PSD301V-70JM [STMICROELECTRONICS]

Low Cost Field Programmable Microcontroller Peripherals; 低成本现场可编程微控制器外设
PSD301V-70JM
型号: PSD301V-70JM
厂家: ST    ST
描述:

Low Cost Field Programmable Microcontroller Peripherals
低成本现场可编程微控制器外设

微控制器
文件: 总85页 (文件大小:687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSD3XX ZPSD3XX ZPSD3XXV  
PSD3XXR ZPSD3XXR ZPSD3XXRV  
Low Cost Field Programmable Microcontroller Peripherals  
FEATURES SUMMARY  
Single Supply Voltage:  
Figure 1. Packages  
– 5 V±10% for PSD3xx, ZPSD3xx, PSD3xxR,  
ZPSD3xxR  
– 2.7 to 5.5 V for ZPSD3xxV, ZPSD3xxRV  
Up to 1 Mbit of EPROM  
Up to 16 Kbit SRAM  
Input Latches  
Programmable I/O ports  
Page Logic  
PLDCC44 (J)  
Programmable Security  
CLDCC44 (L)  
PQFP44 (M)  
TQFP44 (U)  
January 2002  
1/3  
PSD3XX Family  
PSD3XX  
ZPSD3XX  
ZPSD3XXV  
PSD3XXR ZPSD3XXR ZPSD3XXRV  
Low Cost Microcontroller Peripherals  
Table of Contents  
1
2
3
4
5
6
7
Introduction...........................................................................................................................................................1  
Notation ................................................................................................................................................................2  
Key Features ........................................................................................................................................................4  
PSD3XX Family Feature Summary ......................................................................................................................5  
Partial Listing of Microcontrollers Supported ........................................................................................................6  
Applications ..........................................................................................................................................................6  
ZPSD Background................................................................................................................................................6  
7.1  
Integrated Power ManagementTM Operation.............................................................................................7  
8
9
Operating Modes (MCU Configurations) ............................................................................................................10  
Programmable Address Decoder (PAD).............................................................................................................12  
10 I/O Port Functions...............................................................................................................................................15  
10.1 CSIOPORT Registers..............................................................................................................................15  
10.2 Port A (PA0-PA7).....................................................................................................................................16  
10.2.1 Port A (PA0-PA7) in Multiplexed Address/Data Mode................................................................16  
10.2.2 Port A (PA0-PA7) in Non-Multiplexed Address/Data Mode........................................................17  
10.3 Port B (PB0-PB7).....................................................................................................................................18  
10.3.1 Port B (PA0-PA7) in Multiplexed Address/Data Mode................................................................18  
10.3.2 Port B (PA0-PA7) in Non-Multiplexed Address/Data Mode........................................................19  
10.4 Port C (PC0-PC2)....................................................................................................................................20  
10.5 ALE/AS Input Pin.....................................................................................................................................20  
11 PSD Memory ......................................................................................................................................................21  
11.1 EPROM....................................................................................................................................................21  
11.2 SRAM (Optional)......................................................................................................................................21  
11.3 Page Register (Optional) .........................................................................................................................21  
11.4 Programming and Erasure.......................................................................................................................21  
12 Control Signals ...................................................................................................................................................22  
12.1 ALE or AS................................................................................................................................................22  
12.2 WR or R/W...............................................................................................................................................22  
12.3 RD/E/DS (DS option not available on 3X1 devices) ................................................................................22  
12.4 PSEN or PSEN........................................................................................................................................22  
12.5 A19/CSI ...................................................................................................................................................23  
12.6 Reset Input ..............................................................................................................................................24  
13 Program/Data Space and the 8031 ....................................................................................................................26  
14 Systems Applications..........................................................................................................................................27  
15 Security Mode.....................................................................................................................................................30  
16 Power Management............................................................................................................................................30  
16.1 CSI Input..................................................................................................................................................30  
16.2 CMiser Bit ................................................................................................................................................30  
16.3 Turbo Bit (ZPSD Only).............................................................................................................................31  
16.4 Number of Product Terms in the PAD Logic............................................................................................31  
16.5 Composite Frequency of the Input Signals to the PAD Logic..................................................................32  
16.6 Loading on I/O Pins .................................................................................................................................33  
17 Calculating Power...............................................................................................................................................34  
i
PSD3XX Family  
PSD3XX  
ZPSD3XX  
ZPSD3XXV  
PSD3XXR ZPSD3XXR ZPSD3XXRV  
Low Cost Microcontroller Peripherals  
Table of Contents (cont.)  
18 Specifications......................................................................................................................................................37  
18.1 Absolute Maximum Ratings.....................................................................................................................37  
18.2 Operating Range .....................................................................................................................................37  
18.3 Recommended Operating Conditions......................................................................................................37  
18.4 Pin Capacitance.......................................................................................................................................37  
18.5 AC/DC Characteristics – PSD3XX/ZPSD3XX (All 5 V devices) ..............................................................38  
18.6 AC/DC Characteristics – PSD3XXV (3 V devices only)...........................................................................39  
18.7 Timing Parameters – PSD3XX/ZPSD3XX (All 5 V devices)....................................................................40  
18.8 Timing Parameters – ZPSD3XXV (3 V devices only)..............................................................................42  
18.9 Timing Diagrams for PSD3XX Parts.......................................................................................................44  
18.10 AC Testing...............................................................................................................................................65  
19 Pin Assignments.................................................................................................................................................66  
20 Package Information...........................................................................................................................................67  
21 Package Drawings..............................................................................................................................................68  
22 PSD3XX Product Ordering Information ..............................................................................................................72  
22.1 PSD3XX Selector Guide..........................................................................................................................72  
22.2 Part Number Construction .......................................................................................................................73  
22.3 Ordering Information................................................................................................................................73  
23 Data Sheet Revision History...............................................................................................................................80  
ii  
Programmable Peripheral  
PSD3XX Family  
Field-Programmable Microcontroller Peripheral  
The low cost PSD3XX family integrates high-performance and user-configurable blocks of  
EPROM, programmable logic, and optional SRAM into one part. The PSD3XX products  
also provide a powerful microcontroller interface that eliminates the need for external  
“glue logic”. The part’s integration, small form factor, low power consumption, and ease of  
use make it the ideal part for interfacing to virtually any microcontroller.  
1.0  
Introduction  
The major functional blocks of the PSD3XX include:  
Two programmable logic arrays  
256Kb to 1 Mb of EPROM  
Optional 16 Kb SRAM  
Input latches  
Programmable I/O ports  
Page logic  
Programmable security.  
The PSD3XX family architecture (Figure 1) can efficiently interface with, and enhance,  
almost any 8- or 16-bit microcontroller system. This solution provides microcontrollers the  
following:  
Chip-select logic, control logic, and latched address signals that are otherwise  
implemented discretely  
Port expansion (reconstructs lost microcontroller I/O)  
Expanded microcontroller address space (up to 16 times)  
An EPROM (with security) and optional SRAM  
Compatible with 8031-type architectures that use separate Program and Data Space  
Interface to shared external resources.  
1
PSD3XX Family  
The PSD3XX I/O ports can be used for:  
1.0  
Introduction  
(cont.)  
Standard I/O ports  
Programmable chip select outputs  
Address inputs  
Demultiplexed address outputs  
A data bus port for non-multiplexed MCU applications  
A data bus “repeater” port that shares and arbitrates the local MCU data bus with  
external devices.  
Implementing your design has never been easier than with PSDsoftST’s software  
development suite. Using PSDsoft, you can do the following:  
Configure your PSD3XX to work with virtually any microcontroller  
Specify what you want implemented in the programmable logic using a high-level  
Hardware Description Language (HDL)  
Simulate your design  
Download your design to the part using a programmer.  
For a complete product comparison, refer to Table 1.  
2.  
Notation  
PSD3XX references the standard version of the PSD3XX family, which are ideal for  
general-purpose embedded control applications.  
PSD3XXR SRAM-less version of the PSD3XX. If you don’t require the 16 Kb SRAM or  
need a larger external SRAM, go with this part to save cost.  
ZPSD3XX has improved technology that helps reduce current consumption using the Turbo  
bit. Excellent if you require a 5 V version of the PSD3XX that uses less power.  
ZPSD3XXR SRAM-less version of the ZPSD3XX.  
ZPSD3XXV 2.7 V to 5.5 V operation, ideal for very low-power and low-voltage  
applications.  
ZPSD3XXRV SRAM-less version of the ZPSD3XXV.  
Throughout this data sheet, references are made to the PSD3XX. In most cases, these  
references also cover the entire family. Exceptions will be noted. References, such as  
“3X1 only” cover all parts that have a 301 or 311 in the part number. Use the following table  
to determine what references cover which product versions:  
Reference  
PSD3XX  
PSD3XX PSD3XXR ZPSD3XX ZPSD3XXR ZPSD3XXV ZPSD3XXRV  
X
X
X
X
X
X
X
PSD  
PSD3XX only  
Non-ZPSD  
X
X
X
X
ZPSD only  
ZPSD3XX  
X
X
X
X
X
X
Non-V versions  
X
X
X
V versions only  
V suffix  
ZPSD3XXV only  
X
X
SRAM-less  
Non-R  
X
2
PSD3XX Family  
Figure 1.  
PSD3XX  
Family  
OPTIONAL  
PAGE LOGIC*  
Architecture  
P3–P0  
A16–A18  
LOGIC IN  
PROG.  
PORT  
EXP.  
A11–A15  
A8–A10  
L
A
T
CSIOPORT  
A19/CSI  
A19/CSI  
PC0–  
PC2  
AD8–AD15  
C
H
ALE/AS  
RD  
ALE/AS  
RD  
PAD A  
13 P.T.  
PAD B  
PORT  
C
WR  
WR  
CS8–  
CS10  
27 P.T.  
RESET  
RESET  
ALE/AS  
ES7  
ES6  
ES5  
ES4  
ES3  
ES2  
ES1  
ES0  
L
A
T
C
H
AD0–AD7  
PROG.  
PORT  
EXP.  
CS0–  
CS7  
PB0–  
PB7  
16/8  
MUX  
EPROM  
256Kb TO 1Mb  
PORT  
B
D8–D15  
D8–D15  
CSIOPORT  
D0–D7  
RS0  
OPTIONAL  
SRAM  
16K BIT  
PROG.  
PORT  
EXP.  
TRACK MODE  
SELECTS  
**  
PA0–  
PA7  
A0–A7  
AD0–AD7/D0–D7  
PORT  
A
ALE/AS  
PROG. CHIP  
CONFIGURATION  
RD/E/DS  
WR/R/W  
BHE/PSEN  
RESET  
X8, X16  
MUX or NON–MUX BUSSES  
SECURITY MODE  
PROG.  
CONTROL  
SIGNALS  
A19/CSI  
**Not available for 3X1 devices.  
**SRAM not available on “R” versions.  
3
PSD3XX Family  
3.0  
Key Features  
Single-chip programmable peripheral for microcontroller-based applications  
256K to 1 Mbit of UV EPROM with the following features:  
Configurable as 32, 64, or 128 K x 8; or as 16, 32, or 64 K x 16  
Divided into eight equally-sized mappable blocks for optimized address mapping  
As fast as 70 ns access time, which includes address decoding  
Optional 16 Kbit SRAM is configurable as 2K x 8 or 1K x 16. The access time can be  
as quick as 70 ns, including address decoding.  
19 I/O pins that can be individually configured for :  
Microcontroller I/O port expansion  
Programmable Address decoder (PAD) I/O  
Latched address output  
Open-drain or CMOS output  
Two Programmable Arrays (PAD A and PAD B) replace your PLD or decoder, and have  
the following features:  
Up to 18 Inputs and 24 outputs  
40 Product terms (13 for PAD A and 27 for PAD B)  
Ability to decode up to 1 MB of address without paging  
Microcontroller logic that eliminates the need for external “glue logic” has the following  
features:  
Ability to interface to multiplexed and non-multiplexed buses  
Built-in address latches for multiplexed address/data bus  
ALE and Reset polarity are programmable (Reset polarity not programmable on  
V-versions)  
Multiple configurations are possible for interface to many different microcontrollers  
Optional built-in page logic expands the MCU address space by up to 16 times  
Programmable power management with standby current as low as 1µA for low-voltage  
version  
CMiser bitprogrammable option to reduce AC power consumption in memory  
Turbo Bit (ZPSD only)—programmable bit to reduce AC and DC power consumption  
in the PADs.  
Track Mode that allows other microcontrollers or host processors to share access to the  
local data bus  
Built-in security locks the device and PAD decoding configuration  
Wide Operating Voltage Range  
V-versions: 2.7 to 5.5 volts  
Others: 4.5 to 5.5 volts  
Available in a variety of packaging (44-pin PLDCC, CLDCC, TQFP, and PQFP)  
Simple, menu-driven software (PSDsoft) allows configuration and design entry on a PC.  
4
PSD3XX Family  
Use the following table to determine which PSD product will fit your needs. Refer back to  
this page whenever there is confusion as to which part has what features.  
4.0  
PSD3XX Family  
Feature  
Typical  
Summary  
# PLD EPROM SRAM  
Page  
Reg  
Turbo  
Bit  
Bus  
Width  
Standby  
Current  
Part  
Inputs  
Size  
Size  
Voltage  
PSD301R  
PSD311R  
14  
14  
256 Kb  
256 Kb  
5 V  
5 V  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 10 µA  
x8 10 µA  
x8 or x16 10 µA  
x8 10 µA  
x8 or x16 10 µA  
x8 10 µA  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 50 µA  
x8 50 µA  
x8 or x16 10 µA  
x8 10 µA  
x8 or x16 10 µA  
x8 10 µA  
x8 or x16 10 µA  
PSD302R  
PSD312R  
18  
18  
512 Kb  
512 Kb  
X
X
5 V  
5 V  
PSD303R  
PSD313R  
18  
18  
1 Mb  
1 Mb  
X
X
5 V  
5 V  
ZPSD301R  
ZPSD311R  
14  
14  
256 Kb  
256 Kb  
5 V  
5 V  
X
X
ZPSD302R  
ZPSD312R  
18  
18  
512 Kb  
512 Kb  
X
X
5 V  
5 V  
X
X
ZPSD303R  
ZPSD313R  
18  
18  
1 Mb  
1 Mb  
X
X
5 V  
5 V  
X
X
PSD301  
PSD311  
14  
14  
256 Kb 16 Kb  
256 Kb 16 Kb  
5 V  
5 V  
PSD302  
PSD312  
18  
18  
512 Kb 16 Kb  
512 Kb 16 Kb  
X
X
5 V  
5 V  
PSD303  
PSD313  
18  
18  
1 Mb  
1 Mb  
16 Kb  
16 Kb  
X
X
5 V  
5 V  
ZPSD301  
ZPSD311  
14  
14  
256 Kb 16 Kb  
256 Kb 16 Kb  
5 V  
5 V  
X
X
ZPSD302  
ZPSD312  
18  
18  
512 Kb 16 Kb  
512 Kb 16 Kb  
X
X
5 V  
5 V  
X
X
ZPSD303  
ZPSD313  
18  
18  
1 Mb  
1 Mb  
16 Kb  
16 Kb  
X
X
5 V  
5 V  
X
X
x8  
10 µA  
ZPSD301V1  
ZPSD311V1  
14  
14  
256 Kb 16 Kb  
256 Kb 16 Kb  
2.7 V  
2.7 V  
X
X
x8 or x16  
x8  
1 µA  
1 µA  
ZPSD302V1  
ZPSD312V1  
18  
18  
512 Kb 16 Kb  
512 Kb 16 Kb  
X
X
2.7 V  
2.7 V  
X
X
x8 or x16  
x8  
1 µA  
1 µA  
ZPSD303V1  
ZPSD313V1  
18  
18  
1 Mb  
1 Mb  
16 Kb  
16 Kb  
X
X
2.7 V  
2.7 V  
X
X
x8 or x16  
x8  
1 µA  
1 µA  
NOTES: 1. Low power versions of the ZPSD3XX (ZPSD3XXV) can only accept an active-low level Reset input.  
5
PSD3XX Family  
5.0  
Motorola family: 68HC11, 68HC16, M68000/10/20, M68008, M683XX, 68HC05C0  
Intel family: 80C31, 80C51, 80C196/198, 80C186/188  
Philips family: 80C31 and 80C51 based MCUs  
Zilog: Z8, Z80, Z180  
Partial Listing  
of  
Microcontrollers  
Supported  
National: HPC16000, HPC46400  
®
Echelon/Motorola/Toshiba: NEURON 3150 Chip  
6.0  
Applications  
Telecommunications:  
Cellular phone  
Digital PBX  
Digital speech  
FAX  
Digital Signal Processing (DSP)  
Portable Industrial Equipment:  
Industrial control  
Measurement meters  
Data recorders  
Instrumentation  
Medical Instrumentation:  
Hearing aids  
Monitoring equipment  
Diagnostic tools  
Computers—notebooks, portable PCs, and palm-top computers:  
Peripheral control (fixed disks, laser printers, etc.)  
Modem Interface  
MCU peripheral interface  
Portable and battery-powered systems have recently become major embedded control  
application segments. As a result, the demand for electronic components having extremely  
low power consumption has increased dramatically. Recognizing this trend, ST  
developed a new lower power 3XX part, denoted ZPSD3XX. The Z stands for Zero-power  
because ZPSD products virtually eliminate the DC component of power consumption,  
reducing it to standby levels. Virtual elimination of the DC component is the basis for the  
words “Zero-power” in the ZPSD name. ZPSD products also minimize the AC power  
component when the chip is changing states. The result is a programmable microcontroller  
peripheral family that replaces discrete circuit components, while drawing less power.  
7.0  
ZPSD  
Background  
6
PSD3XX Family  
Integrated Power Management TM Operation  
7.0  
ZPSD  
Upon each address or logic input change to the ZPSD, the device powers up from low  
power standby for a short time. Then the ZPSD consumes only the necessary power to  
deliver new logic or memory data to its outputs as a response to the input change. After the  
new outputs are stable, the ZPSD latches them and automatically reverts back to standby  
mode. The ICC current flowing during standby mode and during DC operation is identical  
and is only a few microamperes.  
Background  
(cont.)  
The ZPSD automatically reduces its DC current drain to these low levels and does not  
require controlling by the CSI (Chip Select Input). Disabling the CSI pin unconditionally  
forces the ZPSD to standby mode independent of other input transitions.  
The only significant power consumption in the ZPSD occurs during AC operation.  
The ZPSD contains the first architecture to apply zero power techniques to memory and  
logic blocks.  
Figure 2 compares ZPSD zero power operation to the operation of a discrete solution.  
A standard microcontroller (MCU) bus cycle usually starts with an ALE (or AS) pulse and  
the generation of an address. The ZPSD detects the address transition and powers up for a  
short time. The ZPSD then latches the outputs of the PAD, EPROM and SRAM to the new  
values. After finishing these operations, the ZPSD shuts off its internal power, entering  
standby mode. The time taken for the entire cycle is less than the ZPSD’s “access time.”  
The ZPSD will stay in standby mode while its inputs are not changing between bus cycles.  
In an alternate system implementation using discrete EPROM, SRAM, and other discrete  
components, the system will consume operating power during the entire bus cycle. This  
is because the chip select inputs on the memory devices are usually active throughout  
the entire cycle. The AC power consumption of the ZPSD may be calculated using the  
composite frequency of the MCU address and control signals, as well as any other logic  
inputs to the ZPSD.  
Figure 2. ZPSD Power Operation vs. Discrete Implementation  
ALE  
SRAM  
ACCESS  
EPROM  
ACCESS  
EPROM  
ACCESS  
ADDRESS  
DISCRETE EPROM, SRAM & LOGIC  
ZPSD  
ICC  
ZPSD  
ZPSD  
TIME  
7
PSD3XX Family  
Table 2.  
PSD3XX Pin  
Descriptions  
Name  
Type  
Description  
When the data bus is 8 bits:  
This pin is for 8031 or compatible MCUs that use PSEN to  
separate program space from data space. In this case, PSEN is  
used for reads from the EPROM. Note: if your MCU does not  
BHE/  
PSEN  
I
output a PSEN signal, pull up this pin to VCC.  
When the data bus is 16 bits:  
This pin is BHE. When low, D8-D15 are read from or written to.  
Note: in programming mode, this pin is pulsed between VPP and 0 V.  
The following control signals can be connected to this port, based on  
your MCU (and the way you configure the PSD in PSDsoft):  
1. WR—active-low write pulse.  
WR/VPP  
or  
R/W/VPP  
I
I
2. R/W—active-high read/active-low write input.  
Note: in programming mode, this pin must be tied to VPP  
.
The following control signals can be connected to this port, based on  
your MCU (and the way you configure the PSD in PSDsoft):  
1. RD—active-low read input.  
2. E—E clock input.  
3. DS—active-low data strobe input (3X2/3X3 devices only)  
RD/E/DS  
A19/CSI  
The following control signals can be connected to this port:  
1. CSI—Active-low chip select input. If your MCU supports a chip  
select output, and you want the PSD to save power when not  
selected, use this pin as a chip select input.  
2. If you don’t wish to use the CSI feature, you may use this pin as  
an additional input (logic or address) to the PAD. A19 can be  
latched (with ALE/AS), or a transparent logic input.  
I
I
PSD3XX/ZPSD3XX:  
This pin is user-programmable and can be configured to reset on a  
high- or low-level input. Reset must be applied for at least 100 ns.  
ZPSD3XXV:  
Reset  
This pin is not configurable, and the chip will only reset on an  
active-low level input. Reset must be applied for at least 500 ns,  
and no operations may take place for an additional 500 ns minimum.  
(See Figure 8.)  
If you use an MCU that has a multiplexed bus:  
Connect ALE or AS to this pin. The polarity of this pin is configurable.  
The trailing edge of ALE/AS latches all multiplexed address inputs  
(and BHE where applicable).  
ALE/AS  
I
If you use an MCU that does not have a multiplexed bus:  
If your MCU uses ALE/AS, connect the signal to this pin.  
Otherwise, use this pin for a generic logic input to the PAD.  
(Non-3X1 devices only.)  
These pins make up Port A. These port pins are configurable, and  
can have the following functions: (see Figure 5A and 5B)  
1. Track AD7-AD0. This feature repeats the MCU address and data  
bus on all Port A pins.  
2. MCU I/O—in this mode, the direction of the pin is defined by its  
direction bit, which resides in the direction register.  
3. Latched address output.  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
I/O  
4. CMOS or open-drain output.  
5. If your MCU is non-multiplexed: data bus input—connect your  
data bus (D0-7) to these pins. See Figure 3.  
Legend: The Type column abbreviations are: I = input only; I/O = input/output; P = power.  
8
PSD3XX Family  
Table 2.  
Name  
Type  
Description  
PSD3XX Pin  
Descriptions  
(cont.)  
These pins make up Port B. These port pins are configurable, and  
can have the following functions: (see Figure 6)  
1. MCU I/Oin this mode, the direction of the pin is defined by its  
direction bit, which resides in the direction register.  
2. Chip select outputeach of PB0-3 has four product terms  
available per pin, while PB4-7 have 2 product terms each.  
See Figure 4.  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
I/O  
3. CMOS or open-drain.  
4. If your MCU is non-multiplexed, and the data bus width is  
16 bits: data bus input—connect your data bus (D8-D15) to these  
pins. See Figure 3.  
These pins make up Port C. These port pins are configurable, and  
can have the following functions (see Figure 7):  
1. PAD input—when configured as an input, a bit individually  
becomes an address or a logic input, depending on your PSDsoft  
design file. When declared as an address, the bit(s) can be latched  
with ALE/AS.  
PC0  
PC1  
PC2  
I/O  
2. PAD output—when configured as an output (i.e. there is an  
equation written for it in your PSDsoft design file), there is one  
product term available to it.  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
If your MCU is multiplexed:  
These pins are the multiplexed, low-order address/data byte  
(AD0-AD7). As inputs, address information is latched by the ALE/AS  
signal and used internally by the PSD. The pins also serve as MCU  
data bus inputs or outputs, depending on the MCU control signals  
(RD, WR, etc.).  
I/O  
If your MCU is non-multiplexed:  
These pins are the low-order address inputs (A0-A7)  
AD8/A8  
AD9/A9  
If your MCU is multiplexed with a 16-bit data bus:  
These pins are the multiplexed, high-order address/data byte  
(AD8-AD15). As inputs, address information is latched by the  
ALE/AS signal and used internally the PSD. The pins also  
serve as MCU data bus inputs or outputs, depending on the MCU  
control signals (RD, WR, etc.).  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
I/O  
If your MCU is non-multiplexed or has a 8-bit data bus:  
These pins are the high-order address inputs (A8-A15).  
GND  
VCC  
P
P
Ground Pin  
Supply voltage input.  
Legend: The Type column abbreviations are: I = input only; I/O = input/output; P = power.  
9
PSD3XX Family  
The PSD3XX’s four operating modes enable it to interface directly to most 8- and 16-bit  
microcontrollers with multiplexed and non-multiplexed address/data busses. The 16-bit  
modes are not available to some devices; see Table 1. The following are the four operating  
modes available:  
8.0  
Operating  
Modes (MCU  
Configurations)  
Multiplexed 8-bit address/data bus  
Multiplexed 16-bit address/data bus  
Non-multiplexed 8-bit data bus  
Non-multiplexed 16-bit data bus  
Please read the section below that corresponds to your type of MCU. Then check the  
appropriate Figure (3A/3B/3C/3D) to determine your pin connections. Table 3 lists the Port  
connections in tabular form.  
Multiplexed 8-bit address/data bus (Figure 3A)  
This mode is used to interface to microcontrollers with a multiplexed 8-bit data bus. Since  
the low-order address and data are multiplexed together, your MCU will output an ALE  
or AS signal. The PSD3XX contains a transparent latch to demultiplex the address/data  
lines internally. All you have to do is connect the ALE/AS signal and select 8-bit multiplexed  
bus mode in PSDsoft. If your MCU outputs more than 16 bits of address, and you  
wish to connect them to the PSD, connect A16-A18 to Port C and A19 to A19/CSI, where  
applicable.  
Multiplexed 16-bit address/data bus (Figure 3B)  
This mode is used to interface to microcontrollers with a multiplexed 16-bit data bus. Since  
the low address bytes and data are multiplexed together, your MCU will output an ALE  
or AS signal. The PSD3XX contains a transparent latch to demultiplex the address/data  
lines internally. All you have to do is connect the ALE/AS signal and select 8-bit multiplexed  
bus mode in PSDsoft. If your MCU outputs more than 16 bits of address, and you  
wish to connect them to the PSD, connect A16-A18 to Port C and A19 to A19/CSI, where  
applicable.  
Non-multiplexed 8-bit data bus (Figure 3C)  
This mode is used to interface to microcontrollers with a non-multiplexed 8-bit data bus.  
Connect the MCU’s address bus to AD0/A0-AD15/A15 on the PSD. Connect the data bus  
signals of your MCU to Port A of the PSD. If your MCU outputs more than 16 bits of  
address, and you wish to connect them to the PSD, connect A16-A18 to Port C and A19 to  
A19/CSI, where applicable.  
Non-multiplexed 16-bit data bus (Figure 3D)  
This mode is used to interface to microcontrollers with a non-multiplexed 16-bit data bus.  
Connect the MCU’s address bus to AD0/A0-AD15/A15 on the PSD. Connect the low byte  
data bus signals of your MCU to Port A, and the high byte data output of your MCU to Port  
B of the PSD. If your MCU outputs more than 16 bits of address, and you wish to connect  
them to the PSD, connect A16-A18 to Port C and A19 to A19/CSI, where applicable.  
For users with multiplexed MCUs that have data multiplexed on address lines other  
than A0-A7 note: You can still use the PSD3XX, but you will have to connect your  
data to Port A (and Port B where required), as shown in Figure 3C or 3D. That is, you will  
be connecting it as if you were using a non-multiplexed MCU. In this case, you must  
connect the ALE/AS signal so that the address will still be properly latched. This option is  
not available on the 3X1 versions.  
10  
PSD3XX Family  
Figure 3A. Connecting a PSD3XX to an 8-Bit Multiplexed-Bus MCU  
8.0  
Operating Modes  
(MCU  
Configurations)  
(cont.)  
AD0-AD7  
A8-A15  
ALE/AS  
PA  
PSEN  
Your  
8-bit  
MCU  
PSD3XX  
PB  
PC  
R/W or WR  
RD/E/DS1  
A19/CSI  
RESET  
A16-A182  
Figure 3B. Connecting a PSD3XX to a 16-Bit Multiplexed-Bus MCU  
AD0-AD7  
AD8-AD15  
ALE/AS  
PA  
BHE/PSEN  
Your  
16-bit  
MCU  
PSD3XX  
PB  
PC  
R/W or WR  
RD/E/DS1  
A19/CSI  
RESET  
A16-A182  
Figure 3C. Connecting a PSD3XX to an 8-Bit Non-Multiplexed-Bus MCU  
D0-D7  
A0-A15  
ALE/AS  
PA  
PSEN  
Your  
PSD3XX  
PB  
PC  
R/W or WR  
RD/E/DS1  
A19/CSI  
RESET  
8-bit  
MCU  
A16-A182  
Figure 3D. Connecting a PSD3XX to a 16-Bit Non-Multiplexed-Bus MCU  
D0-D15  
A0-A15  
ALE/AS  
D0-D7  
PA  
BHE/PSEN  
Your  
16-bit  
MCU  
D8-D15  
PSD3XX  
PB  
PC  
R/W or WR  
RD/E/DS1  
A19/CSI  
RESET  
A16-A182  
NOTES: 1. DS is a valid input on 3X2/3X3 and devices only.  
2. Connect A16-A18 to Port C if your MCU outputs more than 16 bits of address.  
11  
PSD3XX Family  
8.0  
Table 3. Bus and Port Configuration Options  
Multiplexed Address/Data Non-Multiplexed Address/Data  
Operating  
Modes (MCU  
Configurations)  
(cont.)  
8-bit Data Bus  
I/O or low-order address  
lines or Low-order multiplexed  
address/data byte  
Port A  
D0–D7 data bus byte  
Port B  
I/O and/or CS0–CS7  
I/O and/or CS0–CS7  
Low-order multiplexed  
address/data byte  
AD0/A0–AD7/A7  
Low-order address bus byte  
High-order address  
bus byte  
AD8/A8–AD15/A15  
High-order address bus byte  
Low-order data bus byte  
16-bit Data Bus  
I/O or low-order address  
lines or low-order multiplexed  
address/data byte  
Port A  
Port B  
I/O and/or CS0–CS7  
High-order data bus byte  
Low-order multiplexed  
address/data byte  
AD0/A0–AD7/A7  
Low-order address bus byte  
High-order multiplexed  
address/data byte  
AD8/A8–AD15/A15  
High-order address bus byte  
The PSD3XX contains two programmable arrays, referred to as PAD A and PAD B  
(Figure 4). PAD A is used to generate chip select signals derived from the input address to  
the internal EPROM blocks, SRAM, I/O ports, and Track Mode signals.  
9.0  
Programmable  
Address  
Decoder (PAD)  
PAD B outputs to Ports B and C for off-chip usage. PAD B can also be used to extend the  
decoding to select external devices or as a random logic replacement.  
PAD A and PAD B receive the same inputs. The PAD logic is configured by PSDsoft  
based on the designer’s input. The PAD’s non-volatile configuration is stored in a  
re-programmable CMOS EPROM. Windowed packages are available for erasure by the  
user. See Table 4 for a list of PAD A and PAD B functions.  
12  
PSD3XX Family  
Figure 4.  
PAD Description  
P3  
P2  
ES0  
ES1  
ES2  
P1  
P0  
ES3  
ES4  
8 EPROM BLOCK  
SELECT LINES  
ES5  
ES6  
PAD  
A
ALE or AS  
RD/E/DS  
ES7  
RS0  
SRAM BLOCK SELECT*  
I/O BASE ADDRESS  
CSIOPORT  
CSADIN  
WR or R/W  
TRACK MODE  
CONTROL SIGNALS  
CSADOUT1  
CSADOUT2  
A19  
A18  
A17  
A16  
A15  
CS0/PB0  
CS1/PB1  
CS2/PB2  
CS3/PB3  
CS4/PB4  
CS5/PB5  
CS6/PB6  
A14  
A13  
A12  
A11  
PAD  
B
CS7/PB7  
CS8/PC0  
CSI  
CS9/PC1  
RESET  
CS10/PC2  
*SRAM no available on “R” versions  
NOTES: 1. CSI is a power-down signal. When high, the PAD is in stand-by mode and all its outputs  
become non-active. See Tables 12 and 13.  
2. RESET deselects all PAD output signals. See Tables 10 and 11.  
3. A18, A17, and A16 are internally multiplexed with CS10, CS9, and CS8, respectively.  
Either A18 or CS10, A17 or CS9, and A16 or CS8 can be routed to the external pins of  
Port C. Port C pins can be configured as either input or output, individually.  
4. P0–P3 are not included on 3X1 devices.  
5. DS is not available on 3X1 devices.  
13  
PSD3XX Family  
Table 4.  
PSD3XX  
PAD A and  
PAD B  
Function  
PAD A and PAD B Inputs  
A19/CSI  
When the PSD is configured to use CSI and while CSI is a logic 1, the PAD  
deselects all of its outputs and enters a power-down mode (see Tables 12  
and 13). When the PSD is configured to use A19, this signal is another  
input to the PAD.  
Functions  
A16–A18  
A11–A15  
P0–P3  
These are general purpose inputs from Port C. See Figure 4, Note 3.  
These are address inputs.  
These are inputs from the page register (not available on 3X1 versions).  
This is the read pulse or strobe input. (DS not available on 3X1 versions).  
RD/E/DS  
WR or R/W This is the write pulse or R/W select signal.  
ALE/AS  
This is the ALE or AS input to the chip. Use to demultiplex address  
and data.  
This deselects all outputs from the PAD; it can not be used in product  
term equations. See Tables 10 and 11.  
RESET  
PAD A Outputs  
These are internal chip-selects to the 8 EPROM banks. Each bank can  
be located on any boundary that is a function of one product term of the  
PAD address inputs.  
ES0–ES7  
RS0  
This is an internal chip-select to the SRAM. Its base address location is  
a function of one term of the PAD address inputs.  
This internal chip-select selects the I/O ports. It can be placed on any  
CSIOPORT boundary that is a function of one product term of the PAD inputs. See  
Tables 5A and 5B.  
This internal chip-select, when Port A is configured as a low-order  
address/data bus in the track mode controls the input direction of Port A.  
CSADIN is gated externally to the PAD by the internal read signal. When  
CSADIN and a read operation are active, data presented on Port A  
flows out of AD0/A0–AD7/A7. This chip-select can be placed on any  
boundary that is a function of one product term of the PAD inputs.  
See Figure 5B.  
CSADIN  
This internal chip-select, when Port A is configured as a low-order  
address/data bus in track mode, controls the output direction of Port A.  
CSADOUT1 is gated externally to the PAD by the ALE signal. When  
CSADOUT1 CSADOUT1 and the ALE signal are active, the address presented on  
AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on  
any boundary that is a function of one product term of the PAD inputs.  
See Figure 5B.  
This internal chip-select, when Port A is configured as a low-order  
address/data bus in the track mode, controls the output direction of Port A.  
CSADOUT2 must include the write-cycle control signals as part of its  
CSADOUT2 product term. When CSADOUT2 is active, the data presented on  
AD0/A0–AD7/A7 flows out of Port A. This chip-select can be placed on  
any boundary that is a function of one product term of the PAD inputs.  
See Figure 5B.  
PAD B Outputs  
These chip-select outputs can be routed through Port B. Each of them is  
CS0–CS3  
a function of up to four product terms of the PAD inputs.  
These chip-select outputs can be routed through Port B. Each of them is  
CS4–CS7  
a function of up to two product terms of the PAD inputs.  
These chip-select outputs can be routed through Port C. See Figure 4,  
CS8–CS10  
Note 3. Each of them is a function of one product term of the PAD inputs.  
14  
PSD3XX Family  
The PSD3XX has three I/O ports (Ports A, B, and C) that are configurable at the bit level.  
This permits great flexibility and a high degree of customization for specific applications.  
The next section describes the control registers for the ports. Following that are sections  
that describe each port. Figures 5 through 7 show the structure of Ports A through C,  
respectively.  
10.0  
I/O Port  
Functions  
Note: any unused input should be connected directly to ground or pulled up to VCC  
(using a 10Kto 100Kresistor).  
10.1 CSIOPORT Registers  
Control of the ports is primarily handled through the CSIOPORT registers. There are 24  
bytes in the address space, starting at the base address labeled CSIOPORT. Since the  
PSD3XX uses internal address lines A15-A8 for decoding, the CSIOPORT space will  
occupy 2 Kbytes of memory, on a 2 Kbyte boundary. This resolution can be improved to  
reduce wasted address space by connecting lower order address lines (A7 and below)  
to Port C. Using this method, resolution down to 256 Kbytes may be achieved. The  
CSIOPORT space must be defined in your PSDsoft design file. The following tables list  
the registers located in the CSIOPORT space.  
16-Bit Users Note  
When referring to Table 5B, realize that Ports A and B are still accessible on a byte basis.  
Note: When accessing Port B on a 16-bit data bus, BHE must be low.  
Table 5A. CSIOPORT Registers for 8-Bit Data Busses  
Offset (in hex)  
from CSIOPORT  
Base Address  
Type of  
Access  
Allowed  
Register Name  
Port A Pin Register  
+2  
+4  
Read  
Port A Direction Register  
Port A Data Register  
Read/Write  
Read/Write  
Read  
+6  
Port B Pin Register  
+3  
Port B Direction Register  
Port B Data Register  
+5  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
+7  
Power Management Register (Note 1)  
Page Register  
+10  
+18  
NOTE: 1. ZPSD only.  
Table 5B. CSIOPORT Registers for 16-Bit Data Busses  
Offset (in hex)  
Type of  
Access  
Allowed  
from CSIOPORT  
Base Address  
Register Name  
Port A/B Pin Register  
+2  
+4  
Read  
Port A/B Direction Register  
Port A/B Data Register  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
+6  
Power Management Register (Note 1)  
Page Register  
+10  
+18  
NOTE: 1. ZPSD only.  
15  
PSD3XX Family  
10.0  
10.2 Port A (PA0-PA7)  
I/O Port  
Functions  
(cont.)  
The control registers of Port A are located in CSIOPORT space; see Table 5.  
10.2.1 Port A (PA0-PA7) in Multiplexed Address/Data Mode  
Each pin of Port A can be individually configured. The following table summarizes what the  
control registers (in CSIOPORT space) for Port A do:  
Default  
Value  
Register Name  
0 Value  
1 Value  
(Note 1)  
Sampled logic level  
at pin = ‘0’  
Sampled logic level  
at pin = ‘1’  
Port A Pin Register  
X
Pin is configured  
as input  
Pin is configured  
as output  
Port A Direction Register  
Port A Data Register  
0
0
Data in DFF = ‘0’  
Data in DFF = ‘1’  
NOTE: 1. Default value is the value after reset.  
MCU I/O Mode  
The default configuration of Port A is MCU I/O. In this mode, every pin can be set (at run-  
time) as an input or output by writing to the respective pin’s direction flip-flop (DIR FF,  
Figure 5A). As an output, the pin level can be controlled by writing to the respective pin’s  
data flip-flop (DFF, Figure 5A). The Pin Register can be read to determine logic level of the  
pin. The contents of the Pin Register indicate the true state of the PSD driving the pin  
through the DFF or an external source driving the pin. Pins can be configured as CMOS  
or open-drain using ST’s PSDsoft software. Open-drain pins require external pull-up  
resistors.  
Latched Address Output Mode  
Alternatively, any bit(s) of Port A can be configured to output low-order demultiplexed  
address bus bit. The address is provided by the internal PSD address latch, which latches  
the address on the trailing edge of ALE/AS. Port A then outputs the desired demultiplexed  
address bits. This feature can eliminate the need for an external latch (for example:  
74LS373) if you have devices that require low-order latched address bits. Although any pin  
of Port A may output an address signal, the pin is position-dependent. In other words, pin  
PA0 of Port A may only pass A0, PA1 only A1, and so on.  
Track Mode  
Track Mode sets the entire port to track the signals on AD0/A0-AD7/A7, depending on  
specific address ranges defined by the PAD’s CSADIN, CSADOUT1, and CSADOUT2  
signals. This feature lets the user interface the microcontroller to shared external resources  
without requiring external buffers and decoders. In Track Mode, Port A effectively operates  
as a bi-directional buffer, allowing external MCUs or host processors to access the local  
data bus. Keep the following information in mind when setting up Track Mode:  
The direction is controlled by:  
ALE/AS  
RD/E or RD/E/DS (DS on non-3X1 devices only)  
WR or R/W  
PAD outputs CSADOUT1, CSADOUT2, and CSADIN defined in PSDsoft design.  
When CSADOUT1 and ALE/AS are true, the address on AD0/A0-AD7/A7 is output on  
Port A. Note: carefully check the generation of CSADOUT1 to ensure that it is stable  
during the ALE/AS pulse.  
When CSADOUT2 is active and a write operation is performed, the data on the  
AD0/A0-AD7/A7 input pins flows out through Port A.  
When CSADIN is active and a read operation is performed, the data on Port A flows  
out through the AD0/A0-AD7/A7 pins.  
Port A is tri-stated when none of the above conditions exist.  
16  
PSD3XX Family  
10.2.2 Port A (PA0-PA7) in Non-Multiplexed Address/Data Mode  
10.0  
In this mode, Port A becomes the low-order data bus byte of the chip. When reading an  
internal location, data is presented on Port A pins to the MCU. When writing to an internal  
location, data present on Port A pins from the MCU is written to the desired location.  
I/O Port  
Functions  
(cont.)  
Figure 5A. Port A Pin Structure  
I
N
READ PIN  
T
E
R
N
A
L
READ DATA  
CMOS/OD(1)  
MCU  
I/O  
WRITE DATA  
OUT  
CK  
D
PORT A PIN  
A
D
D
R
/
D
A
T
A
DFF  
R
ENABLE  
LATCHED  
ADDR OUT  
ALE  
MUX  
G
LATCH  
D
R
ADn/Dn  
B
U
S
READ DIR  
A
D
0
/
A
D
7
D
DIR  
FF  
CONTROL  
WRITE DIR  
CK  
R
RESET  
NOTE: 1. CMOS/OD determines whether the output is open drain or CMOS.  
Figure 5B. Port A Track Mode  
INTERNAL  
CONTROL  
READ  
DECODER  
WR or R/W  
I
CSADIN  
RD/E  
AD0AD7  
PA0 PA7  
INTERNAL  
ALE  
ALE or AS  
O
CSADOUT1  
AD8 AD15  
A11 A15  
LATCH  
PAD  
(1)  
CSADOUT2  
A16 A19  
NOTE: 1. The expression for CSADOUT2 must include the following write operation cycle signals:  
For CRRWR = 0, CSADOUT2 must include WR = 0.  
For CRRWR = 1, CSADOUT2 must include E = 1 and R/W = 0.  
17  
PSD3XX Family  
10.  
10.3 Port B (PB0-PB7)  
I/O Port  
Functions  
(cont.)  
The control registers of Port B are located in CSIOPORT space; see Table 5A and 5B.  
10.3.1 Port B (PB0-PB7) in Multiplexed Address/Data Mode  
Each pin of Port B can be individually configured. The following table summarizes what the  
control registers (in CSIOPORT space) for Port B do:  
Default  
Value  
Register Name  
0 Value  
1 Value  
(Note 1)  
Sampled logic level  
at pin = ‘0’  
Sampled logic level  
at pin = ‘1’  
Port B Pin Register  
X
Pin is configured  
as input  
Pin is configured  
as output  
Port B Direction Register  
Port B Data Register  
0
0
Data in DFF = ‘0’  
Data in DFF = ‘1’  
NOTE: 1. Default value is the value after reset.  
MCU I/O Mode  
The default configuration of Port B is MCU I/O. In this mode, every pin can be set  
(at run-time) as an input or output by writing to the respective pin’s direction flip-flop (DIR  
FF, Figure 6). As an output, the pin level can be controlled by writing to the respective pin’s  
data flip-flop (DFF, Figure 6). The Pin Register can be read to determine logic level of the  
pin. The contents of the Pin Register indicate the true state of the PSD driving the pin  
through the DFF or an external source driving the pin. Pins can be configured as CMOS  
or open-drain using ST’s PSDsoft software. Open-drain pins require external pull-up  
resistors.  
Chip Select Output  
Alternatively, each bit of Port B can be configured to provide a chip-select output signal  
from PAD B. PB0-PB7 can provide CS0-CS7, respectively. The functionality of these pins is  
not limited to chip selects only; they can be used for generic combinatorial logic as well.  
Each of the CS0-CS3 signals is comprised of four product terms, and each of the CS4-CS7  
signals is comprised of two product terms.  
18  
PSD3XX Family  
10.3.2 Port B (PB0-PB7) in 16-bit Multiplexed Address/Data Mode  
10.  
In this mode, Port B becomes the low-order data bus byte to the MCU chip. When reading  
an internal high-order location, data is presented on Port B pins to the MCU. When writing  
to an internal high-order location, data present on Port B pins from the MCU is written to the  
desired location.  
I/O Port  
Functions  
(cont.)  
Figure 6. Port B Pin Structure  
READ PIN  
I
I
N
T
E
R
N
A
L
N
T
E
R
N
A
L
READ DATA  
CMOS/OD(1)  
MCU  
I/O  
OUT  
WRITE DATA  
CK  
D
PORT B PIN  
DFF  
C
S
O
U
T
D
A
T
A
R
ENABLE  
Dn  
MUX  
B
U
S
B
U
S
CSn  
D
8
D
1
5
READ DIR  
C
S
0
D
DIR  
CONTROL  
WRITE DIR  
FF  
CK  
7
R
RESET  
NOTE: 1. CMOS/OD determines whether the output is open drain or CMOS.  
19  
PSD3XX Family  
10.4 Port C (PC0-PC2)  
10.  
Each pin of Port C (Figure 7) can be configured as an input to PAD A and PAD B, or as an  
output from PAD B. As inputs, the pins are referenced as A16-A18. Although the pins are  
given this reference, they can be used for any address or logic input. [For example, A8-A10  
could be connected to those pins to improve the resolution (boundaries) of CS0-CS7 to 256  
bytes.] How they are defined in the PSDsoft design file determines:  
I/O Port  
Functions  
(cont.)  
Whether they are address or logic inputs  
Whether the input is transparent or latched by the trailing edge of ALE/AS.  
Notes:  
1) If the inputs are addresses, they are routed to PAD A and PAD B, and can be used in  
any or all PAD equations.  
2) A logic input is routed to PAD B and can be used for Boolean equations that are  
implemented in any or all of the CS0-CS10 PAD B outputs.  
Alternately, PC0-PC2 can become CS8-CS10 outputs, respectively, providing the user with  
more external chip-select PAD outputs. Each of the signals (CS8-CS10) is comprised of  
one product term.  
Figure 7. Port C (PC0-PC2) Pin Structure  
CS8/CS9/CS10  
Address In or  
Chip Select Out  
From PAD  
Latched Address  
Port C I/O1  
(PC0/PC1/PC2)  
Input  
Q
D
D
E
M
U
X
En  
A16/A17/A18  
To PAD  
ALE  
Input or Output  
Set by PSDsoft2  
Logic Input  
PSDsoft2  
NOTES: 1. Port C pins can be individually configured as inputs or outputs, but not both. Pins can be individually  
configured as address or logic and latched or transparent, except for the 3X1 devices, which must be  
set to all address or all logic.  
2. PSDsoft sets this configuration prior to run-time based on your PSDsoft design file.  
10.5 ALE/AS Input Pin  
The ALE/AS pin may be used as a generic logic input signal to the PADs if a  
non-multiplexed MCU configuration is chosen in PSDsoft.  
20  
PSD3XX Family  
The following sections explain the various memory blocks and memory options within the  
PSD3XX.  
11.  
PSD Memory  
11.1 EPROM  
For all of the PSD3XX devices, the EPROM is built using Zero-power technology. This  
means that the EPROM powers up only when the address changes. It consumes power for  
the necessary time to latch data on its outputs. After this, it powers down and remains in  
Standby Mode until the next address change. This happens automatically, and the designer  
has to do nothing special.  
The EPROM is divided into eight equal-sized banks. Each bank can be placed in any  
address location by programming the PAD. Bank0-Bank7 are selected by PAD A outputs  
ES0-ES7, respectively. There is one product term for each bank select (ESi).  
Refer to Table 1 to see the size of the EPROM for each PSD device.  
11.2 SRAM (Optional)  
Like the EPROM, the optional SRAM in the PSD3XX devices is built using Zero-power  
technology.  
All PSD3XX parts which do not have an R suffix contain 2 Kbytes of SRAM (Table 1). The  
SRAM is selected by the RS0 output of the PAD. There is one product term dedicated to  
RS0.  
If your design requires a SRAM larger than 2K x 8, then use one of the RAMless  
(R versions) of the 3XX devices with an external SRAM. The external SRAM can be  
addressed trhough Port A and all require logic will be taken care of by the PSD3XXR.  
11.3 Page Register (Optional)  
All PSD3XX parts, except 3X1devices, have a four-bit page register. Thus the effective  
address space of your MCU can be enlarged by a factor of 16. Each bit of the Page  
Register can be individually read or written. The Page Register is located in CSIOPORT  
space (at offset 18h); see Table 5. The Page Register is connected to the lowest nibble of  
the data bus (D3-D0). The outputs of the Page Register, P3-P0, are connected to PAD A,  
and therefor can be used in any chip select (internal or external) equations. The contents of  
the page register are reset to zero at power-up and after any chip-level reset.  
11.4 Programming and Erasure  
Programming the device can be done using the following methods:  
ST’s main programmer—PSDpro—which is accessible through a parallel port.  
ST’s programmer used specifically with the PSD3XX—PEP300.  
ST’s discontinued programmer—Magic Pro.  
A 3rd party programmer, such as Data I/O.  
Information for programming the device is available directly from ST. Please contact your  
local sales representative. Also, check our web site (www.st.com/psm) for information related  
to 3rd party programmers.  
Upon delivery from ST or after each erasure (using windowed part), the PSD3XX device  
has all bits in PAD and EPROM in the HI state (logic 1). The configuration bits are in the LO  
state (logic 0).  
To clear all locations of their programmed contents (assuming you have a windowed  
version), expose the windowed device to an Ultra-Violet (UV) light source. A dosage of  
30 W second/cm2 is required for PSD3XX devices, and 40 W second/cm2 for low-voltage  
(V suffix) devices. This dosage can be obtained with exposure to a wavelength of 2537 Å  
and intensity of 12000 µW/cm2 for 40 to 45 minutes for the PSD3XX and 55 to 60 minutes  
for the low-voltage (V suffix) devices. The device should be approximately 1 inch (2.54 cm)  
from the source, and all filters should be removed from the UV light source prior to erasure.  
The PSD3XX devices will erase with light sources having wavelengths shorter than 4000 Å.  
However, the erasure times will be much longer than when using the recommended 2537 Å  
wavelength. Note: exposure to sunlight will eventually erase the device. If used in such an  
environment, the package window should be covered with an opaque substance.  
21  
PSD3XX Family  
Consult your MCU data sheet to determine which control signals your MCU generates, and  
how they operate. This section is intended to show which control signals should be  
connected to what pins on the PSD3XX. You will then use PSDsoft to configure the  
PSD3XX, based on the combination of control signals that your MCU outputs, for example  
RD, WR, and PSEN.  
12.0  
Control Signals  
The PSD3XX is compatible with the following control signals:  
ALE or AS (polarity is programmable)  
WR or R/W  
RD/E or RD/E/DS (DS for non-3X1 devices only)  
BHE or PSEN  
A19/CSI  
RESET (polarity is programmable except on low voltage versions with the V suffix).  
12.1 ALE or AS  
Connect the ALE or AS signal from your MCU to this pin where applicable, and program  
the polarity using PSDsoft. The trailing edge (when the signal goes inactive) of ALE or AS  
latches the address on any pins that have an address input. If you are using a  
non-multiplexed-bus MCU that does not output an ALE or AS signal, this pin can be used  
for a generic input to the PAD. Note: if your data is multiplexed with address lines other  
than A0-A7, connect your address pins to AD0/A0-AD15/A15, and connect your data to  
Port A (and Port B where applicable), and connect the ALE/AS signal to this pin.  
12.2 WR or R/W  
Your MCU should output a stand-alone write signal (WR) or a multiplexed read/write signal  
(R/W). In either case, the signal should be connected to this pin.  
12.3 RD/E/DS (DS option not available on 3X1 devices)  
Your MCU should output any one of RD, E (clock), or DS. In any case, connect the  
appropriate signal to this pin.  
12.4 BHE or PSEN  
If your MCU does not output either of these signals, tie this pin to Vcc  
(through a series resistor), and skip to the next signal.  
If you use an 8-bit 8031 compatible MCU that outputs a separate signal when  
accessing program space, such as PSEN, connect it to this pin. You would then use  
PSDsoft to configure the EPROM in the PSD3XX to respond to PSEN only or PSEN  
and RD. If you have an 8031 compatible MCU, refer to the “Program/Data Space and  
the 8031” section for further information.  
If you are using a 16-bit MCU, connect the BHE (or similar signal) output to this pin.  
BHE enables accessing of the upper byte of the data bus. See Table 6 for information  
on how this signal is used in conjunction with the A0 address line.  
Table 6. Truth Table for BHE and Address Bit A0 (16-bit MCUs only)  
BHE  
A
0
Operation  
0
0
1
1
0
1
0
1
Whole Word  
Upper Byte From/To Odd Address  
Lower Byte From/To Even Address  
None  
22  
PSD3XX Family  
12.0  
12.5 A19/CSI  
This pin is configured using PSDsoft to be either a chip select for the entire PSD device or  
an additional PAD input. If your MCU can generate a chip-select signal, and you wish to  
save power, use the PSD chip select feature. Otherwise, use this pin as an address or logic  
input.  
Control Signals  
(cont.)  
When configured as CSI (active-low PSD chip select): a low on this pin keeps the PSD  
in normal operation. However, when a high is detected on the pin, the PSD  
enters Power-down Mode. See Tables 7A and 7B for information on signal states  
during Power-down Mode. See section 16 for details about the reduction of power  
consumption.  
When configured as A19, the pin can be used as an additional input to the PADs.  
It can be used for address or logic. It can also be ALE/AS dependent or a transparent  
input, which is determined by your PSDsoft design file. In A19 mode, the PSD is always  
enabled.  
Table 7A. Signal States During Power-Down Mode  
Port  
Configuration Mode(s)  
State  
AD0–A0/AD15/A15  
All  
Input (Hi-Z)  
Unchanged  
Input (Hi-Z)  
Logic 1  
MCU I/O  
Port Pins PA0–PA7  
Tracking AD0/A0-AD7/A7  
Latched Address Out  
MCU I/O  
Unchanged  
Logic 1  
Port Pins PB0–PB7  
Port Pins PC0–PC2  
Chip Select Outputs, CS0–CS7, CMOS  
Chip Select Outputs, CS0–CS7, Open Drain  
Address or Logic Inputs, A16-A18  
Chip Select Outputs, CS8–CS10, CMOS only  
Hi-Z  
Input (Hi-Z)  
Logic 1  
Table 7B. Internal States During Power-down  
Component Internal Signal  
Internal Signal State  
During Power-Down  
CS0–CS10  
Logic 1 (inactive)  
PAD A and PAD B  
CSADIN, CSADOUT1,  
CSADOUT2, CSIOPORT,  
ES0-ES7, RS0  
Logic 0 (inactive)  
All registers in CSIOPORT  
address space, including:  
N/A  
Direction  
Data  
All unchanged  
Page  
PMR (turbo bit, ZPSD only)  
NOTE: N/A = Not Applicable  
23  
PSD3XX Family  
12.0  
12.6 Reset Input  
Control Signals  
(cont.)  
This is an asynchronous input to initialize the PSD device.  
Refer to tables 8A and 8B for information on device status during and after reset.  
The standard-voltage PSD3XX and ZPSD3XX (non-V) devices require a reset input that  
is asserted for at least 100 nsec. The PSD will be functional immediately after reset is  
de-asserted. For these standard-voltage devices, the polarity of the reset input signal is  
programmable using PSDsoft (active-high or active-low), to match the functionality of your  
MCU reset.  
Note: It is not recommended to drive the reset input of the MCU and the reset input of the  
PSD with a simple RC circuit between power on ground. The input threshold of the MCU  
and the PSD devices may differ, causing the devices to enter and exit reset at different  
times because of slow ramping of the signal. This may result in the PSD not being  
operational when accessed by the MCU. It is recommended to drive both devices actively.  
A supervisory device or a gate with hysteresis is recommended.  
For low-voltage ZPSD3XXV devices only, the reset input must be asserted for at least  
500 nsec. The ZPSD3XXV will not be functional for an additional 500 nsec after reset is  
de-asserted (see Figure 8). These low voltage ZPSD3XXV devices must use an active-low  
polarity signal for reset. Unlike the standard PSDs, the reset polarity for the ZPSD3XXV is  
not programmable. If your MCU operates with an active high reset, you must invert this  
signal before driving the ZPSD3XXV reset input.  
You must design your system to ensure that the PSD comes out of reset and the PSD is  
active before the MCU makes its first access to PSD memory. Depending on the  
characteristics and speed of your MCU, a delay between the PSD reset and the MCU reset  
may be needed.  
Table 8A. External PSD Signal States During and Just After Reset  
Signal State Just  
Signal State  
During Reset  
After Reset  
Port  
Configured Mode of Operation  
(Note 1)  
AD0/A0-  
AD15/A15  
MCU address  
and/or data  
All  
Input (Hi-Z)  
MCU I/O  
Input (Hi-Z)  
Input (Hi-Z)  
Input (Hi-Z)  
Tracking  
AD0/A0-AD7/A7  
Active Track  
Mode  
Port Pins  
PA0-PA7  
PSD3XX,  
ZPSD3XX  
Logic 0  
MCU address  
Latched Address Out  
MCU I/O  
ZPSD3XXV  
Hi-Z  
MCU address  
Input (Hi-Z)  
Input (Hi-Z  
PSD3XX,  
ZPSD3XX  
Logic 1  
Per CS equations  
Chip Select Outputs,  
CS0-CS7, CMOS  
Port Pins  
PB0-PB7  
ZPSD3XXV  
Hi-Z  
Hi-Z  
Per CS equations  
Per CS equations  
PSD3XX,  
ZPSD3XX  
Chip Select Outputs,  
CS0-CS7, Open Drain  
ZPSD3XXV  
Hi-Z  
Per CS equations  
Input (Hi-Z)  
Address or Logic Inputs, A16-A18  
PSD3XX,  
Input (Hi-Z)  
Port Pins  
PC0-PC2  
Logic 1  
Hi-Z  
Per CS equations  
Per CS equations  
Chip Select Outputs,  
ZPSD3XX  
CS8-CS10, CMOS  
ZPSD3XXV  
NOTE: 1. Signal is valid immediately after reset for PSD3XX and ZPSD3XX devices. ZPSD3XXV devices need an  
additional 500 nsec after reset before signal is valid.  
24  
PSD3XX Family  
12.0  
Table 8B. Internal PSD Signal States During and Just After Reset  
Control Signals  
(cont.)  
Internal  
Signal State  
During  
Internal Signal  
State During  
Component  
Internal Signal  
Reset  
Power-Down  
CS0-CS10  
Logic 1 (inactive) Per CS Equations  
CSADIN,  
CSADOUT1,  
CSADOUT2,  
CSIOPORT,  
ES0-ES7, RS0  
Per equations  
for each  
internal signal  
PAD A and PAD B  
Logic 0 (inactive)  
All registers in CSIOPORT  
address space, including:  
Direction  
Data  
Page  
Logic 0 in all bit of  
all registers  
Logic 0 until  
changed by MCU  
N/A  
PMR (turbo bit,  
ZPSD3XX only)  
NOTE: N/A = Not Applicable  
Figure 8. The Reset Cycle (RESET) (ZPSD3XXV Versions)  
V
IH  
V
IL  
500 ns  
500 ns  
RESET LOW  
RESET HIGH  
ZPSD3XXV  
IS OPERATIONAL  
25  
PSD3XX Family  
This section only applies to users who have an 8031 or compatible MCU that outputs a  
signal such as PSEN when accessing program space. If this applies to you, be aware of the  
following:  
13.0  
Program/Data  
Space and the  
8031  
The PSD3XX can be configured using PSDsoft such that the EPROM is either  
1) accessed by PSEN only (Figure 10); or 2) accessed by PSEN or RD (Figure 9).  
The default is PSEN only unless changed in PSDsoft.  
The SRAM and I/O Ports (including CSIOPORT) can not be placed in program space  
only. By default, they are in data space only (Figure 10). However, the SRAM may  
be placed in Program and Data Space, as shown in Figure 9.  
Figure 9. Combined Address Space  
CS  
ADDRESS  
PAD  
SRAM*  
OE  
INTERNAL RD  
PSEN  
OE  
EPROM  
CS  
CS OE  
I/O PORTS  
*Not available on “R” versions.  
Figure 10. 8031-Compatible Separate Code and Data Address Spaces  
I/O PORTS  
OE  
CS  
INTERNAL RD  
ADDRESS  
OE  
CS  
PAD  
SRAM*  
CS  
EPROM  
OE  
PSEN  
*Not available on “R” versions.  
26  
PSD3XX Family  
In Figure 11, the PSD3XX is configured to interface with Intel’s 80C31, which is a 16-bit  
address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order  
address byte. The 80C31 uses signals RD to read from data memory and PSEN to read  
from code memory. It uses WR to write into the data memory. It also uses active high reset  
and ALE signals. The rest of the configuration bits, as well as the unconnected signals,  
are application specific, and thus, user dependent.  
14.0  
System  
Applications  
Figure 11. PSD3XX Interface With Intels 80C31  
V
CC  
0.1µF  
PA0  
MICROCONTROLLER  
P0.0  
44  
23  
24  
25  
26  
27  
28  
29  
30  
21  
20  
19  
18  
17  
16  
15  
14  
39  
38  
37  
36  
35  
34  
33  
32  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
31  
19  
P0.1  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
EA/VP  
P0.2  
P0.3  
X1  
P0.4  
P0.5  
18  
9
P0.6  
X2  
P0.7  
31  
32  
33  
35  
36  
37  
38  
39  
11  
10  
9
8
7
6
5
4
21  
22  
23  
24  
25  
26  
27  
28  
P2.0  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
AD8/A8  
AD9/A9  
RESET  
P2.1  
P2.2  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
12  
P2.3  
INT0  
13  
14  
15  
P2.4  
INT1  
P2.5  
T0  
P2.6  
T1  
P2.7  
1
2
3
4
5
6
7
8
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
40  
41  
42  
22  
2
1
13  
3
17  
16  
29  
30  
11  
10  
RD  
WR  
PSEN  
ALE  
TXD  
PC0  
PC1  
PC2  
RD  
WR/V  
PP  
BHE/PSEN  
ALE  
RESET  
43  
A19/CSI  
GND  
RXD  
PSD3XX  
34  
12  
80C31  
Reset  
NOTE: RESET to the PSD3XX must be the output of a RESET chip or buffer.  
If RESET to the 80C31 is the output of an RC circuit, a separate buffered RC RESET to the  
PSD3XX (shorter than the 80C31 RC RESET) must be provided to avoid a race condition.  
27  
PSD3XX Family  
In Figure 12, the PSD3XX is configured to interface with Motorola’s 68HC11, which is a  
16-bit address/8-bit data bus microcontroller. Its data bus is multiplexed with the low-order  
address byte. The 68HC11 uses E and R/W signals to derive the read and write strobes.  
It uses the Address Strobe (AS) for the address latch pulse. RESET is an active-low signal.  
The rest of the configuration bits, as well as the unconnected signals, are specific, and thus,  
user dependent.  
14.0  
System  
Applications  
(cont.)  
Figure 12. PSD3XX Interface With Motorolas 68HC11  
V
CC  
0.1µF  
MICROCONTROLLER  
PC0  
44  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
23  
24  
25  
26  
27  
28  
29  
30  
21  
20  
19  
18  
17  
16  
15  
14  
9
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
20  
21  
22  
23  
24  
25  
10  
11  
12  
13  
14  
15  
16  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
43  
45  
47  
49  
44  
46  
48  
50  
PE0  
PE1  
PE2  
PE3  
PD4  
PE5  
PE6  
PE7  
31  
32  
33  
35  
36  
37  
38  
39  
11  
10  
9
8
7
6
5
4
42  
41  
40  
39  
38  
37  
36  
35  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
AD8/A8  
AD9/A9  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
34  
33  
32  
31  
30  
29  
28  
27  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
22  
40  
41  
42  
5
E
E
PC0  
PC1  
PC2  
6
4
17  
2
13  
3
R/W  
AS  
RESET  
R/W/V  
AS  
PP  
43  
RESET  
BHE/PSEN  
A19/CSI  
1
V
CC  
18  
19  
2
XIRQ  
IRQ  
MODB  
MODA  
52  
51  
VRH  
VRL  
3
GND  
XTAL EXTAL  
PSD3XX  
12  
34  
68HC11  
RESET  
28  
PSD3XX Family  
In Figure 13, the PSD3XX is configured to work directly with Intel’s 80C196KB  
microcontroller, which is a 16-bit address/16-bit data bus processor. The Address and data  
lines multiplexed. The PSD3XX is configured to use PC0, PC1, PC2, and A19/CSI as logic  
inputs. These signals are independent of the ALE pulse (latch-transparent). They are used  
as four general-purpose inputs that take part in the PAD equations.  
14.0  
System  
Applications  
(cont.)  
Port A is configured to work in Track Mode, in which (for certain conditions) PA0–PA7 tracks  
lines AD0/A0–AD7/A7. Port B is configured to generate CS0–CS7. In this example, PB2  
serves as a WAIT signal that slows down the 80C196KB during the access of external  
peripherals. These 8-bit wide peripherals are connected to the shared bus of Port A. The  
WAIT signal also drives the buswidth input of the microcontroller, so that every external  
peripheral cycle becomes an 8-bit data bus cycle. PB3 and PB4 are open-drain output  
signals; thus, they are pulled up externally.  
Figure 13. PSD3XX Interface With Intels 80C196KB  
+5V  
+5V  
0.1µF  
0.1µF  
ADDRESS/DATA  
MULTIPLEXED BUS  
[
]
AD 0..15  
V
[
]
AD 0..15  
CC  
19  
67  
66  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
XTAL1  
XTAL2  
20  
21  
22  
23  
30  
31  
32  
PORT 1  
I/O PINS  
3
NMI  
NMI  
RST  
43  
64  
14  
READY  
BUSWIDTH  
CDE  
16  
60  
59  
58  
57  
56  
55  
54  
53  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
RESET  
P3.0/AD0  
P3.1/AD1  
P3.2/AD2  
P3.3/AD3  
P3.4/AD4  
P3.5/AD5  
P3.6/AD6  
P3.7/AD7  
44  
6
5
7
SHARED  
BUS  
V
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
CC  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
21  
20  
19  
18  
17  
16  
15  
14  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
35  
36  
37  
38  
39  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
AD8/A8  
AD9/A9  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
4
11  
10  
8
9
52  
51  
50  
49  
48  
47  
46  
45  
AD8/A8  
AD9/A9  
P4.0/AD8  
P4.1/AD9  
18  
17  
15  
44  
42  
39  
33  
38  
P2.0/TXD  
P2.1/RXD  
RxD  
TxD  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
AD8/A8  
AD9/A9  
P4.2/AD10  
P4.3/AD11  
P4.4/AD12  
P4.5/AD13  
P4.6/AD14  
P4.7/AD15  
11  
10  
9
8
7
6
5
4
P2.2/EXINT  
P2.3/T2CLK  
P2.4/T2RST  
P2.5/PWM  
P2.6/T2 UP/DN  
P2.7/T2 CAPTR  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
AD10/A10  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
WAIT  
65  
41  
40  
61  
62  
63  
CLKOUT  
BHE/WRH  
WR/WRL  
RD  
ALE/ADV  
INST  
24  
25  
26  
27  
HSI.0  
HSI.1  
HSI.2/HSO.4  
HSI.3/HSO.5  
40 PC0  
41 PC1  
4.7K  
4.7KΩ  
42 PC2  
43 A19/CSI  
13  
37  
12  
2
+
VREF  
VPP  
ANGND  
EA  
5V  
28  
29  
34  
35  
1
2
BHE/PSEN  
HSO.0  
HSO.1  
HSO.2  
HSO.3  
WR/V  
PP  
22 RD  
13 ALE  
+5V  
0.1µF  
3
RESET  
V
V
SS  
SS  
GND GND  
80C196KB  
68  
36  
12  
34  
PSD3XX  
ALE  
FOUR  
GENERAL  
PURPOSE  
INPUTS  
29  
PSD3XX Family  
Security Mode in the PSD3XX locks the contents of PAD A, PAD B, and all the configuration  
bits. The EPROM, optional SRAM, and I/O contents can be accessed only through the  
PAD. The Security Mode must be set by PSDsoft prior to run-time. The Security Bit can only  
be erased on the UV parts using a full-chip erase. If Security Mode is enabled, the contents  
of the PSD3XX can not be uploaded (copied) on a device programmer.  
15.0  
Security Mode  
PSDs from all PSD3XX families use Zero-power memory techniques that place memory  
into Standby Mode between MCU accesses. The memory becomes active briefly after an  
address transition, then delivers new data to the outputs, latches the outputs, and returns to  
Standby. This is done automatically and the designer has to do nothing special to benefit  
from this feature.  
16.0  
Power  
Management  
In addition to the benefits of Zero-power memory technology, there are ways to gain addi-  
tional savings. The following factors determine how much current the entire PSD device  
uses:  
Use of CSI (Chip Select Input)  
Setting of the CMiser bit  
Setting of the Turbo Bit (ZPSD only)  
The number of product terms used in the PAD  
The composite frequency of the input signals to the PAD  
The loading on I/O pins.  
The total current consumption for the PSD is calculated by summing the currents from  
memory, PAD logic, and I/O pins, based on your design parameters and the power  
management options used.  
16.1 CSI Input  
Driving the CSI pin inactive (logic 1) disables the inputs of the PSD and forces the entire  
PSD to enter Power-down Mode, independent of any transition on the MCU bus (address  
and control) or other PSD inputs. During this time, the PSD device draws only standby  
current (micro-amps). Alternately, driving a logic 0 on the CSI pin returns the PSD to normal  
operation. See Tables 7A and 7B for information on signal states during Power-down Mode.  
The CSI pin feature is available only if enabled in the PSDsoft Configuration utility.  
16.2 CMiser bit  
In addition to power savings resulting from the Zero-power technology used in the memory,  
the CMiser feature saves even more power under certain conditions. Savings are significant  
when the PSD is configured for an 8-bit data path because the CMiser feature turns off half  
of the array when memory is being accessed (the memory is divided internally into odd and  
even arrays). See the DC characteristics table for current usage related to the CMiser bit.  
You should keep the following in mind when using this bit:  
Setting of this bit is accomplished with PSDsoft at the design stage, prior to run-time.  
Memory access times are extended by 10 nsec for standard voltage (non-V) devices,  
and 20 nsec for low voltage (V) devices.  
EPROM access: although CMiser offers significant power savings in 8-bit mode  
(~50%), CMiser contributes no additional power savings when the PSD is configured  
for 16-bits.  
SRAM access: CMiser reduces power consumption of PSDs configured for either 8-bit  
or 16-bit operation.  
30  
PSD3XX Family  
16.  
16.3 Turbo Bit (ZPSD only)  
The turbo bit is controlled by the MCU at run-time and is accessed through bit zero of the  
Power Management Register (PMR). The PMR is located in CSIOPORT space at offset 10h.  
Power  
Management  
(cont.)  
Power Management Register (PMR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Turbo bit  
1=OFF  
*
*
*
*
*
*
*
1=OFF  
1=OFF  
1=OFF  
1=OFF  
1=OFF  
1=OFF  
1=OFF  
*Future Configuration bits are reserved and should be set to one when writing to this register.  
The default value at reset of all bits in the PMR is logic 0, which means the Turbo feature is  
enabled. The PAD logic (PAD A and PAD B) of the PSD will operate at full speed and full  
power. When the Turbo Bit is set to logic 1, the Turbo feature is disabled. When disabled,  
the PAD logic will draw only standby current (micro-amps) while no PAD inputs change.  
Whenever there is a transition on any PAD input (including MCU address and control  
signals), the PAD logic will power up and will generate new outputs, latch those outputs,  
then go back to Standby Mode. Keep in mind that the signal propagation delay through the  
PAD logic increases by 10 nsec for non-V devices, and 20 nsec for V devices while in  
non-turbo mode. Use of the Turbo Bit does not affect the operation or power consumption  
of memory.  
Tremendous power savings are possible by setting the Turbo Bit and going into non-turbo  
mode. This essentially reduces the DC power consumption of the PAD logic to zero. It also  
reduces the AC power consumption of PAD logic when the composite frequency of all PAD  
inputs change at a rate less than 40 MHz for non-V devices, and less than 20 MHz for V  
devices. Use Figures 14 and 15 to calculate AC and DC current usage in the PAD with the  
Turbo Bit on and off. You will need to know the number of product terms that are used in  
your design and you will have to calculate the composite frequency of all signals entering  
the PAD logic.  
16.4 Number of Product Terms in the PAD Logic  
The number of product terms used in your design relates directly to how much current the  
PADs will draw. Therefore, minimizing this number will be in your best interest if power is a  
concern for you. Basically, the amount of product terms your design will use is based on the  
following (see Figure 4):  
Each of the EPROM block selects, ES0-ES7 uses one product term (for a total of 8).  
The CSIOPORT select uses one product term.  
If your part has SRAM (non-R versions), the SRAM select RS0 uses one product term.  
The Track Mode control signals (CSADIN, CSADOUT1, and CSADOUT2) each use  
one product term if you use these signals.  
Port B, pins PB0-PB3 are allocated four product terms each if used as outputs.  
Port B, pins PB4-PB7 are allocated two product terms each if used as outputs.  
Port C, pins PC0-PC2 are allocated one product term each if used as outputs.  
Given the above product term allocation, keep the following points in mind when calculating  
the total number of product terms your design will require:  
1) The EPROM block selects, CSIOPORT select, and SRAM select will use a product term  
whether you use these blocks or not. This means you start out with 10 product terms,  
and go up from there.  
2) For Port B, if you use a pin as an output and your logic equation requires only one  
product term, you still have to include all the available product terms for that pin for  
power consumption, even though only one product term is specified. For example, if the  
output equation for pin PB0 uses just one product term, you will have to count PB0 as  
contributing four product terms to the overall count. With this in mind, you should use  
Port C for the outputs that only require one product term and PB4-7 for outputs that  
require two product terms. Use pins PB0-3 if you need outputs requiring more than two  
product terms or you have run out of outputs.  
3) The following PSD functions do not consume product terms: MCU I/O mode, Latched  
Address Output, and PAD inputs (logic or address).  
31  
PSD3XX Family  
16.0  
16.5 Composite Frequency of the Input Signals to the PAD Logic  
The composite frequency of the input signals to the PADs is calculated by considering all  
transitions on any PAD input signal (including the MCU address and control inputs). Once  
you have calculated the composite frequency and know the number of product terms used,  
you can determine the total AC current consumption of the PAD by using Figure 14 or  
Figure 15. From the figures, notice that the DC component (f = 0 MHz) of PAD current is  
essentially zero when the turbo feature is disabled, and that the AC component increases  
as frequency increases.  
Power  
Management  
(cont.)  
When the turbo feature is disabled, the PAD logic can achieve low power consumption by  
becoming active briefly, only when inputs change. For standard voltage (non-V) devices,  
the PAD logic will stay active for 25 nsec after it detects a transition on any input. If there  
are more transitions on any PAD input within the 25 nsec period, these transitions will not  
add to power consumption because the PAD logic is already active. This effect helps  
reduce the overall composite frequency value. In other words, narrowly spaced groups of  
transitions on input signals may count as just one transition when estimating the composite  
frequency.  
Note that the “knee” frequency in Figure 14 is 40 MHz, which means that the PAD will  
consume less power only if the composite frequency of all PAD inputs is less than 40 MHz.  
When the composite frequency is above 40 MHz, the PAD logic never gets a chance to shut  
down (inputs are spaced less than 25 nsec) and no power savings can be achieved. Figure  
15 is for low-voltage devices in which the “knee” frequency is 20 MHz.  
Take the following steps to calculate the composite frequency:  
1) Determine your highest frequency input for either PAD A or PAD B.  
2) Calculate the period of this input and use this period as a basis for determining the  
composite frequency.  
3) Examine the remaining PAD input signals within this base period to determine the  
number of distinct transitions.  
4) Signal transitions that are spaced further than 25 nsec apart count as a distinct transition  
(50 nsec for low-voltage V devices). Signal transitions spaced closer than 25 nsec count  
as the same transition.  
5) Count up the number of distinct transitions and divide that into the value of the base  
period.  
6) The result is the period of the composite frequency. Divide into one to get the composite  
frequency value.  
Unfortunately, this procedure is complicated and usually not deterministic since different  
inputs may be changing in various cycles. Therefore, we recommend you think of the  
situation that has the most activity on the inputs to the PLD and use this to calculate the  
composite frequency. Then you will have a number that represents your best estimate at  
the worst case scenario.  
Since this is a complicated process, the following example should help.  
Example Composite Frequency Calculation  
Suppose you had the following circuit:  
PSD3XX  
Latched Address  
Output (LA0-LA7)  
AD0-AD7  
A8-A15  
ALE  
PA  
PB  
80C31  
(12 MHz  
Crystal)  
3 Inputs: Int, Sel, Rdy  
5 MCU I/O Outputs  
RD  
WR  
PSEN  
CSI  
3 Chip-Select Outputs  
PC  
32  
PSD3XX Family  
All the inputs shown, except CSI, go to the PAD logic. These signals must be taken into  
consideration when calculating the composite frequency. Before we make the calculation,  
let’s establish the following conditions:  
16.0  
Power  
Management  
(cont.)  
The input with the highest frequency is ALE, which is 2 MHz. So our base period is  
500 nsec for this example.  
Only the address information from the multiplexed signals AD0-AD7 reach the PAD  
logic because of the internal address latch. Signal transitions from data on AD0-AD7  
do not reach the PADs.  
The three inputs (Int, Sel, or Rdy) change state very infrequently relative to the 80C31  
bus signals.  
Now, lets assume the following is a snapshot in time of all the input signals during a typical  
80C31 bus cycle. We’ll use a code fetch as an example since that happens most often.  
ONE TYPICAL 80C31 BUS CYCLE (2 MHz, 500 nsec)  
ALE  
PSEN  
1
ADDR  
DATA  
AD0-AD7  
A8-A15  
INT  
2
<
25 nsec  
SEL  
3
RDY  
FOUR DISTINCT  
TRANSITIONS  
The calculation of the composite frequency is as follows:  
There are four distinct transitions (first four dotted lines) within the base period of  
500 nsec. These first four transitions all count toward the final composite frequency.  
The transition at (1) in the diagram does not count as a distinct transition because it is  
within 25 nsec of a neighboring transition (use 50 nsec for a ZPSD3XXV device).  
Transition (2) above does not add to the composite frequency because only the  
internally latched address signals reach the PADs, the data signal transitions do not.  
The transition at (3) just happens to appear in this snapshot, but its frequency is so  
low that it is not a significant contributor to the overall composite frequency, and will  
not be used.  
Divide the 500 nsec base period by the four (distinct transitions), yielding 125 nsec.  
1/125 nsec = 8 MHz.  
Use 8 MHz as the composite frequency of PAD inputs when calculating current  
consumption. (See the next section for a sample current calculation.)  
16.6 Loading on I/O pins  
A final consideration when calculating the current usage for the entire PSD device is the  
loading on I/O pins. All specifications for PSD current consumption in this document  
assume zero current flowing through PSD I/O pins (including ADIO). I/O current is dictated  
by the individual design implementation, and must be calculated by the designer. Be aware  
that I/O current is a function of loading on the pins and the frequency at which the signals  
toggle.  
33  
PSD3XX Family  
Once you have read the “Power Management” section, you should be able to calculate  
power. The following is a sample power calculation:  
17.  
Calculating  
Power  
Conditions  
Part Used  
= ZPSD3XX (VCC = 5.0 V)  
MCU ALE Clock Frequency  
Composite ZPLD Input Frequency  
% EPROM Access  
% SRAM Access  
% I/O access  
= 2.0 MHz  
= 8.0 MHz (see example in above section)  
= 80%  
= 15%  
= 5%  
%Time CSI is high (standby mode)  
= 90%  
%Time CSI is low (normal operation mode) = 10%  
# Product terms used (see previous section) = 13 (13/40 = 33%)  
Turbo bit  
= OFF (Turbo Mode disabled)  
CMiser bit  
= ON  
MCU Bus Configuration  
= 8-bit multiplexed bus mode  
Calculation (Based on Typical AC and DC Currents)  
ICC total = Istandby x % time CSI is high + [ICC (AC) + ICC (DC)] x % time CSI is low.  
= Istandby x % time CSI is high +  
[% EPROM Access x 0.8 mA/MHz x Freq. of ALE  
+ % SRAM x 1.4 mA/MHz x Freq of ALE  
+ ZPLD AC current (Figure 14: 13 PTs, 8 MHz, Non-Turbo)]  
x % time CSI is low  
= 10 µA x 0.9 + (0.8 x 0.8 mA/MHz x 2 MHz + 0.15 x 1.4 mA/MHz x 2 MHz  
+ 5.0 mA) x 0.1  
= 9.0 µA + (1.28 mA + 0.42 mA + 5.0 mA) x 0.1  
= 679 µA, based on the system operating in standby 90% of the time  
NOTES: 1. Calculation is based on the assumption that IOUT = 0 mA (no I/O pin loading)  
2. ICC(DC) is zero for all ZPSD devices operating in non-turbo mode.  
3. 13 product terms: 8 for EPROM, 3 for Chip Selects, 1 for SRAM, 1 for CSIOPORT.  
4. The 5% I/O access in the conditions section is when the MCU accesses CSIOPORT space.  
5. Standby Mode can also be achieved without using the CSI pin. The ZPSD device will automatically  
go into Standby while no inputs are changing on any pin, and Turbo Mode is disabled.  
34  
PSD3XX Family  
17.0  
Figure 14. Typical ICC vs. Frequency for the PAD (V = 5 V)  
CC  
Calculating  
Power  
(cont.)  
45  
40 PT Turbo  
40  
40 PT Non-Turbo  
10 PT Turbo  
35  
10 PT Non-Turbo  
30  
25  
20  
15  
10  
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Composite Frequency at PAD Inputs (MHz)  
Figure 15. Typical ICC vs. Frequency (V = 3 V)  
CC  
14  
40 PT Turbo  
40 PT Non-Turbo  
12  
10 PT Turbo  
10 PT Non-Turbo  
10  
8
6
4
2
0
0
5
10  
15  
20  
25  
Composite Frequency at PAD Inputs (MHz)  
35  
PSD3XX Family  
Figure 16. IOL vs. V (5 V ± 10%)  
Figure 17. Normalized ICC (DC vs. V ) (VCC = 3.0 V)  
OL  
CC  
ZPSD3XXV  
ZPSD3XXV  
40  
3.5  
35  
3.0  
2.5  
30  
25  
2.0  
1.5  
1.0  
20  
15  
10  
0.5  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
( )  
2.5  
2.7  
Temp. = 125°C  
Temp. = 25°C  
VCC  
V
5
0
0.00  
0.10  
0.20 0.30 0.40  
0.50 0.60 0.70  
0.80  
V
(V)  
OL  
Figure 18. Normalized ICC (AC) (VCC = 3.0 V)  
Figure 19. Normalized Access Time (T6) (VCC = 3.0 V)  
ZPSD3XXV  
ZPSD3XXV  
2.2  
1.1  
1.05  
1.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5  
2.7  
3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5  
2.7  
( )  
VCC  
V
( )  
VCC  
V
36  
PSD3XX Family  
18.1 Absolute Maximum Ratings 1  
18.0  
Specifications  
Symbol  
Parameter  
Condition  
CERDIP  
Min  
– 65  
– 65  
– 0.6  
Max  
Unit  
°C  
°C  
V
+ 150  
+ 125  
+ 7  
TSTG  
Storage Temperature  
PLASTIC  
Voltage on any Pin  
With Respect to GND  
Programming  
Supply Voltage  
VPP  
VCC  
With Respect to GND  
With Respect to GND  
– 0.6  
+ 14  
+ 7  
V
Supply Voltage  
ESD Protection  
– 0.6  
V
V
>2000  
NOTE: 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device  
reliability.  
18.2 Operating Range  
Range  
Temperature  
V
CC  
V Tolerance  
CC  
Commercial  
Industrial  
0° C to +70°C  
+ 3 V1, + 5 V  
+ 3 V1, + 5 V  
± 10%  
± 10%  
–40° C to +85°C  
NOTES: 1. 3 V version available for ZPSD3XXV devices only.  
18.3 Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
VCC  
Supply Voltage  
ZPSD Versions, All Speeds  
4.5  
5
5.5  
V
ZPSD V Versions Only,  
All Speeds  
VCC  
Supply Voltage  
2.7  
3.0  
5.5  
V
18.4 Pin Capacitance1  
Symbol  
Parameter  
Conditions Typical2 Max Unit  
CIN  
Capacitance (for input pins only)  
VIN = 0 V  
VOUT = 0 V  
VPP = 0 V  
4
8
6
pF  
pF  
pF  
COUT Capacitance (for input/output pins)  
CVPP Capacitance (for WR/VPP or R/W/VPP  
12  
25  
)
18  
NOTES: 1. This parameter is only sampled and is not 100% tested.  
2. Typical values are for TA = 25°C and nominal supply voltages.  
37  
PSD3XX Family  
18.5 AC/DC Characteristics – PSD3XX/ZPSD3XX (All 5 V devices)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC  
VIH  
VIL  
Supply Voltage  
All Speeds  
4.5  
2
5
5.5  
VCC + .1  
0.8  
V
V
V
V
V
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
4.5 V < VCC > 5.5 V  
4.5 V < VCC > 5.5 V  
– 0.5  
4.4  
2.4  
IOH = 20 µA, VCC = 4.5 V  
IOH = 2 mA, VCC = 4.5 V  
IOL = 20 µA, VCC = 4.5 V  
IOL = 8 mA, VCC = 4.5 V  
4.49  
3.9  
VOH  
Output High Voltage  
0.01  
0.15  
0.1  
Output Low Voltage  
(See Figure 16)  
VOL  
0.45  
ZPSD3XX  
Standby Supply Current  
10  
50  
20  
µA  
µA  
ISB  
(Notes 1,4)  
PSD3XX  
Standby Supply Current  
100  
ILI  
Input Leakage Current  
Output Leakage Current  
VSS < VIN > VCC  
–1  
±.1  
1
µA  
µA  
ILO  
.45 < VIN > VCC  
–10  
± 5  
10  
ZPLD Turbo Mode = Off, f = 0 MHz  
ZPLD Turbo Mode = On, f = 0 MHz  
EPROM, f = 0 MHz  
SRAM, f = 0 MHz  
See ISB  
µA  
0.5  
0
1
0
0
1
0
0
mA/PT  
µA  
ZPSD3XX  
Operating Suppy Current  
ICC (DC)  
(Note 3)  
0
µA  
PLD, f = 0 MHz  
0.5  
0
mA/PT  
µA  
PSD3XX  
Operating Supply Current  
EPROM, f = 0 MHz  
SRAM, f = 0 MHz  
0
µA  
See  
Fig. 14  
ZPLD AC Base  
1.0  
mA/MHz  
CMiser = On and 8-Bit Bus Mode  
All Other Cases (Note 5)  
0.8  
1.8  
1.4  
2
2.0  
4.0  
2.7  
4
mA/MHz  
mA/MHz  
mA/MHz  
mA/MHz  
mA/MHz  
EPROM Access  
AC Adder  
ICC (AC)  
(Note 3)  
CMiser = On and 8-Bit Bus Mode  
CMiser = On and 16-Bit Bus Mode  
CMiser = Off  
SRAM Access  
AC Adder  
3.8  
7.5  
NOTES: 1. CMOS inputs: GND ± 0.3 V or VCC ± 0.3V.  
2. TTL inputs: VIL 0.8 V, VIH 2.0 V.  
3. IOUT = 0 mA.  
4. CSI/A19 is high and the part is in a power-down configuration mode.  
5. All other cases include CMiser = On and 16-bit bus mode and CMiser = Off and 8- or 16-bit bus mode.  
38  
PSD3XX Family  
18.6 AC/DC DC Characteristics ZPSD3XXV (3 V devices only)  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
Typ  
Max  
Unit  
Supply Voltage  
All Speeds  
3
5.5  
V
VIH  
High-Level Input Voltage  
Low-Level Input Voltage  
2.7 V < VCC > 5.5 V  
.7 VCC  
– 0.5  
2.6  
VCC + .5  
.3 VCC  
V
V
V
V
V
V
VIL  
2.7 V < VCC > 5.5 V  
IOH = 20 µA, VCC = 2.7 V  
IOH = 1 mA, VCC = 2.7 V  
IOL = 20 µA, VCC = 2.7 V  
IOL = 4 mA, VCC = 2.7 V  
2.69  
2.4  
VOH  
Output High Voltage  
2.3  
0.01  
0.15  
0.1  
VOL  
Output Low Voltage  
0.45  
ISB  
(Notes 1,4)  
Standby Supply Current  
VCC = 3.0 V  
1
5
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VCC or GND  
–1  
–1  
±.1  
.1  
1
1
µA  
µA  
ILO  
VOUT = VCC or GND  
ZPLD Turbo Mode = Off,  
f = 0 MHz, VCC = 3.0 V  
See ISB  
0.17  
0
µA  
mA/PT  
µA  
ICC (DC)  
(Note 3)  
ZPLD Turbo Mode = On,  
f = 0 MHz, VCC = 3.0 V  
Operating Supply Current  
ZPLD AC Base  
0.35  
0
EPROM, f = 0 MHz,  
VCC = 3.0 V  
See  
Fig. 15  
See Figure 15 (VCC = 3.0 V)  
0.5  
mZ/MHz  
CMiser = On and 8-Bit Bus  
Mode (VCC = 3.0 V)  
0.4  
0.9  
0.7  
1
mA/MHz  
mA/MHz  
mA/MHz  
EPROM Access  
AC Adder  
All Other Cases (Note 5)  
(VCC = 3.0 V)  
1.7  
1.4  
ICC (AC)  
(Note 3)  
CMiser = On and 8-Bit Bus  
Mode (VCC = 3.0 V)  
SRAM Access AC Adder  
CMiser = On and 16-Bit Bus  
Mode (VCC = 3.0 V)  
1
2
mA/MHz  
mA/MHz  
CMiser = Off (VCC = 3.0 V)  
1.9  
3.8  
NOTES: 1. CMOS inputs: GND ± 0.3 V or VCC ± 0.3V.  
2. TTL inputs: VIL 0.8 V, VIH 2.0 V.  
3. IOUT = 0 mA.  
4. CSI/A19 is high and the part is in a power-down configuration mode.  
5. All other cases include CMiser = On and 16-bit bus mode and CMiser = Off and 8- or 16-bit bus mode.  
39  
PSD3XX Family  
18.7 Timing Parameters – PSD3XX/ZPSD3XX (All 5 V devices)  
-70  
-90*  
-15  
CMiser Turbo  
On =  
Add  
Off =  
Add  
Symbol  
Parameter  
Unit  
Min Max Min Max Min Max  
T1  
T2  
T3  
ALE or AS Pulse Width  
Address Set-up Time  
Address Hold Time  
18  
5
20  
5
40  
12  
10  
0
0
0
0
0
0
ns  
ns  
ns  
7
8
Leading Edge of Read  
to Data Active  
0
0
0
0
0
ns  
T4  
T5  
T6  
T7  
T8  
ALE Valid to Data Valid  
Address Valid to Data Valid  
CSI Active to Data Valid  
80  
70  
80  
100  
90  
160  
150  
160  
10  
10  
10  
0
0
0
ns  
ns  
ns  
100  
Leading Edge of Read  
to Data Valid  
20  
32  
32  
55  
0
0
ns  
Leading Edge of Read to  
Data Valid in 8031-Based  
Architecture Operating with  
PSEN and RD in Separate  
Mode  
T8A  
32  
55  
0
0
ns  
T9  
Read Data Hold Time  
0
0
0
0
0
0
0
0
0
0
ns  
ns  
Trailing Edge of Read to  
Data High-Z  
20  
32  
35  
T10  
Trailing Edge of ALE or AS  
to Leading Edge of Write  
T11  
0
0
ns  
T12  
RD, E, PSEN, or DS Pulse Width  
WR Pulse Width  
35  
18  
40  
20  
60  
35  
0
0
0
0
ns  
ns  
T12A  
Trailing Edge of Write or Read  
to Leading Edge of ALE or AS  
T13  
5
5
5
0
0
0
0
0
0
ns  
ns  
ns  
Address Valid to Trailing Edge  
of Write  
70  
80  
90  
150  
160  
T14  
T15  
CSI Active to Trailing Edge  
of Write  
100  
T16  
T17  
Write Data Set-up Time  
Write Data Hold Time  
18  
5
20  
5
30  
10  
0
0
0
0
ns  
ns  
Port to Data Out Valid  
Propagation Delay  
T18  
T19  
T20  
25  
30  
30  
40  
35  
50  
0
0
0
0
0
0
ns  
ns  
ns  
Port Input Hold Time  
0
0
0
Trailing Edge of Write to Port  
Output Valid  
T21  
T22  
ADi1 or Control to CSOi2 Valid  
ADi1 or Control to CSOi2 Invalid  
6
5
20  
20  
6
5
25  
25  
6
4
35  
35  
0
0
10  
10  
ns  
ns  
*-90 speed available only on Industrial Temperature versions.  
40  
PSD3XX Family  
18.7 Timing Parameters – PSD3XX/ZPSD3XX (All 5 V devices) (cont.)  
-70  
-90*  
-15  
CMiser Turbo  
On =  
Add  
Off =  
Add  
Symbol  
Parameter  
Unit  
Min Max Min Max Min Max  
Track Mode Address  
Propagation Delay:  
CSADOUT1 Already True  
22  
22  
22  
22  
28  
28  
0
0
0
0
ns  
T23  
Latched Address Outputs,  
Port A  
Track Mode Address  
Propagation Delay:  
CSADOUT1 Becomes True  
During ALE or AS  
T23A  
T24  
33  
30  
33  
32  
50  
35  
0
0
10  
0
ns  
ns  
Track Mode Trailing Edge of  
ALE or AS to Address High-Z  
Track Mode Read Propagation  
Delay  
T25  
T26  
T27  
27  
29  
18  
29  
29  
20  
35  
29  
30  
0
0
0
0
0
0
ns  
ns  
ns  
Track Mode Read Hold Time  
5
11  
11  
Track Mode Write Cycle,  
Data Propagation Delay  
Track Mode Write Cycle,  
Write to Data Propagation Delay  
T28  
T29  
6
2
30  
8
2
30  
9
2
40  
0
0
10  
0
ns  
ns  
Hold Time of Port A Valid  
During Write CSOi2 Trailing Edge  
T30  
T31  
T32  
T33  
T34  
T35  
CSI Active to CSOi2 Active  
CSI Inactive to CSOi2 Inactive  
Direct PAD Input3 as Hold Time  
R/W Active to E or DS Start  
E or DS End to R/W  
8
8
37  
37  
9
9
40  
40  
9
9
50  
50  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
0
10  
20  
20  
0
12  
30  
30  
0
18  
18  
0
AS Inactive to E high  
Address to Leading Edge  
of Write  
T36  
18  
20  
25  
0
0
ns  
NOTES: 1. ADi = any address line.  
2. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).  
3. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or  
R/W, transparent PC0–PC2, ALE (or AS).  
4. Control signals RD/E/DS or WR or R/W.  
*-90 speed available only on Industrial Temperature versions.  
41  
PSD3XX Family  
18.8 Timing Parameters – ZPSD3XXV (3 V devices only)  
-15*  
-20  
-25  
CMiser Turbo  
On =  
Add  
Off =  
Add  
Symbol  
Parameter  
Unit  
Min Max Min Max Min Max  
T1  
T2  
T3  
ALE or AS Pulse Width  
Address Set-up Time  
Address Hold Time  
40  
12  
10  
50  
15  
15  
60  
20  
20  
0
0
0
0
0
0
ns  
ns  
ns  
Leading Edge of Read  
to Data Active  
0
0
0
0
0
ns  
T4  
T5  
T6  
T7  
T8  
ALE Valid to Data Valid  
Address Valid to Data Valid  
CSI Active to Data Valid  
170  
150  
160  
200  
200  
200  
250  
250  
250  
20  
20  
20  
0
0
0
ns  
ns  
ns  
Leading Edge of Read  
to Data Valid  
45  
50  
60  
0
0
ns  
Leading Edge of Read to  
Data Valid in 8031-Based  
Architecture Operating with  
PSEN and RD in Separate  
Mode  
T8A  
65  
70  
80  
0
0
ns  
T9  
Read Data Hold Time  
0
0
0
0
0
0
0
0
0
0
ns  
ns  
Trailing Edge of Read to  
Data High-Z  
45  
50  
55  
T10  
Trailing Edge of ALE or AS  
to Leading Edge of Write  
T11  
0
0
ns  
T12  
RD, E, PSEN, or DS Pulse Width  
WR Pulse Width  
60  
35  
75  
45  
85  
55  
0
0
0
0
ns  
ns  
T12A  
Trailing Edge of Write or Read  
to Leading Edge of ALE or AS  
T13  
5
5
5
0
0
0
0
0
0
ns  
ns  
ns  
Address Valid to Trailing Edge  
of Write  
150  
160  
200  
200  
250  
250  
T14  
T15  
CSI Active to Trailing Edge  
of Write  
T16  
T17  
Write Data Set-up Time  
Write Data Hold Time  
30  
10  
40  
12  
50  
15  
0
0
0
0
ns  
ns  
Port to Data Out Valid  
Propagation Delay  
T18  
T19  
T20  
45  
50  
50  
60  
60  
70  
0
0
0
0
0
0
ns  
ns  
ns  
Port Input Hold Time  
0
0
0
Trailing Edge of Write to Port  
Output Valid  
T21  
T22  
ADi1 or Control to CSOi2 Valid  
ADi1 or Control to CSOi2 Invalid  
6
4
50  
50  
5
4
55  
55  
5
4
60  
60  
0
0
20  
20  
ns  
ns  
*-15 speed available only on ZPSD311V.  
42  
PSD3XX Family  
18.8 Timing Parameters – ZPSD3XXV (3 V devices only) (cont.)  
-15*  
-20  
-25  
CMiser Turbo  
On =  
Add  
Off =  
Add  
Symbol  
Parameter  
Unit  
Min Max Min Max Min Max  
Track Mode Address  
Propagation Delay:  
CSADOUT1 Already True  
50  
50  
60  
60  
60  
60  
0
0
0
0
ns  
T23  
Latched Address Outputs,  
Port A  
Track Mode Address  
Propagation Delay:  
CSADOUT1 Becomes True  
During ALE or AS  
T23A  
T24  
70  
50  
80  
60  
90  
60  
0
0
20  
0
ns  
ns  
Track Mode Trailing Edge of  
ALE or AS to Address High-Z  
Track Mode Read Propagation  
Delay  
T25  
T26  
T27  
45  
70  
45  
55  
70  
55  
60  
70  
60  
0
0
0
0
0
0
ns  
ns  
ns  
Track Mode Read Hold Time  
10  
10  
10  
Track Mode Write Cycle,  
Data Propagation Delay  
Track Mode Write Cycle,  
Write to Data Propagation Delay  
T28  
T29  
8
2
65  
8
3
75  
8
3
80  
0
0
20  
0
ns  
ns  
Hold Time of Port A Valid  
During Write CSOi2 Trailing Edge  
T30  
T31  
T32  
T33  
T34  
T35  
CSI Active to CSOi2 Active  
CSI Inactive to CSOi2 Inactive  
Direct PAD Input3 as Hold Time  
R/W Active to E or DS Start  
E or DS End to R/W  
9
9
70  
70  
9
9
80  
80  
9
9
90  
90  
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
30  
30  
0
40  
40  
0
50  
50  
0
AS Inactive to E high  
Address to Leading Edge  
of Write  
T36  
30  
35  
40  
0
0
ns  
NOTES: 1. ADi = any address line.  
2. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C (CS8–CS10).  
3. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or  
R/W, transparent PC0–PC2, ALE (or AS).  
4. Control signals RD/E/DS or WR or R/W.  
*-15 speed available only on ZPSD311V.  
43  
PSD3XX Family  
18.9 Timing Diagrams for all PSD3XX Parts  
Figure 20. Timing of 8-Bit Multiplexed Address/Data Bus Using RD, WR (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
DATA  
IN  
10  
14  
6
A0/AD0-  
A7/AD7  
ADDRESS A  
DATA VALID  
ADDRESS B  
2
3
2
9
3
17  
16  
Active High  
ALE  
1
1
11  
Active Low  
ALE  
4
13  
8
12  
RD/E as RD  
36  
5
BHE/PSEN  
as PSEN  
13  
20  
12A  
WR/VPP or  
RW as WR  
18  
19  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
44  
PSD3XX Family  
Figure 21. Timing of 8-Bit Multiplexed Address/Data Bus Using RD, WR (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
DATA  
IN  
10  
14  
6
A0/AD0-  
A7/AD7  
ADDRESS A  
DATA VALID  
ADDRESS B  
2
3
2
9
3
17  
16  
Active High  
ALE  
1
1
11  
Active Low  
ALE  
4
13  
8
12  
RD/E/DS as RD  
5
BHE/PSEN  
as PSEN  
36  
13  
20  
12A  
WR/VPP or  
RW as WR  
18  
19  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64  
45  
PSD3XX Family  
Figure 22. Timing of 8-Bit Multiplexed Address/Data Bus Using R/W, E or R/W, DS (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
DATA  
IN  
14  
6
10  
DATA VALID  
A0/AD0-  
A7/AD7  
ADDRESS A  
ADDRESS B  
2
3
2
9
3
17  
16  
Active High  
AS  
1
1
Active Low  
AS  
35  
35  
13  
34  
4
34  
33  
8
RD/E as E  
12  
36  
5
13  
33  
12  
WR/V or  
PP  
R/W as R/W  
18  
19  
20  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
46  
PSD3XX Family  
Figure 23. Timing of 8-Bit Multiplexed Address/Data Bus Using R/W E or R/W, DS  
(PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
DATA  
IN  
14  
6
10  
DATA VALID  
A0/AD0-  
A7/AD7  
ADDRESS A  
ADDRESS B  
2
3
2
9
3
17  
16  
Active High  
AS  
1
1
Active Low  
AS  
35  
35  
13  
34  
4
34  
33  
8
RD/E/DS as E  
36  
5
12  
RD/E/DS as DS  
33  
13  
12  
WR/V or  
PP  
R/W as R/W  
18  
19  
20  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
47  
PSD3XX Family  
Figure 24. Timing of 16-Bit Multiplexed Address/Data Bus Using RD, WR (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
14  
6
10  
BHE/PSEN  
as BHE  
DATA  
IN  
A0/AD0-  
A15/AD15  
ADDRESS A  
ADDRESS B  
DATA VALID  
9
2
3
2
3
17  
4
8
16  
Active High  
ALE  
1
1
Active Low  
ALE  
11  
13  
5
12  
RD/E as RD  
13  
20  
36  
12A  
WR/V  
PP  
or  
R/W as WR  
18  
19  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
INPUT  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
48  
PSD3XX Family  
Figure 25. Timing of 16-Bit Multiplexed Address/Data Bus Using RD, WR (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
14  
6
BHE/PSEN  
as BHE  
10  
DATA  
IN  
A0/AD0-  
A15/AD15  
ADDRESS A  
ADDRESS B  
DATA VALID  
2
3
2
9
3
17  
4
16  
Active High  
ALE  
1
1
Active Low  
ALE  
8
11  
13  
5
12  
RD/E/DS as RD  
13  
20  
36  
12A  
WR/V  
PP  
or  
R/W as WR  
18  
19  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
49  
PSD3XX Family  
Figure 26. Timing of 16-Bit Multiplexed Address/Data Bus Using R/W, E or R/W, DS (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
14  
6
10  
BHE/PSEN  
as BHE  
DATA  
IN  
A0/AD0-  
A15/AD15  
ADDRESS A  
ADDRESS B  
DATA VALID  
9
2
3
2
3
17  
16  
Active High  
AS  
1
1
Active Low  
AS  
35  
35  
4
13  
34  
33  
34  
13  
RD/E as E  
12  
5
12  
WR/V or  
PP  
R/W as R/W  
33  
8
18  
36  
19  
20  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
INPUT  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
50  
PSD3XX Family  
Figure 27. Timing of 16-Bit Multiplexed Address/Data Bus Using R/W, E or R/W, DS  
(PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
32  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
Multiplexed (2)  
Inputs  
14  
6
BHE/PSEN  
as BHE  
DATA  
IN  
10  
A0/AD0-  
A15/AD15  
ADDRESS A  
ADDRESS B  
DATA VALID  
2
3
2
9
3
17  
16  
Active High  
AS  
1
1
Active Low  
AS  
35  
35  
4
13  
34  
33  
34  
8
RD/E/DS as E  
5
12  
RD/E/DS as DS  
36  
13  
20  
33  
12  
WR/V or  
PP  
R/W as R/W  
18  
19  
Any of  
PA0-PA7  
as I/O Pin  
OUTPUT  
OUTPUT  
INPUT  
Any of  
PB0-PB7  
as I/O Pin  
INPUT  
23  
23  
Any of  
PA0-PA7 Pins  
as Address  
Outputs  
ADDRESS A  
ADDRESS B  
See referenced notes on page 64.  
51  
PSD3XX Family  
Figure 28. Timing of 8-Bit Non-Multiplexed Address/Data Bus Using RD, WR (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
PC0-PC2,  
CSI/A19 as  
Multiplexed  
Inputs  
14  
3
6
10  
DATA  
IN  
PA0-PA7  
DATA VALID  
9
2
3
2
17  
Active High  
ALE  
16  
1
1
4
8
Active Low  
ALE  
13  
11  
36  
12  
RD/E as RD  
13  
20  
12A  
WR/V  
R/W as WR  
or  
5
PP  
19  
18  
Any of  
PB0-PB7  
as I/O Pin  
OUTPUT  
INPUT  
See referenced notes on page 64.  
52  
PSD3XX Family  
Figure 29. Timing of 8-Bit Non-Multiplexed Address/Data Bus Using RD, WR (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
Multiplexed (2)  
Inputs  
14  
3
6
10  
DATA  
IN  
PA0-PA7  
DATA VALID  
9
2
3
2
17  
Active High  
ALE  
16  
1
1
4
8
Active Low  
ALE  
13  
11  
36  
12  
RD/E/DS as RD  
13  
20  
12A  
WR/V  
R/W as WR  
or  
5
PP  
19  
18  
Any of  
PB0-PB7  
as I/O Pin  
OUTPUT  
INPUT  
See referenced notes on page 64.  
53  
PSD3XX Family  
Figure 30. Timing of 8-Bit Non-Multiplexed Address/Data Bus Using R/W, E or R/W, DS  
(PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
15  
7
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
PC0-PC2,  
CSI/A19 as  
Multiplexed  
Inputs  
14  
6
10  
DATA  
IN  
PA0-PA7  
DATA VALID  
9
2
3
2
3
17  
16  
Active High  
ALE  
1
1
35  
36  
Active Low  
ALE  
4
35  
13  
34  
34  
13  
RD/E as E  
12  
33  
12  
33  
8
WR/VPP or  
R/W as R/W  
18  
19  
20  
Any of  
PB0-PB7  
as I/O Pin  
OUTPUT  
INPUT  
See referenced notes on page 64.  
54  
PSD3XX Family  
Figure 31. Timing of 8-Bit Non-Multiplexed Address/Data Bus Using R/W, E or R/W, DS  
(PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
Multiplexed (2)  
Inputs  
14  
6
10  
DATA  
IN  
PA0-PA7  
DATA VALID  
9
2
3
2
3
17  
16  
Active High  
ALE  
1
1
Active Low  
ALE  
35  
4
35  
13  
34  
33  
34  
8
RD/E/DS as E  
12  
36  
5
12  
RD/E/DS as DS  
33  
13  
20  
WR/VPP or  
R/W as R/W  
18  
19  
Any of  
PB0-PB7  
as I/O Pin  
OUTPUT  
INPUT  
See referenced notes on page 64.  
55  
PSD3XX Family  
Figure 32. Timing of 16-Bit Non-Multiplexed Address/Data Bus Using RD, WR (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
PC0-PC2,  
CSI/A19 as  
Multiplexed  
Inputs  
14  
BHE/PSEN  
as BHE  
6
DATA  
IN  
PA0-PA7  
(Low Byte)  
DATA VALID  
9
17  
PB0-PB7  
(High Byte)  
DATA VALID  
9
16  
2
3
DATA  
IN  
2
3
10  
Active High  
ALE  
1
1
4
Active Low  
ALE  
11  
36  
8
13  
12  
RD/E as RD  
13  
12A  
WR/V  
or  
R/W as WR  
PP  
See referenced notes on page 64.  
56  
PSD3XX Family  
Figure 33. Timing of 16-Bit Non-Multiplexed Address/Data Bus Using RD, WR (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
Multiplexed (2)  
Inputs  
14  
BHE/PSEN  
as BHE  
6
DATA  
IN  
PA0-PA7  
(Low Byte)  
DATA VALID  
9
17  
PB0-PB7  
DATA VALID  
(High Byte)  
16  
2
3
DATA  
IN  
2
3
10  
Active High  
ALE  
1
1
4
Active Low  
ALE  
11  
8
13  
12  
RD/E/DS as RD  
36  
13  
12A  
5
WR/V  
or  
R/W as WR  
PP  
See referenced notes on page 64.  
57  
PSD3XX Family  
Figure 34. Timing of 16-Bit Non-Multiplexed Address/Data Bus Using R/W, E or R/W, DS  
(PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
PC0-PC2,  
CSI/A19 as  
Multiplexed  
Inputs  
14  
BHE/PSEN  
as BHE  
6
DATA  
IN  
PA0-PA7  
(Low Byte)  
DATA VALID  
9
DATA  
IN  
PB0-PB7  
(High Byte)  
DATA VALID  
16 17  
2
3
10  
2
3
Active High  
AS  
1
1
4
35  
Active Low  
AS  
35  
13  
36  
8
13  
34  
33  
33  
34  
RD/E as E  
12  
WR/VPP or  
R/W as R/W  
See referenced notes on page 64.  
58  
PSD3XX Family  
Figure 35. Timing of 16-Bit Non-Multiplexed Address/Data Bus Using R/W, E or R/W, DS  
(PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
CSI/A19  
as CSI  
7
15  
Direct (1)  
PAD Input  
STABLE INPUT  
6
STABLE INPUT  
14  
A0/AD0-  
A15/AD15  
as A0-A15  
STABLE INPUT  
STABLE INPUT  
32  
32  
Multiplexed (2)  
Inputs  
14  
BHE/PSEN  
as BHE  
6
DATA  
IN  
PA0-PA7  
(Low Byte)  
DATA VALID  
9
DATA  
IN  
PB0-PB7  
(High Byte)  
DATA VALID  
16 17  
2
3
10  
2
3
Active High  
AS  
1
1
4
Active Low  
AS  
35  
35  
13  
8
36  
13  
34  
33  
33  
34  
RD/E/DS as E  
12  
5
12  
RD/E/DS as DS  
WR/VPP or  
R/W as R/W  
See referenced notes on page 64.  
59  
PSD3XX Family  
Figure 36.  
Chip-Select  
Output Timing  
31  
30  
A19/CSI  
as CSI  
Direct PAD (1)  
Input  
INPUT STABLE  
Multiplexed (2)  
PAD Inputs  
2
3
ALE  
(Multiplexed  
Mode Only)  
1
or ALE  
(Multiplexed  
Mode Only)  
22  
21  
CSOi (3,8)  
See referenced notes on page 64.  
60  
PSD3XX Family  
Figure 37. Port A as AD0AD7 Timing (Track Mode) Using RD, WR (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
Direct  
STABLE INPUT  
STABLE INPUT  
PAD Input  
(1,4)  
2
2
Multiplexed  
STABLE INPUT  
STABLE INPUT  
PAD Inputs  
(5,7)  
2
3
3
25  
2
26  
DATA VALID  
A0/AD0-  
A7/AD7  
WRITTEN  
DATA  
ADDRESS  
ADDRESS  
32  
ALE  
1
1
or ALE  
32  
4
12  
27  
RD/E as RD  
11  
24  
12A  
WR/VPP or  
R/W as WR  
24  
PA0-PA7  
DATA  
OUT  
ADR OUT  
ADR OUT  
DATA IN  
29  
23  
23  
28  
CSOi  
(3,6)  
See referenced notes on page 64.  
61  
PSD3XX Family  
Figure 38. Port A as AD0AD7 Timing (Track Mode) Using RD, WR (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
32  
32  
Direct  
STABLE INPUT  
STABLE INPUT  
PAD Input  
(1,4)  
2
2
Multiplexed  
STABLE INPUT  
STABLE INPUT  
PAD Inputs  
(5,7)  
2
3
3
25  
2
26  
DATA VALID  
A0/AD0-  
A7/AD7  
WRITTEN  
DATA  
ADDRESS  
ADDRESS  
32  
ALE  
1
1
or ALE  
32  
4
12  
27  
RD/E/DS as RD  
12A  
11  
24  
WR/VPP or  
R/W as WR  
24  
PA0-PA7  
DATA  
OUT  
ADR OUT  
ADR OUT  
DATA IN  
29  
23  
23  
28  
CSOi  
(3,6)  
See referenced notes on page 64.  
62  
PSD3XX Family  
Figure 39. Port A as AD0AD7 Timing (Track Mode) Using R/W, E or R/W, DS (PSD3X1)  
READ CYCLE  
WRITE CYCLE  
32  
32  
Direct  
PAD Input  
STABLE INPUT  
STABLE INPUT  
(1,4)  
2
Multiplexed  
STABLE INPUT  
STABLE INPUT  
PAD Inputs  
(5,7)  
2
3
3
25  
26  
DATA VALID  
2
A0/AD0-  
A7/AD7  
WRITTEN  
DATA  
ADDRESS  
ADDRESS  
32  
AS  
1
1
35  
or AS  
12  
35  
12  
33  
33  
RD/E as E  
34  
WR/VPP or  
R/W as R/W  
34  
24  
24  
27  
DATA  
OUT  
PA0-PA7  
ADR OUT  
DATA IN  
ADR OUT  
29  
23  
23  
28  
CSOi  
(3,6)  
See referenced notes on page 64.  
63  
PSD3XX Family  
Figure 40. Port A as AD0AD7 Timing (Track Mode) Using R/W, E or R/W, DS (PSD3X2/3X3)  
READ CYCLE  
WRITE CYCLE  
STABLE INPUT  
32  
32  
Direct  
PAD Input  
STABLE INPUT  
(1,4)  
2
Multiplexed  
STABLE INPUT  
STABLE INPUT  
PAD Inputs  
(5,7)  
2
3
3
25  
26  
DATA VALID  
2
A0/AD0-  
A7/AD7  
WRITTEN  
DATA  
ADDRESS  
ADDRESS  
32  
AS  
1
1
35  
or AS  
12  
35  
12  
33  
33  
RD/E/DS as E  
34  
RD/E/DS as DS  
WR/VPP or  
R/W as R/W  
34  
24  
24  
27  
DATA  
OUT  
PA0-PA7  
ADR OUT  
DATA IN  
ADR OUT  
29  
23  
23  
28  
CSOi  
(3,6)  
1. Direct PAD input = any of the following direct PAD input lines: CSI/A19 as transparent A19, RD/E/DS, WR or  
R/W, transparent PC0–PC2, ALE in non-multiplexed modes.  
Notes for  
Timing  
Diagrams  
2. Multiplexed inputs: any of the following inputs that are latched by the ALE (or AS): A0/AD0–A15/AD15,  
CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.  
3. CSOi = any of the chip-select output signals coming through Port B (CS0–CS7) or through Port C  
(CS8–CS10).  
4. CSADOUT1, which internally enables the address transfer to Port A, should be derived only from direct PAD  
input signals, otherwise the address propagation delay is slowed down.  
5. CSADIN and CSADOUT2, which internally enable the data-in or data-out transfers, respectively, can be  
derived from any combination of direct PAD inputs and multiplexed PAD inputs.  
6. The write operation signals are included in the CSOi expression.  
7. Multiplexed PAD inputs: any of the following PAD inputs that are latched by the ALE (or AS) in the multiplexed  
modes: A11/AD11–A15/AD15, CSI/A19 as ALE dependent A19, ALE dependent PC0–PC2.  
8. CSOi product terms can include any of the PAD input signals shown in Figure 3, except for reset and CSI.  
64  
PSD3XX Family  
Figure 41A. AC Testing Input/Output Waveform (5 V Versions)  
18.10  
AC Testing  
3.0V  
TEST POINT  
1.5V  
0V  
Figure 41B. AC Testing Input/Output Waveform (3 V Versions)  
0.9 V  
CC  
TEST POINT  
1.5V  
0V  
Figure 42A. AC Testing Load Circuit (5 V Versions)  
2.01 V  
195  
DEVICE  
UNDER TEST  
CL = 30 pF  
(INCLUDING  
SCOPE AND JIG  
CAPACITANCE)  
Figure 42B. AC Testing Load Circuit (3 V Versions)  
2.0 V  
400 Ω  
DEVICE  
UNDER TEST  
CL = 30 pF  
(INCLUDING  
SCOPE AND JIG  
CAPACITANCE)  
65  
PSD3XX Family  
19.0  
Pin  
Assignments  
44-Pin  
44-Pin  
Pin Name  
PLDCC/CLDCC PQFP/TQFP  
Package  
Package  
BHE/PSEN  
WR/VPP or R/W  
RESET  
PB7  
1
39  
40  
41  
42  
43  
44  
1
2
3
4
PB6  
5
PB5  
6
PB4  
7
PB3  
8
2
PB2  
9
3
PB1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
4
PB0  
5
GND  
6
ALE or AS  
PA7  
7
8
PA6  
9
PA5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
PA4  
PA3  
PA2  
PA1  
PA0  
RD/E  
AD0/A0  
AD1/A1  
AD2/A2  
AD3/A3  
AD4/A4  
AD5/A5  
AD6/A6  
AD7/A7  
AD8/A8  
AD9/A9  
AD10/A10  
GND  
AD11/A11  
AD12/A12  
AD13/A13  
AD14/A14  
AD15/A15  
PC0  
PC1  
PC2  
A19/CSI  
VCC  
66  
PSD3XX Family  
20.0  
Package  
Information  
Figure 43.  
Drawing J2 –  
44 Pin Plastic  
Leaded Chip  
Carrier (PLDCC)  
without Window  
(Package Type J)  
39 AD15/A15  
PB4  
PB3  
PB2  
7
8
9
38 AD14/A14  
37 AD13/A13  
36 AD12/A12  
35 AD11/A11  
34 GND  
PB1 10  
PB0 11  
OR  
GND 12  
33 AD10/A10  
32 AD9/A9  
31 AD8/A8  
30 AD7/A7  
29 AD6/A6  
Drawing L4 –  
44 Pin Ceramic  
Leaded Chip  
Carrier (CLDCC)  
with Window  
ALE or AS 13  
PA7 14  
PA6 15  
PA5 16  
PA4 17  
(Package Type L)  
(TOP VIEW)  
Figure 44.  
Drawing M1 –  
44 Pin Plastic Quad  
Flatpack (PQFP)  
(Package Type M)  
OR  
Drawing U1 –  
44 Pin Plastic  
Thin Quad Flatpack  
(TQFP)  
33 AD15/A15  
32 AD14/A14  
31 AD13/A13  
30 AD12/A12  
29 AD11/A11  
28 GND  
PB4  
PB3  
PB2  
PB1  
PB0  
GND  
1
2
3
4
5
6
7
8
9
(Package Type U)  
27 AD10/A10  
26 AD9/A9  
25 AD8/A8  
24 AD7/A7  
23 AD6/A6  
ALE or AS  
PA7  
PA6  
PA5 10  
PA4 11  
67  
PSD3XX Family  
21.0 Package Drawings  
Drawing J2 – 44-Pin Plastic Leaded Chip Carrier (PLDCC) (Package Type J)  
D
D1  
1 44  
3
2
E1  
E
C
B1  
B
e1  
A1 A2  
A
E3  
E2  
D3  
D2  
Family: Plastic Leaded Chip Carrier  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
A
4.19  
2.54  
4.57  
2.79  
0.165  
0.100  
0.148  
0.013  
0.026  
0.0097  
0.685  
0.650  
0.590  
0.180  
0.110  
0.156  
0.021  
0.032  
0.0103  
0.695  
0.654  
0.630  
A1  
A2  
B
3.76  
3.96  
0.33  
0.53  
B1  
C
0.66  
0.81  
0.246  
17.40  
16.51  
14.99  
0.262  
17.65  
16.61  
16.00  
D
D1  
D2  
D3  
E
12.70  
Reference  
0.500  
Reference  
17.40  
16.51  
14.99  
17.65  
16.61  
16.00  
0.685  
0.650  
0.590  
0.695  
0.654  
0.630  
E1  
E2  
E3  
e1  
N
12.70  
1.27  
44  
Reference  
Reference  
0.500  
0.050  
44  
Reference  
Reference  
030195R6  
68  
PSD3XX Family  
Drawing L4 44-Pin Pocketed Ceramic Leaded Chip Carrier (CLDCC) – CERQUAD (Package Type L)  
D
D1  
3
2
1
44  
View A  
E1  
E
Commercial and Industrial  
packages include the lead pocket  
on the underside of the package  
but Military packages do not.  
B1  
C
A2  
View A  
e1  
E3  
E2  
B
D3  
D2  
A
A1  
Family: Ceramic Leaded Chip Carrier CERQUAD  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
A
3.94  
2.29  
4.57  
2.92  
0.155  
0.090  
0.120  
0.017  
0.026  
0.006  
0.685  
0.642  
0.580  
0.180  
0.115  
0.145  
0.021  
0.032  
0.010  
0.695  
0.656  
0.640  
A1  
A2  
B
3.05  
3.68  
0.43  
0.53  
B1  
C
0.66  
0.81  
0.15  
0.25  
D
17.40  
16.31  
14.73  
17.65  
16.66  
16.26  
D1  
D2  
D3  
E
12.70  
Reference  
0.500  
Reference  
17.40  
16.31  
14.73  
17.65  
16.66  
16.26  
0.685  
0.642  
0.580  
0.695  
0.656  
0.640  
E1  
E2  
E3  
e1  
N
12.70  
1.27  
44  
Reference  
Reference  
0.500  
0.050  
44  
Reference  
Reference  
030195R8  
69  
PSD3XX Family  
Drawing M1 44-Pin Plastic Quad Flatpack (PQFP) (Package Type M)  
D
D1  
D3  
44  
1
2
Index  
Mark  
3
E3 E1  
E
Standoff:  
0.10 mm Min  
0.25 mm Max  
A1  
C
a
A
A2  
e1  
B
L
Family: Plastic Quad Flatpack (PQFP)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
0°  
Max  
7°  
Notes  
α
7°  
A
2.35  
0.092  
A1  
A2  
B
1.075  
Reference  
0.042  
Reference  
1.95  
0.30  
0.13  
2.10  
0.45  
0.23  
0.077  
0.012  
0.005  
0.083  
0.018  
0.009  
C
D
13.20  
10.00  
8.00  
0.520  
0.394  
0.315  
0.520  
0.394  
0.315  
0.031  
D1  
D3  
E
Reference  
Reference  
13.20  
10.00  
8.00  
E1  
E3  
e1  
L
Reference  
Reference  
Reference  
Reference  
0.80  
0.73  
1.03  
0.029  
0.040  
N
44  
44  
030195R4  
70  
PSD3XX Family  
Drawing U1 44-Pin Plastic Thin Quad Flatpack (TQFP) (Package Type U)  
D
D1  
D3  
44  
1
2
Index  
Mark  
3
E3 E1  
E
Standoff:  
0.05 mm Min  
A1  
C
a
A
Lead  
Coplanarity:  
0.102 mm Max.  
A2  
e1  
B
L
Family: Plastic Thin Quad Flatpack (TQFP)  
Millimeters  
Inches  
Symbol  
Min  
0°  
Max  
8°  
Notes  
Min  
0°  
Max  
8°  
Notes  
α
A
1.60  
0.063  
A1  
A2  
B
0.54  
1.15  
0.74  
1.55  
0.021  
0.045  
0.029  
0.061  
0.35  
Reference  
Reference  
0.014  
0.394  
Reference  
Reference  
C
0.09  
15.75  
13.90  
0.20  
16.25  
14.10  
0.004  
0.620  
0.547  
0.008  
0.640  
0.555  
D
D1  
D3  
E
10.00  
15.75  
13.90  
16.25  
14.10  
0.620  
0.547  
0.640  
0.555  
E1  
E3  
e1  
L
10.00  
1.00  
Reference  
Reference  
0.394  
0.039  
Reference  
Reference  
0.35  
0.65  
0.014  
0.026  
N
44  
44  
030195R4  
71  
t
r
D
2.0  
2
 m
22.1 PSD3XX Family – Selector Guide  
ST Part #  
MCU  
PLDs/Decoders  
I/O  
Memory  
Other  
PSD  
ZPSD  
ZPSD  
8-Bit 16-Bit Interface Inputs Product PLD  
Page  
Ports  
Open  
Drain  
EPROM  
SRAM Peripheral Security  
Mode  
@
@
@
Data Data  
Terms Outputs Reg.  
5 V  
5 V  
2.7 V  
PSD311R  
PSD301R  
PSD312R  
PSD302R  
PSD313R  
PSD303R  
PSD311  
ZPSD311R  
ZPSD301R  
ZPSD312R  
ZPSD302R  
ZPSD313R  
ZPSD303R  
ZPSD311  
ZPSD301  
ZPSD312  
ZPSD302  
ZPSD313  
ZPSD303  
X
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
STD  
14  
14  
18  
18  
18  
18  
14  
14  
18  
18  
18  
18  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
19  
X
X
X
X
X
X
X
X
X
X
X
X
256Kb  
256Kb  
512Kb  
512Kb  
1024Kb  
1024Kb  
256Kb  
256Kb  
512Kb  
512Kb  
1024Kb  
1024Kb  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ZPSD311V  
ZPSD301V  
ZPSD312V  
ZPSD302V  
ZPSD313V  
ZPSD303V  
16Kb  
16Kb  
16Kb  
16Kb  
16Kb  
16Kb  
PSD301  
PSD312  
X
X
X
X
PSD302  
PSD313  
PSD303  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
22.2 Part Number Construction  
I
Z
PSD 413A2 V -A -20 J  
Temperature (Blank = Commercial,  
I = Industrial, M = Military)  
Package Type  
Speed (-70 = 70ns, -90 = 90ns, -15 = 150ns  
-20 = 200ns, -25 = 250ns)  
Revision (Blank = No Revision)  
Supply Voltage (Blank = 5V, V = 3 Volt)  
Base Part Number - see Selector Guide  
PSD (ST Programmable System Device) Fam.  
Power Down Feature (Blank = Standard,  
Z = Zero Power Feature)  
22.3 Ordering Information  
Operating  
Temperature  
Speed  
Part Number  
(ns)  
Package Type  
Range  
PSD301-B-70J  
PSD301-B-70L  
PSD301-B-70M  
PSD301-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD301-B-90JI  
PSD301-B-90LI  
PSD301-B-90MI  
PSD301-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD301-B-15J  
PSD301-B-15L  
PSD301-B-15M  
PSD301-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD301R-B-70J  
PSD301R-B-90JI  
PSD301R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
73  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
PSD302-B-70J  
PSD302-B-70L  
PSD302-B-70M  
PSD302-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD302-B-90JI  
PSD302-B-90LI  
PSD302-B-90MI  
PSD302-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD302-B-15J  
PSD302-B-15L  
PSD302-B-15M  
PSD302-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD302R-B-70J  
PSD302R-B-90JI  
PSD302R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
PSD303-B-70J  
PSD303-B-70L  
PSD303-B-70M  
PSD303-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD303-B-90JI  
PSD303-B-90LI  
PSD303-B-90MI  
PSD303-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD303-B-15J  
PSD303-B-15L  
PSD303-B-15M  
PSD303-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD303R-B-70J  
PSD303R-B-90JI  
PSD303R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
PSD311-B-70J  
PSD311-B-70L  
PSD311-B-70M  
PSD311-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD311-B-90JI  
PSD311-B-90LI  
PSD311-B-90MI  
PSD311-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD311-B-15J  
PSD311-B-15L  
PSD311-B-15M  
PSD311-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD311R-B-70J  
PSD311R-B-90JI  
PSD311R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
74  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
PSD312-B-70J  
PSD312-B-70L  
PSD312-B-70M  
PSD312-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD312-B-90JI  
PSD312-B-90LI  
PSD312-B-90MI  
PSD312-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD312-B-15J  
PSD312-B-15L  
PSD312-B-15M  
PSD312-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD312R-B-70J  
PSD312R-B-90JI  
PSD312R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
PSD313-B-70J  
PSD313-B-70L  
PSD313-B-70M  
PSD313-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD313-B-90JI  
PSD313-B-90LI  
PSD313-B-90MI  
PSD313-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
PSD313-B-15J  
PSD313-B-15L  
PSD313-B-15M  
PSD313-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
PSD313R-B-70J  
PSD313R-B-90JI  
PSD313R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
75  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD301-B-70J  
ZPSD301-B-70L  
ZPSD301-B-70M  
ZPSD301-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD301-B-90JI  
ZPSD301-B-90LI  
ZPSD301-B-90MI  
ZPSD301-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD301-B-15J  
ZPSD301-B-15L  
ZPSD301-B-15M  
ZPSD301-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD301R-B-70J  
ZPSD301R-B-90JI  
ZPSD301R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
ZPSD301V-B-15J  
ZPSD301V-B-15L  
ZPSD301V-B-15U  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
ZPSD301V-B-20J  
ZPSD301V-B-20JI  
ZPSD301V-B-20L  
ZPSD301V-B-20M  
ZPSD301V-B-20MI  
ZPSD301V-B-20U  
ZPSD301V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD301V-B-25J  
ZPSD301V-B-25L  
ZPSD301V-B-25M  
ZPSD301V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD302-B-70J  
ZPSD302-B-70L  
ZPSD302-B-70M  
ZPSD302-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD302-B-90JI  
ZPSD302-B-90LI  
ZPSD302-B-90MI  
ZPSD302-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD302-B-15J  
ZPSD302-B-15L  
ZPSD302-B-15M  
ZPSD302-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD302R-B-70J  
ZPSD302R-B-90JI  
ZPSD302R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
76  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD302V-B-20J  
ZPSD302V-B-20JI  
ZPSD302V-B-20L  
ZPSD302V-B-20M  
ZPSD302V-B-20MI  
ZPSD302V-B-20U  
ZPSD302V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD302V-B-25J  
ZPSD302V-B-25L  
ZPSD302V-B-25M  
ZPSD302V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD303-B-70J  
ZPSD303-B-70L  
ZPSD303-B-70M  
ZPSD303-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD303-B-90JI  
ZPSD303-B-90LI  
ZPSD303-B-90MI  
ZPSD303-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD303-B-15J  
ZPSD303-B-15L  
ZPSD303-B-15M  
ZPSD303-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD303R-B-70J  
ZPSD303R-B-90JI  
ZPSD303R-B-15J  
70  
90  
150  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin PLDCC  
Comm’l  
Industrial  
Comm’l  
ZPSD303V-B-20J  
ZPSD303V-B-20JI  
ZPSD303V-B-20L  
ZPSD303V-B-20M  
ZPSD303V-B-20MI  
ZPSD303V-B-20U  
ZPSD303V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD303V-B-25J  
ZPSD303V-B-25L  
ZPSD303V-B-25M  
ZPSD303V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
77  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD311-B-70J  
ZPSD311-B-70L  
ZPSD311-B-70M  
ZPSD311-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD311-B-90JI  
ZPSD311-B-90LI  
ZPSD311-B-90MI  
ZPSD311-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD311-B-15J  
ZPSD311-B-15L  
ZPSD311-B-15M  
ZPSD311-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD311R-B-70J  
ZPSD311R-B-70M  
70  
70  
44 Pin PLDCC  
44 Pin PQFP  
Comm’l  
Comm’l  
ZPSD311R-B-90JI  
ZPSD311R-B-90MI  
90  
90  
44 Pin PLDCC  
44 Pin PQFP  
Industrial  
Industrial  
ZPSD311R-B-15J  
ZPSD311R-B-15M  
150  
150  
44 Pin PLDCC  
44 Pin PQFP  
Comm’l  
Comm’l  
ZPSD311V-B-15J  
ZPSD311V-B-15L  
ZPSD311V-B-15M  
ZPSD311V-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD311V-B-20J  
ZPSD311V-B-20JI  
ZPSD311V-B-20L  
ZPSD311V-B-20M  
ZPSD311V-B-20MI  
ZPSD311V-B-20U  
ZPSD311V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD311V-B-25J  
ZPSD311V-B-25L  
ZPSD311V-B-25M  
ZPSD311V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
78  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD312-B-70J  
ZPSD312-B-70L  
ZPSD312-B-70M  
ZPSD312-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD312-B-90JI  
ZPSD312-B-90LI  
ZPSD312-B-90MI  
ZPSD312-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD312-B-15J  
ZPSD312-B-15L  
ZPSD312-B-15M  
ZPSD312-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD312R-B-70J  
ZPSD312R-B-70M  
ZPSD312R-B-90JI  
ZPSD312R-B-90MI  
ZPSD312R-B-15J  
ZPSD312R-B-15M  
70  
70  
90  
90  
150  
150  
44 Pin PLDCC  
44 Pin PQFP  
44 Pin PLDCC  
44 Pin PQFP  
44 Pin PLDCC  
44 Pin PQFP  
Comm’l  
Comm’l  
Industrial  
Industrial  
Comm’l  
Comm’l  
ZPSD312V-B-20J  
ZPSD312V-B-20JI  
ZPSD312V-B-20L  
ZPSD312V-B-20M  
ZPSD312V-B-20MI  
ZPSD312V-B-20U  
ZPSD312V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD312V-B-25J  
ZPSD312V-B-25L  
ZPSD312V-B-25M  
ZPSD312V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD313-B-70J  
ZPSD313-B-70L  
ZPSD313-B-70M  
ZPSD313-B-70U  
70  
70  
70  
70  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
ZPSD313-B-90JI  
ZPSD313-B-90LI  
ZPSD313-B-90MI  
ZPSD313-B-90UI  
90  
90  
90  
90  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Industrial  
Industrial  
Industrial  
Industrial  
ZPSD313-B-15J  
ZPSD313-B-15L  
ZPSD313-B-15M  
ZPSD313-B-15U  
150  
150  
150  
150  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
79  
PSD3XX Family  
PSD3XX  
Ordering  
Information  
(cont.)  
Ordering Information  
Operating  
Temperature  
Range  
Speed  
Part Number  
(ns)  
Package Type  
ZPSD313R-B-70J  
ZPSD313R-B-70M  
ZPSD313R-B-90JI  
ZPSD313R-B-90MI  
ZPSD313R-B-15J  
ZPSD313R-B-15M  
70  
70  
90  
90  
150  
150  
44 Pin PLDCC  
44 Pin PQFP  
44 Pin PLDCC  
44 Pin PQFP  
44 Pin PLDCC  
44 Pin PQFP  
Comm’l  
Comm’l  
Industrial  
Industrial  
Comm’l  
Comm’l  
ZPSD313V-B-20J  
ZPSD313V-B-20JI  
ZPSD313V-B-20L  
ZPSD313V-B-20M  
ZPSD313V-B-20MI  
ZPSD313V-B-20U  
ZPSD313V-B-20UI  
200  
200  
200  
200  
200  
200  
200  
44 Pin PLDCC  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin PQFP  
44 Pin TQFP  
44 Pin TQFP  
Comm’l  
Industrial  
Comm’l  
Comm’l  
Industrial  
Comm’l  
Industrial  
ZPSD313V-B-25J  
ZPSD313V-B-25L  
ZPSD313V-B-25M  
ZPSD313V-B-25U  
250  
250  
250  
250  
44 Pin PLDCC  
44 Pin CLDCC  
44 Pin PQFP  
44 Pin TQFP  
Comm’l  
Comm’l  
Comm’l  
Comm’l  
23.  
Revisions  
History  
Parts  
Affected  
Data Sheet  
Changes  
Date  
May, 1995  
May, 1998  
PSD3XX  
Initial Release  
ZPSD3XX  
SRAM-less (R suffix) version  
added.  
PQFP package added.  
May, 1998  
PSD3XX  
PQFP package added,  
Specifications updated,  
PSD3XXL discontinued,  
Some speed grades eliminated.  
February, 1999  
PSD3XXR, ZPSD3XXR  
Combined Data Sheets  
Updated Specifications  
80  
PSD3XX, ZPSD3XX, ZPSD3XXV, PSD3XXR, ZPSD3XXR, ZPSD3XXRV  
REVISION HISTORY  
Table 1. Document Revision History  
Date  
Rev.  
Description of Revision  
May-1995  
1.0 Documents written in the WSI format. Initial release  
ZPSD3XX SRAM-less (R suffix) version added. PQFP package added.  
PSD3XX PQFP package added, Specifications updated, PSD3XXL discontinued, Some speed  
May-1998  
1.1  
1.2  
grades eliminated.  
February, 1999 PSD3XXR, ZPSD3XXR Combined Data Sheets  
Updated Specifications  
PSD3XX ZPSD3XX ZPSD3XXV, PSD3XXR ZPSD3XXR ZPSD3XXRV Combined Data  
Sheets Updated Specifications  
Feb-1999  
PSD3XX, ZPSD3XX, ZPSD3XXV, PSD3XXR, ZPSD3XXR, ZPSD3XXRV: Low Cost Field  
Programmable Microcontroller Peripherals  
31-Jan-2002  
1.3 Front page, and back two pages, in ST format, added to the PDF file  
Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000  
updated to ST, ST, Flash+PSD and PSDsoft Express  
2/3  
PSD3XX, ZPSD3XX, ZPSD3XXV, PSD3XXR, ZPSD3XXR, ZPSD3XXRV  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2002 STMicroelectronics - All Rights Reserved  
STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -  
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.  
www.st.com  
3/3  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY