M95640-WMB3P/PB [STMICROELECTRONICS]

IC,SERIAL EEPROM,8KX8,CMOS,LLCC,8PIN,PLASTIC;
M95640-WMB3P/PB
型号: M95640-WMB3P/PB
厂家: ST    ST
描述:

IC,SERIAL EEPROM,8KX8,CMOS,LLCC,8PIN,PLASTIC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总42页 (文件大小:772K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95320 M95320-W M95320-R M95320-S  
M95640 M95640-W M95640-R M95640-S  
32Kbit and 64Kbit Serial SPI Bus EEPROMs  
With High Speed Clock  
FEATURES SUMMARY  
Compatible with SPI Bus Serial Interface  
(Positive Clock SPI Modes)  
Figure 1. Packages  
Single Supply Voltage:  
4.5 to 5.5V for M95320 and M95640  
2.5 to 5.5V for M95320-W and M95320-W  
1.8 to 5.5V for M95320-R and M95640-R  
1.65 to 5.5V for M95320-S and M95640-S  
8
20MHz, 10MHz, 5MHz or 2MHz clock rates  
5ms or 10ms Write Time  
Status Register  
Hardware Protection of the Status Register  
BYTE and PAGE WRITE (up to 32 Bytes)  
Self-Timed Programming Cycle  
Adjustable Size Read-Only EEPROM Area  
Enhanced ESD Protection  
1
PDIP8 (BN)  
0.25 mm frame  
8
More than 100000 or 1 million Erase/Write  
Cycles (depending on ordering options)  
More than 40-Year Data Retention  
1
SO8 (MN)  
150 mil width  
Table 1. Product List  
Reference  
Part Number  
M95320  
M95320-W  
M95320-R  
M95320-S  
M95640  
M95320  
M95640  
TSSOP8 (DW)  
169 mil width  
M95640-W  
M95640-R  
M95640-S  
MLP8 (MB)  
2x3 mm  
May 2005  
1/42  
M95640, M95320  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 2. How to Identify Previous, Current and New Products by the Process Identification Letter 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. 8 Pin Package Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 3. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Output (Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write Protect (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
CONNECTING TO THE SPI BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4. Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 6. Hold Condition Activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Protection and Protocol Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 5. Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/42  
M95640, M95320  
Figure 7. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 6. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 8. Write Enable (WREN) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 9. Write Disable (WRDI) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Status Register (RDSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10.Read Status Register (RDSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 7. Protection Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Address Range Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11.Write Status Register (WRSR) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12.Read from Memory Array (READ) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write to Memory Array (WRITE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13.Byte Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14.Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 9. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 10. Operating Conditions (M95320 and M95640) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 11. Operating Conditions (M95320-W and M95640-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12. Operating Conditions (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 13. Operating Conditions (M95320-S and M95640-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 14. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 15. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 16. DC Characteristics (M95320 and M95640, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . 24  
Table 17. DC Characteristics (M95320 and M95640, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . 25  
Table 18. DC Characteristics (M95320-W and M95640-W, Device Grade 6) . . . . . . . . . . . . . . . . . 26  
Table 19. DC Characteristics (M95320-W and M95640-W, Device Grade 3) . . . . . . . . . . . . . . . . . 27  
Table 20. DC Characteristics (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 21. DC Characteristics (M95320-S and M95640-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3/42  
M95640, M95320  
Table 22. AC Characteristics (M95320 and M95640, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . 28  
Table 23. AC Characteristics (M95320 and M95640, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . 29  
Table 24. AC Characteristics (M95320-W and M95640-W, Device Grade 6) . . . . . . . . . . . . . . . . . 30  
Table 25. AC Characteristics (M95320-W and M95640-W, Device Grade 3) . . . . . . . . . . . . . . . . . 31  
Table 26. AC Characteristics (M95320-R and M95640-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 27. AC Characteristics (M95320-S and M95640-S, Device Grade 3) . . . . . . . . . . . . . . . . . . 33  
Figure 16.Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 17.Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 18.Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 36  
Table 28. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 36  
Figure 20.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 37  
Table 29. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
37  
Figure 21.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 38  
Table 30. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 38  
Figure 22.MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, Package Outline . . . . . . . . . . . . 39  
Table 31. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, Package Mechanical Data . . . . 39  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 32. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 33. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4/42  
M95640, M95320  
SUMMARY DESCRIPTION  
These electrically erasable programmable memo-  
ry (EEPROM) devices are accessed by a high  
speed SPI-compatible bus.  
The device is accessed by a simple serial interface  
that is SPI-compatible. The bus signals are C, D  
and Q, as shown in Table 3. and Figure 2..  
The M95320, M95320-W, M95320-R and  
M95320-S are 32Kbit devices organized as 4096  
x 8 bits. The M95640, M95640-W, M95640-R and  
M95640-S are 64Kbit devices organized as 8192  
x 8 bits.  
The device is selected when Chip Select (S) is tak-  
en Low. Communications with the device can be  
interrupted using Hold (HOLD).  
The devices are available in three different ver-  
sions identified by a specific marking (see Table  
2.).  
Table 2. How to Identify Previous, Current and New Products by the Process Identification Letter  
Markings on  
Previous  
Markings on  
Current  
Markings on  
New  
Devices Root Part Numbers  
1
1
1
Products  
Products  
Products  
M95320, M95640, M95320-W, M95640-W  
Device Grade 6  
xxxxS  
xxxxV  
xxxxP  
M95320, M95640, M95320-W, M95640-W Device Grade 3  
M95320-R, M95640-R  
xxxxS  
xxxxB  
xxxxP  
xxxxP  
xxxxP  
-
-
-
-
M95320-S, M95640-S  
Note: 1. For further information, please ask your ST Sales Office for Process Change Notices.  
Figure 2. Logic Diagram  
Figure 3. 8 Pin Package Connections  
M95xxx  
S
Q
1
2
3
4
8
V
CC  
HOLD  
7
V
CC  
W
6
5
C
D
V
SS  
AI01790D  
D
C
S
Q
Note: 1. See PACKAGE MECHANICAL section for package di-  
mensions and how to identify pin-1.  
2. NC, Not Connected.  
M95xxx  
Table 3. Signal Names  
W
C
D
Serial Clock  
Serial data Input  
Serial data Output  
Chip Select  
Write Protect  
Hold  
HOLD  
Q
S
V
SS  
W
AI01789C  
HOLD  
V
Supply Voltage  
Ground  
CC  
V
SS  
5/42  
M95640, M95320  
SIGNAL DESCRIPTION  
During all operations, VCC must be held stable and  
within the specified valid range: VCC(min) to  
VCC(max).  
All of the input and output signals must be held  
High or Low (according to voltages of VIH, VOH, VIL  
or VOL, as specified in Table 16. to Table 20.).  
These signals are described next.  
(Q) is at high impedance. Unless an internal Write  
cycle is in progress, the device will be in the Stand-  
by Power mode. Driving Chip Select (S) Low se-  
lects the device, placing it in the Active Power  
mode.  
After Power-up, a falling edge on Chip Select (S)  
is required prior to the start of any instruction.  
Serial Data Output (Q). This output signal is  
used to transfer data serially out of the device.  
Data is shifted out on the falling edge of Serial  
Clock (C).  
Serial Data Input (D). This input signal is used to  
transfer data serially into the device. It receives in-  
structions, addresses, and the data to be written.  
Values are latched on the rising edge of Serial  
Clock (C).  
Serial Clock (C). This input signal provides the  
timing of the serial interface. Instructions, address-  
es, or data present at Serial Data Input (D) are  
latched on the rising edge of Serial Clock (C). Data  
on Serial Data Output (Q) changes after the falling  
edge of Serial Clock (C).  
Hold (HOLD). The Hold (HOLD) signal is used to  
pause any serial communications with the device  
without deselecting the device.  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be se-  
lected, with Chip Select (S) driven Low.  
Write Protect (W). The main purpose of this in-  
put signal is to freeze the size of the area of mem-  
ory that is protected against Write instructions (as  
specified by the values in the BP1 and BP0 bits of  
the Status Register).  
This pin must be driven either High or Low, and  
must be stable during all write operations.  
Chip Select (S). When this input signal is High,  
the device is deselected and Serial Data Output  
6/42  
M95640, M95320  
CONNECTING TO THE SPI BUS  
These devices are fully compatible with the SPI  
protocol.  
All instructions, addresses and input data bytes  
are shifted in to the device, most significant bit  
first. The Serial Data Input (D) is sampled on the  
first rising edge of the Serial Clock (C) after Chip  
Select (S) goes Low.  
All output data bytes are shifted out of the device,  
most significant bit first. The Serial Data Output  
(Q) is latched on the first falling edge of the Serial  
Clock (C) after the instruction (such as the Read  
from Memory Array and Read Status Register in-  
structions) have been clocked into the device.  
Figure 4. shows three devices, connected to an  
MCU, on a SPI bus. Only one device is selected at  
a time, so only one device drives the Serial Data  
Output (Q) line at a time, all the others being high  
impedance.  
Figure 4. Bus Master and Memory Devices on the SPI Bus  
VCC  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
VCC  
VCC  
VCC  
C
Q
D
C
Q
D
C Q D  
Bus Master  
(ST6, ST7, ST9,  
ST10, Others)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
R
R
R
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI03746e  
Note: The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.  
7/42  
M95640, M95320  
SPI Modes  
These devices can be driven by a microcontroller  
with its SPI peripheral running in either of the two  
following modes:  
is available from the falling edge of Serial Clock  
(C).  
The difference between the two modes, as shown  
in Figure 5., is the clock polarity when the bus  
master is in Stand-by mode and not transferring  
data:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
For these two modes, input data is latched in on  
the rising edge of Serial Clock (C), and output data  
Figure 5. SPI Modes Supported  
CPOL CPHA  
C
C
0
1
0
1
D
MSB  
Q
MSB  
AI01438B  
8/42  
M95640, M95320  
OPERATING FEATURES  
Power-Up  
Active Power and Standby Power Modes  
When the power supply is turned on, VCC rises  
When Chip Select (S) is Low, the device is select-  
ed, and in the Active Power mode. The device  
consumes ICC, as specified in Table 16. to Table  
20..  
When Chip Select (S) is High, the device is dese-  
lected. If an Erase/Write cycle is not currently in  
progress, the device then goes in to the Standby  
Power mode, and the device consumption drops  
from VSS to VCC  
.
During this time, the Chip Select (S) must be al-  
lowed to follow the VCC voltage. It must not be al-  
lowed to float, but should be connected to VCC via  
a suitable pull-up resistor.  
As a built in safety feature, Chip Select (S) is edge  
sensitive as well as level sensitive. After Power-  
up, the device does not become selected until a  
falling edge has first been detected on Chip Select  
(S). This ensures that Chip Select (S) must have  
been High, prior to going Low to start the first op-  
eration.  
to ICC1  
.
Hold Condition  
The Hold (HOLD) signal is used to pause any se-  
rial communications with the device without reset-  
ting the clocking sequence.  
Power On Reset: VCC Lock-Out Write Protect  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be  
selected, with Chip Select (S) Low.  
Normally, the device is kept selected, for the whole  
duration of the Hold condition. Deselecting the de-  
vice while it is in the Hold condition, has the effect  
of resetting the state of the device, and this mech-  
anism can be used if it is required to reset any pro-  
cesses that had been in progress.  
The Hold condition starts when the Hold (HOLD)  
signal is driven Low at the same time as Serial  
Clock (C) already being Low (as shown in Figure  
6.).  
In order to prevent inadvertent Write operations  
during Power-up, each device include a Power On  
Reset (POR) circuit. At Power-up, the device will  
not respond to any instruction until VCC has  
reached the Power On Reset threshold voltage.  
This threshold is lower than the VCC min operating  
voltage defined in Tables 10, 11, 12 and 13.  
Similarly, as soon as VCC drops from the normal  
operating voltage, below the Power On Reset  
threshold voltage, the device stops responding to  
any instruction sent to it.  
Prior to selecting and issuing instructions to the  
memory, a valid stable VCC voltage must be ap-  
plied. This voltage must remain stable and valid  
until the end of the transmission of the instruction  
and, for a Write instruction, until the completion o  
the internal write cycle (tW).  
The Hold condition ends when the Hold (HOLD)  
signal is driven High at the same time as Serial  
Clock (C) already being Low.  
Figure 6. also shows what happens if the rising  
and falling edges are not timed to coincide with  
Serial Clock (C) being Low.  
Power-down  
At Power-down, the device must be deselected.  
Chip Select (S) should be allowed to follow the  
voltage applied on VCC  
.
9/42  
M95640, M95320  
Figure 6. Hold Condition Activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
Status Register  
Data Protection and Protocol Control  
Figure 7. shows the position of the Status Register  
in the control logic of the device. The Status Reg-  
ister contains a number of status and control bits  
that can be read or set (as appropriate) by specific  
instructions.  
WIP bit. The Write In Progress (WIP) bit indicates  
whether the memory is busy with a Write or Write  
Status Register cycle.  
WEL bit. The Write Enable Latch (WEL) bit indi-  
cates the status of the internal Write Enable Latch.  
BP1, BP0 bits. The Block Protect (BP1, BP0) bits  
are non-volatile. They define the size of the area to  
be software protected against Write instructions.  
SRWD bit. The Status Register Write Disable  
(SRWD) bit is operated in conjunction with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected mode. In this mode, the non-volatile bits  
of the Status Register (SRWD, BP1, BP0) become  
read-only bits.  
Non-volatile memory devices can be used in envi-  
ronments that are particularly noisy, and within ap-  
plications that could experience problems if  
memory bytes are corrupted. Consequently, the  
device features the following data protection  
mechanisms:  
Write and Write Status Register instructions  
are checked that they consist of a number of  
clock pulses that is a multiple of eight, before  
they are accepted for execution.  
All instructions that modify data must be  
preceded by a Write Enable (WREN)  
instruction to set the Write Enable Latch  
(WEL) bit. This bit is returned to its reset state  
by the following events:  
Power-up  
Write Disable (WRDI) instruction  
completion  
Write Status Register (WRSR) instruction  
completion  
Write (WRITE) instruction completion  
The Block Protect (BP1, BP0) bits allow part of  
the memory to be configured as read-only.  
This is the Software Protected Mode (SPM).  
The Write Protect (W) signal allows the Block  
Protect (BP1, BP0) bits to be protected. This is  
the Hardware Protected Mode (HPM).  
Table 4. Status Register Format  
b7  
b0  
SRWD  
0
0
0
BP1 BP0 WEL WIP  
For any instruction to be accepted, and executed,  
Chip Select (S) must be driven High after the rising  
edge of Serial Clock (C) for the last bit of the in-  
struction, and before the next rising edge of Serial  
Clock (C).  
Two points need to be noted in the previous sen-  
tence:  
Status Register Write Protect  
Block Protect Bits  
Write Enable Latch Bit  
Write In Progress Bit  
10/42  
M95640, M95320  
The ‘last bit of the instruction’ can be the  
eighth bit of the instruction code, or the eighth  
bit of a data byte, depending on the instruction  
(except for Read Status Register (RDSR) and  
Read (READ) instructions).  
The ‘next rising edge of Serial Clock (C)’ might  
(or might not) be the next bus transaction for  
some other device on the SPI bus.  
Table 5. Write-Protected Block Size  
Status Register Bits  
Array Addresses Protected  
Protected Block  
M95640, M95640-W,  
M95640-R, M95640-S  
M95320, M95320-W,  
M95320-R, M95320-S  
BP1  
BP0  
0
0
1
1
0
1
0
1
none  
none  
none  
Upper quarter  
Upper half  
1800h - 1FFFh  
1000h - 1FFFh  
0000h - 1FFFh  
0C00h - 0FFFh  
0800h - 0FFFh  
0000h - 0FFFh  
Whole memory  
11/42  
M95640, M95320  
MEMORY ORGANIZATION  
The memory is organized as shown in Figure 7..  
Figure 7. Block Diagram  
HOLD  
High Voltage  
Generator  
W
S
Control Logic  
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
12/42  
M95640, M95320  
INSTRUCTIONS  
Each instruction starts with a single-byte code, as  
summarized in Table 6..  
If an invalid instruction is sent (one not contained  
in Table 6.), the device automatically deselects it-  
self.  
Table 6. Instruction Set  
Instruc  
Instruction  
Format  
Description  
tion  
WREN Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
WRDI  
RDSR  
Write Disable  
Read Status Register  
WRSR Write Status Register  
READ  
Read from Memory Array  
0000 0011  
0000 0010  
WRITE Write to Memory Array  
13/42  
M95640, M95320  
Write Enable (WREN)  
As shown in Figure 8., to send this instruction to  
the device, Chip Select (S) is driven Low, and the  
bits of the instruction byte are shifted in, on Serial  
Data Input (D). The device then enters a wait  
state. It waits for a the device to be deselected, by  
Chip Select (S) being driven High.  
The Write Enable Latch (WEL) bit must be set pri-  
or to each WRITE and WRSR instruction. The only  
way to do this is to send a Write Enable instruction  
to the device.  
Figure 8. Write Enable (WREN) Sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
Write Disable (WRDI)  
The device then enters a wait state. It waits for a  
the device to be deselected, by Chip Select (S) be-  
ing driven High.  
The Write Enable Latch (WEL) bit, in fact, be-  
comes reset by any of the following events:  
One way of resetting the Write Enable Latch  
(WEL) bit is to send a Write Disable instruction to  
the device.  
As shown in Figure 9., to send this instruction to  
the device, Chip Select (S) is driven Low, and the  
bits of the instruction byte are shifted in, on Serial  
Data Input (D).  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion.  
Figure 9. Write Disable (WRDI) Sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
14/42  
M95640, M95320  
Read Status Register (RDSR)  
BP1, BP0 bits. The Block Protect (BP1, BP0) bits  
are non-volatile. They define the size of the area to  
be software protected against Write instructions.  
These bits are written with the Write Status Regis-  
ter (WRSR) instruction. When one or both of the  
Block Protect (BP1, BP0) bits is set to 1, the rele-  
vant memory area (as defined in Table 4.) be-  
comes protected against Write (WRITE)  
instructions. The Block Protect (BP1, BP0) bits  
can be written provided that the Hardware Protect-  
ed mode has not been set.  
The Read Status Register (RDSR) instruction al-  
lows the Status Register to be read. The Status  
Register may be read at any time, even while a  
Write or Write Status Register cycle is in progress.  
When one of these cycles is in progress, it is rec-  
ommended to check the Write In Progress (WIP)  
bit before sending a new instruction to the device.  
It is also possible to read the Status Register con-  
tinuously, as shown in Figure 10..  
SRWD bit. The Status Register Write Disable  
(SRWD) bit is operated in conjunction with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected mode (when the Status Register Write  
Disable (SRWD) bit is set to 1, and Write Protect  
(W) is driven Low). In this mode, the non-volatile  
bits of the Status Register (SRWD, BP1, BP0) be-  
come read-only bits and the Write Status Register  
(WRSR) instruction is no longer accepted for exe-  
cution.  
The status and control bits of the Status Register  
are as follows:  
WIP bit. The Write In Progress (WIP) bit indicates  
whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle  
is in progress, when reset to 0 no such cycle is in  
progress.  
WEL bit. The Write Enable Latch (WEL) bit indi-  
cates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is  
set, when set to 0 the internal Write Enable Latch  
is reset and no Write or Write Status Register in-  
struction is accepted.  
Figure 10. Read Status Register (RDSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
15/42  
M95640, M95320  
Write Status Register (WRSR)  
(WIP) bit. The Write In Progress (WIP) bit is 1 dur-  
ing the self-timed Write Status Register cycle, and  
is 0 when it is completed. When the cycle is com-  
pleted, the Write Enable Latch (WEL) is reset.  
The Write Status Register (WRSR) instruction al-  
lows the user to change the values of the Block  
Protect (BP1, BP0) bits, to define the size of the  
area that is to be treated as read-only, as defined  
in Table 4..  
The Write Status Register (WRSR) instruction also  
allows the user to set or reset the Status Register  
Write Disable (SRWD) bit in accordance with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected Mode (HPM). The Write Status Register  
(WRSR) instruction is not executed once the Hard-  
ware Protected Mode (HPM) is entered.  
The contents of the Status Register Write Disable  
(SRWD) and Block Protect (BP1, BP0) bits are fro-  
zen at their current values from just before the  
start of the execution of Write Status Register  
(WRSR) instruction. The new, updated, values  
take effect at the moment of completion of the ex-  
ecution of Write Status Register (WRSR) instruc-  
tion.  
The Write Status Register (WRSR) instruction al-  
lows new values to be written to the Status Regis-  
ter. Before it can be accepted, a Write Enable  
(WREN) instruction must previously have been ex-  
ecuted. After the Write Enable (WREN) instruction  
has been decoded and executed, the device sets  
the Write Enable Latch (WEL).  
The Write Status Register (WRSR) instruction is  
entered by driving Chip Select (S) Low, followed  
by the instruction code and the data byte on Serial  
Data Input (D).  
The instruction sequence is shown in Figure 11..  
The Write Status Register (WRSR) instruction has  
no effect on b6, b5, b4, b1 and b0 of the Status  
Register. b6, b5 and b4 are always read as 0.  
Chip Select (S) must be driven High after the rising  
edge of Serial Clock (C) that latches in the eighth  
bit of the data byte, and before the next rising edge  
of Serial Clock (C). Otherwise, the Write Status  
Register (WRSR) instruction is not executed. As  
soon as Chip Select (S) is driven High, the self-  
timed Write Status Register cycle (whose duration  
is tW) is initiated. While the Write Status Register  
cycle is in progress, the Status Register may still  
be read to check the value of the Write In Progress  
Table 7. Protection Modes  
Memory Content  
W
Signal  
SRWD  
Bit  
Write Protection of the  
Status Register  
Mode  
1
1
Protected Area  
Unprotected Area  
1
0
0
0
Status Register is Writable  
Software (if the WREN instruction  
Protected has set the WEL bit)  
Ready to accept Write  
instructions  
Write Protected  
(SPM)  
The values in the BP1 and  
BP0 bits can be changed  
1
1
Status Register is  
Hardware Hardware write protected  
Protected The values in the BP1 and Write Protected  
Ready to accept Write  
instructions  
0
1
(HPM)  
BP0 bits cannot be  
changed  
Note: 1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 5..  
The protection features of the device are summa-  
rized in Table 5..  
If Write Protect (W) is driven High, it is  
possible to write to the Status Register  
provided that the Write Enable Latch (WEL) bit  
has previously been set by a Write Enable  
(WREN) instruction.  
If Write Protect (W) is driven Low, it is not  
possible to write to the Status Register even if  
the Write Enable Latch (WEL) bit has  
When the Status Register Write Disable (SRWD)  
bit of the Status Register is 0 (its initial delivery  
state), it is possible to write to the Status Register  
provided that the Write Enable Latch (WEL) bit has  
previously been set by a Write Enable (WREN) in-  
struction, regardless of the whether Write Protect  
(W) is driven High or Low.  
previously been set by a Write Enable  
(WREN) instruction. (Attempts to write to the  
Status Register are rejected, and are not  
accepted for execution). As a consequence,  
all the data bytes in the memory area that are  
software protected (SPM) by the Block Protect  
When the Status Register Write Disable (SRWD)  
bit of the Status Register is set to 1, two cases  
need to be considered, depending on the state of  
Write Protect (W):  
16/42  
M95640, M95320  
(BP1, BP0) bits of the Status Register, are  
also hardware protected against data  
modification.  
If Write Protect (W) is permanently tied High, the  
Hardware Protected Mode (HPM) can never be  
activated, and only the Software Protected Mode  
(SPM), using the Block Protect (BP1, BP0) bits of  
the Status Register, can be used.  
Regardless of the order of the two events, the  
Hardware Protected Mode (HPM) can be entered:  
by setting the Status Register Write Disable  
(SRWD) bit after driving Write Protect (W) Low  
Table 8. Address Range Bits  
or by driving Write Protect (W) Low after  
setting the Status Register Write Disable  
(SRWD) bit.  
32 Kbit  
Devices  
64 Kbit  
Devices  
Device  
Address Bits  
A12-A0  
A11-A0  
The only way to exit the Hardware Protected Mode  
(HPM) once entered is to pull Write Protect (W)  
High.  
Note: b15 to b13 are Don’t Care on the 64 Kbit devices.  
b15 to b12 are Don’t Care on the 32 Kbit devices.  
Figure 11. Write Status Register (WRSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
17/42  
M95640, M95320  
Read from Memory Array (READ)  
When the highest address is reached, the address  
counter rolls over to zero, allowing the Read cycle  
to be continued indefinitely. The whole memory  
can, therefore, be read with a single READ instruc-  
tion.  
The Read cycle is terminated by driving Chip Se-  
lect (S) High. The rising edge of the Chip Select  
(S) signal can occur at any time during the cycle.  
As shown in Figure 12., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte and address bytes are  
then shifted in, on Serial Data Input (D). The ad-  
dress is loaded into an internal address register,  
and the byte of data at that address is shifted out,  
on Serial Data Output (Q).  
If Chip Select (S) continues to be driven Low, the  
internal address register is automatically incre-  
mented, and the byte of data at the new address is  
shifted out.  
The first byte addressed can be any byte within  
any page.  
The instruction is not accepted, and is not execut-  
ed, if a Write cycle is currently in progress.  
Figure 12. Read from Memory Array (READ) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
Note: Depending on the memory size, as shown in Table 8., the most significant address bits are Don’t Care.  
18/42  
M95640, M95320  
Write to Memory Array (WRITE)  
Each time a new data byte is shifted in, the least  
significant bits of the internal address counter are  
incremented. If the number of data bytes sent to  
the device exceeds the page boundary, the inter-  
nal address counter rolls over to the beginning of  
the page, and the previous data there are overwrit-  
ten with the incoming data. (The page size of  
these devices is 32 bytes).  
As shown in Figure 13., to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte, address byte, and at  
least one data byte are then shifted in, on Serial  
Data Input (D).  
The instruction is terminated by driving Chip Se-  
lect (S) High at a byte boundary of the input data.  
In the case of Figure 13., this occurs after the  
eighth bit of the data byte has been latched in, in-  
dicating that the instruction is being used to write  
a single byte. The self-timed Write cycle starts,  
and continues for a period tWC (as specified in Ta-  
ble 22. to Table 26.), at the end of which the Write  
in Progress (WIP) bit is reset to 0.  
If, though, Chip Select (S) continues to be driven  
Low, as shown in Figure 14., the next byte of input  
data is shifted in, so that more than a single byte,  
starting from the given address towards the end of  
the same page, can be written in a single internal  
Write cycle.  
The instruction is not accepted, and is not execut-  
ed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not  
been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip  
Select (S) being driven High, at a byte  
boundary (after the eighth bit, b0, of the last  
data byte that has been latched in)  
if the addressed page is in the region  
protected by the Block Protect (BP1 and BP0)  
bits.  
Figure 13. Byte Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
Note: Depending on the memory size, as shown in Table 8., the most significant address bits are Don’t Care.  
19/42  
M95640, M95320  
Figure 14. Page Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
D
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
Note: Depending on the memory size, as shown in Table 8., the most significant address bits are Don’t Care.  
20/42  
M95640, M95320  
POWER-UP AND DELIVERY STATE  
Power-up State  
After Power-up, the device is in the following state:  
The SRWD, BP1 and BP0 bits of the Status Reg-  
ister are unchanged from the previous power-  
down (they are non-volatile bits).  
Standby Power mode  
deselected (after Power-up, a falling edge is  
required on Chip Select (S) before any  
instructions can be started).  
INITIAL DELIVERY STATE  
not in the Hold Condition  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The device is delivered with the memory array set  
at all 1s (FFh). The Status Register Write Disable  
(SRWD) and Block Protect (BP1 and BP0) bits are  
initialized to 0.  
21/42  
M95640, M95320  
MAXIMUM RATING  
Stressing the device outside the ratings listed in  
Table 9. may cause permanent damage to the de-  
vice. These are stress ratings only, and operation  
of the device at these, or any other conditions out-  
side those indicated in the Operating sections of  
this specification, is not implied. Exposure to Ab-  
solute Maximum Rating conditions for extended  
periods may affect device reliability. Refer also to  
the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 9. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
°C  
°C  
V
T
Storage Temperature  
–65  
150  
STG  
1
TLEAD  
VO  
Lead Temperature during Soldering  
Output Voltage  
See note  
–0.50  
–0.50  
–0.50  
V
CC+0.6  
VI  
Input Voltage  
6.5  
V
V
CC  
Supply Voltage  
6.5  
V
2
VESD  
–4000  
4000  
V
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK 7191395 specification, and  
the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)  
22/42  
M95640, M95320  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 10. Operating Conditions (M95320 and M95640)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
CC  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 11. Operating Conditions (M95320-W and M95640-W)  
Symbol  
Parameter  
Min.  
2.5  
Max.  
5.5  
Unit  
V
V
Supply Voltage  
CC  
Ambient Operating Temperature (Device Grade 6)  
Ambient Operating Temperature (Device Grade 3)  
–40  
–40  
85  
°C  
°C  
TA  
125  
Table 12. Operating Conditions (M95320-R and M95640-R)  
1
1
Symbol  
Unit  
V
Parameter  
Min.  
1.8  
Max.  
5.5  
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
–40  
85  
°C  
Note: 1. This product is under development. For more information, please contact your nearest ST sales office.  
Table 13. Operating Conditions (M95320-S and M95640-S)  
1
1
Symbol  
Unit  
V
Parameter  
Min.  
1.65  
–40  
Max.  
5.5  
V
Supply Voltage  
Ambient Operating Temperature  
CC  
TA  
85  
°C  
Note: 1. This product is under development. For more information, please contact your nearest ST sales office.  
Table 14. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
C
Load Capacitance  
30  
pF  
ns  
V
L
Input Rise and Fall Times  
50  
0.2V to 0.8V  
Input Pulse Voltages  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Voltages  
V
CC  
CC  
Note: Output Hi-Z is defined as the point where data out is no longer driven.  
23/42  
M95640, M95320  
Figure 15. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI00825B  
Table 15. Capacitance  
Symbol  
COUT  
Parameter  
Test Condition  
= 0V  
Min.  
Max.  
Unit  
pF  
Output Capacitance (Q)  
Input Capacitance (D)  
Input Capacitance (other pins)  
V
8
8
6
OUT  
CIN  
V
IN  
= 0V  
= 0V  
pF  
V
IN  
pF  
Note: Sampled only, not 100% tested, at T =25°C and a frequency of 5MHz.  
A
Table 16. DC Characteristics (M95320 and M95640, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
IN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
V
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
C = 0.1VCC/0.9VCC at 5MHz,  
VCC = 5V, Q = open,  
4
5
mA  
2
Previous Product  
C = 0.1VCC/0.9VCC at 10MHz,  
ICC  
Supply Current  
mA  
mA  
µA  
µA  
µA  
3
V
CC = 5V, Q = open, Current Product  
C = 0.1VCC/0.9VCC at 20MHz,  
10  
10  
2
4,5  
V
CC = 5V, Q = open, New Product  
S = VCC, VCC = 5V,  
2
V
IN = VSS or VCC, Previous Product  
S = VCC , VCC = 5V,  
Supply Current  
(Standby)  
ICC1  
3
V
IN = VSS or VCC, Current Product  
S = VCC, VCC = 5V,  
2
4,5  
V
IN = VSS or VCC, New Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
0.7 VCC  
1
Output Low Voltage  
Output High Voltage  
I
OL = 2 mA, VCC = 5V  
V
V
VOL  
1
IOH = –2 mA, VCC = 5V  
0.8 VCC  
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Previous product version is identified by Process Identification letter ‘S’.  
3. Current product version is identified by Process Identification letter ‘V’’.  
4. New product version is identified by Process Identification letter ‘P’.  
5. Preliminary data.  
24/42  
M95640, M95320  
Table 17. DC Characteristics (M95320 and M95640, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2MHz,  
2
4
mA  
mA  
mA  
µA  
2
VCC = 5V, Q = open, Previous Product  
C = 0.1VCC/0.9VCC at 5MHz,  
ICC  
Supply Current  
3
VCC = 5V, Q = open, Current Product  
C = 0.1VCC/0.9VCC at 20MHz,  
12  
20  
5
4,5  
2
VCC = 5V, Q = open, New Product  
S = VCC , VCC = 5V,  
V
IN = VSS or VCC, Previous Product  
S = VCC, VCC = 5V,  
Supply Current  
(Standby)  
ICC1  
µA  
3
V
IN = VSS or VCC, Current Product  
S = VCC , VCC = 5V,  
2
µA  
4,5  
V
IN = VSS or VCC, New Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.45  
0.3 VCC  
VCC+1  
V
V
V
0.7 VCC  
1
IOL = 2mA, VCC = 5V  
OH = –2mA, VCC = 5V  
0.4  
VOL  
1
Output High Voltage  
I
0.8 VCC  
V
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Previous product version is identified by Process Identification letter ‘S’.  
3. Current product version is identified by Process Identification letters ‘B’.  
4. New product version is identified by Process Identification letters ‘P’.  
5. Preliminary data.  
25/42  
M95640, M95320  
Table 18. DC Characteristics (M95320-W and M95640-W, Device Grade 6)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2MHz,  
2
3
mA  
mA  
mA  
µA  
1
VCC = 2.5V, Q = open, Previous Product  
C = 0.1VCC/0.9VCC at 5MHz,  
ICC  
Supply Current  
2
VCC = 2.5V, Q = open, Current Product  
C = 0.1VCC/0.9VCC at 10MHz,  
5
2
1
3,4  
VCC = 2.5V, Q = open, New Product  
S = VCC, VCC = 2.5V,  
1
V
IN = VSS or VCC, Previous Product  
S = VCC, VCC = 2.5V  
Supply Current  
(Standby)  
ICC1  
µA  
2
V
IN = VSS or VCC, Current Product  
S = VCC, VCC = 2.5V  
µA  
1
3,4  
V
IN = VSS or VCC, New Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 1.5mA, VCC = 2.5V  
I
OH = –0.4mA, VCC = 2.5V  
0.8 VCC  
Note: 1. Previous product version is identified by Process Identification letter ‘S’.  
2. Current product version is identified by Process Identification letter ‘V’’.  
3. New product version is identified by Process Identification letter ‘P’.  
4. Preliminary data.  
Table 19. DC Characteristics (M95320-W and M95640-W, Device Grade 3)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Max.  
± 2  
Unit  
µA  
Min.  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 5MHz,  
3
6
mA  
mA  
1
V
CC = 2.5V, Q = open, Current Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 10MHz,  
2
V
CC = 2.5V, Q = open, New Product  
ICC1  
VIL  
Supply Current (Standby)  
Input Low Voltage  
S = VCC, VCC = 2.5V, VIN = VSS or VCC  
2
µA  
V
–0.45  
0.3 VCC  
VCC+1  
0.4  
VIH  
Input High Voltage  
0.7 VCC  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
I
OL = 1.5mA, VCC = 2.5V  
V
IOH = –0.4mA, VCC = 2.5V  
0.8 VCC  
V
Note: 1. Current product version is identified by Process Identification letter ‘B’.  
2. New product version is identified by Process Identification letter ‘P’.  
26/42  
M95640, M95320  
Table 20. DC Characteristics (M95320-R and M95640-R)  
1,2  
1,2  
Symbol  
Parameter  
Unit  
µA  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 1  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 1  
µA  
C = 0.1VCC/0.9VCC at 5MHz,  
VCC = 1.8 V, Q = open  
ICC  
Supply Current  
3
mA  
ICC1  
VIL  
Supply Current (Standby)  
Input Low Voltage  
S = VCC, VIN = VSS or VCC, VCC = 1.8V  
1
µA  
V
–0.45  
0.3 VCC  
VCC+1  
0.3  
VIH  
Input High Voltage  
0.7 VCC  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 0.15 mA, VCC = 1.8 V  
V
IOH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
V
Note: 1. This product is under qualification. For more information, please contact your nearest ST sales office.  
2. Preliminary data.  
Table 21. DC Characteristics (M95320-S and M95640-S)  
1,2  
1,2  
Symbol  
ILI  
Parameter  
Unit  
µA  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
Input Leakage Current  
Output Leakage Current  
± 1  
± 1  
ILO  
S = VCC, VOUT = VSS or VCC  
µA  
C = 0.1VCC/0.9VCC at 2MHz,  
VCC = 1.65 V, Q = open  
ICC  
Supply Current  
1
mA  
ICC1  
VIL  
Supply Current (Standby)  
Input Low Voltage  
S = VCC, VIN = VSS or VCC, VCC = 1.65V  
1
µA  
V
–0.45  
0.3 VCC  
VCC+1  
0.3  
VIH  
Input High Voltage  
0.7 VCC  
V
VOL  
VOH  
Output Low Voltage  
Output High Voltage  
IOL = 0.15 mA, VCC = 1.65V  
V
IOH = –0.1 mA, VCC = 1.65V  
0.8 VCC  
V
Note: 1. This product is under qualification. For more information, please contact your nearest ST sales office.  
2. Preliminary data.  
27/42  
M95640, M95320  
Table 22. AC Characteristics (M95320 and M95640, Device Grade 6)  
Test conditions specified in Table 14. and Table 10.  
Previous  
Product  
Current  
Product  
New Product  
5,6  
Version  
3
4
Symbol Alt.  
Parameter  
Unit  
Version  
Version  
Min.  
Max.  
Min. Max. Min. Max.  
f
f
SCK  
Clock Frequency  
D.C.  
90  
5
D.C.  
15  
10  
D.C.  
15  
20  
MHz  
ns  
C
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
CSS1  
CSS2  
t
90  
15  
15  
ns  
SHCH  
t
t
100  
90  
40  
20  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
25  
15  
ns  
CHSH  
t
90  
15  
15  
ns  
CHSL  
1
t
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
90  
90  
40  
40  
20  
20  
ns  
ns  
µs  
µs  
t
CLH  
CH  
1
t
t
CLL  
CL  
2
2
t
1
1
1
1
2
2
t
RC  
CLCH  
CHCL  
t
t
FC  
t
t
DSU  
Data In Setup Time  
20  
30  
70  
40  
0
15  
15  
15  
20  
0
5
ns  
ns  
ns  
ns  
ns  
DVCH  
CHDX  
HHCH  
t
t
DH  
Data In Hold Time  
10  
15  
15  
0
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
t
HLCH  
t
CLHL  
Clock Low Set-up Time before HOLD not  
Active  
t
0
0
0
ns  
CLHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
100  
60  
25  
25  
20  
20  
ns  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
t
V
CLQV  
CLQX  
t
t
0
0
0
HO  
RO  
2
Output Rise Time  
50  
50  
20  
20  
25  
25  
5
20  
20  
20  
20  
5
t
t
QLQH  
QHQL  
2
t
Output Fall Time  
ns  
ns  
ns  
ms  
FO  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
50  
HHQV  
LZ  
2
t
100  
10  
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product version is identified by Process Identification letter ‘S’.  
4. Current product version is identified by Process Identification letter ‘V’’.  
5. New product version is identified by Process Identification letter ‘P’.  
6. Preliminary Data.  
28/42  
M95640, M95320  
Table 23. AC Characteristics (M95320 and M95640, Device Grade 3)  
Test conditions specified in Table 14. and Table 10.  
Previous  
Product  
Current  
Product  
New  
Product  
5,6  
3
4
Symbol  
Alt.  
Parameter  
Unit  
Version  
Version  
Version  
Min. Max. Min. Max.  
Min. Max.  
f
f
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
2
D.C.  
90  
5
D.C.  
15  
20  
MHz  
ns  
C
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
15  
ns  
SHCH  
t
t
100  
90  
20  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
15  
ns  
CHSH  
t
90  
15  
ns  
CHSL  
1
t
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
200  
200  
90  
90  
20  
20  
ns  
ns  
µs  
µs  
t
CLH  
CH  
1
t
t
CLL  
CL  
2
2
t
1
1
1
1
2
2
t
t
RC  
CLCH  
CHCL  
t
FC  
t
t
DSU  
Data In Setup Time  
40  
50  
140  
90  
0
20  
30  
70  
40  
0
5
ns  
ns  
ns  
ns  
ns  
DVCH  
CHDX  
HHCH  
t
t
Data In Hold Time  
10  
15  
15  
0
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
t
HLCH  
t
t
CLHL  
Clock Low Set-up Time before HOLD not  
Active  
0
0
0
ns  
CLHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
20  
20  
ns  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
t
CLQV  
CLQX  
V
t
0
0
0
HO  
RO  
2
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
20  
20  
20  
20  
5
t
t
QLQH  
t
Output Fall Time  
ns  
ns  
ns  
ms  
FO  
QHQL  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product version is identified by Process Identification letter ‘S’.  
4. Current product version is identified by Process Identification letter ‘B’.  
5. New product version is identified by Process Identification letter ‘P’.  
6. Preliminary Data.  
29/42  
M95640, M95320  
Table 24. AC Characteristics (M95320-W and M95640-W, Device Grade 6)  
Test conditions specified in Table 14. and Table 11.  
Previous  
Product  
Current  
Product  
New  
Product  
3
4
5,6  
Symbol Alt.  
Parameter  
Unit  
Version  
Version  
Version  
Min. Max. Min. Max. Min. Max.  
f
f
SCK  
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
2
D.C.  
90  
5
D.C.  
30  
10  
MHz  
ns  
C
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
CSS1  
CSS2  
t
90  
30  
ns  
SHCH  
t
t
100  
90  
40  
ns  
SHSL  
CHSH  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
30  
ns  
t
90  
30  
ns  
CHSL  
1
t
90  
40  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
90  
40  
ns  
µs  
t
CLL  
CL  
2
2
t
1
1
1
1
2
2
t
t
RC  
CLCH  
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
140  
90  
0
20  
30  
70  
40  
0
10  
10  
30  
30  
0
DVCH  
CHDX  
HHCH  
t
t
t
Data In Hold Time  
DH  
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
t
HLCH  
t
t
CLHL  
Clock Low Set-up Time before HOLD not  
Active  
0
0
0
ns  
CLHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
40  
40  
ns  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
0
0
0
CLQX  
HO  
RO  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
40  
40  
40  
40  
5
t
t
QLQH  
2
t
Output Fall Time  
ns  
ns  
ns  
ms  
FO  
QHQL  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Previous product version is identified by Process Identification letter ‘S’.  
4. Current product version is identified by Process Identification letter ‘V’’.  
5. New product version is identified by Process Identification letter ‘P’.  
6. Preliminary Data.  
30/42  
M95640, M95320  
Table 25. AC Characteristics (M95320-W and M95640-W, Device Grade 3)  
Test conditions specified in Table 14. and Table 11.  
Current Product  
New Product  
3
4,5  
Version  
Version  
Symbol Alt.  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
f
f
SCK  
Clock Frequency  
D.C.  
90  
5
D.C.  
30  
10  
MHz  
ns  
C
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
CSS1  
CSS2  
t
90  
30  
ns  
SHCH  
t
t
100  
90  
40  
ns  
SHSL  
CHSH  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
30  
ns  
t
90  
30  
ns  
CHSL  
1
t
90  
40  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
90  
40  
ns  
µs  
t
CLL  
CL  
2
2
t
1
1
2
2
t
t
RC  
CLCH  
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
20  
30  
70  
40  
0
10  
10  
30  
30  
0
DVCH  
CHDX  
HHCH  
t
t
Data In Hold Time  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
t
HLCH  
t
CLHL  
t
0
0
CLHH  
2
t
100  
60  
40  
40  
t
DIS  
SHQZ  
t
t
Clock Low to Output Valid  
Output Hold Time  
CLQV  
CLQX  
V
t
t
0
0
HO  
RO  
2
t
Output Rise Time  
50  
40  
t
t
QLQH  
2
t
Output Fall Time  
50  
50  
100  
5
40  
40  
40  
5
ns  
ns  
FO  
QHQL  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
ns  
t
HZ  
HLQZ  
t
W
t
WC  
ms  
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Current product version is identified by Process Identification letter ‘V’’.  
4. New product version is identified by Process Identification letter ‘P’.  
5. Preliminary Data.  
31/42  
M95640, M95320  
Table 26. AC Characteristics (M95320-R and M95640-R)  
Test conditions specified in Table 14. and Table 12.  
3,4  
3,4  
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
Max.  
f
C
f
Clock Frequency  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
60  
60  
90  
60  
60  
90  
SLCH  
t
ns  
SHCH  
t
t
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
ns  
CHSL  
1
t
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
90  
ns  
µs  
t
CLL  
CL  
2
2
t
2
2
t
t
RC  
CLCH  
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
0
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
20  
20  
60  
60  
0
DVCH  
CHDX  
HHCH  
t
t
DH  
Data In Hold Time  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
t
HLCH  
t
CLHL  
t
0
0
CLHH  
2
t
80  
80  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
V
Clock Low to Output Valid  
CLQV  
CLQX  
t
t
t
Output Hold Time  
0
HO  
RO  
2
Output Rise Time  
80  
80  
80  
80  
5
ns  
ns  
ns  
ns  
ms  
t
t
QLQH  
2
t
Output Fall Time  
FO  
QHQL  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
t
HZ  
HLQZ  
t
W
t
WC  
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Preliminary data: this product is under qualification. For more information, please contact your nearest ST sales office.  
4. New product version is identified by Process Identification letter ‘P’.  
32/42  
M95640, M95320  
Table 27. AC Characteristics (M95320-S Device Grade 3)  
Test conditions specified in Table 14. and Table 12.  
3,4  
3,4  
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
Max.  
f
C
f
Clock Frequency  
2
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
150  
150  
200  
150  
150  
200  
SLCH  
t
ns  
SHCH  
t
t
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
ns  
CHSL  
1
t
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
ns  
µs  
t
CLL  
CL  
2
2
t
2
2
t
t
RC  
CLCH  
t
Clock Fall Time  
µs  
ns  
ns  
ns  
ns  
0
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
50  
50  
150  
150  
0
DVCH  
CHDX  
HHCH  
t
t
DH  
Data In Hold Time  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock Low Set-up Time before HOLD Active  
Clock Low Set-up Time before HOLD not Active  
Output Disable Time  
t
HLCH  
t
CLHL  
t
0
0
CLHH  
2
t
200  
200  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
V
Clock Low to Output Valid  
CLQV  
CLQX  
t
t
t
Output Hold Time  
0
HO  
RO  
2
Output Rise Time  
200  
200  
200  
200  
10  
ns  
ns  
ns  
ns  
ms  
t
t
QLQH  
QHQL  
2
t
Output Fall Time  
FO  
t
t
HOLD High to Output Valid  
HOLD Low to Output High-Z  
Write Time  
HHQV  
LZ  
2
t
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t must never be lower than the shortest possible clock period, 1/f (max).  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Preliminary data: this product is under qualification. For more information, please contact your nearest ST sales office.  
4. New product version is identified by Process Identification letter ‘P’.  
33/42  
M95640, M95320  
Figure 16. Serial Input Timing  
tSHSL  
S
tCHSL  
tSLCH  
tCHSH  
tSHCH  
C
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
AI01447C  
Figure 17. Hold Timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
D
HOLD  
AI01448B  
34/42  
M95640, M95320  
Figure 18. Output Timing  
S
tCH  
C
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
tCLQX  
LSB OUT  
Q
D
tQLQH  
tQHQL  
ADDR.LSB IN  
AI01449D  
35/42  
M95640, M95320  
PACKAGE MECHANICAL  
Figure 19. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Note: Drawing is not to scale.  
Table 28. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
36/42  
M95640, M95320  
Figure 20. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
C
A
B
CP  
e
D
N
1
E
H
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 29. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
37/42  
M95640, M95320  
Figure 21. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Note: Drawing is not to scale.  
Table 30. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
38/42  
M95640, M95320  
Figure 22. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, Package Outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Note: Drawing is not to scale.  
Table 31. MLP8 - 8-lead Ultra thin Fine pitch Dual Flat No Lead, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
0.60  
0.05  
0.30  
Typ  
Max  
0.024  
0.002  
0.012  
A
A1  
b
0.55  
0.50  
0.022  
0.020  
0.000  
0.008  
0.00  
0.25  
2.00  
0.20  
0.010  
0.079  
D
D2  
ddd  
E
1.55  
1.65  
0.05  
0.061  
0.065  
0.002  
3.00  
0.118  
E2  
e
0.15  
0.25  
0.006  
0.010  
0.50  
0.45  
0.020  
0.018  
L
0.40  
0.50  
0.15  
0.016  
0.020  
0.006  
L1  
L3  
N
0.30  
0.012  
8
8
39/42  
M95640, M95320  
PART NUMBERING  
Table 32. Ordering Information Scheme  
Example:  
M95640  
W MN  
6
T
P
Device Type  
M95 = SPI serial access EEPROM  
2
Device Function  
640 = 64 Kbit (8192 x 8)  
320 = 32 Kbit (4096 x 8)  
Operating Voltage  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
R = V = 1.8 to 5.5V  
CC  
S = V = 1.65 to 5.5V  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
MB = MLP8 (2x3 mm)  
Device Grade  
6 = Industrial temperature range, –40 to 85 °C.  
Device tested with standard test flow  
1
3 = Device tested with High Reliability Certified Flow .  
Automotive temperature range (–40 to 125 °C)  
Option  
blank = Standard Packing  
T = Tape and Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P or G = Lead-Free and RoHS compliant  
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-  
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.  
2. Devices bearing the process identification letter “B” or “V” in the package marking (on the top side of the package, on the right side),  
guarantee more than 1 million Erase/Write cycle endurance (see Table 2.). For more information about these devices, and their  
device identification, please contact your nearest ST sales office, and ask for the Product Change Notice.  
For a list of available options (speed, package, etc.) or for further information on any aspect of this device,  
please contact your nearest ST Sales Office.  
40/42  
M95640, M95320  
REVISION HISTORY  
Table 33. Document Revision History  
Date  
Rev.  
Description of Revision  
Human Body Model meets JEDEC std (Table 2). Minor adjustments on pp 1,11,15. New clause  
on p7. Addition of TSSOP8 package on pp 1, 2, Ordering Info, Mechanical Data  
13-Jul-2000  
1.2  
Test condition added I and I , and specification of t  
and t  
removed.  
DHDL  
LI  
LO  
DLDH  
t
, t  
, t  
and t  
changed to 50ns for the -V range.  
DHDL  
CLCH CHCL DLDH  
“-V” Voltage range changed to “2.7V to 3.6V” throughout.  
Maximum lead soldering time and temperature conditions updated.  
Instruction sequence illustrations updated.  
16-Mar-2001  
1.3  
“Bus Master and Memory Devices on the SPI bus” illustration updated.  
Package Mechanical data updated  
19-Jul-2001  
06-Dec-2001  
18-Dec-2001  
08-Feb-2002  
1.4 M95160 and M95080 devices removed to their own data sheet  
Endurance increased to 1M write/erase cycles  
Instruction sequence illustrations updated  
1.5  
2.0 Document reformatted using the new template. No parameters changed.  
Announcement made of planned upgrade to 10MHz clock for the 5V, 40 to 85°C, range.  
Endurance set to 100K write/erase cycles  
2.1  
10MHz, 5MHz, 2MHz clock; 5ms, 10ms Write Time; 100K, 1M erase/write cycles distinguished  
on front page, and in the DC and AC Characteristics tables  
18-Dec-2002  
2.2  
26-Mar-2003  
26-Jun-2003  
15-Oct-2003  
21-Nov-2003  
28-Jan-2004  
2.3 Process indentification letter corrected in footnote to AC Characteristics table for temp. range 3  
2.4 -S voltage range upgraded by removing it and inserting -R voltage range in its place  
Table of contents, and Pb-free options added. V (min) improved to -0.45V  
3.0  
3.1  
IL  
V (min) and V (min) corrected (improved) to -0.45V  
I
O
4.0 TSSOP8 connections added to DIP and SO connections  
M95320-S and M95640-S root part numbers (1.65 to 5.5V Supply) and related characteristics  
added.  
20MHz Clock rate added.TSSOP14 package removed and MLP8 package added.  
Description of Power On Reset: VCC Lock-Out Write Protect updated.  
Product List summary table added. Absolute Maximum Ratings for V (min) and V (min)  
improved. Soldering temperature information clarified for RoHS compliant devices. Device  
Grade 3 clarified, with reference to HRCF and automotive environments. AEC-Q100-002  
IO  
CC  
24-May-2005  
5.0  
compliance. t  
(min) and t  
(min) is t for products under “S” process. t  
corrected  
CHHL  
CHHH  
CH  
HHQX  
to t  
.
HHQV  
Figure 17., Hold Timing updated.  
41/42  
M95640, M95320  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
42/42  

相关型号:

M95640-WMB3P/PC

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 2 X 3 MM, HALOGEN FREE AND ROHS COMPLIANT, UFDFPN-8
STMICROELECTR

M95640-WMB3T

32Kbit and 64Kbit Serial SPI Bus EEPROMs With High Speed Clock
STMICROELECTR

M95640-WMB3T/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMB3T/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMB3TG

32Kbit and 64Kbit Serial SPI Bus EEPROMs With High Speed Clock
STMICROELECTR

M95640-WMB3TG/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMB3TG/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMB3TG/PB

IC,SERIAL EEPROM,8KX8,CMOS,LLCC,8PIN,PLASTIC
STMICROELECTR

M95640-WMB3TG/PC

8KX8 SPI BUS SERIAL EEPROM, PDSO8, 2 X 3 MM, HALOGEN FREE AND ROHS COMPLIANT, UFDFPN-8
STMICROELECTR

M95640-WMB3TP

32Kbit and 64Kbit Serial SPI Bus EEPROMs With High Speed Clock
STMICROELECTR

M95640-WMB3TP/B

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR

M95640-WMB3TP/P

32 Kbit and 64 Kbit Serial SPI bus EEPROMs with high speed clock
STMICROELECTR