 50. UFQFPN48 recommended footprint  
ꢈꢃꢅꢊ  
ꢆꢃꢎꢊ  
ꢍꢄ  
ꢅꢈ  
ꢅꢆ  
ꢌꢃꢆꢊ  
ꢊꢃꢎꢊ  
ꢈꢃꢅꢊ  
ꢌꢃꢄꢊ  
ꢆꢃꢎꢊ  
ꢌꢃꢆꢊ  
ꢊꢃꢅꢊ  
ꢂꢎ  
ꢎꢌ  
ꢂꢅ  
ꢎꢍ  
ꢊꢃꢈꢌ  
ꢊꢃꢌꢊ  
ꢊꢃꢌꢌ  
ꢌꢃꢄꢊ  
!ꢊ"ꢑ?&0?6ꢎ  
1. Dimensions are in millimeters.  
120/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Device marking  
Package characteristics  
Figure 51. Example of UFQFPN48 marking (top view)  
3URGXFWꢈLGHQWLILFDWLRQꢑꢁꢒ  
670ꢄꢅ)  
ꢀꢁꢂ&'8ꢃ  
'DWHꢈFRGH  
< ::  
3LQꢈꢁꢈ  
LQGHQWLILHU  
5HYLVLRQꢈFRGH  
5
06Yꢀꢃꢁꢊꢃ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID025644 Rev 3  
121/135  
133  
 
 
Package characteristics  
STM32F401xD STM32F401xE  
7.1.3  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package  
Figure 52. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline  
6($7,1*ꢈ3/$1(  
&
ꢉꢌꢅꢆꢈPP  
*$8*(ꢈ3/$1(  
FFF  
&
'
'ꢁ  
'ꢀ  
/
/ꢁ  
ꢀꢀ  
ꢂꢇ  
ꢀꢅ  
ꢂꢊ  
ꢃꢂ  
E
ꢁꢄ  
ꢁꢃ  
3,1ꢈꢁ  
H
,'(17,),&$7,21  
ꢆ:B0(B9ꢀ  
1. Drawing is not to scale.  
122/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Package characteristics  
Table 82. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.60  
-
-
0.0630  
0.05  
-
0.15  
0.0020  
-
0.0059  
1.35  
1.40  
0.22  
-
1.45  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.17  
0.27  
0.0067  
0.0106  
c
0.09  
0.20  
0.0035  
0.0079  
D
-
12.00  
10.00  
12.00  
10.00  
0.50  
3.5°  
0.60  
1.00  
-
-
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
-
D1  
E
-
-
-
-
-
-
-
-
E1  
e
-
-
-
-
-
-
-
-
K
0°  
0.45  
-
7°  
0.75  
-
0°  
0.0177  
-
7°  
0.0295  
-
L
0.0236  
0.0394  
L1  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 53. LQFP64 recommended footprint  
ꢍꢄ  
ꢅꢅ  
ꢊꢃꢅ  
ꢊꢃꢌ  
ꢍꢑ  
ꢅꢎ  
ꢂꢎꢃꢈ  
ꢂꢊꢃꢅ  
ꢂꢊꢃꢅ  
ꢈꢃꢄ  
ꢂꢈ  
ꢆꢍ  
ꢂꢃꢎ  
ꢂꢆ  
ꢂꢎꢃꢈ  
AIꢂꢍꢑꢊꢑC  
1. Dimensions are in millimeters.  
DocID025644 Rev 3  
123/135  
133  
 
 
Package characteristics  
STM32F401xD STM32F401xE  
Device marking  
Figure 54. Example of LQFP64 marking (top view)  
3URGXFWꢈLGHQWLILFDWLRQꢑꢁꢒ  
5HYLVLRQꢈFRGH  
5
670ꢄꢅ)ꢀꢁꢂ  
5'7ꢃ  
'DWHꢈFRGH  
< ::  
3LQꢈꢁꢈ  
LQGHQWLILHU  
06Yꢀꢃꢁꢊꢇ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
124/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Package characteristics  
7.1.4  
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package  
Figure 55. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢊꢃꢎꢌ MM  
'!5'% 0,!.%  
CCC  
ꢈꢌ  
#
$
,
$ꢂ  
$ꢅ  
,ꢂ  
ꢌꢂ  
ꢌꢊ  
ꢈꢆ  
ꢂꢊꢊ  
ꢎꢆ  
0). ꢂ  
)$%.4)&)#!4)/.  
ꢎꢌ  
E
ꢂ,?-%?6ꢌ  
1. Drawing is not to scale.  
DocID025644 Rev 3  
125/135  
133  
 
 
Package characteristics  
STM32F401xD STM32F401xE  
Table 83. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
-
1.6  
0.15  
1.45  
0.27  
0.2  
16.2  
14.2  
-
-
-
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.05  
1.35  
0.17  
0.09  
15.8  
13.8  
-
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.5433  
-
-
1.4  
0.22  
-
0.0551  
0.0087  
-
c
D
16  
14  
12  
16  
14  
12  
0.5  
0.6  
1
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.8  
13.8  
-
16.2  
14.2  
-
0.622  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.45  
-
0.75  
-
0.0177  
-
0.0295  
-
L1  
K
0.0°  
3.5°  
0.08  
7.0°  
0.0°  
7.0°  
ccc  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
126/135  
DocID025644 Rev 3  
 
STM32F401xD STM32F401xE  
Package characteristics  
Figure 56. LQFP100 recommended footprint  
ꢈꢌ  
ꢌꢂ  
ꢈꢆ  
ꢌꢊ  
ꢊꢃꢌ  
ꢊꢃꢅ  
ꢂꢆꢃꢈ ꢂꢍꢃꢅ  
ꢂꢊꢊ  
ꢎꢆ  
ꢂꢃꢎ  
ꢎꢌ  
ꢂꢎꢃꢅ  
ꢂꢆꢃꢈ  
AIꢂꢍꢑꢊꢆC  
1. Dimensions are in millimeters.  
Device marking  
Figure 57. Example of LQPF100 marking (top view)  
3URGXFWꢈLGHQWLILFDWLRQꢑꢁꢒ  
2SWLRQDOꢈJDWHꢈPDUN  
5HYLVLRQꢈFRGH  
(6ꢄꢅ)ꢀꢁꢂ  
9'7ꢃꢆꢆ5  
'DWHꢈFRGH  
<
::  
3LQꢈꢁꢈ  
LQGHQWLILHU  
06Yꢀꢃꢁꢊꢊ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID025644 Rev 3  
127/135  
133  
 
 
 
Package characteristics  
STM32F401xD STM32F401xE  
7.1.5  
UFBGA100, 7 x 7 mm, 0.5 mm pitch package  
Figure 58. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
package outline  
= 6HDWLQJꢈSODQH  
GGG =  
$ꢂ  
$ꢅ  
$
$ꢀ  
$ꢁ  
$
(ꢁ  
;
$ꢁꢈEDOOꢈ  
$ꢁꢈEDOOꢈ  
(
LGHQWLILHU LQGH[ꢈDUHD  
H
)
)
'ꢁ  
'
H
<
0
ꢁꢅ  
‘EꢈꢑꢁꢉꢉꢈEDOOVꢒ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢈ9,(:  
723ꢈ9,(:  
$ꢉ&ꢅB0(B9ꢂ  
1. Drawing is not to scale.  
Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package  
mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.250  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
-
0.270  
0.200  
6.950  
5.450  
6.950  
5.450  
-
0.370  
0.300  
7.050  
5.550  
7.050  
5.550  
-
0.0106  
0.0079  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0146  
0.0118  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
128/135  
DocID025644 Rev 3  
 
 
 
STM32F401xD STM32F401xE  
Package characteristics  
Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package  
mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 59. Recommended PCB design rules for pads (0.5 mm-pitch BGA)  
0.5 mm  
Pitch  
D pad  
0.27 mm  
0.35 mm typ (depends on  
the soldermask registration  
tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter  
Dpad  
Dsm  
ai15495  
1. Non solder mask defined (NSMD) pads are recommended.  
2. 4 to 6 mils solder paste screen printing process.  
DocID025644 Rev 3  
129/135  
133  
 
Package characteristics  
STM32F401xD STM32F401xE  
Device marking  
Figure 60. Example of UFBGA100 marking (top view)  
3URGXFWꢈLGHQWLILFDWLRQꢑꢁꢒ  
670ꢄꢅ)  
ꢀꢁꢂ9(+ꢃ  
'DWHꢈFRGH  
< ::  
%DOOꢈꢁꢈ  
LQGHQWLILHU  
5HYLVLRQꢈFRGH  
5
06Yꢀꢄꢅꢉꢉ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
130/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Package characteristics  
7.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 14: General operating conditions on page 60.  
The maximum chip-junction temperature, T max., in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (PD max x Θ )  
J
A
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
PD max is the sum of P  
max and P max (PD max = P  
max + P max),  
INT I/O  
INT  
I/O  
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 85. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
UFQFPN48  
32  
51  
50  
42  
56  
Thermal resistance junction-ambient  
WLCSP49  
Thermal resistance junction-ambient  
LQFP64  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
LQFP100  
Thermal resistance junction-ambient  
UFBGA100  
7.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DocID025644 Rev 3  
131/135  
133  
 
 
 
Part numbering  
STM32F401xD STM32F401xE  
8
Part numbering  
Table 86. Ordering information scheme  
STM32 401 C E Y 6 TR  
Example:  
F
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Device subfamily  
401 = 401 family  
Pin count  
C = 48/49 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
D = 384 Kbytes of Flash memory  
E = 512 Kbytes of Flash memory  
Package  
H = UFBGA  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
Packing  
TR = tape and reel  
No character = tray or tube  
132/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
Part numbering  
Table 87. Device order codes  
Order codes  
Reference  
STM32F401CDY6, STM32F401RDT6, STM32F401VDT6, STM32F401CDU6,  
STM32F401VDH6  
STM32F401xD  
STM32F401CEY6, STM32F401RET6, STM32F401VET6, STM32F401CEU6,  
STM32F401VEH6  
STM32F401xE  
DocID025644 Rev 3  
133/135  
133  
 
Revision history  
STM32F401xD STM32F401xE  
9
Revision history  
Table 88. Document revision history  
Date  
Revision  
Changes  
16-Jan-2014  
1
Initial release.  
Updated Flash memory size in Table 2:  
STM32F401xD/xE features and peripheral counts.  
24-Feb-2014  
2
Added alternate functions mapped on PCx, PDx and  
PEx GPIOS in Table 9: Alternate function mapping  
Updated UFQFPN48 in Table 3: Regulator ON/OFF and  
internal power supply supervisor availability.  
Updated number of EXTI lines in Section 3.10: External  
interrupt/event controller (EXTI).  
Updated Table 54: I/O static characteristics  
Added WLCSP49 Figure 47: WLCSP49 0.4 mm pitch  
wafer level chip size recommended footprint and  
Table 80: WLCSP49 recommended PCB design rules  
(0.4 mm pitch). Updated Figure 48: Example of  
WLCSP49 marking (top view).  
22-Jan-2015  
3
Updated Figure 51: Example of UFQFPN48 marking  
(top view).  
Updated Figure 54: Example of LQFP64 marking (top  
view).  
Updated Figure 57: Example of LQPF100 marking (top  
view).  
Updated Figure 60: Example of UFBGA100 marking  
(top view).  
Added notes below all engineering sample marking  
schematics.  
134/135  
DocID025644 Rev 3  
 
 
STM32F401xD STM32F401xE  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID025644 Rev 3  
135/135  
135  
 
 

相关型号:

STM32F401CE

Up to 12 communication interfaces
STMICROELECTR

STM32F401RB

ARM Cortex-M4 32b MCUFPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
STMICROELECTR

STM32F401RC

ARM Cortex-M4 32b MCUFPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
STMICROELECTR

STM32F401RD

Up to 12 communication interfaces
STMICROELECTR

STM32F401RE

Up to 12 communication interfaces
STMICROELECTR

STM32F401RET6

STM32 Nucleo-64 boards
STMICROELECTR

STM32F401VB

ARM Cortex-M4 32b MCUFPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
STMICROELECTR

STM32F401VC

ARM Cortex-M4 32b MCUFPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
STMICROELECTR

STM32F401VD

Up to 12 communication interfaces
STMICROELECTR

STM32F401VE

Up to 12 communication interfaces
STMICROELECTR

STM32F401XB

ARM Cortex-M4 32b MCUFPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
STMICROELECTR

STM32F401XD

Clock, reset and supply management
STMICROELECTR