STHDMI002ABTR [STMICROELECTRONICS]

Wide bandwidth, 2 to 1 HDMI switch with single enable; 宽的带宽,以2比1的HDMI开关单启用
STHDMI002ABTR
型号: STHDMI002ABTR
厂家: ST    ST
描述:

Wide bandwidth, 2 to 1 HDMI switch with single enable
宽的带宽,以2比1的HDMI开关单启用

开关
文件: 总26页 (文件大小:575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STHDMI002A  
Wide bandwidth, 2 to 1 HDMI switch with single enable  
Features  
Compatible with HDMI v1.2, DVI v1.0 digital  
interfaces  
165MHz speed operation supports all video  
formats up to 1080p and SXGA (1280 x 1024  
at 75Hz)  
TQFP48  
Data rate per channel for UXGA: 1.65Gbps  
Low R : 5.5 (typ)  
ON  
Description  
V operating range: 3.135V to 3.465V  
CC  
The STHDMI002A is a differential Single Pole  
Double Throw (SPDT) 2 to 1, low Ron,  
bi-directional HDMI switch designed for advanced  
TV applications supporting HDMI/DVI which  
demand high definition superior image quality.  
The differential signal from the 2 ports of HDMI is  
multiplexed through the switch to form a single  
output HDMI channel going to the HDMI receiver  
while the unselected output goes to the high-Z  
state.  
Low current consumption: 20µA  
ESD human body model HBM Voltage:  
2KV for all I/Os  
Channel ON capacitance: 6pF (typ)  
Switching speed: 9ns  
Near-zero propagation delay: 250ps  
Low crosstalk: -32dB at 825MHz  
Bit-to-bit skew: 200ps  
It is designed for very low cross-talk, low bit-to-bit  
skew, high channel-to-channel noise isolation and  
low I/O capacitance. The switch offers very little or  
practically no attenuation of the high-speed  
signals at the outputs, thus preserving the signal  
integrity to pass stringent requirements.  
Very low ground bounce in flow through mode  
Data and control inputs provide an undershoot  
clamp diode  
Wide bandwidth minimizes skew and jitter  
Hot insertion capable  
The STHDMI002A also includes the DDC as well  
as the HPD line switching. The pin layout is  
optimized for easy PCB routing to the HDMI  
connector and HDMI receivers.  
Isolated Digital Display Control (DDC) bus for  
unused ports  
5V tolerance to all DDC and HPD_SINK inputs  
Supports bi-directional operation  
The maximum DVI/HDMI data rate of 1.65Gbps  
provides the resolution required by the advanced  
HDTV and PC graphics.  
Available in the TQFP48 package  
–40°C to 85°C operating temperature range  
Applications  
Advantages  
Advanced TVs  
Front projectors  
LCD TVs  
STHDMI002A provides the ability to switch a  
single source output to various display devices or  
switch video display devices between multiple  
sources. It reduces the overall BOM costs by  
eliminating the need for more costly multi input-  
output controllers.  
PDPs  
LCD monitors  
Notebook PCs  
STB and DVD players  
October 2006  
Rev 1  
1/26  
www.st.com  
26  
Contents  
STHDMI002A  
Contents  
1
2
Functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
2.2  
HPD pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DDC channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5
6
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6.1  
6.2  
6.3  
6.4  
6.5  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Dynamic switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ESD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7
8
9
Test circuit for electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9.1  
Power supply sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/26  
STHDMI002A  
Contents  
9.2  
9.3  
Supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Differential traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3/26  
Functional diagram  
STHDMI002A  
1
Functional diagram  
Figure 1. Functional diagram  
4/26  
STHDMI002A  
Functional description  
2
Functional description  
The STHDMI002A routes physical layer signals for high bandwidth digital video and is  
compatible with low voltage differential signaling standards like TMDS. The device multiplexes  
differential outputs from a video source to one of the two corresponding outputs to a common  
display. The low on-resistance and low I/O capacitance of STHDMI002A result in a very small  
propagation delay. The device integrates SPDT-type switches for 3 differential data TMDS  
channels and 1 differential clock channel. Additionally it integrates the switches for DDC and  
HPD lines switching.  
The I²C interface of the selected input port is linked to the I²C interface of the output port, and  
the hot plug detector (HPD) of the selected input port is output to HPD_SINK. For the unused  
ports, the I²C interfaces are isolated, and the HPD pins are also isolated.  
2.1  
2.2  
HPD pins  
The input of the Y_HPD is 5V tolerant, allowing direct connection to 5V signals. The switch is  
able to pass both 0V and 5V signal levels. The HPD switch resistance depends on the input  
voltage level. At low (near to 0V) input voltage levels, the resistance is 20typically and at high  
(near to 5V) input voltage levels, the resistance is 150typically.  
DDC channels  
The DDC channels are designed with a bi-directional NMOS gate, providing 5V signal  
tolerance. The 5V tolerance allows direct connection to a standard I²C bus, thus eliminating the  
need for a level shifter. When the input is a 5V, the NMOS switch is turned off and the pull up  
resistor on either side of the switch determines the high voltage potential.  
5/26  
Application diagram  
STHDMI002A  
3
Application diagram  
Figure 2. Application diagram  
6/26  
STHDMI002A  
Pin configuration  
4
Pin configuration  
Figure 3. Pin connections  
TQFP48 (pitch = 0.5mm)  
7/26  
Pin configuration  
STHDMI002A  
Table 1.  
Pin description  
Pin Name  
Pin number  
Type  
Function  
Supply voltage (3.3V 5%)  
1
VCC  
ACLK-  
ACLK+  
GND  
A0-  
Power  
Input  
Input  
Power  
Input  
Input  
Power  
Input  
Input  
Power  
Input  
Input  
Power  
Output  
Power  
I/O  
2
TMDS Clock- for port A  
TMDS Clock+ for port A  
Ground  
3
4
5
TMDS Data 0- for port A  
TMDS Data 0+ for port A  
Ground  
6
A0+  
7
GND  
A1-  
8
TMDS Data 1- for port A  
TMDS Data 1+ for port A  
Ground  
9
A1+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GND  
A2-  
TMDS Data 2- for port A  
TMDS Data 2+ for port A  
Supply voltage (3.3V 5%)  
Hot Plug Detect (HPD) output for port B  
Ground  
A2+  
VCC  
B_HPD  
GND  
B_DDC_SDA  
B_DDC_SCL  
VCC  
DDC SDA input for port B  
DDC SCL input for port B  
Supply voltage (3.3V 5%)  
TMDS Clock- for port B  
TMDS Clock+ for port B  
Ground  
I/O  
Power  
Input  
Input  
Power  
Input  
Input  
Power  
Input  
Input  
Power  
Input  
Input  
Input  
Output  
Output  
Power  
Output  
BCLK-  
BCLK+  
GND  
B0-  
TMDS Data 0- for port B  
TMDS Data 0+ for port B  
Ground  
B0+  
GND  
B1-  
TMDS Data 1- for port B  
TMDS Data 1+ for port B  
Ground  
B1+  
GND  
B2-  
TMDS Data 2- for port B  
TMDS Data 2+ for port B  
B2+  
SEL  
Select control input to select port A or port B  
TMDS Data2+ output  
TMDS Data2- output  
Y2+  
Y2-  
GND  
Y1+  
Ground  
TMDS Data1+ output  
8/26  
STHDMI002A  
Pin configuration  
Table 1.  
Pin description  
Pin name  
Pin number  
Type  
Function  
35  
36  
37  
38  
39  
40  
41  
42  
43  
Y1-  
GND  
Output  
Power  
Output  
Output  
Power  
Output  
Output  
I/O  
TMDS Data1- output  
Ground  
Y0+  
TMDS Data0+ output  
TMDS Data0- output  
Ground  
Y0-  
GND  
YCLK+  
YCLK-  
TMDS Clock+ output  
TMDS Clock- output  
DDC SCL output  
DDC SDA output  
Y_DDC_SCL  
Y_DDC_SDA  
I/O  
Sink side hot plug detector input  
High : 5V power signal asserted from source to sink  
and EDID is ready  
44  
Y_HPD  
Input  
Low : No 5V power signal is asserted from source to  
sink or EDID is not ready  
45  
46  
47  
48  
A_HPD  
VCC  
Output  
Power  
I/O  
Hot Plug Detect (HPD) output for port A  
Supply voltage (3.3V 5%)  
DDC SDA input for port A  
A_DDC_SDA  
A_DDC_SCL  
I/O  
DDC SCL input for port A  
4.1  
Function table  
Table 2.  
SEL  
Function table  
Signal status  
DDC Status  
HPD Status  
Y= TMDS Data, Clock for port A  
Port B is in ‘Z’ state  
Y = DDC for port A  
DDC for port B is ‘Z’  
Y= HPD for port A  
L
HPD for port B is ‘Z’  
Y=TMDS Data, Clock for port B  
Port A is in ‘Z’ state  
Y = DDC for port B  
DDC for port A is ‘Z’  
Y= HPD for port B  
H
HPD for port A is ‘Z’  
9/26  
Maximum rating  
STHDMI002A  
5
Maximum rating  
Stressing the device above the rating listed in the “absolute maximum ratings” table may cause  
permanent damage to the device. these are stress ratings only and operation of the device at  
these or any other conditions above those indicated in the operating sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability. Refer also to the STMicroelectronics sure program and  
other relevant quality documents.  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Supply voltage to Ground  
DC Input Voltage (TMDS A,B ports)  
SEL  
-0.5 to +4.0  
1.7 to +4.0  
-0.5 to +4.0  
V
V
V
VI  
A_DDC_SDA, A_DDC_SCL, B_DDC_SDA, B_DDC_SCL,  
Y_DDC_SDA, Y_DDC_SCL, Y_HPD, A_HPD, B_HPD  
-0.5 to +6.0  
V
VIC  
IO  
DC control input voltage  
DC output current  
-0.5 to +4.0  
120  
V
mA  
°C  
TSTG  
TL  
Storage temperature  
Lead temperature (10 sec)  
Human body model  
-65 to +150  
300  
°C  
kV  
kV  
-2 to +2  
-2 to +2  
Electrostatic discharge voltage on IOs(1)1  
Contact discharge  
VESD  
1. In accordance with the MIL STD 883 method 3015  
Table 4.  
Symbol  
Thermal data  
Description  
Thermal Resistance Junction-ambient  
Value  
Unit  
RthJA  
TBA  
°C/W  
10/26  
STHDMI002A  
DC electrical characteristics  
6
DC electrical characteristics  
T = -40 to +85 °C, V = 3.3V 5%  
A
CC  
DC electrical characteristics  
Parameter  
Table 5.  
Symbol  
Test conditions  
Min Typ Max Unit  
VIH  
VIL  
VIK  
IIH  
HIGH level input voltage (SEL pin)  
LOW level input voltage (SEL pin)  
Clamp Diode voltage (All IOs)  
High level guaranteed  
Low level guaranteed  
VCC = 3.465V, IIN = -18mA  
VCC = 3.465V, VIN = VCC  
VCC = 3.465V, VIN = GND  
VCC = 0V;  
2.0  
V
V
-0.5  
0.8  
-0.8 -1.2  
V
Input high current (SEL pin, A, B data ports)  
Input low current (SEL pin, A, B data ports)  
5
5
µA  
µA  
IIL  
Outputs (Y-port) = 0V;  
Inputs (A-port) = 3.465V;  
Inputs (B-port) = 3.465V  
IOFF  
Power down leakage current  
Switch ON resistance (1)  
5
µA  
VCC = 3.135 V,  
VIN = 1.5 to VCC  
IIN = -40mA  
RON  
RFLAT  
RON  
5.5  
0.8  
1.0  
7.5  
VCC = 3.135 V,  
VIN = 1.5 to VCC  
IIN = -40mA  
ON resistance flatness (1) (2)  
VCC = 3.135 V,  
VIN = 1.5 to VCC  
IIN = -40mA  
ON resistance match between channels  
1.3  
(1) (3)  
RON = RONMAX - RONMIN  
DDC I/O Pins  
VCC = 3.465V  
VI (max) = 5.3V on  
isolated DDC ports  
Y= 0.0V  
II(leak)  
Input leakage current  
0.1  
+2  
5
µA  
µA  
VCC = 0V;  
Outputs (Y-port) = 0V;  
Inputs (A-port) = 5.3V;  
Inputs (B-port) = 5.3V  
IOFF  
Power down leakage current  
VI=0V, VCC=3.3V, T= 25°C  
F = 1 MHz  
Switch off capacitance  
Switch on capacitance  
5
9
pF  
pF  
CI/O  
11/26  
DC electrical characteristics  
STHDMI002A  
Table 5.  
Symbol  
DC electrical characteristics  
Parameter  
Test conditions  
VCC = 3.3V  
IO=3mA; VO=0.0V  
CC = 3.3V  
IO=3mA; VO=0.4V  
CC = 3.3V  
IO=3mA; VO=0.8V  
CC = 3.3V  
Min Typ Max Unit  
32  
36  
42  
62  
V
RON  
Switch resistance  
V
V
IO=3mA; VO=1.5V  
Status pins (Y_HPD)  
VCC = 3.465V  
VI (max) = 5.3V on  
isolated HPD port  
Y= 0.0V  
II(leak)  
Input leakage current  
0.1  
+2  
5
µA  
µA  
VCC = 0V;  
(Y-port) = 0V;  
(A-port) = 5.3V;  
(B-port) = 5.3V  
IOFF  
Power down leakage current  
Status pins (A_HPD, B_HPD)  
VI=0V, VCC=3.3V, T= 25°C  
F = 1 MHz  
Switch off capacitance  
CI/O  
5
9
pF  
pF  
Switch on capacitance  
VCC = 3.3V  
24  
IO=3mA; VO=0.0V  
RON  
Switch resistance  
VCC = 3.3V  
150  
IO=3mA; VO=5.0V  
1. Measured by voltage drop between channels at the indicated current through the switch. On-resistance is determined by  
the lower of the two voltages.  
2. Flatness is defined as the difference between the RONMAX and the RONMIN of the on resistance over the specified range.  
3. RON measured at the same VCC, temperature and voltage level.  
12/26  
STHDMI002A  
DC electrical characteristics  
6.1  
Capacitance  
T = 25°C, f = 1MHz  
A
Table 6.  
Symbol  
Capacitance  
Parameter  
Test conditions  
Min  
Typ  
2
Max  
3
Unit  
pF  
CIN  
COFF  
CON  
V
IN = 0V  
IN = 0V  
Input capacitance  
V
Port x0 to Port x1, Switch off (Note 4)  
4
6
pF  
Capacitance switch on (x to x0 or x to x1) (1)  
VIN = 0V  
6
12  
pF  
1. x = Port Y; x0 = Port A; x1 = Port B  
6.2  
Power supply characteristics  
T = -40 to +85 °C  
A
Table 7.  
Symbol  
Power supply characteristics  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
V
CC = 3.465 V,  
ICC  
Quiescent power supply current  
50  
500  
µA  
VIN = VCC or GND  
6.3  
Dynamic electrical characteristics  
T = -40 to +85 °C, V = 3.3V 5%  
A
CC  
Dynamic electrical characteristics  
Parameter  
Table 8.  
Symbol  
Test conditions  
Min  
Typ  
Max  
Unit  
XTALK  
RL = 100, f = 370MHz  
RL = 100, f = 825MHz  
RL = 100, f = 370MHz  
RL = 100, f = 825MHz  
Non-adjacent channel Cross-talk  
-32  
-31  
dB  
dB  
OIRR  
Off Isolation  
-36  
dB  
-30  
dB  
BW  
DR  
-3dB bandwidth  
850  
1.65  
MHz  
Gbps  
Data rate per channel  
13/26  
DC electrical characteristics  
STHDMI002A  
6.4  
Dynamic switching characteristics  
T = -40 to +85 °C, V = 3.3V 5%  
A
CC  
Dynamic switching characteristics  
Parameter  
Table 9.  
Symbol  
Test conditions  
Min Typ Max Unit  
VCC = 3.135V to 3.465V  
VCC = 3.135V to 3.465V  
VCC = 3.135V to 3.465V  
tPD  
Propagation delay  
0.30  
6.5  
ns  
ns  
ns  
tPZH, PZL  
t
Line Enable Time, SEL to x to x0 or x to x1  
PHZ, tPLZ  
Line Disable Time, SEL to x to x0 or x to x1  
0.5  
0.5  
9
t
6.5  
8.5  
Output skew between center port to any  
other port  
VCC = 3.135V to 3.465V  
VCC = 3.135V to 3.465V  
tSK(O)  
0.1  
0.1  
0.2  
0.2  
ns  
ns  
Skew between opposite transition of the  
same output (tPHL - tPLH)  
tSK(P)  
DDC I/O pins  
Propagation delay from A_DDC_SDA/  
B_DDC_SDA to Y_DDC_SDA or  
A_DDC_SCL/B_DDC_SCL to  
Y_DDC_SCL or  
tPD(DDC)  
CL = 10pF  
2.5  
ns  
Y_DDC_SDA to A_DDC_SDA/  
B_DDC_SDA  
V
CC = 3.135V to 3.465V  
CC = 3.135V to 3.465V  
t
PZH, tPZL  
Line Enable Time, SEL to x to x0 or x to x1  
Line Disable Time, SEL to x to x0 or x to x1  
6.5  
6.5  
9
ns  
ns  
V
tPHZ, PLZ  
t
8.5  
Status pins (Y_HPD, A_HPD, B_HPD)  
Propagation delay (from Y_HPD to the  
tPD(HPD)  
CL = 10pF  
2.5  
ns  
active port of HPD)  
VCC = 3.135V to 3.465V  
VCC = 3.135V to 3.465V  
tPZH, PZL  
t
Line Enable Time, SEL to x to x0 or x to x1  
PHZ, tPLZ  
Line Disable Time, SEL to x to x0 or x to x1  
6.5  
6.5  
9
ns  
ns  
t
8.5  
Note:  
x = Port Y; x0 = Port A; x1 = Port B  
6.5  
ESD performance  
Table 10. ESD performance  
Symbol  
Parameter  
MIL STD 883 method 3015 (all pins)  
Test conditions  
Min  
Typ  
Max Unit  
ESD  
Human Body Model (HBM)  
2
kV  
14/26  
STHDMI002A  
Test circuit for electrical characteristics  
7
Test circuit for electrical characteristics  
Figure 4. Timing measurement test circuit  
Note: 1 CL = Load capacitance: includes jig and probe capacitance.  
2 RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.  
Figure 5. Bandwidth measurement test circuit  
Note:  
C includes probe and jig capacitance  
L
Frequency response is measured at the output of the ON channel. For example, when  
VSEL = 0 and Y0+ is the input, the output is measured at A0+. All unused analog I/O ports are  
left open.  
HP8753ES set up:  
Average = 4  
RBW = 3kHz  
VBIAS = 0.35V  
ST = 2s  
P1 = 0dBm  
15/26  
Test circuit for electrical characteristics  
STHDMI002A  
Figure 6. Crosstalk measurement test circuit  
Note: 1 CL includes probe and jig capacitance  
2 A 50termination resistor is needed to match the loading network analyzer  
Crosstalk is measured at the output of the non-adjacent ON channel. For example, when  
VSEL = 0, and Y0- is the input, the output is measured at Y1-. All unused analog input ports (Y)  
are connected to GND and output ports (A,B) are left open.  
HP8753ES set up:  
Average = 4  
RBW = 3kHz  
VBIAS = 0.35V  
ST = 2s  
P1 = 0dBm  
16/26  
STHDMI002A  
Test circuit for electrical characteristics  
Figure 7. Off-isolation measurement test circuit  
Note: 1 CL includes probe and jig capacitance  
2 A 50termination resistor is needed to match the loading network analyzer  
Off-isolation is measured at the output of the OFF channel. For example, when VSEL=0, and  
Y0- is the input, the output is measured at B0-. All unused analog input ports (Y) are connected  
to GND and output ports (A,B) are left open.  
HP8753ES set up:  
Average = 4  
RBW = 3kHz  
VBIAS = 0.35V  
ST = 2s  
P1 = 0dBm  
17/26  
Timing waveforms  
STHDMI002A  
8
Timing waveforms  
Figure 8. Propagation delay times  
Figure 9. Enable and disable times  
18/26  
STHDMI002A  
Timing waveforms  
Figure 10. Output skew  
Figure 11. Pulse skew  
19/26  
Application information  
STHDMI002A  
9
Application information  
9.1  
Power supply sequencing  
Proper power-supply sequencing is advised for all CMOS devices. It is recommended  
to always apply VCC before applying any signals to the input/output or control pins.  
9.2  
9.3  
Supply bypassing  
Bypass each of the V pins with 0.1µF and 1nF capacitors in parallel as close to the device as  
CC  
possible, with the smaller-valued capacitor as close to the V pin of the device as possible.  
CC  
Differential traces  
The high-speed TMDS inputs are the most critical parts for the device. There are several  
considerations to minimize discontinuities on these transmission lines between the connectors  
and the device.  
a) Maintain 100-differential transmission line impedance into and out of the  
STHDMI002A.  
b) Keep an uninterrupted ground plane below the high-speed I/Os.  
c) Keep the ground-path vias to the device as close as possible to allow the shortest  
return current path.  
d) Layout of the TMDS differential inputs should be with the shortest stubs from the  
connectors.  
Output trace characteristics affect the performance of the STHDMI002A. Use controlled  
impedance traces to match trace impedance to both the transmission medium impedance and  
termination resistor. Run the differential traces close together to minimize the effects of the  
noise. Reduce skew by matching the electrical length of the traces. Avoid discontinuities in the  
differential trace layout. Avoid 90 degree turns and minimize the number of vias to further  
prevent impedance discontinuities.  
20/26  
STHDMI002A  
Package mechanical data  
10 Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK packages.  
These packages have a Lead-free second level interconnect . The category of second Level  
Interconnect is marked on the package and on the inner box label, in compliance with JEDEC  
Standard JESD97. The maximum ratings related to soldering conditions are also marked on  
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:  
www.st.com.  
21/26  
Package mechanical data  
STHDMI002A  
Figure 12. TQFP48 package dimensions  
22/26  
STHDMI002A  
Package mechanical data  
Figure 13. TQFP48 Tape and reel dimensions  
Tape & Reel TQFP48 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
330  
MIN.  
MAX.  
12.992  
0.519  
A
C
12.8  
20.2  
60  
13.2  
0.504  
0.795  
2.362  
D
N
T
22.4  
9.7  
0.882  
0.382  
0.382  
0.091  
0.161  
0.476  
Ao  
Bo  
Ko  
Po  
P
9.5  
9.5  
0.374  
0.374  
0.083  
0.153  
0.468  
9.7  
2.1  
2.3  
3.9  
4.1  
11.9  
12.1  
23/26  
Order codes  
STHDMI002A  
11 Order codes  
Table 11. Order codes  
Part number  
Temperature range  
–65°C to +150°C  
Package  
Packing  
STHDMI002ABTR  
TQFP48  
Tape and reel  
24/26  
STHDMI002A  
Revision history  
12 Revision history  
Table 12. Revision history  
Date  
Revision  
Change  
10-Oct-2006  
1
First release  
25/26  
STHDMI002A  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
26/26  

相关型号:

STHI07N50

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 7A I(D) | TO-220
ETC

STHI07N50FI

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 7A I(D) | TO-220VAR
ETC

STHI10N50

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 10A I(D) | TO-220VAR
ETC

STHI10N50FI

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 10A I(D) | TO-220VAR
ETC

STHS2375A

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375ADW6E

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375ADW6F

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375AM6E

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375AM6F

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375L

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375LDW6E

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR

STHS2375LDW6F

IEEE 802.3af PoE Powered Device (PD) interface controller
STMICROELECTR