M59PW1282120M1 [STMICROELECTRONICS]

8MX16 FLASH 12V PROM MODULE, 120ns, PDSO44, 0.500 INCH, PLASTIC, SO-44;
M59PW1282120M1
型号: M59PW1282120M1
厂家: ST    ST
描述:

8MX16 FLASH 12V PROM MODULE, 120ns, PDSO44, 0.500 INCH, PLASTIC, SO-44

存储 内存集成电路 光电二极管
文件: 总24页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M59PW1282  
128Mbit (two 64Mb, x16, Uniform Block, LightFlash™)  
3V Supply, Multiple Memory Product  
FEATURES SUMMARY  
MASK-ROM PIN-OUT COMPATIBLE  
Figure 1. Package  
TWO 64 Mbit LightFlash™ MEMORIES  
STACKED IN A SINGLE PACKAGE  
SUPPLY VOLTAGE  
– V = 2.7 to 3.6V for Read  
CC  
– V = 11.4 to 12.6V for Program and Erase  
PP  
ACCESS TIME  
– 90ns at V = 3.0 to 3.6V  
CC  
– 100, 120ns at V = 2.7 to 3.6V  
CC  
PROGRAMMING TIME  
– 9µs per Word typical  
SO44 (M)  
– Multiple Word Programming Option  
(16s typical Chip Program)  
ERASE TIME  
– 85s typical Chip Erase  
UNIFORM BLOCKS  
– 64 blocks of 2 Mbits  
PROGRAM/ERASE CONTROLLER  
– Embedded Word Program algorithms  
10,000 PROGRAM/ERASE CYCLES per  
BLOCK  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 0020h  
– Device Code : 88A8h  
November 2003  
1/24  
M59PW1282  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 2. Block Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Address Inputs (A0-A21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
V
CC  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Address/Voltage Supply (A22/V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PP)  
Vss Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Word Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Multiple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Setup Phase.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Program Phase.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Verify Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Exit Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Standard Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 5. Multiple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 6. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 11  
Figure 4. A22 Latch Procedure Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 7. A22 Latch Procedure AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5. Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 6. Chip Erase Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 7. Multiple Word Program Flowchart for 64Mbit Top and Bottom Die . . . . . . . . . . . . . . . . . 13  
2/24  
M59PW1282  
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
V
PP  
Status Bit (DQ4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Multiple Word Program Bit (DQ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Status Register Bit DQ1 is reserved.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8. Data Polling Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 9. Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 10. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 11. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 12. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 13. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13. Write AC Waveforms, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 14. Chip Enable Controlled, Write AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 15. SO44 - 44 lead Plastic Small Outline, 500 mils body width, Package Mechanical Data . 21  
Figure 14. SO44 - 44 lead Plastic Small Outline, 500 mils body width, Package Outline . . . . . . . . 21  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 17. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3/24  
M59PW1282  
SUMMARY DESCRIPTION  
The M59PW1282 is a 128Mbit (8Mb x16), Mask-  
ROM pinout compatible, non-volatile LightFlash™  
memory, that can be read, erased and repro-  
grammed. Read operations can be performed us-  
ing a single low voltage (2.7 to 3.6V) supply.  
Program and Erase operations require an addi-  
preserve valid data while old data is erased. Pro-  
gram and Erase commands are written to the  
Command Interface of the memory. An on-chip  
Program/Erase Controller (P/E.C.) simplifies the  
process of programming or erasing the memory by  
taking care of all of the special operations that are  
required to update the memory contents.  
tional V (11.4 to 12.6V) power supply. On pow-  
PP  
er-up the memory defaults to its Read mode where  
it can be read in the same way as a ROM or  
EPROM.  
The Mask-ROM compatibility is obtained using a  
dual function Address/Voltage Supply pin (A22/  
The M59PW1282 features an innovative com-  
mand, Multiple Word Program, that is used to pro-  
gram large streams of data. It greatly reduces the  
total programming time when a large number of  
Words are written to the memory at any one time.  
Using this command the entire memory can be  
programmed in 16s, compared to 72s using the  
standard Word Program.  
The end of a Program or Erase operation can be  
detected and any error conditions identified. The  
command set required to control the memory is  
consistent with JEDEC standards. Chip Enable  
and Output Enable signals control the bus opera-  
tion of the memory. They allow simple connection  
to most microprocessors, often without additional  
logic.  
V
). In Read mode the A22/V pin works as an  
PP  
PP  
address pin; in Program or Erase mode it also  
works as a voltage supply pin. At the beginning of  
any program or erase operation, a specific proce-  
dure (see Figure 4) must be performed to internal-  
ly memorize the A22 value that will be used during  
the program or erase operation.  
The device is composed of two 64Mbit memories  
stacked in a single package. Recommended oper-  
ating conditions do not allow both memories to be  
active at the same time. Address A22 selects the  
memory to be enabled. The other memory is in  
Standby mode.  
The memory is offered in SO44 package and is  
supplied with all the bits set to ’1’).  
The memory is divided into 64 uniform blocks that  
can be erased independently so it is possible to  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A21  
Address Inputs  
Address Input/Supply Voltage for  
Program/Erase  
V
A22/V  
PP  
CC  
A22/V  
PP  
DQ0-DQ15  
Data Inputs/Outputs  
Chip Enable  
22  
16  
E
A0-A21  
DQ0-DQ15  
G
Output Enable  
Supply Voltage read  
Ground  
V
CC  
M59PW1282  
E
V
SS  
G
V
SS  
AI07209  
4/24  
M59PW1282  
Figure 3. SO Connections  
A21  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
E
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A20  
A19  
A8  
2
3
4
A9  
5
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A22/V  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
M59PW1282  
PP  
V
V
SS  
DQ15  
SS  
G
DQ0  
DQ8  
DQ7  
DQ14  
DQ6  
DQ1  
DQ9  
DQ13  
DQ5  
DQ2  
DQ10  
DQ3  
DQ12  
DQ4  
DQ11  
V
CC  
AI07208  
5/24  
M59PW1282  
Table 2. Block Addresses  
Block Number  
Address Range  
3E0000h-3FFFFFh  
3C0000h-3DFFFFh  
3A0000h-3BFFFFh  
380000h-39FFFFh  
360000h-37FFFFh  
340000h-35FFFFh  
320000h-33FFFFh  
300000h-31FFFFh  
2E0000h-2FFFFFh  
2C0000h-2DFFFFh  
2A0000h-2BFFFFh  
280000h-29FFFFh  
260000h-27FFFFh  
240000h-25FFFFh  
220000h-23FFFFh  
200000h-21FFFFh  
1E0000h-1FFFFFh  
1C0000h-1DFFFFh  
1A0000h-1BFFFFh  
180000h-19FFFFh  
160000h-17FFFFh  
140000h-15FFFFh  
120000h-13FFFFh  
100000h-11FFFFh  
0E0000h-0FFFFFh  
0C0000h-0DFFFFh  
0A0000h-0BFFFFh  
080000h-09FFFFh  
060000h-07FFFFh  
040000h-05FFFFh  
020000h-03FFFFh  
000000h-01FFFFh  
Block Number  
Address Range  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
7E0000h-7FFFFFh  
7C0000h-7DFFFFh  
7A0000h-7BFFFFh  
780000h-79FFFFh  
760000h-77FFFFh  
740000h-75FFFFh  
720000h-73FFFFh  
700000h-71FFFFh  
6E0000h-6FFFFFh  
6C0000h-6DFFFFh  
6A0000h-6BFFFFh  
680000h-69FFFFh  
660000h-67FFFFh  
640000h-65FFFFh  
620000h-63FFFFh  
600000h-61FFFFh  
5E0000h-5FFFFFh  
5C0000h-5DFFFFh  
5A0000h-5BFFFFh  
580000h-59FFFFh  
560000h-57FFFFh  
540000h-55FFFFh  
520000h-53FFFFh  
500000h-51FFFFh  
4E0000h-4FFFFFh  
4C0000h-4DFFFFh  
4A0000h-4BFFFFh  
480000h-49FFFFh  
460000h-47FFFFh  
440000h-45FFFFh  
420000h-43FFFFh  
400000h-41FFFFh  
8
7
6
5
4
3
2
1
6/24  
M59PW1282  
SIGNAL DESCRIPTIONS  
See Figure 2, Logic Diagram, and Table 1, Signal  
Names, for a brief overview of the signals connect-  
ed to this device.  
Address Inputs (A0-A21). The Address Inputs  
select the cells in the memory array to access dur-  
ing Bus Read operations. During Bus Write opera-  
tions they control the commands sent to the  
Command Interface of the Program/Erase Con-  
troller.  
Write operations they represent the command  
sent to the Command Interface of the Program/  
Erase Controller. When reading the Status Regis-  
ter they report the status of the ongoing algorithm.  
Data Inputs/Outputs (DQ8-DQ15). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation. During Bus  
Write operations the Command Interface does not  
use these bits. When reading the Status Register  
these bits should be ignored.  
Address/Voltage Supply (A22/V ). The  
PP  
A22/V signal has two functions.  
During read operations the A22/V signal works  
as an address input, which is used to select the  
Chip Enable (E). The Chip Enable, E, activates  
the memory, allowing Bus Read operations to be  
performed. It also controls the Bus Write opera-  
PP  
PP  
tions, when V is in the V range.  
PP  
HH  
Top (A22 = V ) or Bottom (A22 = V ) die.  
IH  
IL  
Output Enable (G). The Output Enable, G, con-  
trols the Bus Read operations of the memory. It  
During program or erase operations it also works  
as a V voltage supply pin. At the beginning of  
PP  
also allows Bus Write operations, when V is in  
PP  
any program or erase operation, a specific proce-  
dure (see Figure 4) must be performed to internal-  
ly memorize the A22 value that will be used during  
the program or erase operation.  
the V range.  
HH  
V
Supply Voltage. The V  
Supply Voltage  
CC  
CC  
supplies the power for Read operations.  
When the V is in the V  
DC Characteristic, for the relevant values) pro-  
range (see Table 12,  
HH  
A 0.1µF capacitor should be connected between  
PP  
the V  
Supply Voltage pin and the V Ground  
CC SS  
gram and erase operations are enabled. During  
pin to decouple the current surges from the power  
supply. The PCB track widths must be sufficient to  
carry the currents required during program opera-  
such operations V  
must be stable in the V  
HH  
PP  
range. Program and erase operation are not al-  
lowed when V is below the V range.  
tions, I .  
PP  
HH  
CC3  
Data Inputs/Outputs (DQ0-DQ7). The Data In-  
puts/Outputs output the data stored at the selected  
address during a Bus Read operation. During Bus  
Vss Ground. The V  
for all voltage measurements.  
Ground is the reference  
SS  
7/24  
M59PW1282  
BUS OPERATIONS  
There are six standard bus operations that control  
the device. These are Bus Read, Bus Write, Out-  
put Disable, Standby, Automatic Standby and  
Electronic Signature. See Tables 3, Bus Opera-  
tions, for a summary. Typically glitches of less  
than 5ns on Chip Enable or Write Enable are ig-  
nored by the memory and do not affect bus opera-  
tions.  
Bus Read. Bus Read operations read from the  
memory cells, or specific registers in the Com-  
mand Interface. A valid Bus Read operation in-  
volves setting the desired address on the Address  
Characteristics, for details of the timing require-  
ments.  
Output Disable. The Data Inputs/Outputs are in  
the high impedance state when Output Enable is  
High, V .  
IH  
Standby. When Chip Enable is High, V , the  
IH  
memory enters Standby mode and the Data In-  
puts/Outputs pins are placed in the high-imped-  
ance state. To reduce the Supply Current to the  
Standby Supply Current, I  
, Chip Enable should  
CC2  
be held within V ± 0.2V. For the Standby current  
CC  
level see Table 12, DC Characteristics.  
During program operation the memory will contin-  
Inputs and applying a Low signal, V , to Chip En-  
IL  
able and Output Enable. The Data Inputs/Outputs  
will output the value, see Figure 12, Read AC  
Waveforms, and Table 12, Read AC Characteris-  
tics, for details of when the output becomes valid.  
ue to use the Program Supply Current, I  
, for  
CC3  
Program operation until the operation completes.  
Automatic Standby. If CMOS levels (V ± 0.2V)  
CC  
are used to drive the bus and the bus is inactive for  
150ns or more the memory enters Automatic  
Standby where the internal Supply Current is re-  
During read array operations A22 selects Top  
(A22 = V ) or Bottom (A22 = V ) die.  
IH  
IL  
Bus Write. Bus Write operations write to the  
Command Interface. Bus Write is enabled only  
duced to the Standby Supply Current, I  
. The  
CC2  
Data Inputs/Outputs will still output data if a Bus  
Read operation is in progress.  
when V is set to V . A valid Bus Write opera-  
PP  
HH  
tion begins by setting the desired address on the  
Address Inputs. The Address Inputs are latched by  
the Command Interface on the falling edge of Chip  
Enable. The Data Inputs/Outputs are latched by  
the Command Interface on the rising edge of Chip  
Electronic Signature. The memory has two  
codes, the manufacturer code and the device  
code, that can be read to identify the memory.  
These codes can be read by applying the signals  
listed in Tables 3, Bus Operations, once the Auto  
Select Command is executed. To exit Electronic  
Signature mode, the Read/Reset command must  
be issued.  
Enable. Output Enable must remain High, V ,  
IH  
during the whole Bus Write operation. See Figure  
12, Write AC Waveforms, and Table 14, Write AC  
Table 3. Bus Operations  
Address Inputs  
A0-A21  
Data Inputs/Outputs  
DQ15-DQ0  
(2)  
PP  
Operation  
Bus Read  
E
G
A22/V  
(3)  
V
V
IL  
Cell Address  
Data Output  
V /V  
IL  
IL  
IL IH  
(4)  
V
V
IH  
V
IH  
Bus Write  
Command Address  
Data Input  
Hi-Z  
V
HH  
Output Disable  
Standby  
X
X
X
X
X
V
IH  
X
Hi-Z  
A0 = V , A1 = V ,  
Read Manufacturer  
Code  
IL  
IL  
V
V
V
V
0020h  
88AAh  
IL  
IL  
IL  
IL  
HH  
Others V or V  
IL  
IH  
A0 = V , A1 = V ,  
IH  
IL  
V
V
HH  
Read Device Code  
Others V or V  
IL  
IH  
Note: 1. X = V or V  
.
IH  
IL  
2. When reading the Status Register during a program operation A22/V must be kept at V  
.
HH  
PP  
3. V enables the Bottom die, V enables the Top die during read array operation.  
IL  
IH  
4. V after latching A22 at V or V .  
IH  
HH  
IL  
8/24  
M59PW1282  
COMMAND INTERFACE  
All Bus Write operations to the memory are inter-  
preted by the Command Interface. Commands  
consist of one or more sequential Bus Write oper-  
ations. Failure to observe a valid sequence of Bus  
Write operations will result in the memory return-  
ing to Read mode. The long command sequences  
are imposed to maximize data security.  
Refer to Tables 4 and 5, for a summary of the com-  
mands.  
As the device contains two internal memories care  
must be taken to issue the commands to the cor-  
vert to Read/Reset mode. The command requires  
four Bus Write operations, the final write operation  
latches the address and data in the internal state  
machine and starts the P/E.C.  
During the program operation the memory will ig-  
nore all commands. It is not possible to issue any  
command to abort or pause the operation. Typical  
program times are given in Table 6. Bus Read op-  
erations during the program operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
rect address. To select the Top die (A22 = V ) or  
IH  
the Bottom die (A22 = V ) the A22 latch procedure  
(see Figure 4) must be followed.  
After the program operation has completed the  
memory will return to the Read mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
Note that the Program command cannot change a  
bit set at ’0’ back to ’1’.  
Multiple Word Program Command  
The Multiple Word Program command can be  
used to program large streams of data. It greatly  
reduces the total programming time when a large  
number of Words are written in the memory at  
IL  
It is not necessary to repeat the A22 latch proce-  
dure if all the commands are issued to the same  
die, unless the power supply V is switched off.  
CC  
Read/Reset Command.  
The Read/Reset command returns the memory to  
its Read mode where it behaves like a ROM or  
EPROM, unless otherwise stated. It also resets  
the errors in the Status Register. Either one or  
three Bus Write operations can be used to issue  
the Read/Reset command.  
V
must be set to V  
during the Read/Reset  
PP  
HH  
once. V must be set to V during Multiple Word  
PP  
HH  
command. If V is set to either V or V the com-  
PP  
IL  
IH  
Program. If V is set either V or V the com-  
PP  
IL  
IH  
mand will be ignored. The command can be is-  
sued, between Bus Write cycles before the start of  
a program operation, to return the device to read  
mode. Once the program operation has started the  
Read/Reset command is no longer accepted.  
mand will be ignored, the data will remain un-  
changed and the device will revert to Read mode.  
It has four phases: the Setup Phase to initiate the  
command, the Program Phase to program the  
data to the memory, the Verify Phase to check that  
the data has been correctly programmed and re-  
program if necessary and the Exit Phase.  
Setup Phase. The Multiple Word Program com-  
mand requires three Bus Write operations to ini-  
tiate the command (refer to Table 4, Multiple Word  
Program Command and Figure 8, Multiple Word  
Program Flowchart).  
The Status Register must be read in order to  
check that the P/E.C. has started (see Table 8 and  
Figure 8).  
Auto Select Command.  
The Auto Select command is used to read the  
Manufacturer Code and the Device Code. V  
PP  
must be set to V  
during the Auto Select com-  
HH  
mand. If V is set to either V or V the com-  
PP  
IL  
IH  
mand will be ignored. Three consecutive Bus  
Write operations are required to issue the Auto Se-  
lect command. Once the Auto Select command is  
issued the memory remains in Auto Select mode  
until a Read/Reset command is issued, all other  
commands are ignored.  
From the Auto Select mode the Manufacturer  
Code can be read using a Bus Read operation  
Program Phase. The Program Phase requires  
n+1 Bus Write operations, where n is the number  
of Words, to execute the programming phase (re-  
fer to Table 5, Multiple Word Program and Figure  
7, Multiple Word Program Flowchart).  
Before any Bus Write operation of the Program  
Phase, the Status Register must be read in order  
to check that the P/E.C. is ready to accept the op-  
eration (see Table 8 and Figure 8).  
with A0 = V and A1 = V . The other address bits  
IL  
IL  
may be set to either V or V .  
IL  
IH  
The Device Code can be read using a Bus Read  
operation with A0 = V and A1 = V . The other  
IH  
IL  
address bits may be set to either V or V .  
IL  
IH  
Word Program Command.  
The Word Program command can be used to pro-  
gram a Word to the memory array. V must be  
The Program Phase is executed in three different  
sub-phases:  
PP  
set to V during Word Program. If V is set to ei-  
HH  
PP  
ther V or V the command will be ignored, the  
data will remain unchanged and the device will re-  
1. The first Bus Write operation of the Program  
Phase (the 4th of the command) latches the  
IL  
IH  
9/24  
M59PW1282  
Start Address and the first Word to be  
programmed.  
During the Multiple Word Program operation the  
memory will ignore all commands. It is not possible  
to issue any command to abort or pause the oper-  
ation. Typical program times are given in Table 6.  
Bus Read operations during the program opera-  
tion will output the Status Register on the Data In-  
puts/Outputs. See the section on the Status  
Register for more details.  
2. Each subsequent Bus Write operation latches  
the next Word to be programmed and  
automatically increments the internal Address  
Bus. It is not necessary to provide the address  
of the location to be programmed but only a  
Continue Address, CA (A17 to A21 equal to the  
Start Address), that indicates to the PC that the  
Program Phase has to continue. A0 to A16 are  
‘don’t care’.  
Note that the Multiple Word Program command  
cannot change a bit set at ’0’ back to ’1’.  
Block Erase Command.  
3. Finally, after all Words have been programmed,  
The Block Erase command can be used to erase  
a block. It sets all of the bits in the block to ’1’. All  
previous data in the block is lost.  
th  
a Bus Write operation (the (n+1) ) with a Final  
Address, FA (A17 or a higher address pin  
different from the Start Address), ends the  
Program Phase.  
V
must be set to V during Block Erase. If V  
HH PP  
PP  
is set to either V or V the command will be ig-  
IL  
IH  
The memory is now set to enter the Verify Phase.  
nored, the data will remain unchanged and the de-  
vice will revert to Read/Reset mode.  
Verify Phase. The Verify Phase is similar to the  
Program Phase in that all Words must be resent to  
the memory for them to be checked against the  
programmed data.  
Before any Bus Write Operation of the Verify  
Phase, the Status Register must be read in order  
to check that the P/E.C. is ready for the next oper-  
ation or if the reprogram of the location has failed  
(see Table 8 and Figure 8).  
Six Bus Write operations are required to select the  
block . The Block Erase operation starts the P/E.C.  
after the last Bus Write operation. The Status Reg-  
ister can be read after the sixth Bus Write opera-  
tion. See the Status Register for details on how to  
identify if the P/E.C. has started the Block Erase  
operation.  
During the Block Erase operation the memory will  
ignore all commands. Typical block erase times  
are given in Table 6. All Bus Read operations dur-  
ing the Block Erase operation will output the Sta-  
tus Register on the Data Inputs/Outputs. See the  
section on the Status Register for more details.  
Three successive steps are required to execute  
the Verify Phase of the command:  
1. The first Bus Write operation of the Verify Phase  
latches the Start Address and the Word to be  
verified.  
After the Block Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read mode.  
2. Each subsequent Bus Write operation latches  
the next Word to be verified and automatically  
increments the internal Address Bus. As in the  
Program Phase, it is not necessary to provide  
the address of the location to be programmed  
but only a Continue Address, CA (A17 to A21  
equal to the Start Address).  
Chip Erase Command.  
3. Finally, after all Words have been verified, a Bus  
Write cycle with a Final Address, FA (A17 or a  
higher address pin different from the Start  
Address) ends the Verify Phase.  
The Chip Erase command can be used to erase  
the entire memory. It sets all of the bits in the mem-  
ory to ’1’. All previous data in the memory is lost.  
V
must be set to V during Chip Erase. If V  
HH PP  
PP  
Exit Phase. After the Verify Phase ends, the Sta-  
tus Register must be read to check if the command  
has successfully completed or not (see Table 8  
and Figure 8).  
If the Verify Phase accomplishes successfully, the  
memory returns to the Read mode and DQ6 stops  
toggling.  
On the contrary, if the P/E.C. fails to reprogram a  
given location, the Verify Phase terminates, DQ6  
continues toggling and error bit DQ5 is set in the  
is set to either V or V the command will be ig-  
IL IH  
nored, the data will remain unchanged and the de-  
vice will revert to Read/Reset mode. Six Bus Write  
operations are required to issue the Chip Erase  
Command and start the P/E.C.  
During the erase operation the memory will ignore  
all commands. It is not possible to issue any com-  
mand to abort the operation. Typical chip erase  
times are given in Table 6. All Bus Read opera-  
tions during the Chip Erase operation will output  
the Status Register on the Data Inputs/Outputs.  
See the section on the Status Register for more  
details.  
Status Register. If the error is due to a V failure  
PP  
DQ4 is also set.  
When the operation fails a Read/Reset command  
must be issued to return the device to Read mode.  
10/24  
M59PW1282  
After the Chip Erase operation has completed the  
memory will return to the Read Mode, unless an  
error has occurred. When an error occurs the  
memory will continue to output the Status Regis-  
ter. A Read/Reset command must be issued to re-  
set the error condition and return to Read Mode.  
Table 4. Standard Commands  
Bus Write Operations  
Command  
1st  
2nd  
Data  
3rd  
4th  
5th  
6th  
Add  
X
Data  
F0  
Add  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
1
3
3
4
6
6
Read/Reset  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
X
F0  
90  
A0  
80  
80  
Auto Select  
Word Program  
Block Erase  
Chip Erase  
555  
555  
555  
555  
PA  
555  
555  
PD  
AA  
AA  
2AA  
2AA  
55  
55  
BA  
30  
10  
555  
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. The  
Command Interface only uses A0-A10 and DQ0-DQ7 to verify the commands; A11-A21, DQ8-DQ15 are Don’t Care.  
Table 5. Multiple Word Program Command  
Bus Write Operations  
Phase  
1st  
Add Data Add Data Add Data Add Data Add Data  
555 AA 2AA 55 555 20  
2nd  
3rd  
4th  
5th  
nth  
Final  
Add Data Add Data  
Set-Up  
3
Program n+1 SA PD1 CA PD2 CA PD3 CA PD4 CA PD5  
Verify n+1 SA PD1 CA PD2 CA PD3 CA PD4 CA PD5  
CA PAn  
CA PAn  
FA  
FA  
X
X
Note: A Bus Read must be done between each Write cycle where the data is programmed or verified, to Read the Status Register and check  
that the memory is ready to accept the next data. SA is the Start Address. CA is the Continue Address. FA is the Final Address. X Don’t  
Care, n = number of Words to be programmed.  
Table 6. Program, Erase Times and Program, Erase Endurance Cycles  
Typical after  
(1)  
Parameter  
Min  
Max  
Unit  
Typ  
80  
(1)  
10k W/E Cycles  
Chip Erase  
85  
120  
6
s
Block Erase (128 KWords)  
Program (Word)  
1.5  
9
s
200  
280  
280  
µs  
Chip Program (Multiple Word)  
Chip Program (Word by Word)  
Program/Erase Cycles (per Block)  
16  
72  
s
s
10,000  
cycles  
Note: 1. T = 25°C, V = 12V.  
A
PP  
11/24  
M59PW1282  
Figure 4. A22 Latch Procedure Waveforms  
tA9HA9L  
V
TL  
A9  
A22 latched on  
TL rising edge  
tA22VA9TL  
A22/V  
VALID A22  
PP  
A0-A8;  
A10-A21  
E
AI07257  
Note: G = V ; DQ0–DQ15 are Don’t care; V = 10.5 ± 0.25V; V = 2.7 to 3.6V.  
IH  
TL  
CC  
Table 7. A22 Latch Procedure AC Characteristics  
Symbol  
Parameter  
A22 valid to A9 at Third Level  
A9 High to A9 Low  
Min  
1
Unit  
t
µs  
µs  
A22VA9TL  
t
1
A9HA9L  
Figure 5. Programming Flowchart  
Figure 6. Chip Erase Flowchart  
Start  
Start  
A22 Latch procedure  
A22 Latch procedure  
with A22 = V  
with A22 = V  
IH  
IH  
Program Command  
execution on  
Chip Erase Command  
execution on  
64Mbit Top die  
64Mbit Top die  
A22 Latch procedure  
A22 Latch procedure  
with A22 = V  
with A22 = V  
IL  
IL  
Program Command  
execution on  
Chip Erase Command  
execution on  
64Mbit Bottom die  
64Mbit Bottom die  
READ (verify pattern)  
on 128Mbit  
Blank check  
on 128Mbit  
End  
End  
AI08208  
AI08209  
12/24  
M59PW1282  
Figure 7. Multiple Word Program Flowchart for 64Mbit Top and Bottom Die  
Start  
Setup  
Verify  
Phase  
Phase  
Read Status  
Register  
Write AAh  
Address 555h  
Write 55h  
Address 2AAh  
NO  
DQ0 = 0?  
Write 20h  
Address 555h  
Write Data1  
Start Address  
Read Status  
Register  
Read Status  
Register  
NO  
NO  
DQ5 = 1 ?  
NO  
NO  
DQ6  
Setup time  
exceeded?  
NO  
toggling?  
DQ0 = 0?  
YES  
YES  
YES  
YES  
Write Data 2  
Continue Address  
EXIT (setup failed)  
DQ0 = 0?  
YES  
Write Data1  
Start Address  
Read Status  
Register  
Program  
Phase  
NO  
Read Status  
Register  
NO  
DQ0 = 0?  
YES  
DQ5 = 1?  
YES  
NO  
NO  
NO  
DQ0 = 0?  
Write Data n  
Continue Address  
YES  
Write Data 2  
Continue Address  
Read Status  
Register  
NO  
Read Status  
Register  
NO  
DQ0 = 0?  
YES  
DQ5 = 1?  
YES  
Exit  
Phase  
DQ0 = 0?  
YES  
Read Status  
Register  
Write XX  
Final Address  
Write Data n  
Continue Address  
YES  
NO  
DQ4 = 0?  
Read Status  
Register  
Fail error  
Read Status  
Register  
Fail, VPP error  
YES  
DQ6  
toggling?  
Write F0h  
Address XX  
DQ0 = 0?  
YES  
NO  
Write XX  
Final Address  
Exit (read mode)  
AI05954b  
13/24  
M59PW1282  
STATUS REGISTER  
Bus Read operations from any address always  
read the Status Register during Program and  
Erase operations. The bits in the Status Register  
are summarized in Table 8, Status Register Bits.  
Data Polling Bit (DQ7). The Data Polling Bit can  
be used to identify whether the P/E.C. has suc-  
cessfully completed its operation. The Data Poll-  
ing Bit is output on DQ7 when the Status Register  
is read.  
Note that the Program command cannot change a  
bit set to ’0’ back to ’1’ and attempting to do so will  
set DQ5 to ‘1’. A Bus Read operation to that ad-  
dress will show the bit is still ‘0’. One of the Erase  
commands must be used to set all the bits in a  
block or in the whole memory from ’0’ to ’1’.  
V
Status Bit (DQ4). The V Status Bit can be  
PP  
PP  
used to identify if any Program or Erase operation  
has failed due to a V error. If V falls below V  
PP  
PP  
HH  
during any Program or Erase operation, the oper-  
ation aborts and DQ4 is set to ‘1’. If V remains at  
During a Word Program operation the Data Polling  
Bit outputs the complement of the bit being pro-  
grammed to DQ7. After successful completion of  
the Word Program operation the memory returns  
to Read mode and Bus Read operations from the  
address just programmed output DQ7, not its com-  
plement.  
During Erase operations the Data Polling Bit out-  
puts ’0’, the complement of the erased state of  
DQ7. After successful completion of the Erase op-  
eration the memory returns to Read Mode.  
PP  
V
throughout the Program or Erase operation,  
HH  
the operation completes and DQ4 is set to ‘0’.  
Erase Timer Bit (DQ3). The Erase Timer Bit can  
be used to identify the start of P/E.C. operation  
during a Block Erase command. Once the P/E.C.  
starts erasing the Erase Timer Bit is set to ’1’. The  
Erase Timer Bit is output on DQ3 when the Status  
Register is read.  
Alternative Toggle Bit (DQ2). The Alternative  
Toggle Bit can be used to monitor the P/E.C. dur-  
ing Block Erase operations. The Alternative Tog-  
gle Bit is output on DQ2 when the Status Register  
is read.  
Figure 8, Data Polling Flowchart, gives an exam-  
ple of how to use the Data Polling Bit. A Valid Ad-  
dress is the address being programmed or an  
address within the block being erased.  
During Block Erase operations the Toggle Bit  
changes from ’0’ to ’1’ to ’0’, etc., with successive  
Bus Read operations from addresses within the  
block being erased. Once the operation completes  
the memory returns to Read mode.  
After an Erase operation that causes the Error Bit  
to be set, the Alternative Toggle Bit can be used to  
identify where the error occurred. The Alternative  
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with  
successive Bus Read Operations from addresses  
within a block that has not erased correctly. The  
Alternative Toggle Bit does not change if the ad-  
dressed block has erased correctly.  
Multiple Word Program Bit (DQ0). The Multiple  
Word Program Bit can be used to indicate whether  
the P/E.C. is active or inactive during Multiple  
Word Program. When the P/E.C. has written one  
Word and is ready to accept the next Word, the bit  
is set to ‘0’.  
Toggle Bit (DQ6). The Toggle Bit can be used to  
identify whether the P/E.C. has successfully com-  
pleted its operation. The Toggle Bit is output on  
DQ6 when the Status Register is read.  
During Program and Erase operations the Toggle  
Bit changes from ’0’ to ’1’ to ’0’, etc., with succes-  
sive Bus Read operations at any address. After  
successful completion of the operation the memo-  
ry returns to Read mode.  
Figure 9, Data Toggle Flowchart, gives an exam-  
ple of how to use the Data Toggle Bit.  
Error Bit (DQ5). The Error Bit can be used to  
identify errors detected by the P/E.C. The Error Bit  
is set to ’1’ when a Program, Block Erase or Chip  
Erase operation fails to write the correct data to  
the memory. If the Error Bit is set a Read/Reset  
command must be issued before other commands  
are issued. The Error bit is output on DQ5 when  
the Status Register is read.  
Status Register Bit DQ1 is reserved.  
14/24  
M59PW1282  
Table 8. Status Register Bits  
(1)  
P/E.C. Status  
Programming  
Waiting for data  
Program fail  
Address  
DQ7  
DQ6  
DQ5 DQ4 DQ3  
DQ2  
DQ0  
Command  
Toggle  
Toggle  
Toggle  
Toggle  
Toggle  
Toggle  
0
0
1
0
1
0
0
0
0
0
0
1
1
0
1
Multiple Word  
Program  
(2)  
Programming  
Program error  
DQ7  
DQ7  
0
Word Program  
(2)  
In erasing block  
Toggle  
Erasing  
Not in  
erasing block  
0
0
0
Toggle  
Toggle  
Toggle  
0
1
1
1
1
1
No Toggle  
Toggle  
Chip Erase/  
Block Erase  
(2)  
(2)  
In failed block  
Erase fail  
Not in  
failed block  
No Toggle  
Note: 1. Unspecified data bits should be ignored.  
2. DQ4 = 0 if V V during Program/Erase algorithm execution; DQ4 = 1 if V < V during Program/Erase algorithm execution.  
PP  
HH  
PP  
HH  
Figure 8. Data Polling Flowchart  
Figure 9. Data Toggle Flowchart  
START  
START  
READ  
DQ5 & DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
READ DQ6  
DQ7  
=
DATA  
YES  
DQ6  
NO  
=
NO  
TOGGLE  
YES  
NO  
DQ5  
= 1  
NO  
DQ5  
YES  
= 1  
YES  
READ DQ7  
at VALID ADDRESS  
READ DQ6  
TWICE  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
NO  
FAIL  
TOGGLE  
PASS  
YES  
FAIL  
PASS  
AI03598  
AI01370B  
15/24  
M59PW1282  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings" table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 9. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
–50  
–65  
Max  
125  
150  
Unit  
°C  
T
Temperature Under Bias  
Storage Temperature  
BIAS  
T
°C  
STG  
(1,2)  
V
+0.6  
–0.6  
–0.6  
–0.6  
V
V
V
V
CC  
Input or Output Voltage  
Read Supply Voltage  
IO  
V
4
CC  
(3)  
V
PP  
13.5  
Program/Erase Supply Voltage  
Note: 1. Minimum voltage may undershoot to –2V for less than 20ns during transitions.  
2. Maximum voltage may overshoot to V +2V for less than 20ns during transitions.  
CC  
3. Maximum voltage may overshoot to 14.0V for less than 20ns during transitions. V must not remain at V for more than a total  
PP  
HH  
of 80hrs.  
16/24  
M59PW1282  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 10, Operating  
and AC Measurement Conditions. Designers  
should check that the operating conditions in their  
circuit match the operating conditions when rely-  
ing on the quoted parameters.  
Table 10. Operating and AC Measurement Conditions  
Parameter  
M59PW1282  
100, 120  
Unit  
Min  
2.7  
11.4  
0
Max  
3.6  
V
V
Read Supply Voltage  
V
V
CC  
Program/Erase Supply Voltage  
12.6  
70  
PP  
Ambient Operating Temperature (T )  
°C  
pF  
ns  
V
A
Load Capacitance (C )  
30  
L
Input Rise and Fall Times  
10  
Input Pulse Voltages  
0 to 3  
1.5  
Input and Output Timing Ref. Voltages  
V
Figure 10. AC Measurement I/O Waveform  
Figure 11. AC Measurement Load Circuit  
1.3V  
1N914  
3V  
1.5V  
0V  
3.3k  
AI05546  
DEVICE  
UNDER  
TEST  
OUT  
C
L
C = 30pF  
L
C includes JIG capacitance  
L
AI05447  
Table 11. Device Capacitance  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
12  
Unit  
pF  
C
V
IN  
= 0V  
= 0V  
IN  
C
V
OUT  
24  
pF  
OUT  
C
A22/V Capacitance  
V
= 0V  
50  
pF  
A22/Vpp  
PP  
A22/Vpp  
Note: Sampled only, not 100% tested.  
17/24  
M59PW1282  
Table 12. DC Characteristics  
(1)  
Symbol  
Test Condition  
Min  
Max  
±1  
Unit  
µA  
Parameter  
I
LI  
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current (Read)  
Supply Current (Standby)  
Supply Current (Program)  
Input Low Voltage  
IN  
CC  
I
0V V V  
OUT CC  
±1  
µA  
LO  
I
E = V , G = V , f = 6MHz  
IL IH  
10  
mA  
CC1  
(2)  
E = V ±0.2V  
150  
20  
µA  
mA  
V
I
CC  
CC2  
I
P/E.C. active  
CC3  
V
V
–0.5  
0.8  
IL  
0.7V  
V
+0.3  
Input High Voltage  
V
IH  
CC  
CC  
V
V
I
= 1.8mA  
Output Low Voltage  
0.45  
V
OL  
OL  
V
–0.4  
CC  
Output High Voltage  
I
= –100µA  
V
OH  
HH  
OH  
V
I
V
V
Program Voltage  
Current (Program)  
11.4  
12.6  
10  
V
PP  
P/E.C. Active  
mA  
HH  
PP  
Note: 1. V must be applied simultaneously or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Average Value.  
18/24  
M59PW1282  
Figure 12. Read AC Waveforms  
A0-A22  
VALID  
tAVQV  
tAXQX  
E
tELQV  
tEHQZ  
G
tGLQV  
tGHQZ  
VALID  
DQ0-DQ15  
AI08232  
Table 13. Read AC Characteristics  
M59PW1282  
(1)  
Symbol Alt  
Test Condition  
100  
120  
Unit  
Parameter  
V
CC  
= 3.0 to 3.6V V = 2.7 to 3.6V V = 2.7 to 3.6V  
CC  
CC  
E = V ,  
Address Valid to  
Output Valid  
IL  
t
t
t
t
ACC  
Max  
90  
90  
35  
30  
30  
0
100  
100  
35  
30  
30  
0
120  
120  
35  
30  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
AVQV  
G = V  
IL  
Chip Enable Low to  
Output Valid  
t
G = V  
Max  
Max  
Max  
Max  
Min  
ELQV  
CE  
IL  
Output Enable Low to  
Output Valid  
t
E = V  
IL  
GLQV  
OE  
Chip Enable High to  
Output Hi-Z  
(2)  
t
G = V  
t
HZ  
IL  
EHQZ  
Output Enable High  
to Output Hi-Z  
(2)  
t
E = V  
t
DF  
IL  
GHQZ  
Address Transition to  
Output Transition  
t
t
OH  
AXQX  
Note: 1. V must be applied after V and with the Chip Enable (E) at V .  
IH  
PP  
CC  
2. Sampled only, not 100% tested.  
19/24  
M59PW1282  
Figure 13. Write AC Waveforms, Chip Enable Controlled  
A0-A21  
VALID  
tELAX  
tAVEL  
tEHGL  
G
E
tGHEL  
tELEH  
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ15  
V
CC  
tVCHEL  
tVPHEL  
A22/V  
PP  
AI08233  
Table 14. Chip Enable Controlled, Write AC Characteristics  
(1)  
Symbol  
Alt  
M59PW1282  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Parameter  
Chip Enable Low to Chip Enable High  
Input Valid to Chip Enable High  
t
t
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
50  
50  
0
ELEH  
CP  
t
t
DVEH  
DS  
t
t
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Address Transition  
Output Enable High Chip Enable Low  
Chip Enable High to Output Enable Low  
EHDX  
DH  
t
t
50  
0
EHEL  
CPH  
t
t
AS  
AVEL  
t
t
AH  
100  
10  
10  
50  
ELAX  
t
GHEL  
t
t
EHGL  
OEH  
t
t
t
V
V
High to Chip Enable Low  
High to Chip Enable Low  
VCHEL  
VCS  
CC  
(2)  
Min  
500  
ns  
t
VCS  
PP  
VPHEL  
Note: 1. T = 25°C; A22/V = 11.4 to 12.6V; V = 2.7 to 3.6V.  
A
PP  
CC  
V
must be applied after V and with the Chip Enable (E) at V .  
PP  
CC IH  
Sampled only, not 100% tested.  
2. Not required in Auto Select or Read/Reset command sequences.  
20/24  
M59PW1282  
PACKAGE MECHANICAL  
Figure 14. SO44 - 44 lead Plastic Small Outline, 500 mils body width, Package Outline  
D
44  
23  
c
E1 E  
θ
1
22  
A1  
L
A2  
A
L1  
ddd  
b
e
SO-F  
Note: Drawing is not to scale.  
Table 15. SO44 - 44 lead Plastic Small Outline, 500 mils body width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
3.00  
0.118  
0.10  
2.69  
0.004  
0.106  
2.56  
0.35  
2.79  
0.50  
0.28  
28.63  
0.10  
16.28  
12.73  
0.101  
0.014  
0.007  
1.117  
0.110  
0.020  
0.011  
1.127  
0.004  
0.641  
0.501  
c
0.18  
D
28.50  
28.37  
1.122  
ddd  
E
16.03  
12.60  
1.27  
15.77  
12.47  
0.631  
0.496  
0.050  
0.031  
0.068  
0.621  
0.491  
E1  
e
L
0.79  
L1  
θ
1.73  
8°  
8°  
N
44  
44  
21/24  
M59PW1282  
PART NUMBERING  
Table 16. Ordering Information Scheme  
Example:  
M59PW1282  
100 M  
1
T
Device Type  
M59P = LightFlash™ Memory  
Operating Voltage  
W = V = 2.7 to 3.6V  
CC  
Device Function  
128 = 128 Mbit (x16)  
Device Function  
2 = 2 dice stacked  
Speed  
(1)  
100 = 100 ns  
120 = 120 ns  
Package  
M = SO44, 500mils body width  
Temperature Range  
1 = 0 to 70 °C  
Option  
T = Tape & Reel Packing  
Note: 1. This speed also guarantees 90ns access time at V = 3.0 to 3.6V.  
CC  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
22/24  
M59PW1282  
REVISION HISTORY  
Table 17. Document Revision History  
Date  
Version  
1.0  
Revision Details  
20-Jan-2003  
06-Feb-2003  
First Issue  
2.0  
Part Number changed  
Document Status changed to Preliminary Data  
Document extended to full size  
07-Mar-2003  
3.0  
100ns speed class guarantees 90ns at V  
= 3.0 to 3.6V  
29-Apr-2003  
20-Nov-2003  
3.1  
3.2  
CC  
Datasheet status updated to “Full Datasheet”.  
23/24  
M59PW1282  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
24/24  

相关型号:

M59PW1282120M1T

128Mbit (two 64Mb, x16, Uniform Block, LightFlash⑩) 3V Supply, Multiple Memory Product
STMICROELECTR

M5A

SURFACE MOUNT PLASTIC SILICON RECTIFIERS
HY

M5A

1.0A patch rectifier diode 600V SMA series
SUNMATE

M5A1

MEDIUM CURRENT SILICON RECTIFIERS
ETC

M5A26LS29P

Line Driver, 1 Func, 4 Driver, BIPolar, PDIP16, PLASTIC, DIP-16
MITSUBISHI

M5A26LS31FP

Line Driver, 1 Func, 4 Driver, BIPolar, PDSO16, 0.300 INCH, PLASTIC, SOP-16
MITSUBISHI

M5A26LS31P

Line Driver, 1 Func, 4 Driver, BIPolar, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MITSUBISHI

M5A26LS32AFP

QUADRUPLE DIFFERENTIAL LINE RECEIVER
MITSUBISHI

M5A26LS32AP

QUADRUPLE DIFFERENTIAL LINE RECEIVER
MITSUBISHI

M5A3-128/104-15VI

EE PLD, 15ns, 128-Cell, CMOS, PQFP144, TQFP-144
LATTICE

M5A3-128/104-7VC

EE PLD, 7.5ns, 128-Cell, CMOS, PQFP144, TQFP-144
LATTICE

M5A3-128/120-10YC

EE PLD, 10ns, 128-Cell, CMOS, PQFP160, PLASTIC, QFP-160
LATTICE