M95640-WDW6TP [STMICROELECTRONICS]

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock; 为64Kbit和32Kbit串行SPI总线的EEPROM采用高速时钟
M95640-WDW6TP
型号: M95640-WDW6TP
厂家: ST    ST
描述:

64Kbit and 32Kbit Serial SPI Bus EEPROM With High Speed Clock
为64Kbit和32Kbit串行SPI总线的EEPROM采用高速时钟

存储 内存集成电路 光电二极管 PC 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总39页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95640  
M95320  
64Kbit and 32Kbit Serial SPI Bus EEPROM  
With High Speed Clock  
FEATURES SUMMARY  
Compatible with SPI Bus Serial Interface  
Figure 1. Packages  
(Positive Clock SPI Modes)  
Single Supply Voltage:  
– 4.5 to 5.5V for M95xxx  
– 2.5 to 5.5V for M95xxx-W  
– 1.8 to 5.5V for M95xxx-R  
8
10MHz, 5MHz or 2MHz clock rate (depending  
on ordering options)  
1
5ms or 10ms Write Time (depending on  
ordering options)  
PDIP8 (BN)  
0.25 mm frame  
Status Register  
Hardware Protection of the Status Register  
BYTE and PAGE WRITE (up to 32 Bytes)  
Self-Timed Programming Cycle  
Adjustable Size Read-Only EEPROM Area  
Enhanced ESD Protection  
8
1
More than 100,000 or 1 million Erase/Write  
SO8 (MN)  
150 mil width  
Cycles (depending on ordering options)  
More than 40 Year Data Retention  
TSSOP8 (DW)  
169 mil width  
TSSOP14 (DL)  
169 mil width  
November 2003  
1/39  
M95640, M95320  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3. DIP and SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. TSSOP14 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Output (Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write Protect (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
CONNECTING TO THE SPI BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5. Bus Master and Memory Devices on the SPI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 6. SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Active Power and Stand-by Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hold Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7. Hold Condition Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 2. Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Protection and Protocol Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 3. Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 8. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2/39  
M95640, M95320  
INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 4. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 9. Write Enable (WREN) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 10. Write Disable (WRDI) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Read Status Register (RDSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Status Register (RDSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WIP bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12. Write Status Register (WRSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 5. Protection Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 6. Address Range Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 13. Read from Memory Array (READ) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14. Byte Write (WRITE) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Write to Memory Array (WRITE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 15. Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 8. Operating Conditions (M95xxx). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 9. Operating Conditions (M95xxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 10. Operating Conditions (M95xxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 12. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 13. DC Characteristics (M95xxx, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 14. DC Characteristics (M95xxx, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 15. DC Characteristics (M95xxx-W, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 16. DC Characteristics (M95xxx-W, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 17. DC Characteristics (M95xxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 18. AC Characteristics (M95xxx, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3/39  
M95640, M95320  
Table 19. AC Characteristics (M95xxx, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 20. AC Characteristics (M95xxx-W, temperature range 6) . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 21. AC Characteristics (M95xxx-W, temperature range 3) . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 22. AC Characteristics (M95xxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 17. Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 18. Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 19. Output Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 20. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 33  
Table 23. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . . 33  
Figure 21. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline. . . . 34  
Table 24. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
34  
Figure 22. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 35  
Table 25. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 35  
Figure 23. TSSOP14 - 14 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . 36  
Table 26. TSSOP14 - 14 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . 36  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 27. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 28. How to Identify Current and Forthcoming Products by the Process Identification Letter 37  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 29. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 38  
4/39  
M95640, M95320  
SUMMARY DESCRIPTION  
These electrically erasable programmable memo-  
ry (EEPROM) devices are accessed by a high  
speed SPI-compatible bus. The memory array is  
organized as 8192 x 8 bit (M95640), and 4096 x 8  
bit (M95320).  
The device is accessed by a simple serial interface  
that is SPI-compatible. The bus signals are C, D  
and Q, as shown in Table 1 and Figure 2.  
Figure 3. DIP and SO Connections  
M95xxx  
S
Q
1
8
V
CC  
HOLD  
2
3
4
7
The device is selected when Chip Select (S) is tak-  
en Low. Communications with the device can be  
interrupted using Hold (HOLD).  
W
6
5
C
D
V
SS  
AI01790D  
Figure 2. Logic Diagram  
V
CC  
Note: 1. See page 33 (onwards) for package dimensions, and how  
to identify pin-1.  
Figure 4. TSSOP14 Connections  
D
C
S
Q
M95xxx  
M95xxx  
S
Q
1
2
3
4
5
6
7
14  
V
CC  
W
13 HOLD  
12 NC  
11 NC  
10 NC  
NC  
NC  
NC  
W
HOLD  
9
8
C
D
V
SS  
V
SS  
AI01789C  
AI02346C  
Note: 1. See page 33 (onwards) for package dimensions, and how  
to identify pin-1.  
2. NC = Not Connected  
Table 1. Signal Names  
C
Serial Clock  
Serial Data Input  
Serial Data Output  
Chip Select  
Write Protect  
Hold  
D
Q
S
W
HOLD  
V
Supply Voltage  
Ground  
CC  
V
SS  
5/39  
M95640, M95320  
SIGNAL DESCRIPTION  
During all operations, V must be held stable and  
(Q) is at high impedance. Unless an internal Write  
cycle is in progress, the device will be in the Stand-  
by mode. Driving Chip Select (S) Low enables the  
device, placing it in the active power mode.  
After Power-up, a falling edge on Chip Select (S)  
is required prior to the start of any instruction.  
CC  
within the specified valid range: V (min) to  
CC  
V
(max).  
CC  
All of the input and output signals must be held  
High or Low (according to voltages of V , V , V  
IH OH IL  
or V , as specified in Tables 13 to 17). These sig-  
OL  
nals are described next.  
Hold (HOLD). The Hold (HOLD) signal is used to  
pause any serial communications with the device  
without deselecting the device.  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be se-  
lected, with Chip Select (S) driven Low.  
Write Protect (W). The main purpose of this in-  
put signal is to freeze the size of the area of mem-  
ory that is protected against Write instructions (as  
specified by the values in the BP1 and BP0 bits of  
the Status Register).  
Serial Data Output (Q). This output signal is  
used to transfer data serially out of the device.  
Data is shifted out on the falling edge of Serial  
Clock (C).  
Serial Data Input (D). This input signal is used to  
transfer data serially into the device. It receives in-  
structions, addresses, and the data to be written.  
Values are latched on the rising edge of Serial  
Clock (C).  
Serial Clock (C). This input signal provides the  
timing of the serial interface. Instructions, address-  
es, or data present at Serial Data Input (D) are  
latched on the rising edge of Serial Clock (C). Data  
on Serial Data Output (Q) changes after the falling  
edge of Serial Clock (C).  
This pin must be driven either High or Low, and  
must be stable during all write operations.  
Chip Select (S). When this input signal is High,  
the device is deselected and Serial Data Output  
6/39  
M95640, M95320  
CONNECTING TO THE SPI BUS  
These devices are fully compatible with the SPI  
protocol.  
All instructions, addresses and input data bytes  
are shifted in to the device, most significant bit  
first. The Serial Data Input (D) is sampled on the  
first rising edge of the Serial Clock (C) after Chip  
Select (S) goes Low.  
(Q) is latched on the first falling edge of the Serial  
Clock (C) after the instruction (such as the Read  
from Memory Array and Read Status Register in-  
structions) have been clocked into the device.  
Figure 5 shows three devices, connected to an  
MCU, on a SPI bus. Only one device is selected at  
a time, so only one device drives the Serial Data  
Output (Q) line at a time, all the others being high  
impedance.  
All output data bytes are shifted out of the device,  
most significant bit first. The Serial Data Output  
Figure 5. Bus Master and Memory Devices on the SPI Bus  
SDO  
SPI Interface with  
(CPOL, CPHA) =  
(0, 0) or (1, 1)  
SDI  
SCK  
C
Q
D
C
Q
D
C Q D  
Bus Master  
(ST6, ST7, ST9,  
ST10, Others)  
SPI Memory  
Device  
SPI Memory  
Device  
SPI Memory  
Device  
CS3 CS2 CS1  
S
S
S
W
HOLD  
W
HOLD  
HOLD  
W
AI03746D  
Note: 1. The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.  
SPI Modes  
is available from the falling edge of Serial Clock  
(C).  
The difference between the two modes, as shown  
in Figure 6, is the clock polarity when the bus mas-  
ter is in Stand-by mode and not transferring data:  
– C remains at 0 for (CPOL=0, CPHA=0)  
– C remains at 1 for (CPOL=1, CPHA=1)  
These devices can be driven by a microcontroller  
with its SPI peripheral running in either of the two  
following modes:  
– CPOL=0, CPHA=0  
– CPOL=1, CPHA=1  
For these two modes, input data is latched in on  
the rising edge of Serial Clock (C), and output data  
7/39  
M95640, M95320  
Figure 6. SPI Modes Supported  
CPOL CPHA  
C
C
0
1
0
1
D
MSB  
Q
MSB  
AI01438B  
8/39  
M95640, M95320  
OPERATING FEATURES  
Power-up  
Active Power and Stand-by Power Modes  
When the power supply is turned on, V  
rises  
When Chip Select (S) is Low, the device is en-  
abled, and in the Active Power mode. The device  
CC  
from V to V  
.
SS  
CC  
consumes I , as specified in Tables 13 to 17.  
CC  
During this time, the Chip Select (S) must be al-  
lowed to follow the V voltage. It must not be al-  
When Chip Select (S) is High, the device is dis-  
abled. If an Erase/Write cycle is not currently in  
progress, the device then goes in to the Stand-by  
Power mode, and the device consumption drops  
CC  
lowed to float, but should be connected to V via  
CC  
a suitable pull-up resistor.  
As a built in safety feature, Chip Select (S) is edge  
sensitive as well as level sensitive. After Power-  
up, the device does not become selected until a  
falling edge has first been detected on Chip Select  
(S). This ensures that Chip Select (S) must have  
been High, prior to going Low to start the first op-  
eration.  
to I  
.
CC1  
Hold Condition  
The Hold (HOLD) signal is used to pause any se-  
rial communications with the device without reset-  
ting the clocking sequence.  
During the Hold condition, the Serial Data Output  
(Q) is high impedance, and Serial Data Input (D)  
and Serial Clock (C) are Don’t Care.  
Power On Reset: V Lock-Out Write Protect  
CC  
In order to prevent data corruption and inadvertent  
Write operations during Power-up, a Power On  
Reset (POR) circuit is included. The internal reset  
To enter the Hold condition, the device must be  
selected, with Chip Select (S) Low.  
is held active until V  
has reached the POR  
CC  
Normally, the device is kept selected, for the whole  
duration of the Hold condition. Deselecting the de-  
vice while it is in the Hold condition, has the effect  
of resetting the state of the device, and this mech-  
anism can be used if it is required to reset any pro-  
cesses that had been in progress.  
The Hold condition starts when the Hold (HOLD)  
signal is driven Low at the same time as Serial  
Clock (C) already being Low (as shown in Figure  
7).  
threshold value, and all operations are disabled –  
the device will not respond to any command. In the  
same way, when V  
drops from the operating  
CC  
voltage, below the POR threshold value, all oper-  
ations are disabled and the device will not respond  
to any command.  
A stable and valid V must be applied before ap-  
CC  
plying any logic signal.  
Power-down  
At Power-down, the device must be deselected.  
Chip Select (S) should be allowed to follow the  
The Hold condition ends when the Hold (HOLD)  
signal is driven High at the same time as Serial  
Clock (C) already being Low.  
voltage applied on V  
.
CC  
Figure 7 also shows what happens if the rising and  
falling edges are not timed to coincide with Serial  
Clock (C) being Low.  
Figure 7. Hold Condition Activation  
C
HOLD  
Hold  
Hold  
Condition  
Condition  
AI02029D  
9/39  
M95640, M95320  
Status Register  
Figure 8 shows the position of the Status Register  
in the control logic of the device. The Status Reg-  
ister contains a number of status and control bits  
that can be read or set (as appropriate) by specific  
instructions.  
Write and Write Status Register instructions are  
checked that they consist of a number of clock  
pulses that is a multiple of eight, before they are  
accepted for execution.  
All instructions that modify data must be  
preceded by a Write Enable (WREN) instruction  
to set the Write Enable Latch (WEL) bit . This bit  
is returned to its reset state by the following  
events:  
WIP bit. The Write In Progress (WIP) bit indicates  
whether the memory is busy with a Write or Write  
Status Register cycle.  
WEL bit. The Write Enable Latch (WEL) bit indi-  
cates the status of the internal Write Enable Latch.  
– Power-up  
BP1, BP0 bits. The Block Protect (BP1, BP0) bits  
are non-volatile. They define the size of the area to  
be software protected against Write instructions.  
– Write Disable (WRDI) instruction completion  
– Write Status Register (WRSR) instruction  
completion  
SRWD bit. The Status Register Write Disable  
(SRWD) bit is operated in conjunction with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected mode. In this mode, the non-volatile bits  
of the Status Register (SRWD, BP1, BP0) become  
read-only bits.  
– Write (WRITE) instruction completion  
The Block Protect (BP1, BP0) bits allow part of  
the memory to be configured as read-only. This  
is the Software Protected Mode (SPM).  
The Write Protect (W) signal allows the Block  
Protect (BP1, BP0) bits to be protected. This is  
the Hardware Protected Mode (HPM).  
Table 2. Status Register Format  
For any instruction to be accepted, and executed,  
Chip Select (S) must be driven High after the rising  
edge of Serial Clock (C) for the last bit of the in-  
struction, and before the next rising edge of Serial  
Clock (C).  
b7  
b0  
SRWD  
0
0
0
BP1 BP0 WEL WIP  
Two points need to be noted in the previous sen-  
tence:  
– The ‘last bit of the instruction’ can be the eighth  
bit of the instruction code, or the eighth bit of a  
data byte, depending on the instruction (except  
for Read Status Register (RDSR) and Read  
(READ) instructions).  
Status Register Write Protect  
Block Protect Bits  
Write Enable Latch Bit  
Write In Progress Bit  
– The ‘next rising edge of Serial Clock (C)’ might  
(or might not) be the next bus transaction for  
some other device on the SPI bus.  
Data Protection and Protocol Control  
Non-volatile memory devices can be used in envi-  
ronments that are particularly noisy, and within ap-  
plications that could experience problems if  
memory bytes are corrupted. Consequently, the  
device features the following data protection  
mechanisms:  
Table 3. Write-Protected Block Size  
Status Register Bits  
Protected Block  
Array Addresses Protected  
BP1  
BP0  
M95640  
none  
M95320  
none  
0
0
1
1
0
1
0
1
none  
Upper quarter  
Upper half  
1800h - 1FFFh  
1000h - 1FFFh  
0000h - 1FFFh  
0C00h - 0FFFh  
0800h - 0FFFh  
0000h - 0FFFh  
Whole memory  
10/39  
M95640, M95320  
MEMORY ORGANIZATION  
The memory is organized as shown in Figure 8.  
Figure 8. Block Diagram  
HOLD  
High Voltage  
Generator  
W
S
Control Logic  
C
D
Q
I/O Shift Register  
Address Register  
and Counter  
Data  
Register  
Status  
Register  
Size of the  
Read only  
EEPROM  
area  
1 Page  
X Decoder  
AI01272C  
11/39  
M95640, M95320  
INSTRUCTIONS  
Each instruction starts with a single-byte code, as  
summarized in Table 4.  
If an invalid instruction is sent (one not contained  
in Table 4), the device automatically deselects it-  
self.  
Table 4. Instruction Set  
Instruc  
Instruction  
Format  
Description  
tion  
WREN Write Enable  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
WRDI  
RDSR  
Write Disable  
Read Status Register  
WRSR Write Status Register  
READ Read from Memory Array  
WRITE Write to Memory Array  
Figure 9. Write Enable (WREN) Sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
Write Enable (WREN)  
As shown in Figure 9, to send this instruction to the  
device, Chip Select (S) is driven Low, and the bits  
of the instruction byte are shifted in, on Serial Data  
Input (D). The device then enters a wait state. It  
waits for a the device to be deselected, by Chip  
Select (S) being driven High.  
The Write Enable Latch (WEL) bit must be set pri-  
or to each WRITE and WRSR instruction. The only  
way to do this is to send a Write Enable instruction  
to the device.  
12/39  
M95640, M95320  
Figure 10. Write Disable (WRDI) Sequence  
S
0
1
2
3
4
5
6
7
C
Instruction  
D
High Impedance  
Q
AI03750D  
Write Disable (WRDI)  
The device then enters a wait state. It waits for a  
the device to be deselected, by Chip Select (S) be-  
ing driven High.  
The Write Enable Latch (WEL) bit, in fact, be-  
comes reset by any of the following events:  
One way of resetting the Write Enable Latch  
(WEL) bit is to send a Write Disable instruction to  
the device.  
As shown in Figure 10, to send this instruction to  
the device, Chip Select (S) is driven Low, and the  
bits of the instruction byte are shifted in, on Serial  
Data Input (D).  
– Power-up  
– WRDI instruction execution  
– WRSR instruction completion  
– WRITE instruction completion.  
13/39  
M95640, M95320  
Figure 11. Read Status Register (RDSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
Read Status Register (RDSR)  
BP1, BP0 bits. The Block Protect (BP1, BP0) bits  
are non-volatile. They define the size of the area to  
be software protected against Write instructions.  
These bits are written with the Write Status Regis-  
ter (WRSR) instruction. When one or both of the  
Block Protect (BP1, BP0) bits is set to 1, the rele-  
vant memory area (as defined in Table 2) be-  
comes protected against Write (WRITE)  
instructions. The Block Protect (BP1, BP0) bits  
can be written provided that the Hardware Protect-  
ed mode has not been set.  
The Read Status Register (RDSR) instruction al-  
lows the Status Register to be read. The Status  
Register may be read at any time, even while a  
Write or Write Status Register cycle is in progress.  
When one of these cycles is in progress, it is rec-  
ommended to check the Write In Progress (WIP)  
bit before sending a new instruction to the device.  
It is also possible to read the Status Register con-  
tinuously, as shown in Figure 11.  
SRWD bit. The Status Register Write Disable  
(SRWD) bit is operated in conjunction with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected mode (when the Status Register Write  
Disable (SRWD) bit is set to 1, and Write Protect  
(W) is driven Low). In this mode, the non-volatile  
bits of the Status Register (SRWD, BP1, BP0) be-  
come read-only bits and the Write Status Register  
(WRSR) instruction is no longer accepted for exe-  
cution.  
The status and control bits of the Status Register  
are as follows:  
WIP bit. The Write In Progress (WIP) bit indicates  
whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle  
is in progress, when reset to 0 no such cycle is in  
progress.  
WEL bit. The Write Enable Latch (WEL) bit indi-  
cates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is  
set, when set to 0 the internal Write Enable Latch  
is reset and no Write or Write Status Register in-  
struction is accepted.  
14/39  
M95640, M95320  
Figure 12. Write Status Register (WRSR) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
C
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
Write Status Register (WRSR)  
(WIP) bit. The Write In Progress (WIP) bit is 1 dur-  
ing the self-timed Write Status Register cycle, and  
is 0 when it is completed. When the cycle is com-  
pleted, the Write Enable Latch (WEL) is reset.  
The Write Status Register (WRSR) instruction al-  
lows the user to change the values of the Block  
Protect (BP1, BP0) bits, to define the size of the  
area that is to be treated as read-only, as defined  
in Table 2.  
The Write Status Register (WRSR) instruction also  
allows the user to set or reset the Status Register  
Write Disable (SRWD) bit in accordance with the  
Write Protect (W) signal. The Status Register  
Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware  
Protected Mode (HPM). The Write Status Register  
(WRSR) instruction is not executed once the Hard-  
ware Protected Mode (HPM) is entered.  
The contents of the Status Register Write Disable  
(SRWD) and Block Protect (BP1, BP0) bits are fro-  
zen at their current values from just before the  
start of the execution of Write Status Register  
(WRSR) instruction. The new, updated, values  
take effect at the moment of completion of the ex-  
ecution of Write Status Register (WRSR) instruc-  
tion.  
The Write Status Register (WRSR) instruction al-  
lows new values to be written to the Status Regis-  
ter. Before it can be accepted, a Write Enable  
(WREN) instruction must previously have been ex-  
ecuted. After the Write Enable (WREN) instruction  
has been decoded and executed, the device sets  
the Write Enable Latch (WEL).  
The Write Status Register (WRSR) instruction is  
entered by driving Chip Select (S) Low, followed  
by the instruction code and the data byte on Serial  
Data Input (D).  
The instruction sequence is shown in Figure 12.  
The Write Status Register (WRSR) instruction has  
no effect on b6, b5, b4, b1 and b0 of the Status  
Register. b6, b5 and b4 are always read as 0.  
Chip Select (S) must be driven High after the rising  
edge of Serial Clock (C) that latches in the eighth  
bit of the data byte, and before the next rising edge  
of Serial Clock (C). Otherwise, the Write Status  
Register (WRSR) instruction is not executed. As  
soon as Chip Select (S) is driven High, the self-  
timed Write Status Register cycle (whose duration  
is t ) is initiated. While the Write Status Register  
W
cycle is in progress, the Status Register may still  
be read to check the value of the Write In Progress  
15/39  
M95640, M95320  
Table 5. Protection Modes  
Memory Content  
W
Signal  
SRWD  
Bit  
Write Protection of the  
Status Register  
Mode  
1
1
Protected Area  
Unprotected Area  
1
0
0
0
Status Register is  
Writable (if the WREN  
Software instruction has set the  
Protected WEL bit)  
Ready to accept Write  
instructions  
Write Protected  
(SPM)  
The values in the BP1  
and BP0 bits can be  
changed  
1
0
1
1
Status Register is  
Hardware Hardware write protected  
Protected The values in the BP1  
Ready to accept Write  
instructions  
Write Protected  
(HPM)  
and BP0 bits cannot be  
changed  
Note: 1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 3.  
The protection features of the device are summa-  
rized in Table 3.  
Block Protect (BP1, BP0) bits of the Status Reg-  
ister, are also hardware protected against data  
modification.  
When the Status Register Write Disable (SRWD)  
bit of the Status Register is 0 (its initial delivery  
state), it is possible to write to the Status Register  
provided that the Write Enable Latch (WEL) bit has  
previously been set by a Write Enable (WREN) in-  
struction, regardless of the whether Write Protect  
(W) is driven High or Low.  
When the Status Register Write Disable (SRWD)  
bit of the Status Register is set to 1, two cases  
need to be considered, depending on the state of  
Write Protect (W):  
Regardless of the order of the two events, the  
Hardware Protected Mode (HPM) can be entered:  
– by setting the Status Register Write Disable  
(SRWD) bit after driving Write Protect (W) Low  
– or by driving Write Protect (W) Low after setting  
the Status Register Write Disable (SRWD) bit.  
The only way to exit the Hardware Protected Mode  
(HPM) once entered is to pull Write Protect (W)  
High.  
If Write Protect (W) is permanently tied High, the  
Hardware Protected Mode (HPM) can never be  
activated, and only the Software Protected Mode  
(SPM), using the Block Protect (BP1, BP0) bits of  
the Status Register, can be used.  
– If Write Protect (W) is driven High, it is possible  
to write to the Status Register provided that the  
Write Enable Latch (WEL) bit has previously  
been set by a Write Enable (WREN) instruction.  
– If Write Protect (W) is driven Low, it is not pos-  
sible to write to the Status Register even if the  
Write Enable Latch (WEL) bit has previously  
been set by a Write Enable (WREN) instruction.  
(Attempts to write to the Status Register are re-  
jected, and are not accepted for execution). As  
a consequence, all the data bytes in the memo-  
ry area that are software protected (SPM) by the  
Table 6. Address Range Bits  
Device  
M95640  
M95320  
Address Bits  
A12-A0  
A11-A0  
Note: 1. b15 to b13 are Don’t Care on the M95640.  
b15 to b12 are Don’t Care on the M95320.  
16/39  
M95640, M95320  
Figure 13. Read from Memory Array (READ) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
Note: Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
Read from Memory Array (READ)  
When the highest address is reached, the address  
counter rolls over to zero, allowing the Read cycle  
to be continued indefinitely. The whole memory  
can, therefore, be read with a single READ instruc-  
tion.  
The Read cycle is terminated by driving Chip Se-  
lect (S) High. The rising edge of the Chip Select  
(S) signal can occur at any time during the cycle.  
As shown in Figure 13, to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte and address bytes are  
then shifted in, on Serial Data Input (D). The ad-  
dress is loaded into an internal address register,  
and the byte of data at that address is shifted out,  
on Serial Data Output (Q).  
If Chip Select (S) continues to be driven Low, the  
internal address register is automatically incre-  
mented, and the byte of data at the new address is  
shifted out.  
The first byte addressed can be any byte within  
any page.  
The instruction is not accepted, and is not execut-  
ed, if a Write cycle is currently in progress.  
17/39  
M95640, M95320  
Figure 14. Byte Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
Note: Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
Write to Memory Array (WRITE)  
Each time a new data byte is shifted in, the least  
significant bits of the internal address counter are  
incremented. If the number of data bytes sent to  
the device exceeds the page boundary, the inter-  
nal address counter rolls over to the beginning of  
the page, and the previous data there are overwrit-  
ten with the incoming data. (The page size of  
these devices is 32 bytes).  
The instruction is not accepted, and is not execut-  
ed, under the following conditions:  
– if the Write Enable Latch (WEL) bit has not been  
set to 1 (by executing a Write Enable instruction  
just before)  
As shown in Figure 14, to send this instruction to  
the device, Chip Select (S) is first driven Low. The  
bits of the instruction byte, address byte, and at  
least one data byte are then shifted in, on Serial  
Data Input (D).  
The instruction is terminated by driving Chip Se-  
lect (S) High at a byte boundary of the input data.  
In the case of Figure 14, this occurs after the  
eighth bit of the data byte has been latched in, in-  
dicating that the instruction is being used to write  
a single byte. The self-timed Write cycle starts,  
and continues for a period t  
(as specified in Ta-  
WC  
bles 18 to 22), at the end of which the Write in  
Progress (WIP) bit is reset to 0.  
– if a Write cycle is already in progress  
– if the device has not been deselected, by Chip  
Select (S) being driven High, at a byte boundary  
(after the eighth bit, b0, of the last data byte that  
has been latched in)  
– if the addressed page is in the region protected  
by the Block Protect (BP1 and BP0) bits.  
If, though, Chip Select (S) continues to be driven  
Low, as shown in Figure 15, the next byte of input  
data is shifted in, so that more than a single byte,  
starting from the given address towards the end of  
the same page, can be written in a single internal  
Write cycle.  
18/39  
M95640, M95320  
Figure 15. Page Write (WRITE) Sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
D
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
Note: Depending on the memory size, as shown in Table 6, the most significant address bits are Don’t Care.  
19/39  
M95640, M95320  
POWER-UP AND DELIVERY STATE  
Power-up State  
After Power-up, the device is in the following state:  
– Stand-by mode  
the SRWD, BP1 and BP0 bits of the Status Regis-  
ter are unchanged from the previous power-down  
(they are non-volatile bits).  
– deselected (after Power-up, a falling edge is re-  
quired on Chip Select (S) before any instruc-  
tions can be started).  
INITIAL DELIVERY STATE  
– not in the Hold Condition  
– the Write Enable Latch (WEL) is reset to 0  
– Write In Progress (WIP) is reset to 0  
The device is delivered with the memory array set  
at all 1s (FFh). The Status Register Write Disable  
(SRWD) and Block Protect (BP1 and BP0) bits are  
initialized to 0.  
20/39  
M95640, M95320  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 7. Absolute Maximum Ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
T
STG  
Storage Temperature  
–65  
150  
°C  
2
PDIP  
SO  
260  
1
3
TLEAD  
°C  
Lead Temperature during Soldering  
260  
3
TSSOP  
260  
VO  
VI  
Output Voltage  
Input Voltage  
Supply Voltage  
–0.45  
–0.45  
–0.3  
VCC+0.6  
6.5  
V
V
V
V
V
6.5  
CC  
4
VESD  
–4000  
4000  
Electrostatic Discharge Voltage (Human Body model)  
®
Note: 1. Compliant with the ECOPACK 7191395 specifiication for lead-free soldering processes  
2. No longer than 10 seconds  
3. Not exceeding 250°C for more than 30 seconds, and peaking at 260°C  
4. JEDEC Std JESD22-A114A (C1=100 pF, R1=1500 , R2=500 )  
21/39  
M95640, M95320  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, and the DC and AC charac-  
teristics of the device. The parameters in the DC  
and AC Characteristic tables that follow are de-  
rived from tests performed under the Measure-  
ment Conditions summarized in the relevant  
tables. Designers should check that the operating  
conditions in their circuit match the measurement  
conditions when relying on the quoted parame-  
ters.  
Table 8. Operating Conditions (M95xxx)  
Symbol  
Parameter  
Min.  
4.5  
Max.  
5.5  
Unit  
V
V
CC  
Supply Voltage  
Ambient Operating Temperature (range 6)  
–40  
–40  
85  
°C  
°C  
TA  
Ambient Operating Temperature (range 3)  
125  
Table 9. Operating Conditions (M95xxx-W)  
Symbol  
Min.  
Max.  
Unit  
Parameter  
V
Supply Voltage  
2.5  
–40  
–40  
5.5  
85  
V
CC  
Ambient Operating Temperature (range 6)  
Ambient Operating Temperature (range 3)  
°C  
°C  
TA  
125  
Table 10. Operating Conditions (M95xxx-R)  
1
Symbol  
Min.  
1.8  
Max.  
5.5  
Unit  
V
Parameter  
V
CC  
Supply Voltage  
Ambient Operating Temperature  
TA  
–40  
85  
°C  
Note: 1. This product is under development. For more information, please contact your nearest ST sales office.  
Table 11. AC Measurement Conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
pF  
ns  
V
C
Load Capacitance  
100  
L
Input Rise and Fall Times  
50  
0.2V to 0.8V  
Input Pulse Voltages  
CC  
CC  
CC  
0.3V to 0.7V  
Input and Output Timing Reference Voltages  
V
CC  
Note: 1. Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 16. AC Measurement I/O Waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
0.2V  
CC  
CC  
0.7V  
CC  
0.3V  
CC  
AI00825B  
22/39  
M95640, M95320  
Table 12. Capacitance  
Symbol  
COUT  
Parameter  
Test Condition  
= 0V  
Min.  
Max.  
Unit  
pF  
Output Capacitance (Q)  
Input Capacitance (D)  
V
8
8
6
OUT  
CIN  
V
IN  
IN  
= 0V  
= 0V  
pF  
Input Capacitance (other pins)  
V
pF  
Note: Sampled only, not 100% tested, at T =25°C and a frequency of 5 MHz.  
A
Table 13. DC Characteristics (M95xxx, temperature range 6)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
µA  
µA  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
C = 0.1VCC/0.9VCC at 5MHz,  
4
mA  
mA  
µA  
2
VCC = 5 V, Q = open, Current Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 10MHz,  
5
3
V
CC = 5 V, Q = open, New Product  
S = VCC , VCC = 5 V,  
10  
2
VIN = VSS or VCC, Current Product  
Supply Current  
(Stand-by)  
ICC1  
S = VCC , VCC = 5 V,  
µA  
2
3
V
IN = VSS or VCC, New Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
0.7 VCC  
1
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
VOL  
1
Output High Voltage  
0.8 VCC  
V
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Current product: identified by Process Identification letter S.  
3. New product: identified by Process Identification letter V.  
23/39  
M95640, M95320  
Table 14. DC Characteristics (M95xxx, temperature range 3)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
2
mA  
mA  
µA  
2
VCC = 5 V, Q = open, Current Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 5 MHz,  
4
3
VCC = 5 V, Q = open, New Product  
S = VCC , VCC = 5 V,  
20  
2
VIN = VSS or VCC, Current Product  
Supply Current  
(Stand-by)  
ICC1  
S = VCC , VCC = 5 V,  
µA  
5
3
VIN = VSS or VCC, New Product  
VIL  
VIH  
0.3 VCC  
VCC+1  
0.4  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
–0.45  
V
V
V
0.7 VCC  
1
IOL = 2 mA, VCC = 5 V  
IOH = –2 mA, VCC = 5 V  
VOL  
1
Output High Voltage  
0.8 VCC  
V
VOH  
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards.  
2. Current product: identified by Process Identification letter S.  
3. New product: identified by Process Identification letter B.  
Table 15. DC Characteristics (M95xxx-W, temperature range 6)  
Symbol  
Parameter  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
Unit  
µA  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
2
mA  
mA  
µA  
1
V
CC = 2.5 V, Q = open, Current Product  
ICC  
Supply Current  
C = 0.1VCC/0.9VCC at 5 MHz,  
3
2
2
VCC = 2.5 V, Q = open, New Product  
S = VCC , VCC = 2.5 V,  
1
VIN = VSS or VCC, Current Product  
Supply Current  
(Stand-by)  
ICC1  
S = VCC , VCC = 2.5 V  
µA  
1
2
VIN = VSS or VCC, New Product  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Note: 1. Current product: identified by Process Identification letter S.  
2. New product: identified by Process Identification letter V.  
24/39  
M95640, M95320  
Table 16. DC Characteristics (M95xxx-W, temperature range 3)  
Symbol  
Parameter  
Unit  
µA  
Test Condition  
VIN = VSS or VCC  
Min.  
Max.  
± 2  
ILI  
Input Leakage Current  
Output Leakage Current  
ILO  
S = VCC, VOUT = VSS or VCC  
± 2  
µA  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
ICC  
Supply Current  
mA  
µA  
3
2
Supply Current  
(Stand-by)  
ICC1  
S = VCC , VCC = 2.5 V, VIN = VSS or VCC  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.4  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 1.5 mA, VCC = 2.5 V  
IOH = –0.4 mA, VCC = 2.5 V  
0.8 VCC  
Note: New product: identified by Process Identification letter B.  
Table 17. DC Characteristics (M95xxx-R)  
1
2
2
Symbol  
Parameter  
Unit  
µA  
Test Condition  
Min.  
Max.  
ILI  
Input Leakage Current  
Output Leakage Current  
VIN = VSS or VCC  
± 2  
± 2  
ILO  
S = VCC, VOUT = VSS or VCC  
µA  
C = 0.1VCC/0.9VCC at 2 MHz,  
VCC = 1.8 V, Q = open  
ICC  
Supply Current  
mA  
µA  
1
1
Supply Current  
(Stand-by)  
ICC1  
S = VCC, VIN = VSS or VCC , VCC = 1.8 V  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.45  
0.3 VCC  
VCC+1  
0.3  
V
V
V
V
0.7 VCC  
VOL  
VOH  
I
OL = 0.15 mA, VCC = 1.8 V  
I
OH = –0.1 mA, VCC = 1.8 V  
0.8 VCC  
Note: 1. This product is under qualification. For more infomation, please contact your nearest ST sales office.  
2. Preliminary data.  
25/39  
M95640, M95320  
Table 18. AC Characteristics (M95xxx, temperature range 6)  
Test conditions specified in Table 11 and Table 8  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
90  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
5
D.C.  
15  
10  
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
15  
ns  
SHCH  
t
t
100  
90  
40  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
25  
ns  
CHSH  
t
90  
15  
ns  
CHSL  
1
t
90  
90  
40  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
40  
ns  
t
CL  
CLL  
2
t
1
1
µs  
t
RC  
CLCH  
2
t
Clock Fall Time  
1
1
µs  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
20  
30  
70  
40  
60  
15  
15  
15  
20  
30  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
HHCH  
t
HLCH  
t
CHHL  
Clock High Set-up Time before HOLD not  
Active  
t
60  
30  
ns  
CHHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
100  
60  
25  
25  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
50  
50  
20  
20  
25  
25  
5
ns  
ns  
ns  
ns  
ms  
t
RO  
QLQH  
2
t
Output Fall Time  
t
FO  
QHQL  
2
t
HOLD High to Output Low-Z  
HOLD Low to Output High-Z  
Write Time  
50  
t
LZ  
HHQX  
2
t
100  
10  
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t 1 / f .  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Current product: identified by Process Identification letter S.  
4. New product: identified by Process Identification letter V.  
26/39  
M95640, M95320  
Table 19. AC Characteristics (M95xxx, temperature range 3)  
Test conditions specified in Table 11 and Table 8  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
200  
200  
200  
200  
200  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
2
D.C.  
90  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
200  
200  
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
90  
ns  
t
CL  
CLL  
2
t
1
1
µs  
t
RC  
CLCH  
2
t
Clock Fall Time  
1
1
µs  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
20  
30  
70  
40  
70  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
140  
90  
HHCH  
t
HLCH  
t
120  
CHHL  
Clock High Set-up Time before HOLD not  
Active  
t
120  
70  
ns  
CHHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
ns  
ns  
ns  
ns  
ms  
t
RO  
QLQH  
2
t
Output Fall Time  
t
FO  
QHQL  
2
t
HOLD High to Output Low-Z  
HOLD Low to Output High-Z  
Write Time  
t
LZ  
HHQX  
2
t
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t 1 / f .  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Current product: identified by Process Identification letter S.  
4. New product: identified by Process Identification letter B.  
27/39  
M95640, M95320  
Table 20. AC Characteristics (M95xxx-W, temperature range 6)  
Test conditions specified in Table 11 and Table 9  
3
3
4
4
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
200  
200  
200  
200  
200  
Max.  
Min.  
Max.  
f
C
f
Clock Frequency  
2
D.C.  
90  
5
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
200  
200  
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
90  
ns  
t
CL  
CLL  
2
t
1
1
µs  
t
RC  
CLCH  
2
t
Clock Fall Time  
1
1
µs  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
20  
30  
70  
40  
60  
DVCH  
t
t
Data In Hold Time  
CHDX  
DH  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
140  
90  
HHCH  
t
HLCH  
t
120  
CHHL  
Clock High Set-up Time before HOLD not  
Active  
t
120  
60  
ns  
CHHH  
2
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
250  
150  
100  
60  
ns  
ns  
ns  
t
DIS  
SHQZ  
t
t
CLQV  
V
t
t
HO  
0
0
CLQX  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
50  
50  
50  
100  
5
ns  
ns  
ns  
ns  
ms  
t
RO  
QLQH  
2
t
Output Fall Time  
t
FO  
QHQL  
2
t
HOLD High to Output Low-Z  
HOLD Low to Output High-Z  
Write Time  
t
LZ  
HHQX  
2
t
t
HZ  
HLQZ  
t
t
WC  
W
Note: 1. t + t 1 / f .  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Current product: identified by Process Identification letter S.  
4. New product: identified by Process Identification letter V.  
28/39  
M95640, M95320  
Table 21. AC Characteristics (M95xxx-W, temperature range 3)  
Test conditions specified in Table 11 and Table 9  
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
D.C.  
90  
Max.  
f
f
Clock Frequency  
5
C
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
90  
ns  
SHCH  
t
t
100  
90  
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
90  
ns  
CHSL  
1
t
90  
90  
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
ns  
t
CLL  
CL  
2
t
1
µs  
t
RC  
CLCH  
2
t
Clock Fall Time  
1
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
20  
30  
70  
40  
60  
60  
DVCH  
t
t
DH  
Data In Hold Time  
CHDX  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
Clock High Set-up Time before HOLD not Active  
Output Disable Time  
HHCH  
t
HLCH  
t
CHHL  
t
CHHH  
2
t
100  
60  
t
DIS  
SHQZ  
t
t
Clock Low to Output Valid  
Output Hold Time  
CLQV  
V
t
t
0
CLQX  
HO  
RO  
2
t
Output Rise Time  
50  
50  
50  
100  
5
t
t
QLQH  
QHQL  
HHQX  
2
2
2
t
FO  
Output Fall Time  
ns  
ns  
ns  
ms  
t
HOLD High to Output Low-Z  
HOLD Low to Output High-Z  
Write Time  
t
LZ  
t
HZ  
t
HLQZ  
t
W
t
WC  
Note: 1. t + t 1 / f .  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. New product: identified by Process Identification letter B.  
29/39  
M95640, M95320  
Table 22. AC Characteristics (M95xxx-R)  
Test conditions specified in Table 11 and Table 10  
3
3
Symbol  
Alt.  
Parameter  
Unit  
MHz  
ns  
Min.  
Max.  
f
f
Clock Frequency  
D.C.  
200  
200  
200  
200  
200  
200  
2
C
SCK  
CSS1  
CSS2  
t
t
t
S Active Setup Time  
S Not Active Setup Time  
S Deselect Time  
SLCH  
t
ns  
SHCH  
t
t
ns  
SHSL  
CS  
t
t
CSH  
S Active Hold Time  
S Not Active Hold Time  
Clock High Time  
ns  
CHSH  
t
ns  
CHSL  
1
t
ns  
t
CLH  
CH  
1
t
Clock Low Time  
Clock Rise Time  
200  
ns  
t
CLL  
CL  
2
t
1
µs  
t
RC  
CLCH  
2
t
Clock Fall Time  
1
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
FC  
CHCL  
t
t
DSU  
Data In Setup Time  
40  
50  
DVCH  
t
t
DH  
Data In Hold Time  
CHDX  
t
Clock Low Hold Time after HOLD not Active  
Clock Low Hold Time after HOLD Active  
Clock High Set-up Time before HOLD Active  
Clock High Set-up Time before HOLD not Active  
Output Disable Time  
140  
90  
HHCH  
t
HLCH  
t
120  
120  
CHHL  
t
CHHH  
2
t
250  
150  
t
DIS  
SHQZ  
t
t
Clock Low to Output Valid  
Output Hold Time  
CLQV  
V
t
t
0
CLQX  
HO  
RO  
2
t
Output Rise Time  
100  
100  
100  
250  
10  
t
t
QLQH  
QHQL  
HHQX  
2
2
2
t
FO  
Output Fall Time  
ns  
ns  
ns  
ms  
t
HOLD High to Output Low-Z  
HOLD Low to Output High-Z  
Write Time  
t
LZ  
t
HZ  
t
HLQZ  
t
W
t
WC  
Note: 1. t + t 1 / f .  
CH  
CL  
C
2. Value guaranteed by characterization, not 100% tested in production.  
3. Preliminary data: this product is under qualification. For more infomation, please contact your nearest ST sales office.  
30/39  
M95640, M95320  
Figure 17. Serial Input Timing  
tSHSL  
S
tCHSL  
tSLCH  
tCHSH  
tSHCH  
C
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
Q
High Impedance  
AI01447C  
Figure 18. Hold Timing  
S
tHLCH  
tCHHL  
tHHCH  
C
tCHHH  
tHLQZ  
tHHQX  
Q
D
HOLD  
AI02032  
31/39  
M95640, M95320  
Figure 19. Output Timing  
S
tCH  
C
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
tCLQX  
LSB OUT  
Q
D
tQLQH  
tQHQL  
ADDR.LSB IN  
AI01449D  
32/39  
M95640, M95320  
PACKAGE MECHANICAL  
Figure 20. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline  
E
b2  
A2  
A1  
A
L
c
b
e
eA  
eB  
D
8
1
E1  
PDIP-B  
Notes: 1. Drawing is not to scale.  
Table 23. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data  
mm  
inches  
Min.  
Symb.  
Typ.  
Min.  
Max.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
3.30  
2.92  
0.130  
0.115  
33/39  
M95640, M95320  
Figure 21. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline  
h x 45˚  
A
C
B
CP  
e
D
N
E
H
1
A1  
α
L
SO-a  
Note: Drawing is not to scale.  
Table 24. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min.  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min.  
0.053  
0.004  
0.013  
0.007  
0.189  
0.150  
Symb.  
Typ.  
Max.  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
Typ.  
Max.  
0.069  
0.010  
0.020  
0.010  
0.197  
0.157  
A
A1  
B
C
D
E
e
1.27  
0.050  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
L
α
N
CP  
8
8
0.10  
0.004  
34/39  
M95640, M95320  
Figure 22. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
Notes: 1. Drawing is not to scale.  
Table 25. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
Typ.  
Min.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
2.900  
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1142  
e
E
6.200  
4.300  
0.450  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
35/39  
M95640, M95320  
Figure 23. TSSOP14 - 14 lead Thin Shrink Small Outline, Package Outline  
D
14  
8
c
E1  
E
1
7
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP14-M  
Notes: 1. Drawing is not to scale.  
Table 26. TSSOP14 - 14 lead Thin Shrink Small Outline, Package Mechanical Data  
mm  
inches  
Min.  
Symbol  
Typ.  
Min.  
Max.  
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
5.100  
Typ.  
Max.  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.2008  
A
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
0.0020  
0.0315  
0.0075  
0.0035  
1.000  
0.0394  
c
CP  
D
5.000  
0.650  
6.400  
4.400  
0.600  
1.000  
4.900  
0.1969  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
0.1929  
e
E
6.200  
4.300  
0.500  
6.600  
4.500  
0.750  
0.2441  
0.1693  
0.0197  
0.2598  
0.1772  
0.0295  
E1  
L
L1  
α
0°  
8°  
0°  
8°  
36/39  
M95640, M95320  
PART NUMBERING  
Table 27. Ordering Information Scheme  
Example:  
M95320  
W
MN  
6
T
P
Device Type  
M95 = SPI serial access EEPROM  
1
Device Function  
640 = 64 Kbit (8192 x 8)  
320 = 32 Kbit (4096 x 8)  
Operating Voltage  
blank = V = 4.5 to 5.5V  
CC  
W = V = 2.5 to 5.5V  
CC  
R = V = 1.8 to 5.5V  
CC  
Package  
BN = PDIP8  
MN = SO8 (150 mil width)  
DW = TSSOP8 (169 mil width)  
DL = TSSOP14 (169 mil width)  
Temperature Range  
6 = –40 to 85 °C  
3 = –40 to 125 °C  
Option  
blank = Standard Packing  
T = Tape & Reel Packing  
Plating Technology  
blank = Standard SnPb plating  
P = Pb-free plating  
G = Green pack  
Note: 1. Devices bearing the process identification letter “B” or “V” in the package marking (on the top side of the package, on the right side),  
guarantee more than 1 million Erase/Write cycle endurance (see Table 28, below). For more information about these devices, and  
their device identification, please contact your nearest ST sales office, and ask for the Product Change Notice.  
For a list of available options (speed, package,  
etc.) or for further information on any aspect of this  
device, please contact your nearest ST Sales Of-  
fice.  
Table 28. How to Identify Current and Forthcoming Products by the Process Identification Letter  
1
1
Markings on Current Products  
Markings on New Products  
95640 6 (or 95640W6)  
95640 6 (or 95640W6)  
xxxxS  
xxxxV  
95640 3  
95640 3 (or 95640W3)  
xxxxS  
xxxxB  
Note: 1. For further information, please ask your ST Sales Office for Process Change Notice PCN MPG/EE/0053 (PCEE0053) and MPG/  
EE/0054 (PCEE0054).  
37/39  
M95640, M95320  
REVISION HISTORY  
Table 29. Document Revision History  
Date  
Rev.  
Description of Revision  
Human Body Model meets JEDEC std (Table 2). Minor adjustments on pp 1,11,15. New clause  
on p7. Addition of TSSOP8 package on pp 1, 2, Ordering Info, Mechanical Data  
13-Jul-2000  
1.2  
Test condition added I and I , and specification of t  
and t  
removed.  
LI  
LO  
DLDH  
DHDL  
t
, t  
, t  
and t  
changed to 50ns for the -V range.  
CLCH CHCL DLDH  
DHDL  
“-V” Voltage range changed to “2.7V to 3.6V” throughout.  
Maximum lead soldering time and temperature conditions updated.  
16-Mar-2001  
1.3  
Instruction sequence illustrations updated.  
“Bus Master and Memory Devices on the SPI bus” illustration updated.  
Package Mechanical data updated.  
19-Jul-2001  
06-Dec-2001  
18-Dec-2001  
08-Feb-2002  
1.4 M95160 and M95080 devices removed to their own data sheet  
Endurance increased to 1M write/erase cycles  
Instruction sequence illustrations updated  
1.5  
2.0 Document reformatted using the new template. No parameters changed.  
Announcement made of planned upgrade to 10 MHz clock for the 5V, 40 to 85°C, range.  
Endurance set to 100K write/erase cycles  
2.1  
10MHz, 5MHz, 2MHz clock; 5ms, 10ms Write Time; 100K, 1M erase/write cycles distinguished  
on front page, and in the DC and AC Characteristics tables  
18-Dec-2002  
2.2  
26-Mar-2003  
26-Jun-2003  
15-Oct-2003  
21-Nov-2003  
2.3 Process indentification letter corrected in footnote to AC Characteristics table for temp. range 3  
2.4 -S voltage range upgraded by removing it and inserting -R voltage range in its place  
Table of contents, and Pb-free options added. V (min) improved to -0.45V.  
3.0  
3.1  
IL  
V (min) and V (min) corrected (improved) to -0.45V.  
I
O
38/39  
M95640, M95320  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
39/39  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY