STCOM05 [STMICROELECTRONICS]

Powerline communication and application system-on-chip;
STCOM05
型号: STCOM05
厂家: ST    ST
描述:

Powerline communication and application system-on-chip

文件: 总58页 (文件大小:707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STCOM  
Powerline communication and application system-on-chip  
Datasheet - production data  
– 5 USARTs (ISO 7816 compliant), 5 SPI,  
2
3 I C  
– 12-bit general purpose ADC with  
6 channels  
Cryptographic engine  
– AES 128/192/256 engine  
TQFP176 (20 x 20 x 1 mm)  
– True random number generator  
Memories  
Features  
– 640 kB or 1 MB of embedded Flash  
– 128 kB of embedded SRAM  
Integrated differential PLC analog front-end  
– PGA with automatic gain control and ADC  
– Current DAC with transmission predriver  
– Digital transmission level control  
– 8 kB of embedded shared RAM  
– Flexible static memory controller  
Clock management  
– 24 MHz external crystal for system clock  
with internal QFS synthesizer  
– Zero crossing comparator  
– Up to 500 kHz PLC signal bandwidth  
– 32.768 kHz external crystal for RTC  
Integrated dual line driver  
Power management  
– 14 V p-p single ended, 28 V p-p differential  
output range  
– 3.3 V and 8 - 18 V external supply voltages  
– 1.2 V and 5 V integrated linear regulators  
– Normal and low power modes  
– Very high linearity for EMC compliance  
– Externally configurable amplifier topology  
– 1 A rms max. current  
Real-time clock (RTC)  
– Embedded overtemperature protection  
– Suitable for all PLC signals up to 500 kHz  
– VBAT supply with battery health monitoring  
for RTC and backup registers  
-40 °C to +85 °C operating temperature range  
Fully reprogrammable real-time engine (RTE)  
modem for PLC standards up to 500 kHz  
®
Applications  
Integrated application core: ARM 32-bit  
Cortex™-M4F CPU  
Smart metering, smart grid and “Internet of  
– 96 MHz maximum frequency  
– 8-channel direct memory access controller  
– 8-region memory protection unit  
– Serial wire and JTAG interfaces  
– Cortex-M4 Embedded Trace Macrocell™  
– Up to 86 multiplexed GPIOs  
– 11 timers  
Things” applications  
Compliant with CENELEC, FCC, ARIB  
regulations  
– 1 flexible CRC calculation unit  
October 2015  
DocID028515 Rev 1  
1/58  
This is information on a product in full production.  
www.st.com  
Contents  
STCOM  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
Device architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power line communication (PLC) sub-system . . . . . . . . . . . . . . . . . . . . . . 9  
1.2.1  
1.2.2  
1.2.3  
1.2.4  
Real-time engine (RTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital front-end (DFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Analog front-end (AFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Line driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.3  
Application core sub-system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
®
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
1.3.7  
1.3.8  
1.3.9  
ARM Cortex™-M4F core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Floating point unit (FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 11  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Debug and trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
General purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 16  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timers and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
1.3.10 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 18  
1.3.11 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
1.4  
Cryptographic engine (CRYP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.4.1  
1.4.2  
True random number generator (TRNG) . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pseudo random number generator (PRNG) . . . . . . . . . . . . . . . . . . . . . 19  
1.5  
1.6  
Interprocessor communication (IPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
One-time programmable (OTP) section . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 21  
1.7  
1.8  
Reset, control, clock generation (RCC) and system controller  
(SYS_CTRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/58  
DocID028515 Rev 1  
STCOM  
Contents  
1.9  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
1.10 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 27  
1.11 Temperature sensors and overtemperature protection . . . . . . . . . . . . . . 28  
1.12 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
1.13 System reprogrammability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
1.13.1 In-system programming (ISP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
1.13.2 In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2.1  
2.2  
Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
GPIOs multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3
4
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4.1  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Power supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PLC analog front-end (AFE) and line driver characteristics . . . . . . . . . . . 50  
4.4  
4.4.1  
4.4.2  
4.4.3  
Line driver characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Line driver test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
AFE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4.5  
Embedded Flash characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.1  
5.2  
TQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DocID028515 Rev 1  
3/58  
58  
List of tables  
STCOM  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Cortex™-M4F core configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Interrupt definition and position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DMA channels muxing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Embedded Flash sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Boot mode and security level relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Boot modes and BOOT0/1 pin values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
GPIOs multiplexing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Absolute maximum ratings - voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Absolute maximum ratings - current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Analog supply characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Digital supply characteristics - RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Digital supply characteristics - Cortex™-M4 fetching from RAM . . . . . . . . . . . . . . . . . . . . 47  
Digital supply characteristics - Cortex™-M4 fetching data from eFlash . . . . . . . . . . . . . . . 47  
Digital supply characteristics - DOZE (sleep)/deepsleep mode . . . . . . . . . . . . . . . . . . . . . 47  
Supply characteristics - QFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
24 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
32 kHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Digital supply characteristics - I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
I/O characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Digital supply characteristics - power consumption under battery . . . . . . . . . . . . . . . . . . . 49  
Line driver characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Predriver characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Receiver input referred noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
PLC PGA characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Zero crossing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Flash memory current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
TQFP176 (20 x 20 x 1 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
4/58  
DocID028515 Rev 1  
STCOM  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STCOM basic block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
STCOM detailed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Reset, clock and system controller interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STCOM clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power supply scheme - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power supply scheme - PLC AFE and line driver section. . . . . . . . . . . . . . . . . . . . . . . . . . 26  
TQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Line driver test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 10. TQFP176 (20 x 20 x 1 mm) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
DocID028515 Rev 1  
5/58  
58  
Description  
STCOM  
1
Description  
The STCOM is a device that integrates a power line communication (PLC) modem  
and a high-performance application core.  
The PLC modem architecture has been designed to target EN50065, FCC, ARIB compliant  
PLC applications. Together with the application core, it enables the STCOM to support the  
®
PRIME, G1, G3, IEEE 1901.2, METERS AND MORE and other narrow band PLC protocol  
specifications.  
The STCOM basic block diagram is shown in Figure 1.  
Figure 1. STCOM basic block diagram  
&YUFSOBMOFUXPS L  
3FBMUJNF  
1SPUPDPMBO BQQMJDBUJPO  
TVCTZTUFN  
1
"ꢃ  
@
0
6
5
TVCTZTUFN  
%VBMꢀMJO ESJWFS  
1"ꢄ  
@0  
65  
'MBTI  
3".  
35&  
3".  
$
4
'
$VSSFOUꢀ  
DPOUSPM  
1- "'&  
5IFSNBMꢀ  
QSPUFDUJPO  
"3.  
$PSUFY.ꢂ  
1FSJQIFSBMT  
3
9@*/  
1
/
39@*/  
;$@*/  
3
5
$@  
5
"
.
1
#
35$  
3
5
$@  
5
"
.
1"  
#
0
05  
1PXFSNBOBHFNFOU  
3$ BO TZTUFN  
#
0
05  
"
.ꢉ  
6/58  
DocID028515 Rev 1  
 
STCOM  
Description  
1.1  
Device architecture  
The architecture is composed of the following parts:  
1. PLC front-end including digital front-end and analog front-end  
2. PLC line driver  
3. Real-time engine: the digital core running the lower layers of the PLC protocol stack  
and implementing modulation and demodulation  
4. Protocol engine: the main digital core for running the upper layers of the PLC protocol  
stack  
5. Wide range of peripherals logically divided into 4 blocks:  
Basic peripherals  
Com1 peripherals  
Com2 peripherals  
Crypto peripherals.  
The STCOM detailed architecture is shown in Figure 2.  
DocID028515 Rev 1  
7/58  
58  
Description  
STCOM  
Figure 2. STCOM detailed architecture  
4 +5"( 51*6 &5  
.
5IFSNBM  
;FS DSPTTJ O  
H
'MBTI  
5IFSNBM $VSSFOU  
"
%
$
$
1
6
3FBMUJNF  
FOHJOF  
$PSUFY.'  
"'  
&
4
3
"
. 4  
3
"
.
-JO ꢀESJWFS  
*$ꢄ  
'
1
6
/
7*$ .1  
6
%
"
$
4IBSF ꢀ  
*1$  
3
"
.
%
."  
$
DIBOOFMTꢍ  
"
) ꢏ  
"
1
#ꢇ  
"
1
#ꢇ  
'
4
.
$
"5 $53-  
5
3
/
(
64  
"35ꢂ  
1
3
/
(
"
&
4
$
3
$
"
) ꢏ  
"
1
#ꢉ  
(15ꢉ  
(1*0ꢆ  
(1*0ꢎ  
(1*0ꢋ  
(1*0ꢅ  
(1*0ꢊ  
"
) ꢏ  
"
) ꢏ  
(1*0ꢉ  
(1*0ꢃ  
(1*0ꢄ  
(1*0ꢇ  
(1*0ꢂ  
(15ꢃ  
(15ꢄ  
(15ꢇ  
(15ꢂ  
(15ꢆ  
(15ꢎ  
(15ꢋ  
"
1
#ꢃ "  
1
#ꢄ  
(1*0ꢉ  
6
4
"
35ꢉ  
6
4
"
35ꢄ  
6
4
"
35ꢃ  
6
4
"
35ꢇ  
8
8%  
(
$
"
/ꢉ  
$
"
/ꢃ  
35$  
*$ꢉ  
*$ꢃ  
'-"4 $53-  
"5 ꢉ  
"
%
$
'
4
.
$@$53-  
4
1*ꢉ  
"5 ꢃ  
4
: $53 ꢀ  
4
1*ꢃ  
3
$
(
4
1*ꢄ  
4
1*ꢇ  
.*4$  
$PNꢃ  
4
1*ꢂ  
$PNꢄ  
#BTJD  
"
.ꢉ  
8/58  
DocID028515 Rev 1  
STCOM  
Description  
1.2  
Power line communication (PLC) sub-system  
The STCOM device embeds a full narrow band power line communication (NB-PLC) sub-  
system, comprising the RTE, DFE, AFE and line driver.  
The AFE and line driver have been designed for a differential power line interface; however,  
single-ended operation is possible for simpler hardware application development.  
The DC to 500 kHz signal bandwidth is supported, targeting a number of possible NB-PLC  
solutions.  
1.2.1  
1.2.2  
Real-time engine (RTE)  
To match a performance required by emerging NB-PLC standards, the STCOM embeds  
a proprietary dedicated reprogrammable machine, the real-time engine. It is able to address  
specific functionalities exploited by OFDM and the ones adopted in the current and future  
NB- PLC standards in an efficient way.  
Digital front-end (DFE)  
Transmission and reception filter chains  
The DFE includes programmable transmission/reception digital filter chains to fit the signal  
bandwidth in different PLC modulation cases. The ADC and DAC clock frequencies are  
controlled by the DFE to get the right sample rate fitting the filter chain configuration.  
Automatic gain control (AGC)  
The DFE implements the automatic gain control (AGC) block for the PGA, whose purpose is  
to adapt the signal to the ADC dynamic.  
Current control (CC)  
The DFE includes also the current control (CC) block for the line driver to limit the maximum  
output current.  
1.2.3  
Analog front-end (AFE)  
Receiving chain  
The STCOM AFE features a programmable gain amplifier (PGA) and a dedicated analog-to-  
digital converter (ADC) to achieve high RX sensitivity and a wide input range.  
Transmission chain  
The transmitted signal, generated in the digital domain, is fed into a dedicated digital-to-  
analog converter (DAC).  
The DAC output is then fed into a predriver for buffering and applying an additional gain  
before the line driver.  
DocID028515 Rev 1  
9/58  
58  
Description  
STCOM  
Zero crossing comparator  
The mains line zero crossing can be detected by providing a mains synchronous bipolar  
(AC) signal at the input of this comparator.  
The zero crossing comparator provides positive and negative event information  
(rising/falling edge or high/low level).  
1.2.4  
Line driver  
The STCOM is equipped with an integrated high-performance dual power line driver. It has  
very low distortion, allowing the device to comply with EMC requirements.  
When supplied at maximum voltage, the line driver is capable to provide 28 V p-p in  
differential configuration or 14 V p-p in single-ended configuration.  
The output current can reach 1 A rms in both differential and single-ended configurations, in  
order to drive very low power line impedance.  
Any overtemperature event will force the line driver to shut down, thus preventing the  
STCOM to get damaged.  
1.3  
Application core sub-system  
®
1.3.1  
ARM Cortex™-M4F core  
The Cortex™-M4 processor is built on a high-performance processor core, with a 3-stage  
pipeline Harvard architecture, making it ideal for demanding embedded applications. The  
processor delivers exceptional power efficiency through an efficient instruction set and  
extensively optimized design, providing high end processing hardware including IEEE754-  
compliant single precision (32-bit) floating point computation, a range of a single cycle and  
SIMD multiplication and multiply with accumulate capabilities, saturating arithmetic and  
dedicated hardware division.  
To facilitate the design of cost-sensitive devices, the Cortex™-M4 processor implements  
tightly coupled system components that reduce processor area while significantly improving  
interrupt handling and system debug capabilities. The Cortex™-M4 processor implements  
®
®
a version of the Thumb instruction set based on Thumb-2 technology, ensuring high code  
density and reduced program memory requirements. The Cortex™-M4 instruction set  
provides the exceptional performance expected of a modern 32-bit architecture, with the  
high code density of 8-bit and 16-bit microcontrollers.  
The Cortex™-M4 processor provides multiple interfaces using AMBA™ technology to  
provide high-speed, low latency memory accesses. It supports unaligned data accesses  
and implements atomic bit manipulation that enables faster peripheral controls, system  
spinlocks and thread-safe Boolean data handling.  
10/58  
DocID028515 Rev 1  
STCOM  
Description  
Table 1. Cortex™-M4F core configuration  
Comment  
Component  
Presence  
JTAG  
ETM  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
N/A  
N/A  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Full-featured debug access port (DAP), SWJ-DP and AHB access port  
Embedded Trace Macrocell present  
ITM  
Instrumentation Trace Macrocell  
TPIU  
Trace port unit interface present  
FPB  
Flash patch breakpoint  
DWT  
Data watchpoint and trace  
DEBUG level  
IRQ  
Full debug with data matching for watchpoint generation  
80 IRQ source  
Priority level  
MPU  
Set to 5:32 levels  
Memory protection unit present. 8 regions implemented  
Floating point unit present (single precision)  
Bit banding region present  
FPU  
BB  
RESET_ALL_REGS  
CLKGATE  
WIC  
Reset all synchronous state  
Possibility to minimize dynamic power dissipation by clock gating  
10 lines: NMI, WWDG, RTC, GPIOs, IPC, DMA, GPT0, SPI0 and USART0  
1.3.2  
Floating point unit (FPU)  
The FPU fully supports single precision add, subtract, multiply, divide, multiply and  
accumulate, and square root operations. It also provides conversions between the fixed  
point and floating point data formats, and floating point constant instructions.  
The FPU provides floating point operations that are compliant with the NSI/IEEE Std 754-  
©
2008 A, IEEE Standard for Binary Floating-point Arithmetic , referred to as the IEEE 754  
Standard.  
The FPU contains 32 single precision extension registers, which can also be accessible as  
16 double word registers for load, store, and move operations.  
1.3.3  
Nested vectored interrupt controller (NVIC)  
The STCOM embeds a NVIC able to handle 80 maskable interrupts. The software priority  
level is configurable in the range of 0 - 31 for each interrupt. A higher level corresponds to  
a lower priority, so the level 0 is the highest interrupt priority. In case two or more interrupt  
lines share the same software priority level, the hardware priority level, which is described in  
Table 2, is used.  
DocID028515 Rev 1  
11/58  
58  
Description  
STCOM  
Table 2. Interrupt definition and position  
Position Priority  
Acronym  
Description  
Reset  
-
-
-3  
-2  
-1  
0
Reset  
NMI  
Wake-up interrupt - non maskable interrupt - system error  
All class of fault  
-
HardFault  
-
MemManage  
BusFault  
MPU mismatch  
-
1
Prefetch fault, memory access fault  
Undefined instruction or illegal state  
System service call via SWI instruction  
Debug monitor  
-
2
UsageFault  
SVCall  
-
3
-
4
DebugMonitor  
PendSV  
-
5
Pendable request for system service  
System tick timer  
-
6
SysTick  
0
7
WDG_WIC  
RTC_WIC  
Wake-up interrupt - window watchdog  
Wake-up interrupt - RTC interrupts  
Reserved  
1
8
2
9
-
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
GPIO_WIC  
IPC_WIC  
Wake-up interrupt - GPIO interrupts  
Wake-up interrupt - IPC interrupts  
Wake-up interrupt - DMAC interrupts  
Wake-up interrupt - GPT0 global interrupt  
Wake-up interrupt - SPI0 global interrupt  
Wake-up interrupt - USART0 global interrupt  
Reserved  
4
5
DMAC_WIC  
GPT0_WIC  
SPI0_WIC  
6
7
8
USART0_WIC  
-
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
TAMPER  
Tamper pin interrupt  
RTC  
Real-time clock  
FLASH_FATAL_ERROR  
FLASH_ECC_RWW_ERROR  
FLASH_ARY_DONE  
IPC_MBOX  
IPC_QUEUES  
IPC_SHAREDRAM  
DMA_Ch(1)  
DMA_Ch(2)  
DMA_Ch(3)  
DMA_Ch(4)  
DMA_Ch(5)  
DMA_Ch(6)  
DMA_Ch(7)  
Flash interface  
Flash interface  
Flash interface  
IPC mailbox  
IPC queues  
IPC shared memory  
DMA global interrupt channel 1  
DMA global interrupt channel 2  
DMA global interrupt channel 3  
DMA global interrupt channel 4  
DMA global interrupt channel 5  
DMA global interrupt channel 6  
DMA global interrupt channel 7  
12/58  
DocID028515 Rev 1  
STCOM  
Description  
Table 2. Interrupt definition and position (continued)  
Position Priority  
Acronym  
Description  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
DMA_Ch(8)  
ADC  
DMA global interrupt channel 8  
ADC global interrupt  
Reserved  
-
-
Reserved  
FSMC_FILL_FIFO  
SPI1  
FSMC interface  
SPI1 global interrupt  
SPI2 global interrupt  
SPI3 global interrupt  
SPI4 global interrupt  
I2C0 global event interrupt  
I2C0 global error interrupt  
I2C1 global event interrupt  
I2C1 global error interrupt  
I2C2 global event interrupt  
I2C2 global error interrupt  
Advanced timer 0 - BRK  
Advanced timer 0 - update  
SPI2  
SPI3  
SPI4  
I2C0_EVENT  
I2C0_ERROR  
I2C1_EVENT  
I2C1_ERROR  
I2C2_EVENT  
I2C2_ERROR  
AT0_BRK  
AT0_UP  
AT0_TRG_COM  
AT0_CC  
AT1_BRK  
AT1_UP  
AT1_TRG_COM  
AT1_CC  
GPT1  
Advanced timer 0 - trigger and commutation (COM)  
Advanced timer 0 - 4 CAPCOM  
Advanced timer 1 - BRK  
Advanced timer 1 - update  
Advanced timer 1 - trigger and commutation (COM)  
Advanced timer 1 - 4 CAPCOM  
GPT1 - global interrupt  
GPT2  
GPT2 - global interrupt  
GPT3  
GPT3 - global interrupt  
USART1  
USART2  
USART3  
USART4  
CAN0  
USART1 global interrupt  
USART2 global interrupt  
USART3 global interrupt  
USART4global interrupt  
CAN0 global interrupt  
CAN1  
CAN1 global interrupt  
AES  
AES global interrupt  
GPIO00  
GPIO00 global interrupt  
GPIO01  
GPIO01 global interrupt  
DocID028515 Rev 1  
13/58  
58  
Description  
STCOM  
Table 2. Interrupt definition and position (continued)  
Position Priority  
Acronym  
Description  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
GPIO02  
GPIO03  
GPIO04  
GPIO05  
GPIO06  
GPIO07  
GPIO08  
GPIO09  
GPIO10  
GPT4  
GPT5  
GPT6  
GPT7  
-
GPIO02 global interrupt  
GPIO03 global interrupt  
GPIO04 global interrupt  
GPIO05 global interrupt  
GPIO06 global interrupt  
GPIO07 global interrupt  
GPIO08 global interrupt  
GPIO09 global interrupt  
GPIO10 global interrupt  
GPT4 - global interrupt  
GPT5 - global interrupt  
GPT6 - global interrupt  
GPT7 - global interrupt  
Reserved  
-
Reserved  
-
Reserved  
-
Reserved  
-
Reserved  
-
Reserved  
-
Reserved  
1.3.4  
DMA controller (DMA)  
The STCOM embeds 1 general purpose dual port DMA controller with 8 channels. It is able  
to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.  
It features dedicated FIFOs for APB/AHB peripherals, a supports burst transfer and is  
designed to provide the maximum peripheral bandwidth (AHB/APB).  
The DMA controller supports circular buffer management, so that no specific code is needed  
when the controller reaches the end of the buffer. It also has a double buffering feature,  
which automates the use and switching of two memory buffers without requiring any special  
code.  
Each channel is connected to dedicated hardware DMA requests, with support for  
a software trigger on each stream. Configuration is made by software and transfer sizes  
between source and destination are independent.  
14/58  
DocID028515 Rev 1  
STCOM  
Description  
Table 3. DMA channels muxing scheme  
Peripheral  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8(1)  
ADC  
SPI0  
ADC  
SPI0_TX  
SPI2_TX  
SPI0_RX  
SPI2_RX  
SPI1  
SPI1_TX  
SPI3_TX  
SPI1_RX  
SPI3_RX  
SPI2  
SPI3  
SPI4  
SPI4_TX  
SPI4_RX  
USART0  
USART1  
USART2  
USART3  
USART4  
I2C0  
USART0_TX USART0_RX  
USART3_TX USART3_RX  
USART1_TX USART1_RX  
USART2_TX USART2_RX  
USART4_TX USART4_RX  
I2C0_TX  
AT0_CH4  
I2C0_RX  
I2C1  
I2C1_TX  
AT0_CH1  
AT0_CH3  
I2C1_RX  
AT0_CH2  
I2C2  
I2C2_TX  
I2C2_RX  
AT0  
AT0_TRIG  
AT0_COM  
AT1  
AT0_UP  
AT1_CH3  
AT1_TRIG  
AT1_COM  
AT1_CH4  
GPT0  
AT1_UP  
AT1_CH1  
GPT1_UP  
AT1_CH2  
GPT2_UP  
GPT0_UP  
GPT1  
GPT2  
GPT3  
GPT3_UP  
GPT4  
GPT4_UP  
GPT5  
GPT5_UP  
GPT6  
GPT6_UP  
GPT7  
GPT7_UP  
1. Channel 8 is reserved.  
DocID028515 Rev 1  
15/58  
58  
Description  
STCOM  
1.3.5  
Memory protection unit (MPU)  
The MPU divides the memory map into up to 8 regions, and defines the location, size,  
access permissions, and memory attributes of each region. It supports:  
Independent attribute settings for each region  
Overlapping regions  
Export of memory attributes to the system.  
Background region  
When memory regions overlap, memory access is affected by the attributes of the region  
with the highest number.  
The background region has the same memory access attributes as the default memory  
map, but is accessible from privileged software only.  
The MPU is useful to isolate and protect different parts of the firmware by giving different  
levels of access privileges. If a part of the firmware tries to access a memory location that is  
prohibited by the MPU, the processor generates a fault. This causes a fault exception that  
could be detected by the privileged firmware, which can take the appropriate action.  
The MPU is optional and can be bypassed for applications that do not need it.  
1.3.6  
Debug and trace  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Embedded Trace Macrocell™ (ETM)  
The ARM Embedded Trace Macrocell provides greater visibility of the instruction and data  
flow inside the Cortex™-M4 core by streaming compressed data at a very high rate from the  
STCOM device through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is then connected to a host in order to record and then  
format the information for displaying and analysis.  
1.3.7  
General purpose input/outputs (GPIOs)  
The STCOM device has 11 GPIOs ports named from GPIO00 to GPIO10. Each port is able  
to manage 8 pins, except the GPIO08 port that manages 6 pins. Each GPIO pin can be  
individually configured by software as output (push-pull or open drain, with or without pull-up  
or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral  
alternate functions (with or without pull-up or pull-down). Each GPIO pin can also generate  
interrupt depending on a level (low and high), or a transactional value of the pin (rising or  
falling edge).  
External interrupt  
Each GPIOs port can generate interrupts. For each port one interrupt line is dedicated. The  
pins of one port share the same interrupt line.  
16/58  
DocID028515 Rev 1  
STCOM  
Description  
1.3.8  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (Cortex™-M4, DMA, and real-  
time engine) and the slaves (Flash memory, RAM, AHB and APB peripherals, and real-time  
engine) and ensures a seamless and efficient operation even when several high-speed  
peripherals work simultaneously.  
1.3.9  
Timers and watchdog  
The STCOM embeds 8 general purpose timers, two advanced timers and one window  
watchdog. The Cortex™-M4 is also equipped with a SysTick timer.  
General purpose timer (GPT)  
The STCOM device includes 8 full-featured general purpose timers based on a 16-bit  
autoreload up/down counter and a 16-bit programmable prescaler.  
Advanced timers (AT)  
The STCOM includes 2 advanced-control timers based on a 16-bit autoreload up/down  
counter driven by a 16-bit programmable prescaler. They all feature 4 independent channels  
for input capture, output compare, PWM generation or one pulse mode output.  
It may be used for a variety of purposes, including measuring the pulse lengths of input  
signals (input capture) or generating output waveforms (output compare, PWM,  
complementary PWM with deadtime insertion).  
Window watchdog (WWDG)  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interference or by unforeseen logical conditions, which causes the  
application program to abandon its normal sequence. The watchdog circuit generates  
a device reset on expiry of a programmed time period, unless the program refreshes the  
contents of the down counter register. A device reset is also generated if the down counter  
value is refreshed before the down counter has reached the proper window register value.  
This implies that the counter must be refreshed in a limited window.  
The window watchdog is based on a 7-bit free-running down counter with two conditional  
resets: the down counter is reloaded outside the window or the down counter value  
becomes less than 0x40.  
The window watchdog supports early wake-up interrupt trigged when the down counter is  
equal to 0x40.  
SysTick timer  
The Cortex™-M4 has a 24-bit system timer, SysTick, which counts down from the  
programmable reload value to zero. It supports the autoreload and can generate  
a maskable system interrupt when the counter reaches zero.  
DocID028515 Rev 1  
17/58  
58  
Description  
STCOM  
1.3.10  
CRC (cyclic redundancy check) calculation unit  
The cyclic redundancy check (CRC) is a widely used method for detecting errors. The CRC  
calculation unit is used to get a CRC code in a flexible way using a configurable polynomial.  
Output data size can be selected between 8, 16, 24 or 32 bits.  
Input data size can be configured between 1, 8, 16, 24 or 32 bits with selectable bit and byte  
endianness.  
The CRC unit allows the specification of the initial value (all zero, all one, or a generic value)  
and the possibility to select an automatic XOR with all one when reading the data output.  
1.3.11  
Communication interfaces  
Inter-integrated circuit interface (I2C)  
2
The STCOM embeds 3 I C bus interfaces that can operate in multimaster and slave modes.  
They can support the Standard and Fast modes. They support the 7/10-bit addressing mode  
and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is  
embedded.  
2
The I C peripherals can be served by DMA and support SMBus 2.0/PMBus™ operations.  
Universal synchronous/asynchronous receiver transmitters (USART)  
The STCOM embeds 5 universal synchronous/asynchronous receiver transmitters.  
®
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
a multiprocessor communication mode, single-wire half-duplex communication mode and  
have an LIN Master/Slave capability.  
The peripherals also provide hardware management of the CTS and RTS signals,  
a Smartcard mode (ISO 7816 compliant) and a SPI-like communication capability. All  
interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
The STCOM embeds 5 SPIs in slave and master modes in full-duplex and simplex  
communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame  
is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic  
SD Card™/MMC™ modes. All SPIs can be served by the DMA controller.  
The SPI interface can be configured to operate in a TI™ mode for communications in  
master mode and slave mode.  
Controller area network (CAN)  
The STCOM embeds 2 CAN modules able to perform communication according to the CAN  
protocol version 2.0 part A and B. The bitrate can be programmed to values up to  
1 MBit/s. For communication on a CAN network, individual message objects are configured.  
Each message object has its own identifier mask. The message objects and identifier masks  
are stored in the 256 byte size message RAM with a programmable FIFO mode. All  
functions concerning the handling of messages are implemented in the message handler.  
Those functions are the acceptance filtering, the transfer of messages between the CAN  
core and the message RAM, and the handling of transmission requests as well as the  
generation of the module interrupt.  
18/58  
DocID028515 Rev 1  
STCOM  
Description  
General purpose analog-to-digital converter (ADC)  
One 12-bit SAR ADC working at a maximum conversion rate of 2 Msps is embedded in the  
STCOM. The ADC has 6 external available input channels performing conversion in  
a single, continuous or scan mode. The core accesses to the peripheral through a 4x12-bit  
FIFO interface.  
The ADC can be served by the DMA controller. Additional 2 channels are internally used to  
monitor the VBAT and the low power temperature sensor.  
1.4  
Cryptographic engine (CRYP)  
The STCOM embeds an advanced hardware AES peripheral which implements an  
advanced standard cryptographic algorithm according to the NIST FIPS 197. The block  
processes 128-bit data blocks using a key with the following possible sizes: 128, 192, 256  
bits. The peripheral also supports the following modes: “Electronic Code Book” (ECB),  
“Cipher Block Chaining” (CBC), “Counter “mode (CTR), “Galois/Counter Mode” (GCM),  
GMAC and CCM modes.  
The peripheral is able to encrypt and decrypt data. Interrupt can be generated when one  
operation is finished.  
1.4.1  
1.4.2  
1.5  
True random number generator (TRNG)  
The STCOM embeds a TRNG processor based on a continuous analog noise that provides  
a random 16-bit value. To avoid pseudo random sequences, two consecutive accesses  
have to be performed when the ready bit in the status register is set to 1.  
Pseudo random number generator (PRNG)  
The STCOM embeds a PRNG processor that provides a pseudo random 32-bit value. Initial  
seed can be configured by software.  
Interprocessor communication (IPC)  
The Cortex™-M4 core and the real-time engine communicate by means of an additional  
8 kByte shared static RAM. This memory can be accessed by the two cores through an  
interprocessor communication block that guarantees coherent and consistent read and  
modify operations, to provide several functionalities to the system, among the others:  
Configuration of real-time engine modes and functionalities during the normal working  
operations  
Data and information exchange between the Cortex™-M4 and real-time engine in both  
directions.  
The Cortex™-M4 wake up from a low power mode triggered by the real-time engine.  
The real-time engine wakes up from a low power mode triggered by the Cortex™-M4.  
DocID028515 Rev 1  
19/58  
58  
Description  
STCOM  
1.6  
Memories  
1.6.1  
Embedded Flash memory  
The embedded Flash has the following features:  
640 kB or 1 MB of size  
128-bit wide data read  
64-bit data write through a double 32-bit bus write  
Sector erase with possibility to suspend erase procedure in case of read access to  
other flash sectors  
Multiple sector erase.  
Table 4. Embedded Flash sectors  
Block  
Name  
Number  
Base address  
Size  
Note  
Main memory  
B0F0  
B0F1  
B0F2  
B0F3  
B0F4  
B0F5  
B0F6  
B0F7  
B0F8  
B0F9  
B0FA  
B0FB  
B0FC  
B0FD  
0
1
0x00000000  
0x00004000  
0x00008000  
0x00010000  
0x00018000  
0x0001C000  
0x00020000  
0x00030000  
0x00040000  
0x00060000  
0x00080000  
0x000A0000  
0x000C0000  
0x000E0000  
0x00100000  
16 kB  
16 kB  
32 kB  
32 kB  
16 kB  
16 kB  
64 kB  
64 kB  
128 kB  
128 kB  
128 kB  
128 kB  
128 kB  
128 kB  
16 kB  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Not available in STCOM05  
Not available in STCOM05  
Not available in STCOM05  
Shadow sector B0SH  
Shadow sector is accessible only in some security levels (see Section 1.12: Boot modes on  
page 28).  
1.6.2  
One-time programmable (OTP) section  
The STCOM embeds a one-time programmable (OTP) section in the shadow sector of the  
embedded Flash memory. During the manufacturing process, the EUI48 is stored in this  
section. The user can also write its private key used during the boot process to verify and  
authenticate the firmware image. This OTP section can be configured to avoid reads by  
firmware in order to protect user confidential information (see Section 1.12).  
20/58  
DocID028515 Rev 1  
STCOM  
Description  
1.6.3  
Embedded SRAM  
The STCOM device has 128 kB of a static RAM. The Cortex™-M4 can perform byte, half  
word (16 bits) or full word (32 bits) access to the SRAM at maximum speed, with zero wait  
states for both read and write operations. The SRAM start address is 0x20000000, the end  
address is 0x20001FFFF.  
The SRAM is split into two blocks of 64 kB with a capability for concurrent access by AHB  
master sub-systems.  
The Cortex™-M4 can also execute a code from the RAM at a zero wait state.  
1.6.4  
Flexible static memory controller (FSMC)  
The STCOM embeds a FSMC peripheral able to interface external memory devices. The  
types of memory supported are:  
Asynchronous parallel NOR Flash with up to 21-bit address bus (no synchronous  
parallel NOR supported)  
Asynchronous SRAM memories  
The data bus can be selected between 16 bits or 8 bits (reducing the total amount of  
accessible memory), for little or big endian operation.  
The FSMC peripheral can connect up to 2 memories with 2 independent chip select lines  
(Ebar). The maximum size of each memory is 4 MB. Having 2 chip select lines, the  
maximum external memory size is 8 MB.  
DocID028515 Rev 1  
21/58  
58  
Description  
STCOM  
1.7  
Reset, control, clock generation (RCC) and system controller  
(SYS_CTRL)  
All the clock and reset configuration registers are located in the MISC and SYSCTRL  
blocks. Figure 3 shows the interaction between these blocks.  
Figure 3. Reset, clock and system controller interaction  
6<6B&75/  
&ORFNV  
0,6&  
4)6  
5HVHWꢀDQGꢀFORFNV  
5HVHWV  
$0ꢁꢂꢃꢄꢁ  
The system reset is generated by the RESETn pin (active low). Through the system  
controller is also possible to assert a system software reset. The software reset to single  
peripherals can be forced through MISC registers.  
22/58  
DocID028515 Rev 1  
 
STCOM  
Description  
Clock management  
Two external clock sources are required for the STCOM:  
1. 24 MHz frequency  
2. 32.768 kHz frequency  
Internal clocks are generated by a quadruple frequency synthesizer (QFS) that is fed by the  
24 MHz source. Digital blocks can also use the external sources as clock reference.  
The clock strategy is depicted in Figure 4.  
Figure 4. STCOM clock tree  
)
$- U ") ꢂ  
Q
FSJQ  
I
FSBMT  
$- U "' %'  
&
.*4 ꢇ2  
'
4
@
$-  
,
@
$
5
3
.*4 ꢇ2  
'
4
@
$-  
,
@
$
5
3
$- U ꢂ"  
%
$
.*4 ꢇ2  
'
4
@
$-  
,
@
$
5
3
DQ  
V
@GDML  
.*4 ꢇ2  
'
4
@$-  
,
ꢈ@  
$
53  
$- U 35&  
DQ @  
V
IDML  
.*4 ꢇ2  
'
4
@
$
5
3
.*4 ꢇ.  
$
0ꢆ  
@
$-  
,
@
$
' ꢂ  
$
1 ꢂ  
DQ  
V
@TUDML  
45$-  
,
EJWJTP S  
.
$
0 ꢂ  
.
$
0ꢆ  
QSFTDBMFS  
4
:
4
5
@
$
4 $-  
,
4
0
6
3
$
&
RGT  
@
DML  
P
VUꢈ  
#BTJ "  
QSFTDBMFS  
ꢉ ꢊꢉ ꢊꢉꢈ  
1
#
1
$-,@  
#
U CBTJ ꢂ  
.*4 ꢇ2  
'
4
@
$
5
3<>  
Q
FSJQ  
I
FSBMT  
RGT@  
DML  
P
VUꢀ  
2'4  
RGT  
@
DML  
P
VUꢆ  
$PN ꢂ  
1
$-,@$ꢆ  
%
&
#
6
(
"
1
#
U $PN ꢂ  
QSFTDBMFS  
ꢉ ꢊꢉ ꢊꢉꢈ  
Q
FSJQ  
I
FSBMT  
RGT  
@
DML  
PVUꢁ  
$PN ꢂ  
.*4 ꢇ0  
4
$*@  
$
'
(
1
$-,@$ꢁ  
"
1
#
< >  
U $PN ꢂ  
QSFTDBMFS  
.*4 ꢇ"  
.
#
"
@
$
'
(< ꢁ>  
Q
FSJQ  
I
FSBMT  
ꢉ ꢊꢉ ꢊꢉꢈ  
$SZQU ꢂ  
.
$-,@*/  
1
$-,@  
$
3
:
15  
.)[  
"
1
#
U $SZQU ꢂ  
0
4
$
QSFTDBMFS  
%*7  
Q
FSJQ  
I
FSBMT  
.$-,@  
065  
ꢉ ꢊꢉ ꢊꢉꢈ  
.*4 ꢇ5  
3
/
(@  
3
/
$-  
,
@
$
'
(@  
3
& 3  
/
(
$-  
,
@
4
&
-
0
4
$ꢀ  
@*/  
,)[  
0
4
$
0
4
$ꢀ  
ꢁ 0  
@
65  
4
:
4
$
5 1  
-
-
3
2
4
8
5
3
/(  
4
:
4
$
5
3
9
5
"
-
3
2
4
8
EJWJTP S  
PS  
.*4 ꢇ(  
&
/@$-  
,
@
$
'
(<>  
$-,@  
5
U 5  
3
/
(
$- UP  
35 DPSF  
$MPD HBUJOH DFMMꢂ FOBCM TFMFDUPSꢄ  
"
.ꢅ  
DocID028515 Rev 1  
23/58  
58  
 
Description  
STCOM  
At a startup the 24 MHz oscillator clock is selected. This source must be always present to  
allow the STCOM starting correctly. 24 MHz can be provided by a quartz crystal or by any  
other source. In this latter case, the clock must be provided through the MCLK_IN pin while  
the MCLK_OUT pin must be tied to DGND. 32.768 KHz must be provided by a quartz  
crystal.  
APB peripherals can work up to 48 MHz. Each PCLK prescaler to the sub-systems should  
be configured to respect this maximum frequency.  
The general purpose ADC clock can run up to 33 MHz. The RTC core uses only the 32 KHz  
external oscillator. The TRNG can work with the external 32 kHz or with the internal  
cpu_hclk. If the internal clock is selected, the divisor should be configured to provide an  
accurate 32 kHz clock in order to respect the requirements for a true random generation.  
One master clock output line can be enabled. The MCO1 is multiplexed with one general  
purpose I/O and can take one of the QFS outputs with a configurable prescaler.  
1.8  
Power management  
The STCOM should be powered with, at least, two external supply voltages:  
3.3 V for I/Os, embedded Flash, QFS, DAC, OSC, ADC general purpose, 1.2 V  
regulator  
8 - 18 V for line driver  
The device needs also two more supply voltages that can be generated internally:  
1.2 V for digital cores and logic, embedded Flash, QFS and oscillator  
5 V for the PLC AFE  
1.2 V and 5 V can be provided by two internal linear regulators connected respectively to  
DVDD_1V2 and AVDD_5V pins and supplied respectively by DVDD_3V3_REG and PVCC  
pins. A bypass mode is available for the 1.2 V regulator in case an external source is used.  
The power-on reset (POR) is conditioned by the level of DVDD_3 V3_IO and DVDD_1V2: at  
power on, the whole STCOM device is kept under reset until the two supply voltages are  
above the respective turn-on thresholds named V(DVDD_3 V3_IO)_TH and  
V(DVDD_1V2)_TH, while the device is turned off as soon as one of the voltages goes below  
its turn-off thresholds, namely V(DVDD_3 V3_IO)_TL and V(DVDD_1V2)_TL.  
An internal comparator checks the supply voltage on AVDD_5V_AFE as well, enabling the  
use of the PLC AFE when the voltage is above V(AVDD_5V_AFE)_TH and disabling it when  
the voltage goes below V(AVDD_5V_AFE)_TL.  
Refer to Figure 5 and Figure 6 for the detailed power supply scheme.  
24/58  
DocID028515 Rev 1  
STCOM  
Description  
Figure 5. Power supply scheme - digital section  
1PXFS  
7
#
"5  
TX JUDI  
U ꢂ ꢇ ꢂ7  
35 DPS CBDLV SFHJTUFST  
* -PHJD  
ꢇ ꢂ TFDUJPO  
%7  
%%@7@*0  
(1*0T  
7  
%
7
%
%@7@3  
&
(
SFHVMBUPS  
$PSUFY. ꢊ ꢂQFSJQIFSBM ꢂ  
%
7
%
%@7ꢁ  
3
" 3FBMUJN FOHJOF  
%
7
%
%@7@'-"  
4
)
'MBTI  
%
7
%
%@7@'-"  
4
)
.)[  
PTDJMMBUPS  
%
7
%
%@7@.$-,  
%
7
%
%@7@2'  
4
2'4  
%
7
%
%@7@2'  
4
7  
"
.ꢅ  
DocID028515 Rev 1  
25/58  
58  
Description  
STCOM  
Figure 6. Power supply scheme - PLC AFE and line driver section  
39&&  
3*1'  
3$ ꢄ  
3$ ꢃ  
39&&  
ꢂꢀWRꢀꢃꢂꢀ9  
ꢁꢀ9ꢀ  
UHJXODWRU  
3*1'  
$9''Bꢁ9  
$*1'  
$9''Bꢁ9B3*$  
$)(  
$9''Bꢁ9B5;$'&  
$9''Bꢁ9B7;'59  
)HUULWHꢀ  
EHDG  
$9''Bꢅ9ꢅB'$&  
ꢅꢆꢅꢀ9  
$0ꢇꢅꢈꢉꢅ  
26/58  
DocID028515 Rev 1  
STCOM  
Description  
VBAT operation  
In case the RTC peripheral is used, the VBAT pin shall be supplied (2.0 V to 3.6 V) for the  
RTC core operation and persistence of backup registers. An external battery or a similar  
power source can be used.  
The VBAT operation is activated, through an on-chip power switch, when the  
DVDD_3V3_IO is not present. In this case the main core of the RTC and the backup  
registers are under the VBAT domain.  
The application can constantly monitor the health of the battery by reading the voltage level  
present at the VBAT pin through the channel 7 of the general purpose 12-bit ADC.  
A dedicated cutoff switch has been included to avoid continuous leakage from the battery  
when the ADC is not sampling the line.  
1.9  
Low power modes  
A clock gating is available for any peripheral in order to save all the dynamic power  
contributes related the resources not used by the application.  
The CPU is able to run at maximum frequency but, in case lower speed is sufficient to meet  
the application requirements, also scaled values are allowed. The CPU could be in low  
power modes waiting for wake-up events.  
1.10  
Real-time clock (RTC) and backup registers  
The STCOM embeds an integrated real-time clock (RTC). The RTC provides a hardware  
calendar implementation, instead of a simple 32-bit free-running counter. The calendar can  
be initialized to set the current time/date of the system and provide information on sub-  
seconds, seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month),  
month, and year.  
Software can program the daylight saving compensation; it can control two programmable  
alarms (with interrupt function) that can be triggered by any combination of the calendar  
fields.  
Synchronization can be done with an external clock using the sub-second shift feature.  
RTC maskable interrupts/events are:  
Alarms: two alarms are present  
Timestamps: two timestamps are present  
Tamper: two tamper detection inputs are present  
The RTC is clocked with a 32.768 kHz external crystal and has coarse calibration (periodic  
digital calibration), smooth calibration (0.954 ppm) and analog calibration functionalities.The  
1 Hz /512 Hz internal reference clock is optionally available on RTC_TAMPB for calibration.  
The RTC has also twenty 32-bit backup registers (80 bytes), available for user defined data  
storage. The possibility that backup registers are reset when a tamper detection event  
occurs is selectable by software.  
DocID028515 Rev 1  
27/58  
58  
Description  
STCOM  
1.11  
Temperature sensors and overtemperature protection  
The STCOM embeds an overtemperature protection mechanism, with fixed temperature  
threshold, preventing the device from overheating. This automatic protection acts by  
shutting down the PLC line driver when overheating occurs during PLC transmission. The  
normal operation of the line driver is restored automatically as the overtemperature event  
has ended.  
In addition to the overtemperature automatic protection, information from two temperature  
sensors is provided:  
The line driver temperature sensor  
The low power temperature sensor  
The first sensor monitors the line driver temperature and can be used by the RTE to prevent  
the line driver to be shut down abruptly by the overtemperature protection. The way to use  
this information may depend on the protocol and on the version of the RTE firmware, so its  
usage (if any) will be described within the specific firmware documentation released by  
®
STMicroelectronics .  
The second sensor monitors the temperature of the low power section of the device. It is  
internally connected to the channel 8 of the general purpose 12-bit ADC (see Section :  
General purpose analog-to-digital converter (ADC) on page 19 for further details) and it can  
be used by the application for its own purposes.  
The accuracy of the sensors is guaranteed by design. In case a higher accuracy is required  
on the low power temperature sensor, the user shall adopt its own calibration procedure  
during the application manufacturing.  
1.12  
Boot modes  
The STCOM provides different security levels of protection:  
1. Level 1: unsecure  
The Cortex™-M4 is accessible through the JTAG and it's possible to download the  
firmware in the embedded Flash using debugger plug-in or to load it from the external  
NVM using the system boot functionality. It's also possible to download customer OTP  
data such as cryptography keys. The shadow sector is not accessible.  
2. Level 2: secure  
The JTAG is blocked and it's not possible to access the embedded Flash for external  
read or write operation. It's possible to load the ciphered firmware image from the  
external NVM and upgrade the firmware thanks to the IAP functionality. Read access to  
TM  
the embedded Flash is possible to the Cortex -M4 code, including the shadow sector.  
3. Level 3: secure and locked  
The JTAG is blocked and it's not possible to access the embedded Flash for external  
read or write operation. Some embedded Flash sectors are locked. It's possible to  
upgrade the firmware thanks to the IAP functionality unless the new image tries to  
change a locked area. Read access to the embedded Flash is possible to the  
TM  
Cortex -M4 code, including the shadow sector.  
28/58  
DocID028515 Rev 1  
STCOM  
Description  
4. Level 4: secure for customer loader  
The JTAG is blocked and it is not possible to access the embedded Flash for the  
external read or write operation via the JTAG, while the read and write access is  
TM  
allowed to the Cortex -M4 code (with the exception of the shadow sector). With  
respect to the Level 2, there is no load or upgrade of the firmware image from the  
external NVM. The firmware image shall be already present in the embedded Flash  
(loaded in Level 1) and a customer application (secondary bootloader) can manage  
upgrades.  
5. Level 1*: secure erase and unlocking  
The Cortex™-M4 is accessible through the JTAG and it's possible to download  
firmware in the embedded Flash. Before the unlocking, the embedded Flash is fully  
erased including the customer OTP data. The shadow sector is not accessible.  
In order to respect these security requirements, the STCOM embeds a bootloader code.  
The user can also configure the boot mode through the BOOT0/1 pins to select the proper  
mode. The following boot modes are available:  
1. Normal mode: this is the standard way of booting the code and eventually load (or  
restore) a new image version from the external NVM.  
2. Customer OTP write mode: in this mode the user can write its security keys and data  
(e.g.: custom EUI48). After booting in this mode the security level is 2 (secure) or 4  
(secure for customer loader) based on the selected option. In the security level 2 only  
ciphered firmware can be loaded from an external memory while in the security level 4  
the firmware upgrade is left to a customer bootloader.  
3. Unlocking mode: this is the boot mode that enables again all the debug feature.  
4. Low power mode: the minimal boot mode to guarantee low power operations. The  
TM  
RTE is not enabled and the Cortex -M4 code is executed as soon as possible at 24  
MHz (the user can then scale the clock up or down).  
The relationship between the security level and boot mode are shown in Table 5:  
Table 5. Boot mode and security level relationship  
Boot  
mode  
Level 1  
Level 2  
Level 3  
Level 4  
Level 1*  
Yes  
If lock option  
selected for some  
area go to level 3  
Yes, but no update  
is performed on  
locked sector  
Yes  
(no update is  
performed)  
Normal  
mode  
Yes  
Yes  
Customer  
OTP write  
mode  
Yes go to level  
No  
No  
No  
No  
2 or 4  
Unlocking Yes go to level  
Yes go to level  
Yes go to level Yes go to level Yes go to level  
mode  
1*  
1*  
1*  
1*  
1*  
Lowpower  
mode  
Yes  
Yes  
Yes  
Yes  
Yes  
DocID028515 Rev 1  
29/58  
58  
 
Description  
STCOM  
Table 6 shows the values of the boot pins for each boot mode.  
Table 6. Boot modes and BOOT0/1 pin values  
Boot mode  
Boot mode value  
BOOT1  
BOOT0  
Normal boot  
Customer OTP write  
Unlocking  
0x2  
0x0  
0x1  
0x3  
1
0
0
1
0
0
1
1
Low power  
1.13  
System reprogrammability  
The STCOM supports both in-system and in-application programming (ISP and IAP) modes  
through the use of the embedded Flash and an external non-volatile memory (NVM). If the  
external NVM contains two firmware copies, it's also possible to roll back to the previous  
firmware version in case of firmware malfunctioning. The change of firmware to enable  
different functionalities will require a complete reset of the device if the customer does not  
implement its own bootloader.  
1.13.1  
1.13.2  
In-system programming (ISP)  
The ISP mode allows the user to erase and program the embedded Flash through the JTAG  
port. This mode can be inhibited to enhance the security level of the device.  
In-application programming (IAP)  
The IAP mode allows the application on board to store in an external non-volatile memory  
the firmware to be downloaded into the internal embedded Flash. The firmware image in the  
NVM is copied into the internal embedded Flash at the power-on. The boot code inside the  
device takes care of the integrity check, embedded Flash erasure and programming. IAP  
can be done using the power line or by the local upgrade port. The customer can also write  
its dedicated bootloader to perform IAP with the activation of a specific security level.  
30/58  
DocID028515 Rev 1  
 
STCOM  
Pinout and pin description  
2
Pinout and pin description  
2.1  
Pin definition  
Figure 7. TQFP176 pinout  
(
1*0ꢃ  
@
(
1*0ꢃ  
@
(
1*0ꢃ  
@
(
1*0ꢃ  
@
%
7
%
%@  
7@*0  
(
1*0ꢃ  
@
(
1*0ꢃ  
@
%
7
%
%@  
7@*0  
(
1*0ꢃ  
@
(
1*0ꢃ  
@
(
1*0ꢃ  
@
6
4
"
35ꢃ  
@
3
9
%
(
1*0ꢃ  
@
6
4
"
35ꢃ  
@
5
9
%
(
1*0ꢃ  
@
4
1*ꢃ  
@
4
4O  
(
1*0ꢃ  
@
4
1*ꢃ  
@
4
$-  
,
ꢀꢃ  
(
1*0ꢃ  
@
4
1*ꢃ  
@
.*4  
0
(
1*0ꢃ  
@
4
1*ꢃ  
@
.
0
4*  
(
1*0ꢃ  
@
%
7
%
%@  
7ꢂ  
@
'-  
"
4
)
(
1*0ꢃ  
@
%
(
/
%
(
1*0ꢃ  
@
%
7
%
%@  
7ꢁ  
@
'-  
"
4
)
(
1*0ꢃ  
@
3
&
4
&
3
7
&
%
(
1*0ꢃ  
@
#
0
05ꢃ  
(
1*0ꢃ  
@
#
0
05ꢀ  
(
1*0ꢃ  
@
+5  
"
(@  
5
3
4
5O  
(
1*0ꢃ  
@
+5  
"
(@  
5
%*  
(
1*0ꢃ  
@
+5  
"
(@  
5
.4  
52'1ꢀꢈꢅ  
(
1*0ꢃ  
@
+5  
"
(@  
5
$
,
(
1*0ꢃ  
@
+5  
"
(@  
5
%
0
(
(
1*0ꢃ  
@
%
7
%
%@  
7ꢂ .$-  
,
1*0ꢃ  
@
%
7
%
%@  
7@*0  
(
1*0ꢃ  
@
&YQPTF QB EPXO  
.
$-,@*/  
(
1*0ꢃ  
@
.
$-,@  
0
65  
(
1*0ꢃ  
@
%
7
%
%@  
7ꢁ  
@
3
&
(
(
1*0ꢃ  
@
%
7
%
%@  
7ꢂ  
(
1*0ꢃ  
@
%
7
%
%@  
7ꢂ  
@
2'  
4
"
%
$@  
7
3
&
'
1
%
7
%
%@  
7ꢁ  
@
2'  
4
"
%
$@  
7
3
&
'
/
%
(
/
%
0
4
$ꢁ  
@*/  
"
7
%
%@  
7@  
1
(
"
0
4
$ꢁ  
@
0
65  
3
9@*/  
/
ꢇꢇ  
%
7
%
%@  
7@*0  
3
9@*/  
1
ꢇꢄ  
7
#
"5  
"
(
/
%
ꢇꢈ  
35$@  
5
"
.1  
"
;
$@*/  
ꢇꢅ  
35$@  
5
"
.1  
#
"
(
/
%
ꢇꢉ  
/
$
"7  
%
%@  
7@  
"
'
&
ꢇꢆ  
/
$
1
7
$
$
ꢇꢁ  
/
$
1
(
/
%
ꢇꢂ  
/
$
1
"ꢂ  
@
0
65  
ꢇꢀ  
/
$
1
"ꢂ  
@
0
65  
ꢇꢃ  
/
$
1
"ꢀ  
@
0
65  
ꢄꢇ  
/
$
1
"ꢀ  
@
0
65  
"
.ꢃ  
DocID028515 Rev 1  
31/58  
58  
Pinout and pin description  
STCOM  
Table 7. Pin description  
Type(1) Dir.(2) RS(3)  
Pin  
Pin name  
Description  
General purpose I/O, SPI1_MOSI, AT1_CH_1,  
FSMC_PCAD_17  
1
GPIO00_3  
D
D
I/O  
I/O  
I
I
General purpose I/O, SPI1_SS, AT1_BKIN,  
FSMC_PCAD_18, USART0_SCLK  
2
GPIO00_2  
3
GPIO00_1  
DVDD_3 V3_IO  
GPIO00_0  
D
S
D
D
D
D
D
D
D
S
S
S
-
I/O  
I
I
I
I
I
I
I
I
I
I
-
I
General purpose I/O, USART0_CTS, FSMC_PCAD_19  
I/O 3.3 V supply  
4
I
5
I/O  
General purpose I/O, USART0_RTS, FSMC_PCAD_20  
USART0_RXD  
6
USART0_RXD  
USART0_TXD  
SPI0_SSn  
I
7
O
USART0_TXD  
8
OD  
SPI0_SSn  
9
SPI0_SCLK  
SPI0_MISO  
O
SPI0_SCLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
I
O
I
SPI0_MISO  
SPI0_MOSI  
SPI0_MOSI  
DVDD_1V2_FLASH  
DGND  
Embedded Flash memory 1.2 V supply  
Embedded Flash memory ground  
Embedded Flash memory 3.3 V supply  
Reserved, tie to DGND  
Boot mode selector pin 0  
Boot mode selector pin 1  
JTAG test reset - active low  
JTAG test data input  
-
DVDD_3 V3_FLASH  
RESERVED  
BOOT0  
I
-
D
D
D
D
D
D
D
S
S
A
A
S
S
S
S
S
S
A
I
I
BOOT1  
I
I
JTAG_TRSTn  
JTAG_TDI  
I
I
I
I
JTAG_TMS  
I
I
JTAG test mode select input, SWIO  
JTAG test clock input, SWCLK  
JTAG test data output, SWV  
24 MHz oscillator 1.2 V supply  
I/O 3.3 V supply  
JTAG_TCK  
I
I
JTAG_TDO  
O
I
I
DVDD_1V2_ MCLK  
DVDD_3 V3_IO  
MCLK_IN  
I
I
I
-
-
24 MHz oscillator input  
MCLK_OUT  
DVDD_3 V3_REG  
DVDD_1V2  
-
-
24 MHz oscillator output  
3.3 V input for the 1.2 V regulator  
1.2 V regulator output / external supply input  
QFS 1.2 V supply  
I
I
I/O  
I
I/O  
DVDD_1V2_QFS  
DVDD_3 V3_QFS  
DGND  
I
I
-
I
I
I
QFS 3.3 V supply  
-
QFS ground  
AVDD_5V_PGA  
RX_INN  
I
PGA 5 V supply  
I
PGA negative input  
32/58  
DocID028515 Rev 1  
STCOM  
Pin  
Pinout and pin description  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Pin name  
Description  
34  
35  
36  
RX_INP  
AGND  
ZC_IN  
A
S
A
I
-
I
I
-
I
PGA positive input  
PGA ground  
Zero crossing comparator input  
Zero crossing comparator ground reference - connect to  
AGND  
37  
ZC_AGND_REF  
A
I
I
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
AVDD_5V_AFE  
PVCC  
S
S
S
A
A
A
A
S
S
A
A
A
A
S
A
S
-
I
I
I
I
PLC AFE 5 V supply + receiver ADC supply  
PA supply  
PGND  
-
-
PA ground  
PA2_OUT  
PA2_OUT  
PA1_OUT  
PA1_OUT  
PGND  
O
O
O
O
-
O
O
O
O
-
PA2 output  
PA2 output  
PA1 output  
PA1 output  
PA ground  
PVCC  
I
I
PA supply / 5 V regulator input voltage  
PA1 inverting input  
PA1_INN  
I
I
PA1_INP  
I
I
PA1 non-inverting input  
PA2 non-inverting input  
PA2 inverting input  
PA2_INP  
I
I
PA2_INN  
I
I
AGND  
-
-
5 V regulator ground  
CSF  
I/O  
I/O  
-
I/O  
I/O  
-
Current sense feedback  
5 V regulator output / external supply input  
Reserved - connect to AGND  
Transmission predriver ground  
Transmission predriver positive output  
Transmission predriver negative output  
Transmission predriver 5 V supply  
Transmission DAC 3.3 V supply  
Transmission DAC ground  
Transmission DAC positive output  
Transmission DAC negative output  
I/O 3.3 V supply  
AVDD_5V  
RESERVED  
AGND  
S
A
A
S
S
S
A
A
S
-
-
TXDRV_OUTP  
TXDRV_OUTN  
AVDD_5V_TXDRV  
AVDD_3 V3_DAC  
AGND  
O
O
I
O
O
I
I
I
-
-
DAC_OUTP  
DAC_OUTN  
DVDD_3 V3_IO  
O
O
I
O
O
I
General purpose I/O, USART4_SCLK, AT0_BKIN,  
SPI2_SSn, I2C2_SCL  
64  
65  
GPIO10_7  
GPIO10_6  
D
D
I/O  
I/O  
I
I
General purpose I/O, USART4_TXD, AT0_CH_1,  
SPI2_SCLK, I2C2_SDA  
DocID028515 Rev 1  
33/58  
58  
Pinout and pin description  
STCOM  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Description  
Pin  
Pin name  
General purpose I/O, USART4_RXD, AT0_CH_2,  
SPI2_MISO, I2C0_SCL  
66  
GPIO10_5  
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I
I
I
I
General purpose I/O, USART4_CTS, AT0_CH_3,  
SPI2_MOSI, I2C0_SDA  
67  
68  
69  
GPIO10_4  
GPIO10_3  
GPIO10_2  
General purpose I/O, USART4_RTS, AT0_CH_4,  
USART3_CTS, I2C2_SMBA  
General purpose I/O, AT0_CHN_1, USART3_RTS,  
I2C0_SMBA  
70  
71  
72  
73  
74  
75  
GPIO10_1  
GPIO10_0  
D
D
S
S
D
D
I/O  
I/O  
I
I
I
General purpose I/O, AT0_CHN_2, USART3_RXD  
General purpose I/O, AT0_CHN_3, USART3_TXD  
3.3 V input for the 1.2 V regulator  
DVDD_3 V3_REG  
DVDD_1V2  
RESETn  
I
I/O  
I/O  
1.2 V regulator output / external supply input  
Reset input, open drain output - active low  
I/OD I/OD  
GPIO09_7  
I/O  
I/O  
I
I
General purpose I/O, AT0_ETR, ETM_SWO, SPI4_SCLK  
General purpose I/O, USART3_SCLK, ETM_DATA_3,  
SPI4_MISO  
76  
GPIO09_6  
D
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
GPIO09_5  
GPIO09_4  
GPIO09_3  
GPIO09_2  
GPIO09_1  
GPIO09_0  
DVDD_3 V3_IO  
N. C.  
D
D
D
D
D
D
S
-
I/O  
I
I
General purpose I/O, ETM_DATA_2, SPI4_MOSI  
General purpose I/O, ETM_DATA_1, SPI4_SSn  
General purpose I/O, ETM_DATA_0, USART2_CTS  
General purpose I/O, ETM_CLKOUT, USART2_RTS  
General purpose I/O, CAN1_RX, USART2_RXD  
General purpose I/O, CAN1_TX, USART2_TXD  
I/O 3.3 V supply  
I/O  
I/O  
I
I/O  
I
I/O  
I
I/O  
I
I
-
I
-
-
-
-
-
-
-
-
-
-
-
-
I
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
N. C.  
-
-
Not connected  
RTC_TAMPB  
D
I/O  
Tamper input B, RTC clock output  
34/58  
DocID028515 Rev 1  
STCOM  
Pin  
Pinout and pin description  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Pin name  
Description  
97  
98  
RTC_TAMPA  
VBAT  
D
S
S
A
A
A
A
I
I
I
-
-
I
I
I
I
I
-
-
I
I
Tamper input A  
2.0 to 3.6 V battery supply input  
I/O 3.3 V supply  
99  
DVDD_3 V3_IO  
OSC32_OUT  
OSC32_IN  
100  
101  
102  
103  
32 kHz oscillator output  
32 kHz oscillator input  
ADC_VREFN  
ADC_VREFP  
General purpose ADC negative reference voltage input  
General purpose ADC positive reference voltage input  
General purpose I/O, ADC_MUX_VIN_5, SPI3_SSn,  
USART2_SCLK  
104  
105  
106  
GPIO08_5  
GPIO08_4  
GPIO08_3  
D
D
D
I/O  
I/O  
I/O  
I
I
I
General purpose I/O, ADC_MUX_VIN_4, SPI3_SCLK  
General purpose I/O, ADC_MUX_VIN_3, USART1_CTS,  
SPI3_MISO  
General purpose I/O, ADC_MUX_VIN_2, USART1_RTS,  
SPI3_MOSI  
107  
108  
109  
GPIO08_2  
GPIO08_1  
GPIO08_0  
D
D
D
I/O  
I/O  
I/O  
I
I
I
General purpose I/O, ADC_MUX_VIN_1, USART1_RXD,  
I2C1_SCL  
General purpose I/O, ADC_MUX_VIN_0, USART1_TXD,  
I2C1_SDA, AT1_ETR  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
GPIO07_7  
GPIO07_6  
GPIO07_5  
GPIO07_4  
GPIO07_3  
GPIO07_2  
GPIO07_1  
GPIO07_0  
GPIO06_7  
GPIO06_6  
GPIO06_5  
GPIO06_4  
D
D
D
D
D
D
D
D
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
General purpose I/O, AT1_CHN_3, SPI1_SCLK  
General purpose I/O, AT1_CHN_2, SPI1_MISO  
General purpose I/O, AT1_CHN_1, SPI1_MOSI  
General purpose I/O, AT1_CH_4, SPI1_SSn  
General purpose I/O, AT1_CH_3  
General purpose I/O, AT1_CH_2  
General purpose I/O, AT1_CH_1, CAN0_RX  
General purpose I/O, AT1_BKIN, CAN0_TX  
General purpose I/O, SPI4_SSn, ETM_SWO  
General purpose I/O, SPI4_SCLK, ETM_DATA_3  
General purpose I/O, SPI4_MISO, ETM_DATA_2  
General purpose I/O, SPI4_MOSI, ETM_DATA_1  
General purpose I/O, USART3_CTS, I2C1_SCL,  
ETM_DATA_0  
122  
123  
124  
GPIO06_3  
GPIO06_2  
GPIO06_1  
D
D
D
I/O  
I/O  
I/O  
I
I
I
General purpose I/O, USART3_RTS, I2C1_SDA,  
ETM_CLKOUT  
General purpose I/O, USART3_RXD, I2C1_SMBA,  
I2C2_SCL  
125  
126  
GPIO06_0  
GPIO05_7  
D
D
I/O  
I/O  
I
I
General purpose I/O, USART3_TXD, I2C2_SDA  
General purpose I/O, USART3_SCLK, I2C2_SMBA  
DocID028515 Rev 1  
35/58  
58  
Pinout and pin description  
STCOM  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Description  
Pin  
Pin name  
127  
128  
129  
130  
131  
132  
GPIO05_6  
GPIO05_5  
D
D
D
S
D
D
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
General purpose I/O, USART0_CTS  
General purpose I/O, USART0_RTS  
General purpose I/O, MCO1  
I/O 3.3 V supply  
GPIO05_4  
DVDD_3 V3_IO  
GPIO05_3  
I/O  
I/O  
General purpose I/O, FSMC_Ebar_1  
GPIO05_2  
General purpose I/O, USART2_SCLK, FSMC_Ebar_0  
General purpose I/O, USART2_RXD, SPI2_SSn,  
FSMC_BLn_0  
133  
GPIO05_1  
D
I/O  
I
General purpose I/O, USART2_TXD, SPI2_SCLK,  
FSMC_BLn_1  
134  
135  
136  
GPIO05_0  
DVDD_3 V3_IO  
GPIO04_7  
D
S
D
I/O  
I
I
I
I
I/O 3.3 V supply  
General purpose I/O, USART2_CTS, SPI2_MISO,  
FSMC_PCDA_0  
I/O  
General purpose I/O, USART2_RTS, SPI2_MOSI,  
FSMC_PCDA_1, MCO1  
137  
GPIO04_6  
D
I/O  
I
138  
139  
140  
141  
142  
143  
144  
145  
146  
GPIO04_5  
GPIO04_4  
GPIO04_3  
GPIO04_2  
GPIO04_1  
GPIO04_0  
GPIO03_7  
GPIO03_6  
GPIO03_5  
D
D
D
D
D
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
General purpose I/O, FSMC_PCDA_2  
General purpose I/O, FSMC_PCDA_3  
General purpose I/O, FSMC_PCDA_4  
General purpose I/O, FSMC_PCDA_5  
General purpose I/O, FSMC_PCDA_6  
General purpose I/O, FSMC_PCDA_7  
General purpose I/O, SPI3_SSn, FSMC_PCDA_8  
General purpose I/O, SPI3_SCLK, FSMC_PCDA_9  
General purpose I/O, SPI3_MISO, FSMC_PCDA_10  
General purpose I/O, SPI3_MOSI, FSMC_PCDA_11,  
USART3_SCLK  
147  
148  
149  
150  
151  
GPIO03_4  
GPIO03_3  
GPIO03_2  
GPIO03_1  
GPIO03_0  
D
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
General purpose I/O, SPI2_SSn, USART3_CTS,  
FSMC_PCDA_12  
General purpose I/O, SPI2_SCLK, USART3_RTS,  
FSMC_PCDA_13  
General purpose I/O, SPI2_MISO, USART3_RXD,  
FSMC_PCDA_14  
General purpose I/O, SPI2_MOSI, USART3_TXD,  
FSMC_PCDA_15  
152  
153  
154  
155  
DVDD_1V2  
DVDD_3 V3_REG  
DVDD_3 V3_IO  
RESERVED  
S
S
S
-
I/O  
I/O  
1.2 V regulator output / external supply input  
3.3 V input for the 1.2 V regulator  
I/O 3.3 V supply  
I
I
I
I
-
-
Reserved - connect to DGND  
36/58  
DocID028515 Rev 1  
STCOM  
Pinout and pin description  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Description  
Pin  
Pin name  
General purpose I/O, AT0_BKIN, FSMC_Lbar,  
USART4_SCLK  
156  
GPIO02_7  
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I
I
I
I
General purpose I/O, AT0_CH_1, FSMC_PCWEn,  
USART4_TXD  
157  
158  
159  
GPIO02_6  
GPIO02_5  
GPIO02_4  
General purpose I/O, AT0_CHN_1, FSMC_PCOEn,  
USART4_RXD  
General purpose I/O, AT0_CH_2, FSMC_PCAD_0,  
USART4_CTS  
General purpose I/O, AT0_CHN_2, FSMC_PCAD_1,  
USART4_RTS  
160  
161  
162  
GPIO02_3  
GPIO02_2  
GPIO02_1  
D
D
D
I/O  
I/O  
I/O  
I
I
I
General purpose I/O, AT0_CH_3, FSMC_PCAD_2  
General purpose I/O, AT0_CHN_3, I2C2_SCL,  
FSMC_PCAD_3  
General purpose I/O, AT0_CH_4, I2C2_SDA,  
FSMC_PCAD_4  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
GPIO02_0  
GPIO01_7  
GPIO01_6  
GPIO01_5  
GPIO01_4  
GPIO01_3  
GPIO01_2  
GPIO01_1  
GPIO01_0  
GPIO00_7  
GPIO00_6  
D
D
D
D
D
D
D
D
D
D
D
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
General purpose I/O, AT0_ETR, I2C2_SMBA,  
FSMC_PCAD_5, I2C1_SMBA  
General purpose I/O, I2C1_SCL, CAN1_RX,  
FSMC_PCAD_6  
General purpose I/O, I2C1_SDA, CAN1_TX,  
FSMC_PCAD_7  
General purpose I/O, USART1_CTS, CAN0_RX,  
FSMC_PCAD_8  
General purpose I/O, USART1_RTS, CAN0_TX,  
FSMC_PCAD_9  
General purpose I/O, USART1_RXD, AT1_ETR,  
FSMC_PCAD_10  
General purpose I/O, USART1_TXD, AT1_CHN_3,  
FSMC_PCAD_11  
General purpose I/O, I2C0_SMBA, AT1_CHN_2,  
FSMC_PCAD_12, USART1_SCLK  
General purpose I/O, I2C0_SCL, AT1_CHN_1,  
FSMC_PCAD_13  
General purpose I/O, I2C0_SDA, AT1_CH_4,  
FSMC_PCAD_14  
General purpose I/O, SPI1_SCLK, AT1_CH_3,  
FSMC_PCAD_15  
174  
175  
GPIO00_5  
D
S
I/O  
I
I
I
DVDD_3 V3_IO  
I/O 3.3 V supply  
DocID028515 Rev 1  
37/58  
58  
Pinout and pin description  
STCOM  
Table 7. Pin description (continued)  
Type(1) Dir.(2) RS(3)  
Description  
Pin  
Pin name  
General purpose I/O, SPI1_MISO, AT1_CH_2,  
FSMC_PCAD_16  
176  
177  
GPIO00_4  
EXPAD  
D
S
I/O  
-
I
-
Exposed pad - DGND  
1. Type: D = digital; A = analog; S = supply/ground.  
2. Direction: I = input; O = output; I/O = input/output, OD = open drain.  
3. Reset status: I = input, I/O = input/output, O = output.  
38/58  
DocID028515 Rev 1  
STCOM  
Pinout and pin description  
2.2  
GPIOs multiplexing scheme  
In the STCOM, peripherals are connected to I/Os through a multiplexer. At a time one single  
peripheral can control the I/Os. In this way, there is no conflict between peripherals sharing  
the same I/O pins.  
Thanks to a set of configuration registers, the user can select one of the 4 possible alternate  
functions for each pin as described in Table 8.  
Table 8. GPIOs multiplexing scheme  
Pin name  
Selection: 000  
Selection: 001  
Selection: 010  
Selection: 011  
GPIO00_0  
GPIO00_1  
GPIO00_2  
GPIO00_3  
GPIO00_4  
GPIO00_5  
GPIO00_6  
GPIO00_7  
GPIO01_0  
GPIO01_1  
GPIO01_2  
GPIO01_3  
GPIO01_4  
GPIO01_5  
GPIO01_6  
GPIO01_7  
GPIO02_0  
GPIO02_1  
GPIO02_2  
GPIO02_3  
GPIO02_4  
GPIO02_5  
GPIO02_6  
GPIO02_7  
GPIO03_0  
GPIO03_1  
GPIO03_2  
GPIO03_3  
GPIO03_4  
USART0_RTS  
USART0_CTS  
SPI1_SS  
FSMC_PCAD_20  
FSMC_PCAD_19  
FSMC_PCAD_18  
FSMC_PCAD_17  
FSMC_PCAD_16  
FSMC_PCAD_15  
FSMC_PCAD_14  
FSMC_PCAD_13  
FSMC_PCAD_12  
FSMC_PCAD_11  
FSMC_PCAD_10  
FSMC_PCAD_9  
FSMC_PCAD_8  
FSMC_PCAD_7  
FSMC_PCAD_6  
FSMC_PCAD_5  
FSMC_PCAD_4  
FSMC_PCAD_3  
FSMC_PCAD_2  
FSMC_PCAD_1  
FSMC_PCAD_0  
FSMC_PCOEn  
AT1_BKIN  
AT1_CH_1  
AT1_CH_2  
AT1_CH_3  
AT1_CH_4  
AT1_CHN_1  
AT1_CHN_2  
AT1_CHN_3  
AT1_ETR  
USART0_SCLK  
SPI1_MOSI  
SPI1_MISO  
SPI1_SCLK  
I2C0_SDA  
I2C0_SCL  
I2C0_SMBA  
USART1_TXD  
USART1_RXD  
USART1_RTS  
USART1_CTS  
I2C1_SDA  
USART1_SCLK  
CAN0_TX  
CAN0_RX  
CAN1_TX  
CAN1_RX  
I2C2_SMBA  
I2C2_SDA  
I2C2_SCL  
I2C1_SCL  
AT0_ETR  
I2C1_SMBA  
AT0_CH_4  
AT0_CHN_3  
AT0_CH_3  
AT0_CHN_2  
AT0_CH_2  
AT0_CHN_1  
AT0_CH_1  
AT0_BKIN  
USART4_RTS  
USART4_CTS  
USART4_RXD  
USART4_TXD  
USART4_SCLK  
FSMC_PCWEn  
FSMC_Lbar  
SPI2_MOSI  
SPI2_MISO  
SPI2_SCLK  
SPI2_SS  
USART3_TXD  
USART3_RXD  
USART3_RTS  
USART3_CTS  
FSMC_PCDA_15  
FSMC_PCDA_14  
FSMC_PCDA_13  
FSMC_PCDA_12  
FSMC_PCDA_11  
SPI3_MOSI  
USART3_SCLK  
DocID028515 Rev 1  
39/58  
58  
 
Pinout and pin description  
STCOM  
Table 8. GPIOs multiplexing scheme (continued)  
Pin name  
Selection: 000  
Selection: 001  
Selection: 010  
Selection: 011  
GPIO03_5  
GPIO03_6  
GPIO03_7  
GPIO04_0  
GPIO04_1  
GPIO04_2  
GPIO04_3  
GPIO04_4  
GPIO04_5  
GPIO04_6  
GPIO04_7  
GPIO05_0  
GPIO05_1  
GPIO05_2  
GPIO05_3  
GPIO05_4  
GPIO05_5  
GPIO05_6  
GPIO05_7  
GPIO06_0  
GPIO06_1  
GPIO06_2  
GPIO06_3  
GPIO06_4  
GPIO06_5  
GPIO06_6  
GPIO06_7  
GPIO07_0  
GPIO07_1  
GPIO07_2  
GPIO07_3  
GPIO07_4  
GPIO07_5  
GPIO07_6  
GPIO07_7  
SPI3_MISO  
SPI3_SCLK  
SPI3_SS  
FSMC_PCDA_10  
FSMC_PCDA_9  
FSMC_PCDA_8  
FSMC_PCDA_7  
FSMC_PCDA_6  
FSMC_PCDA_5  
FSMC_PCDA_4  
FSMC_PCDA_3  
FSMC_PCDA_2  
FSMC_PCDA_1  
FSMC_PCDA_0  
FSMC_BLn_1  
USART2_RTS  
USART2_CTS  
USART2_TXD  
USART2_RXD  
USART2_SCLK  
SPI2_MOSI  
SPI2_MISO  
SPI2_SCLK  
SPI2_SS  
FSMC_BLn_0  
FSMC_Ebar_0  
FSMC_Ebar_1  
MCO1  
USART0_RTS  
USART0_CTS  
USART3_SCLK  
USART3_TXD  
USART3_RXD  
USART3_RTS  
USART3_CTS  
SPI4_MOSI  
SPI4_MISO  
SPI4_SCLK  
SPI4_SS  
I2C2_SMBA  
I2C2_SDA  
I2C2_SCL  
I2C1_SMBA  
I2C1_SDA  
I2C1_SCL  
ETM_CLKOUT  
ETM_DATA_0  
ETM_DATA_1  
ETM_DATA_2  
ETM_DATA_3  
ETM_SWO  
AT1_BKIN  
CAN0_TX  
CAN0_RX  
AT1_CH_1  
AT1_CH_2  
AT1_CH_3  
AT1_CH_4  
SPI1_SS  
SPI1_MOSI  
SPI1_MISO  
SPI1_SCLK  
AT1_CHN_1  
AT1_CHN_2  
AT1_CHN_3  
40/58  
DocID028515 Rev 1  
STCOM  
Pinout and pin description  
Table 8. GPIOs multiplexing scheme (continued)  
Pin name  
Selection: 000  
Selection: 001  
Selection: 010  
Selection: 011  
GPIO08_0  
GPIO08_1  
GPIO08_2  
GPIO08_3  
GPIO08_4  
GPIO08_5  
GPIO09_0  
GPIO09_1  
GPIO09_2  
GPIO09_3  
GPIO09_4  
GPIO09_5  
GPIO09_6  
GPIO09_7  
GPIO10_0  
GPIO10_1  
GPIO10_2  
GPIO10_3  
GPIO10_4  
GPIO10_5  
GPIO10_6  
GPIO10_7  
ADC_CH_0  
ADC_CH_1  
ADC_CH_2  
ADC_CH_3  
ADC_CH_4  
ADC_CH_5  
USART1_TXD  
USART1_RXD  
USART1_RTS  
USART1_CTS  
I2C1_SDA  
I2C1_SCL  
AT1_ETR  
SPI3_MOSI  
SPI3_MISO  
SPI3_SCLK  
SPI3_SS  
USART2_SCLK  
USART2_TXD  
USART2_RXD  
USART2_RTS  
USART2_CTS  
SPI4_SS  
CAN1_TX  
CAN1_RX  
ETM_CLKOUT  
ETM_DATA_0  
ETM_DATA_1  
ETM_DATA_2  
ETM_DATA_3  
ETM_SWO  
USART3_TXD  
USART3_RXD  
USART3_RTS  
USART3_CTS  
SPI2_MOSI  
SPI2_MISO  
SPI2_SCLK  
SPI2_SS  
1SPI4_MOSI  
SPI4_MISO  
USART3_SCLK  
AT0_ETR  
SPI4_SCLK  
AT0_CHN_3  
AT0_CHN_2  
AT0_CHN_1  
AT0_CH_4  
AT0_CH_3  
AT0_CH_2  
AT0_CH_1  
AT0_BKIN  
I2C0_SMBA  
I2C2_SMBA  
I2C0_SDA  
I2C0_SCL  
I2C2_SDA  
I2C2_SCL  
USART4_RTS  
USART4_CTS  
USART4_RXD  
USART4_TXD  
USART4_SCLK  
DocID028515 Rev 1  
41/58  
58  
Memory map  
STCOM  
3
Memory map  
Figure 8. Memory map  
Y
''''''''  
Yꢆ  
''''  
Yꢆ  
''''  
Yꢆ  
''''  
3FTFSWFE  
#BTJD")#"55  
3FTFSWFE  
3FTFSWFE  
Yꢅ  
ꢃ  
Yꢆ  
'ꢃ  
Yꢆ  
$  
Yꢆ  
'ꢃ  
Y
''''''  
Yꢆ  
&'''  
Yꢆ  
#'''  
Yꢆ  
&'''  
'4. # B  
OLꢀ  
#BTJD")#%  
.
"$  
$
0. "1#(1*0  
$
0
. "  
1
#(1*0  
Yꢅ  
ꢃ  
Yꢆ  
&  
Yꢆ  
#ꢃ  
ꢃꢃ  
Yꢆ  
&  
Y
''''''  
Yꢆ  
%'''  
Yꢆ  
"'''  
Yꢆ  
%'''  
'4. # B  
OLꢃ  
#BTJD"1#'4  
.
$
$
0. "1#(1*0  
$
0. "1#(1*0  
Yꢅ  
ꢃ  
Yꢆ  
%  
Yꢆ  
"ꢃ  
ꢃꢃ  
Yꢆ  
%  
Y
'''''''  
Yꢆ  
$'''  
Yꢆ  
'''  
Yꢆ  
$'''  
3FTFSWFE  
$SZQUP  
#BTJD"1#. *4  
$
$
0. "1#(1*0  
$
0. "1#(1*0  
Yꢆ  
ꢅ  
Yꢆ  
$  
Yꢆ  
ꢇ  
Yꢆ  
$  
Yꢆ  
'''  
Yꢆ  
#'''  
Yꢆ  
'''  
Yꢆ  
#'''  
#BTJD"1#F'-"4  
)
$
0. "1#(1*0  
$
0. "1#(1*0  
Yꢆ  
ꢃ  
Yꢆ  
"ꢃ  
ꢃꢃ  
Yꢆ  
ꢄ  
Yꢆ  
#ꢃ  
ꢃꢃ  
Yꢆ  
''''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
"'''  
3FTFSWFE  
3FTFSWFE  
#BTJD"1#4: $53  
-
$
0. "1#(1*0  
$
0. "1#(1*0  
Yꢆ  
ꢃ  
Yꢆ  
ꢇ  
Yꢆ  
ꢈ  
Yꢆ  
"ꢃ  
ꢃꢃ  
Yꢆ  
''''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
#BTJD"1#(15ꢈ  
#BTJD"1#(15ꢅ  
#BTJD"1#(15ꢉ  
#BTJD"1#(15ꢆ  
#BTJD"1#(15ꢁ  
#BTJD"1#(15ꢂ  
#BTJD"1#(15ꢀ  
#BTJD"1#(15ꢃ  
$
0
. "1#"5ꢃ  
$
0. "1#(1*0  
Yꢆ  
'ꢃ  
ꢃꢃ  
Yꢆ  
ꢄ  
Yꢆ  
ꢅ  
Yꢆ  
ꢇ  
Yꢆ  
&'''  
Yꢆ  
ꢄ  
''  
Yꢆ  
'''  
Yꢆ  
'''  
$
PN  
$
0
. "1#41*ꢀ  
$
0
. "1#"5ꢀ  
Yꢆ  
ꢃ  
Yꢆ  
ꢄ  
ꢃꢃ  
Yꢆ  
ꢉ  
Yꢆ  
ꢄ  
Yꢆ  
''''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
3FTFSWFE  
$
0
. "1#41*ꢃ  
$
0. "1#"%  
$
Yꢆ  
$  
Yꢆ  
ꢈ  
Yꢆ  
ꢆ  
Yꢆ  
ꢈ  
Yꢆ  
#'''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
$
PN  
$
0
. "1#*ꢂ  
$ꢃ  
$
0. "1#41*ꢆ  
Yꢆ  
ꢃ  
Yꢆ  
ꢅ  
Yꢆ  
ꢁ  
Yꢆ  
ꢅ  
Yꢆ  
''''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
#BTJD  
$
0. "1#$"/  
$
0. "1#41*ꢁ  
Yꢆ  
ꢃ  
Yꢆ  
ꢉ  
Yꢆ  
ꢂ  
Yꢆ  
ꢉ  
Y
'''''''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
3FTFSWFE  
$
0
. "  
1
# 6  
"
3
5ꢀ  
$
0. "1#41*ꢂ  
Yꢂ  
ꢁ  
Yꢆ  
ꢆ  
Yꢆ  
ꢀ  
Yꢆ  
ꢆ  
Yꢂ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
*1 ꢊSF  
H
T
$
0
. "  
1
# 6  
"
3
5ꢃ  
$
0
. "1#*ꢂ  
$
Yꢂ  
ꢂ  
Yꢆ  
ꢃ  
Yꢆ  
ꢁ  
Yꢆ  
ꢁ  
Yꢂ  
'''  
Yꢆ  
'''  
Yꢆ  
'''  
*1 $ ꢍ,ꢏ  
$
0. "1#$"/  
Yꢂ  
ꢃ  
Yꢆ  
ꢂ  
Yꢆ  
''''  
Yꢆ  
ꢂ  
3FTFSWFE  
Yꢂ  
''''  
Yꢆ  
'''  
Yꢆ  
ꢅ  
Yꢆ  
'''  
3"  
ꢊꢅ  
,
#BTJD"1#8  
8
%
0
(
$
0
. "  
1
#6  
"
3
5ꢁ  
Yꢂ  
ꢃ  
Yꢆ  
ꢀ  
Yꢆ  
'''  
Yꢆ  
ꢀ  
$ SZQUP" 1 # ꢊ53  
/ (  
Yꢂ  
''''  
Yꢆ  
'''  
Yꢆ  
ꢉ  
Yꢆ  
'''  
3"  
ꢊꢅ  
,
#BTJD"1#35$  
$
0
. "  
1
#6  
"
3
5ꢂ  
Yꢂ  
ꢃ  
Yꢆ  
'''  
Yꢆ  
ꢃ  
Yꢆ  
ꢃ  
$SZQUP"1#13  
/(  
Y
'''''''  
Yꢆ  
ꢆ  
Yꢆ  
'''  
$SZQUP"1#"&  
4
Yꢆ  
ꢁ  
Yꢆ  
'''  
$SZQUP"1#$  
3
$
Yꢆ  
ꢂ  
Yꢃ  
ꢃ  
Yꢆ  
'''  
$SZQUP"  
1
#6  
4
"
3
5ꢆ  
Yꢃ  
'''''  
Yꢆ  
ꢀ  
F
'-"4  
)
ꢍ3  
F
B 8SJUFꢏ  
Yꢃ  
ꢃꢃ ꢃ  
Yꢆ  
'''  
$SZQUP"1#*ꢂ  
$
Yꢆ  
ꢃ  
"
.ꢃ  
42/58  
DocID028515 Rev 1  
STCOM  
Electrical characteristics  
4
Electrical characteristics  
4.1  
Absolute maximum ratings  
Table 9. Absolute maximum ratings - voltage  
Symbol  
Parameter  
Min.  
Max.  
Unit  
PVCC  
Line driver supply voltage range  
PGND -0.3  
AGND -0.3  
20  
V
V
AVDD_5V  
5 V internal regulator voltage range  
Min. (5.5, PVCC +0.3)  
AVDD_5V_AFE,  
5 V PLC AFE supply voltage range  
AGND -0.3  
Min. (5.5, PVCC +0.3)  
V
AVDD_5V_PGA,  
AVDD_5V_TXDRV  
AVDD_3 V3_DAC 3.3 V PLC AFE supply voltage range  
AGND -0.3  
GND-0.3  
5.2  
5.2  
5.2  
2.4  
2.4  
V
V
V
V
V
V
DVDD_3 V3_IO,  
I/O supply voltage range  
DVD_3 V3_REG  
DVDD_3 V3_QFS 3.3 V QFS supply voltage range  
DGND -0.3  
GND -0.3  
GND -0.3  
GND -0.3  
DVDD_1V2,  
1.2 V digital supply voltage range  
DVDD_1V2_FLASH  
DVDD_1V2_QFS  
ADC_VREFP  
1.2 V QFS supply voltage range  
General purpose ADC positive reference  
voltage range  
Min. (5.2,  
DVDD_3V3_IO + 0.3)  
General purpose ADC negative  
reference voltage range  
Min. (5.2,  
DVDD_3V3_IO + 0.3)  
ADC_VREFN  
GND -0.3  
V
VBAT  
DGND, AGND  
PGND  
VBAT voltage range  
GND -0.3  
GND -0.3  
AGND -0.3  
5.2  
V
V
V
Variations between different ground pins  
Variations between different ground pins  
GND +0.3  
AGND +0.3  
Min. (5.2,  
DVDD_3V3_IO + 0.3)  
V(DIG_IN)  
Input voltage range  
GND -0.3  
V
PA_OUT  
PA_IN  
PA output pins voltage range  
PA input pins voltage range  
RX_IN input pins voltage range  
PGND -0.3  
AGND -0.3  
-5.5  
Min. (20, PVCC +0.3)  
Min. (20, PVCC +0.3)  
9
V
V
V
RX_IN  
Min. (5.5,  
AVDD_5V_ AFE +0.3)  
ZC_IN  
ZC_IN voltage range  
-5.5  
V
V
Min. (5.2,  
AVDD_5V_ AFE +0.3)  
DAC_OUT  
DAC output pins voltage range  
AGND -0.3  
Min (. 5.5,  
AVDD_5V_ AFE +0.3)  
TXDRV_OUT  
CSF  
TXDRV output voltage range  
CSF pin voltage range  
AGND -0.3  
AGND-0.3  
GND-0.3  
V
V
V
AVDD_5V +0.3  
Min. (5.2,  
DVDD_3 V3_IO+0.3)  
V(MCLK)  
24 MHz oscillator pins voltage range  
DocID028515 Rev 1  
43/58  
58  
Electrical characteristics  
STCOM  
Table 9. Absolute maximum ratings - voltage (continued)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Min. (5.2,  
DVDD_3V3_IO + 0.3)  
V(OSC32)  
32 kHz oscillator pins voltage range  
GND-0.3  
V
Maximum withstanding voltage range  
Test condition:  
V(ESD)  
ANSI-ESDA-JEDEC_JS-001 “human  
body model” acceptance criteria: “normal  
performance”  
-2  
+2  
kV  
Table 10. Absolute maximum ratings - current  
Symbol  
Parameter  
Min.  
Max.  
Unit  
I(PA_OUT)  
PA repetitive RMS current  
1.5  
A rms  
4.2  
Thermal characteristics  
Table 11. Thermal characteristics  
Parameter Conditions  
Junction temperature  
Symbol  
Min.  
Max.  
Unit  
T(J)  
125  
85  
°C  
°C  
°C  
T(AMB)  
T(STG)  
Operating ambient temperature  
Storage temperature  
-40  
-50  
150  
44/58  
DocID028515 Rev 1  
STCOM  
Electrical characteristics  
4.3  
Operating conditions  
T(AMB) = -40 to +85 °C, T(J) < 125 °C, PVCC = 18 V unless otherwise specified.  
All typical values are referred to T(AMB) = 25 °C.  
Power supply characteristics  
Table 12. Analog supply characteristics  
Symbol  
Parameter(1)  
Conditions  
Min. Typ. Max. Unit  
V(PVCC)  
Line driver supply voltage  
8
15  
18  
V
Line driver supply current  
Rx mode  
I(PVCC)_RX  
No load on AVDD_5V  
No load on AVDD_5V  
500  
A  
40  
20  
mA  
mA  
Dual power amplifier  
configuration  
Line driver supply current  
Tx mode, no load  
I(PVCC)_TX  
No load on AVDD_5V  
Single power amplifier  
configuration  
Line driver supply voltage  
turn-on threshold  
V(PVCC)_TH  
V(PVCC)_TL  
7
V
V
Line driver supply voltage  
turn-off threshold  
6.5  
Line driver supply voltage  
hysteresis  
V(PVCC)_HYST  
V(AVDD_5V)  
0.5  
5
V
V
5 V regulator output  
voltage , no load  
4.5  
5.5  
5 V PLC AFE supply  
voltage turn-on threshold  
V(AVDD_5V_AFE)_TH  
V(AVDD_5V_AFE)_TL  
V(AVDD_5V_AFE)_HYST  
4.33  
4.26  
60  
V
5 V PLC AFE supply  
voltage turn-off threshold  
V
5 V PLC AFE supply  
voltage hysteresis  
mV  
mA  
See(2)  
5 V PLC AFE supply  
current Rx mode  
54  
PGA maximum gain  
See(2)  
I(5V)_RX  
I(5V)_TX  
5 V PLC AFE supply  
current Rx active mode  
PGA maximum gain  
Rx in progress  
61  
mA  
5 V PLC AFE supply  
current Tx mode, no load  
See(2)  
9
1.6  
6
mA  
mA  
mA  
I(AVDD_3V3_DAC)  
RX  
3.3 V PLC AFE supply  
current Rx mode  
I(AVDD_3V3_DAC)  
TX  
DAC full scale current = 4 mA  
Sine wave output f = 100 kHz  
3.3 V PLC AFE supply  
current Tx mode  
DocID028515 Rev 1  
45/58  
58  
Electrical characteristics  
STCOM  
Table 12. Analog supply characteristics (continued)  
Symbol  
Parameter(1)  
Conditions  
Min. Typ. Max. Unit  
V(DVDD_3V3_IO)  
Digital I/O supply voltage  
3.0  
3.3  
3.6  
V
V
Digital I/O supply voltage  
turn-on threshold  
V(DVDD_3V3_IO)_TH  
V(DVDD_3V3_IO)_TL  
V(DVDD_3V3_IO)_HYST  
V(DVDD_3V3_REG)  
2.82  
Digital I/O supply voltage  
turn-off threshold  
2.7  
0.1  
3.3  
V
V
V
Digital I/O supply voltage  
hysteresis  
1.2 V regulator input  
voltage  
Low power mode  
1.233  
1.285  
V
V
1.2 V regulator output  
voltage  
V(DVDD_1V2)  
I(DVDD_1V2)  
High power mode  
Low power mode  
High power mode  
15  
mA  
1.2 V regulator output  
current  
300 mA  
V
1.2 V supply voltage  
turn-on threshold  
V(DVDD_1V2)_TH  
V(DVDD_1V2)_TL  
Low and high power modes  
Low and high power modes  
1.11  
1.2 V supply voltage  
turn-off threshold  
1.025  
V
Low power mode  
High power mode  
86  
86  
mV  
mV  
1.2 V supply voltage  
hysteresis  
V(DVDD_1V2)_HYST  
1. Based on characterization, not tested in production.  
2. I(5 V) = I(AVDD_5V_AFE) + I(AVDD_5V_PGA) + I(AVDD_5V_TXDRV).  
Table 13. Digital supply characteristics - RTE  
Parameter(1)  
Conditions  
1.2 V digital supply current RTE frequency = 48 MHz see(2)  
Symbol  
Min. Typ. Max. Unit  
I(DVDD_1V2)  
I(DVDD_1V2)  
29  
68  
mA  
mA  
(2)  
1.2 V digital supply current RTE frequency = 120 MHz see  
1. Based on characterization, not tested in production.  
2. The tests are performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG, QFS. Cortex™ frequency equals to 48 MHz and Cortex™ fetching by RAM. The value is calculated by measuring  
the difference in the supply current with and without RTE enabled and running.  
46/58  
DocID028515 Rev 1  
 
STCOM  
Electrical characteristics  
Table 14. Digital supply characteristics - Cortex™-M4 fetching from RAM  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
Cortex™ frequency = 24 MHz see(1)  
Cortex™ frequency = 24 MHz see(1)  
Cortex™ frequency = 48 MHz see(1)  
Cortex™ frequency = 48 MHz see(1)  
Cortex™ frequency = 72 MHz see(1)  
Cortex™ frequency = 72 MHz see(1)  
Cortex™ frequency = 96 MHz see(1)  
Cortex™ frequency = 96 MHz see(1)  
9.6  
0.9  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
16.4  
0.9  
23.8  
0.9  
30.9  
0.9  
1. All the tests are performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG, QFS.  
Table 15. Digital supply characteristics - Cortex™-M4 fetching data from eFlash  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
Cortex™ frequency = 24 MHz see(1)  
Cortex™ frequency = 24 MHz see(1)  
Cortex™ frequency = 48 MHz see(1)  
Cortex™ frequency = 48 MHz see(1)  
Cortex™ frequency = 72 MHz see(1)  
Cortex™ frequency = 72 MHz see(1)  
Cortex™ frequency = 96 MHz see(1)  
Cortex™ frequency = 96 MHz see(1)  
11.2  
3.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
17.6  
3.6  
24.2  
3.7  
30.6  
3.8  
1. All the tests are performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG, QFS.  
Table 16. Digital supply characteristics - DOZE (sleep)/deepsleep mode  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
I(DVDD_1V2) 1.2 V digital supply current  
I(DVDD_3V3) 3.3 V digital supply current  
Cortex™ in DOZE mode see(1)  
Cortex™ in DOZE mode see(1)  
Cortex™ in deepsleep mode see(1)  
Cortex™ in deepsleep mode see(1)  
6.5  
0.9  
6.5  
0.9  
mA  
mA  
mA  
mA  
1. The test is performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG.  
DocID028515 Rev 1  
47/58  
58  
Electrical characteristics  
Symbol  
STCOM  
Table 17. Supply characteristics - QFS  
Parameter  
Conditions  
Min. Typ. Max. Unit  
QFS power consumption from 1.2 V  
power supply  
I(DVDD_1V2_QFS)  
I(DVDD_3V3_QFS)  
Master clock = 24 MHz see(1)  
5.1  
1.1  
mA  
mA  
QFS power consumption from 3.3 V  
power supply  
Master clock = 24 MHz see(1)  
1. The test is performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG. The value is calculated by measuring the difference in the supply current with and without QFS enabled and running.  
Table 18. 24 MHz oscillator  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
f(MCLK)  
Crystal oscillator frequency  
24  
MHz  
pF  
External quartz crystal  
Shunt capacitance  
C0  
ESR  
CL  
3.5  
60  
15  
External quartz crystal ESR value  
See(1)  
See(1)  
MCLK_IN , MCLK_OUT load  
capacitance  
10  
pF  
1. Guaranteed by design, not tested in production.  
Table 19. 32 kHz oscillator  
Parameter Conditions  
Symbol  
Min. Typ. Max. Unit  
f(OSC32)  
Crystal oscillator frequency  
32.768  
0.9  
kHz  
pF  
External quartz crystal  
Shunt capacitance  
C0  
ESR  
CL  
External quartz crystal ESR value See(1)  
60  
k  
pF  
External quartz crystal load  
See(1)  
12.5  
capacitance  
1. Guaranteed by design, not tested in production.  
Table 20. Digital supply characteristics - I/O  
Conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
3.3 V I/O digital  
supply current  
I(DVDD_3V3_IO)  
8 GPIO toggling at 0.5 MHz with Cext ~= 50 pF see(1)  
8 GPIO toggling at 1 MHz with Cext ~= 50 pF see(1)  
8 GPIO toggling at 8 MHz with Cext ~= 50 pF see(1)  
23.0  
24.9  
49.4  
mA  
mA  
mA  
3.3 V I/O digital  
supply current  
I(DVDD_3V3_IO)  
I(DVDD_3V3_IO)  
3.3 V I/O digital  
supply current  
1. The tests are performed with the following enabled digital blocks: 2 x GPT, 2 x SPI, 2 x USART, IPC, DMA, 2 x I2C, AES,  
TRNG, QFS. Cortex™ frequency equals to 96 MHz and Cortex™ fetching by RAM. The values are calculated by measuring  
the difference in the supply current with and without 8 GPIOs enabled and toggling at the given frequency.  
48/58  
DocID028515 Rev 1  
 
 
 
STCOM  
Electrical characteristics  
Table 21. I/O characteristics  
Parameter(1)  
Symbol  
I (I/O)  
Conditions  
Min. Typ. Max. Unit  
Output current sunk by any I/Os and control pin  
Output current source by any I/Os and control pin  
See(1)  
See(1)  
8
mA  
8
1. Guaranteed by design, not tested in production.  
Table 22. Digital supply characteristics - power consumption under battery  
Parameter Conditions Min. Typ. Max. Unit  
I(DVDD_VBAT) Digital supply current under VBAT  
Symbol  
1.3  
A  
DocID028515 Rev 1  
49/58  
58  
 
Electrical characteristics  
STCOM  
4.4  
PLC analog front-end (AFE) and line driver characteristics  
4.4.1  
Line driver characteristics  
Table 23. Line driver characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Power amplifier output  
Bias voltage  
V(PAx_OUT)  
BIAS  
PVCC/2  
V
- Rx mode  
Power amplifier  
GBWP  
149  
MHz  
Gain-bandwidth product  
I(PAx_OUT)  
MAX  
Power amplifier  
Maximum output current  
1000 mA rms  
V(PAx_OUT) Power amplifier output  
HD2  
nd harmonic distortion  
V(PAx_OUT) Power amplifier output  
HD3  
rd harmonic distortion  
V(PAx_OUT) Power amplifier output  
THD Total harmonic distortion  
V(PAx_OUT) Power amplifier output  
HD2  
2nd harmonic distortion  
V(PAx_OUT) Power amplifier output  
HD3  
rd harmonic distortion  
V(PAx_OUT) Power amplifier output  
THD Total harmonic distortion  
-64  
-67  
-61  
-57  
-58  
-54  
dBc  
dBc  
dB  
VCC = 18 V,  
2
V(PA_OUT) = 13 Vpp,  
Rload = 50 ,  
3
f = 100 kHz  
V(PA_OUT) DC = PVCC/2  
dBc  
dBc  
dB  
VCC = 18 V,  
V(PA_OUT) = 13 Vpp,  
Rload = 50 ,  
3
f = 500 kHz  
V(PA_OUT) DC = PVCC/2  
PA_IN+ vs. VSS (see(1)  
)
10  
10  
pF  
pF  
dB  
dB  
C(PAx_INP), Power amplifier Input  
C(PAx_INN) capacitance  
PA_IN- vs. VSS (see(1)  
)
50 Hz  
1 kHz  
-100  
-88  
PSRR  
Power supply rejection ratio  
Ratio between PA_OUT and  
CSF output current  
CSF_RATIO  
106  
1. Not tested in production, guaranteed by design.  
50/58  
DocID028515 Rev 1  
STCOM  
Electrical characteristics  
4.4.2  
Line driver test circuit  
Figure 9. Line driver test circuit  
5ꢇ  
5ꢁ  
ꢁꢅꢂ  
9&&  
&ꢇ  
ꢁꢅꢅꢂQ)  
5ꢀ  
3$[ B,11  
3$[ B,13  
ꢁꢅꢅ  
&ꢀ  
3$[ B287  
&ꢁ  
6,*1$/ꢂ,1  
ꢁꢂ  
ꢁꢅꢅꢂQ)  
5B/2$'  
5ꢆ  
ꢁꢅꢅ  
$0ꢅꢀꢈꢉꢊ  
4.4.3  
AFE characteristics  
Transmission path characteristics  
Table 24. DAC characteristics  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
I(DAC_OUT)  
CURRENT  
Rx mode, current measured on both  
outputs  
DAC output current  
0
mA  
I(DAC_OUT)  
CURRENT  
Tx mode, current measured on both  
outputs  
DAC output current  
4
1
mA  
Vpp  
dBc  
V(DAC_OUT) Tx mode, differential  
V(DAC_OUT) DAC output 2nd  
Rload = 120 ± 1%  
-76  
HD2  
harmonic distortion  
R(DAC_OUT) = 120   
Fclk = 20 MHz  
V(DAC_OUT) DAC output 3rd  
-83  
-74  
-74  
-82  
-73  
dBc  
dBc  
dBc  
dBc  
dBc  
HD3 harmonic distortion  
Fout = 100 kHz  
V(DAC_OUT) DAC output total  
THD harmonic distortion  
V(DAC_OUT) DAC output 2nd  
HD2 harmonic distortion  
R(DAC_OUT) = 120   
Fclk = 20 MHz  
V(DAC_OUT) DAC output 3rd  
HD3 harmonic distortion  
Fout = 500 kHz  
V(DAC_OUT) DAC output total  
THD harmonic distortion  
DocID028515 Rev 1  
51/58  
58  
Electrical characteristics  
STCOM  
Table 25. Predriver characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
Transmitter output bias  
voltage  
V(TX_OUT) BIAS  
Rx mode  
AVDD_5V_TXDRV/2  
V
-
Predriver load impedance  
1
k  
dBc  
Transmitter output 2nd  
V(TX_OUT) HD2  
-76  
-83  
-74  
-74  
-82  
-73  
harmonic distortion - see(1)  
V(TX_OUT) = 4.7 V  
pk-pk, no load,  
Transmitter output 3rd  
V(TX_OUT) HD3  
V(TX_OUT) THD  
V(TX_OUT) HD2  
V(TX_OUT) HD3  
V(TX_OUT) THD  
dBc  
dB  
harmonic distortion see(1)  
Fout = 100 KHz  
Transmitter output total  
harmonic distortion see(1)  
Transmitter output 2nd  
dBc  
dBc  
dB  
harmonic distortion - see(1)  
V(TX_OUT) = 4.7 V  
pk-pk, no load,  
Transmitter output 3rd  
harmonic distortion see(1)  
Fout = 500 KHz  
Transmitter output total  
harmonic distortion see(1)  
1. DAC + predriver chain distortion.  
Reception path characteristics  
Table 26. Receiver input referred noise  
Conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
CENELEC-A (35 kHz to 95 kHz)  
CENELEC -B (95 kHz to 125 kHz)  
16  
12  
8
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
dBµV  
CENELEC -C (125 kHz to 140 kHz)  
V(RX_INP -  
RX_INN)  
Receiver input referred noise CENELEC -D (140 kHz to 148 kHz)  
ARIB STD-T84 (35 kHz to 400 kHz)  
5
22  
17  
21  
FCC-LOW (35 kHz to 125 kHz)  
G3-FCC (150 kHz to 490 kHz)  
Table 27. PLC PGA characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
V(RX_INP),  
V(RX_INN)  
Receiver input maximum voltage  
Single-ended mode  
10  
20  
V p-p  
V(RX_INP-  
RX_INN)  
Receiver input maximum voltage  
Differential mode  
V p-p  
AVDDD_5  
V_PGA/2  
-
-
Receiver input bias voltage  
Receiver input impedance  
V
5.2  
k  
52/58  
DocID028515 Rev 1  
 
STCOM  
Electrical characteristics  
Table 27. PLC PGA characteristics  
Symbol  
GPGA(PLC)  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
PLC PGA minimum gain  
PLC PGA maximum gain  
-12  
42  
6
dB  
dB  
dB  
GPGA(PLC)_Step PLC PGA gain step  
Table 28. ADC characteristics  
Conditions  
Parameter  
Min.  
Typ.  
Max. Unit  
ADC input range  
Resolution  
Differential mode  
5
V p-p  
bit  
12  
Zero crossing comparator characteristics  
Table 29. Zero crossing characteristics  
Parameter Conditions  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Zero crossing  
Detection input  
Voltage range  
V(ZC_IN)  
MAX  
10  
V p-p  
Zero crossing  
Detection input  
Low threshold  
V(ZC_IN)  
TL  
-6  
mV  
mV  
Zero crossing  
Detection input  
High threshold  
V(ZC_IN)  
TH  
+6  
ZC_IN  
d.c.  
Zero crossing  
Input duty cycle  
50  
%
ZC_IN delay Mains zero crossing to detection delay time  
5.8  
s  
DocID028515 Rev 1  
53/58  
58  
Electrical characteristics  
STCOM  
4.5  
Embedded Flash characteristics  
Table 30. Flash memory characteristics  
Symbol  
Parameter(1)  
Conditions  
Min. Typ.(2) Max.(3) Max.(4) Unit  
tDWPRG Double word program  
Not including SW overhead  
Not including SW overhead  
Not including SW overhead  
18  
1.3  
2.6  
0.2  
0.3  
0.4  
0.6  
4.8  
8
50  
1.65  
6.6  
0.5  
0.6  
0.9  
1.3  
7.6  
12.6  
10  
500  
33  
66  
5.0  
5.0  
5.0  
5.0  
55  
91  
10  
30  
30  
-
s  
s
tMPRG Module program (512 kB)  
tBKPRG Bank program (1056 KB)  
s
tER16K Sector pre-program and erase (16 KB)  
tER32K Sector pre-program and erase (32 KB)  
tER64K Sector pre-program and erase (64 KB)  
tER128K Sector pre-program and erase (128 KB)  
tMKER Module erase (512 KB)  
s
s
s
s
s
tBKER Bank erase (1056 KB)  
s
tPABT Program abort latency  
-
s  
s  
s  
ms  
tEABT Erase abort latency  
-
30  
tESUS Erase suspend latency  
-
30  
tESRT Erase suspend request rate  
1. Based on characterization, not tested in production.  
20  
-
-
2. Assuming nominal supply values and operation at 25 °C, 0 cycles.  
3. Assuming nominal supply values and operation at 25 °C, 100 cycles.  
4. Assuming nominal supply values and operation at 125 °C, 100 Kcycles.  
.
Table 31. Flash memory endurance and data retention  
Parameter Conditions  
Min.(1) Typ.  
TA = -40 to +85 °C  
Symbol  
Max.  
Unit  
NEND  
Endurance  
1 K  
15  
Cycles  
Years  
Years  
1 kcycle at TA = +85 °C(2)  
tRET  
Data retention  
1 kcycles(2) at TA = +55 °C (see(2)  
)
30  
1. Based on characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
Table 32. Flash memory current consumption  
Parameter Conditions  
Symbol  
Min. Typ. Max. Unit  
Current consumption from 3.3 V During the erase of all the sectors -  
supply source  
I(Flash_VDD3V3)  
1.6  
mA  
mA  
see(1)  
Current consumption from 1.2 V  
supply source  
I(Flash_VDD1V2)  
During the erase of all the sectors(1)  
12.3  
1. During characterization, not tested in production. The values exclude the consumption from other pins.  
54/58  
DocID028515 Rev 1  
 
STCOM  
Package information  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
5.1  
TQFP176 package information  
Figure 10. TQFP176 (20 x 20 x 1 mm) package outline  
74)3ꢁꢊꢉꢂ  
DocID028515 Rev 1  
55/58  
58  
Package information  
STCOM  
Table 33. TQFP176 (20 x 20 x 1 mm) package mechanical data  
Dimensions (millimeters)  
Typ.  
Symbol  
Min.  
Max.  
A
A1  
A2  
b
1.20  
0.127  
1.05  
0.05  
0.95  
1.00  
0.18  
0.13  
0.23  
c
0.09  
0.20  
D
21.80  
19.80  
22.00  
20.00  
8.70  
22.20  
20.20  
D1  
D2  
D3  
E
17.20  
22.00  
20.00  
8.70  
21.80  
19.80  
22.20  
20.20  
E1  
E2  
E3  
e
17.20  
0.40  
L
0.45  
0°  
0.60  
0.75  
L1  
k
1.00  
3.5°  
7°  
ccc  
0.08  
5.2  
Thermal data  
Table 34. Thermal data  
Typ.  
value  
Symbol  
Parameter  
Conditions  
Unit  
Mounted on a 2s2p PCB, with a dissipating  
surface, connected through vias, on the bottom  
side of the PCB.  
Maximum thermal resistance junction  
ambient steady state  
RthJA  
34  
°C/W  
56/58  
DocID028515 Rev 1  
STCOM  
Ordering information  
6
Ordering information  
Table 35. Ordering information  
Order code  
Package  
Packing  
eFlash size  
STCOM10  
STCOM05  
TQFP176 (20 x 20 x 1 mm)  
TQFP176 (20 x 20 x 1 mm)  
Tray  
Tray  
1 MB  
640 kB  
7
Revision history  
Table 36. Document revision history  
Date  
Revision  
Changes  
15-Oct-2015  
1
Initial release.  
DocID028515 Rev 1  
57/58  
58  
STCOM  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
58/58  
DocID028515 Rev 1  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX