STB5600TR [STMICROELECTRONICS]

RF/MICROWAVE DOWN CONVERTER, TQFP-32;
STB5600TR
型号: STB5600TR
厂家: ST    ST
描述:

RF/MICROWAVE DOWN CONVERTER, TQFP-32

全球定位系统
文件: 总10页 (文件大小:75K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STB5600  
GPS RF FRONT-END IC  
ONE CHIP SYSTEM TO INTERFACE  
ACTIVE ANTENNA TO ST20GP1  
MICROCONTROLLER  
COMPLETE RECEIVER USING NOVEL  
DUAL CONVERSION ARCHITECTURE WITH  
SINGLE IF FILTER  
MINIMUM EXTERNAL COMPONENTS  
COMPATIBLE WITH GPS L1 SPS SIGNAL  
INTERNALLY STABILISED POWER RAILS  
CMOS OUTPUT LEVELS  
FROM 3.3 TO 5.9V SUPPLY VOLTAGE  
TQFP32 PACKAGE  
TQFP32  
MARKING:  
STB5600  
TRACEAB. CODE  
ASSY CODE  
DESCRIPTION  
The STB5600, using STMicroelectronics HSB2,  
High Speed Bipolar technology, implements a  
Global Positioning System RF front-end.  
PIN CONNECTION (top view)  
The chip provides down conversion from the GPS  
(L1) signal at 1575 MHz via an IF of 20MHz to an  
output frequency of 4MHz suitable for ST20GP1  
GPS processor.  
It uses a single external reference oscillator to  
generate both RF local oscillator signals and the  
processor reference clock.  
1/10  
August 1998  
STB5600  
FUNCTIONAL DESCRIPTION  
The STB5600 GPS front-end is fed with the signal from an active antenna, via a ceramic RF filter. The  
gain between the antenna element and the STB5600 is expected to be between 10dB and 35dB  
overall, made up of the antenna LNA gain, the feeder loss, connector loss, and the ceramic filter loss.  
In order to use an off-the-shelfceramic filter, conventionally50 Ohms single ended, a matchingcircuit is  
used. (see appendix A.1), which provides a 300 Ohm differential drive to the STB5600. A similar circuit  
can be used to feed the LO signal if using the recommended low-cost oscillator circuit (appendix A.3).  
Note that the STB5600 radio architecture and the oscillator described here are covered by various  
patents held by SGS-Thomson and by others. The use of the circuits described in this data-sheetfor any  
other purposemay infringe such patents.  
- RF SECTION  
The differential input signal is amplified by the RF-Amp and mixed with the oscillator signal amplified  
from the LO+,LO- inputs to generate a balanced 20.46MHz IF signal. The LO buffer amplifier may be  
fed differentialor single ended signals, at levels between -60dBm and -20dBm .  
- IF SECTION  
The 20MHz differential signal from the mixer is fed through an external LC filter to suppressundesirable  
signals and mixer products. The multi-stage high-sensitivity limiting amplifier is connected to a D-type  
latch clocked by an internally derived 16MHz clock.. The effect of sampling the 20MHz signal at 16MHz  
is to create a sub-sampling alias at 4MHz. This is fed to the output level-converters.  
- DIVIDER SECTION  
The 80MHz oscillator signal may be provided single-ended or differentially to the high impedance  
80MHz+, 80MHz- inputs. Any unused inputs should be connected to GNDLOGIC via a 1nF capacitor.  
The 80MHz signal is amplified, then divided by 5 to create the 16.368MHz clock required by the  
ST20GP1processor, also used to clock the outputlatch of the STB5600.  
- OUTPUT SECTION  
The output latch samples the 20.46MHz intermediate frequency at a 16.368MHz rate, performing the  
dual function of second downconversion and latching. The downconversion occurs by sub-sampling  
aliasing, such that the digital output represents a 4.096MHz centre frequency  
The output buffers perform level translation from the internal ECL levels to CMOS compatible outputs  
referred to external ground.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
VCC  
DC Supply Voltage  
5.9  
RF+, RF- RF Input  
8
150  
dBm  
oC  
Tj  
Junction Temperature  
Tstg  
Storage Temperature Range  
-40 to 125  
80  
oC  
oC/W  
Rthj-amb Thermal Resistance Junction-ambient  
2/10  
STB5600  
PIN CONFIGURATION  
Apply 5V at the CE, VCCRF, VCCIF, VCCLOGIC pins, apply 3 V at the VCCDRIVE  
Pin  
1
Symbol  
IF1+  
Typ. DC Bias  
3.6 V  
3.6 V  
5 V  
Dexription  
Mixer Output 1  
External circuit  
see application circuit  
see application circuit  
100 nF to VEERF  
AC Coupled  
2
IF1-  
Mixer Output 2  
3
VCCRF  
RF Power Supply  
RF Input  
4
RF+  
3.5 V  
3.5 V  
5 V  
5
RF-  
RF Input  
AC Coupled  
6
VCCRF  
RF Power Supply  
RF Voltage Reference  
RF Ground  
100 nF to VEERF  
100 nF to VCCRF  
7
VEERF  
2 V  
8
GNDRF  
VCCRF  
0 V  
9
5 V  
RF Power Supply  
Local Oscillator Input  
Local Oscillator Input  
RF Power Supply  
Logic Power Supply  
80 MHz Clock Input  
80 MHz Clock Input  
Logic Power Supply  
Logic Voltage Reference  
16 MHz Clock CMOS Output  
100 nF to VEERF  
AC Coupled  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
LO+  
3.5 V  
3.5 V  
5 V  
LO-  
AC Coupled  
VCCRF  
100 nF to VEERF  
100 nF to VEELOGIC  
AC Coupled  
VCCLOGIC  
80 MHz+  
80 MHz-  
VCCLOGIC  
VEELOGIC  
CLOCK+  
Not Connected  
GNDDRIVE  
DATA  
5 V  
4 V  
4 V  
AC Coupled  
5 V  
100 nF to VEELOGIC  
100 nF to VCCLOGIC  
7 pF to GNDDRIVE  
2 V  
0.3 V or 3 V  
0 V  
0.3 V or 3 V  
0 V  
CMOS Drive Ground  
4 MHz Data CMOS Output  
CMOS Drive Ground  
CMOS Drive Power Supply  
Chip Enable  
7 pF to GNDDRIVE  
GNDDRIVE  
VCCDRIVE  
CE  
3 V  
3 V  
GND  
0 V  
Substrate Ground  
Logic Ground  
GNDLOGIC  
GNDIF  
VEEIF  
0 V  
0 V  
IF Ground  
2 V  
IF Voltage Reference  
IF Power Supply  
100 nF to VCCIF  
100 nF to VEEIF  
VCCIF  
5 V  
IF2-  
4 V  
Limiting Amplifier Input  
Limiting Amplifier Input  
IF Power Supply  
see application circuit  
see application circuit  
100 nF to VEEIF  
IF2+  
4 V  
VCCIF  
5 V  
3/10  
STB5600  
ELECTRICAL SPECIFICATION (VVCCRF = 3.3 V ...5.9 V; VVCCIF = 3.3 V ...5.9 V; VVCC LOGIC = 3.3 V  
...5.9 V VVCCDRIVE = 3 V; Ta = 25 oC unless otherwise specified)  
LNA MIXER  
Symbol  
IVCCRF  
Zin  
Parameter  
Note  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
VVCCRF = 5 V  
20  
25  
mA  
Differential Input  
Impedance  
@ 1575 MHz AC Coupled at RF+  
RF- inputs  
300  
1
pF  
Zout  
GC  
Differential Output  
Impedance  
@ 20 MHz AC Coupled at IF1+ IF1-  
outputs  
70  
3
pF  
Voltage Conversion  
Gain  
RL > 3K, PIN = -80 dBm  
(Vin = 75 µVp on 300 )  
35  
dB  
IIP1  
Input Compression  
Point (1dB)  
(see application circuit)  
-60  
dBm  
NF  
fRF  
Noise figure  
5
dB  
Input Signal  
1575  
MHz  
Frequency (L1)  
fIF  
Output Signal  
Frequency  
20  
MHz  
LO INPUT BUFFER  
Symbol  
Parameter  
Note  
Min.  
Typ.  
Max.  
Unit  
Zin  
Differential Input  
Impedance  
@ 1555 MHz AC Coupled at LO+  
LO- inputs  
300  
1
pF  
Input Signal Level  
-60  
-40  
-20  
dBm  
LIMITING AMPLIFIER  
Symbol  
IVCCIF  
Zin  
Parameter  
Note  
Min.  
Typ.  
Max.  
Unit  
mA  
Supply Current  
VVCCIF = 5 V  
2.5  
3.5  
Differential Input  
Impedance  
@ 20 MHz AC Coupled at IF2+ IF2-  
inputs  
15  
KΩ  
B
Bandwidth 3dB  
5
80  
MHz  
µVp  
Vp  
Sens  
VINMAX  
Limiter sensitivity  
Input Signal @ 20 MHz AC Coupled  
100  
Maximum Input Signal Input Signal @ 20 MHz AC Coupled  
0.5  
CLOCK INPUT BUFFER  
Symbol  
Parameter  
Note  
VVCC LOGIC = 5 V  
Min.  
Typ.  
Max.  
Unit  
IVCCLOGIC Supply Current  
5
7
mA  
Zin  
Differential Input  
Impedance  
@ 80 MHz AC Coupled at 8O MHz+  
80 MHz- inputs  
8
2
KΩ  
pF  
Input Signal Level  
@ 80 MHz AC Coupled at 8O MHz+  
80 MHz- inputs  
5
100  
mVp  
N
Division Ratio  
5
4/10  
STB5600  
ELECTRICAL CHARACTERISTICS (Continued)  
OUTPUT SECTION  
Symbol  
Parameter  
Note  
Min.  
Typ.  
Max.  
Unit  
mA  
V
IVCCDRIVE Supply Current  
VVCCDRIVE = 3 V  
8
VOH  
VOL  
tr  
High output voltage  
Low output voltage  
Rise Time  
Vp = VVCCDRIVE = 3 V  
Vn = GNDDRIVE  
CLOAD = 7 pF  
Vp-0.4  
Vn  
Vp  
Vn+0.4  
V
6
2
ns  
tf  
Fall Time  
CLOAD = 7 pF  
ns  
APPLICATION CIRCUIT  
A typical application circuit is shown in figure 1. The RF input from the antenna downlead is fed via a  
ceramic filter and matching circuit to the RF+,RF- pins. The external LNA in the antenna should have  
between 10 and 35dB of amplifier gain, so the noise measured in a one MHz bandwidth should be  
-114dBm for kTB in 1 MHz  
+ 2dB LNA noise figure  
+10/35 dB LNA gain (net)  
Total -102/ 77dBm at connector.  
Allowing 2dB for filter loss, -104/-79 is available at the matching circuit.  
Fig. 1 Typical Application Circuit  
5/10  
STB5600  
A.1 Matching Network  
The matching circuit may be a 50 Ohm / 300 Ohm balun transformer(figure 2), but a more economical  
solution is a tuned match as shown below. A single 10nH inductor is optimal in cost, but may not meet  
the users tolerance requirements over spreads of silicon and pcb material, as it has only around 1pF  
tuning capacitance ( 2pF in series with 2pF inside the package).  
Fig. 2 Matching Network with Balun  
The first example (figure 3) increases the capacitance with a discrete capacitor, and uses a lower  
inductance value. Both examples assume that the ceramic filter is dc blocking, both input to output, and  
output to ground.  
Fig. 3 Matching Network with two elements  
The second (figure 4) example allows optimum matching by rationing the capacitors appropriately to  
achieve voltage gain commensurate with the impedance translation. While it has a higher component  
count, it is the versionmost tolerant of componentvariations and board capacitance.  
6/10  
STB5600  
Fig. 4 Matching Network with fourelements  
A.2 IF Filter  
The recommended IF filter is shown in figure 5. The stop band of the filter is to reject the alias images  
around 12MHz, and around28MHz, where it should have at least 15dBc rejection.  
Note that the mixer output is low impedance,(70 Ohms), and the IF input is high impedance(15kOhms),  
so considerablevoltage gain is achieved in the impedance matching filter.  
The filter also sets the bandwidth of the receiver, using the load impedance with the L/C ratio to set the  
filter Q. If desired, an external resistor may be added in parallel to reduce the Q. Note that the  
bandwidth must be much wider than the 2MHz needed to pass the power of the GPS signal... it must  
maintain linear phase across the 2MHz, even at the extremes of component tolerance.  
Fig. 5 IF Filter  
7/10  
STB5600  
A.3 Reference Oscillator  
The recommended dual output oscillator shown in figure 6 generates both the 81.84MHz signal that is  
divided down for the CPU 16.368MHz clock, but also the low amplitude 1555MHz first local oscillator  
signal .  
Note that some 2 volts of the 82MHz signal is available, and the capacitivetap on the tank circuit is used  
to reduce the amplitude to preventexcessive radiation.  
Note that the transistor must be a high frequency type, Ft of 8 GHz or greater, and that the collector  
inductor must have a self resonant frequency of 2.5GHz or higher.  
Fig. 6 Reference Oscillator  
8/10  
STB5600  
TQFP32 MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
1.60  
0.15  
1.45  
0.45  
0.20  
MIN.  
TYP.  
MAX.  
A
A1  
A2  
B
0.063  
0.006  
0.057  
0.018  
0.008  
0.05  
1.35  
0.30  
0.09  
0.002  
0.053  
0.012  
0.004  
1.40  
0.37  
0.055  
0.015  
C
D
9.00  
7.00  
5.60  
0.80  
9.00  
7.00  
5.60  
0.60  
1.00  
0.354  
0.276  
0.220  
0.031  
0.354  
0.276  
0.220  
0.024  
0.039  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0.75  
0.018  
0.030  
L1  
K
0o(min.), 7o (max.)  
D
A
D1  
D3  
A2  
A1  
24  
17  
25  
16  
0.10mm  
.004  
Seating Plane  
9
32  
8
1
C
e
K
TQFP32  
0060661  
9/10  
STB5600  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1998 STMicroelectronics – Printed in Italy – All RightsReserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
.
10/10  

相关型号:

STB5610

GPS RF FRONT-END IC
STMICROELECTR

STB5610E

RF/MICROWAVE DOWN CONVERTER, TQFP-48
STMICROELECTR

STB5610ETR

RF/MICROWAVE DOWN CONVERTER, TQFP-48
STMICROELECTR

STB5701

350 to 400 MHz FSK/ASK receiver (ST-RECORD01 family)
STMICROELECTR

STB57N65M5

N沟道650 V、0.056 Ohm典型值、42 A MDmesh M5功率MOSFET,D2PAK封装
STMICROELECTR

STB5BK50Z-1

N-CHANNEL500V-1.22ohm-4.4ATO-220/FP/DPAK/IPAK/I2PAK Zener-Protected SuperMESH⑩Power MOSFET
STMICROELECTR

STB5N52K3

N-channel 525 V, 1.2 Ω, 4.4 A SuperMESH3™ Power MOSFET D²PAK, DPAK, TO-220FP, TO-220, IPAK
ETC

STB5N62K3

N-channel 620 V, 1.28 ohm, 4.2 A SuperMESH3 Power MOSFET
STMICROELECTR

STB5NA50

N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR
STMICROELECTR

STB5NA50-1

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 5A I(D) | TO-262VAR
ETC

STB5NA50T4

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 5A I(D) | TO-263AB
ETC

STB5NA80

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
STMICROELECTR