ST7232A(K2)TA/XXXRE [STMICROELECTRONICS]

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32;
ST7232A(K2)TA/XXXRE
型号: ST7232A(K2)TA/XXXRE
厂家: ST    ST
描述:

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32

时钟 外围集成电路
文件: 总201页 (文件大小:3595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST7232AK1-Auto ST7232AK2-Auto  
ST7232AJ1-Auto ST7232AJ2-Auto  
8-bit MCU for automotive, 16 Kbyte Flash/ROM,  
10-bit ADC, 4 timers, SPI, SCI  
Features  
Memories  
– 8K dual voltage high density Flash  
LQFP32 7 x 7  
LQFP44 10 x 10  
(HDFlash) or ROM with read-out protection  
capability. In-application programming and  
in-circuit programming for HDFlash devices  
– Main clock controller with: real time base,  
beep and clock-out capabilities  
– Configurable watchdog timer  
Two 16-bit timers with: 2 input captures, 2  
output compares, PWM and pulse  
generator modes  
– 384 bytes RAM  
– HDFlash endurance: 100 cycles, data  
retention: 20 years at 55°C  
Clock, reset and supply management  
– Clock sources: crystal/ceramic resonator  
oscillators and bypass for external clock  
– PLL for 2x frequency multiplication  
2 communications interfaces  
– SPI synchronous serianterface  
– SCI asynchronous srial interface  
– Four power saving modes: halt, active halt,  
wait and slow  
1 analog peripheral (low current coupling)  
– 10-bit ADC with up to 12 robust input ports  
Interrupt management  
Instruction set  
– Nested interrupt controller  
– 14 interrupt vectors plus TRAP and reset  
– 6 external interrupt lines (on 4 vectors)  
– 8bit data manipulation  
– 63 basic instructions  
– 17 main addressing modes  
– 8 x 8 unsigned multiply instruction  
Up to 32 I/O ports  
– 32/24 multifunctional bidirectional I/O lines  
– 22/17 alternate function lines  
– 12/10 high sink outputs  
Development tools  
– Full hardware/software development  
package  
– In-circuit testing capability  
4 timers  
Table 1.  
Device summary  
Program memory - bytes RAM (stack) - bytes Operating volt. Temp. range Package  
ST72F32AK1-Auto  
ST72F32AK2-Auto  
ST72F32AJ1-Auto  
ST72F32AJ2-Auto  
ST7232AK1-Auto  
ST7232AK2-Auto  
ST7232AJ1-Auto  
ST7232AJ2-Auto  
Flash 4K  
LQFP32  
Flash 8K  
Flash 4K  
Flash 8K  
LQFP44  
-40°C to  
+125°C  
384 (256)  
3.8V to 5.5V  
ROM 4K  
ROM 8K  
ROM 4K  
ROM 8K  
LQFP32  
LQFP44  
January 2008  
Rev 1  
1/201  
www.st.com  
1
Contents  
ST7232Axx-Auto  
Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.1  
1.2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Differences between ST7232A-Auto and ST7232A datasheets . . . . . . . . 15  
1.2.1  
1.2.2  
1.2.3  
Principal differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Minor content differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Editing and formatting differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2
3
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.3.1  
Read-out protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.4  
4.5  
4.6  
4.7  
ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
In-Circuit Programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
In-application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5
6
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
5.2  
5.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.1  
6.2  
6.3  
6.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Phase locked loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Multi-oscillator (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.4.1  
6.4.2  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Crystal/ceramic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2/201  
ST7232Axx-Auto  
Contents  
6.5  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External power on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.6  
System integrity management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Masking and processing flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
Servicing pending interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Different interrupt vector sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Non-maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Maskable sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.3  
7.4  
7.5  
7.6  
7.7  
Interrupts and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Concurrent and nested management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupt related instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
7.7.1  
I/O port interrupt sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
7.8  
7.9  
External interrupt control register (EICR) . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Nested interrupts register map and reset value . . . . . . . . . . . . . . . . . . . . 53  
7.10 Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
8.1  
8.2  
8.3  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Active halt and halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
8.4.1  
8.4.2  
Active halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3/201  
Contents  
ST7232Axx-Auto  
9.2.1  
9.2.2  
9.2.3  
Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
9.3  
9.4  
9.5  
I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
10  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.1 Watchdog timer (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.1.4 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . 70  
10.1.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.1.6 Hardware watchdog option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.1.7 Using halt mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . 72  
10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.1.9 Control register (WDGCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.1.10 Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . 73  
10.2 Main clock controller with real-time clock and beeper (MCC/RTC) . . . . . 73  
10.2.1 Programmable CPU clock prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.2.2 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.3 Real-time clock timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.2.7 MCC/RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
10.2.8 MCC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
10.3.6 Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
10.3.7 16-bit timer registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
4/201  
ST7232Axx-Auto  
Contents  
10.4 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4.4 Clock phase and clock polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.4.5 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
10.4.6 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
10.4.8 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
10.5 Serial communications interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.5.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
10.5.3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
10.5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
10.5.5 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
10.5.7 SCI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
10.6 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
10.6.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
10.6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
10.6.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
10.6.6 10-bit ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
11  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.1 CPU addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
11.1.1 Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
11.1.2 Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
11.1.3 Direct instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
11.1.4 Indexed instructions (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . 147  
11.1.5 Indirect instructions (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
11.1.6 Indirect indexed instructions (short, long) . . . . . . . . . . . . . . . . . . . . . . 148  
11.1.7 Relative mode instructions (direct, indirect) . . . . . . . . . . . . . . . . . . . . . 149  
11.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
11.3 Using a pre-byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
5/201  
Contents  
ST7232Axx-Auto  
12  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
12.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
12.2.1 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
12.2.2 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
12.2.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
12.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
12.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
12.4.1 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
12.4.2 Supply and clock managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
12.4.3 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
12.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
12.5.1 General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
12.5.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
12.5.3 Crystal and ceramic resonator oscillators . . . . . . . . . . . . . . . . . . . . . . 162  
12.5.4 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
12.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.6.1 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.6.2 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.7 Electromagnetic compatability (EMC) characteristics . . . . . . . . . . . . . . 165  
12.7.1 Functional electromagnetic susceptibility (EMS) . . . . . . . . . . . . . . . . . 165  
12.7.2 Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
12.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 167  
12.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.8.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
12.8.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
12.9 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
12.9.1 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
12.9.2 ICCSEL/V pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
PP  
12.10 Timer peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
12.10.1 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
6/201  
ST7232Axx-Auto  
Contents  
12.11 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 175  
12.11.1 SPI (serial peripheral interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
12.12 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
12.12.1 Analog power supply and reference pins . . . . . . . . . . . . . . . . . . . . . . . 179  
12.12.2 General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
12.12.3 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
13  
14  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
13.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
13.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
13.3 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 185  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.2 Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.2.1 Flash configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
14.2.2 Flash ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
14.3 ROM device ordering information and transfer of customer code . . . . . 188  
14.4 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
14.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
14.4.2 Evaluation tools and starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
14.4.3 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
14.4.4 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
14.4.5 Socket and emulator adapter information . . . . . . . . . . . . . . . . . . . . . . 193  
14.5 ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
15  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.1 All Flash and ROM devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.1.1 Safe connection of OSC1/OSC2 pins . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.1.2 External interrupt missed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.1.3 Unexpected reset fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
15.1.4 Clearing active interrupts outside interrupt routine . . . . . . . . . . . . . . . 196  
15.1.5 16-bit timer PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
15.1.6 TIMD set simultaneously with OC interrupt . . . . . . . . . . . . . . . . . . . . . 197  
15.1.7 SCI wrong break duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
15.1.8 39-pulse ICC entry mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
7/201  
Contents  
ST7232Axx-Auto  
15.2 ROM devices only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
15.2.1 I/O port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
15.2.2 External clock source with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
8/201  
ST7232Axx-Auto  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Sectors available in Flash devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Flash control/status register address and reset value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
CC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
ST7 clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
SICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Interrupt software priority levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CPU CC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
ISPRx interrupt vector correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Dedicated interrupt instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Nested interrupts register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Active halt and halt power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DR register value and output pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
I/O Port Mode Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Port register configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
I/O interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Effect of low power modes on watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
WDGCR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Watchdog timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Effect of low power modes on MCC/RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MCC/RTC interrupt control/wake-up capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
MCCBCR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Main clock controller register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Effect of low power modes on 16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
16-bit timer interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Summary of timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
CR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
CR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
CSR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
16-bit timer register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Effect of low power modes on SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
SPI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SPICR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SPICSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Effect of low power modes on SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
SCI interrupt control/wake-up capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
SCISR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
SCICR1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
9/201  
List of tables  
ST7232Axx-Auto  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
SCICR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
SCIBRR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SCIERPR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SCIETPR register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Baud rate selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
SCI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Effect of low power modes on 10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
ADCCSR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
ADCDRH register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
ADCDRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
CPU addressing mode groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
CPU addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Inherent instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Immediate instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Instructions supporting direct, indexed, indirect and indirect indexed addressing modes 148  
Short instructions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Relative mode instructions (direct and indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Instruction set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Supply current of clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Oscillator parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Examples of typical resonators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Characteristics of dual VOLTAGE HDFlash MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Electromagnetic test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
EMI emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Latch up results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
I/O general port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
ICCSEL/V pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
PP  
16-bit timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
ADC accuracy with V = 5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
DD  
32-pin LQFP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
44-pin LQFP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Soldering compatibility (wave and reflow soldering process) . . . . . . . . . . . . . . . . . . . . . . 184  
Flash option bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 100. Option byte 0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
10/201  
ST7232Axx-Auto  
List of tables  
Table 101. Option byte 1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 102. Package selection (OPT7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 103. Flash user programmable device types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 104. FASTROM factory coded device types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 105. ROM factory coded device types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 106. STMicroelectronics development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 107. Suggested list of socket types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 108. Port A and F configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 109. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
11/201  
List of figures  
ST7232Axx-Auto  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
32-pin LQFP 7x7 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
44-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory map and sector addresses of the ST7232X family . . . . . . . . . . . . . . . . . . . . . . . . 28  
Typical ICC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 10. Clock, reset and supply block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 11. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 12. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 13. Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 14. Interrupt processing flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 15. Priority decision process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 16. Concurrent interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 17. Nested interrupt management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 18. External interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 19. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 20. Slow mode clock transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 21. Wait mode flow-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 22. Active halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 23. Active halt Mode Flow-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 24. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 25. Halt mode flow-chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 26. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 27. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 28. Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 29. Approximate timeout duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 30. Exact timeout duration (t  
and t  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
min  
max  
Figure 31. Main clock controller (MCC/RTC) block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 32. Timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 33. 16-bit read sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 34. Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 35. Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 36. Counter timing diagram, internal clock divided by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 37. Input capture block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 38. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 39. Output compare block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 40. Output compare timing diagram, f  
Figure 41. Output compare timing diagram, f  
= f  
= f  
/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
TIMER  
CPU  
TIMER  
CPU  
Figure 42. One pulse mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 43. One pulse mode timing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 44. Pulse width modulation mode timing example with 2 output compare functions . . . . . . . . 91  
Figure 45. Pulse width modulation cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 46. Serial peripheral interface block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 47. Single master/single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 48. Generic SS timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12/201  
ST7232Axx-Auto  
List of figures  
Figure 49. Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 50. Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 51. Clearing the WCOL bit (write collision flag) software sequence . . . . . . . . . . . . . . . . . . . . 111  
Figure 52. Single master/multiple slave configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 53. SCI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 54. Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 55. SCI baud rate and extended prescaler block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 56. Bit sampling in reception mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 57. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 58. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 59. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 60.  
f
max versus V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
CPU  
DD  
Figure 61. Typical I in run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
DD  
Figure 62. Typical I in slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
DD  
Figure 63. Typical I in wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
DD  
Figure 64. Typ. I in slow wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
DD  
Figure 65. Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 66. Typical application with a crystal or ceramic resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 67. Integrated PLL jitter vs signal frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 68. Unused I/O pins configured as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 69. Typical I vs. V with V = V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
PU  
DD  
IN  
SS  
Figure 70. Typical V at V = 5V (std. ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
OL  
DD  
Figure 71. Typ. V at V = 5V (high-sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
OL  
DD  
Figure 72. Typical V at V = 5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
OH  
DD  
Figure 73. Typical V vs. V (std. ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
OL  
DD  
Figure 74. Typical V vs. V (high-sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
OL  
DD  
Figure 75. Typical V vs. V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
OH  
DD  
Figure 76. RESET pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 77. Two typical applications with ICCSEL/V pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
PP  
Figure 78. SPI slave timing diagram with CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 79. SPI slave timing diagram with CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 80. SPI master timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 81.  
R
max. vs f  
with C  
= 0pF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
AIN  
ADC  
AIN  
Figure 82. Recommended C  
and R  
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
AIN  
AIN  
Figure 83. Typical A/D converter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 84. Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 85. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 86. 32-pin LQFP outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 87. 44-pin LQFP outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 88. Flash commercial product code structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Figure 89. FASTROM commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 90. ROM commercial product code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
13/201  
Introduction  
ST7232Axx-Auto  
1
Introduction  
1.1  
Description  
The ST7232AK1-Auto, ST7232AK2-Auto, ST7232AJ1-Auto, and ST7232AJ2-Auto devices  
are members of the ST7 microcontroller family designed for the 5V operating range.  
The 32 and 44-pin devices are designed for mid-range applications  
All devices are based on a common industry-standard 8-bit core, featuring an enhanced  
instruction set and are available with Flash or ROM program memory.  
Under software control, all devices can be placed in wait, slow, active halt or halt mode,  
reducing power consumption when the application is in idle or stand-by state.  
The enhanced instruction set and addressing modes of the ST7 offer both power and  
flexibility to software developers, enabling the design of highly efficient and compact  
application code. In addition to standard 8-bit data management, all ST7 microcontrollers  
feature true bit manipulation, 8 x 8 unsigned multiplication and indirect addressing modes.  
Figure 1.  
Device block diagram  
8-bit core  
ALU  
Program  
memory  
(8K bytes)  
RESET  
Control  
V
PP  
RAM  
(384 bytes)  
V
V
SS  
DD  
Watchdog  
Port A  
OSC1  
OSC2  
OSC  
MCC/RTC/beep  
PORT F  
Timer A  
Beep  
Port B  
Port E  
Port C  
Timer B  
SPI  
SCI  
Port D  
10-bit ADC  
V
AREF  
V
SSA  
14/201  
ST7232Axx-Auto  
Introduction  
1.2  
Differences between ST7232A-Auto and ST7232A datasheets  
The differences between the ST7232A-Auto datasheet, version 1, released in January 2008  
and the ST7232A datasheet, version 2, released in December 2005 are listed below.  
Differences are categorised as follows:  
Principal differences  
Minor content differences  
Editing and formatting differences  
1.2.1  
Principal differences  
1. Changed root part number from ST7232A to ST7232AK1-Auto, ST7232AK2-Auto,  
ST7232AJ1-Auto, and ST7232AJ2-Auto throughout document  
2. Changed document title on page 1  
3. Removed 1 and 5 suffix version temperatures ranges throughout the document  
4. Features on page 1: Changed minimum value of data retention time (t  
) to 20 years  
RET  
and changed the condition to T = 55°C  
A
(5)  
5. Table 2: Device pin description on page 21: Added footnote  
6. Section 6.3: Phase locked loop (PLL) on page 36: Added caution regarding use of PLL  
with an external clock  
7. Reset vector fetch on page 38: Added a ‘caution’ about the reset vector when it is not  
programmed  
8. Section 9.2.1: Input modes on page 62: Amended note3 of this section  
9. Section 9.3: I/O port implementation on page 66: Deleted I/O port implementation  
tables  
10. Output compare on page 85: Amended text in note 3  
11. Figure 41: Output compare timing diagram, fTIMER = fCPU/4 on page 88: Removed  
compare register i Latch from diagram  
12. Section 10.6: 10-bit A/D converter (ADC) on page 139: Amended text concerning the  
EOC bit in Starting the conversion  
13. Table 70: Current characteristics on page 155:  
Added data for the LQFP44 package to I  
and I  
VDD VSS  
Updated max I values for standard I/O and high sink I/O  
IO  
14. Table 72: General operating conditions on page 156: Updated temperature ranges in  
the ‘conditions’ column  
15. Table 82: Characteristics of dual VOLTAGE HDFlash MEMORY on page 164:  
Changed typical value of supply current (I ) to < 10µA  
DD  
Changed minimum value of data retention time (t  
) to 20 years and changed the  
RET  
condition to T = 55°C  
A
Changed the condition of write erase cycle (N ) to T = 85°C  
RW A  
16. Section 12.7.3: Absolute maximum ratings (electrical sensitivity) on page 167:  
Removed text concerning dynamic latch-up  
17. Electro-static discharge (ESD) on page 167: Replaced JESD22-A114A/A115A  
standard with AEC-Q100-002/003/011 standard  
15/201  
Introduction  
ST7232Axx-Auto  
18. Table 85: ESD absolute maximum ratings on page 167:  
Added test standards to conditions column  
Changed max value of CDM from 250 V to: > 500 V to 750 V with corner pins >  
750 V  
Added ‘class’ information  
19. Static latch-up on page 167: Added ‘AEC-Q100/004’ standard  
20. Table 86: Latch up results on page 167:  
Removed T = +25°C, +85°C and +105°C from latch-up conditions  
A
Added AEC-Q100/004 test standard  
Removed dynamic latch-up results  
Changed ‘class’ information  
Removed footnote 1 pertaining to class descriptions and JEDEC standards  
21. Table 87: I/O general port pin characteristics on page 168:  
(3)  
(5)  
Added footnote  
Amended footnote  
and  
(4)  
22. Figure 76: RESET pin protection on page 173: Removed EMC protective circuitry  
(device works correctly without these components)  
23. Table 92: SPI characteristics on page 175:  
(1)  
(2)  
Added footnote  
and  
Updated max and unit information of t (MO)  
v
Updated min values of t (MO)  
h
Updated min and max values for ‘data output valid’ and ‘data output hold’ times  
24. Figure 80: SPI master timing diagram on page 177: Modified figure to reflect changes  
made in Table 92: SPI characteristics concerning t (MO) and t (MO)  
v
h
25. Table 93: 10-bit ADC characteristics on page 178:  
Removed word ‘positive’ from explanation of I parameter  
lkg  
(2)  
Updated footnote  
26. Figure 83: Typical A/D converter application on page 179: Changed I 1µA to I  
L
lkg  
27. Table 94: ADC accuracy with VDD = 5.0V on page 181:  
Made the ‘conditions’ applicable for all parameters  
(2)  
Updated footnote  
28. Table 97: Thermal characteristics on page 184:  
(1)  
(2)  
Amended footnotes  
and  
Added a value for LQFP44  
29. Table 99: Flash option bytes on page 185:  
Changed bits 4 and 3 of option byte 0 to a default value of ‘1’  
Changed the OSCRANGE bits [2:0] of option byte 1 from 111 to 011  
Added footnote 1 concerning package selection  
30. Updated Table 100: Option byte 0 description on page 186  
31. Updated Table 101: Option byte 1 description on page 186  
32. Added Table 102: Package selection (OPT7) on page 187  
33. Section 15.1.2: External interrupt missed on page 194: Added section on ‘external  
interrupt missed’ bug  
16/201  
ST7232Axx-Auto  
Introduction  
34. Section 15.1.6: TIMD set simultaneously with OC interrupt on page 197:  
Added section concerning limitation of the 16-bit timer  
Added ‘TBCR1’, ‘TBCSR I’ and ‘TBCSR &’ to the workaround subsection  
1.2.2  
Minor content differences  
1. Removed all references to the SDIP32 and SDIP42 packages (which are unavailable in  
automotive) thoughout document  
2. Replaced TQFP by LQFP throughout document  
3. Table 3: Hardware register map on page 25: Replaced ‘h’ with ‘b’ in the reset status  
column for the SCICR1 register  
4. System integrity control/status register (SICSR) on page 41: Replaced ‘h’ with ‘b’ in the  
reset value cell of the SICSR register  
5. Table 43: SPI register map and reset values on page 117: Changed the name of bit 5 in  
the SPICSR register from OR to OVR  
6. Break character on page 123: SPI replaced by SCI  
7. Control register 1 (SCICR1) on page 133: Replaced ‘h’ with ‘b’ in the reset value cell of  
the SCICR1 register  
8. Changed I to I in Table 77: External clock source on page 161, Figure 65: Typical  
L
lkg  
application with an external clock source on page 161 and Table 90: ICCSEL/VPP pin  
characteristics on page 174  
9. Table 95: 32-pin LQFP mechanical data on page 182 and Table 96: 44-pin LQFP  
mechanical data on page 183: Altered ‘inches’ data to four decimal places  
10. Section 13.3: Soldering information on page 184:  
Updated environmental information regarding ‘ECOPACK®’ packages  
TM  
Replaced ECOPACK with ECOPACK® throughout the document  
Updated section on ECOPACK® soldering compatability  
11. Table 98: Soldering compatibility (wave and reflow soldering process) on page 184:  
Removed footnote on Pb package maximum temperature  
12. Updated Table 103: Flash user programmable device types on page 187  
13. Added Figure 88: Flash commercial product code structure on page 188  
14. Updated Section 14.3: ROM device ordering information and transfer of customer code  
on page 188  
15. Added Table 104: FASTROM factory coded device types on page 189  
16. Added Figure 89: FASTROM commercial product code structure on page 189  
17. Added Table 105: ROM factory coded device types on page 190  
18. Updated Figure 90: ROM commercial product code structure on page 190  
19. Updated ST72P32A/ST7232A (3.8 to 5.5V) microcontroller option list on page 191  
20. Updated Table 106: STMicroelectronics development tools on page 193  
21. Section 14.4: Development tools on page 192:  
Updated Introduction and Programming tools  
Deleted Emulators and In-circuit debugging kit  
Added Evaluation tools and starter kits and Development and debugging tools  
22. Section 14.5: ST7 application notes on page 193: Removed list of ST7 application  
notes  
17/201  
Introduction  
ST7232Axx-Auto  
1.2.3  
Editing and formatting differences  
1. Reformatted document  
2. Converted register and bit decriptions to table format  
3. Edited English throughout document  
4. Correctly aligned footnotes of tables throughout document  
18/201  
ST7232Axx-Auto  
Pin description  
2
Pin description  
Figure 2.  
32-pin LQFP 7x7 package pinout  
32 31 30 29 2827 2625  
V
V
24  
23  
22  
21  
20  
19  
18  
17  
AREF  
1
2
3
4
5
6
7
8
OSC1  
OSC2  
ei3 ei2  
SSA  
MCO/AIN8/PF0  
V
_2  
SS  
ei1  
Beep/(HS) PF1  
OCMP1_A/AIN10/PF4  
ICAP1_A/(HS) PF6  
RESET  
V
/ICCSEL  
PP  
PA7 (HS)  
PA6 (HS)  
PA4 (HS)  
EXTCLK_A/(HS) PF7  
ei0  
9 10111213141516  
AIN12/OCMP2_B/PC0  
1. Legend: (HS) = 20mA high sink capability; eix = associated external interrupt vector  
19/201  
Pin description  
Figure 3.  
ST7232Axx-Auto  
44-pin LQFP package pinout  
44 43 42 41 40 39 38 37 36 35 34  
RDI/PE1  
PB0  
V
V
1
2
3
4
5
6
7
8
33  
SS_1  
DD_1  
32  
PB1  
PA3 (HS)  
PC7/SS/AIN15  
PC6/SCK/ICCCLK  
PC5/MOSI/AIN14  
PC4/MISO/ICCDATA  
PC3 (HS)/ICAP1_B  
PC2 (HS)/ICAP2_B  
PC1/OCMP1_B/AIN13  
PC0/OCMP2_B/AIN12  
ei0 31  
30  
ei2  
ei3  
PB2  
PB3  
29  
28  
(HS) PB4  
AIN0/PD0  
AIN1/PD1  
AIN2/PD2  
AIN3/PD3  
AIN4/PD4  
27  
26  
25  
9
ei1  
10  
11  
24  
23  
12 13 14 15 16 17 18 19 20 21 22  
1. Legend: (HS) = 20mA high sink capability; eix = associated external interrupt vector  
For external pin connection guidelines, refer to Section 12: Electrical characteristics on  
page 153.  
In Table 2: Device pin description below, refer to Section 9: I/O ports on page 62 for more  
details on the software configuration of the I/O ports. The RESET configuration of each pin  
is shown in bold. This configuration is valid as long as the device is in reset state. For  
external pin connection guidelines refer to Section 12: Electrical characteristics on  
page 153.  
20/201  
ST7232Axx-Auto  
Pin description  
(1)  
Table 2.  
Device pin description  
Pin  
no.  
Level  
Port  
Main  
function  
(after  
Pin name  
Alternate function  
Input  
Output  
reset)  
6
7
8
9
30 PB4 (HS)  
31 PD0/AIN0  
I/O CT HS  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
I/O CT  
S
X
X
X
X
X
X
X
ei3  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port B4  
X
X
Port D0 ADC analog input 0  
Port D1 ADC analog input 1  
Port D2 ADC analog Input 2  
Port D3 ADC analog Input 3  
Port D4 ADC analog Input 4  
Port D5 ADC analog Input 5  
Analog reference voltage for ADC  
Analog ground voltage  
32 PD1/AIN1  
X
X
X
X
X
X
X
X
X
X
(4)  
-
PD2/AIN2  
10 -(4) PD3/AIN3  
11 -(4) PD4/AIN4  
12 -(4) PD5/AIN5  
(5)  
13  
14  
1
2
VAREF  
(5)  
VSSA  
S
Main clock  
out (fCPU  
ADC analog  
input 8  
15  
3
PF0/MCO/AIN8  
I/O CT  
X
ei1  
ei1  
X
X
X
X
Port F0  
)
16  
4
PF1 (HS)/Beep  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
Port F1  
Port F2  
Beep signal output  
17 -(4) PF2 (HS)  
ei1  
PF4/OCMP1_A/  
AIN10  
Timer A output ADC analog  
compare 1  
18  
19  
20  
5
6
7
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
Port F4  
Port F6  
Port F7  
input 10  
PF6 (HS)/ICAP1_A I/O CT HS  
Timer A input capture 1  
PF7  
I/O CT HS  
(HS)/EXTCLK_A  
Timer A external clock source  
(5)  
21  
22  
-
-
VDD_0  
S
S
Digital main supply voltage  
Digital ground voltage  
(5)  
VSS_0  
PC0/OCMP2_B/  
AIN12  
Timer B output ADC analog  
compare 2 input 12  
23  
24  
8
9
I/O CT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Port C0  
Port C1  
PC1/OCMP1_B/  
AIN13  
Timer B output ADC analog  
compare 1 input 13  
I/O CT  
PC2  
(HS)/ICAP2_B  
25 10  
26 11  
27 12  
I/O CT HS  
I/O CT HS  
I/O CT  
Port C2 Timer B input capture 2  
Port C3 Timer B input capture 1  
PC3  
(HS)/ICAP1_B  
PC4/MISO/  
ICCDATA  
SPI master in/ ICC data  
Port C4  
slave out data input  
SPI master out ADC analog  
Port C5  
28 13 PC5/MOSI/AIN14 I/O CT  
29 14 PC6/SCK/ICCCLK I/O CT  
X
/slave in data input 14  
SPI serial  
clock  
ICC clock  
output  
Port C6  
21/201  
Pin description  
ST7232Axx-Auto  
(1)  
Table 2.  
Device pin description (continued)  
Pin  
no.  
Level Port  
Main  
function  
(after  
Pin name  
Alternate function  
Input  
Output  
reset)  
SPI slave  
Port C7 select (active  
low)  
ADC analog  
input 15  
30 15 PC7/SS/AIN15  
I/O CT  
X
X
X
X
X
X
X
X
31 16 PA3 (HS)  
I/O CT HS  
S
ei0  
Port A3  
(5)  
32  
33  
-
-
VDD_1  
Digital main supply voltage  
Digital ground voltage  
Port A4  
(5)  
VSS_1  
S
34 17 PA4 (HS)  
35 -(4) PA5 (HS)  
36 18 PA6 (HS)  
37 19 PA7 (HS)  
I/O CT HS  
I/O CT HS  
I/O CT HS  
I/O CT HS  
X
X
X
X
X
X
X
X
T
T
X
X
Port A5  
Port A6  
Port A7  
Must be tied low. In the Flash  
programming mode, this pin acts as the  
programming voltage input VPP. See  
Section 12.9.2 for more details. High  
voltage must not be applied to ROM  
devices.  
38 20 VPP/ICCSEL  
39 21 RESET  
I
I/O CT  
Top priority non maskable interrupt.  
Digital ground voltage  
(5)  
40 22 VSS_2  
S
41 23 OSC2(6)  
O
Resonator oscillator inverter output  
External clock input or resonator  
oscillator inverter input  
42 24 OSC1(6)  
I
(5)  
43 25 VDD_2  
S
Digital main supply voltage  
44 26 PE0/TDO  
I/O CT  
I/O CT  
X
X
X
X
X
X
X
X
Port E0  
Port E1  
SCI transmit data out  
SCI receive data in  
1
27 PE1/RDI  
Caution: Negative current  
injection not allowed on this  
pin(7)  
2
28 PB0  
I/O CT  
X
ei2  
X
X
Port B0  
(4)  
3
4
5
-
PB1  
PB2  
I/O CT  
I/O CT  
I/O CT  
X
X
X
ei2  
ei2  
X
X
X
X
X
X
Port B1  
Port B2  
Port B3  
(4)  
-
29 PB3  
ei2  
1. Legend/abbreviations for Table 2:  
Type: I = input, O = output, S = supply  
Input level: CT = CMOS 0.3VDD/0.7VDD with input trigger  
Output level: HS = 20mA high sink (on N-buffer only)  
Port and control configuration inputs: float = floating, wpu = weak pull-up, int = interrupt, ana = analog ports  
Port and control configuration outputs: OD = open drain, PP = push-pull  
2. ‘eiX’ defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column  
(int), then the I/O configuration is pull-up interrupt input; otherwise the configuration is floating interrupt input  
22/201  
ST7232Axx-Auto  
Pin description  
3. ‘T’ defines a true open drain I/O (P-buffer and protection diode to VDD are not implemented). See Section 9: I/O ports on  
page 62 and Section 12.8: I/O port pin characteristics for more details  
4. Each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The  
configuration of these pads must be kept at reset state to avoid added current consumption.  
5. It is mandatory to connect all available VDD and VAREF pins to the supply voltage and all VSS and VSSA pins to ground  
6. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see Section 1:  
Introduction and Section 12.5: Clock and timing characteristics for more details  
7. For details refer to Section 12.8.1: General characteristics on page 168  
23/201  
Register and memory map  
ST7232Axx-Auto  
3
Register and memory map  
As shown in <Blue HT>Figure 4, the MCU is capable of addressing 64K bytes of memories  
and I/O registers.  
The available memory locations consist of 128 bytes of register locations, up to 384 bytes of  
RAM and up to 8 Kbytes of user program memory. The RAM space includes up to 256 bytes  
for the stack from 0100h to 01FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
Caution:  
Memory locations marked as ‘reserved’ must never be accessed. Accessing a reserved  
area can have unpredictable effects on the device.  
Figure 4.  
Memory map  
0080h  
Short addressing  
RAM (zero page)  
0000h  
HW registers  
(see Table 3)  
00FFh  
0100h  
007Fh  
0080h  
256 bytes stack  
Reserved  
RAM  
(384 bytes)  
01FFh  
0200h  
047Fh  
0480h  
027Fh  
or 047Fh  
Reserved  
E000h  
E000h  
Program memory  
(4K or 8K)  
8 Kbytes  
4 Kbytes  
FFDFh  
FFE0h  
F000h  
FFFFh  
Interrupt and reset vectors  
(see Table 15)  
FFFFh  
24/201  
ST7232Axx-Auto  
Register and memory map  
Reset status(1) Remarks(2)  
Table 3.  
Address  
Hardware register map  
Block  
Register label  
Register name  
0000h  
0001h  
0002h  
PADR  
Port A data register  
Port A data direction register  
Port A option register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
Port A(3) PADDR  
PAOR  
0003h  
0004h  
0005h  
PBDR  
Port B(3) PBDDR  
PBOR  
Port B data register  
Port B data direction register  
Port B option register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
0006h  
0007h  
0008h  
PCDR  
PCDDR  
PCOR  
Port C data register  
Port C data direction register  
Port C option register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
Port C  
0009h  
000Ah  
000Bh  
PDADR  
Port D data register  
Port D data direction register  
Port D option register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
Port D(3) PDDDR  
PDOR  
000Ch  
000Dh  
000Eh  
PEDR  
Port E(3) PEDDR  
PEOR  
Port E data register  
Port E data direction register  
Port E option register  
00h(4)  
00h  
00h  
R/W  
R/W(3)  
R/W(3)  
000Fh  
0010h  
0011h  
PFDR  
Port F(3) PFDDR  
PFOR  
Port F data register  
Port F data direction register  
Port F option register  
00h(4)  
00h  
00h  
R/W  
R/W  
R/W  
0012h to  
0020h  
Reserved area (15 bytes)  
0021h  
0022h  
0023h  
SPIDR  
SPICR  
SPICSR  
SPI data I/O register  
SPI control register  
SPI control/status register  
xxh  
0xh  
00h  
R/W  
R/W  
R/W  
SPI  
0024h  
0025h  
0026h  
0027h  
ISPR0  
ISPR1  
ISPR2  
ISPR3  
Interrupt software priority register 0  
Interrupt software priority register 1  
Interrupt software priority register 2  
Interrupt software priority register 3  
FFh  
FFh  
FFh  
FFh  
R/W  
R/W  
R/W  
R/W  
ITC  
0028h  
0029h  
EICR  
External interrupt control register  
Flash control/status register  
Watchdog control register  
Reserved area (1 byte)  
00h  
00h  
7Fh  
R/W  
R/W  
R/W  
Flash  
FCSR  
002Ah Watchdog WDGCR  
002Bh  
002Ch  
002Dh  
MCCSR  
MCCBCR  
Main clock control/status register  
Main clock controller: beep control register  
00h  
00h  
R/W  
R/W  
MCC  
002Eh to  
0030h  
Reserved area (3 bytes)  
25/201  
Register and memory map  
ST7232Axx-Auto  
Table 3.  
Address  
Hardware register map (continued)  
Block  
Register label  
Register name  
Reset status(1) Remarks(2)  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
TACR2  
TACR1  
TACSR  
TAIC1HR  
TAIC1LR  
TAOC1HR  
TAOC1LR  
Timer A control register 2  
Timer A control register 1  
Timer A control/status register  
Timer A input capture 1 high register  
Timer A input capture 1 low register  
Timer A output compare 1 high register  
Timer A output compare 1 low register  
Timer A counter high register  
00h  
00h  
xxxx x0xxb  
xxh  
R/W  
R/W  
R/W  
Read only  
Read only  
R/W  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
R/W  
Timer A TACHR  
TACLR  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
Timer A counter low register  
TAACHR  
TAACLR  
TAIC2HR  
TAIC2LR  
TAOC2HR  
TAOC2LR  
Timer A alternate counter high register  
Timer A alternate counter low register  
Timer A input capture 2 high register  
Timer A input capture 2 low register  
Timer A output compare 2 high register  
Timer A output compare 2 low register  
00h  
R/W  
0040h  
Reserved area (1 byte)  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
TBCR2  
TBCR1  
TBCSR  
TBIC1HR  
TBIC1LR  
Timer B control register 2  
Timer B control register 1  
Timer B control/status register  
Timer B input capture 1 high register  
Timer B input capture 1 low register  
Timer B output compare 1 high register  
Timer B output compare 1 low register  
Timer B counter high register  
00h  
00h  
xxxx x0xxb  
xxh  
R/W  
R/W  
R/W  
Read only  
Read only  
R/W  
xxh  
80h  
00h  
FFh  
FCh  
FFh  
FCh  
xxh  
xxh  
80h  
TBOC1HR  
TBOC1LR  
Timer B TBCHR  
TBCLR  
R/W  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
R/W  
Timer B counter low register  
TBACHR  
TBACLR  
TBIC2HR  
TBIC2LR  
TBOC2HR  
TBOC2LR  
Timer B alternate counter high register  
Timer B alternate counter low register  
Timer B input capture 2 high register  
Timer B input capture 2 low register  
Timer B output compare 2 high register  
Timer B output compare 2 low register  
00h  
R/W  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
SCISR  
SCIDR  
SCIBRR  
SCICR1  
SCICR2  
SCI status register  
SCI data register  
SCI baud rate register  
SCI control register 1  
SCI control register 2  
SCI extended receive prescaler register  
Reserved area  
C0h  
xxh  
00h  
Read only  
R/W  
R/W  
R/W  
R/W  
x000 0000b  
00h  
SCI  
SCIERPR  
00h  
R/W  
SCIETPR  
SCI extended transmit prescaler register  
00h  
R/W  
0058h to  
006Fh  
Reserved area (24 bytes)  
0070h  
0071h  
0072h  
ADCCSR  
ADCDRH  
ADCDRL  
Control/status register  
Data high register  
Data low register  
00h  
00h  
00h  
R/W  
Read only  
Read only  
ADC  
0073h  
007Fh  
Reserved area (13 bytes)  
1. x = undefined  
2. R/W = read/write  
3. The bits associated with unavailable pins must always keep their reset value  
4. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents  
26/201  
ST7232Axx-Auto  
Flash program memory  
4
Flash program memory  
4.1  
Introduction  
The ST7 dual voltage high density Flash (HDFlash) is a non-volatile memory that can be  
electrically erased as a single block or by individual sectors and programmed on a byte-by-  
byte basis using an external V supply.  
PP  
The HDFlash devices can be programmed and erased off-board (plugged in a programming  
tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).  
The array matrix organisation allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
Main features  
Three Flash programming modes:  
Insertion in a programming tool. In this mode, all sectors including option bytes  
can be programmed or erased  
ICP (in-circuit programming). In this mode, all sectors including option bytes can  
be programmed or erased without removing the device from the application board  
IAP (in-application programming) In this mode, all sectors except sector 0, can be  
programmed or erased without removing the device from the application board  
and while the application is running  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Read-out protection  
Register access security system (RASS) to prevent accidental programming or erasing  
4.3  
Structure  
The Flash memory is organised in sectors and can be used for both code and data storage.  
Depending on the overall Flash memory size in the microcontroller device, there are up to  
three user sectors (see Table 4). Each of these sectors can be erased independently to  
avoid unnecessary erasing of the whole Flash memory when only a partial erasing is  
required.  
The first two sectors have a fixed size of 4 Kbytes (see Figure 5). They are mapped in the  
upper part of the ST7 addressing space so the reset and interrupt vectors are located in  
sector 0 (F000h-FFFFh).  
Table 4.  
Sectors available in Flash devices  
Flash size (bytes)  
Available sectors  
4K  
8K  
Sector 0  
Sectors 0,1  
27/201  
Flash program memory  
ST7232Axx-Auto  
4.3.1  
Read-out protection  
Read-out protection, when selected, provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
general purpose microcontroller.  
In Flash devices, this protection is removed by reprogramming the option. In this case, the  
entire program memory is first automatically erased and the device can be reprogrammed.  
Read-out protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte  
In ROM devices it is enabled by mask option specified in the option list  
Figure 5.  
Memory map and sector addresses of the ST7232X family  
4K  
8K  
10K  
16K  
24K  
32K  
48K  
60K  
Flash memory size  
Sector 2  
1000h  
3FFFh  
7FFFh  
9FFFh  
BFFFh  
D7FFh  
DFFFh  
EFFFh  
FFFFh  
52 Kbytes  
2 Kbytes 8 Kbytes 16 Kbytes 24 Kbytes 40 Kbytes  
4 Kbytes  
4 Kbytes  
Sector 1  
Sector 0  
4.4  
ICC interface  
ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see  
Figure 6). These pins are:  
RESET: device reset  
: device power supply ground  
V
SS  
ICCCLK: ICC output serial clock pin  
ICCDATA: ICC input/output serial data pin  
ICCSEL/V : programming voltage  
PP  
OSC1(or OSCIN): main clock input for external source (optional)  
V
: application board power supply (optional, see Figure 6, footnote 3)  
DD  
28/201  
ST7232Axx-Auto  
Figure 6.  
Flash program memory  
Typical ICC interface  
Programming tool  
ICC connector  
ICC cable  
Application board  
(3)  
(See ‘caution’)  
ICC connector  
HE10 connector type  
9
7
5
6
3
1
2
10  
8
4
(2)  
Application reset source  
10kΩ  
Application  
power supply  
C
C
L2  
L1  
(1)  
Application I/O  
ST7  
1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is  
necessary. As soon as the programming tool is plugged to the board, even if an ICC session is not in  
progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by  
the application, isolation such as a serial resistor has to implemented in case another device forces the  
signal. Refer to the programming tool documentation for recommended resistor values.  
2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts  
between the programming tool and the application reset circuit if it drives more than 5mA at high level  
(push pull output or pull-up resistor < 1K). A schottky diode can be used to isolate the application reset  
circuit in this case. When using a classical RC network with R > 1K or a reset management IC with open  
drain output and pull-up resistor > 1K, no additional components are needed. In all cases the user must  
ensure that no external reset is generated by the application during the ICC session.  
3. The use of Pin 7 of the ICC connector depends on the programming tool architecture. This pin must be  
connected when using most ST programming tools (it is used to monitor the application power supply).  
Please refer to the programming tool manual.  
Caution:  
External clock ICC entry mode is mandatory. Pin 9 must be connected to the OSC1 or  
OSCIN pin of the ST7 and OSC2 must be grounded.  
4.5  
In-circuit programming (ICP)  
To perform ICP the microcontroller must be switched to ICC (in-circuit communication) mode  
by an external controller or programming tool.  
Depending on the ICP code downloaded in RAM, Flash memory programming can be fully  
customized (number of bytes to program, program locations, or selection serial  
communication interface for downloading).  
When using an STMicroelectronics or third-party programming tool that supports ICP and  
the specific microcontroller device, the user needs only to implement the ICP hardware  
interface on the application board (see Figure 6). For more details on the pin locations, refer  
to the device pinout description.  
29/201  
Flash program memory  
ST7232Axx-Auto  
4.6  
In-application programming (IAP)  
This mode uses a Bootloader program previously stored in sector 0 by the user (in ICP  
mode or by plugging the device in a programming tool).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored, ...). For example, it is possible  
to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP  
mode can be used to program any of the Flash sectors except sector 0, which is write/erase  
protected to allow recovery in case errors occur during the programming operation.  
4.7  
Related documentation  
For details on Flash programming and ICC protocol, refer to the ST7 Flash programming  
reference manual and to the ST7 ICC protocol reference manual.  
Flash control/status register (FCSR)  
FCSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
0
R/W  
This register is reserved for use by programming tool software. It controls the Flash  
programming and erasing operations.  
Table 5.  
Flash control/status register address and reset value  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
FCSR  
0029h  
Reset value  
0
0
0
0
0
0
0
0
30/201  
ST7232Axx-Auto  
Central processing unit  
5
Central processing unit  
5.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient  
8-bit data manipulation.  
5.2  
Main features  
Enable executing 63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes (with indirect addressing mode)  
Two 8-bit index registers  
16-bit stack pointer  
Low power halt and wait modes  
Priority maskable hardware interrupts  
Non-maskable software/hardware interrupts  
5.3  
CPU registers  
The 6 CPU registers shown in Figure 7 are not present in the memory mapping and are  
accessed by specific instructions.  
Figure 7.  
CPU registers  
7
0
Accumulator  
Reset value = XXh  
7
0
0
X index register  
Y index register  
Reset value = XXh  
7
Reset value = XXh  
15  
PCH  
8
7
PCL  
0
Program counter  
Reset value = reset vector @ FFFEh-FFFFh  
7
0
Condition code register  
1
1
1
1
I1 H I0 N  
Z
X
C
X
Reset value =  
8
1
X 1 X  
15  
7
0
Stack pointer  
Reset value = stack higher address  
1. X = undefined value  
31/201  
Central processing unit  
ST7232Axx-Auto  
Accumulator (A)  
The accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index registers (X and Y)  
These 8-bit registers are used to create effective addresses or as temporary storage areas  
for data manipulation. (The cross-assembler generates a precede instruction (PRE) to  
indicate that the following instruction refers to the Y register.)  
The Y register is not affected by the interrupt automatic procedures.  
Program counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (program counter low which is  
the LSB) and PCH (program counter high which is the MSB).  
Condition code register (CC)  
CC  
Reset value: 111x 1xxx  
7
6
5
4
3
2
1
Z
0
1
I1  
H
I0  
N
C
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The 8-bit condition code register contains the interrupt masks and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
32/201  
ST7232Axx-Auto  
Central processing unit  
Table 6.  
CC register description  
Bit name  
Bit  
Function  
Interrupt management bits - interrupt  
The combination of the I1 and I0 bits gives the current interrupt  
software priority:  
10: Interrupt software priority = level 0 (main)  
01: Interrupt software priority = level 1  
00: Interrupt software priority = level 2  
5,3  
I1, I0  
11: Interrupt software priority = level 3 (= interrupt disable)  
These two bits are set/cleared by hardware when entering in  
interrupt. The loaded value is given by the corresponding bits in the  
interrupt software priority registers (IxSPR). They can be also  
set/cleared by software with the RIM, SIM, IRET, HALT, WFI and  
PUSH/POP instructions. See Section 7: Interrupts for more details.  
Arithmetic management bit -  
Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4  
of the ALU during an ADD or ADC instructions. It is reset by  
hardware during the same instructions.  
4
H
0: No half carry has occurred  
1: A half carry has occurred  
This bit is tested using the JRH or JRNH instruction. The H bit is  
useful in BCD arithmetic subroutines.  
Arithmetic management bit - Negative  
This bit is set and cleared by hardware. It is representative of the  
result sign of the last arithmetic, logical or data manipulation. It’s a  
copy of the result 7th bit.  
0: The result of the last operation is positive or null  
1: The result of the last operation is negative (i.e. the most significant  
bit is a logic 1)  
2
1
N
Z
This bit is accessed by the JRMI and JRPL instructions.  
Arithmetic management bit - Zero  
This bit is set and cleared by hardware. This bit indicates that the  
result of the last arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero  
1: The result of the last operation is zero  
This bit is accessed by the JREQ and JRNE test instructions.  
Arithmetic management bit -  
Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an  
overflow or an underflow has occurred during the last arithmetic  
operation.  
0
C
0: No overflow or underflow has occurred  
1: An overflow or underflow has occurred  
This bit is driven by the SCF and RCF instructions and tested by the  
JRC and JRNC instructions. It is also affected by the ‘bit test and  
branch’, shift and rotate instructions.  
33/201  
Central processing unit  
ST7232Axx-Auto  
Stack pointer register (SP)  
SP  
Reset value: 01 FFh  
15  
7
14  
6
13  
5
12  
0
11  
3
10  
2
9
8
1
R/W  
4
R/W  
0
1
SP[7:0]  
R/W  
The stack pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 8).  
Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.  
Following an MCU reset, or after a reset stack pointer instruction (RSP), the stack pointer  
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the stack pointer (called S) can be directly accessed by a LD  
instruction.  
Note:  
When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 8.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack  
On return from interrupt, the SP is incremented and the context is popped from the  
stack  
A subroutine call occupies two locations and an interrupt five locations in the stack area.  
34/201  
ST7232Axx-Auto  
Figure 8.  
Central processing unit  
Stack manipulation example  
Call  
subroutine  
PUSH Y  
POP Y  
IRET  
RET or RSP  
Interrupt  
event  
@ 0100h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 01FFh  
1. Legend: stack higher addres = 01FFh; stack lower address = 0100h  
35/201  
Supply, reset and clock management  
ST7232Axx-Auto  
6
Supply, reset and clock management  
6.1  
Introduction  
The device includes a range of utility features for securing the application in critical situations (for  
example in case of a power brown-out), and reducing the number of external components. An overview is  
shown in Figure 10.  
6.2  
Main features  
Optional PLL for multiplying the frequency by 2  
Reset sequence manager (RSM)  
Multi-oscillator clock management (MO)  
5 crystal/ceramic resonator oscillators  
6.3  
Phase locked loop (PLL)  
If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the  
frequency by two to obtain an f of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is  
OSC2  
disabled, then f  
f
/2.  
OSC2 = OSC  
Caution:  
Caution:  
The PLL is not recommended for applications where timing accuracy is required.  
When the PLL is used with an external clock signal, the clock signal must be available on  
the OSCIN pin before the reset signal is released.  
Figure 9.  
PLL block diagram  
PLL x 2  
/2  
0
f
OSC  
f
OSC2  
1
PLL option bit  
36/201  
ST7232Axx-Auto  
Supply, reset and clock management  
Figure 10. Clock, reset and supply block diagram  
f
OSC2  
CPU  
f
Main clock controller  
with real-time clock  
f
OSC  
PLL  
OSC2  
Multi-oscillator  
(option)  
(MO)  
(MCC/RTC)  
OSC1  
System integrity management  
Watchdog timer  
(WDG)  
Reset sequence manager  
(RSM)  
RESET  
SICSR  
0
WDG  
RF  
0
0
0
V
SS  
V
DD  
6.4  
Multi-oscillator (MO)  
The main clock of the ST7 can be generated by two different source types coming from the  
multi-oscillator block:  
An external source  
4 crystal or ceramic resonator oscillators  
Each oscillator is optimized for a given frequency range in terms of consumption and is  
selectable through the option byte. The associated hardware configurations are shown in  
Table 7. Refer to Section 12: Electrical characteristics for more details.  
Caution:  
The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of failure  
mode and effect analysis, it should be noted that if the OSC1 and/or OSC2 pins are left  
unconnected, the ST7 main oscillator may start and, in this configuration, could generate an  
f
clock frequency in excess of the allowed maximum (> 16MHz), putting the ST7 in an  
OSC  
unsafe/undefined state. The product behaviour must therefore be considered undefined  
when the OSC pins are left unconnected.  
6.4.1  
6.4.2  
External clock source  
In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle  
has to drive the OSC1 pin while the OSC2 pin is tied to ground.  
Crystal/ceramic oscillators  
This family of oscillators has the advantage of producing a very accurate rate on the main  
clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges  
has to be done by option byte in order to reduce consumption (refer to Section 14.2: Flash  
devices on page 185 for more details on the frequency ranges). In this mode of the multi-  
oscillator, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and start-up stabilization time. The  
loading capacitance values must be adjusted according to the selected oscillator.  
These oscillators are not stopped during the reset phase to avoid losing time in the oscillator  
start-up phase.  
37/201  
Supply, reset and clock management  
ST7232Axx-Auto  
Table 7.  
ST7 clock source  
Hardware configuration  
ST7  
OSC1  
OSC2  
External source  
ST7  
OSC1  
OSC2  
CL1  
CL2  
Load  
capacitors  
6.5  
Reset sequence manager (RSM)  
6.5.1  
Introduction  
The reset sequence manager includes two reset sources as shown in Figure 12:  
External RESET source pulse  
Internal watchdog reset  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The reset service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic reset sequence consists of 3 phases as shown in Figure 11:  
Active phase depending on the reset source  
256 or 4096 CPU clock cycle delay (selected by option byte)  
Reset vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the reset vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that  
recovery has taken place from the reset state. The shorter or longer clock cycle delay  
should be selected by option byte to correspond to the stabilization time of the external  
oscillator used in the application.  
The reset vector fetch phase duration is 2 clock cycles.  
38/201  
ST7232Axx-Auto  
Figure 11. Reset sequence phases  
Supply, reset and clock management  
Reset  
Internal reset  
Fetch vector  
Active phase  
256 or 4096 CLOCK CYCLES  
6.5.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See Section 12: Electrical  
characteristics for more details.  
A reset signal originating from an external source must have a duration of at least t  
h(RSTL)in  
in order to be recognized (see Figure 13). This detection is asynchronous and therefore the  
MCU can enter reset state even in halt mode.  
Figure 12. Reset block diagram  
V
DD  
R
ON  
Internal reset  
Filter  
RESET  
Pulse  
generator  
Watchdog reset  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in the electrical  
characteristics section.  
6.5.3  
External power on reset  
To start up the microcontroller correctly, the user must ensure by means of an external reset  
circuit that the reset signal is held low until V is over the minimum level specified for the  
DD  
selected f  
frequency.  
OSC  
A proper reset signal for a slow rising V supply can generally be provided by an external  
DD  
RC network connected to the RESET pin.  
39/201  
Supply, reset and clock management  
ST7232Axx-Auto  
6.5.4  
Internal watchdog reset  
The reset sequence generated by a internal watchdog counter overflow is shown in  
Figure 13.  
Starting from the watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 13. Reset sequences  
Watchdog  
reset  
External reset  
Run  
Run  
Run  
Active  
phase  
Active  
phase  
t
w(RSTL)out  
t
h(RSTL)in  
External  
RESET  
source  
RESET pin  
Watchdog  
reset  
Watchdog underflow  
Internal reset (256 or 4096 T  
Vector fetch  
)
CPU  
40/201  
ST7232Axx-Auto  
Supply, reset and clock management  
6.6  
System integrity management  
System integrity control/status register (SICSR)  
SICSR  
7
Reset value: 0000 000x (00b)  
6
5
4
3
2
1
0
Reserved  
WDGRF  
-
R/W  
Table 8.  
Bit  
SICSR register description  
Bit name  
Function  
7:1  
Reserved, must be kept cleared  
Watchdog reset flag  
-
This bit indicates that the last reset was generated by the watchdog  
peripheral. It is set by hardware (watchdog reset) and cleared by  
software (writing zero).  
0
WDGRF  
41/201  
Interrupts  
ST7232Axx-Auto  
7
Interrupts  
7.1  
Introduction  
The ST7 enhanced interrupt management provides the following features:  
Hardware interrupts  
Software interrupt (TRAP)  
Nested or concurrent interrupt management with flexible interrupt priority and level  
management:  
Up to 4 software programmable nesting levels  
Up to 16 interrupt vectors fixed by hardware  
2 non maskable events: reset, TRAP  
This interrupt management is based on:  
Bit 5 and bit 3 of the CPU CC register (I1:0)  
Interrupt software priority registers (ISPRx)  
Fixed interrupt vector addresses located at the high addresses of the memory map  
(FFE0h to FFFFh) sorted by hardware priority order  
This enhanced interrupt controller guarantees full upward compatibility with the standard  
(not nested) ST7 interrupt controller.  
7.2  
Masking and processing flow  
The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx  
registers which give the interrupt software priority level of each interrupt vector (see  
Table 9). The processing flow is shown in Figure 14.  
When an interrupt request has to be serviced:  
Normal processing is suspended at the end of the current instruction execution  
The PC, X, A and CC registers are saved onto the stack  
I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx  
registers of the serviced interrupt vector  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to Table 15: Interrupt  
mapping for vector addresses)  
The interrupt service routine should end with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I1 and I0 bits are restored from the stack and  
the program in the previous level is resumed.  
42/201  
ST7232Axx-Auto  
Interrupts  
I0  
Table 9.  
Interrupt software priority levels  
Interrupt software priority  
Level  
I1  
Level 0 (main)  
Level 1  
1
0
0
1
0
1
0
1
Low  
Level 2  
High  
Level 3 (= interrupt disable)  
Figure 14. Interrupt processing flowchart  
Pending  
interrupt  
Y
Y
Reset  
TRAP  
N
Interrupt has the same or a  
lower software priority  
than current one  
N
I1:0  
Fetch next  
instruction  
The interrupt  
stays pending  
Y
Interrupt has a higher  
software priority  
than current one  
‘IRET’  
N
Restore PC, X, A, CC  
from stack  
Execute  
instruction  
Stack PC, X, A, CC  
Load I1:0 from interrupt SW register  
Load PC from interrupt vector  
43/201  
Interrupts  
ST7232Axx-Auto  
7.2.1  
Servicing pending interrupts  
As several interrupts can be pending at the same time, the interrupt to be taken into account  
is determined by the following two-step process:  
the highest software priority interrupt is serviced  
if several interrupts have the same software priority then the interrupt with the highest  
hardware priority is serviced first  
Figure 15 describes this decision process.  
Figure 15. Priority decision process  
Pending  
interrupts  
Different  
Same  
Software  
priority  
Highest software  
priority serviced  
Highest hardware  
priority serviced  
When an interrupt request is not serviced immediately, it is latched and then processed  
when its software priority combined with the hardware priority becomes the highest one.  
Note:  
1
2
The hardware priority is exclusive while the software one is not. This allows the previous  
process to succeed with only one interrupt.  
Reset and TRAP can be considered as having the highest software priority in the decision  
process.  
7.2.2  
Different interrupt vector sources  
Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable  
type (reset, TRAP) and the maskable type (external or from internal peripherals).  
44/201  
ST7232Axx-Auto  
Interrupts  
7.2.3  
Non-maskable sources  
These sources are processed regardless of the state of the I1 and I0 bits of the CC register  
(see Figure 14). After stacking the PC, X, A and CC registers (except for reset), the  
corresponding vector is loaded in the PC register and the I1 and I0 bits of the CC are set to  
disable interrupts (level 3). These sources allow the processor to exit halt mode.  
TRAP (non maskable software interrupt)  
This software interrupt is serviced when the TRAP instruction is executed. It is serviced  
according to the flowchart in Figure 14.  
Reset  
The reset source has the highest priority in the ST7. This means that the first current routine  
has the highest software priority (level 3) and the highest hardware priority. See Section 6.5:  
Reset sequence manager (RSM).  
7.2.4  
Maskable sources  
Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled  
and if its own interrupt software priority (in ISPRx registers) is higher than the one currently  
being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt  
is latched and thus remains pending.  
External interrupts  
External interrupts allow the processor to exit from halt low power mode. External  
interrupt sensitivity is software selectable through the external interrupt control register  
(EICR).  
External interrupt triggered on edge is latched and the interrupt request automatically  
cleared upon entering the interrupt service routine.  
If several input pins of a group connected to the same interrupt line are selected  
simultaneously, these are logically ORed.  
Peripheral interrupts  
Usually the peripheral interrupts cause the MCU to exit from halt mode except those  
mentioned in Table 15: Interrupt mapping . A peripheral interrupt occurs when a  
specific flag is set in the peripheral status registers and if the corresponding enable bit  
is set in the peripheral control register.  
The general sequence for clearing an interrupt is based on an access to the status register  
followed by a read or write to an associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting to be  
serviced) is therefore lost if the clear sequence is executed.  
45/201  
Interrupts  
ST7232Axx-Auto  
7.3  
Interrupts and low power modes  
All interrupts allow the processor to exit the wait low power mode. On the contrary, only  
external and other specified interrupts allow the processor to exit from the halt modes (see  
column ‘exit from halt’ in Table 15: Interrupt mapping). When several pending interrupts are  
present while exiting halt mode, the first one serviced can only be an interrupt with exit from  
halt mode capability and it is selected through the same decision process shown in  
Figure 15.  
Note:  
If an interrupt, that is not able to exit from halt mode, is pending with the highest priority  
when exiting halt mode, this interrupt is serviced after the first one serviced.  
7.4  
Concurrent and nested management  
Figure 16 and Figure 17 show two different interrupt management modes. The first is called  
concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode  
in Figure 17. The interrupt hardware priority is given in this order from the lowest to the  
highest: MAIN, IT4, IT3, IT2, IT1, IT0. The software priority is given for each interrupt.  
Warning: A stack overflow may occur without notifying the software of  
the failure.  
Figure 16. Concurrent interrupt management  
Software priority level  
I1  
I0  
TRAP  
3
1
1
1
1
1
1
1
1
1
1
1
1
IT0  
3
IT1  
IT1  
3
IT2  
3
IT3  
3
RIM  
IT4  
3
MAIN  
11/10  
MAIN  
10  
3/0  
46/201  
ST7232Axx-Auto  
Figure 17. Nested interrupt management  
Interrupts  
Software priority level  
I1  
I0  
TRAP  
3
1
1
1
0
1
1
1
IT0  
3
1
0
0
1
1
IT1  
IT1  
2
IT2  
IT2  
1
IT3  
3
RIM  
IT4  
IT4  
3
MAIN  
11/10  
MAIN  
10  
3/0  
7.5  
Interrupt registers  
CPU CC register interrupt bits  
CPU CC  
Reset value: 111x 1010 (xAh)  
7
6
5
4
3
2
1
Z
0
1
I1  
H
I0  
R/W  
N
C
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 10. CPU CC register description  
Bit  
Bit name  
Function  
Software interrupt priority  
These two bits indicate the current interrupt software priority:  
10: Interrupt software priority = level 0 (main)  
01: Interrupt software priority = level 1  
00: Interrupt software priority = level 2  
11: Interrupt software priority = level 3 (= interrupt disable(1)  
These two bits are set/cleared by hardware when entering in  
)
5, 3  
I1, I0  
interrupt. The loaded value is given by the corresponding bits in the  
interrupt software priority registers (ISPRx).  
They can be also set/cleared by software with the RIM, SIM, HALT,  
WFI, IRET and PUSH/POP instructions (see Table 12: Dedicated  
interrupt instruction set).  
1. TRAP and reset events can interrupt a level 3 program.  
47/201  
Interrupts  
ST7232Axx-Auto  
Interrupt software priority registers (ISPRX)  
ISPR0  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
I1_3  
I0_3  
I1_2  
I0_2  
I1_1  
I0_1  
I1_0  
I0_0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISPR1  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
I1_7  
I0_7  
I1_6  
I0_6  
I1_5  
I0_5  
I1_4  
I0_4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISPR2  
Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
I1_11  
I0_11  
I1_10  
I0_10  
I1_9  
I0_9  
I1_8  
I0_8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISPR3  
Reset value: 1111 1111 (FFh)  
7
1
6
1
5
1
4
1
3
2
1
0
I1_13  
I0_13  
I1_12  
I0_12  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
These four registers contain the interrupt software priority of each interrupt vector.  
Each interrupt vector (except reset and TRAP) has corresponding bits in the ISPRx  
registers where its own software priority is stored. This correspondance is shown in  
Table 11.  
Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1  
and I0 bits in the CC register.  
Level 0 can not be written (I1_x = 1, I0_x = 0). In this case, the previously stored value  
is kept (example, previous = CFh, write = 64h, result = 44h).  
Table 11. ISPRx interrupt vector correspondence  
Vector address  
ISPRx bits  
FFFBh-FFFAh  
FFF9h-FFF8h  
-
I1_0 and I0_0 bits*  
I1_1 and I0_1 bits  
-
FFE1h-FFE0h  
I1_13 and I0_13 bits  
The reset, and TRAP vectors have no software priorities. When one is serviced, the I1 and  
I0 bits of the CC register are both set.  
Caution:  
If the I1_x and I0_x bits are modified while the interrupt x is executed the following behaviour  
has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and  
the new software priority is higher than the previous one, the interrupt x is re-entered.  
Otherwise, the software priority stays unchanged up to the next interrupt request (after the  
IRET of the interrupt x).  
48/201  
ST7232Axx-Auto  
Interrupts  
7.6  
Interrupt related instructions  
(1)  
Table 12. Dedicated interrupt instruction set  
Instruction  
New description  
Function/example  
I1  
H
I0  
N
Z
C
HALT  
IRET  
JRM  
Entering halt mode  
1
0
Interrupt routine return  
Jump if I1:0 = 11 (level 3)  
Jump if I1:0 <> 11  
Pop CC, A, X, PC  
I1:0 = 11 ?  
I1  
H
I0  
N
Z
C
JRNM  
POP CC  
RIM  
I1:0 <> 11 ?  
Pop CC from the stack  
Mem => CC  
I1  
1
1
1
1
H
I0  
0
N
Z
C
Enable interrupt (level 0 set) Load 10 in I1:0 of CC  
Disable interrupt (level 3 set) Load 11 in I1:0 of CC  
SIM  
1
TRAP  
WFI  
Software TRAP  
Wait for interrupt  
Software NMI  
1
0
1. During the execution of an interrupt routine, the HALT, POP CC, RIM, SIM and WFI instructions change  
the current software priority up to the next IRET instruction or one of the previously mentioned instructions.  
7.7  
External interrupts  
7.7.1  
I/O port interrupt sensitivity  
The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR  
register (Figure 18). This control allows up to 4 fully independent external interrupt source  
sensitivities.  
Each external interrupt source can be generated on four (or five) different events on the pin:  
Falling edge  
Rising edge  
Falling and rising edge  
Falling edge and low level  
Rising edge and high level (only for ei0 and ei2)  
To guarantee correct functionality, the sensitivity bits in the EICR register can be modified  
only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that  
interrupts must be disabled before changing sensitivity.  
The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits  
of the EICR.  
49/201  
Interrupts  
ST7232Axx-Auto  
Figure 18. External interrupt control bits  
EICR  
IS20 IS21  
Port A3 interrupt  
PAOR.3  
PADDR.3  
ei0 interrupt source  
Sensitivity  
PA3  
control  
IPA bit  
EICR  
Port F [2:0] interrupts  
IS21  
IS20  
PFOR.2  
PFDDR.2  
PF2  
Sensitivity  
control  
ei1 interrupt source  
ei2 interrupt source  
ei3 interrupt source  
PF2  
PF1  
PF0  
EICR  
Port B [3:0] interrupts  
IS10  
IS11  
PBOR.3  
PBDDR.3  
PB3  
PB2  
PB1  
PB0  
Sensitivity  
control  
PB3  
IPB bit  
EICR  
Port B [7:4] interrupts  
IS11  
IS10  
PBOR.7  
PBDDR.7  
PB7  
Sensitivity  
control  
PB7  
PB6  
PB5  
PB4  
50/201  
ST7232Axx-Auto  
Interrupts  
7.8  
External interrupt control register (EICR)  
EICR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
IS1[1:0]  
R/W  
IPB  
IS2[1:0]  
R/W  
IPA  
Reserved  
-
R/W  
R/W  
Table 13. EICR register description  
Bit  
Bit name  
Function  
Interrupt sensitivity (ei2 and ei3)  
The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to  
the following external interrupts:  
External interrupt ei2 (port B[3:0]):  
00: External interrupt sensitivity = falling edge and low level  
(IPB bit = 0) and rising edge and high level (IPB bit = 1)  
01: External interrupt sensitivity = rising edge only (IPB bit = 0) and  
falling edge only (IPB bit = 1)  
10: External interrupt sensitivity = falling edge only (IPB bit = 0) and  
rising edge only (IPB bit = 1)  
7:6  
IS1[1:0]  
11: External interrupt sensitivity = rising and falling edge  
(IPB bit = 0 and 1)  
External interrupt ei3 (port B[4]):  
00: external interrupt sensitivity = falling edge and low level  
01: external interrupt sensitivity = rising edge only  
10: external interrupt sensitivity = falling edge only  
11: external interrupt sensitivity = rising and falling edge  
These 2 bits can be written only when I1 and I0 of the CC register  
are both set to 1 (level 3).  
Interrupt polarity for port B  
This bit is used to invert the sensitivity of the port B [3:0] external  
interrupts. It can be set and cleared by software only when I1 and I0  
of the CC register are both set to 1 (level 3).  
0: No sensitivity inversion  
5
IPB  
1: Sensitivity inversion  
51/201  
Interrupts  
ST7232Axx-Auto  
Table 13. EICR register description (continued)  
Bit  
Bit name  
Function  
Interrupt sensitivity (ei0 and ei1)  
The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to  
the following external interrupts:  
External interrupt ei0 (port A[3:0]):  
00: External interrupt sensitivity = falling edge and low level  
(IPA bit = 0) and rising edge and high level (IPA bit = 1)  
01: External interrupt sensitivity = rising edge only (IPA bit = 0) and  
falling edge only (IPA bit = 1)  
10: External interrupt sensitivity = falling edge only (IPA bit = 0) and  
rising edge only (IPA bit = 1)  
4:3  
IS2[1:0]  
11: External interrupt sensitivity = rising and falling edge  
(IPA bit = 0 and 1)  
External interrupt ei1 port ([F2:0]):  
00: External interrupt sensitivity = falling edge and low level  
01: External interrupt sensitivity = rising edge only  
10: External interrupt sensitivity = falling edge only  
11: External interrupt sensitivity = rising and falling edge  
These 2 bits can be written only when I1 and I0 of the CC register  
are both set to 1 (level 3).  
Interrupt polarity for port A  
This bit is used to invert the sensitivity of the port A [3:0] external  
interrupts. It can be set and cleared by software only when I1 and I0  
of the CC register are both set to 1 (level 3).  
0: No sensitivity inversion  
2
IPA  
-
1: Sensitivity inversion  
1:0  
Reserved, must always be kept cleared  
52/201  
ST7232Axx-Auto  
Interrupts  
7.9  
Nested interrupts register map and reset value  
Table 14. Nested interrupts register map and reset values  
Address (Hex.)  
Register label  
7
6
5
4
3
2
1
0
ei1  
SPI  
AVD  
ei0  
MCC + SI  
I1_1 I0_1  
ISPR0  
Reset value  
0024h  
I1_3  
1
I0_3  
1
I1_2  
1
I0_2  
1
1
1
1
1
ei3  
ei2  
ISPR1  
Reset value  
0025h  
0026h  
I1_7  
1
I0_7  
1
I1_6  
1
I0_6  
1
I1_5  
1
I0_5  
1
I1_4  
1
I0_4  
1
SCI  
Timer B  
Timer A  
ISPR2  
Reset value  
I1_11  
1
I0_11  
1
I1_10  
1
I0_10  
1
I1_9  
1
I0_9  
1
I1_8  
1
I0_8  
1
ISPR3  
Reset value  
I1_13  
1
I0_13  
1
I1_12  
1
I0_12  
1
0027h  
0028h  
1
1
1
1
EICR  
Reset value  
IS11  
0
IS10  
0
IPB  
0
IS21  
0
IS20  
0
IPA  
0
0
0
7.10  
Interrupt mapping  
Table 15. Interrupt mapping  
Source  
Register Priority Exitfrom  
Exit from  
active halt  
No.  
Description  
Address vector  
block  
label  
order  
halt  
Reset  
TRAP  
Reset  
Yes  
No  
Yes  
No  
FFFEh-FFFFh  
FFFCh-FFFDh  
FFFAh-FFFBh  
N/A  
Software interrupt  
0
1
Not used  
Main clock controller time  
base interrupt  
Higher  
priority  
MCC/RTC  
MCCSR  
Yes  
Yes  
FFF8h-FFF9h  
2
3
ei0  
ei1  
ei2  
ei3  
External interrupt port A[3:0]  
External interrupt port F[2:0]  
External interrupt port B[3:0]  
External interrupt port B[7:4]  
Not used  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
FFEAh-FFEBh  
FFE8h-FFE9h  
FFE6h-FFE7h  
FFE4h-FFE5h  
N/A  
4
5
6
Not used  
7
SPI  
SPI peripheral interrupts  
SPICSR  
TASR  
Yes(1)  
No  
No  
No  
No  
No  
8
Timer A Timer A peripheral interrupts  
Timer B Timer B peripheral interrupts  
9
TBSR  
No  
10  
11  
SCI  
SCI peripheral interrupts  
Not used  
SCISR  
No  
Lower  
priority  
1. Unexpected exit from halt may occur when SPI is in slave mode.  
53/201  
Power saving modes  
ST7232Axx-Auto  
8
Power saving modes  
8.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, four  
main power saving modes are implemented in the ST7 (see Figure 19): slow, wait (slow  
wait), active halt and halt.  
After a reset the normal operating mode is selected by default (RUN mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency divided or multiplied by 2 (f  
).  
OSC2  
From RUN mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 19. Power saving mode transitions  
High  
Run  
Slow  
Wait  
Slow wait  
Active halt  
Halt  
Low  
Power consumption  
8.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device  
To adapt the internal clock frequency (f ) to the available supply voltage  
CPU  
Slow mode is controlled by three bits in the MCCSR register: the SMS bit which enables or  
disables slow mode and two CPx bits which select the internal slow frequency (f ).  
CPU  
In this mode, the master clock frequency (f  
) can be divided by 2, 4, 8 or 16. The CPU  
OSC2  
and peripherals are clocked at this lower frequency (f  
).  
CPU  
Note:  
Slow wait mode is activated when entering the wait mode while the device is already in slow  
mode.  
54/201  
ST7232Axx-Auto  
Figure 20. Slow mode clock transitions  
Power saving modes  
f
/2  
f
/4  
f
OSC2  
OSC2  
OSC2  
f
CPU  
f
OSC2  
00  
01  
CP1:0  
SMS  
Normal run mode request  
New slow  
frequency request  
8.3  
Wait mode  
Wait mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During wait mode, the I[1:0] bits of the CC register are forced  
to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU  
remains in wait mode until an interrupt or reset occurs, whereupon the program counter  
branches to the starting address of the interrupt or reset service routine. The MCU remains  
in wait mode until a reset or an interrupt occurs, causes it to wake up.  
Refer to Figure 21.  
55/201  
Power saving modes  
Figure 21. Wait mode flow-chart  
ST7232Axx-Auto  
Oscillator  
Peripherals  
CPU  
ON  
ON  
OFF  
10  
WFI instruction  
I[1:0] bits  
N
Reset  
Y
N
Interrupt  
Y
Oscillator  
Peripherals  
CPU  
ON  
OFF  
ON  
10  
I[1:0] bits  
256 OR 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
ON  
ON  
ON  
(1)  
I[1:0] bits  
XX  
Fetch reset vector or  
service interrupt  
1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
8.4  
Active halt and halt modes  
Active halt and halt modes are the two lowest power consumption modes of the MCU. They  
are both entered by executing the ‘HALT’ instruction. The decision to enter either in active  
halt or halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR  
register).  
Table 16. Active halt and halt power saving modes  
MCCSR  
Power saving mode entered when HALT instruction is executed  
OIE bit  
0
1
Halt mode  
Active halt mode  
56/201  
ST7232Axx-Auto  
Power saving modes  
8.4.1  
Active halt mode  
Active halt mode is the lowest power consumption mode of the MCU with a real-time clock  
available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the main clock  
controller status register (MCCSR) is set (see Section 10.2: Main clock controller with real-  
time clock and beeper (MCC/RTC) on page 73 for more details on the MCCSR register).  
The MCU can exit active halt mode on reception of either an MCC/RTC interrupt, a specific  
interrupt (see Table 15: Interrupt mapping on page 53) or a reset. When exiting active halt  
mode by means of an interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes  
operation by servicing the interrupt or by fetching the reset vector which woke it up (see  
Figure 23).  
When entering active halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to  
enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In active halt mode, only the main oscillator and its associated counter (MCC/RTC) are  
running to keep a wake up time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
The safeguard against staying locked in active halt mode is provided by the oscillator  
interrupt.  
Note:  
As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set),  
entering active halt mode while the watchdog is active does not generate a reset. This  
means that the device cannot spend more than a defined delay in this power saving mode.  
Caution:  
When exiting active halt mode following an interrupt, OIE bit of MCCSR register must not be  
cleared before t  
after the interrupt occurs (t  
= 256 or 4096 t  
delay depending  
DELAY  
DELAY  
CPU  
on option byte). Otherwise, the ST7 enters halt mode for the remaining t  
period.  
DELAY  
Figure 22. Active halt timing overview  
Active  
halt  
256 OR 4096 CPU  
cycle delay  
Run  
Run  
(1)  
Reset or interrupt  
HALT  
instruction  
Fetch  
vector  
[MCCSR.OIE = 1]  
1. This delay occurs only if the MCU exits active halt mode by means of a reset  
57/201  
Power saving modes  
Figure 23. Active halt mode flow-chart  
ST7232Axx-Auto  
Oscillator  
Peripherals  
CPU  
ON  
OFF  
OFF  
10  
(1)  
HALT instruction  
(MCCSR.OIE = 1)  
I[1:0] bits  
N
Reset  
Y
N
(2)  
Interrupt  
Oscillator  
Peripherals  
CPU  
ON  
OFF  
ON  
Y
(3)  
I[1:0] bits  
XX  
256 OR 4096 CPU clock  
cycle delay  
Oscillator  
Peripherals  
CPU  
ON  
ON  
ON  
(3)  
I[1:0] bits  
XX  
Fetch reset vector or  
service interrupt  
1. Peripheral clocked with an external clock source can still be active  
2. Only the MCC/RTC interrupt and some specific interrupts can exit the MCU from active halt mode (such as  
external interrupt). Refer to Table 15: Interrupt mapping on page 53 for more details.  
3. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and restored when the CC register is  
popped.  
8.4.2  
Halt mode  
The halt mode is the lowest power consumption mode of the MCU. It is entered by executing  
the ‘HALT’ instruction when the OIE bit of the main clock controller status register (MCCSR)  
is cleared (see Section 10.2: Main clock controller with real-time clock and beeper  
(MCC/RTC) on page 73 for more details on the MCCSR register).  
The MCU can exit halt mode on reception of either a specific interrupt (see Table 15:  
Interrupt mapping on page 53) or a reset. When exiting halt mode by means of a reset or an  
interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is  
used to stabilize the oscillator. After the start up delay, the CPU resumes operation by  
servicing the interrupt or by fetching the reset vector which woke it up (see Figure 25).  
When entering halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In halt mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
58/201  
ST7232Axx-Auto  
Power saving modes  
The compatibility of watchdog operation with halt mode is configured by the ‘WDGHALT’  
option bit of the option byte. The HALT instruction when executed while the watchdog  
system is enabled, can generate a watchdog reset (see Section 14.2 on page 185) for more  
details.  
Figure 24. Halt timing overview  
256 OR 4096 CPU  
Run  
Halt  
Run  
cycle delay  
Reset or interrupt  
HALT  
instruction  
Fetch  
vector  
[MCCSR.OIE = 1]  
59/201  
Power saving modes  
Figure 25. Halt mode flow-chart  
ST7232Axx-Auto  
HALT instruction  
(MCCSR.OIE = 0)  
Enable  
Watchdog  
Disable  
0
(1)  
WDGHALT  
1
Oscillator  
OFF  
OFF  
OFF  
10  
Watchdog reset  
(2)  
Peripherals  
CPU  
I[1:0] bits  
N
Reset  
Y
N
(3)  
Interrupt  
Oscillator  
Peripherals  
CPU  
ON  
OFF  
ON  
Y
(4)  
I[1:0] bits  
XX  
256 or 4096 CPU clock  
cycle delay  
Oscillator  
ON  
ON  
ON  
Peripherals  
CPU  
(4)  
I[1:0] bits  
XX  
Fetch reset vector or  
service interrupt  
1. WDGHALT is an option bit. See Section 14.2: Flash devices for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from halt mode (such as external interrupt). Refer to  
Table 15: Interrupt mapping on page 53 for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
60/201  
ST7232Axx-Auto  
Power saving modes  
Halt mode recommendations  
Make sure that an external event is available to wake up the microcontroller from halt  
mode  
When using an external interrupt to wake up the microcontroller, reinitialize the  
corresponding I/O as ‘input pull-up with interrupt’ before executing the HALT instruction.  
The main reason for this is that the I/O may be wrongly configured due to external  
interference or by an unforeseen logical condition.  
For the same reason, reinitialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0 x 8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in ROM with the value  
0x8E.  
As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,  
the user may choose to clear all pending interrupt bits before executing the HALT  
instruction. This avoids entering other peripheral interrupt routines after executing the  
external interrupt routine corresponding to the wake up event (reset or external  
interrupt).  
61/201  
I/O ports  
ST7232Axx-Auto  
9
I/O ports  
9.1  
Introduction  
The I/O ports offer different functional modes:  
Transfer of data through digital inputs and outputs  
For specific pins they offer different functional modes:  
External interrupt generation  
Alternate signal input/output for the on-chip peripherals  
An I/O port contains up to 8 pins. Each pin can be programmed independently as digital  
input (with or without interrupt generation) or digital output.  
9.2  
Functional description  
Each port has 2 main registers:  
Data register (DR)  
Data direction register (DDR)  
Each port also has one optional register:  
Option register (OR)  
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR  
registers: bit X corresponding to pin X of the port. The same correspondence is used for the  
DR register.  
The following description takes into account the OR register, (for specific ports which do not  
provide this register refer to Section 9.3: I/O port implementation on page 66). The generic  
I/O block diagram is shown in Figure 26.  
9.2.1  
Input modes  
The input configuration is selected by clearing the corresponding DDR register bit. In this  
case, reading the DR register returns the digital value applied to the external I/O pin.  
Different input modes can be selected by software through the OR register.  
Note:  
1
Writing the DR register modifies the latch value but does not affect the pin status.  
2
When switching from input to output mode, the DR register has to be written first to drive the  
correct level on the pin as soon as the port is configured as an output.  
3
Do not use read/modify/write instructions (BSET or BRES) to modify the DR register as this  
might corrupt the DR content for I/Os configured as input."  
62/201  
ST7232Axx-Auto  
I/O ports  
External interrupt function  
When an I/O is configured as input with interrupt, an event on this I/O can generate an  
external interrupt request to the CPU.  
Each pin can independently generate an interrupt request. The interrupt sensitivity is  
independently programmable using the sensitivity bits in the EICR register.  
Each external interrupt vector is linked to a dedicated group of I/O port pins (see Section 2:  
Pin description and Section 7: Interrupts). If several input pins are selected simultaneously  
as interrupt sources, these are first detected according to the sensitivity bits in the EICR  
register and then logically ORed.  
The external interrupts are hardware interrupts, which means that the request latch (not  
accessible directly by the application) is automatically cleared when the corresponding  
interrupt vector is fetched. To clear an unwanted pending interrupt by software, the  
sensitivity bits in the EICR register must be modified.  
9.2.2  
Output modes  
The output configuration is selected by setting the corresponding DDR register bit. In this  
case, writing the DR register applies this digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously stored value.  
Two different output modes can be selected by software through the OR register: Output  
push-pull and open-drain.  
See Table 17 for the DR register value and output pin status.  
Table 17. DR register value and output pin status  
DR  
Push-pull  
Open-drain  
0
1
VSS  
VDD  
Vss  
Floating  
9.2.3  
Alternate functions  
When an on-chip peripheral is configured to use a pin, the alternate function is automatically  
selected. This alternate function takes priority over the standard I/O programming.  
When the signal is coming from an on-chip peripheral, the I/O pin is automatically  
configured in output mode (push-pull or open drain according to the peripheral).  
When the signal is going to an on-chip peripheral, the I/O pin must be configured in input  
mode. In this case, the pin state is also digitally readable by addressing the DR register.  
Note:  
Input pull-up configuration can cause unexpected value at the input of the alternate  
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to  
be configured in input floating mode.  
63/201  
I/O ports  
ST7232Axx-Auto  
Figure 26. I/O port general block diagram  
1
0
Register  
access  
Alternate  
output  
V
DD  
P-buffer (see Table below)  
Pull-up (see Table below)  
Alternate  
enable  
DR  
DDR  
OR  
V
DD  
Pull-up  
condition  
Pad  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-buffer  
Diodes  
(see Table below)  
Analog input  
CMOS  
Schmitt trigger  
1
0
Alternate input  
External interrupt  
source (ei )  
x
Table 18. I/O port mode options  
Configuration mode  
Diodes  
Pull-up  
P-buffer  
to VDD  
to VSS  
Floating with/without interrupt  
Input  
Off(1)  
On(2)  
Off(1)  
Pull-up with/without interrupt  
On(2)  
Push-pull  
On(2)  
Off(1)  
NI(3)  
On(2)  
Off(1)  
NI(3)  
Output  
Open drain (logic level)  
True open drain  
NI(4)  
1. Implemented not activated  
2. Implemented and activated  
3. Not implemented  
4. The diode to VDD is not implemented in the true open drain pads. A local protection between the pad and VSS is  
implemented to protect the device against positive stress.  
64/201  
ST7232Axx-Auto  
I/O ports  
Table 19. I/O port configurations  
Hardware configuration  
DR register access  
W
Not implemented in  
true open drain  
I/O ports  
V
DD  
Pull-up condition  
R
PU  
DR  
register  
Data bus  
Pad  
R
Alternate input  
External interrupt source (ei )  
x
Interrupt condition  
Analog input  
Not implemented in  
true open drain  
I/O ports  
DR register access  
V
DD  
R
PU  
R/W  
DR  
register  
Data bus  
Pad  
Alternate  
output  
Alternate  
enable  
Not implemented in  
true open drain  
I/O ports  
DR register access  
R/W  
V
DD  
R
PU  
DR  
register  
Data bus  
Pad  
Alternate  
output  
Alternate  
enable  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR  
register reads the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate  
function reads the pin status given by the DR register content.  
Caution:  
The alternate function must not be activated as long as the pin is configured as input with  
interrupt, in order to avoid generating spurious interrupts.  
65/201  
I/O ports  
ST7232Axx-Auto  
Analog alternate function  
When the pin is used as an ADC input, the I/O must be configured as floating input. The  
analog multiplexer (controlled by the ADC registers) switches the analog voltage present on  
the selected pin to the common analog rail which is connected to the ADC input.  
It is recommended not to change the voltage level or loading on any port pin while  
conversion is in progress. Furthermore it is recommended not to have clocking pins located  
close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
9.3  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific feature of the I/O port such as ADC input or true open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 27  
Other transitions are potentially risky and should be avoided, since they are likely to present  
unwanted side-effects such as spurious interrupt generation. The I/O port register  
configurations are summarized in Table 20 below.  
Figure 27. Interrupt I/O port state transitions  
01  
00  
10  
11  
Input  
floating/pull-up  
interrupt  
Input  
floating  
(reset state)  
Output  
open-drain  
Output  
push-pull  
= DDR, OR  
XX  
66/201  
ST7232Axx-Auto  
I/O ports  
Table 20. Port register configurations  
Input (DDR = 0)  
Output (DDR = 1)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
PA[7:6]  
PA[5:4]  
PA[3]  
Floating  
True open-drain  
Port A  
Port B  
Pull-up  
Floating interrupt  
Pull-up interrupt  
PB[3]  
PB[4]  
PB[2:0]  
Port C  
Port D  
Port E  
PC[7:0]  
PD[5:0]  
PE[1:0]  
Floating  
Open drain  
Push-pull  
Pull-up  
PF[7:6]  
PF[4]  
Port F  
PF[2]  
Floating interrupt  
Pull-up interrupt  
PF[1:0]  
9.4  
9.5  
Low power modes  
Table 21. Effect of low power modes on I/O ports  
Mode Description  
Wait  
Halt  
No effect on I/O ports. External interrupts cause the device to exit from wait mode.  
No effect on I/O ports. External interrupts cause the device to exit from halt mode.  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and the interrupt mask in the CC register is not active  
(RIM instruction).  
Table 22. I/O interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait Exit from halt  
External interrupt on selected  
external event  
DDRx  
ORx  
-
Yes  
67/201  
I/O ports  
ST7232Axx-Auto  
Table 23. I/O port register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
Reset value of all I/O port registers  
0
0
0
0
0
0
0
0
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
PADR  
PADDR  
PAOR  
MSB  
MSB  
MSB  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
PBDR  
PBDDR  
PBOR  
PCDR  
PCDDR  
PCOR  
PDDR  
PDDDR  
PDOR  
PEDR  
PEDDR  
PEOR  
PFDR  
PFDDR  
PFOR  
68/201  
ST7232Axx-Auto  
On-chip peripherals  
10  
On-chip peripherals  
10.1  
Watchdog timer (WDG)  
10.1.1  
Introduction  
The watchdog timer is used to detect the occurrence of a software fault, usually generated  
by external interference or by unforeseen logical conditions, which causes the application  
program to abandon its normal sequence. The watchdog circuit generates an MCU reset on  
expiry of a programmed time period, unless the program refreshes the counter’s contents  
before the T6 bit becomes cleared.  
10.1.2  
10.1.3  
Main features  
Programmable free-running downcounter  
Programmable reset  
Reset (if watchdog activated) when the T6 bit reaches zero  
Optional reset on HALT instruction (configurable by option byte)  
Hardware watchdog selectable by option byte  
Functional description  
The counter value stored in the watchdog control register (WDGCR bits T[6:0]), is  
decremented every 16384 f  
cycles (approx.), and the length of the timeout period can  
OSC2  
be programmed by the user in 64 increments.  
If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls  
over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling the reset pin low  
for typically 30µs.  
The application program must write in the WDGCR register at regular intervals during  
normal operation to prevent an MCU reset. This downcounter is free-running: it counts down  
even if the watchdog is disabled. The value to be stored in the WDGCR register must be  
between FFh and C0h:  
The WDGA bit is set (watchdog enabled)  
The T6 bit is set to prevent generating an immediate reset  
The T[5:0] bits contain the number of increments which represents the time delay  
before the watchdog produces a reset (see Figure 29: Approximate timeout duration).  
The timing varies between a minimum and a maximum value due to the unknown  
status of the prescaler when writing to the WDGCR register (see Figure 30).  
Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by  
a reset.  
The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is  
cleared).  
If the watchdog is activated, the HALT instruction generates a reset.  
69/201  
On-chip peripherals  
Figure 28. Watchdog block diagram  
ST7232Axx-Auto  
Reset  
f
OSC2  
MCC/RTC  
Watchdog control register (WDGCR)  
DIV 64  
WDGA T6  
T5  
T4  
T3  
T2  
T1  
T0  
6-bit downcounter (CNT)  
12-bit MCC  
RTC counter  
WDG prescaler DIV 4  
TB[1:0] bits (MCCSR register)  
MSB  
LSB  
0
6 5  
11  
10.1.4  
How to program the watchdog timeout  
Figure 29 shows the linear relationship between the 6-bit value to be loaded in the watchdog  
counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a  
quick calculation without taking the timing variations into account. If more precision is  
needed, use the formulae in Figure 30.  
Caution:  
When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an  
immediate reset.  
Figure 29. Approximate timeout duration  
3F  
38  
30  
28  
20  
18  
10  
08  
00  
1.5  
18  
34  
50  
65  
82  
98  
114  
128  
Watchdog timeout (ms) @ 8 MHz. f  
OSC2  
70/201  
ST7232Axx-Auto  
On-chip peripherals  
Figure 30. Exact timeout duration (t  
and t  
)
min  
max  
Where:  
t
t
t
= (LSB + 128) x 64 x t  
OSC2  
min0  
= 16384 x t  
max0  
OSC2  
OSC2  
= 125ns if f  
= 8 MHz  
OSC2  
CNT = value of T[5:0] bits in the WDGCR register (6 bits)  
MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register.  
TB1 bit (MCCSR reg.)  
TB0 bit (MCCSR reg.)  
Selected MCCSR timebase  
MSB  
LSB  
0
0
1
1
0
1
0
1
2ms  
4ms  
4
8
59  
53  
35  
54  
10ms  
25ms  
20  
49  
To calculate the minimum watchdog timeout (t ):  
min  
MSB  
4
If  
Then  
Else  
t
= tmin0 + 16384 × CNT × t  
-------------  
CNT <  
min  
osc2  
4CNT  
----------------  
4CNT  
----------------  
t
= t  
+
16384 × CNT  
+ (192 + LSB) × 64 ×  
× t  
osc2  
min  
min0  
MSB  
MSB  
To calculate the maximum watchdog timeout (t  
):  
max  
MSB  
4
If  
-------------  
Then  
CNT ≤  
t
= tmax0 + 16384 × CNT × t  
max  
osc2  
4CNT  
----------------  
4CNT  
----------------  
Else  
t
= t  
+
16384 × CNT –  
+ (192 + LSB) × 64 ×  
× t  
osc2  
max  
max0  
MSB  
MSB  
Note: In the above formulae, division results must be rounded down to the next integer value.  
Example: With 2ms timeout selected in MCCSR register  
Value of T[5:0] bits in WDGCR register  
(Hex.)  
Min. watchdog timeout (ms)  
Max. watchdog timeout (ms)  
tmax  
tmin  
00  
3F  
1.496  
128  
2.048  
128.552  
71/201  
On-chip peripherals  
ST7232Axx-Auto  
10.1.5  
Low power modes  
Table 24. Effect of low power modes on watchdog timer  
Mode Description  
Slow  
Wait  
No effect on watchdog.  
No effect on watchdog.  
OIE bit in  
MCCSR  
register  
WDGHALT  
bit in option  
byte  
No watchdog reset is generated. The MCU enters halt mode.  
The watchdog counter is decremented once and then stops  
counting and is no longer able to generate a watchdog reset  
until the MCU receives an external interrupt or a reset.  
0
0
If an external interrupt is received, the watchdog restarts  
counting after 256 or 4096 CPU clocks. If a reset is generated,  
the watchdog is disabled (reset state) unless hardware  
watchdog is selected by option byte. For application  
recommendations see Section 10.1.7 below.  
Halt  
0
1
1
x
A reset is generated  
No reset is generated. The MCU enters active halt mode. The  
watchdog counter is not decremented. It stops counting. When  
the MCU receives an oscillator interrupt or external interrupt,  
the watchdog restarts counting immediately. When the MCU  
receives a reset the watchdog restarts counting after 256 or  
4096 CPU clocks.  
10.1.6  
10.1.7  
Hardware watchdog option  
If hardware watchdog is selected by option byte, the watchdog is always active and the  
WDGA bit in the WDGCR is not used. Refer to Section 14.2: Flash devices.  
Using halt mode with the WDG (WDGHALT option)  
The following recommendation applies if halt mode is used when the watchdog is enabled:  
Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected  
WDG reset immediately after waking up the microcontroller.  
10.1.8  
Interrupts  
None  
72/201  
ST7232Axx-Auto  
On-chip peripherals  
10.1.9  
Control register (WDGCR)  
WDGCR  
7
Reset value: 0111 1111 (7Fh)  
6
5
4
3
2
1
0
WDGA  
R/W  
T[6:0]  
R/W  
Table 25. WDGCR register description  
Bit  
Bit name  
Function  
Activation bit(1)  
This bit is set by software and only cleared by hardware after a reset.  
When WDGA = 1, the watchdog can generate a reset.  
0: Watchdog disabled  
7
WDGA  
1: Watchdog enabled  
7-bit counter (MSB to LSB)  
These bits contain the value of the watchdog counter. They are  
decremented every 16384 fOSC2 cycles (approx.). A reset is  
produced when it rolls over from 40h to 3Fh (T6 becomes cleared).  
6:0  
T[6:0]  
1. The WDGA bit is not used if the hardware watchdog option is enabled by option byte.  
10.1.10 Watchdog timer register map and reset values  
Table 26. Watchdog timer register map and reset values  
Address(Hex.) Register label  
7
6
5
4
3
2
1
0
WDGCR  
002Ah  
WDGA  
0
T6  
1
T5  
1
T4  
1
T3  
1
T2  
1
T1  
1
T0  
1
Reset value  
10.2  
Main clock controller with real-time clock and beeper  
(MCC/RTC)  
The main clock controller consists of three different functions:  
A programmable CPU clock prescaler  
A clock-out signal to supply external devices  
A real-time clock timer with interrupt capability  
Each function can be used independently and simultaneously.  
10.2.1  
Programmable CPU clock prescaler  
The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal  
peripherals. It manages slow power saving mode (see Section 8.2: Slow mode for more  
details).  
The prescaler selects the f  
main clock frequency and is controlled by three bits in the  
CPU  
MCCSR register: CP[1:0] and SMS.  
73/201  
On-chip peripherals  
ST7232Axx-Auto  
10.2.2  
Clock-out capability  
The clock-out capability is an alternate function of an I/O port pin that outputs a f  
to drive external devices. It is controlled by the MCO bit in the MCCSR register.  
clock  
OSC2  
Caution:  
When selected, the clock out pin suspends the clock during active halt mode.  
10.2.3  
Real-time clock timer (RTC)  
The counter of the real-time clock timer allows an interrupt to be generated based on an  
accurate real-time clock. Four different time bases depending directly on f are available.  
OSC2  
The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and  
OIF.  
When the RTC interrupt is enabled (OIE bit set), the ST7 enters active halt mode when the  
HALT instruction is executed. See Section 8.4: Active halt and halt modes for more details.  
10.2.4  
Beeper  
The beep function is controlled by the MCCBCR register. It can output three selectable  
frequencies on the BEEP pin (I/O port alternate function).  
Figure 31.  
Main clock controller (MCC/RTC) block diagram  
BC1 BC0  
MCCBCR  
Beep signal  
selection  
Beep  
MCO  
To watchdog timer  
MCC/RTC interrupt  
12-bit MCC RTC  
counter  
DIV 64  
MCO CP1 CP0 SMS TB1 TB0 OIE OIF  
MCCSR  
f
OSC2  
DIV 2, 4, 8, 16  
1
0
CPU clock  
to CPU and  
peripherals  
f
CPU  
74/201  
ST7232Axx-Auto  
On-chip peripherals  
10.2.5  
Low power modes  
Table 27. Effect of low power modes on MCC/RTC  
Mode  
Description  
No effect on MCC/RTC peripheral  
MCC/RTC interrupt causes the device to exit from wait mode  
Wait  
No effect on MCC/RTC counter (OIE bit is set), the registers are frozen  
MCC/RTC interrupt causes the device to exit from active halt mode  
Active halt  
Halt  
MCC/RTC counter and registers are frozen  
MCC/RTC operation resumes when the MCU is woken up by an interrupt with  
‘exit from halt’ capability  
10.2.6  
Interrupts  
The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is  
set and the interrupt mask in the CC register is not active (RIM instruction).  
Table 28. MCC/RTC interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait  
OIF OIE Yes  
Exit from halt  
Time base overflow event  
No(1)  
1. The MCC/RTC interrupt wakes up the MCU from active halt mode, not from halt mode.  
75/201  
On-chip peripherals  
ST7232Axx-Auto  
10.2.7  
MCC/RTC registers  
MCC control/status register (MCCSR)  
MCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
MCO  
CP[1:0]  
R/W  
SMS  
OIE  
OIF  
TB[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 29. MCCSR register description  
Bit  
Bit name  
Function  
Main clock out selection  
This bit enables the MCO alternate function on the PF0 I/O port. It is  
set and cleared by software.  
0: MCO alternate function disabled (I/O pin free for  
general-purpose I/O)  
7
MCO  
1: MCO alternate function enabled (fCPU on I/O port)  
Note: To reduce power consumption, the MCO function is not active  
in active halt mode.  
CPU clock prescaler  
These bits select the CPU clock prescaler which is applied in the  
different slow modes. Their action is conditioned by the setting of the  
SMS bit. These two bits are set and cleared by software.  
00: fCPU in slow mode = fOSC2/2  
6:5  
CP[1:0]  
01: fCPU in slow mode = fOSC2/4  
10: fCPU in slow mode = fOSC2/8  
11: fCPU in slow mode = fOSC2/16  
Slow mode select  
This bit is set and cleared by software.  
0: Normal mode, fCPU = fOSC2  
4
SMS  
1: Slow mode, fCPU is given by CP1, CP0; see Section 8.2: Slow  
mode and Section 10.2: Main clock controller with real-time clock  
and beeper (MCC/RTC) for more details.  
Time base control  
These bits select the programmable divider time base. They are set  
and cleared by software:  
00: Time base (for counter prescaler 16000) = 4ms (fOSC2 = 4MHz)  
and 2ms (fOSC2 = 8MHz)  
01: Time base (for counter prescaler 32000) = 8ms (fOSC2 = 4MHz)  
and 4ms (fOSC2 = 8MHz)  
10: Time base (for counter prescaler 80000) = 20ms (fOSC2 = 4MHz)  
and 10ms (fOSC2 = 8MHz)  
3:2  
TB[1:0]  
11: Time base (for counter prescaler 200000) = 50ms  
(fOSC2 = 4MHz) and 25ms (fOSC2 = 8MHz)  
A modification of the time base is taken into account at the end of the  
current period (previously set) to avoid an unwanted time shift. This  
allows use of this time base as a real-time clock.  
76/201  
ST7232Axx-Auto  
Table 29. MCCSR register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Oscillator interrupt enable  
This bit set and cleared by software.  
0: Oscillator interrupt disabled  
1: Oscillator interrupt enabled  
This interrupt can be used to exit from active halt mode. When this  
bit is set, calling the ST7 software HALT instruction enters the active  
1
0
OIE  
halt power saving mode  
.
Oscillator interrupt flag  
This bit is set by hardware and cleared by software reading the  
MCCSR register. It indicates when set that the main oscillator has  
reached the selected elapsed time (TB1:0).  
OIF  
0: Timeout not reached  
1: Timeout reached  
Caution: The BRES and BSET instructions must not be used on the  
MCCSR register to avoid unintentionally clearing the OIF bit.  
MCC beep control register (MCCBCR)  
MCCBCR  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
Reserved  
-
BC[1:0]  
R/W  
Table 30. MCCBCR register description  
Bit  
Bit name  
Function  
7:2  
-
Reserved, must be kept cleared  
Beep control  
These 2 bits select the PF1 pin beep capability:  
00: Beep mode (with fOSC2 = 8MHz) = off  
01: Beep mode (with fOSC2 = 8MHz) = ~2-KHz (output beep  
signal ~ 50% duty cycle)  
1:0  
BC[1:0]  
10: Beep mode (with fOSC2 = 8MHz) = ~1-KHz (output beep  
signal ~ 50% duty cycle)  
11: beep mode (with fOSC2 = 8MHz) = ~500-Hz (output beep  
signal ~ 50% duty cycle)  
The beep output signal is available in active halt mode but has to be  
disabled to reduce the consumption.  
77/201  
On-chip peripherals  
ST7232Axx-Auto  
10.2.8  
MCC register map and reset values  
Table 31. Main clock controller register map and reset values  
Address(Hex.) Register label  
7
6
5
4
3
2
1
0
MCCSR  
002Ch  
MCO CP1 CP0 SMS TB1 TB0  
OIE  
0
OIF  
0
Reset value  
0
0
0
0
0
0
MCCBCR  
002Dh  
BC1 BC0  
Reset value  
0
0
0
0
0
0
0
0
10.3  
16-bit timer  
10.3.1  
Introduction  
The timer consists of a 16-bit free-running counter driven by a programmable prescaler.  
It may be used for a variety of purposes, including pulse length measurement of up to two  
input signals (input capture) or generation of up to two output waveforms (output compare  
and PWM).  
Pulse lengths and waveform periods can be modulated from a few microseconds to several  
milliseconds using the timer prescaler and the CPU clock prescaler.  
Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and  
do not share any resources. They are synchronized after a MCU reset as long as the timer  
clock frequencies are not modified.  
This description covers one or two 16-bit timers. In ST7 devices with two timers, register  
names are prefixed with TA (Timer A) or TB (Timer B).  
10.3.2  
Main features  
Programmable prescaler: f  
divided by 2, 4 or 8  
CPU  
Overflow status flag and maskable interrupt  
External clock input (must be at least 4 times slower than the CPU clock speed) with  
the choice of active edge  
1 or 2 output compare functions each with:  
2 dedicated 16-bit registers  
2 dedicated programmable signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
1 or 2 input capture functions each with:  
2 dedicated 16-bit registers  
2 dedicated active edge selection signals  
2 dedicated status flags  
1 dedicated maskable interrupt  
Pulse width modulation mode (PWM  
One pulse mode  
78/201  
ST7232Axx-Auto  
On-chip peripherals  
Reduced power mode  
5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)  
(a)  
The block diagram is shown in Figure 32.  
10.3.3  
Functional description  
Counter  
The main block of the programmable timer is a 16-bit free running upcounter and its  
associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called  
high and low.  
Counter register (CR)  
Counter high register (CHR) is the most significant byte (MS byte)  
Counter low register (CLR) is the least significant byte (LS byte)  
Alternate counter register (ACR)  
Alternate counter high register (ACHR) is the most significant byte (MS byte)  
Alternate counter low register (ACLR) is the least significant byte (LS byte)  
These two read-only 16-bit registers contain the same value but with the difference that  
reading the ACLR register does not clear the TOF bit (timer overflow flag), located in the  
status register, (SR), (see 16-bit read sequence (from either the counter register or alternate  
counter register) on page 81).  
Writing in the CLR register or ACLR register resets the free running counter to the FFFCh  
value.  
Both counters have a reset value of FFFCh (this is the only value which is reloaded in the  
16-bit timer). The reset value of both counters is also FFFCh in one pulse mode and PWM  
mode.  
The timer clock depends on the clock control bits (bits 3 and 2) of the CR2 register, as  
illustrated in Table 36: CR2 register description. The value in the counter register repeats  
every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits. The  
timer frequency can be f  
/2, f  
/4, f  
/8 or an external frequency.  
CPU  
CPU  
CPU  
Caution:  
In Flash devices, Timer A functionality has the following restrictions:  
TAOC2HR and TAOC2LR registers are write only  
Input capture 2 is not implemented  
The corresponding interrupts cannot be used (ICF2, OCF2 forced by hardware to zero)  
a. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pinout  
description. When reading an input signal on a non-bonded pin, the value is always ‘1’.  
79/201  
On-chip peripherals  
ST7232Axx-Auto  
Figure 32. Timer block diagram  
ST7 internal bus  
f
CPU  
MCU-peripheral interface  
8 high  
8 low  
8-bit  
buffer  
8
8
8
8
8
8
8
8
High  
Low  
High  
Low  
High  
Low  
High  
Low  
EXEDG  
16  
1/2  
Output  
Output  
compare  
register  
2
Input  
capture  
register  
2
Input  
capture  
register  
1
Counter register  
compare  
register  
1
1/4  
1/8  
EXTCLK  
pin  
Alternate counter  
register  
16  
16  
16  
CC[1:0]  
Timer internal bus  
16 16  
Overflow detect  
circuit  
Edge detect circuit 1  
Edge detect circuit 2  
Output compare circuit  
ICAP1  
pin  
6
ICAP2  
pin  
Latch1  
Latch2  
OCMP1  
pin  
0
ICF1 OCF1 TOF ICF2 OCF2  
0
TIMD  
OCMP2  
pin  
CSR (control/status register)  
EXEDG  
OPM PWM CC1 CC0 IEDG2  
OC2E  
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
CR1 (control register 1)  
OC1E  
CR2 (control register 2)  
(1)  
Timer interrupt  
1. If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (see Table 15: Interrupt mapping on page 53).  
80/201  
ST7232Axx-Auto  
16-bit read sequence (from either the counter register or alternate counter register)  
Figure 33. 16-bit read sequence  
On-chip peripherals  
Beginning of the sequence  
Read MS byte  
At t0  
LS byte is buffered  
Other  
instructions  
Returns buffered LS byte  
value at t0  
At t0 +t  
Read LS byte  
Sequence completed  
The user must read the MS byte first, then the LS byte value is buffered automatically.  
This buffered value remains unchanged until the 16-bit read sequence is completed, even if  
the user reads the MS byte several times.  
After a complete reading sequence, if only the CLR register or ACLR register are read, they  
return the LS byte of the count value at the time of the read.  
Whatever the timer mode used (input capture, output compare, one pulse mode or PWM  
mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then:  
The TOF bit of the SR register is set  
A timer interrupt is generated if the TOIE bit of the CR1 register is set and the I bit of the  
CC register is cleared  
If one of these conditions is false, the interrupt remains pending to be issued as soon as  
they are both true.  
Clearing the overflow interrupt request is done in two steps:  
1. Reading the SR register while the TOF bit is set  
2. An access (read or write) to the CLR register  
Note:  
The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the  
ACLR register rather than the CLR register is that it allows simultaneous use of the overflow  
function and reading the free running counter at random times (for example, to measure  
elapsed time) without the risk of clearing the TOF bit erroneously.  
The timer is not affected by wait mode.  
In halt mode, the counter stops counting until the mode is exited. Counting then resumes  
from the previous count (MCU awakened by an interrupt) or from the reset count (MCU  
awakened by a reset).  
81/201  
On-chip peripherals  
ST7232Axx-Auto  
External clock  
The external clock (where available) is selected if CC0 = 1 and CC1 = 1 in the CR2 register.  
The status of the EXEDG bit in the CR2 register determines the type of level transition on  
the external clock pin EXTCLK that triggers the free running counter.  
The counter is synchronized with the falling edge of the internal CPU clock.  
A minimum of four falling edges of the CPU clock must occur between two consecutive  
active edges of the external clock; thus the external clock frequency must be less than a  
quarter of the CPU clock frequency.  
Figure 34. Counter timing diagram, internal clock divided by 2  
CPU clock  
Internal reset  
Timer clock  
FFFD FFFE FFFF 0000 0001 0002 0003  
Counter register  
Timer overflow flag (TOF)  
Figure 35. Counter timing diagram, internal clock divided by 4  
CPU clock  
Internal reset  
Timer clock  
FFFD  
FFFC  
0000  
0001  
Counter register  
Timer overflow flag (TOF)  
Figure 36. Counter timing diagram, internal clock divided by 8  
CPU clock  
Internal reset  
Timer clock  
FFFC  
FFFD  
0000  
Counter register  
Timer overflow flag (TOF)  
Note:  
The MCU is in reset state when the internal reset signal is high, when it is low the MCU is  
running.  
82/201  
ST7232Axx-Auto  
On-chip peripherals  
Input capture  
In this section, the index, i, may be 1 or 2 because there are 2 input capture functions in the  
16-bit timer.  
The two 16-bit input capture registers (IC1R and IC2R) are used to latch the value of the  
free running counter after a transition is detected on the ICAPi pin (see below).  
MSB  
LSB  
ICiR  
ICiHR  
ICiLR  
ICiR register is a read-only register.  
The active transition is software programmable through the IEDGi bit of Control Registers  
(CRi).  
Timing resolution is one count of the free running counter: (fCPU/CC[1:0]).  
Procedure  
To use the input capture function select the following in the CR2 register:  
The timer clock (CC[1:0]) (see Table 36: CR2 register description)  
The edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2 pin  
must be configured as floating input or input with pull-up without interrupt if this  
configuration is available).  
Select the following in the CR1 register:  
Set the ICIE bit to generate an interrupt after an input capture coming from either the  
ICAP1 pin or the ICAP2 pin.  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1pin must be configured as floating input or input with pull-up without interrupt if  
this configuration is available).  
When an input capture occurs:  
ICFi bit is set  
The ICiR register contains the value of the free running counter on the active transition  
on the ICAPi pin (see Figure 38).  
A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC  
register. Otherwise, the interrupt remains pending until both conditions become true.  
Clearing the input capture interrupt request (i.e. clearing the ICFi bit) is done in two steps:  
1. By reading the SR register while the ICFi bit is set  
2. By accessing (reading or writing) the ICiLR register  
83/201  
On-chip peripherals  
ST7232Axx-Auto  
Note:  
1
2
3
After reading the ICiHR register, transfer of input capture data is inhibited and ICFi is never  
set until the ICiLR register is also read.  
The ICiR register contains the free running counter value which corresponds to the most  
recent input capture.  
The 2 input capture functions can be used together even if the timer also uses the 2 output  
compare functions.  
4
5
In one pulse mode and PWM mode only input capture 2 can be used.  
The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any  
transitions on these pins activates the input capture function.  
Moreover if one of the ICAPi pins is configured as an input and the second one as an output,  
an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set.  
This can be avoided if the input capture function i is disabled by reading the ICiHR  
(see note 1).  
6
7
The TOF bit can be used with interrupt generation in order to measure events that go  
beyond the timer range (FFFFh).  
In Flash devices, the ICAP2 registers (TAIC2HR, TAIC2LR) are not available on Timer A.  
The corresponding interrupts cannot be used (ICF2 is forced by hardware to 0).  
Figure 37. Input capture block diagram  
ICAP1  
pin  
CR1 (control register 1)  
Edge detect  
circuit 2  
Edge detect  
circuit 1  
ICIE  
IEDG1  
ICAP2  
pin  
SR (status register)  
IC2R register  
ICF1  
ICF2  
0
0
0
IC1R register  
CR2 (control register 2)  
CC1 CC0 IEDG2  
16-bit  
16-bit free running counter  
84/201  
ST7232Axx-Auto  
Figure 38. Input capture timing diagram  
On-chip peripherals  
Timer clock  
FF01  
FF02  
FF03  
Counter register  
ICAPi pin  
ICAPi flag  
FF03  
ICAPi register  
1. The rising edge is the active edge.  
Output compare  
In this section, the index, i, may be 1 or 2 because there are 2 output compare functions in  
the 16-bit timer.  
This function can be used to control an output waveform or indicate when a period of time  
has elapsed.  
When a match is found between the output compare register and the free running counter,  
the output compare function:  
Assigns pins with a programmable value if the OCiE bit is set  
Sets a flag in the status register  
Generates an interrupt if enabled  
Two 16-bit registers, output compare register 1 (OC1R) and output compare register 2  
(OC2R) contain the value to be compared to the counter register each timer clock cycle (see  
below).  
MSB  
LSB  
OCiR  
OCiHR  
OCiLR  
These registers are readable and writable and are not affected by the timer hardware. A  
reset event changes the OCiR value to 8000h.  
Timing resolution is one count of the free running counter: (fCPU/  
).  
CC[1:0]  
Procedure  
To use the output compare function, select the following in the CR2 register:  
Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output  
compare i signal.  
Select the timer clock (CC[1:0]) (see Table 36: CR2 register description)  
Select the following in the CR1 register:  
Select the OLVLi bit to applied to the OCMPi pins after the match occurs  
Set the OCIE bit to generate an interrupt if it is needed  
85/201  
On-chip peripherals  
When a match is found between OCRi register and CR register:  
ST7232Axx-Auto  
OCFi bit is set  
The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset)  
A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is  
cleared in the CC register (CC).  
The OCiR register value required for a specific timing application can be calculated using  
the following formula:  
t * fCPU  
PRESC  
OCiR =  
Where:  
t  
= Output compare period (in seconds)  
= CPU clock frequency (in hertz)  
f
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 36: CR2  
register description)  
If the timer clock is an external clock, the formula is:  
OCiR = t * fEXT  
Where:  
t  
= Output compare period (in seconds)  
= External timer clock frequency (in hertz)  
f
EXT  
Clearing the output compare interrupt request (i.e. clearing the OCFi bit) is done by:  
1. Reading the SR register while the OCFi bit is set  
2. Accessing (reading or writing) the OCiLR register  
The following procedure is recommended to prevent the OCFi bit from being set between  
the time it is read and the write to the OCiR register:  
Write to the OCiHR register (further compares are inhibited)  
Read the SR register (first step of the clearance of the OCFi bit, which may be already  
set)  
Write to the OCiLR register (enables the output compare function and clears the OCFi  
bit)  
86/201  
ST7232Axx-Auto  
On-chip peripherals  
Note:  
1
2
3
After a processor write cycle to the OCiHR register, the output compare function is inhibited  
until the OCiLR register is also written.  
If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit does not  
appear when a match is found but an interrupt could be generated if the OCIE bit is set.  
In both internal and external clock modes, OCFi and OCMPi are set while the counter value  
equals the OCiR register value (see Figure 40 on page 88 for an example with f  
/2 and  
CPU  
Figure 41 on page 88 for an example with f  
PWM mode.  
/4). This behavior is the same in OPM or  
CPU  
4
5
The output compare functions can be used both for generating external events on the  
OCMPi pins even if the input capture mode is also used.  
The value in the 16-bit OCiR register and the OLVi bit should be changed after each  
successful comparison in order to control an output waveform or establish a new elapsed  
timeout.  
6
In Flash devices, the TAOC2HR, TAOC2LR registers are ‘write only’ in Timer A. The  
corresponding event cannot be generated (OCF2 is forced by hardware to 0).  
Forced compare output capability  
When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit  
has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit = 1). The  
OCFi bit is then not set by hardware, and thus no interrupt request is generated.  
The FOLVLi bits have no effect in both one pulse mode and PWM mode.  
Figure 39. Output compare block diagram  
16 bit free running counter  
OC1E OC2E  
CC1 CC0  
CR2 (control register 2)  
16-bit  
CR1 (control register 1)  
Output compare circuit  
OCIE  
FOLV2 FOLV1 OLVL2  
OLVL1  
Latch  
OCMP1  
pin  
1
16-bit  
OC1R register  
16-bit  
Latch  
2
OCMP2  
pin  
OCF1  
OCF2  
0
0
0
OC2R register  
SR (status register)  
87/201  
On-chip peripherals  
Figure 40. Output compare timing diagram, f  
ST7232Axx-Auto  
= f  
/2  
CPU  
TIMER  
Internal CPU clock  
Timer clock  
2ECF 2ED0 2ED1 2ED2 2ED3 2ED4  
2ED3  
Counter register  
Output compare register i (OCRi)  
Output compare flag i (OCFi)  
OCMPi pin (OLVLi = 1)  
Figure 41. Output compare timing diagram, f  
= f  
/4  
CPU  
TIMER  
Internal CPU clock  
Timer clock  
2ECF 2ED0 2ED1 2ED2  
2ED3  
2ED4  
2ED3  
Counter register  
Output compare register i (OCRi)  
Output compare flag i (OCFi)  
OCMPi pin (OLVLi = 1)  
88/201  
ST7232Axx-Auto  
On-chip peripherals  
One pulse mode  
One pulse mode enables the generation of a pulse when an external event occurs. This  
mode is selected via the OPM bit in the CR2 register.  
The one pulse mode uses the input capture1 function and the output compare1 function.  
Procedure  
To use one pulse mode:  
1. Load the OC1R register with the value corresponding to the length of the pulse using  
the appropriate formula below according to the timer clock source used  
2. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the  
pulse  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the  
pulse  
Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the  
ICAP1 pin must be configured as floating input)  
3. Select the following in the CR2 register:  
Set the OC1E bit (the OCMP1 pin is then dedicated to the output compare 1  
function)  
Set the OPM bit  
Select the timer clock CC[1:0] (see Table 36: CR2 register description)  
Figure 42. One pulse mode sequence  
One pulse mode cycle  
ICR1 = counter  
When event occurs  
on ICAP1  
OCMP1 = OLVL2  
Counter is reset to FFFCh  
ICF1 bit is set  
When  
counter = OCIR  
OCMP1 = OLVL1  
Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is  
loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R  
register.  
Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the  
ICIE bit is set.  
Clearing the input capture interrupt request (i.e. clearing the ICFi bit) is done in two steps:  
1. Reading the SR register while the ICFi bit is set  
2. Accessing (reading or writing) the ICiLR register  
89/201  
On-chip peripherals  
ST7232Axx-Auto  
The OC1R register value required for a specific timing application can be calculated using  
the following formula:  
t
* fCPU  
- 5  
OCiR value =  
PRESC  
Where:  
t
f
= Pulse period (in seconds)  
= CPU clock frequency (in hertz)  
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits, see Table 36: CR2  
register description)  
If the timer clock is an external clock the formula is:  
OCiR = t * fEXT -5  
Where:  
t
f
= Pulse period (in seconds)  
= External timer clock frequency (in hertz)  
EXT  
When the value of the counter is equal to the value of the contents of the OC1R register, the  
OLVL1 bit is output on the OCMP1 pin, (see Figure 43).  
Note:  
1
2
The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate  
an output compare interrupt.  
When the pulse width modulation (PWM) and one pulse mode (OPM) bits are both set, the  
PWM mode is the only active one.  
3
4
If OLVL1 = OLVL2 a continuous signal is seen on the OCMP1 pin.  
The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to  
perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take  
care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can  
also generates interrupt if ICIE is set.  
5
6
When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and  
OCF2 can be used to indicate a period of time has been elapsed but cannot generate an  
output waveform because the level OLVL2 is dedicated to the one pulse mode.  
In Flash devices, Timer A OCF2 bit is forced by hardware to 0.  
90/201  
ST7232Axx-Auto  
Figure 43. One pulse mode timing example  
On-chip peripherals  
01F8  
2ED3  
IC1R  
FFFC FFFD FFFE  
2ED0 2ED1 2ED2  
2ED3  
FFFC FFFD  
01F8  
Counter  
ICAP1  
OLVL2  
OLVL2  
OLVL1  
OCMP1  
Compare1  
1. IEDG1 = 1, OC1R = 2ED0h, OLVL1 = 0, OLVL2 = 1  
Figure 44. Pulse width modulation mode timing example with 2 output compare  
functions  
2ED0 2ED1 2ED2  
OLVL1  
34E2 FFFC  
OLVL2  
FFFC FFFD FFFE  
OLVL2  
Counter  
OCMP1  
34E2  
Compare1  
Compare2  
Compare2  
1. OC1R = 2ED0h, OC2R = 34E2, OLVL1 = 0, OLVL2 = 1  
91/201  
On-chip peripherals  
ST7232Axx-Auto  
Pulse width modulation mode  
Pulse width modulation (PWM) mode enables the generation of a signal with a frequency  
and pulse length determined by the value of the OC1R and OC2R registers.  
Pulse width modulation mode uses the complete output compare 1 function plus the OC2R  
register, and so this functionality can not be used when PWM mode is activated.  
In PWM mode, double buffering is implemented on the output compare registers. Any new  
values written in the OC1R and OC2R registers are taken into account only at the end of the  
PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).  
Procedure  
To use pulse width modulation mode:  
1. Load the OC2R register with the value corresponding to the period of the signal using  
the appropriate formula below according to the timer clock source used  
2. Load the OC1R register with the value corresponding to the period of the pulse if  
(OLVL1 = 0 and OLVL2 = 1) using the appropriate formula below according to the timer  
clock source used  
3. Select the following in the CR1 register:  
Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC1R register  
Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a  
successful comparison with the OC2R register  
4. Select the following in the CR2 register:  
Set OC1E bit (the OCMP1 pin is then dedicated to the output compare 1 function)  
Set the PWM bit  
Select the timer clock (CC[1:0]) (see Table 36: CR2 register description)  
Figure 45. Pulse width modulation cycle  
Pulse width modulation cycle  
When  
counter = OC1R  
OCMP1 = OLVL1  
OCMP1 = OLVL2  
Counter is reset to FFFCh  
ICF1 bit is set  
When  
counter = OC2R  
If OLVL1 = 1 and OLVL2 = 0 the length of the positive pulse is the difference between the  
OC2R and OC1R registers.  
If OLVL1 = OLVL2 a continuous signal is seen on the OCMP1 pin.  
92/201  
ST7232Axx-Auto  
On-chip peripherals  
The OCiR register value required for a specific timing application can be calculated using  
the following formula::  
t
* fCPU  
- 5  
OCiR value =  
PRESC  
Where:  
t
f
= Signal or pulse period (in seconds)  
= CPU clock frequency (in hertz)  
CPU  
PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 36)  
If the timer clock is an external clock the formula is:  
OCiR = t * fEXT -5  
Where:  
t
f
= Signal or pulse period (in seconds)  
= External timer clock frequency (in hertz)  
EXT  
The output compare 2 event causes the counter to be initialized to FFFCh (see Figure 44)  
Note:  
1
2
3
4
After a write instruction to the OCiHR register, the output compare function is inhibited until  
the OCiLR register is also written.  
The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the output  
compare interrupt is inhibited.  
The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce  
a timer interrupt if the ICIE bit is set and the I bit is cleared.  
In PWM mode the ICAP1 pin can not be used to perform input capture because it is  
disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be  
set and IC2R can be loaded) but the user must take care that the counter is reset each  
period and ICF1 can also generates interrupt if ICIE is set.  
5
When the pulse width modulation (PWM) and one pulse mode (OPM) bits are both set, the  
PWM mode is the only active one.  
93/201  
On-chip peripherals  
ST7232Axx-Auto  
10.3.4  
Low power modes  
Table 32. Effect of low power modes on 16-bit timer  
Mode Description  
No effect on 16-bit timer.  
Timer interrupts cause the device to exit from wait mode.  
Wait  
16-bit timer registers are frozen.  
In halt mode, the counter stops counting until halt mode is exited. Counting resumes from  
the previous count when the MCU is woken up by an interrupt with ‘exit from halt mode’  
capability or from the counter reset value when the MCU is woken up by a reset.  
Halt  
If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is  
armed. Consequently, when the MCU is woken up by an interrupt with ‘exit from halt mode’  
capability, the ICFi bit is set, and the counter value present when exiting from halt mode is  
captured into the ICiR register.  
10.3.5  
Interrupts  
(1)  
Table 33. 16-bit timer interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait Exit from halt  
Input capture 1 event/counter  
reset in PWM mode  
ICF1  
ICIE  
Input capture 2 event  
ICF2  
Output compare 1 event  
(not available in PWM mode)  
OCF1  
Yes  
No  
OCIE  
TOIE  
Output compare 2 event  
(not available in PWM mode)  
OCF2  
TOF  
Timer overflow event  
1. The 16-bit timer interrupt events are connected to the same interrupt vector (see Section 7: Interrupts).  
These events generate an interrupt if the corresponding enable control bit is set and the interrupt mask in  
the CC register is reset (RIM instruction).  
94/201  
ST7232Axx-Auto  
On-chip peripherals  
10.3.6  
Summary of timer modes  
Table 34. Summary of timer modes  
Timer resources  
Input Output  
Modes  
Input  
Output compare  
capture 1  
capture 2  
compare 1  
2
Input capture(1)and/or(2)  
Yes  
Yes(2)  
Yes  
Yes  
Yes  
Output compare(1)and/or(2)  
Not  
One pulse mode  
No  
Partially(2)  
No  
recommended(1)  
No  
Not  
PWM mode  
recommended(3)  
1. See note 4 in One pulse mode on page 89  
2. See note 5 and 6 in One pulse mode on page 89  
3. See note 4 in Pulse width modulation mode on page 92  
10.3.7  
16-bit timer registers  
Each timer is associated with three control and status registers, and with six pairs of data  
registers (16-bit values) relating to the two input captures, the two output compares, the  
counter and the alternate counter.  
Control register 1 (CR1)  
CR1  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
ICIE  
R/W  
OCIE  
TOIE  
FOLV2  
FOLV1  
OLVL2  
IEDG1  
OLVL1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 35. CR1 register description  
Bit  
Bit name  
Function  
Input capture interrupt enable  
0: Interrupt is inhibited  
1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the  
SR register is set  
7
ICIE  
Output compare interrupt enable  
0: Interrupt is inhibited  
1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of  
the SR register is set  
6
5
OCIE  
TOIE  
Timer overflow interrupt enable  
0: Interrupt is inhibited  
1: A timer interrupt is enabled whenever the TOF bit of the SR  
register is set  
95/201  
On-chip peripherals  
Table 35. CR1 register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Forced output compare 2  
This bit is set and cleared by software.  
0: No effect on the OCMP2 pin  
4
FOLV2  
1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E  
bit is set and even if there is no successful comparison  
Forced output compare 1  
This bit is set and cleared by software.  
0: No effect on the OCMP1 pin  
1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is  
set and even if there is no successful comparison  
3
2
FOLV1  
OLVL2  
Output level 2  
This bit is copied to the OCMP2 pin whenever a successful  
comparison occurs with the OC2R register and OCxE is set in the  
CR2 register. This value is copied to the OCMP1 pin in one pulse  
mode and pulse width modulation mode.  
Input edge 1  
This bit determines which type of level transition on the ICAP1 pin  
triggers the capture.  
0: A falling edge triggers the capture  
1: A rising edge triggers the capture  
1
0
IEDG1  
OLVL1  
Output level 1  
The OLVL1 bit is copied to the OCMP1 pin whenever a successful  
comparison occurs with the OC1R register and the OC1E bit is set in  
the CR2 register.  
96/201  
ST7232Axx-Auto  
On-chip peripherals  
Control register 2 (CR2)  
CR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
OC1E  
R/W  
OC2E  
OPM  
PWM  
CC[1:0]  
R/W  
IEDG2  
EXEDG  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 36. CR2 register description  
Bit  
Bit name  
Function  
Output compare 1 pin enable  
This bit is used only to output the signal from the timer on the  
OCMP1 pin (OLV1 in output compare mode, both OLV1 and OLV2 in  
PWM and one-pulse mode). Whatever the value of the OC1E bit, the  
output compare 1 function of the timer remains active.  
0: OCMP1 pin alternate function disabled (I/O pin free for  
general-purpose I/O)  
7
OCIE  
1: OCMP1 pin alternate function enabled  
Output compare 2 pin enable  
This bit is used only to output the signal from the timer on the  
OCMP2 pin (OLV2 in output compare mode). Whatever the value of  
the OC2E bit, the output compare 2 function of the timer remains  
active.  
6
OC2E  
0: OCMP2 pin alternate function disabled (I/O pin free for general-  
purpose I/O)  
1: OCMP2 pin alternate function enabled  
One pulse mode  
0: One pulse mode is not active  
1: One pulse mode is active, the ICAP1 pin can be used to trigger  
one pulse on the OCMP1 pin; the active transition is given by the  
IEDG1 bit. The length of the generated pulse depends on the  
contents of the OC1R register.  
5
4
OPM  
PWM  
Pulse width modulation  
0: PWM mode is not active  
1: PWM mode is active, the OCMP1 pin outputs a programmable  
cyclic signal; the length of the pulse depends on the value of OC1R  
register; the period depends on the value of OC2R register.  
Clock control  
The timer clock mode depends on the following bits:  
00: timer clock = fCPU/4  
01: timer clock = fCPU/2  
10: timer clock = fCPU/8  
3:2  
CC[1:0]  
11: timer clock = external clock (where available)  
Note: If the external clock pin is not available, programming the  
external clock configuration stops the counter.  
97/201  
On-chip peripherals  
Table 36. CR2 register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Input edge 2  
This bit determines which type of level transition on the ICAP2 pin  
triggers the capture.  
1
IEDG2  
0: A falling edge triggers the capture  
1: A rising edge triggers the capture  
External clock edge  
This bit determines which type of level transition on the external  
clock pin EXTCLK triggers the counter register.  
0: A falling edge triggers the counter register  
0
EXEDG  
1: A rising edge triggers the counter register  
Control/status register (CSR)  
CSR  
Reset value: xxxx x0xx (xxh)  
7
6
5
4
3
2
1
0
ICF1  
OCF1  
TOF  
ICF2  
OCF2  
TIMD  
Reserved  
-
R
R
R
R
R
R/W  
Table 37. CSR register description  
Bit  
Bit name  
Function  
Input capture flag 1  
0: No input capture (reset value)  
1: An input capture has occurred on the ICAP1 pin or the counter  
has reached the OC2R value in PWM mode. To clear this bit, first  
read the SR register, then read or write the low byte of the IC1R  
(IC1LR) register.  
7
ICF1  
Output compare flag 1  
0: No match (reset value)  
6
5
4
OCF1  
TOF  
1: The content of the free running counter has matched the content  
of the OC1R register. To clear this bit, first read the SR register, then  
read or write the low byte of the OC1R (OC1LR) register.  
Timer overflow flag  
0: No timer overflow (reset value)  
1: The free running counter rolled over from FFFFh to 0000h. To  
clear this bit, first read the SR register, then read or write the low  
byte of the CR (CLR) register.  
Note: Reading or writing the ACLR register does not clear TOF  
Input capture flag 2  
0: No input capture (reset value)  
ICF2  
1: An input capture has occurred on the ICAP2 pin. To clear this bit,  
first read the SR register, then read or write the low byte of the IC2R  
(IC2LR) register.  
98/201  
ST7232Axx-Auto  
Table 37. CSR register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Output compare flag 2  
0: No match (reset value)  
3
OCF2  
1: The content of the free running counter has matched the content  
of the OC2R register. To clear this bit, first read the SR register, then  
read or write the low byte of the OC2R (OC2LR) register.  
Timer disable  
This bit is set and cleared by software. When set, it freezes the timer  
prescaler and counter and disables the output functions (OCMP1  
and OCMP2 pins) to reduce power consumption. Access to the timer  
registers is still available, allowing the timer configuration to be  
changed, or the counter reset, while it is disabled.  
0: Timer enabled  
2
TIMD  
1: Timer prescaler, counter and outputs disabled  
1:0  
-
Reserved, must be kept cleared  
Input capture 1 high register (IC1HR)  
This is an 8-bit read only register that contains the high part of the counter value (transferred  
by the input capture 1 event).  
IC1HR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
Input capture 1 low register (IC1LR)  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the input capture 1 event).  
IC1LR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
Output compare 1 high register (OC1HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC1HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
99/201  
On-chip peripherals  
ST7232Axx-Auto  
Output compare 1 low register (OC1LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC1LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Output compare 2 high register (OC2HR)  
This is an 8-bit register that contains the high part of the value to be compared to the CHR  
register.  
OC2HR  
7
Reset value: 1000 0000 (80h)  
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Output compare 2 low register (OC2LR)  
This is an 8-bit register that contains the low part of the value to be compared to the CLR  
register.  
OC2LR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Counter high register (CHR)  
This is an 8-bit register that contains the high part of the counter value.  
CHR Reset value: 1111 1111 (FFh)  
7
6
5
4
3
2
1
0
MSB  
R
LSB  
R
R
R
R
R
R
R
100/201  
ST7232Axx-Auto  
On-chip peripherals  
Counter low register (CLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after accessing the CSR register clears the  
TOF bit.  
CLR  
Reset value: 1111 1100 (FCh)  
7
6
5
4
3
2
1
0
MSB  
R
LSB  
R
R
R
R
R
R
R
Alternate counter high register (ACHR)  
This is an 8-bit register that contains the high part of the counter value.  
ACHR  
7
Reset value: 1111 1111 (FFh)  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
Alternate counter low register (ACLR)  
This is an 8-bit register that contains the low part of the counter value. A write to this register  
resets the counter. An access to this register after an access to CSR register does not clear  
the TOF bit in the CSR register.  
ACLR  
7
Reset value: 1111 1100 (FCh)  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
Input capture 2 high register (IC2HR)  
This is an 8-bit read only register that contains the high part of the counter value (transferred  
by the input capture 2 event).  
IC2HR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
101/201  
On-chip peripherals  
ST7232Axx-Auto  
Input capture 2 low register (IC2LR)  
This is an 8-bit read only register that contains the low part of the counter value (transferred  
by the input capture 2 event).  
IC2LR  
7
Reset value: undefined  
6
5
4
3
2
1
0
MSB  
LSB  
R
R
R
R
R
R
R
R
16-bit timer register map and reset values  
Table 38. 16-bit timer register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
Timer A: 32  
Timer B: 42  
CR1  
Reset value  
ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1  
0
0
0
0
0
0
0
0
Timer A: 31  
Timer B: 41  
CR2  
Reset value  
OC1E OC2E OPM PWM  
CC1  
0
CC0 IEDG2 EXEDG  
0
0
0
0
0
0
0
Timer A: 33  
Timer B: 43  
CSR  
Reset value  
ICF1 OCF1 TOF ICF2 OCF2 TIMD  
-
x
-
x
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
0
0
1
1
1
1
x
x
x
x
x
0
0
0
0
1
1
1
1
x
x
0
x
x
0
0
0
0
1
1
1
1
x
x
Timer A: 34  
Timer B: 44  
IC1HR  
Reset value  
MSB  
x
LSB  
x
x
x
0
0
0
0
1
0
1
0
x
x
Timer A: 35  
Timer B: 45  
IC1LR  
Reset value  
MSB  
x
LSB  
x
Timer A: 36  
Timer B: 46  
OC1HR  
Reset value  
MSB  
1
LSB  
0
Timer A: 37  
Timer B: 47  
OC1LR  
Reset value  
MSB  
0
LSB  
0
Timer A: 3E  
Timer B: 4E  
OC2HR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3F  
Timer B: 4F  
OC2LR  
Reset value  
MSB  
0
LSB  
0
Timer A: 38  
Timer B: 48  
CHR  
Reset value  
MSB  
1
LSB  
1
Timer A: 39  
Timer B: 49  
CLR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3A  
Timer B: 4A  
ACHR  
Reset value  
MSB  
1
LSB  
1
Timer A: 3B  
Timer B: 4B  
ACLR  
Reset value  
MSB  
1
LSB  
0
Timer A: 3C  
Timer B: 4C  
IC2HR  
Reset value  
MSB  
x
LSB  
x
Timer A: 3D  
Timer B: 4D  
IC2LR  
Reset value  
MSB  
x
LSB  
x
102/201  
ST7232Axx-Auto  
On-chip peripherals  
10.4  
Serial peripheral interface (SPI)  
10.4.1  
Introduction  
The serial peripheral interface (SPI) allows full-duplex, synchronous, serial communication  
with external devices. An SPI system may consist of a master and one or more slaves  
however the SPI interface can not be a master in a multi-master system.  
10.4.2  
Main features  
Full duplex synchronous transfers (on 3 lines)  
Simplex synchronous transfers (on 2 lines)  
Master or slave operation  
Six master mode frequencies (f  
/4 max.)  
CPU  
f
/2 max. slave mode frequency (see note below)  
CPU  
SS management by software or hardware  
Programmable clock polarity and phase  
End of transfer interrupt flag.  
Write collision, master mode fault and overrun flags  
Note:  
In slave mode, continuous transmission is not possible at maximum frequency due to the  
software overhead for clearing status flags and to initiate the next transmission sequence.  
10.4.3  
General description  
Figure 46 shows the serial peripheral interface (SPI) block diagram. There are 3 registers:  
SPI control register (SPICR)  
SPI control/status register (SPICSR)  
SPI data register (SPIDR)  
The SPI is connected to external devices through 4 pins:  
MISO: master in/slave out data  
MOSI: master out / slave in data  
SCK: serial clock out by SPI masters and input by SPI slaves  
SS: Slave select:  
This input signal acts as a ‘chip select’ to let the SPI master communicate with slaves  
individually and to avoid contention on the data lines. Slave SS inputs can be driven by  
standard I/O ports on the master MCU.  
103/201  
On-chip peripherals  
ST7232Axx-Auto  
Figure 46. Serial peripheral interface block diagram  
Data/address bus  
Read  
SPIDR  
Read buffer  
Interrupt request  
MOSI  
7
SPICSR  
0
MISO  
8-bit shift register  
SPIF WCOL OVR MODF  
0
SOD SSM  
SSI  
Write  
SOD bit  
1
SS  
0
SCK  
SPI state control  
SPICR  
7
0
MSTR  
SPR0  
CPOL CPHA SPR1  
SPIE SPE SPR2  
Master control  
Serial clock generator  
SS  
Functional description  
A basic example of interconnections between a single master and a single slave is  
illustrated in Figure 47.  
The MOSI pins are connected together and the MISO pins are connected together. In this  
way data is transferred serially between master and slave (most significant bit first).  
The communication is always initiated by the master. When the master device transmits  
data to a slave device via MOSI pin, the slave device responds by sending data to the  
master device via the MISO pin. This implies full duplex communication with both data out  
and data in synchronized with the same clock signal (which is provided by the master device  
via the SCK pin).  
To use a single data line, the MISO and MOSI pins must be connected at each node ( in this  
case only simplex communication is possible).  
Four possible data/clock timing relationships may be chosen (see Figure 50) but master and  
slave must be programmed with the same timing mode.  
104/201  
ST7232Axx-Auto  
Figure 47. Single master/single slave application  
On-chip peripherals  
Master  
Slave  
MSbit  
LSbit  
MSbit  
LSbit  
MISO  
MOSI  
MISO  
MOSI  
8-bit shift register  
8-bit shift register  
SCK  
SS  
SCK  
SS  
SPI clock  
generator  
+5V  
Not used if SS is managed by software  
Slave select management  
As an alternative to using the SS pin to control the slave select signal, the application can  
choose to manage the slave select signal by software. This is configured by the SSM bit in  
the SPICSR register (see Figure 49)  
In software management, the external SS pin is free for other application uses and the  
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.  
In master mode:  
SS internal must be held high continuously  
In slave mode:  
There are two cases depending on the data/clock timing relationship (see Figure 48):  
If CPHA = 1 (data latched on 2nd clock edge):  
SS internal must be held low during the entire transmission. This implies that in single  
slave applications the SS pin either can be tied to V , or made free for standard I/O by  
SS  
managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR  
register)  
If CPHA = 0 (data latched on 1st clock edge):  
SS internal must be held low during byte transmission and pulled high between each  
byte to allow the slave to write to the shift register. If SS is not pulled high, a write  
collision error occurs when the slave writes to the shift register (see Write collision error  
(WCOL) on page 110).  
105/201  
On-chip peripherals  
Figure 48. Generic SS timing diagram  
ST7232Axx-Auto  
MOSI/MISO  
Master SS  
Byte 2  
Byte 1  
Byte 3  
Slave SS  
if CPHA = 0  
Slave SS  
if CPHA = 1  
Figure 49. Hardware/software slave select management  
SSM bit  
SSI bit  
1
SS internal  
0
SS external pin  
Master mode operation  
In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and  
phase are configured by software (refer to the description of the SPICSR register).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
To operate the SPI in master mode, perform the following steps in order:  
1. Write to the SPICR register:  
Select the clock frequency by configuring the SPR[2:0] bits  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits.  
Figure 50 shows the four possible configurations.  
Note: The slave must have the same CPOL and CPHA settings as the master.  
2. Write to the SPICSR register:  
Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin  
high for the complete byte transmit sequence.  
3. Write to the SPICR register:  
Set the MSTR and SPE bits  
Note:  
1
2
If the SPICSR register is not written first, the SPICR register setting (MSTR bit) may be not  
taken into account.  
MSTR and SPE bits remain set only if SS is high).  
The transmit sequence begins when software writes a byte in the SPIDR register.  
106/201  
ST7232Axx-Auto  
On-chip peripherals  
Master mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the most significant bit of the MOSI pin first.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if the SPIE bit is set and the interrupt mask in the  
CCR register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A read to the SPIDR register  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Slave mode operation  
In slave mode, the serial clock is received on the SCK pin from the master device.  
To operate the SPI in slave mode:  
1. Write to the SPICSR register to perform the following actions:  
Select the clock polarity and clock phase by configuring the CPOL and CPHA bits  
(see Figure 50)  
Note: The slave must have the same CPOL and CPHA settings as the master.  
Manage the SS pin as described in Slave select management on page 105 and  
Figure 48. If CPHA = 1 SS must be held low continuously. If CPHA = 0 SS must be  
held low during byte transmission and pulled up between each byte to let the slave  
write in the shift register.  
2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI  
I/O functions.  
Slave mode transmit sequence  
When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift  
register and then shifted out serially to the most significant bit of the MISO pin first.  
The transmit sequence begins when the slave device receives the clock signal and the most  
significant bit of the data on its MOSI pin.  
When data transfer is complete:  
The SPIF bit is set by hardware  
An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR  
register is cleared.  
Clearing the SPIF bit is performed by the following software sequence:  
1. An access to the SPICSR register while the SPIF bit is set  
2. A write or a read to the SPIDR register  
Note:  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
107/201  
On-chip peripherals  
ST7232Axx-Auto  
The SPIF bit can be cleared during a second transmission; however, it must be cleared  
before the second SPIF bit in order to prevent an overrun condition (see Overrun condition  
(OVR) on page 110).  
10.4.4  
Clock phase and clock polarity  
Four possible timing relationships may be chosen by software, using the CPOL and CPHA  
bits (see Figure 50).  
Note:  
The idle state of SCK must correspond to the polarity selected in the SPICSR register (by  
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).  
The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data  
capture clock edge  
Figure 50, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.  
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the  
MISO pin, the MOSI pin are directly connected between the master and the slave device.  
Note:  
If CPOL is changed at the communication byte boundaries, the SPI must be disabled by  
resetting the SPE bit.  
108/201  
ST7232Axx-Auto  
On-chip peripherals  
Figure 50. Data clock timing diagram  
CPHA = 1  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSbit  
MSbit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSbit  
LSbit  
MOS1  
(from slave)  
SS  
(to slave)  
Capture strobe  
CPHA = 0  
SCK  
(CPOL = 1)  
SCK  
(CPOL = 0)  
MISO  
(from master)  
MSbit  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit3  
Bit3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
LSbit  
LSbit  
MOS1  
(from slave)  
MSbit  
SS  
(to slave)  
Capture strobe  
1. This figure should not be used as a replacement for parametric information. Refer to Section 12: Electrical characteristics.  
109/201  
On-chip peripherals  
ST7232Axx-Auto  
10.4.5  
Error flags  
Master mode fault (MODF)  
Master mode fault occurs when the master device has its SS pin pulled low.  
When a master mode fault occurs:  
The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set  
The SPE bit is reset. This blocks all output from the device and disables the SPI  
peripheral.  
The MSTR bit is reset, thus forcing the device into slave mode  
Clearing the MODF bit is done through a software sequence:  
1. A read access to the SPICSR register while the MODF bit is set  
2. A write to the SPICR register  
Note:  
To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high  
during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their  
original state during or after this clearing sequence.  
Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set  
except in the MODF bit clearing sequence.  
Overrun condition (OVR)  
An overrun condition occurs, when the master device has sent a data byte and the slave  
device has not cleared the SPIF bit issued from the previously transmitted byte.  
When an overrun occurs, the OVR bit is set and an interrupt request is generated if the SPIE  
bit is set.  
In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A  
read to the SPIDR register returns this byte. All other bytes are lost.  
The OVR bit is cleared by reading the SPICSR register.  
Write collision error (WCOL)  
A write collision occurs when the software tries to write to the SPIDR register while a data  
transfer is taking place with an external device. When this happens, the transfer continues  
uninterrupted and the software write is unsuccessful.  
Write collisions can occur both in master and slave mode. See also Slave select  
management on page 105.  
Note:  
A‘read collision’ never occurs since the received data byte is placed in a buffer in which  
access is always synchronous with the MCU operation.  
The WCOL bit in the SPICSR register is set if a write collision occurs.  
No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only).  
Clearing the WCOL bit is done through a software sequence (see Figure 51).  
110/201  
ST7232Axx-Auto  
On-chip peripherals  
Figure 51. Clearing the WCOL bit (write collision flag) software sequence  
Clearing sequence after SPIF = 1 (end of a data byte transfer)  
1st step  
Read SPICSR  
Result  
SPIF = 0  
WCOL = 0  
2nd step  
Read SPIDR  
Clearing sequence before SPIF = 1 (during a data byte transfer)  
1st step  
2nd step  
Read SPICSR  
Read SPIDR  
Result  
WCOL = 0  
1. Writing to the SPIDR register instead of reading it does not reset the WCOL bits.  
Single master systems  
A typical single master system may be configured, using an MCU as the master and four  
MCUs as slaves (see Figure 52).  
The master device selects the individual slave devices by using four pins of a parallel port to  
control the four SS pins of the slave devices.  
The SS pins are pulled high during reset since the master device ports are forced to be  
inputs at that time, thus disabling the slave devices.  
Note:  
To prevent a bus conflict on the MISO line the master allows only one active slave device  
during a transmission.  
For more security, the slave device may respond to the master with the received data byte.  
Then the master receives the previous byte back from the slave device if all MISO and MOSI  
pins are connected and the slave has not written to its SPIDR register.  
Other transmission security methods can use ports for handshake lines or data bytes with  
command fields.  
111/201  
On-chip peripherals  
Figure 52. Single master/multiple slave configuration  
ST7232Axx-Auto  
SS  
SS  
SS  
SS  
SCK  
SCK  
SCK  
SCK  
Slave MCU  
Slave MCU  
Slave MCU  
Slave MCU  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MISO  
MOSI  
MISO  
MOSI  
SCK  
Master  
MCU  
5V  
SS  
10.4.6  
Low power modes  
Table 39. Effect of low power modes on SPI  
Mode  
Description  
No effect on SPI.  
Wait  
SPI interrupt events cause the device to exit from wait mode.  
SPI registers are frozen.  
In halt mode, the SPI is inactive. SPI operation resumes when the MCU is  
woken up by an interrupt with ‘exit from halt mode’ capability. The data received  
is subsequently read from the SPIDR register when the software is running  
(interrupt vector fetching). If several data are received before the wake up event,  
then an overrun error is generated. This error can be detected after the fetch of  
the interrupt routine that woke up the device.  
Halt  
Using the SPI to wakeup the MCU from halt mode  
In slave configuration, the SPI is able to wakeup the ST7 device from halt mode through a  
SPIF interrupt. The data received is subsequently read from the SPIDR register when the  
software is running (interrupt vector fetch). If multiple data transfers have been performed  
before software clears the SPIF bit, then the OVR bit is set by hardware.  
Note:  
When waking up from halt mode, if the SPI remains in slave mode, it is recommended to  
perform an extra communications cycle to bring the SPI from halt mode state to normal  
state. If the SPI exits from slave mode, it returns to normal state immediately.  
Caution:  
The SPI can wake up the ST7 from halt mode only if the slave select signal (external SS pin  
or the SSI bit in the SPICSR register) is low when the ST7 enters halt mode. So if slave  
selection is configured as external (see Slave select management on page 105), make sure  
the master drives a low level on the SS pin when the slave enters halt mode.  
112/201  
ST7232Axx-Auto  
On-chip peripherals  
10.4.7  
Interrupts  
(1)  
Table 40. SPI interrupt control/wake-up capability  
Interrupt event  
Event flag  
Enable control bit  
Exit from wait  
Exit from halt  
SPI end of transfer event  
Master mode fault event  
Overrun error  
SPIF  
MODF  
OVR  
Yes  
SPIE  
Yes  
No  
1. The SPI interrupt events are connected to the same interrupt vector (see Section 7: Interrupts). They  
generate an interrupt if the corresponding enable control bit is set and the interrupt mask in the CC register  
is reset (RIM instruction).  
10.4.8  
SPI registers  
Control register (SPICR)  
SPICR  
7
Reset value: 0000 xxxx (0xh)  
6
5
4
3
2
1
0
SPIE  
R/W  
SPE  
SPR2  
MSTR  
CPOL  
CPHA  
SPR[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 41. SPICR register description  
Bit  
Bit name  
Function  
Serial peripheral interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
7
SPIE  
1: An SPI interrupt is generated whenever SPIF = 1, MODF = 1 or  
OVR = 1 in the SPICSR register  
Serial peripheral output enable  
This bit is set and cleared by software. It is also cleared by hardware  
when, in master mode, SS = 0 (see Master mode fault (MODF) on  
page 110). The SPE bit is cleared by reset, so the SPI peripheral is  
not initially connected to the external pins.  
0: I/O pins free for general purpose I/O  
1: SPI I/O pin alternate functions enabled  
6
5
SPE  
Divider enable  
This bit is set and cleared by software and is cleared by reset. It is  
used with the SPR[1:0] bits to set the baud rate (see bits [1:0]  
below).  
SPR2  
0: Divider by 2 enabled  
1: Divider by 2 disabled  
Note: The SPR2 bit has no effect in slave mode  
113/201  
On-chip peripherals  
Table 41. SPICR register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Master mode  
This bit is set and cleared by software. It is also cleared by hardware  
when, in master mode, SS = 0 (see Master mode fault (MODF) on  
page 110).  
4
MSTR  
0: Slave mode  
1: Master mode. The function of the SCK pin changes from an input  
to an output and the functions of the MISO and MOSI pins are  
reversed.  
Clock polarity  
This bit is set and cleared by software. This bit determines the idle  
state of the serial clock. The CPOL bit affects both the master and  
slave modes.  
0: SCK pin has a low level idle state  
1: SCK pin has a high level idle state  
3
2
CPOL  
CPHA  
Note: If CPOL is changed at the communication byte boundaries, the  
SPI must be disabled by resetting the SPE bit.  
Clock phase  
This bit is set and cleared by software.  
0: The first clock transition is the first data capture edge  
1: The second clock transition is the first capture edge  
Note: The slave must have the same CPOL and CPHA settings as  
the master.  
Serial clock frequency  
These bits are set and cleared by software. Used with the SPR2 bit,  
they select the baud rate of the SPI serial clock SCK output by the SPI  
in master mode:  
100: serial clock = fCPU/4  
000: serial clock = fCPU/8  
1:0  
SPR[1:0]  
001: serial clock = fCPU/16  
110: serial clock = fCPU/32  
010: serial clock = fCPU/64  
011: serial clock = fCPU/128  
Note: These 2 bits have no effect in slave mode.  
114/201  
ST7232Axx-Auto  
On-chip peripherals  
Control/status register (SPICSR)  
SPICSR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
-
2
1
0
SPIF  
R
WCOL  
OVR  
MODF  
SOD  
SSM  
SSI  
R
R
R
R/W  
R/W  
R/W  
R/W  
Table 42. SPICSR register description  
Bit  
Bit name  
Function  
Serial peripheral data transfer flag  
This bit is set by hardware when a transfer has been completed. An  
interrupt is generated if SPIE = 1 in the SPICR register. It is cleared  
by a software sequence (an access to the SPICSR register followed  
by a write or a read to the SPIDR register).  
0: Data transfer is in progress or the flag has been cleared  
1: Data transfer between the device and an external device has been  
completed  
7
SPIF  
Note: While the SPIF bit is set, all writes to the SPIDR register are  
inhibited until the SPICSR register is read.  
Write collision status  
This bit is set by hardware when a write to the SPIDR register is  
done during a transmit sequence. It is cleared by a software  
sequence (see Figure 51).  
0: No write collision occurred  
1: A write collision has been detected  
6
5
WCOL  
SPI overrun error  
This bit is set by hardware when the byte currently being received in  
the shift register is ready to be transferred into the SPIDR register  
while SPIF = 1 (see Overrun condition (OVR) on page 110). An  
interrupt is generated if SPIE = 1 in SPICR register. The OVR bit is  
cleared by software reading the SPICSR register.  
0: No overrun error  
OVR  
1: Overrun error detected  
Mode fault flag  
This bit is set by hardware when the SS pin is pulled low in master  
mode (see Master mode fault (MODF) on page 110). An SPI  
interrupt can be generated if SPIE = 1 in the SPICSR register. This  
bit is cleared by a software sequence (an access to the SPICR  
register while MODF = 1 followed by a write to the SPICR register).  
0: No master mode fault detected  
4
MODF  
1: A fault in master mode has been detected  
3
2
-
Reserved, must be kept cleared.  
SPI output disable  
This bit is set and cleared by software. When set, it disables the  
alternate function of the SPI output (MOSI in master mode/MISO in  
slave mode).  
SOD  
0: SPI output enabled (if SPE = 1)  
1: SPI output disabled  
115/201  
On-chip peripherals  
Table 42. SPICSR register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
SS management  
This bit is set and cleared by software. When set, it disables the  
alternate function of the SPI SS pin and uses the SSI bit value  
instead. See Slave select management on page 105.  
0: Hardware management (SS managed by external pin)  
1: Software management (internal SS signal controlled by SSI bit.  
External SS pin free for general-purpose I/O)  
1
SSM  
SS internal mode  
This bit is set and cleared by software. It acts as a ‘chip select’ by  
controlling the level of the SS slave select signal when the SSM bit is  
set.  
0
SSI  
0 : Slave selected  
1 : Slave deselected  
Data I/O register (SPIDR)  
SPIDR  
Reset value: undefined  
7
6
5
4
3
2
1
0
D[7:0]  
R/W  
The SPIDR register is used to transmit and receive data on the serial bus. In a master  
device, a write to this register initiates transmission/reception of another byte.  
Note:  
1
2
During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift  
register is moved to a buffer. When the user reads the serial peripheral data I/O register, the  
buffer is actually being read.  
While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR  
register is read.  
Warning: A write to the SPIDR register places data directly into the  
shift register for transmission.  
A read to the SPIDR register returns the value located in the buffer and not the content of  
the shift register (see Figure 46).  
116/201  
ST7232Axx-Auto  
On-chip peripherals  
SPI register map and reset values  
Table 43. SPI register map and reset values  
Addres (Hex.) Register label  
7
6
5
4
3
2
1
0
SPIDR  
0021h  
MSB  
x
LSB  
x
Reset value  
x
x
x
x
x
x
SPICR  
0022h  
SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0  
Reset value  
0
0
0
0
x
x
x
x
SPICSR  
0023h  
SPIF WCOL OVR MODF  
SOD  
0
SSM  
0
SSI  
0
Reset value  
0
0
0
0
0
10.5  
Serial communications interface (SCI)  
10.5.1  
Introduction  
The serial communications interface (SCI) offers a flexible means of full-duplex data  
exchange with external equipment requiring an industry standard NRZ asynchronous serial  
data format. The SCI offers a very wide range of baud rates using two baud rate generator  
systems.  
10.5.2  
Main features  
Full duplex, asynchronous communications  
NRZ standard format (mark/space)  
Dual baud rate generator systems  
Independently programmable transmit and receive baud rates up to 500K baud  
Programmable data word length (8 or 9 bits)  
Receive buffer full, transmit buffer empty and end of transmission flags  
Two receiver wake up modes:  
Address bit (MSB)  
Idle line  
Muting function for multiprocessor configurations  
Separate enable bits for transmitter and receiver  
Four error detection flags:  
Overrun error  
Noise error  
Frame error  
Parity error  
Five interrupt sources with flags:  
Transmit data register empty  
Transmission complete  
Receive data register full  
Idle line received  
Overrun error detected  
117/201  
On-chip peripherals  
ST7232Axx-Auto  
Parity control:  
Transmits parity bit  
Checks parity of received data byte  
Reduced power consumption mode  
10.5.3  
General description  
The interface is externally connected to another device by two pins (see Figure 54):  
TDO: Transmit data output. When the transmitter and the receiver are disabled, the  
output pin returns to its I/O port configuration. When the transmitter and/or the receiver  
are enabled and nothing is to be transmitted, the TDO pin is at high level.  
RDI: Receive data input is the serial data input. Oversampling techniques are used for  
data recovery by discriminating between valid incoming data and noise.  
Through these pins, serial data is transmitted and received as frames comprising:  
An idle line prior to transmission or reception  
A start bit  
A data word (8 or 9 bits) least significant bit first  
A stop bit indicating that the frame is complete  
This interface uses two types of baud rate generator:  
A conventional type for commonly-used baud rates  
An extended type with a prescaler offering a very wide range of baud rates even with  
non-standard oscillator frequencies.  
118/201  
ST7232Axx-Auto  
On-chip peripherals  
Figure 53. SCI block diagram  
Write  
Read  
DR (data register)  
Received data register (RDR)  
Received shift register  
Transmit data register (TDR)  
Transmit shift register  
TDO  
RDI  
CR1  
R8  
T8 SCID  
M
WAKE PCE PS PIE  
Wake up  
unit  
Receiver clock  
Transmit control  
Receiver control  
CR2  
TIE TCIE RIE ILIE  
SR  
TE  
RE RWU SBK  
TDRE TC RDRF IDLE OR NF  
FE PE  
SCI interrupt control  
Transmitter clock  
Transmitter rate control  
f
/16  
/PR  
CPU  
BRR  
SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0  
Receiver rate control  
Conventional baud rate generator  
119/201  
On-chip peripherals  
ST7232Axx-Auto  
10.5.4  
Functional description  
The block diagram of the serial control interface, is shown in Figure 53. It contains 6  
dedicated registers:  
Two control registers (SCICR1 and SCICR2)  
A status register (SCISR)  
A baud rate register (SCIBRR)  
An extended prescaler receiver register (SCIERPR)  
An extended prescaler transmitter register (SCIETPR)  
Refer to the register descriptions in Section 10.5.7 for the definitions of each bit.  
Serial data format  
Word length may be selected as being either 8 or 9 bits by programming the M bit in the  
SCICR1 register (see Figure 53).  
The TDO pin is in low state during the start bit.  
The TDO pin is in high state during the stop bit.  
An idle character is interpreted as an entire frame of ‘1’s followed by the start bit of the next  
frame which contains data.  
A break character is interpreted on receiving ‘0’s for some multiple of the frame period. At  
the end of the last break frame the transmitter inserts an extra ‘1’ bit to acknowledge the  
start bit.  
Transmission and reception are driven by their own baud rate generator.  
120/201  
ST7232Axx-Auto  
Figure 54. Word length programming  
On-chip peripherals  
9-bit word length (M bit is set)  
Possible  
parity bit  
Data frame  
Bit2  
Next data frame  
Next  
Start  
bit  
start  
Stop  
bit  
Bit0  
Bit1  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit8  
bit  
Start  
Bit  
Idle frame  
Start  
Extra  
Break frame  
bit  
’1’  
8-bit word length (M bit is reset)  
Data frame  
Possible  
parity bit  
Next data frame  
Next  
start  
Start  
bit  
Stop  
bit  
Bit2  
bit  
Bit1  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
Bit0  
Start  
bit  
Idle frame  
Start  
bit  
Extra  
’1’  
Break frame  
Transmitter  
The transmitter can send data words of either 8 or 9 bits depending on the M bit status.  
When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the  
T8 bit in the SCICR1 register.  
Character transmission  
During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this  
mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the  
transmit shift register (see Figure 53).  
Procedure  
Select the M bit to define the word length  
Select the desired baud rate using the SCIBRR and the SCIETPR registers  
Set the TE bit to assign the TDO pin to the alternate function and to send an idle frame  
as first transmission  
Access the SCISR register and write the data to send in the SCIDR register (this  
sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.  
Clearing the TDRE bit is always performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
121/201  
On-chip peripherals  
The TDRE bit is set by hardware and it indicates:  
ST7232Axx-Auto  
The TDR register is empty  
The data transfer is beginning  
The next data can be written in the SCIDR register without overwriting the previous  
data  
This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR  
register.  
When a transmission is taking place, a write instruction to the SCIDR register stores the  
data in the TDR register and which is copied in the shift register at the end of the current  
transmission.  
When no transmission is taking place, a write instruction to the SCIDR register places the  
data directly in the shift register, the data transmission starts, and the TDRE bit is  
immediately set.  
When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt  
is generated if the TCIE is set and the I bit is cleared in the CCR register.  
Clearing the TC bit is performed by the following software sequence:  
1. An access to the SCISR register  
2. A write to the SCIDR register  
Note:  
The TDRE and TC bits are cleared by the same software sequence.  
Break characters  
Setting the SBK bit loads the shift register with a break character. The break frame length  
depends on the M bit (see Figure 54).  
As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this  
bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the  
recognition of the start bit of the next frame.  
Idle characters  
Setting the TE bit drives the SCI to send an idle frame before the first data frame.  
Clearing and then setting the TE bit during a transmission sends an idle frame after the  
current word.  
Note:  
Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the  
best time to toggle the TE bit is when the TDRE bit is set i.e. before writing the next byte in  
the SCIDR.  
122/201  
ST7232Axx-Auto  
On-chip peripherals  
Receiver  
The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9  
bits and the MSB is stored in the R8 bit in the SCICR1 register.  
Character reception  
During a SCI reception, data shifts in least significant bit first through the RDI pin. In this  
mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the  
received shift register (see Figure 53).  
Procedure  
Select the M bit to define the word length  
Select the desired baud rate using the SCIBRR and the SCIERPR registers  
Set the RE bit, this enables the receiver which begins searching for a start bit  
When a character is received:  
The RDRF bit is set. It indicates that the content of the shift register is transferred to the  
RDR.  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register  
The error flags can be set if a frame error, noise or an overrun error has been detected  
during reception.  
Clearing the RDRF bit is performed by the following software sequence done by:  
1. An access to the SCISR register  
2. A read to the SCIDR register  
The RDRF bit must be cleared before the end of the reception of the next character to avoid  
an overrun error.  
Break character  
When a break character is received, the SCI handles it as a framing error.  
Idle character  
When an idle frame is detected, there is the same procedure as a data received character  
plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.  
Overrun error  
An overrun error occurs when a character is received when RDRF has not been reset. Data  
can not be transferred from the shift register to the RDR register as long as the RDRF bit is  
not cleared.  
When an overrun error occurs:  
The OR bit is set  
The RDR content is not lost  
The shift register is overwritten  
An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register  
The OR bit is reset by an access to the SCISR register followed by a SCIDR register read  
operation.  
123/201  
On-chip peripherals  
Noise error  
ST7232Axx-Auto  
Oversampling techniques are used for data recovery by discriminating between valid  
incoming data and noise. Normal data bits are considered valid if three consecutive samples  
(8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit  
detection, the NF flag is set on the basis of an algorithm combining both valid edge  
detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set  
during start bit reception, there should be a valid edge detection as well as three valid  
samples.  
When noise is detected in a frame:  
The NF flag is set at the rising edge of the RDRF bit  
Data is transferred from the shift register to the SCIDR register  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The NF flag is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
During reception, if a false start bit is detected (example, 8th, 9th, 10th samples are  
011,101,110), the frame is discarded and the receiving sequence is not started for this  
frame. There is no RDRF bit set for this frame and the NF flag is set internally (not  
accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid  
frame is received.  
Note:  
If the application start bit is not long enough to match the above requirements, then the NF  
flag may get set due to the short start bit. In this case, the NF flag may be ignored by the  
application software when the first valid byte is received.  
See also Noise error causes on page 129.  
124/201  
ST7232Axx-Auto  
On-chip peripherals  
Figure 55. SCI baud rate and extended prescaler block diagram  
Transmitter clock  
Extended prescaler transmitter rate control  
SCIETPR  
Extended transmitter prescaler register  
SCIERPR  
Extended receiver prescaler register  
Receiver clock  
Extended prescaler receiver rate control  
Extended prescaler  
f
CPU  
Transmitter rate control  
/16  
/PR  
SCIBRR  
SCP1  
SCT2  
SCT1 SCT0 SCR2 SCR1 SCR0  
SCP0  
Receiver rate control  
Conventional baud rate generator  
125/201  
On-chip peripherals  
ST7232Axx-Auto  
Framing error  
A framing error is detected when:  
The stop bit is not recognized on reception at the expected time, following either a de-  
synchronization or excessive noise.  
A break is received  
When the framing error is detected:  
the FE bit is set by hardware  
Data is transferred from the Shift register to the SCIDR register  
No interrupt is generated. However this bit rises at the same time as the RDRF bit  
which itself generates an interrupt.  
The FE bit is reset by a SCISR register read operation followed by a SCIDR register read  
operation.  
Conventional baud rate generation  
The baud rate for the receiver and transmitter (Rx and Tx) are set independently and  
calculated as follows:  
fCPU  
fCPU  
Rx =  
Tx =  
(16*PR)*RR  
(16*PR)*TR  
where:  
PR = 1, 3, 4 or 13 (see SCP[1:0] bits)  
TR = 1, 2, 4, 8, 16, 32, 64,128 (see SCT[2:0] bits)  
RR = 1, 2, 4, 8, 16, 32, 64,128 (see SCR[2:0] bits).  
All these bits are in the SCIBRR register (see Baud rate register (SCIBRR) on page 136).  
Example: If f is 8 MHz (normal mode) and if PR = 13 and TR = RR = 1, the transmit and  
CPU  
receive baud rates are 38400 baud.  
Note:  
The baud rate registers MUST NOT be changed while the transmitter or the receiver is  
enabled.  
Extended baud rate generation  
The extended prescaler option gives a very fine tuning on the baud rate, using a 255 value  
prescaler, whereas the conventional baud rate generator retains industry standard software  
compatibility.  
The extended baud rate generator block diagram is described in Figure 55.  
The output clock rate sent to the transmitter or to the receiver is the output from the 16  
divider divided by a factor ranging from 1 to 255 set in the SCIERPR or the SCIETPR  
register.  
Note:  
The extended prescaler is activated by setting the SCIETPR or SCIERPR register to a value  
other than zero.  
126/201  
ST7232Axx-Auto  
The baud rates are calculated as follows:  
On-chip peripherals  
fCPU  
16*ERPR*(PR*RR)  
fCPU  
16*ETPR*(PR*TR)  
Rx =  
Tx =  
where:  
ETPR = 1,..,255 (see Extended transmit prescaler division register (SCIETPR) on  
page 137)  
ERPR = 1,.. 255 (see Extended receive prescaler division register (SCIERPR) on page 137)  
Receiver muting and wake up feature  
In multiprocessor configurations it is often desirable that only the intended message  
recipient should actively receive the full message contents, thus reducing redundant SCI  
service overhead for all non addressed receivers.  
The non addressed devices may be placed in sleep mode by means of the muting function.  
Setting the RWU bit by software puts the SCI in sleep mode:  
None of the reception status bits can be set.  
All the receive interrupts are inhibited.  
A muted receiver may be awakened by one of the following two ways:  
by idle line detection if the WAKE bit is reset  
by address mark detection if the WAKE bit is set  
Receiver wakes-up by idle line detection when the receive line has recognised an idle frame.  
Then the RWU bit is reset by hardware but the IDLE bit is not set.  
Receiver wakes-up by address mark detection when it received a ‘1’ as the most significant  
bit of a word, thus indicating that the message is an address. The reception of this particular  
word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the  
receiver to receive this word normally and to use it as an address word.  
Caution:  
In mute mode, do not write to the SCICR2 register. If the SCI is in mute mode during the  
read operation (RWU = 1) and an address mark wake up event occurs (RWU is reset)  
before the write operation, the RWU bit is set again by this write operation. Consequently  
the address byte is lost and the SCI is not woken up from mute mode.  
Parity control  
Parity control (generation of parity bit in transmission and parity checking in reception) can  
be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length  
defined by the M bit, the possible SCI frame formats are as listed in Table 44.  
127/201  
On-chip peripherals  
ST7232Axx-Auto  
(1)  
Table 44. Frame formats  
M bit  
PCE bit  
SCI frame  
0
0
1
1
0
1
0
1
| SB | 8 bit data | STB |  
| SB | 7-bit data | PB | STB |  
| SB | 9-bit data | STB |  
| SB | 8-bit data PB | STB |  
1. Legend: SB = start bit, STB = stop bit, PB = parity bit.  
Note:  
In case of wake up by an address mark, the MSB bit of the data is taken into account and  
not the parity bit  
Even parity  
The parity bit is calculated to obtain an even number of ‘1s’ inside the frame made of the 7  
or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example, data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).  
Odd parity  
The parity bit is calculated to obtain an odd number of ‘1s’ inside the frame made of the 7 or  
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.  
Example, data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).  
Transmission mode  
If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted  
but is changed by the parity bit.  
Reception mode  
If the PCE bit is set then the interface checks if the received data byte has an even number  
of ‘1s’ if even parity is selected (PS = 0) or an odd number of ‘1s’ if odd parity is selected  
(PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is  
generated if PIE is set in the SCICR1 register.  
SCI clock tolerance  
During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th  
samples is considered as the bit value. For a valid bit detection, all the three samples should  
have the same value otherwise the noise flag (NF) is set. For example: if the 8th, 9th and  
10th samples are 0, 1 and 1 respectively, then the bit value is ‘1’, but the noise flag bit is set  
because the three samples values are not the same.  
Consequently, the bit length must be long enough so that the 8th, 9th and 10th samples  
have the desired bit value. This means the clock frequency should not vary more than 6/16  
(37.5%) within one bit. The sampling clock is resynchronized at each start bit, so that when  
receiving 10 bits (one start bit, 1 data byte, 1 stop bit), the clock deviation must not exceed  
3.75%.  
128/201  
ST7232Axx-Auto  
Note:  
On-chip peripherals  
The internal sampling clock of the microcontroller samples the pin value on every falling  
edge. Therefore, the internal sampling clock and the time the application expects the  
sampling to take place may be out of sync. For example: If the baud rate is 15.625 kbaud (bit  
length is 64µs), then the 8th, 9th and 10th samples are at 28µs, 32µs and 36µs respectively  
(the first sample starting ideally at 0µs). But if the falling edge of the internal clock occurs  
just before the pin value changes, the samples would then be out of sync by ~4µs. This  
means the entire bit length must be at least 40µs (36µs for the 10th sample + 4µs for  
synchronization with the internal sampling clock).  
Clock deviation causes  
The causes which contribute to the total deviation are:  
D
: Deviation due to transmitter error (local oscillator error of the transmitter or the  
TRA  
transmitter is transmitting at a different baud rate).  
D
D
: Error due to the baud rate quantisation of the receiver  
QUANT  
: Deviation of the local oscillator of the receiver. This deviation can occur during  
REC  
the reception of one complete SCI message assuming that the deviation has been  
compensated at the beginning of the message.  
D
: Deviation due to the transmission line (generally due to the transceivers)  
TCL  
All the deviations of the system should be added and compared to the SCI clock tolerance:  
+ D + D + D < 3.75%  
D
TRA  
QUANT  
REC  
TCL  
Noise error causes  
See also description of noise error in Receiver on page 123.  
Start bit  
The noise flag (NF) is set during start bit reception if one of the following conditions occurs:  
1. A valid falling edge is not detected. A falling edge is considered to be valid if the 3  
consecutive samples before the falling edge occurs are detected as '1' and, after the  
falling edge occurs, during the sampling of the 16 samples, if one of the samples  
numbered 3, 5 or 7 is detected as a ‘1’.  
2. During sampling of the 16 samples, if one of the samples numbered 8, 9 or 10 is  
detected as a ‘1’.  
Therefore, a valid start bit must satisfy both the above conditions to prevent the noise flag  
getting set.  
Data bits  
The noise flag (NF) is set during normal data bit reception if the following condition occurs:  
During the sampling of 16 samples, if all three samples numbered 8, 9 and10 are not the  
same. The majority of the 8th, 9th and 10th samples is considered as the bit value.  
Therefore, a valid data bit must have samples 8, 9 and 10 at the same value to prevent the  
noise flag being set.  
129/201  
On-chip peripherals  
Figure 56. Bit sampling in reception mode  
ST7232Axx-Auto  
RDI line  
Sampled values  
Sample clock  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6/16  
7/16  
7/16  
One bit time  
10.5.5  
Low power modes  
Table 45. Effect of low power modes on SCI  
Mode  
Description  
No effect on SCI.  
Wait  
SCI interrupts cause the device to exit from wait mode.  
SCI registers are frozen.  
Halt  
In halt mode, the SCI stops transmitting/receiving until halt mode is  
exited.  
10.5.6  
Interrupts  
Table 46. SCI interrupt control/wake-up capability  
Interrupt event  
Event flag Enable control bit Exit from wait Exit from halt  
Transmit data register empty  
Transmission complete  
Received data ready to be read  
Overrun error detected  
Idle line detected  
TDRE  
TC  
TIE  
TCIE  
RDRF  
OR  
RIE  
Yes  
No  
IDLE  
PE  
ILIE  
PIE  
Parity error  
The SCI interrupt events are connected to the same interrupt vector.  
These events generate an interrupt if the corresponding enable control bit is set and the  
interrupt mask in the CC register is reset (RIM instruction).  
130/201  
ST7232Axx-Auto  
On-chip peripherals  
10.5.7  
SCI registers  
Status register (SCISR)  
SCISR  
Reset value: 1100 0000 (C0h)  
7
6
5
4
3
2
1
0
TDRE  
TC  
RDRF  
IDLE  
OR  
NF  
FE  
PE  
R
R
R
R
R
R
R
R
Table 47. SCISR register description  
Bit  
Bit name  
Function  
Transmit data register empty  
This bit is set by hardware when the content of the TDR register has  
been transferred into the shift register. An interrupt is generated if the  
TIE bit = 1 in the SCICR2 register. It is cleared by a software  
sequence (an access to the SCISR register followed by a write to the  
SCIDR register).  
7
TDRE  
0: Data is not transferred to the shift register  
1: Data is transferred to the shift register  
Note: Data are not transferred to the shift register unless the TDRE  
bit is cleared.  
Transmission complete  
This bit is set by hardware when transmission of a frame containing  
data is complete. An interrupt is generated if TCIE = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the  
SCISR register followed by a write to the SCIDR register).  
0: Transmission is not complete  
6
TC  
1: Transmission is complete  
Note: TC is not set after the transmission of a preamble or a break.  
Received data ready flag  
This bit is set by hardware when the content of the RDR register has  
been transferred to the SCIDR register. An interrupt is generated if  
RIE = 1 in the SCICR2 register. It is cleared by a software sequence  
(an access to the SCISR register followed by a read to the SCIDR  
register).  
5
RDRF  
0: Data are not received  
1: Received data are ready to be read  
Idle line detect  
This bit is set by hardware when an idle line is detected. An interrupt  
is generated if the ILIE = 1 in the SCICR2 register. It is cleared by a  
software sequence (an access to the SCISR register followed by a  
read to the SCIDR register).  
4
IDLE  
0: No idle line is detected  
1: Idle line is detected  
Note: The IDLE bit is not set again until the RDRF bit is set (i.e. a  
new idle line occurs).  
131/201  
On-chip peripherals  
Table 47. SCISR register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Overrun error  
This bit is set by hardware when the word currently being received in  
the shift register is ready to be transferred into the RDR register  
while RDRF = 1. An interrupt is generated if RIE = 1 in the SCICR2  
register. It is cleared by a software sequence (an access to the  
SCISR register followed by a read to the SCIDR register).  
0: No overrun error  
3
OR  
1: Overrun error is detected  
Note: When the IDLE bit is set the RDR register content is not lost  
but the shift register is overwritten.  
Noise flag  
This bit is set by hardware when noise is detected on a received  
frame. It is cleared by a software sequence (an access to the SCISR  
register followed by a read to the SCIDR register).  
0: No noise is detected  
2
NF  
1: Noise is detected  
Note: The NF bit does not generate an interrupt as it appears at the  
same time as the RDRF bit which itself generates an interrupt.  
Framing error  
This bit is set by hardware when a de-synchronization, excessive  
noise or a break character is detected. It is cleared by a software  
sequence (an access to the SCISR register followed by a read to the  
SCIDR register).  
1
FE  
0: No framing error is detected  
1: Framing error or break character is detected  
Note: The FE bit does not generate an interrupt as it appears at the  
same time as the RDRF bit which itself generates an interrupt. If the  
word currently being transferred causes both frame error and  
overrun error, it is transferred and only the OR bit is set.  
Parity error  
This bit is set by hardware when a parity error occurs in receiver  
mode. It is cleared by a software sequence (a read to the status  
register followed by an access to the SCIDR data register). An  
interrupt is generated if PIE = 1 in the SCICR1 register.  
0: No parity error  
0
PE  
1: Parity error  
132/201  
ST7232Axx-Auto  
On-chip peripherals  
Control register 1 (SCICR1)  
SCICR1  
7
Reset value: x000 0000 (x0b)  
6
5
4
3
2
1
0
R8  
T8  
SCID  
M
WAKE  
PCE  
PS  
PIE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 48. SCICR1 register description  
Bit  
Bit name  
Function  
Receive data bit 8  
7
R8  
This bit is used to store the 9th bit of the received word when M = 1.  
Transmit data bit 8  
6
5
T8  
This bit is used to store the 9th bit of the transmitted word when  
M = 1.  
Disabled for low power consumption  
When this bit is set the SCI prescalers and outputs are stopped at  
the end of the current byte transfer in order to reduce power  
consumption.This bit is set and cleared by software.  
0: SCI enabled  
SCID  
1: SCI prescaler and outputs disabled  
Word length  
This bit determines the word length. It is set or cleared by software.  
0: 1 Start bit, 8 Data bits, 1 Stop bit  
1: 1 Start bit, 9 Data bits, 1 Stop bit  
Note: The M bit must not be modified during a data transfer (both  
transmission and reception).  
4
3
M
Wake up method  
This bit determines the SCI wake up method, it is set or cleared by  
software.  
WAKE  
0: Idle line  
1: Address mark  
Parity control enable  
This bit selects the hardware parity control (generation and  
detection). When the parity control is enabled, the computed parity is  
inserted at the MSB position (9th bit if M = 1; 8th bit if M = 0) and  
parity is checked on the received data. This bit is set and cleared by  
software. Once it is set, PCE is active after the current byte (in  
reception and in transmission).  
2
PCE  
0: Parity control disabled  
1: Parity control enabled  
133/201  
On-chip peripherals  
Table 48. SCICR1 register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Parity selection  
This bit selects the odd or even parity when the parity  
generation/detection is enabled (PCE bit set). It is set and cleared by  
software. The parity is selected after the current byte.  
0: Even parity  
1
PS  
1: Odd parity  
Parity interrupt enable  
This bit enables the interrupt capability of the hardware parity control  
when a parity error is detected (PE bit set). It is set and cleared by  
software.  
0
PIE  
0: Parity error interrupt disabled  
1: Parity error interrupt enabled  
Control register 2 (SCICR2)  
SCICR2  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
TIE  
TCIE  
RIE  
ILIE  
TE  
RE  
RWU  
SBK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 49. SCICR2 register description  
Bit  
Bit name  
Function  
Transmitter interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
7
TIE  
1: An SCI interrupt is generated whenever TDRE = 1 in the SCISR  
register  
Transmission complete interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever TC = 1 in the SCISR  
register  
6
5
4
TCIE  
RIE  
Receiver interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
1: An SCI interrupt is generated whenever OR = 1 or RDRF = 1 in  
the SCISR register  
Idle line interrupt enable  
This bit is set and cleared by software.  
0: Interrupt is inhibited  
ILIE  
1: An SCI interrupt is generated whenever IDLE = 1 in the SCISR  
register  
134/201  
ST7232Axx-Auto  
Table 49. SCICR2 register description (continued)  
On-chip peripherals  
Bit  
Bit name  
Function  
Transmitter enable  
This bit enables the transmitter. It is set and cleared by software.  
0: Transmitter is disabled  
1: Transmitter is enabled  
Note 1: During transmission, an ‘0’ pulse on the TE bit (‘0’ followed  
by ‘1’) sends a preamble (idle line) after the current word.  
Note 2: When TE is set there is a 1 bit-time delay before the  
transmission starts.  
3
TE  
Caution The TDO pin is free for general purpose I/O only when the  
TE and RE bits are both cleared (or if TE is never set).  
Receiver enable  
This bit enables the receiver. It is set and cleared by software.  
0: Receiver is disabled  
1: Receiver is enabled and begins searching for a start bit  
2
1
RE  
Receiver wake up  
This bit determines if the SCI is in mute mode or not. It is set and  
cleared by software and can be cleared by hardware when a wake  
up sequence is recognized.  
RWU  
0: Receiver in active mode  
1: Receiver in mute mode  
Note: Before selecting mute mode (setting the RWU bit), the SCI  
must receive some data first, otherwise it cannot function in mute  
mode with wakeup by idle line detection.  
Send break  
This bit set is used to send break characters. It is set and cleared by  
software.  
0: No break character is transmitted  
0
SBK  
1: Break characters are transmitted  
Note: If the SBK bit is set to ‘1’ and then to ‘0’, the transmitter sends  
a BREAK word at the end of the current word.  
Data register (SCIDR)  
Contains the received or transmitted data character, depending on whether it is read from or  
written to.  
SCIDR  
7
Reset value: undefined  
6
5
4
3
2
1
0
DR[7:0]  
R/W  
The data register performs a double function (read and write) since it is composed of two  
registers, one for transmission (TDR) and one for reception (RDR).  
The TDR register provides the parallel interface between the internal bus and the output  
shift register (see Figure 53).  
The RDR register provides the parallel interface between the input shift register and the  
internal bus (see Figure 53).  
135/201  
On-chip peripherals  
ST7232Axx-Auto  
Baud rate register (SCIBRR)  
SCIBRR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
SCP[1:0]  
R/W  
SCT[2:0]  
SCR[2:0]  
R/W  
R/W  
Table 50. SCIBRR register description  
Bit  
Bit name  
Function  
First SCI prescaler  
These 2 prescaling bits allow several standard clock division ranges:  
00: PR prescaling factor = 1  
01: PR prescaling factor = 3  
7:6  
SCP[1:0]  
10: PR prescaling factor = 4  
11: PR prescaling factor = 13  
SCI transmitter rate divisor  
These 3 bits, in conjunction with the SCP1 and SCP0 bits define the  
total division applied to the bus clock to yield the transmit rate clock  
in conventional baud rate generator mode:  
000: TR dividing factor = 1  
001: TR dividing factor = 2  
010: TR dividing factor = 4  
5:3  
SCT[2:0]  
011: TR dividing factor = 8  
100: TR dividing factor = 16  
101: TR dividing factor = 32  
110: TR dividing factor = 64  
111: TR dividing factor = 128  
SCI receiver rate divisor  
These 3 bits, in conjunction with the SCP[1:0] bits define the total  
division applied to the bus clock to yield the receive rate clock in  
conventional baud rate generator mode:  
000: RR dividing factor = 1  
001: RR dividing factor = 2  
010: RR dividing factor = 4  
2:0  
SCR[2:0]  
011: RR dividing factor = 8  
100: RR dividing factor = 16  
101: RR dividing factor = 32  
110: RR dividing factor = 64  
111: RR dividing factor = 128  
136/201  
ST7232Axx-Auto  
On-chip peripherals  
Extended receive prescaler division register (SCIERPR)  
Allows setting of the extended prescaler rate division factor for the receive circuit.  
SCIERPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ERPR[7:0]  
R/W  
Table 51. SCIERPR register description  
Bit  
Bit name  
Function  
8-bit extended receive prescaler register  
The extended baud rate generator is activated when a value different  
from 00h is stored in this register. Therefore the clock frequency  
issued from the 16 divider (see Figure 55) is divided by the binary  
factor set in the SCIERPR register (in the range 1 to 255).  
The extended baud rate generator is not used after a reset.  
7:0  
ERPR[7:0]  
Extended transmit prescaler division register (SCIETPR)  
Allows setting of the external prescaler rate division factor for the transmit circuit.  
SCIETPR  
7
Reset value: 0000 0000 (00h)  
6
5
4
3
2
1
0
ETPR[7:0]  
R/W  
Table 52. SCIETPR register description  
Bit  
Bit name  
Function  
8-bit extended transmit prescaler register  
The extended baud rate generator is activated when a value different  
from 00h is stored in this register. Therefore the clock frequency  
issued from the 16 divider (see Figure 55) is divided by the binary  
factor set in the SCIETPR register (in the range 1 to 255).  
The extended baud rate generator is not used after a reset.  
7:0  
ETPR[7:0]  
137/201  
On-chip peripherals  
ST7232Axx-Auto  
Baud rate selection  
Table 53. Baud rate selection  
Conditions  
Accuracy  
Symbol  
Parameter  
Standard Baud rate Unit  
fCPU  
vs.  
Prescaler  
standard  
Conventional mode  
TR (or RR)=128, PR=13  
TR (or RR)= 32, PR=13  
TR (or RR)= 16, PR=13  
TR (or RR)= 8, PR=13  
TR (or RR)= 4, PR=13  
TR (or RR)= 16, PR= 13  
TR (or RR)= 2, PR=13  
TR (or RR)= 1, PR=13  
300  
~300.48  
1200 ~1201.92  
2400 ~2403.84  
4800 ~4807.69  
9600 ~9615.38  
10400 ~10416.67  
19200 ~19230.77  
38400 ~38461.54  
~0.16%  
~0.79%  
fTx  
fRx  
Communication  
frequency  
8MHz  
Hz  
Extended mode  
ETPR (or ERPR) = 35,  
TR (or RR) = 1, PR = 1  
14400 ~14285.71  
SCI register map and reset values  
Table 54. SCI register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
SCISR  
0050h  
TDRE TC  
RDRF IDLE  
OR  
0
NF  
0
FE  
0
PE  
0
Reset value  
1
1
0
0
SCIDR  
0051h  
MSB  
x
LSB  
x
Reset value  
x
x
x
x
x
x
SCIBRR  
0052h  
SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0  
Reset value  
0
0
0
0
0
0
0
0
SCICR1  
0053h  
R8  
x
T8  
0
SCID  
0
M
0
WAKE PCE  
PS  
0
PIE  
0
Reset value  
0
0
SCICR2  
0054h  
TIE  
0
TCIE  
0
RIE  
0
ILIE  
0
TE  
0
RE  
0
RWU SBK  
Reset value  
0
0
0
0
SCIERPR  
0055h  
MSB  
0
LSB  
0
Reset value  
0
0
0
0
0
0
0
0
0
0
SCIPETPR  
0057h  
MSB  
0
LSB  
0
Reset value  
138/201  
ST7232Axx-Auto  
On-chip peripherals  
10.6  
10-bit A/D converter (ADC)  
10.6.1  
Introduction  
The on-chip analog to digital converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to 16  
multiplexed analog input channels (refer to device pin out description) that allow the  
peripheral to convert the analog voltage levels from up to 16 different sources.  
The result of the conversion is stored in a 10-bit data register. The A/D converter is  
controlled through a control/status register.  
10.6.2  
Main features  
10-bit conversion  
Up to 16 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 57.  
Figure 57. ADC block diagram  
f
CPU  
DIV 4  
DIV 2  
0
1
f
ADC  
SPE AD  
ED ON  
EOC  
0
CH3 CH2 CH1 CH0 ADCCSR  
4
AIN0  
AIN1  
Analog  
MUX  
Analog to digital converter  
AINx  
ADCDRH  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
ADCDRL  
0
0
0
0
0
0
D1  
D0  
139/201  
On-chip peripherals  
ST7232Axx-Auto  
10.6.3  
Functional description  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not decrease and never increases if the analog input does not increase.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
AREF  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in Section 12:  
Electrical characteristics.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this results in a loss of accuracy due to leakage and sampling not being  
completed in the alloted time.  
A/D converter configuration  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to  
Section 9: I/O ports. Using these pins as analog inputs does not affect the ability of the port  
to be read as a logic input.  
In the ADCCSR register select the CS[3:0] bits to assign the analog channel to convert.  
Starting the conversion  
In the ADCCSR register set the ADON bit to enable the A/D converter and to start the  
conversion. From this time on, the ADC performs a continuous conversion of the selected  
channel.  
When a conversion is complete:  
The EOC bit is set by hardware  
The result is in the ADCDR register  
A read to the ADCDRH or a write to any bit of the ADCCSR register resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll the EOC bit  
2. Read the ADCDRL register  
3. Read the ADCDRH register. This clears EOC automatically  
Note:  
The data is not latched, so both the low and the high data register must be read before the  
next conversion is complete, so it is recommended to disable interrupts while reading the  
conversion result.  
To read only 8 bits, perform the following steps:  
1. Poll the EOC bit  
2. Read the ADCDRH register. This clears EOC automatically  
140/201  
ST7232Axx-Auto  
On-chip peripherals  
Changing the conversion channel  
The application can change channels during conversion. When software modifies the  
CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is  
cleared, and the A/D converter starts converting the newly selected channel.  
10.6.4  
Low power modes  
Note:  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed.  
Table 55. Effect of low power modes on 10-bit ADC  
Mode  
Description  
Wait  
No effect on A/D converter  
A/D converter disabled.  
After wakeup from halt mode, the A/D converter requires a stabilization time  
Halt  
t
STAB (see Section 12: Electrical characteristics) before accurate conversions  
can be performed.  
10.6.5  
10.6.6  
Interrupts  
None.  
10-bit ADC registers  
Control/status register (ADCCSR)  
ADCCSR  
Reset value: 0000 0000 (00h)  
7
6
5
4
0
3
2
1
0
EOC  
SPEED  
ADON  
CH[3:0]  
R/W  
R
R/W  
R/W  
-
Table 56. ADCCSR register description  
Bit  
Bit name  
Function  
End of conversion  
This bit is set by hardware. It is cleared by hardware when software  
reads the ADCDRH register or writes to any bit of the ADCCSR  
register.  
7
EOC  
0: Conversion is not complete  
1: Conversion complete  
ADC clock selection  
This bit is set and cleared by software.  
0: fADC = fCPU/4  
1: fADC = fCPU/2  
6
5
SPEED  
ADON  
A/D converter on  
This bit is set and cleared by software.  
0: Disable ADC and stop conversion  
1: Enable ADC and start conversion  
141/201  
On-chip peripherals  
Table 56. ADCCSR register description (continued)  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Reserved, must be kept cleared.  
Channel selection  
4
0
These bits are set and cleared by software. They select the analog  
input to convert:  
0000: channel pin = AIN0  
0001: channel pin = AIN1  
0010: channel pin = AIN2  
0011: channel pin = AIN3  
0100: channel pin = AIN4  
0101: channel pin = AIN5  
0110: channel pin = AIN6  
0111: channel pin = AIN7  
3:0  
CH[3:0]  
1000: channel pin = AIN8  
1001: channel pin = AIN9  
1010: channel pin = AIN10  
1011: channel pin = AIN11  
1100: channel pin = AIN12  
1101: channel pin = AIN13  
1110: channel pin = AIN14  
1111: channel pin = AIN15  
Note: The number of channels is device dependent. Refer to the  
Section 2: Pin description.  
Data register (ADCDRH)  
ADCDRH  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
D[9:2]  
R
Table 57. ADCDRH register description  
Bit  
Bit name  
Function  
7:0  
D[9:2]  
MSB of converted analog value  
Data register (ADCDRL)  
ADCDRL  
Reset value: 0000 0000 (00h)  
7
6
5
4
3
2
1
0
0
-
D[1:0]  
R
142/201  
ST7232Axx-Auto  
On-chip peripherals  
Table 58. ADCDRL register description  
Bit  
Bit name  
Function  
Reserved, must be kept cleared  
LSB of converted analog value  
7:2  
1:0  
0
D[1:0]  
ADC register map and reset value  
Table 59. ADC register map and reset values  
Address (Hex.) Register label  
7
6
5
4
3
2
1
0
ADCCSR  
0070h  
EOC SPEED ADON  
CH3 CH2  
CH1  
0
CH0  
0
Reset value  
0
0
0
0
0
0
ADCDRH  
0071h  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
Reset value  
ADCDRL  
0072h  
D1  
0
D0  
0
Reset value  
0
0
0
0
0
0
143/201  
Instruction set  
ST7232Axx-Auto  
11  
Instruction set  
11.1  
CPU addressing modes  
The CPU features 17 different addressing modes which can be classified in 7 main groups  
(see Table 60).  
Table 60. CPU addressing mode groups  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
Indirect  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Relative  
Bit operation  
bset byte,#5  
The CPU instruction set is designed to minimize the number of bytes required per  
instruction. To do so, most of the addressing modes may be subdivided in two sub-modes  
called long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
The ST7 assembler optimizes the use of long and short addressing modes.  
144/201  
ST7232Axx-Auto  
Instruction set  
Table 61. CPU addressing mode overview  
Pointer  
address  
Pointer  
size  
Length  
(bytes)  
Mode  
Syntax  
Destination  
Inherent  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
+ 0  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
Immediate  
Short  
ld A,#$55  
ld A,$10  
Direct  
Direct  
Direct  
Direct  
Direct  
Indirect  
Indirect  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
00..FF  
No offset  
Short  
Indexed ld A,(X)  
Indexed ld A,($10,X)  
00..1FE  
Long  
Indexed ld A,($1000,X) 0000..FFFF  
Short  
ld A,[$10]  
00..FF  
0000..FFFF 00..FF  
00..1FE 00..FF  
00..FF  
byte  
Long  
ld A,[$10.w]  
word  
byte  
Short  
Indirect Indexed ld A,([$10],X)  
ld  
Indirect Indexed  
A,([$10.w],X)  
Long  
0000..FFFF 00..FF  
PC+/-127  
word  
+ 2  
Relative  
Relative  
Bit  
Direct  
jrne loop  
+ 1  
+ 2  
+ 1  
+ 2  
Indirect  
Direct  
jrne [$10]  
PC+/-127  
00..FF  
00..FF  
byte  
byte  
bset $10,#7  
bset [$10],#7  
Bit  
Indirect  
00..FF  
00..FF  
btjt  
$10,#7,skip  
Bit  
Bit  
Direct  
Relative  
00..FF  
00..FF  
+ 2  
+ 3  
btjt  
Indirect Relative  
00..FF  
byte  
[$10],#7,skip  
145/201  
Instruction set  
ST7232Axx-Auto  
11.1.1  
Inherent instructions  
All inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 62. Inherent instructions  
Inherent instruction  
Function  
NOP  
No operation  
S/W interrupt  
TRAP  
WFI  
Wait for interrupt (low power mode)  
Halt oscillator (lowest power mode)  
Sub-routine return  
HALT  
RET  
IRET  
SIM  
Interrupt sub-routine return  
Set interrupt mask (level 3)  
Reset interrupt mask (level 0)  
Set carry flag  
RIM  
SCF  
RCF  
Reset carry flag  
RSP  
Reset stack pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/pop to/from the stack  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
CPL, NEG  
MUL  
Byte multiplication  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and rotate operations  
Swap nibbles  
11.1.2  
Immediate instructions  
Immediate instructions have two bytes, the first byte contains the opcode, the second byte  
contains the operand value.  
Table 63. Immediate instructions  
Immediate Instruction  
Function  
LD  
Load  
CP  
Compare  
BCP  
Bit compare  
Logical operations  
Arithmetic operations  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
146/201  
ST7232Axx-Auto  
Instruction set  
11.1.3  
Direct instructions  
In direct instructions, the operands are referenced by their memory address.  
The direct addressing mode consists of two sub-modes:  
Direct instructions (short)  
The address is a byte, thus requires only one byte after the opcode, but only allows  
00 - FF addressing space.  
Direct instructions (long)  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes  
after the opcode.  
11.1.4  
Indexed instructions (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indirect addressing mode consists of three sub-modes:  
Indexed (no offset)  
There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing  
space.  
Indexed (short)  
The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes  
after the opcode.  
11.1.5  
Indirect instructions (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two sub-  
modes:  
Indirect (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF  
addressing space, and requires 1 byte after the opcode.  
Indirect (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
147/201  
Instruction set  
ST7232Axx-Auto  
11.1.6  
Indirect indexed instructions (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two sub-modes:  
Indirect indexed (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE  
addressing space, and requires 1 byte after the opcode.  
Indirect indexed (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte  
addressing space, and requires 1 byte after the opcode.  
Table 64. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes  
Long and short instructions  
Function  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Arithmetic addition/substraction operations  
Bit compare  
Table 65. Short instructions and functions  
Short instructions only  
Function  
CLR  
Clear  
INC, DEC  
Increment/decrement  
Test negative or zero  
1 or 2 complement  
Bit operations  
TNZ  
CPL, NEG  
BSET, BRES  
BTJT, BTJF  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Bit test and jump operations  
Shift and rotate operations  
Swap nibbles  
CALL, JP  
Call or jump subroutine  
148/201  
ST7232Axx-Auto  
Instruction set  
11.1.7  
Relative mode instructions (direct, indirect)  
This addressing mode is used to modify the PC register value, by adding an 8-bit signed  
offset to it.  
Table 66. Relative mode instructions (direct and indirect)  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional jump  
Call relative  
CALLR  
The relative addressing mode consists of two sub-modes:  
Relative (direct)  
The offset is following the opcode.  
Relative (indirect)  
The offset is defined in memory, which address follows the opcode.  
11.2  
Instruction groups  
The ST7 family devices use an instruction set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in the following table:  
Table 67. Instruction groups  
Load and transfer  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
Increment/decrement  
Compare and tests  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
XOR  
Logical operations  
AND  
CPL NEG  
Bit operation  
BSET BRES  
BTJT BTJF  
Conditional bit test and branch  
Arithmetic operations  
Shift and rotates  
ADC  
SLL  
ADD  
SRL  
JRT  
SUB  
SRA  
JRF  
SBC MUL  
RLC RRC SWAP SLA  
Unconditional jump or call  
Conditional branch  
JRA  
JRxx  
JP  
CALL CALLR NOP RET  
Interruption management  
Condition code flag modification  
TRAP WFI  
SIM RIM  
HALT IRET  
SCF RCF  
149/201  
Instruction set  
ST7232Axx-Auto  
11.3  
Using a pre-byte  
The instructions are described with one to four opcodes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2  
PC-1  
PC  
End of previous instruction  
Prebyte  
Opcode  
PC+1  
Additional word (0 to 2) according to the number of bytes required to compute  
the effective address  
These prebytes enable instructions in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instructions in X or the instructions using  
direct addressing mode. The prebytes are:  
PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one  
PIX 92  
PIY 91  
Replace an instruction using direct, direct bit, or direct relative addressing mode  
to an instruction using the corresponding indirect addressing mode  
It also changes an instruction using X indexed addressing mode to an instruction  
using indirect X indexed addressing mode  
Replace an instruction using X indirect indexed addressing mode by a Y one  
150/201  
ST7232Axx-Auto  
Instruction set  
Table 68. Instruction set overview  
Mnemo  
Description  
Add with carry  
Function/example  
Dst  
Src  
I1  
H
I0  
N
Z
C
ADC  
A = A + M + C  
A = A + M  
A
A
M
M
M
M
H
H
N
N
N
N
Z
Z
Z
Z
C
C
ADD  
Addition  
AND  
Logical And  
A = A . M  
A
BCP  
Bit compare A, memory  
Bit reset  
tst (A . M)  
A
BRES  
BSET  
BTJF  
BTJT  
CALL  
bres Byte, #3  
bset Byte, #3  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
M
M
M
Bit set  
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
C
C
CALLR Call subroutine relative  
CLR  
CP  
Clear  
reg, M  
reg  
0
N
N
N
1
Z
Z
Z
Arithmetic compare  
One complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
M
C
1
CPL  
DEC  
HALT  
IRET  
INC  
reg, M  
reg, M  
Halt  
1
0
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
I1  
H
I0  
N
N
Z
Z
C
reg, M  
JP  
Absolute jump  
jp [TBL.w]  
JRA  
Jump relative always  
Jump relative  
JRT  
JRF  
Never jump  
jrf *  
JRIH  
JRIL  
JRH  
JRNH  
JRM  
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
JRNC  
Jump if ext. INT pin = 1  
Jump if ext. INT pin = 0  
Jump if H = 1  
(ext. INT pin high)  
(ext. INT pin low)  
H = 1 ?  
Jump if H = 0  
H = 0 ?  
Jump if I1:0 = 11  
Jump if I1:0 <> 11  
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
I1:0 = 11 ?  
I1:0 <> 11 ?  
N = 1 ?  
N = 0 ?  
Z = 1 ?  
Z = 0 ?  
C = 1 ?  
Jump if C = 0  
C = 0 ?  
JRULT Jump if C = 1  
JRUGE Jump if C = 0  
Unsigned <  
Jmp if unsigned >=  
151/201  
Instruction set  
ST7232Axx-Auto  
Table 68. Instruction set overview (continued)  
Mnemo  
Description  
Function/example  
Dst  
Src  
I1  
H
I0  
N
Z
C
JRUGT Jump if (C + Z = 0)  
JRULE Jump if (C + Z = 1)  
Unsigned >  
Unsigned <=  
dst <= src  
X, A = X * A  
neg $10  
LD  
Load  
reg, M  
A, X, Y  
reg, M  
M, reg  
X, Y, A  
N
N
N
N
Z
Z
Z
Z
MUL  
NEG  
NOP  
OR  
Multiply  
0
0
Negate (2's compl)  
No operation  
OR operation  
C
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
M
reg  
CC  
M
POP  
Pop from the stack  
M
I1  
1
H
I0  
0
C
0
PUSH  
RCF  
RET  
RIM  
Push onto the stack  
Reset carry flag  
Subroutine return  
Enable interrupts  
Rotate left true C  
Rotate right true C  
Reset stack pointer  
Substract with carry  
Set carry flag  
reg, CC  
I1:0 = 10 (level 0)  
C <= A <= C  
C => A => C  
S = Max allowed  
A = A - M - C  
C = 1  
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
reg, M  
reg, M  
N
N
Z
Z
C
C
A
M
N
Z
C
1
Disable interrupts  
Shift left arithmetic  
Shift left logic  
I1:0 = 11 (level 3)  
C <= A <= 0  
C <= A <= 0  
0 => A => C  
A7 => A => C  
A = A - M  
1
1
SLA  
SLL  
reg, M  
reg, M  
reg, M  
reg, M  
A
N
N
0
Z
Z
Z
Z
Z
Z
Z
C
C
C
C
C
SRL  
SRA  
SUB  
Shift right logic  
Shift right arithmetic  
Substraction  
N
N
N
N
M
M
SWAP SWAP nibbles  
A7-A4 <=> A3-A0 reg, M  
tnz lbl1  
TNZ  
Test for neg and zero  
TRAP  
WFI  
S/W trap  
S/W interrupt  
1
1
1
0
Wait for interrupt  
Exclusive OR  
XOR  
A = A XOR M  
A
N
Z
152/201  
ST7232Axx-Auto  
Electrical characteristics  
12  
Electrical characteristics  
12.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
12.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25°C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3σ).  
12.1.2  
12.1.3  
12.1.4  
Typical values  
Unless otherwise specified, typical data are based on T = 25°C, V = 5V. They are given  
only as design guidelines and are not tested.  
A
DD  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 58.  
Figure 58. Pin loading conditions  
ST7 pin  
C
L
153/201  
Electrical characteristics  
ST7232Axx-Auto  
12.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 59.  
Figure 59. Pin input voltage  
ST7 pin  
VIN  
12.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
12.2.1  
Voltage characteristics  
Table 69. Voltage characteristics  
Symbol  
VDD - VSS  
Ratings  
Maximum value Unit  
Supply voltage  
6.5  
13  
VPP - VSS  
Programming voltage  
V
Input voltage on true open drain pin  
Input voltage on any other pin  
VSS - 0.3 to 6.5  
(1)(2)  
VIN  
VSS - 0.3 to  
VDD + 0.3  
|VDDx| and |VSSx| Variations between different digital power pins  
50  
mV  
50  
|VSSA - VSSx  
VESD(HBM)  
VESD(MM)  
|
Variations between digital and analog ground pins  
Electro-static discharge voltage (human body model)  
Electro-static discharge voltage (machine model)  
See Section 12.7.3 on  
page 167  
1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional  
internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a  
corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up  
or pull-down resistor (typical: 4.7kfor RESET, 10kfor I/Os). For the same reason, unused I/O pins must  
not be directly tied to VDD or VSS  
.
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
154/201  
ST7232Axx-Auto  
Electrical characteristics  
Maximum value Unit  
12.2.2  
Current characteristics  
Table 70. Current characteristics  
Symbol  
Ratings  
32-pin device  
75  
150  
75  
150  
20  
40  
- 25  
5
Total current into VDD power lines  
IVDD  
mA  
mA  
(source(1)  
)
44-pin device  
32-pin device  
44-pin device  
Total current out of VSS ground lines  
(sink)(1)  
IVSS  
Output current sunk by any standard I/O and control pin  
Output current sunk by any high sink I/O pin  
Output current source by any I/Os and control pin  
Injected current on VPP pin  
IIO  
Injected current on RESET pin  
5
mA  
(2)(3)  
IINJ(PIN)  
Injected current on OSC1 and OSC2 pins  
Injected current on Flash device pin PB0  
Injected current on any other pin(4)(5)  
5
+5  
5
Total injected current (sum of all I/O and control pins)(4)  
25  
(2)  
ΣIINJ(PIN)  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected  
3. Negative injection disturbs the analog performance of the device. See note 3 in Section 12.12.3: ADC  
accuracy on page 181.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
5. True open drain I/O port pins do not accept positive injection.  
12.2.3  
Thermal characteristics  
Table 71. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
-65 to +150  
°C  
Maximum junction temperature (see Section 13.2: Thermal characteristics)  
155/201  
Electrical characteristics  
ST7232Axx-Auto  
12.3  
Operating conditions  
Table 72. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fCPU  
Internal clock frequency  
0
8
MHz  
Operating voltage  
(except Flash write/erase)  
3.8  
4.5  
5.5  
5.5  
VDD  
V
Operating voltage for Flash  
write/erase  
VPP = 11.4 to 12.6V  
A suffix version  
B suffix version  
C suffix version  
-40  
-40  
-40  
85  
TA  
Ambient temperature range  
105  
125  
°C  
Figure 60. f  
max versus V  
DD  
CPU  
f
[MHz]  
CPU  
8
6
4
2
Functionality not  
guaranteed in this area  
Functionality guaranteed  
in this area (unless otherwise  
specified in the tables  
of parametric data)  
1
0
3.5  
3.8 4.0  
4.5  
5.5  
Supply voltage [V]  
1. Some temperature ranges are only available with a specific package and memory size. Refer to  
Section 14: Device configuration and ordering information.  
Warning: Do not connect 12V to V before V is powered on, as this  
PP  
DD  
may damage the device.  
156/201  
ST7232Axx-Auto  
Electrical characteristics  
12.4  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To get  
the total device consumption, the two current values must be added (except for halt mode  
for which the clock is stopped).  
12.4.1  
Current consumption  
Table 73. Current consumption  
Flash  
ROM  
devices  
devices  
Symbol  
Parameter  
Conditions  
Unit  
Typ Max(1) Typ Max(1)  
fOSC = 2MHz, fCPU = 1MHz  
Supply current in run fOSC = 4MHz, fCPU = 2MHz  
1
2.3  
3.5  
5.3  
7.0  
1.3  
2.0  
3.6  
7.1  
2.0  
3.0  
5
1.4  
2.4  
4.4  
mA  
mA  
mA  
mode(2)  
fOSC = 8MHz, fCPU = 4MHz  
fOSC = 16MHz, fCPU = 8MHz  
10  
fOSC = 2MHz, fCPU = 62.5kHz 0.48  
Supply current in slow fOSC = 4MHz, fCPU = 125kHz 0.53  
1
0.6  
0.7  
0.8  
1.1  
1.8  
2.1  
2.4  
3.0  
1.1  
1.2  
1.4  
mode(2)  
fOSC = 8MHz, fCPU = 250kHz 0.63  
fOSC = 16MHz, fCPU = 500kHz 0.80  
fOSC = 2MHz, fCPU = 1MHz  
Supply current in wait fOSC = 4MHz, fCPU = 2MHz  
0.6  
0.9  
1.3  
2.3  
1.8  
2.2  
2.6  
3.6  
1
1.3  
2.0  
3.3  
6
1.5  
2.5  
4.5  
mode(2)  
fOSC = 8MHz, fCPU = 4MHz  
fOSC = 16MHz, fCPU = 8MHz  
IDD  
fOSC = 2MHz, fCPU = 62.5kHz 430  
950  
70  
200  
300  
600  
Supply current in slow fOSC = 4MHz, fCPU = 125kHz  
470 1000 100  
530 1050 200  
µA  
µA  
µA  
wait mode(2)  
fOSC = 8MHz, fCPU = 250kHz  
fOSC = 16MHz, fCPU = 500kHz 660 1200 350 1200  
-40°C TA +85°C  
-40°C TA +125°C  
<1  
5
10  
50  
<1  
<1  
10  
50  
Supply current in halt  
mode(3)  
fOSC = 2MHz  
fOSC = 4MHz  
fOSC = 8MHz  
60  
160  
200  
300  
500  
22  
44  
86  
30  
60  
120  
300  
Supply current in  
active halt mode(4)  
100  
180  
340  
f
OSC = 16MHz  
170  
1. Data based on characterization results, tested in production at VDD max. and fCPU max.  
2. Measurements are done in the following conditions:  
- Progam executed from RAM, CPU running with RAM access. The increase in consumption when  
executing from Flash is 50%.  
- All I/O pins in input mode with a static value at VDD or VSS (no load)  
- All peripherals in reset state.  
- Clock input (OSC1) driven by external square wave.  
- In slow and slow wait mode, fCPU is based on fOSC divided by 32.  
To obtain the total current consumption of the device, add the clock source (Section 12.5.3) and the  
peripheral power consumption (Section 12.4.3).  
3. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load). Data based  
on characterization results, tested in production at VDD max. and fCPU max.  
4. Data based on characterisation results, not tested in production. All I/O pins in push-pull 0 mode (when  
applicable) with a static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave.  
To obtain the total current consumption of the device, add the clock source consumption (Section 12.5.3).  
157/201  
Electrical characteristics  
ST7232Axx-Auto  
Power consumption vs fCPU: Flash devices  
Figure 61. Typical I in run mode  
DD  
6
5
4
3
2
1
0
2MHZ  
4MHz  
8MHz  
16MHz  
Vdd (V)  
Figure 62. Typical I in slow mode  
DD  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2MHZ  
4MHz  
8MHz  
16MHz  
Vdd (V)  
158/201  
ST7232Axx-Auto  
Figure 63. Typical I in wait mode  
Electrical characteristics  
DD  
3.5  
3
2.5  
2
2MHZ  
4MHz  
8MHz  
16MHz  
1.5  
1
0.5  
0
Vdd (V)  
Figure 64. Typ. I in slow wait mode  
DD  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2MHZ  
4MHz  
8MHz  
16MHz  
Vdd (V)  
12.4.2  
Supply and clock managers  
The previous current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To get  
the total device consumption, the two current values must be added (except for halt mode).  
Table 74. Supply current of clock sources  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Supply current of resonator  
oscillator(1)(2)  
see Section 12.5.3  
IDD(RES)  
µA  
µA  
on page 162  
IDD(PLL) PLL supply current  
VDD = 5V  
360  
1. Data based on characterization results done with the external components specified in Section 12.5.3 , not  
tested in production.  
2. As the oscillator is based on a current source, the consumption does not depend on the voltage.  
159/201  
Electrical characteristics  
ST7232Axx-Auto  
12.4.3  
On-chip peripherals  
Table 75. On-chip peripherals  
Symbol Parameter  
Conditions  
Typ Unit  
IDD(TIM) 16-bit timer supply current(1)  
IDD(SPI) SPI supply current(2)  
50  
TA = 25°C, fCPU = 4MHz, VDD = 5.0V  
µA  
IDD(SCI) SCI supply current(3)  
400  
IDD(ADC) ADC supply current when converting(4)  
1. Data based on a differential IDD measurement between reset configuration (timer counter running at  
fCPU/4) and timer counter stopped (only TIMD bit set). Data valid for one timer.  
2. Data based on a differential IDD measurement between reset configuration (SPI disabled) and a permanent  
SPI master communication at maximum speed (data sent equal to 55h). This measurement includes the  
pad toggling consumption.  
3. Data based on a differential IDD measurement between SCI low power state (SCID=1) and a permanent  
SCI data transmit sequence.  
4. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
12.5  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
A
DD CPU  
12.5.1  
General timings  
Table 76. General timings  
Symbol  
Parameter  
Conditions  
Min  
Typ(1)  
Max  
Unit  
2
3
12  
1500  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
fCPU = 8MHz  
250  
10  
375  
Interrupt reaction time(2)  
tv(IT)  
tCPU  
µs  
tv(IT) = tc(INST) + 10  
fCPU = 8MHz  
1.25  
2.75  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. tc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
160/201  
ST7232Axx-Auto  
Electrical characteristics  
12.5.2  
External clock source  
Table 77. External clock source  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOSC1H  
VOSC1L  
tw(OSC1H)  
OSC1 input pin high level voltage  
OSC1 input pin low level voltage  
VDD - 1  
VSS  
VDD  
V
VSS + 1  
OSC1 high or low time(1)  
5
see Figure 65  
tw(OSC1L)  
ns  
tr(OSC1)  
tf(OSC1)  
OSC1 rise or fall time(1)  
15  
1
Ilkg  
OSC1 Input leakage current  
VSS VIN VDD  
µA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 65. Typical application with an external clock source  
90%  
V
OSC1H  
OSC1L  
10%  
V
t
t
w(OSC1H)  
t
t
w(OSC1L)  
f(OSC1)  
r(OSC1)  
OSC2  
Not connected internally  
f
OSC  
I
lkg  
External clock source  
OSC1  
ST72XXX  
161/201  
Electrical characteristics  
ST7232Axx-Auto  
12.5.3  
Crystal and ceramic resonator oscillators  
The ST7 internal clock can be supplied with four different crystal/ceramic resonator  
oscillators. All the information given in this paragraph are based on characterization results  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
Table 78. Oscillator parameters  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
LP: Low power oscillator  
1
2
MP: Medium power oscillator >2  
MS: Medium speed oscillator >4  
4
fOSC  
Oscillator frequency(1)  
Feedback resistor(2)  
MHz  
8
HS: High speed oscillator  
>8  
16  
RF  
20  
40  
kΩ  
RS = 200LP oscillator  
RS = 200MP oscillator  
RS = 200MS oscillator  
RS = 100HS oscillator  
22  
22  
18  
15  
56  
46  
33  
33  
Recommended load capacitance  
versus equivalent serial resistance of  
the crystal or ceramic resonator (RS)  
CL1  
CL2  
pF  
VIN = VSS  
LP oscillator  
MP oscillator  
MS oscillator  
HS oscillator  
80  
150  
250  
460  
910  
i2  
OSC2 driving current  
160  
310  
610  
µA  
1. The oscillator selection can be optimized in terms of supply current using a high quality resonator with  
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.  
2. Data based on characterisation results, not tested in production.  
Figure 66. Typical application with a crystal or ceramic resonator  
i
2
When resonator with integrated capacitors  
f
OSC  
C
L1  
OSC1  
OSC2  
Resonator  
R
F
C
L2  
ST72XXX  
162/201  
ST7232Axx-Auto  
Electrical characteristics  
Table 79. Examples of typical resonators  
CL1 CL2 tSU(osc)  
[pF] [pF] [ms](3)  
Oscil.  
Reference(1)  
Freq.  
Characteristic(2)  
fOSC  
=
LP  
MP  
MS  
HS  
CSA2.00MG  
CSA4.00MG  
CSA8.00MTZ  
2MHz  
4MHz  
8MHz  
16MHz  
22 22  
22 22  
33 33  
33 33  
4
2
[ 0.5%tolerance, 0.3%Ta  
,
,
,
,
0.3%aging  
0.3%aging  
0.3%aging  
0.3%aging  
,
,
,
,
x.x%correl  
x.x%correl  
x.x%correl  
x.x%correl  
]
]
]
]
fOSC  
=
[ 0.5%tolerance, 0.3%Ta  
fOSC  
=
1
[ 0.5%tolerance, 0.5%Ta  
CSA16.00MXZ040  
fOSC  
=
0.7  
(4)  
[ 0.5%tolerance, 0.3%Ta  
1. Resonators all have different characteristics. Contact the manufacturer to obtain the appropriate values of external  
components and to verify oscillator performance.  
2. Resonator characteristics given by the ceramic resonator manufacturer.  
3. tSU(OSC) is the typical oscillator start-up time measured between VDD = 2.8V and the fetch of the first instruction (with a  
quick VDD ramp-up from 0 to 5V (< 50µs).  
4. 3rd overtone resonators require specific validation by the resonator manufacturer.  
12.5.4  
PLL characteristics  
Table 80. PLL characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC  
PLL input frequency range  
2
4
2
MHz  
%
fCPU/fCPU Instantaneous PLL jitter(1)  
fOSC = 4 MHz.  
0.7  
1. Data characterized but not tested.  
The user must take the PLL jitter into account in the application (for example in serial  
communication or sampling of high frequency signals). The PLL jitter is a periodic effect,  
which is integrated over several CPU cycles. Therefore the longer the period of the  
application signal, the less it is impacted by the PLL jitter.  
Figure 67 shows the PLL jitter integrated on application signals in the range 125kHz to  
2MHz. At frequencies of less than 125KHz, the jitter is negligible.  
Figure 67. Integrated PLL jitter vs signal frequency  
+/-Jitter  
(%)  
1.2  
1
max  
typ  
0.8  
0.6  
0.4  
0.2  
0
4
2
1
500 250 125  
MHz MHz MHz kHz kHz kHz  
Application Frequency  
1. Measurement conditions: fCPU = 8MHz.  
163/201  
Electrical characteristics  
ST7232Axx-Auto  
12.6  
Memory characteristics  
12.6.1  
RAM and hardware registers  
Table 81. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
1.6  
V
1. Minimum VDD supply voltage without losing data stored in RAM (in halt mode or under reset) or in  
hardware registers (only in halt mode). Not tested in production.  
12.6.2  
Flash memory  
Table 82.  
Characteristics of dual voltage HDFlash memory  
Dual voltage HDFlash memory  
Symbol  
Parameter  
Conditions  
Read mode  
Min(1) Typ Max(1) Unit  
0
1
8
8
fCPU  
Operating frequency  
MHz  
Write/erase mode  
4.5V VDD 5.5V  
Write/erase  
VPP  
IDD  
Programming voltage(2)  
Supply current(3)  
11.4  
12.6  
V
µA  
<10  
10  
Read (VPP = 12V)  
Write/erase  
200  
30  
µA  
IPP  
VPP current(3)  
mA  
tVPP  
tRET  
NRW  
Internal VPP stabilization time  
Data retention time  
µs  
TA = 55°C  
TA = 85°C  
20  
Years  
Cycles  
Write erase cycles  
100  
TPROG Programming or erasing  
TERASE temperature range  
-40  
25  
85  
°C  
1. Data based on characterization results, not tested in production.  
2. VPP must be applied only during the programming or erasing operation and not permanently for reliability  
reasons.  
3. Data based on simulation results, not tested in production.  
164/201  
ST7232Axx-Auto  
Electrical characteristics  
12.7  
Electromagnetic compatability (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
12.7.1  
Functional electromagnetic susceptibility (EMS)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the  
IEC 1000 - 4 - 2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 1000 - 4 - 4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behaviour is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
165/201  
Electrical characteristics  
ST7232Axx-Auto  
Table 83. Electromagnetic test results  
Symbol  
Parameter  
Conditions  
Level/class  
ROM device, VDD = 5V, TA = +25°C,  
4A  
Voltage limits to be applied on  
VFESD any I/O pin to induce a  
functional disturbance  
fOSC = 8MHz conforms to IEC 1000 - 4 - 2  
Flash device, VDD = 5V, TA = +25°C,  
fOSC = 8MHz conforms to IEC 1000 - 4 - 2  
4B  
4A  
Fast transient voltage burst  
limits to be applied through  
VDD = 5V, TA = +25°C, fOSC = 8MHz  
100pF on VDD and VDD pins to conforms to IEC 1000 - 4 - 4  
induce a functional disturbance  
VFFTB  
12.7.2  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling two LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
(1)  
Table 84. EMI emissions  
Max vs. [fOSC/fCPU  
]
Monitored  
frequency band  
Sym. Parameter  
Cond.  
Device/package  
Unit  
8/4MHz 16/8MHz  
0.1MHz to 30MHz  
30MHz to 130MHz  
130MHz to 1GHz  
SAE EMI level  
25  
30  
18  
3.0  
25  
30  
18  
3.0  
12  
19  
15  
3
27  
36  
23  
3.5  
27  
36  
23  
3.5  
18  
25  
22  
3.5  
15  
26  
20  
3.5  
dBµV  
Flash/LQFP32  
-
0.1MHz to 30MHz  
30MHz to 130MHz  
130MHz to 1GHz  
SAE EMI level  
dBµV  
ROM/LQFP32(3)  
8K Flash/LQFP44  
8K ROM/LQFP44  
-
Peak  
SEMI  
level(2)  
0.1MHz to 30MHz  
30MHz to 130MHz  
130MHz to 1GHz  
SAE EMI level  
dBµV  
-
dBµV  
-
0.1MHz to 30MHz  
30MHz to 130MHz  
130MHz to 1GHz  
SAE EMI level  
12  
23  
15  
3.0  
1. Refer to Application Note AN1709 for data on other package types  
2. Data based on characterization results, not tested in production  
3. Under completion  
166/201  
ST7232Axx-Auto  
Electrical characteristics  
12.7.3  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the device  
is stressed in order to determine its performance in terms of electrical sensitivity.  
Electro-static discharge (ESD)  
Electro-static discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the AEC-Q100-002/003/011 standard. For more details, refer to the application  
note AN1181.  
Table 85. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
TA = +25°C  
conforming to AEC-Q100-  
002  
Electro-static discharge voltage  
(human body model)  
VESD(HBM)  
H1C  
2000  
TA = +25°C  
conforming to AEC-Q100-  
003  
Electro-static discharge voltage  
(machine model)  
VESD(MM)  
M2  
200  
V
> 500 to ≤  
750 with  
corner  
TA = +25°C  
conforming to AEC-Q100-  
011  
Electro-static discharge voltage  
(charged device model)  
VESD(CDM)  
C3B  
pins > 750  
1. Data based on characterization results, not tested in production  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/0 pin  
These tests are compliant with EIA/JESD 78A and AEC-Q100/004 IC latch-up standards.  
Table 86. Latch up results  
Symbol  
Parameter  
Conditions  
Class  
TA = +125°C  
conforming to JESD 78A and AEC-Q100/004  
LU  
Static latch-up class  
II level A  
167/201  
Electrical characteristics  
ST7232Axx-Auto  
12.8  
I/O port pin characteristics  
12.8.1  
General characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD OSC  
A
Table 87. I/O general port pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input low level voltage  
VIL  
0.3 x VDD  
V
(standard voltage devices)(1)  
VIH  
Input high level voltage(1)  
0.7 x VDD  
V
Vhys  
Schmitt trigger voltage hysteresis(2)  
0.7  
Injected current on Flash device pin  
PB0  
0
+4  
4
(3)  
IINJ(PIN)  
Injected current on other I/O pins  
VDD = 5V  
mA  
Total injected current  
(sum of all I/O and control pins)  
(3)  
ΣIINJ(PIN)  
±25  
1
Ilkg  
IS  
Input leakage current  
VSS VIN VDD  
µA  
Static current consumption induced by  
each floating input pin  
Floating input mode(4)(5)  
VIN = VSS, VDD = 5V  
200  
RPU  
CIO  
Weak pull-up equivalent resistor(6)  
50  
120  
5
250  
kΩ  
I/O pin capacitance  
pF  
tf(IO)out  
tr(IO)out  
tw(IT)in  
Output high to low level fall time(1)  
Output low to high level rise time(1)  
External interrupt pulse time(7)  
25  
25  
CL = 50pF between  
10% and 90%  
ns  
1
tCPU  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
3. When the current limitation is not possible, the VIN maximum must be respected, otherwise refer to IINJ(PIN) specification. A  
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. Refer to Section 12.2.2 on  
page 155 for more details.  
4. Static peak current value taken at a fixed VIN value, based on design simulation and technology characteristics, not tested  
in production. This value depends on VDD and temperature values.  
5. The Schmitt trigger that is connected to every I/O port is disabled for analog inputs only when ADON bit is ON and the  
particular ADC channel is selected (with port configured in input floating mode). When the ADON bit is OFF, static current  
consumption may result. This can be avoided by keeping the input voltage of this pin close to VDD or VSS.  
6. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described  
in Figure 69).  
7. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external  
interrupt source.  
168/201  
ST7232Axx-Auto  
Figure 68. Unused I/O pins configured as input  
Electrical characteristics  
V
DD  
ST7XXX  
Unused I/O port  
10kΩ  
Unused I/O port  
ST7XXX  
10kΩ  
1. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of greater EMC  
robustness and lower cost.  
Figure 69. Typical I vs. V with V = V  
PU  
DD  
IN  
SS  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta=140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
169/201  
Electrical characteristics  
ST7232Axx-Auto  
12.8.2  
Output driving current  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 88. Output driving current  
Symbol  
Parameter  
Conditions  
IIO = +5mA  
IIO = +2mA  
Min  
Max Unit  
1.2  
Output low level voltage for a standard  
I/O pin when 8 pins are sunk at same  
time (see Figure 70)  
0.5  
(1)  
VOL  
IIO = +20mA,  
TA 85°C  
TA > 85°C  
1.3  
1.5  
V
Output low level voltage for a high sink  
I/O pin when 4 pins are sunk at same  
time (see Figure 71 and Figure 73)  
IIO = +8mA  
0.6  
I
IO = -5mA,  
VDD - 1.4  
VDD - 1.6  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(see Figure 72 and Figure 75)  
TA 85°C  
TA > 85°C  
(2)  
VOH  
IIO = -2mA  
VDD - 0.7  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the  
sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and  
the sum of IIO (I/O ports and control pins) must not exceed IVDD. True open drain I/O pins do not have VOH  
.
Figure 70. Typical V at V = 5V (std. ports)  
OL  
DD  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
Ta=140°C "  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
5
10
15
I
(mA)  
IO  
170/201  
ST7232Axx-Auto  
Figure 71. Typ. V at V = 5V (high-sink ports)  
Electrical characteristics  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
10  
20  
(mA)  
30  
I
IO  
Figure 72. Typical V at V = 5V  
OH  
DD  
5.5  
5
4.5  
4
3.5  
3
Vdd=5V 140°C min  
Vdd=5v 95°C min  
Vdd=5v 25°C min  
Vdd=5v -45°C min  
2.5  
2
-10  
-8  
-6  
-4  
-2  
0
I
(mA)  
IO  
Figure 73. Typical V vs. V (std. ports)  
OL  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.45  
0.4  
Ta= -45°C  
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
171/201  
Electrical characteristics  
ST7232Axx-Auto  
Figure 74. Typical V vs. V (high-sink ports)  
OL  
DD  
1.6  
1.4  
1.2  
1
0.6  
Ta= 140°C  
Ta=95°C  
0.5  
Ta=25°C  
Ta=-45°C  
0.4  
0.3  
0.2  
0.8  
0.6  
0.4  
0.2  
0
Ta= 140°C  
Ta=95°C  
Ta=25°C  
Ta=-45°C  
0.1  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V dd(V )  
Vdd(V )  
Figure 75. Typical V vs. V  
OH  
DD  
5.5  
5
6
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
5
4
3
2
1
0
4.5  
4
3.5  
3
Ta=-45°C  
Ta=25°C  
Ta=95°C  
Ta=140°C  
2.5  
2
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Vdd(V)  
Vdd(V)  
172/201  
ST7232Axx-Auto  
Electrical characteristics  
12.9  
Control pin characteristics  
12.9.1  
Asynchronous RESET pin  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD CPU  
A
Table 89. Asynchronous RESET pin  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vhys  
VIL  
Schmitt trigger voltage hysteresis(1)  
Input low level voltage(2)  
2.5  
0.16 x VDD  
0.5  
VIH  
VOL  
IIO  
Input high level voltage(2)  
0.85 x VDD  
V
Output low level voltage(3)  
VDD = 5V IIO = +2mA  
0.2  
2
Driving current on RESET pin  
Weak pull-up equivalent resistor  
mA  
kΩ  
µs  
RON  
VDD = 5V  
20  
20  
30  
30  
120  
tw(RSTL)out Generated reset pulse duration  
th(RSTL)in External reset pulse hold time (5)  
tg(RSTL)in Filtered glitch duration(6)  
Internal reset sources  
42(4)  
2.5  
µs  
200  
ns  
1. Hysteresis voltage between Schmitt trigger switching levels.  
2. Data based on characterization results, not tested in production.  
3. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O  
ports and control pins) must not exceed IVSS  
.
4. Data guaranteed by design, not tested in production.  
5. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on the  
RESET pin with a duration below th(RSTL)in can be ignored.  
6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy  
environments.  
Figure 76. RESET pin protection  
V
ST72XXX  
DD  
R
ON  
User external  
reset circuit  
Internal reset  
Watchdog  
Filter  
0.01µF  
Pulse generator  
Required  
1. The reset network protects the device against parasitic resets.  
2. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device  
can be damaged when the ST7 generates an internal reset (watchdog).  
3. 3. Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below  
the VIL max. level specified in Section 12.9.1 . Otherwise the reset is not taken into account internally.  
4. 4. Because the reset circuit is designed to allow the internal reset to be output in the RESET pin, the user must ensure that  
the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified  
for IINJ(RESET) in Section 12.2.2 on page 155.  
173/201  
Electrical characteristics  
ST7232Axx-Auto  
12.9.2  
ICCSEL/V pin  
PP  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD CPU  
A
Table 90. ICCSEL/V pin characteristics  
PP  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Flash versions  
ROM versions  
Flash versions  
ROM versions  
VIN = VSS  
VSS  
VSS  
0.2  
0.3 x VDD  
12.6  
VIL  
Input low level voltage(1)  
V
VDD - 0.1  
0.7 x VDD  
VIH  
Ilkg  
Input high level voltage(1)  
Input leakage current  
VDD  
1
uA  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 77. Two typical applications with ICCSEL/V pin  
PP  
ICCSEL/V  
V
PP  
PP  
Programming  
tool  
10kΩ  
ST72XXX  
ST72XXX  
1. When ICC mode is not required by the application ICCSEL/VPP pin must be tied to VSS  
.
12.10  
Timer peripheral characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Refer to Section 9: I/O ports for more details on the input/output alternate function  
characteristics (output compare, input capture, external clock, PWM output...).  
Data based on design simulation and/or characterisation results, not tested in production.  
12.10.1 16-bit timer  
Table 91. 16-bit timer  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(ICAP)in Input capture pulse time  
tres(PWM) PWM resolution time  
1
2
tCPU  
ns  
fCPU = 8MHz  
250  
0
fEXT  
Timer external clock frequency  
PWM repetition rate  
fCPU/4  
fCPU/4  
16  
MHz  
bit  
fPWM  
0
ResPWM PWM resolution  
174/201  
ST7232Axx-Auto  
Electrical characteristics  
12.11  
Communication interface characteristics  
12.11.1 SPI (serial peripheral interface)  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Data based on design simulation and/or characterisation results, not tested in production.  
When no communication is on-going the data output line of the SPI (MOSI in master mode,  
MISO in slave mode) has its alternate function capability released. In this case, the pin  
status depends on the I/O port configuration. Refer to Section 9: I/O ports for more details  
on the input/output alternate function characteristics (SS, SCK, MOSI, MISO).  
Table 92. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master fCPU = 8MHz  
Slave fCPU = 8MHz  
fCPU/128 = 0.0625 fCPU/4 = 2  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
0
fCPU/2 = 4  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
see Table 2: Device pin description  
(1)  
tsu(SS)  
SS setup time(2)  
120  
120  
Slave  
(1)  
th(SS)  
SS hold time  
(1)  
tw(SCKH)  
tw(SCKL)  
Master  
Slave  
100  
90  
SCK high and low time  
Data input setup time  
Data input hold time  
(1)  
(1)  
tsu(MI)  
tsu(SI)  
Master  
Slave  
100  
100  
(1)  
(1)  
th(MI)  
th(SI)  
Master  
Slave  
100  
100  
ns  
(1)  
Data output access  
time  
(1)  
ta(SO)  
0
120  
Slave  
Data output disable  
time  
(1)  
tdis(SO)  
240  
90  
(1)  
tv(SO)  
th(SO)  
tv(MO)  
th(MO)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave (after enable  
edge)  
(1)  
0
0
(1)  
(1)  
120  
Master (after enable  
edge)  
1. Data based on design simulation and/or characterization results, not tested in production  
2. Depends on fCPU. For example, if fCPU = 8 MHz, then tCPU = 1/fCPU = 125ns and tsu(SS) = 175ns.  
175/201  
Electrical characteristics  
ST7232Axx-Auto  
Figure 78. SPI slave timing diagram with CPHA = 0  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
t
t
w(SCKH)  
w(SCKL)  
t
t
h(SO)  
t
v(SO)  
t (SO)  
dis(SO)  
t
t
a
r(SCK)  
f(SCK)  
MISO  
see note 2  
MSB OUT  
BIT6 OUT  
LSB OUT  
see note 2  
OUTPUT  
t
h(SI)  
t
su(SI)  
MOSI  
INPUT  
MSB IN  
BIT1 IN  
LSB IN  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
Figure 79. SPI slave timing diagram with CPHA = 1  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA = 1  
CPOL = 0  
CPHA = 1  
CPOL = 1  
t
t
w(SCKH)  
w(SCKL)  
t
t
dis(SO)  
v(SO)  
t
t
t
h(SO)  
t
r(SCK)  
f(SCK)  
a(SO)  
MISO  
HZ  
MSB OUT  
BIT6 OUT  
LSB OUT  
OUTPUT  
see note 2  
see note 2  
t
h(SI)  
t
su(SI)  
MOSI  
MSB IN  
BIT1 IN  
LSB IN  
INPUT  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its  
alternate function capability released. In this case, the pin status depends of the I/O port configuration.  
176/201  
ST7232Axx-Auto  
Figure 80. SPI master timing diagram  
Electrical characteristics  
SS  
INPUT  
t
c(SCK)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
CPHA=1  
CPOL=0  
CPHA = 1  
CPOL = 1  
t
w(SCKH)  
t
t
r(SCK)  
w(SCKL)  
t
f(SCK)  
t
h(MI)  
t
su(MI)  
MISO  
INPUT  
MSB IN  
BIT6 IN  
LSB IN  
t
t
v(MO)  
h(MO)  
MOSI  
see note 2  
see note 2  
OUTPUT  
MSB OUT  
BIT6 OUT  
LSB OUT  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave  
mode) has its alternate function capability released. In this case, the pin status depends of the I/O port  
configuration.  
177/201  
Electrical characteristics  
ST7232Axx-Auto  
12.12  
10-bit ADC characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
DD CPU  
A
Table 93. 10-bit ADC characteristics  
Symbol  
Parameter  
ADC clock frequency  
Conditions  
Min Typ  
Max  
Unit  
fADC  
0.4  
2
VDD  
VAREF  
250  
1
MHz  
VAREF Analog reference voltage  
0.7 * VDD VAREF VDD 3.8  
VSSA  
V
VAIN  
Conversion voltage range(1)  
-40°C TA ≤ +85°C  
+85°C < TA ≤ +125°C  
nA  
µA  
kΩ  
pF  
Hz  
pF  
Ilkg  
Input leakage current for analog input (2)  
RAIN  
CAIN  
fAIN  
External input impedance  
see Figure 81  
and Figure 82  
External capacitor on analog input  
Variation freq. of analog input signal  
CADC Internal sample and hold capacitor  
12  
Conversion time (sample + hold)  
tADC  
7.5  
µs  
fCPU = 8MHz, SPEED = 0 fADC = 2MHz  
– No of sample capacitor loading cycles  
tADC  
4
1/fADC  
– No. of hold conversion cycles  
11  
1. Any added external serial resistor downgrades the ADC accuracy (especially for resistance greater than 10k). Data based  
on characterization results, not tested in production.  
2. Injecting negative current on adjacent pins may result in increased leakage currents. Software filtering of the converted  
analog value is recommended.  
Figure 81. R  
max. vs f  
with C = 0pF  
AIN  
AIN  
ADC  
45  
40  
35  
30  
25  
2 M Hz  
1 M H z  
20  
15  
10  
5
0
0
10  
30  
70  
CPARASITIC (pF)  
1. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad  
capacitance (3pF). A high CPARASITIC value downgrades conversion accuracy. To remedy this, fADC should be reduced.  
178/201  
ST7232Axx-Auto  
Figure 82. Recommended C  
Electrical characteristics  
and R  
values  
AIN  
AIN  
Cain 10 nF  
1000  
Cain 22 nF  
Cain 47 nF  
100  
10  
1
0.1  
0.01  
0.1  
1
10  
fAIN(KHz)  
1. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization  
time and decreased to allow the use of a larger serial resistor (RAIN)  
.
Figure 83. Typical A/D converter application  
ST72XXX  
V
DD  
V
T
0.6V  
R
2k(max)  
AIN  
AINx  
10-bit A/D  
conversion  
V
AIN  
C
V
T
0.6V  
AIN  
C
12pF  
I
ADC  
lkg  
12.12.1 Analog power supply and reference pins  
Depending on the MCU pin count, the package may feature separate V  
and V  
SSA  
AREF  
analog power supply pins. These pins supply power to the A/D converter cell and function  
as the high and low reference voltages for the conversion. In some packages, V and  
AREF  
V
pins are not available (refer to Section 2: Pin description on page 19). In this case the  
SSA  
analog supply and reference pads are internally bonded to the V and V pins.  
DD  
SS  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see Section 12.12.2: General PCB  
design guidelines on page 180).  
179/201  
Electrical characteristics  
ST7232Axx-Auto  
12.12.2 General PCB design guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1µF and optionally, if needed 10pF capacitors as close as possible to the ST7 power  
supply pins and a 1 to 10µF capacitor close to the power source (see Figure 84).  
The analog and digital power supplies should be connected in a star nework. Do not  
use a resistor, as V  
is used as a reference voltage by the A/D converter and any  
AREF  
resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs on the  
same I/O port as the A/D input being converted.  
Figure 84. Power supply filtering  
ST72XXX  
1 to 10µF  
0.1µF  
V
V
SS  
DD  
ST7 digital noise  
filtering  
V
DD  
Power  
source supply  
0.1µF  
V
AREF  
External noise  
filtering  
V
SSA  
180/201  
ST7232Axx-Auto  
Electrical characteristics  
12.12.3 ADC accuracy  
Table 94. ADC accuracy with V = 5.0V  
DD  
Symbol  
Parameter  
Conditions  
Typ Max(1) Unit  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error (2)  
4
6
(2)  
Offset error  
3
5
(2)  
Gain error  
CPU in run mode @ fADC = 2 MHz.  
0.5  
1.5  
1.5  
4.5  
4.5  
4.5  
LSB  
(2)  
Differential linearity error  
(2)  
Integral linearity error  
1. Data based on characterization results, monitored in production to guarantee 99.73% within max value  
from -40°C to 125°C ( 3σ distribution limits).  
2. ADC accuracy vs. negative injection current: Injecting negative current may reduce the accuracy of the  
conversion being performed on another analog input. Any positive injection current within the limits  
specified for IINJ(PIN) and ΣIINJ(PIN) in Section 12.8 does not affect the ADC accuracy.  
Figure 85. ADC accuracy characteristics  
Digital result ADCDR  
E
G
1023  
1022  
1021  
V
V  
AREF  
SSA  
1LSB  
= --------------------------------------------  
IDEAL  
1024  
(2)  
(1) = Example of an actual transfer curve  
E
T
(3)  
7
6
5
4
3
2
1
(2) = Ideal transfer curve  
(1)  
(3) = End point correlation line  
E
O
E
L
E
D
1 LSB  
IDEAL  
V
(LSB  
)
IDEAL  
in  
0
1
2
3
4
5
6
7
10211022 1023 1024  
V
V
AREF  
SSA  
1. Legend:  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves  
EO = Offset error: deviation between the first actual transition and the first ideal one  
E
G = Gain error: deviation between the last ideal transition and the last actual one  
ED = Differential linearity error: maximum deviation between actual steps and the ideal one  
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation  
line  
181/201  
Package characteristics  
ST7232Axx-Auto  
13  
Package characteristics  
13.1  
Package mechanical data  
Figure 86. 32-pin LQFP outline  
D
A
D1  
A2  
A1  
e
E
E1  
b
c
L1  
L
h
Table 95. 32-pin LQFP mechanical data  
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.050  
1.350  
0.300  
0.090  
0.0020  
0.0531  
0.0118  
0.0035  
1.400  
0.370  
0.0551  
0.0146  
C
D
9.000  
7.000  
9.000  
7.000  
0.800  
3.5°  
0.3543  
0.2756  
0.3543  
0.2756  
0.0315  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
182/201  
ST7232Axx-Auto  
Figure 87. 44-pin LQFP outline  
Package characteristics  
A
D
D1  
A2  
A1  
b
e
E1  
E
L
c
L1  
h
Table 96. 44-pin LQFP mechanical data  
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.050  
1.350  
0.300  
0.090  
0.0020  
0.0531  
0.0118  
0.0035  
1.400  
0.370  
0.0551  
0.0146  
0.000  
C
D
12.000  
10.000  
12.000  
10.000  
0.800  
3.5°  
0.4724  
0.3937  
0.4724  
0.3937  
0.0315  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0236  
0.0295  
L1  
183/201  
Package characteristics  
ST7232Axx-Auto  
13.2  
Thermal characteristics  
Table 97. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
Package thermal resistance (junction to ambient)  
LQFP32  
LQFP44  
70  
52  
RthJA  
°C/W  
PD  
Power dissipation(1)  
500  
150  
mW  
°C  
TJmax  
Maximum junction temperature(2)  
1. The maximum power dissipation is obtained from the formula PD = (TJ-TA)/RthJA. The power dissipation of  
an application can be defined by the user with the formula: PD = PINT + PPORT where PINT is the chip  
internal power (IDD x VDD) and PPORT is the port power dissipation depending on the ports used in the  
application.  
2. The maximum chip-junction temperature is based on technology characteristics.  
13.3  
Soldering information  
In order to meet environmental requirements, ST offers these devices in ECOPACK® pack-  
ages. These packages have a lead-free second level interconnect. The category of second  
level interconnect is marked on the package and on the inner box label, in compliance with  
JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also  
marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK® specifications are available at www.st.com.  
Compatibility  
ECOPACK® LQFP packages are fully compatible with Lead (Pb) containing soldering  
process (see application note AN2034).  
Table 98. Soldering compatibility (wave and reflow soldering process)  
Package  
LQFP32  
LQFP44  
Plating material devices  
Pb solder paste Pb-free solder paste  
NiPdAu (Nickel-Palladium-Gold)  
Sn (pure Tin)  
Yes Yes  
184/201  
ST7232Axx-Auto  
Device configuration and ordering information  
14  
Device configuration and ordering information  
14.1  
Introduction  
Each device is available for production in user programmable versions (Flash) as well as in factory coded  
versions (ROM/FASTROM).  
ST7232A-Auto are ROM versions. ST72P32A-Auto devices are factory advanced service technique  
ROM (FASTROM) versions: they are factory-programmed HDFlash devices.  
Flash devices are shipped to customers with a default content (FFh), while ROM factory coded parts  
contain the code supplied by the customer. This implies that Flash devices have to be configured by the  
customer using the option bytes while the ROM devices are factory-configured.  
14.2  
Flash devices  
14.2.1  
Flash configuration  
Table 99. Flash option bytes  
Static option byte 0  
Static option byte 1  
7
6
5
4
3
2
1
1
0
7
6
5
4
3
2
1
0
WDG  
HALT SW  
OSCTYPE  
OSCRANGE  
PLL  
OFF  
Reserved  
FMP_R PKG1 RSTC  
See  
1
1
0
0
2
1
1
0
Default  
1
1
1
1
1
1
1
note  
1
1
0
1
1
1. Depends on device type as defined in Table 102: Package selection (OPT7) on page 187  
The option bytes allows the hardware configuration of the microcontroller to be selected. They have no  
address in the memory map and can be accessed only in programming mode (for example using a  
standard ST7 programming tool). The default content of the Flash is fixed to FFh. To program directly the  
Flash devices using ICP, Flash devices are shipped to customers with an internal clock source selected.  
In masked ROM devices, the option bytes are fixed in hardware by the ROM code (see option list).  
185/201  
Device configuration and ordering information  
Table 100. Option byte 0 description  
ST7232Axx-Auto  
Bit  
Bit name  
Function  
Watchdog reset on halt  
This option bit determines if a reset is generated when entering halt mode while the  
watchdog is active.  
7
WDG HALT  
0: No reset generation when entering halt mode  
1: Reset generation when entering halt mode  
Hardware or software watchdog  
This option bit selects the watchdog type  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
6
WDG SW  
-
5:1  
Reserved, must be kept at default value  
Flash memory read-out protection  
Read-out protection, when selected, provides a protection against program  
memory content extraction and against write access to Flash memory.  
Erasing the option bytes when the FMP_R option is selected causes the whole  
user memory to be erased first, and the device can be reprogrammed. Refer to  
Section 4.3.1: Read-out protection on page 28 and the ST7 Flash programming  
reference manual for more details.  
0
FMP_R  
0: Read-out protection enabled  
1: Read-out protection disabled  
Table 101. Option byte 1 description  
Bit  
Bit name  
Function  
Pin package selection bit  
This option bit selects the package (see Table 102)  
7
PKG1  
Note: On the chip, each I/O port has 8 pads. Pads that are not bonded to external  
pins are in input pull-up configuration after reset. The configuration of these pads  
must be kept at reset state to avoid added current consumption.  
Reset clock cycle selection  
This option bit selects the number of CPU cycles applied during the reset phase  
and when exiting halt mode. For resonator oscillators, it is advised to select 4096  
due to the long crystal stabilization time.  
6
RSTC  
0: Reset phase with 4096 CPU cycles  
1: Reset phase with 256 CPU cycles  
Oscillator type  
These option bits select the ST7 main clock source type:  
00: Clock source = Resonator oscillator  
01: Reserved  
5:4  
OSCTYPE[1:0]  
10: Reserved  
11: Clock source = External source  
186/201  
ST7232Axx-Auto  
Device configuration and ordering information  
Function  
Table 101. Option byte 1 description (continued)  
Bit  
Bit name  
Oscillator range  
When the resonator oscillator is selected, these option bits select the resonator  
oscillator current source corresponding to the frequency range of the used  
resonator. Otherwise, these bits are used to select the normal frequency range.  
000: Typ. frequency range (LP) = >1~2MHz  
3:1  
OSCRANGE[2:0]  
001: Typ. frequency range (MP) = >2~4MHz)  
010: Typ. frequency range (MS) = >4~8MHz)  
011: Typ. frequency range (HS) = >8~16MHz)  
PLL activation  
This option bit activates the PLL which allows multiplication by two of the main  
input clock frequency. The PLL must not be used with the internal RC oscillator.  
The PLL is guaranteed only with an input frequency between 2 and 4MHz.  
0: PLL x2 enabled  
0
PLL OFF  
1: PLL x2 disabled  
Caution: The PLL can be enabled only if the ‘OSC RANGE’ (OPT3:1) bits are  
configured to ‘MP - 2~4MHz’. Otherwise, the device functionality is not  
guaranteed.  
Caution 2: When the PLL is used with an external clock signal, the clock signal  
must be available on the OSCIN pin before the reset signal is released.  
Table 102. Package selection (OPT7)  
Version  
Selected package  
PKG1  
J
LQFP44  
LQFP32  
1
0
K
14.2.2  
Flash ordering information  
The following Table 103 serves as a guide for ordering.  
Table 103. Flash user programmable device types  
Order code(1)  
Package  
Flash memory (Kbytes)  
Temperature range  
ST72F32AK1TARE  
ST72F32AK1TCRE  
ST72F32AK2TARE  
ST72F32AK2TCRE  
ST72F32AJ1TARE  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
4K  
LQFP32  
8K  
4K8  
8K  
ST72F32AJ1TCRE  
ST72F32AJ2TARE  
LQFP44  
ST72F32AJ2TCRE  
1. R = Tape and reel (left blank if tray)  
187/201  
Device configuration and ordering information  
Figure 88. Flash commercial product code structure  
ST7232Axx-Auto  
DEVICE PINOUT PROG MEM PACKAGE TEMP RANGE  
R
E
E = Lead-free (ECOPACK®)  
Conditioning options  
R = Tape and reel (left blank if tray)  
A = -40 to +85°C  
C = -40 to +125°C  
T = Low profile quad flat pack  
1 = 4 Kbytes  
2 = 8 Kbytes  
K = 32 pins  
J = 44 pins  
ST72F32A  
14.3  
ROM device ordering information and transfer of customer  
code  
Customer code is made up of the ROM/FASTROM contents and the list of the selected  
options (if any). The ROM/FASTROM contents are to be sent with the S19 hexadecimal file  
generated by the development tool. All unused bytes must be set to FFh. Complete the  
appended ST72P32A/ST7232A (3.8 to 5.5V) microcontroller option list on page 191 to  
communicate the selected options to STMicroelectronics.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
Table 104: FASTROM factory coded device types on page 189 and Table 105: ROM factory  
coded device types on page 190 serve as guides for ordering. The STMicroelectronics  
Sales Organization will be pleased to provide detailed information on contractual points.  
Caution:  
The readout protection binary value is inverted between ROM and Flash products. The  
option byte checksum differs between ROM and Flash.  
188/201  
ST7232Axx-Auto  
Device configuration and ordering information  
Table 104. FASTROM factory coded device types  
Order code(1)  
Package  
Flash memory (Kbytes)  
Temperature range  
ST72P32A(K1)TAxxxRE  
ST72P32A(K1)TCxxxRE  
ST72P32A(K2)TAxxxRE  
ST72P32A(K2)TCxxxRE  
ST72P32A(J1)TAxxxRE  
ST72P32A(J1)TCxxxRE  
ST72P32A(J2)TAxxxRE  
ST72P32A(J2)TCxxxRE  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
4K  
LQFP32  
8K  
4K  
8K  
LQFP44  
1. The two characters in parentheses which represent the pinout and program memory size are for reference  
only and are not visible in the final commercial product order code.  
‘xxx’ represents the code name defined by STMicroelectronics: It denotes the ROM code, pinout and  
program memory size.  
R = Tape and Reel (left blank if Tray)  
Figure 89. FASTROM commercial product code structure  
DEVICE PACKAGE TEMP RANGE xxx R E  
E = Lead-free (ECOPACK®)  
Conditioning options:  
R = Tape and reel (left blank if tray)  
Code name (defined by STMicroelectronics)  
(denotes ROM code, pinout and program memory size)  
A = -40 to +85°C  
B = -40 to +105°C  
C = -40 to +125°C  
T = Low profile quad flat pack  
ST72P32A  
189/201  
Device configuration and ordering information  
Table 105. ROM factory coded device types  
ST7232Axx-Auto  
Temperature range  
Order code(1)  
Package  
Flash memory (Kbytes)  
ST7232A(K1)TA/xxxRE  
ST7232A(K1)TC/xxxRE  
ST7232A(K2)TA/xxxRE  
ST7232A(K2)TC/xxxRE  
ST7232A(J1)TA/xxxRE  
ST7232A(J1)TC/xxxRE  
ST7232A(J2)TA/xxxRE  
ST7232A(J2)TC/xxxRE  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
40°C +85°C  
40°C +125°C  
4K  
LQFP32  
8K  
4K  
8K  
LQFP44  
1. The two characters in parentheses which represent the pinout and program memory size are for reference  
only and are not visible in the final commercial product order code.  
‘xxx’ represents the code name defined by STMicroelectronics: It denotes the ROM code, pinout and  
program memory size.  
R = Tape and Reel (left blank if Tray)  
Figure 90. ROM commercial product code structure  
DEVICE PACKAGE TEMP RANGE  
xxx  
R E  
/
E = Lead-free (ECOPACK®)  
Conditioning options:  
R = Tape and reel (left blank if tray)  
Code name (defined by STMicroelectronics)  
(denotes ROM code, pinout and program memory size)  
A = -40 to +85°C  
B = -40 to +105°C  
C = -40 to +125°C  
T = Low profile quad flat pack  
ST7232A  
190/201  
ST7232Axx-Auto  
Device configuration and ordering information  
ST72P32A/ST7232A (3.8 to 5.5V) microcontroller option list  
(Last update: September 2007)  
Customer:  
Address:  
.....................................................................  
.....................................................................  
.....................................................................  
.....................................................................  
Contact:  
Phone No: .....................................................................  
Reference/ROM or FASTROM code: ...............................  
The FASTROM/ROM code name is assigned by STMicroelectronics.  
FASTROM/ROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device Type/Memory Size/Package (check only one option):  
----------------------------------------------------------------------------------------------------------------------------------------------  
ROM  
4K  
8K  
----------------------------------------------------------------------------------------------------------------------------------------------  
LQFP32:  
LQFP44:  
[ ] ST7232A(K1)T  
[ ] ST7232A(J1)T  
[ ] ST7232A(K2)T  
[ ] ST7232A(J2)T  
----------------------------------------------------------------------------------------------------------------------------------------------  
----------------------------------------------------------------------------------------------------------------------------------------------  
FASTROM  
4K  
8K  
----------------------------------------------------------------------------------------------------------------------------------------------  
LQFP32:  
LQFP44:  
[ ] ST72P32A(K1)T  
[ ] ST72P32A(J1)T  
[ ] ST72P32A(K2)T  
[ ] ST72P32A(J2)T  
----------------------------------------------------------------------------------------------------------------------------------------------  
Conditioning (check only one option):  
LQFP packaged product  
Temperature range:  
Special marking:  
[ ] Tape and reel  
[ ] A (-40°C to +85°C)  
[ ] No  
[ ] Tray  
[ ] B (-40°C to +105°C)  
[ ] C (-40°C to +125°C)  
[ ] Yes ".........................." (LQFP32 7 char., other pkg. 10 char. max)  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Clock source selection:  
[ ] Resonator  
[ ] LP: Low power resonator (1 to 2 MHz)  
[ ] MP: Medium power resonator (2 to 4 MHz)  
[ ] MS: Medium speed resonator (4 to 8 MHz)  
[ ] HS: High speed resonator (8 to 16 MHz)  
(1)  
[ ] External clock  
[ ] Disabled  
(1)(2)  
PLL  
:
[ ] Enabled  
Reset delay:  
[ ] 256 cycles  
[ ] 4096 cycles  
[ ] Hardware activation  
[ ] No reset  
Watchdog selection:  
[ ] Software activation  
[ ] Reset  
Watchdog reset on halt:  
(3)  
Readout protection  
:
[ ] Disabled  
[ ] Enabled  
Date  
Signature  
............................  
.............................  
1. PLL not supported with external clock source  
2. The PLL can be enabled only if the resonator is configured to ‘Medium power: 2~4MHz’  
3. The readout protection binary value is inverted between ROM and Flash products. The option byte  
checksum differs between ROM and Flash.  
191/201  
Device configuration and ordering information  
ST7232Axx-Auto  
14.4  
Development tools  
14.4.1  
Introduction  
Development tools for the ST7 microcontrollers include a complete range of hardware  
systems and software tools from STMicroelectronics and third-party tool suppliers. The  
range of tools includes solutions to help you evaluate microcontroller peripherals, develop  
and debug your application, and program your microcontrollers.  
14.4.2  
14.4.3  
Evaluation tools and starter kits  
ST offers complete, affordable starter kits and full-featured evaluation boards that allow you  
to evaluate microcontroller features and quickly start developing ST7 applications. Starter  
kits are complete, affordable hardware/software tool packages that include features and  
samples to help you quickly start developing your application. ST evaluation boards are  
open-design, embedded systems, which are developed and documented to serve as  
references for your application design. They include sample application software to help you  
demonstrate, learn about and implement your ST7’s features.  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C compilers and the ST7  
assembler-linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The cosmic C compiler is available in a free version that outputs up to 16 Kbytes  
of code.  
The range of hardware tools includes cost effective ST7-DVP3 series emulators. These  
tools are supported by the ST7 Toolset from STMicroelectronics, which includes the STVD7  
integrated development environment (IDE) with high-level language debugger, editor,  
project manager and integrated programming interface.  
14.4.4  
Programming tools  
During the development cycle, the ST7-DVP3 and ST7-EMU3 series emulators and the  
RLink provide in-circuit programming capability for programming the Flash microcontroller  
on your application board.  
ST also provides dedicated a low-cost dedicated in-circuit programmer, the ST7-STICK, as  
well as ST7 socket boards which provide all the sockets required for programming any of the  
devices in a specific ST7 subfamily on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
For additional ordering codes for spare parts, accessories and tools available for the ST7  
(including from third party manufacturers), refer to the online product selector at  
www.st.com/mcu.  
192/201  
ST7232Axx-Auto  
Device configuration and ordering information  
Table 106. STMicroelectronics development tools  
Emulation  
Programming  
Supported  
products  
ST7 DVP3 series  
Emulator Connection kit  
ST7 EMU3 series  
ICC socket  
board  
Active probe  
Emulator  
and TEB  
ST7232AJ,  
ST72F32AJ  
ST7MDT20-  
DVP3  
ST7MDT20-  
T44/DVP  
ST7MDT20  
J-EMU3  
ST7MDT20  
J-TEB  
ST7SB20  
J/xx(1)  
ST7232AK,  
ST72F32AK  
ST7MDT20-  
DVP3  
ST7MDT20-  
T32/DVP  
1. Add suffix /EU, /UK, /US for the power supply of your region.  
14.4.5  
Socket and emulator adapter information  
For information on the type of socket that is supplied with the emulator, refer to the  
suggested list of sockets in Table 107.  
Note:  
Before designing the board layout, it is recommended to check the overall dimensions of the  
socket as they may be greater than the dimensions of the device.  
For footprint and other mechanical information about these sockets and adapters, refer to  
the manufacturer’s datasheet (www.ironwoodelectronics.com for LQFP32 7 x 7).  
Table 107. Suggested list of socket types  
Socket  
Emulator adapter  
(supplied with ST7MDT20J-EMU3)  
Device  
(supplied with ST7MDT20J-EMU3)  
LQFP32 7 X 7  
IRONWOOD SF-QFE32SA-L-01  
IRONWOOD SK-UGA06/32A-01  
YAMAICHI ICP-044-5  
LQFP44 10 X10 YAMAICHI IC149-044-*52-*5  
14.5  
ST7 application notes  
For all revelant application notes, refer to www.st.com.  
193/201  
Known limitations  
ST7232Axx-Auto  
15  
Known limitations  
15.1  
All Flash and ROM devices  
15.1.1  
Safe connection of OSC1/OSC2 pins  
The OSC1 and/or OSC2 pins must not be left unconnected otherwise the ST7 main  
oscillator may start and, in this configuration, could generate an f clock frequency in  
OSC  
excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state.  
Refer to Section 6.4: Multi-oscillator (MO) on page 37.  
15.1.2  
External interrupt missed  
To avoid any risk of generating a parasitic interrupt, the edge detector is automatically  
disabled for one clock cycle during an access to either DDR and OR. Any input signal edge  
during this period is not detected and does not generate an interrupt.  
This case can typically occur if the application refreshes the port configuration registers at  
intervals during runtime.  
Workaround  
The workaround is based on software checking the level on the interrupt pin before and after  
writing to the PxOR or PxDDR registers. If there is a level change (depending on the  
sensitivity programmed for this pin) the interrupt routine is invoked using the call instruction  
with three extra PUSH instructions before executing the interrupt routine (this is to make the  
call compatible with the IRET instruction at the end of the interrupt service routine).  
But detection of the level change does not make sure that edge occurs during the critical  
one cycle duration and the interrupt has been missed. This may lead to occurrence of same  
interrupt twice (one hardware and another with software call).  
To avoid this, a semaphore is set to ‘1’ before checking the level change. The semaphore is  
changed to level '0' inside the interrupt routine. When a level change is detected, the  
semaphore status is checked and if it is ‘1’ this means that the last interrupt has been  
missed. In this case, the interrupt routine is invoked with the call instruction.  
There is another possible case that is, if writing to PxOR or PxDDR is done with global  
interrupts disabled (interrupt mask bit set). In this case, the semaphore is changed to ‘1’  
when the level change is detected. Detecting a missed interrupt is done after the global  
interrupts are enabled (interrupt mask bit reset) and by checking the status of the  
semaphore. If it is ‘1’ this means that the last interrupt was missed and the interrupt routine  
is invoked with the call instruction.  
To implement the workaround, the following software sequence is to be followed for writing  
into the PxOR/PxDDR registers. The example is for Port PF1 with falling edge interrupt  
sensitivity. The software sequence is given for both cases (global interrupt  
disabled/enabled).  
194/201  
ST7232Axx-Auto  
Case 1: Writing to PxOR or PxDDR with global interrupts enabled:  
Known limitations  
LD A,#01  
LD sema,A; set the semaphore to '1'  
LD A,PFDR  
AND A,#02  
LD X,A; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A ; Write to PFDDR  
LD A,#$ff  
LD PFOR,A ; Write to PFOR  
LD A,PFDR  
AND A,#02  
LD Y,A; store the level after writing to PxOR/PxDDR  
LD A,X; check for falling edge  
cp A,#02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,sema ; check the semaphore status if edge is detected  
CP A,#01  
jrne OUT  
call call_routine ; call the interrupt routine  
OUT:LD A,#00  
LD sema,A  
.call_routine ; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
.ext1_rt ; entry to interrupt routine  
LD A,#00  
LD sema,A  
IRET  
Case 2: Writing to PxOR or PxDDR with global interrupts disabled:  
SIM ; set the interrupt mask  
LD A,PFDR  
AND A,#$02  
LD X,A ; store the level before writing to PxOR/PxDDR  
LD A,#$90  
LD PFDDR,A ; Write into PFDDR  
LD A,#$ff  
LD PFOR,A ; Write to PFOR  
LD A,PFDR  
AND A,#$02  
LD Y,A ; store the level after writing to PxOR/PxDDR  
LD A,X ; check for falling edge  
cp A,#$02  
jrne OUT  
TNZ Y  
jrne OUT  
LD A,#$01  
LD sema,A ; set the semaphore to '1' if edge is detected  
195/201  
Known limitations  
RIM ; reset the interrupt mask  
ST7232Axx-Auto  
LD A,sema ; check the semaphore status  
CP A,#$01  
jrne OUT  
call call_routine ; call the interrupt routine  
RIM  
OUT:RIM  
JP while_loop  
.call_routine ; entry to call_routine  
PUSH A  
PUSH X  
PUSH CC  
.ext1_rt ; entry to interrupt routine  
LD A,#$00  
LD sema,A  
IRET  
15.1.3  
Unexpected reset fetch  
If an interrupt request occurs while a ‘POP CC’ instruction is executed, the interrupt  
controller does not recognise the source of the interrupt and, by default, passes the reset  
vector address to the CPU.  
Workaround  
To solve this issue, a ‘POP CC’ instruction must always be preceded by a ‘SIM’ instruction.  
15.1.4  
Clearing active interrupts outside interrupt routine  
When an active interrupt request occurs at the same time as the related flag is being  
cleared, an unwanted reset may occur.  
Note:  
Clearing the related interrupt mask does not generate an unwanted reset.  
Concurrent interrupt context  
The symptom does not occur when the interrupts are handled normally, i.e. when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
Perform SIM and RIM operation before and after resetting an active interrupt request.  
Example:  
SIM  
Reset interrupt flag  
RIM  
196/201  
ST7232Axx-Auto  
Known limitations  
Nested interrupt context  
The symptom does not occur when the interrupts are handled normally, i.e. when:  
The interrupt flag is cleared within its own interrupt routine  
The interrupt flag is cleared within any interrupt routine with higher or identical priority  
leve  
The interrupt flag is cleared in any part of the code while this interrupt is disabled  
If these conditions are not met, the symptom can be avoided by implementing the following  
sequence:  
PUSH CC  
SIM  
Reset interrupt flag  
POP CC  
15.1.5  
15.1.6  
16-bit timer PWM mode  
In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R  
register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on  
the OLVL1 and OLVL2 settings.  
TIMD set simultaneously with OC interrupt  
Description  
If the 16-bit timer is disabled at the same time as the output compare event occurs, then the  
output compare flag gets locked and cannot be cleared before the timer is enabled again.  
Impact on the application  
If output compare interrupt is enabled, then the output compare flag cannot be cleared in the  
timer interrupt routine. Consequently the interrupt service routine is called repeatedly and  
the application gets stuck which causes the watchdog reset if enabled by the application.  
Workaround  
Disable the timer interrupt before disabling the timer. While enabling, first enable the timer,  
then the timer interrupts.  
Perform the following to disable the timer:  
TACR1 or TBCR1 = 0x00h; // Disable the compare interrupt  
TACSR | or TBCSR | = 0x40; // Disable the timer  
Perform the following to enable the timer again:  
TACSR & or TBCSR & = ~0x40; // Enable the timer  
TACR1 or TBCR1 = 0x40; // Enable the compare interrup  
197/201  
Known limitations  
ST7232Axx-Auto  
15.1.7  
SCI wrong break duration  
Description  
A single break character is sent by setting and resetting the SBK bit in the SCICR2 register.  
In some cases, the break character may have a longer duration than expected:  
- 20 bits instead of 10 bits if M = 0  
- 22 bits instead of 11 bits if M = 1.  
In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin.  
This may lead to generate one break more than expected.  
Occurrence  
The occurrence of the problem is random and proportional to the baudrate. With a transmit  
frequency of 19200 baud (f  
occurrence is around 1%.  
= 8MHz and SCIBRR = 0xC9), the wrong break duration  
CPU  
Workaround  
If this wrong duration is not compliant with the communication protocol in the application,  
software can request that an idle line be generated before the break character. In this case,  
the break duration is always correct assuming the application is not doing anything between  
the idle and the break. This can be ensured by temporarily disabling interrupts.  
The exact sequence is:  
Disable interrupts  
Reset and set TE (IDLE request)  
Set and reset SBK (break request)  
Re-enable interrupts  
15.1.8  
39-pulse ICC entry mode  
For Flash devices, ICC mode entry using ST7 application clock (39 pulses) is not supported.  
External clock mode must be used (36 pulses). Refer to the ST7 Flash Programming  
Reference Manual.  
198/201  
ST7232Axx-Auto  
Known limitations  
15.2  
ROM devices only  
15.2.1  
I/O port A and F configuration  
When using an external quartz crystal or ceramic resonator, a few f  
clock periods may  
OSC2  
be lost when the signal pattern in Table 108 occurs . This is because this pattern causes the  
device to enter test mode and return to user mode after a few clock periods. User program  
execution and I/O status are not changed, only a few clock cycles are lost.  
This happens with either one of the following configurations (see also Table 108):  
PA3 = 0, PF4 = 1, PF1 = 0 while PLL option is disabled and PF0 is toggling.  
PA3 = 0, PF4 = 1, PF1 = 0, PF0 = 1 while PLL option is enabled.  
Table 108. Port A and F configuration  
PLL  
PA3  
PF4  
PF1  
PF0  
Clock disturbance  
Max. 2 clock cycles lost at each rising or  
falling edge of PF0  
OFF  
ON  
0
0
1
1
0
0
Toggling  
1
Max. 1 clock cycle lost out of every 16  
As a consequence, for cycle-accurate operations, these configurations are prohibited in  
either input or output mode.  
Workaround  
To avoid this occurring, it is recommended to connect one of these pins to GND (PF4 or  
PF0) or V (PA3 or PF1).  
DD  
15.2.2  
External clock source with PLL  
PLL is not supported with external clock source.  
199/201  
Revision history  
ST7232Axx-Auto  
16  
Revision history  
Table 109. Document revision history  
Date  
Revision  
Changes  
28-Jan-2008  
1
Initial release  
200/201  
ST7232Axx-Auto  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
201/201  

相关型号:

ST7232A(K2)TC/XXXRE

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

ST7232AJ1B1

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1B5

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1B6A

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1BB

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1BC

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1BC/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PDIP42, 0.600 INCH, SHRINK, PLASTIC, DIP-42
STMICROELECTR

ST7232AJ1T1

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1T5

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1T6A

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1TB

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR

ST7232AJ1TC

8-BIT MICROCONTROLLER WITH 8K FLASH/ROM, ADC, 4 TIMERS, SPI, SCI INTERFACE
STMICROELECTR