M95160-WDW3TP/SC [STMICROELECTRONICS]

2KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.169 INCH, HALOGEN FREE AND ROHS COMPLIANT, TSSOP-8;
M95160-WDW3TP/SC
型号: M95160-WDW3TP/SC
厂家: ST    ST
描述:

2KX8 SPI BUS SERIAL EEPROM, PDSO8, 0.169 INCH, HALOGEN FREE AND ROHS COMPLIANT, TSSOP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总35页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M95160-W4  
M95160-W3  
16 Kbit serial SPI bus EEPROM  
with high speed clock  
Custom data  
Features  
Compatible with SPI bus serial interface  
(positive clock SPI modes)  
Extended operating temperature range:  
– Device grade 3: –40 °C to +125 °C  
– Device grade 4: –40 °C to +145 °C  
Single supply voltage:  
– 2.5 V to 5.5 V  
TSSOP8 (DW)  
169 mil width  
High speed: 5 MHz  
Status Register  
Hardware protection of the Status Register  
Byte and page write (up to 32 bytes)  
Self-timed programming cycle  
Adjustable size read-only EEPROM area  
Enhanced ESD protection  
More than 1 million write cycles  
More than 40-year data retention  
Package  
®
– ECOPACK2 (RoHS compliant and  
Halogen-free)  
June 2011  
Doc ID 14520 Rev 7  
1/35  
This is a document intended for a specific customer. It must not be released without first contacting Division marketing.  
www.st.com  
1
Contents  
M95160-W3, M95160-W4  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VCC supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
Connecting to the SPI bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
SPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operating features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
Operating supply voltage V  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2  
4.3  
4.4  
4.5  
Active Power and Standby Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hold condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data protection and protocol control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5
6
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1  
6.2  
6.3  
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.3.1  
WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/35  
Doc ID 14520 Rev 7  
M95160-W3, M95160-W4  
Contents  
6.3.2  
6.3.3  
6.3.4  
WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SRWD bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.4  
6.5  
6.6  
Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.1  
Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
9
10  
11  
12  
Doc ID 14520 Rev 7  
3/35  
List of tables  
M95160-W3, M95160-W4  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write-protected block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Status Register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Protection modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Address range bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (M95160-W3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Operating conditions (M95160-W4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 32  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4/35  
Doc ID 14520 Rev 7  
M95160-W3, M95160-W4  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
TSSOP8-lead package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Bus master and memory devices on the SPI bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SPI modes supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Write Enable (WREN) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write Disable (WRDI) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Read Status Register (RDSR) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Write Status Register (WRSR) sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Read from Memory Array (READ) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. Byte Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 12. Page Write (WRITE) sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 13. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 14. Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 15. Hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 16. Serial output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 32  
Doc ID 14520 Rev 7  
5/35  
Description  
M95160-W3, M95160-W4  
1
Description  
The M95160-W3 and M95160-W4 are electrically erasable programmable memory  
(EEPROM) devices. They are accessed by a high-speed SPI-compatible bus. The memory  
array is organized as 2048 × 8 bits.  
The M95160-W3 and M95160-W4 are the first EEPROM devices in TSSOP package  
qualified at 145°C.  
The M95160-W3 and M95160-W4 devices are designed to be compliant with the very high  
level of reliability defined by the Automotive standard AEC-Q100 grade 0.  
Figure 1.  
Logic diagram  
V
CC  
D
C
S
Q
M95xxx  
W
HOLD  
V
SS  
AI01789C  
Table 1.  
Signal names  
Signal name  
Function  
Direction  
C
Serial Clock  
Input  
Input  
Output  
Input  
Input  
Input  
D
Serial Data input  
Serial Data output  
Chip Select  
Write Protect  
Hold  
Q
S
W
HOLD  
VCC  
VSS  
Supply voltage  
Ground  
6/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Figure 2.  
Description  
TSSOP8-lead package connections (top view)  
M95xxx  
S
Q
1
2
3
4
8
V
CC  
HOLD  
7
W
6
5
C
D
V
SS  
AI01790D  
1. See Package mechanical data section for package dimensions, and how to identify pin-1.  
Doc ID 14520 Rev 7  
7/35  
Signal description  
M95160-W3, M95160-W4  
2
Signal description  
During all operations, V must be held stable and within the specified valid range:  
CC  
V
(min) to V (max).  
CC  
CC  
All of the input and output signals must be held high or low (according to voltages of V ,  
IH  
V
, V or V , as specified in Table 11. These signals are described next.  
OH  
IL OL  
2.1  
2.2  
Serial Data output (Q)  
This output signal is used to transfer data serially out of the device. Data is shifted out on the  
falling edge of Serial Clock (C).  
Serial Data input (D)  
This input signal is used to transfer data serially into the device. It receives instructions,  
addresses, and the data to be written. Values are latched on the rising edge of Serial Clock  
(C).  
2.3  
2.4  
Serial Clock (C)  
This input signal provides the timing of the serial interface. Instructions, addresses, or data  
present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on  
Serial Data Output (Q) changes after the falling edge of Serial Clock (C).  
Chip Select (S)  
When this input signal is high, the device is deselected and Serial Data Output (Q) is at high  
impedance. Unless an internal Write cycle is in progress, the device will be in the Standby  
Power mode. Driving Chip Select (S) low selects the device, placing it in the Active Power  
mode.  
After Power-up, a falling edge on Chip Select (S) is required prior to the start of any  
instruction.  
2.5  
Hold (HOLD)  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
deselecting the device.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To start the Hold condition, the device must be selected, with Chip Select (S) driven low.  
8/35  
Doc ID 14520 Rev 7  
M95160-W3, M95160-W4  
Signal description  
2.6  
Write Protect (W)  
The main purpose of this input signal is to freeze the size of the area of memory that is  
protected against Write instructions (as specified by the values in the BP1 and BP0 bits of  
the Status Register).  
This pin must be driven either high or low, and must be stable during all write instructions.  
2.7  
2.8  
VCC supply voltage  
V
is the supply voltage.  
CC  
VSS ground  
V
is the reference for the V supply voltage.  
SS  
CC  
Doc ID 14520 Rev 7  
9/35  
Connecting to the SPI bus  
M95160-W3, M95160-W4  
3
Connecting to the SPI bus  
These devices are fully compatible with the SPI protocol.  
All instructions, addresses and input data bytes are shifted in to the device, most significant  
bit first. The Serial Data input (D) is sampled on the first rising edge of the Serial Clock (C)  
after Chip Select (S) goes low.  
All output data bytes are shifted out of the device, most significant bit first. The Serial Data  
output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction (such  
as the Read from Memory Array and Read Status Register instructions) have been clocked  
into the device.  
Figure 3. shows three devices, connected to an MCU, on an SPI bus. Only one device is  
selected at a time, so only one device drives the Serial Data output (Q) line at a time, all the  
others being high impedance.  
Figure 3.  
Bus master and memory devices on the SPI bus  
633  
6##  
2
3$/  
30) INTERFACE WITH  
ꢅ#0/,ꢆ #0(!ꢇ ꢈ  
ꢅꢉꢆ ꢉꢇ OR ꢅꢀꢆ ꢀꢇ  
3$)  
3#+  
6##  
6##  
6##  
#
1
$
#
1
$
# 1 $  
633  
633  
633  
30) BUS MASTER  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
30) MEMORY  
DEVICE  
2
2
2
#3ꢃ #3ꢁ #3ꢀ  
3
3
3
7
(/,$  
7
(/,$  
(/,$  
7
!)ꢀꢁꢂꢃꢄC  
1. The Write Protect (W) and Hold (HOLD) signals should be driven, high or low as appropriate.  
Figure 3 shows an example of three memory devices connected to an MCU, on an SPI bus.  
Only one memory device is selected at a time, so only one memory device drives the Serial  
Data output (Q) line at a time, the other memory devices are high impedance.  
The pull-up resistor R (represented in Figure 3) ensures that a device is not selected if the  
Bus Master leaves the S line in the high impedance state.  
In applications where the Bus Master may be in a state where all input/output SPI buses are  
high impedance at the same time (for example, if the Bus Master is reset during the  
transmission of an instruction), the clock line (C) must be connected to an external pull-  
down resistor so that, if all inputs/outputs become high impedance, the C line is pulled low  
(while the S line is pulled high): this ensures that S and C do not become high at the same  
time, and so, that the t  
requirement is met. The typical value of R is 100 kΩ.  
SHCH  
10/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Connecting to the SPI bus  
3.1  
SPI modes  
These devices can be driven by a microcontroller with its SPI peripheral running in either of  
the two following modes:  
CPOL=0, CPHA=0  
CPOL=1, CPHA=1  
For these two modes, input data is latched in on the rising edge of Serial Clock (C), and  
output data is available from the falling edge of Serial Clock (C).  
The difference between the two modes, as shown in Figure 4., is the clock polarity when the  
bus master is in Stand-by mode and not transferring data:  
C remains at 0 for (CPOL=0, CPHA=0)  
C remains at 1 for (CPOL=1, CPHA=1)  
Figure 4.  
SPI modes supported  
CPOL CPHA  
C
0
1
0
1
C
D
MSB  
Q
MSB  
AI01438B  
Doc ID 14520 Rev 7  
11/35  
 
Operating features  
M95160-W3, M95160-W4  
4
Operating features  
4.1  
Supply voltage (VCC)  
4.1.1  
Operating supply voltage V  
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 9). This voltage  
CC  
CC  
must remain stable and valid until the end of the transmission of the instruction and, for a  
Write instruction, until the completion of the internal write cycle (t ).  
W
In order to secure a stable DC supply voltage, it is recommended to decouple the V line  
CC  
with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V  
CC SS  
package pins.  
4.1.2  
Device reset  
In order to prevent inadvertent write operations during power-up, a power on reset (POR)  
circuit is included. At power-up, the device does not respond to any instruction until V  
CC  
reaches the internal reset threshold voltage (this threshold is lower than the minimum V  
CC  
operating voltage defined in Table 9).  
When V passes over the POR threshold, the device is reset and in the following state:  
CC  
in Standby Power mode  
deselected (note that, to be executed, an instruction must be preceded by a falling  
edge on Chip Select (S))  
Status Register value:  
the Write Enable Latch (WEL) is reset to 0  
Write In Progress (WIP) is reset to 0  
The SRWD, BP1 and BP0 bits remain unchanged (non-volatile bits)  
When V passes over the POR threshold, the device is reset and enters the Standby  
CC  
Power mode. The device must not be accessed until V reaches a valid and stable V  
CC  
CC  
voltage within the specified [V (min), V (max)] range defined in Table 9.  
CC  
CC  
4.1.3  
Power-up conditions  
When the power supply is turned on, V rises continuously from V to V . During this  
CC  
SS  
CC  
time, the Chip Select (S) line is not allowed to float but should follow the V voltage, it is  
CC  
therefore recommended to connect the S line to V via a suitable pull-up resistor (see  
CC  
Figure 3).  
In addition, the Chip Select (S) input offers a built-in safety feature, as the S input is edge-  
sensitive as well as level-sensitive: after power-up, the device does not become selected  
until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select  
(S) must have been high, prior to going low to start the first operation.  
The V voltage has to rise continuously from 0 V up to the minimum V operating voltage  
CC  
CC  
defined in Table 9 and the rise time must not vary faster than 1 V/µs.  
12/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Operating features  
4.1.4  
Power-down  
During power-down (continuous decrease of V below the minimum V operating voltage  
CC  
CC  
defined in Table 9), the device must be:  
deselected (Chip Select S should be allowed to follow the voltage applied on V  
)
CC  
in Standby Power mode (there should not be any internal write cycle in progress).  
4.2  
Active Power and Standby Power modes  
When Chip Select (S) is low, the device is selected, and in the Active Power mode. The  
device consumes I , as specified in Table 11.  
CC  
When Chip Select (S) is high, the device is deselected. If a Write cycle is not currently in  
progress, the device then goes into the Standby Power mode, and the device consumption  
drops to I  
.
CC1  
4.3  
Hold condition  
The Hold (HOLD) signal is used to pause any serial communications with the device without  
resetting the clocking sequence.  
During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data  
Input (D) and Serial Clock (C) are Don’t Care.  
To enter the Hold condition, the device must be selected, with Chip Select (S) low.  
Normally, the device is kept selected, for the whole duration of the Hold condition.  
Deselecting the device while it is in the Hold condition, has the effect of resetting the state of  
the device, and this mechanism can be used if it is required to reset any processes that had  
been in progress.  
The Hold condition starts when the Hold (HOLD) signal is driven low at the same time as  
Serial Clock (C) already being low.  
The Hold condition ends when the Hold (HOLD) signal is driven high at the same time as  
Serial Clock (C) already being low.  
4.4  
Status Register  
Figure 5. shows the position of the Status Register in the control logic of the device. The  
Status Register contains a number of status and control bits that can be read or set (as  
appropriate) by specific instructions. See Section 6.3: Read Status Register (RDSR) for a  
detailed description of the Status Register bits  
Doc ID 14520 Rev 7  
13/35  
Operating features  
M95160-W3, M95160-W4  
4.5  
Data protection and protocol control  
Non-volatile memory devices can be used in environments that are particularly noisy, and  
within applications that could experience problems if memory bytes are corrupted.  
Consequently, the device features the following data protection mechanisms:  
Write and Write Status Register instructions are checked that they consist of a number  
of clock pulses that is a multiple of eight, before they are accepted for execution.  
All instructions that modify data must be preceded by a Write Enable (WREN)  
instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state  
by the following events:  
Power-up  
Write Disable (WRDI) instruction completion  
Write Status Register (WRSR) instruction completion  
Write (WRITE) instruction completion  
The Block Protect (BP1, BP0) bits in the Status Register allow part of the memory to be  
configured as read-only.  
The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits of the Status  
Register to be protected.  
For any instruction to be accepted, and executed, Chip Select (S) must be driven high after  
the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising  
edge of Serial Clock (C).  
Two points need to be noted in the previous sentence:  
The ‘last bit of the instruction’ can be the eighth bit of the instruction code, or the eighth  
bit of a data byte, depending on the instruction (except for Read Status Register  
(RDSR) and Read (READ) instructions).  
The ‘next rising edge of Serial Clock (C)’ might (or might not) be the next bus  
transaction for some other device on the SPI bus.  
Table 2.  
Write-protected block size  
Status Register bits  
Protected array addresses  
M95160-W3 and M95160-W4  
Protected block  
BP1  
BP0  
0
0
1
1
0
1
0
1
none  
none  
Upper quarter  
Upper half  
Whole memory  
0600h - 07FFh  
0400h - 07FFh  
0000h - 07FFh  
14/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Memory organization  
5
Memory organization  
The memory is organized as shown in Figure 5.  
Figure 5.  
Block diagram  
HOLD  
W
High voltage  
generator  
Control logic  
S
C
D
Q
I/O shift register  
Address register  
and counter  
Data  
register  
Status  
Register  
Size of the  
read-only  
EEPROM  
area  
1 page  
X decoder  
AI01272d  
Doc ID 14520 Rev 7  
15/35  
 
Instructions  
M95160-W3, M95160-W4  
6
Instructions  
Each instruction starts with a single-byte code, as summarized in Table 3.  
If an invalid instruction is sent (one not contained in Table 3.), the device automatically  
deselects itself.  
Table 3.  
Instruction set  
Instruction  
Description  
Write Enable  
Instruction format  
WREN  
WRDI  
0000 0110  
0000 0100  
0000 0101  
0000 0001  
0000 0011  
0000 0010  
Write Disable  
RDSR  
WRSR  
READ  
WRITE  
Read Status Register  
Write Status Register  
Read from Memory Array  
Write to Memory Array  
6.1  
Write Enable (WREN)  
The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction.  
The only way to do this is to send a Write Enable instruction to the device.  
As shown in Figure 6., to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then  
enters a wait state. It waits for the device to be deselected, by Chip Select (S) being driven  
high.  
Figure 6.  
Write Enable (WREN) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI02281E  
16/35  
Doc ID 14520 Rev 7  
 
 
M95160-W3, M95160-W4  
Instructions  
6.2  
Write Disable (WRDI)  
One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction  
to the device.  
As shown in Figure 7., to send this instruction to the device, Chip Select (S) is driven low,  
and the bits of the instruction byte are shifted in, on Serial Data Input (D).  
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select  
(S) being driven high.  
The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events:  
Power-up  
WRDI instruction execution  
WRSR instruction completion  
WRITE instruction completion.  
Figure 7.  
Write Disable (WRDI) sequence  
S
0
1
2
3
4
5
6
7
C
D
Q
Instruction  
High Impedance  
AI03750D  
Doc ID 14520 Rev 7  
17/35  
 
Instructions  
M95160-W3, M95160-W4  
6.3  
Read Status Register (RDSR)  
The Read Status Register (RDSR) instruction allows the Status Register to be read. The  
Status Register may be read at any time, even while a Write or Write Status Register cycle  
is in progress. When one of these cycles is in progress, it is recommended to check the  
Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible  
to read the Status Register continuously, as shown in Figure 8.  
The status and control bits of the Status Register are as follows:  
6.3.1  
6.3.2  
6.3.3  
WIP bit  
The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write  
Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such  
cycle is in progress.  
WEL bit  
The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.  
When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable  
Latch is reset and no Write or Write Status Register instruction is accepted.  
BP1, BP0 bits  
The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be  
software protected against Write instructions. These bits are written with the Write Status  
Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to  
1, the relevant memory area (as defined in Table 4.) becomes protected against Write  
(WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the  
Hardware Protected mode has not been set.  
6.3.4  
SRWD bit  
The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write  
Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W)  
signal allow the device to be put in the Hardware Protected mode (when the Status Register  
Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven low). In this mode, the  
non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the  
Write Status Register (WRSR) instruction is no longer accepted for execution.  
Table 4.  
Status Register format  
b7  
b0  
SRWD  
0
0
0
BP1  
BP0  
WEL  
WIP  
Status register write protect  
Block protect bits  
Write enable latch bit  
Write in progress bit  
18/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Instructions  
Figure 8.  
Read Status Register (RDSR) sequence  
S
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
C
D
Instruction  
Status Register Out  
Status Register Out  
High Impedance  
Q
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
AI02031E  
Doc ID 14520 Rev 7  
19/35  
Instructions  
M95160-W3, M95160-W4  
6.4  
Write Status Register (WRSR)  
The Write Status Register (WRSR) instruction allows new values to be written to the Status  
Register. Before it can be accepted, a Write Enable (WREN) instruction must have been  
previously executed.  
The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) low,  
followed by the instruction code, the data byte on Serial Data input (D) and the Chip Select  
(S) driven high. Chip Select (S) must be driven high after the rising edge of Serial Clock (C)  
that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock  
(C). Otherwise, the Write Status Register (WRSR) instruction is not executed.  
Driving the Chip Select (S) signal high at a byte boundary of the input data triggers the self-  
timed write cycle that takes t to complete (as specified in Table 13).  
W
The instruction sequence is shown in Figure 9.  
While the Write Status Register cycle is in progress, the Status Register may still be read to  
check the value of the Write In Progress (WIP) bit: the WIP bit is 1 during the self-timed write  
cycle t , and is 0 when the write cycle is complete. The WEL bit (Write Enable Latch) is also  
W
reset at the end of the write cycle t .  
W
The Write Status Register (WRSR) instruction allows the user to change the values of the  
BP1, BP0 bits and the SRWD bit:  
The Block Protect (BP1, BP0) bits define the size of the area that is to be treated as  
read only, as defined in Table 5.  
The SRWD bit (Status Register Write Disable bit), in accordance with the signal read  
on the Write Protect pin (W), allows the user to set or reset the write protection mode of  
the Status Register itself. When in Write-protected mode, the Write Status Register  
(WRSR) instruction is not executed.  
The contents of the SRWD and BP1, BP0 bits are updated after the completion of the  
WRSR instruction, including the t Write cycle.  
W
The Write Status Register (WRSR) instruction has no effect on bits b6, b5, b4, b1, b0 of the  
Status Register. Bits b6, b5, b4 are always read as 0.  
Table 5.  
Protection modes  
Memory content  
W
signal  
SRWD Write protection of the  
Mode  
bit  
Status Register  
Protected area(1) Unprotected area(1)  
1
0
0
0
Status Register is  
Writable (if the WREN  
Software- instruction has set the  
protected WEL bit)  
Ready to accept  
Write-protected  
Write instructions  
(SPM)  
The values in the BP1  
and BP0 bits can be  
changed  
1
0
1
1
Status Register is  
Hardware- Hardware write protected  
protected The values in the BP1  
Ready to accept  
Write-protected  
Write instructions  
(HPM)  
and BP0 bits cannot be  
changed  
1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 4.  
20/35  
Doc ID 14520 Rev 7  
 
 
M95160-W3, M95160-W4  
The protection features of the device are summarized in Table 2.  
Instructions  
When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial  
delivery state), it is possible to write to the Status Register provided that the Write Enable  
Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless  
of whether Write Protect (W) is driven high or low.  
When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two  
cases need to be considered, depending on the state of Write Protect (W):  
If Write Protect (W) is driven high, it is possible to write to the Status Register provided  
that the Write Enable Latch (WEL) bit has previously been set by a Write Enable  
(WREN) instruction.  
If Write Protect (W) is driven low, it is not possible to write to the Status Register even if  
the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN)  
instruction. (Attempts to write to the Status Register are rejected, and are not accepted  
for execution). As a consequence, all the data bytes in the memory area that are  
software protected (SPM) by the Block Protect (BP1, BP0) bits of the Status Register,  
are also hardware protected against data modification.  
Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be  
entered:  
by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W)  
low  
or by driving Write Protect (W) low after setting the Status Register Write Disable  
(SRWD) bit.  
The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write  
Protect (W) high.  
If Write Protect (W) is permanently tied high, the Hardware Protected Mode (HPM) can  
never be activated, and only the Software Protected Mode (SPM), using the Block Protect  
(BP1, BP0) bits of the Status Register, can be used.  
(1)  
Table 6.  
Address range bits  
Device  
M95160-W3 and M95160-W4  
Address bits  
A10-A0  
1. b15 to b11 are Don’t Care.  
Doc ID 14520 Rev 7  
21/35  
 
Instructions  
M95160-W3, M95160-W4  
Figure 9.  
Write Status Register (WRSR) sequence  
S
C
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Instruction  
Status  
Register In  
7
6
5
4
3
2
0
1
D
Q
High Impedance  
MSB  
AI02282D  
22/35  
Doc ID 14520 Rev 7  
M95160-W3, M95160-W4  
Instructions  
6.5  
Read from Memory Array (READ)  
As shown in Figure 10., to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data  
Input (D). The address is loaded into an internal address register, and the byte of data at  
that address is shifted out, on Serial Data Output (Q).  
If Chip Select (S) continues to be driven low, the internal address register is automatically  
incremented, and the byte of data at the new address is shifted out.  
When the highest address is reached, the address counter rolls over to zero, allowing the  
Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a  
single READ instruction.  
The Read cycle is terminated by driving Chip Select (S) high. The rising edge of the Chip  
Select (S) signal can occur at any time during the cycle.  
The first byte addressed can be any byte within any page.  
The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.  
Figure 10. Read from Memory Array (READ) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
15 14 13  
MSB  
3
2
1
0
D
Q
Data Out 1  
Data Out 2  
High Impedance  
2
7
6
5
4
3
1
7
0
MSB  
AI01793D  
1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
Doc ID 14520 Rev 7  
23/35  
 
Instructions  
M95160-W3, M95160-W4  
6.6  
Write to Memory Array (WRITE)  
As shown in Figure 11., to send this instruction to the device, Chip Select (S) is first driven  
low. The bits of the instruction byte, address byte, and at least one data byte are then shifted  
in, on Serial Data Input (D).  
The instruction is terminated by driving Chip Select (S) high at a byte boundary of the input  
data. The self-timed Write cycle, triggered by the Chip Select (S) rising edge, continues for a  
period t (as specified in Table 13), at the end of which the Write in Progress (WIP) bit is  
W
reset to 0.  
In the case of Figure 11., Chip Select (S) is driven high after the eighth bit of the data byte  
has been latched in, indicating that the instruction is being used to write a single byte. If,  
though, Chip Select (S) continues to be driven low, as shown in Figure 12., the next byte of  
input data is shifted in, so that more than a single byte, starting from the given address  
towards the end of the same page, can be written in a single internal Write cycle.  
Each time a new data byte is shifted in, the least significant bits of the internal address  
counter are incremented. If the number of data bytes sent to the device exceeds the page  
boundary, the internal address counter rolls over to the beginning of the page, and the  
previous data there are overwritten with the incoming data. (The page size of these devices  
is 32 bytes).  
The instruction is not accepted, and is not executed, under the following conditions:  
if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable  
instruction just before)  
if a Write cycle is already in progress  
if the device has not been deselected, by Chip Select (S) being driven high, at a byte  
boundary (after the eighth bit, b0, of the last data byte that has been latched in)  
if the addressed page is in the region protected by the Block Protect (BP1 and BP0)  
bits.  
Figure 11. Byte Write (WRITE) sequence  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
Q
High Impedance  
AI01795D  
1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
24/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Figure 12. Page Write (WRITE) sequence  
Instructions  
S
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23 24 25 26 27 28 29 30 31  
C
Instruction  
16-Bit Address  
Data Byte 1  
15 14 13  
3
2
1
0
7
6
5
4
3
2
0
1
D
S
C
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47  
Data Byte 2  
Data Byte 3  
Data Byte N  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
6
5
4
3
2
0
1
1
1
D
AI01796D  
1. Depending on the memory size, as shown in Table 6., the most significant address bits are Don’t Care.  
Doc ID 14520 Rev 7  
25/35  
Delivery state  
M95160-W3, M95160-W4  
7
Delivery state  
7.1  
Initial delivery state  
The device is delivered with the memory array set at all 1s (FFh). The Status Register Write  
Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.  
8
Maximum rating  
Stressing the device outside the ratings listed in Table 7. may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant  
quality documents.  
Table 7.  
Symbol  
Absolute maximum ratings  
Parameter  
Min.  
Max.  
Unit  
TA  
TSTG  
TLEAD  
VO  
Ambient operating temperature  
Storage temperature  
–40  
–65  
150  
150  
°C  
°C  
°C  
V
Lead temperature during soldering  
Output voltage  
See note (1)  
–0.50  
–0.50  
–0.50  
–4000  
VCC+0.6  
6.5  
VI  
Input voltage  
V
VCC  
VESD  
Supply voltage  
6.5  
V
Electrostatic discharge voltage (human body model)(2)  
4000  
V
1. Compliant with JEDEC Std J-STD-020C (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU  
2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω)  
26/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
DC and AC parameters  
9
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the dc and ac  
characteristics of the device. The parameters in the dc and ac characteristic tables that  
follow are derived from tests performed under the measurement conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 8.  
Symbol  
Operating conditions (M95160-W3)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
2.5  
5.5  
V
Ambient operating temperature (device grade 4)  
–40  
125  
°C  
Table 9.  
Symbol  
Operating conditions (M95160-W4)  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
2.5  
5.5  
V
Ambient operating temperature (device grade 4)  
–40  
145  
°C  
Table 10. AC measurement conditions  
Symbol  
Parameter  
Load capacitance  
Min.  
30 or 100  
Typ.  
Max.  
Unit  
CL  
pF  
ns  
V
Input rise and fall times  
50  
Input pulse voltages  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
Input and output(1) timing reference voltages  
V
1. Output Hi-Z is defined as the point where data out is no longer driven.  
Figure 13. AC measurement I/O waveform  
Input Levels  
Input and Output  
Timing Reference Levels  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI00825B  
(1)  
Table 11. Capacitance  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
COUT  
Output capacitance (Q)  
Input capacitance (D)  
VOUT = 0 V  
VIN = 0 V  
VIN = 0 V  
8
8
6
pF  
pF  
pF  
CIN  
Input capacitance (other pins)  
1. Sampled only, not 100% tested, at TA = 25 °C and a frequency of 5 MHz.  
Doc ID 14520 Rev 7  
27/35  
 
 
 
DC and AC parameters  
M95160-W3, M95160-W4  
(1)  
Table 12. DC characteristics  
Test conditions (in addition to those  
specified in Table 8, Table 9 and  
Table 10)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Input leakage  
current  
ILI  
VIN = VSS or VCC  
2
2
µA  
µA  
Output leakage  
current  
ILO  
ICC  
S = VCC, VOUT = VSS or VCC  
C = 0.1VCC/0.9VCC at 5 MHz,  
VCC = 2.5 V, Q = open  
Supply current  
2
mA  
S = VCC, VCC = 2.5 V, VIN = VSS or VCC  
S = VCC, VCC = 5.5 V, VIN = VSS or VCC  
10  
10  
µA  
µA  
V
Supply current  
(Standby)  
ICC1  
VIL  
VIH  
Input low voltage  
Input high voltage  
–0.45  
0.3 VCC  
0.7 VCC VCC+1  
0.4  
V
VOL  
VOH  
Output low voltage IOL = 1.5 mA, VCC = 2.5 V  
Output high voltage IOH = –0.4 mA, VCC = 2.5 V  
V
0.8 VCC  
V
1. Preliminary data.  
28/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
DC and AC parameters  
Table 13. AC characteristics  
Test conditions specified in Table 8, Table 9 and Table 10  
Symbol  
Alt.  
Parameter  
Min.  
Max. Unit  
fC  
fSCK  
Clock frequency  
D.C.  
60  
60  
90  
60  
60  
75  
75  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tSLCH  
tSHCH  
tSHSL  
tCHSH  
tCHSL  
tCSS1 S active setup time  
tCSS2 S not active setup time  
tCS S deselect time  
tCSH S active hold time  
S not active hold time  
(1)  
tCH  
tCLH  
tCLL  
tRC  
Clock high time  
Clock low time  
Clock rise time  
Clock fall time  
(1)  
tCL  
(2)  
tCLCH  
1
1
(2)  
tCHCL  
tFC  
tDVCH  
tCHDX  
tHHCH  
tHLCH  
tCLHL  
tCLHH  
tDSU Data in setup time  
20  
20  
60  
60  
0
tDH  
Data in hold time  
Clock low hold time after HOLD not active  
Clock low hold time after HOLD active  
Clock low setup time before HOLD active  
Clock low setup time before HOLD not active  
Output disable time  
0
(2)  
tSHQZ  
tDIS  
tV  
80  
55  
80  
Clock low to output valid (CL = 30 pF)  
Clock low to output valid (CL = 100 pF)  
Output hold time  
(3)  
tCLQV  
tCLQX  
tHO  
tRO  
tFO  
tLZ  
0
(2)  
tQLQH  
Output rise time  
80  
80  
80  
80  
5
(2)  
tQHQL  
Output fall time  
tHHQV  
HOLD high to output valid  
HOLD low to output high-Z  
Write time  
(2)  
tHLQZ  
tHZ  
tWC  
tW  
1. tCH + tCL must never be lower than the shortest possible clock period, 1/fC(max). See also Note 3.  
2. Value guaranteed by characterization, not 100% tested in production.  
3. tCLQV must be compatible with tCL (clock low time): if the SPI bus master offers a Read setup time tSU  
=
0 ns, tCL can be equal to (or greater than) tCLQV; in all other cases, tCL must be equal to (or greater than)  
t
CLQV+tSU.  
Doc ID 14520 Rev 7  
29/35  
 
DC and AC parameters  
Figure 14. Serial input timing  
M95160-W3, M95160-W4  
tSHSL  
tSHCH  
S
C
tCHSL  
tSLCH  
tCH  
tCHSH  
tDVCH  
tCHCL  
tCHDX  
tCL  
tCLCH  
MSB IN  
LSB IN  
D
Q
High impedance  
AI01447d  
Figure 15. Hold timing  
S
tHLCH  
tCLHL  
tHHCH  
C
tCLHH  
tHHQV  
tHLQZ  
Q
HOLD  
AI01448c  
30/35  
Doc ID 14520 Rev 7  
 
 
M95160-W3, M95160-W4  
DC and AC parameters  
Figure 16. Serial output timing  
S
tCH  
tSHSL  
C
tCLQV  
tCLQX  
tCLCH  
tCHCL  
tCL  
tSHQZ  
Q
D
tQLQH  
tQHQL  
ADDR  
LSB IN  
AI01449f  
Doc ID 14520 Rev 7  
31/35  
 
Package mechanical data  
M95160-W3, M95160-W4  
10  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 17. TSSOP8 – 8-lead thin shrink small outline, package outline  
D
8
5
c
E1  
E
1
4
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8AM  
1. Drawing is not to scale.  
Table 14. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
1.2  
0.15  
1.05  
0.3  
0.2  
0.1  
3.1  
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.122  
A1  
0.05  
0.8  
0.002  
0.0315  
0.0075  
0.0035  
A2  
1
0.0394  
b
0.19  
0.09  
c
CP  
D
3
0.65  
6.4  
4.4  
0.6  
1
2.9  
-
0.1181  
0.0256  
0.252  
0.1142  
-
e
-
E
6.2  
4.3  
0.45  
6.6  
4.5  
0.75  
0.2441  
0.1693  
0.0177  
0.2598  
0.1772  
0.0295  
E1  
0.1732  
0.0236  
0.0394  
L
L1  
α
0°  
8
8°  
0°  
8
8°  
N (number of leads)  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
32/35  
Doc ID 14520 Rev 7  
M95160-W3, M95160-W4  
Part numbering  
11  
Part numbering  
Table 15. Ordering information scheme  
Example:  
M95160  
W DW 4  
T
P /SC  
Device type  
M95 = SPI serial access EEPROM  
Device function  
160 = 16 Kbit (2048 × 8)  
Operating voltage  
W = VCC = 2.5 to 5.5 V  
Package  
DW = TSSOP8  
Device grade  
3 = Device tested with high reliability certified flow(1)  
Automotive temperature range (–40 to 125 °C)  
.
4 = Device tested with high reliability certified flow(1)  
Automotive temperature range (–40 to 145 °C)  
.
Option  
blank = Standard packing  
T = Tape and reel packing  
Plating technology  
G or P = ECOPACK2® (RoHS compliant and Hallogen-free)  
Process  
/SC = F6SP36%  
1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment.  
The high reliability certified flow (HRCF) is described in the quality note QNEE9801. Please ask your  
nearest ST sales office for a copy.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 14520 Rev 7  
33/35  
 
 
 
Revision history  
M95160-W3, M95160-W4  
12  
Revision history  
Table 16. Document revision history  
Date  
Revision  
Changes  
07-Mar-2008  
1
Initial release.  
Year of Revision 1 corrected in Table 16: Document revision history.  
M95080-W4 part number removed.  
Load capacitance value modified and Note 1 moved in Table 10: AC  
measurement conditions.  
17-Jun-2008  
2
Table 13: AC characteristics updated and Note 3 added.  
Figure 14: Serial input timing, Figure 15: Hold timing and Figure 16: Serial  
output timing modified.  
Section 6.4: Write Status Register (WRSR) modified.  
ICC1 modified in Table 12: DC characteristics.  
05-Jan-2009  
03-Sep-2009  
3
4
Section 4.1: Supply voltage (VCC) updated.  
CL can be 30 or 100 pF in Table 10: AC measurement conditions.  
tCH, tCL and tCLQV modified in Table 13: AC characteristics.  
Device grade 3 added:  
– M95160-W3 part number added  
14-Jan-2010  
5
Table 8: Operating conditions (M95160-W3) added  
Table 15: Ordering information scheme updated  
21-Jan-2010  
27-Jun-2011  
6
7
Process corrected in Table 15: Ordering information scheme.  
Updated Section 1: Description.  
34/35  
Doc ID 14520 Rev 7  
 
M95160-W3, M95160-W4  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 14520 Rev 7  
35/35  

相关型号:

M95160-WDW3TP/W

2KX8 SPI BUS SERIAL EEPROM, PDSO8, ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M95160-WDW6

16Kbit and 8Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95160-WDW6G/G

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6G/S

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6P/G

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6P/S

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6T

16Kbit and 8Kbit Serial SPI Bus EEPROM With High Speed Clock
STMICROELECTR

M95160-WDW6TG

2KX8 SPI BUS SERIAL EEPROM, PDSO8, HALOGEN FREE AND ROHS COMPLIANT, TSSOP-8
STMICROELECTR

M95160-WDW6TG/G

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6TG/S

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR

M95160-WDW6TP

16 Kbit SPI bus EEPROM with high-speed clock
STMICROELECTR

M95160-WDW6TP/G

16 Kbit and 8 Kbit serial SPI bus EEPROM with high speed clock
STMICROELECTR