M48Z19PC [STMICROELECTRONICS]

CMOS 8K x 8 ZEROPOWER SRAM; CMOS 8K ×8 ZEROPOWER SRAM
M48Z19PC
型号: M48Z19PC
厂家: ST    ST
描述:

CMOS 8K x 8 ZEROPOWER SRAM
CMOS 8K ×8 ZEROPOWER SRAM

静态存储器
文件: 总13页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48Z09  
M48Z19  
CMOS 8K x 8 ZEROPOWER SRAM  
INTEGRATED ULTRA LOW POWER SRAM,  
POWER-FAIL CONTROL CIRCUIT and  
BATTERY  
UNLIMITED WRITE CYCLES  
READ CYCLE TIME EQUALS WRITE CYCLE  
TIME  
AUTOMATIC POWER-FAIL CHIP DESELECT and  
WRITE PROTECTION  
POWER-FAIL INTERRUPT  
28  
1
CHOICE of TWO WRITE PROTECT  
VOLTAGES:  
PCDIP28 (PC)  
Battery CAPHAT  
– M48Z09: 4.5V VPFD 4.75V  
– M48Z19: 4.2V VPFD 4.5V  
SELF CONTAINED BATTERY in the CAPHAT  
DIP PACKAGE  
11 YEARS of DATA RETENTION in the  
ABSENCE of POWER  
Figure 1. Logic Diagram  
PIN and FUNCTION COMPATIBLE with the  
MK48Z09, 19 and JEDEC STANDARD 8K x 8  
SRAMs  
DESCRIPTION  
TheM48Z09,19ZEROPOWER® RAM is an 8K x 8  
non-volatile static RAM which is pin and function  
compatible with the MK48Z09,19.  
V
CC  
13  
8
A special 28 pin 600mil DIP CAPHAT package  
houses the M48Z09,19 silicon with a long life lith-  
ium button cell to form a highly integrated battery  
backed-up memory solution.  
A0-A12  
DQ0-DQ7  
INT  
W
M48Z09  
M48Z19  
Table 1. Signal Names  
E1  
E2  
G
A0-A12  
DQ0-DQ7  
INT  
Address Inputs  
Data Inputs / Outputs  
Power Fail Interrupt  
Chip Enable 1  
Chip Enable 2  
Output Enable  
Write Enable  
E1  
E2  
V
SS  
G
AI01184  
W
VCC  
VSS  
Supply Voltage  
Ground  
November 1994  
1/13  
M48Z09, M48Z19  
Table 2. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Value  
0 to 70  
–40 to 85  
–0.3 to 7  
–0.3 to 7  
20  
Unit  
°C  
°C  
V
Ambient Operating Temperature  
Storage Temperature (VCC Off)  
Input or Output Voltages  
Supply Voltage  
TSTG  
VIO  
VCC  
IO  
V
Output Current  
mA  
W
PD  
Power Dissipation  
1
Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this  
specification is not implied. Exposure to the absolute maximum ratings conditions for extended periods of time may affect reliability.  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.  
Table 3. Operating Modes  
Mode  
Deselect  
Deselect  
Write  
VCC  
E1  
VIH  
X
E2  
X
G
X
W
X
DQ0-DQ7  
High Z  
High Z  
DIN  
Power  
Standby  
4.75V to 5.5V  
or  
4.5V to 5.5V  
VIL  
VIH  
VIH  
VIH  
X
X
X
Standby  
VIL  
VIL  
VIL  
X
X
VIL  
VIH  
VIH  
X
Active  
Read  
VIL  
VIH  
X
DOUT  
Active  
Read  
High Z  
High Z  
High Z  
Active  
Deselect  
Deselect  
V
SO to VPFD (min)  
CMOS Standby  
Battery Back-up Mode  
X
X
X
X
VSO  
Note: X = VIH or VIL  
Figure 2A. DIP Pin Connections  
DESCRIPTION (cont’d)  
The M48Z09,19 button cell has sufficient capacity  
and storage life to maintain data for an accumu-  
lated time period of at least 11 years in the absence  
of power over the operating temperature range.  
INT  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
26 E2  
25 A8  
24 A9  
23 A11  
The M48Z09,19 is a non-volatile pin and function  
equivalent to any JEDEC standard 8K x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special write  
timing or limitations on the number of writes that  
can be performed.  
A6  
A5  
A4  
A3  
22  
G
M48Z09  
M49Z19  
A2  
21 A10  
20 E1  
A1  
The M48Z09,19 also has its own Power-fail Detect  
circuit. The control circuitry constantly monitors the  
single 5V supply for an out of tolerance condition.  
When VCC is out of tolerance, the circuit write  
protects the SRAM, providing a high degree of data  
security inthemidst ofunpredictablesystemopera-  
tion brought on by low VCC. As VCC falls below  
approximately 3V, the control circuitry connects the  
battery which maintains data and clock operation  
until valid power returns.  
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
V
14  
SS  
AI01185  
2/13  
M48Z09, M48Z19  
Figure 3. Block Diagram  
A0-A12  
DQ0-DQ7  
LITHIUM  
CELL  
8K x 8  
SRAM ARRAY  
POWER  
E1  
E2  
W
VOLTAGE SENSE  
AND  
V
SWITCHING  
CIRCUITRY  
PFD  
G
V
INT  
V
CC  
SS  
AI01397  
AC MEASUREMENT CONDITIONS  
READ MODE  
The M48Z09,19 is in the Read Mode whenever W  
(Write Enable) is high, E1 (Chip Enable 1) is low,  
and E2 (Chip Enable 2) is high. The device archi-  
tecture allows ripple- through access of data from  
eight of 65,536 locations in the static storage array.  
Thus, the unique address specified by the 13 Ad-  
dress Inputs defines which one of the 8,192 bytes  
of data is to be accessed. Valid data will be avail-  
able at the Data I/O pins within tAVQV (Address  
Access Time) after the last address input signal is  
stable, providing that the E1, E2, and G access  
times are also satisfied. If the E1, E2 and G access  
times are not met, valid data will be available after  
the latter of the Chip Enable Access Times (tE1LQV  
or tE2HQV) or Output Enable Access Time (tGLQV).  
Input Rise and Fall Times  
5ns  
0 to 3V  
1.5V  
Input Pulse Voltages  
Input and Output Timing Ref. Voltages  
Note that Output Hi-Z is defined as the point where data  
is no longer driven.  
Figure 4. AC Testing Load Circuit  
5V  
1.8kΩ  
DEVICE  
The state of the eight three-state Data I/O signals  
is controlled by E1, E2 and G. If the outputs are  
activated before tAVQV, the data lines will be driven  
to an indeterminate state until tAVQV. If the Address  
Inputs are changed while E1, E2 and G remain  
active, output data will remain valid for tAXQX (Out-  
put Data Hold Time) but will go indeterminate until  
the next Address Access.  
UNDER  
TEST  
OUT  
1kΩ  
C
= 100pF or 30pF  
L
C
includes JIG capacitance  
L
AI01398  
3/13  
M48Z09, M48Z19  
Table 4. Capacitance (1) (TA = 25 °C)  
Symbol  
Parameter  
Input Capacitance  
Test Condition  
VIN = 0V  
Min  
Max  
10  
Unit  
pF  
CIN  
(2)  
CIO  
Input / Output Capacitance  
VOUT = 0V  
10  
pF  
Notes: 1. Effective capacitance calculated from the equation C = It/V with V = 3V and power supply at 5V.  
2. Outputs deselected  
Table 5. DC Characteristics (TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
Symbol  
ILI  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
Min  
Max  
±1  
±5  
80  
3
Unit  
µA  
ILO  
µA  
ICC  
mA  
mA  
ICC1  
Supply Current (Standby) TTL  
E1 = VIH, E2 = VIL  
E1 = VCC – 0.2V,  
E2 = VSS + 0.2V  
ICC2  
Supply Current (Standby) CMOS  
3
mA  
VIL  
Input Low Voltage  
–0.3  
2.2  
0.8  
VCC + 0.3  
0.4  
V
V
V
V
V
VIH  
Input High Voltage  
Output Low Voltage  
Output Low Voltage (INT) (1)  
Output High Voltage  
IOL = 2.1mA  
IOL = 0.5mA  
IOH = –1mA  
VOL  
0.4  
VOH  
2.4  
Note: 1. The INT pin is Open Drain.  
Table 6. Power Down/Up Trip Points DC Characteristics (1) (TA = 0 to 70°C)  
Symbol  
VPFD  
VPFD  
VSO  
Parameter  
Min  
4.5  
4.2  
Typ  
4.6  
4.3  
3.0  
Max  
4.75  
4.5  
Unit  
Power-fail Deselect Voltage (M48Z09)  
Power-fail Deselect Voltage (M48Z19)  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
V
V
tDR  
11  
YEARS  
Note: 1. All voltages referenced to VSS  
.
4/13  
M48Z09, M48Z19  
Table 7. Power Down/Up Mode AC Characteristics (TA = 0 to 70°C)  
Symbol  
Parameter  
E1 or W at VIH or E2 at VIL before Power Down  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSO VCC Fall Time  
Min  
0
Max  
Unit  
µs  
tPD  
(1)  
tF  
300  
10  
0
µs  
(2)  
tFB  
µs  
tR  
VPFD(min) to VPFD (max) VCC Rise Time  
VSO to VPFD (min) VCC Rise Time  
E1 or W at VIH or E2 at VIL after Power Up  
INT Low to Auto Deselect  
µs  
tRB  
1
µs  
tREC  
tPFX  
1
ms  
µs  
10  
40  
(3)  
tPFH  
VPFD (max) to INT High  
120  
µs  
Notes: 1. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200 µs after  
VCC passes VPFD (min).  
2. VPFD (min) to VSO fall time of less than tFB may cause corruption of RAM data.  
3. INT may go high anytime after VCC exceeds VPFD (min) and is guaranteed to go high tPFH after VCC exceeds VPFD (max).  
Figure 5. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tDR  
tR  
tPD  
tFB  
tPFX  
tRB  
tPFH  
INT  
tREC  
RECOGNIZED  
NOTE  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI00566  
Note: Inputs may or may not be recognized at this time. Caution should be taken to keep E1high or E2 low as VCC rises past VPFD(min).  
Some systems may performs inadvertent write cycles after VCC rises above VPFD(min) but before normal system operations begins. Even  
though a power on reset is being applied to the processor a reset condition may not occur until after the system clock is running.  
5/13  
M48Z09, M48Z19  
Table 8. Read Mode AC Characteristics (TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z09 / 19  
Symbol  
Parameter  
Unit  
-100  
Min  
Max  
tAVAV  
Read Cycle Time  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAVQV  
Address Valid to Output Valid  
100  
100  
100  
50  
(1)  
tE1LQV  
Chip Enable 1 Low to Output Valid  
Chip Enable 2 High to Output Valid  
Output Enable Low to Output Valid  
Chip Enable 1 Low to Output Transition  
Chip Enable 2 High to Output Transition  
Output Enable Low to Output Transition  
Chip Enable 1 High to Output Hi-Z  
Chip Enable 2 Low to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
(1)  
tE2HQV  
(1)  
tGLQV  
(2)  
tE1LQX  
10  
10  
5
(2)  
tE2HQX  
(2)  
tGLQX  
(2)  
tE1HQZ  
50  
50  
40  
(2)  
tE2LQZ  
(2)  
tGHQZ  
(1)  
tAXQX  
5
Notes: 1. CL= 100pF (see Figure 4).  
2. CL= 30pF (see Figure 4)  
Figure 6. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A12  
tAVQV  
tE1LQV  
tAXQX  
tE1HQZ  
E1  
E2  
tE1LQX  
tE2HQV  
tE2LQZ  
tE2HQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00962  
6/13  
M48Z09, M48Z19  
Table 9. Write Mode AC Characteristics (TA = 0 to 70°C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48Z09 / 19  
-100  
Symbol  
Parameter  
Unit  
Min  
Max  
tAVAV  
tAVWL  
Write Cycle Time  
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Write Enable Low  
Address Valid to Chip Enable 1 Low  
Address Valid to Chip Enable 2 High  
Write Enable Pulse Width  
tAVE1L  
tAVE2H  
tWLWH  
tE1LE1H  
tE2HE2L  
tWHAX  
tE1HAX  
tE2LAX  
tDVWH  
tDVE1H  
tDVE2L  
tWHDX  
tE1HDX  
tE2LDX  
0
0
80  
80  
80  
10  
10  
10  
50  
50  
50  
5
Chip Enable 1 Low to Chip Enable 1 High  
Chip Enable 2 High to Chip Enable 2 Low  
Write Enable High to Address Transition  
Chip Enable 1 High to Address Transition  
Chip Enable 2 Low to Address Transition  
Input Valid to Write Enable High  
Input Valid to Chip Enable 1 High  
Input Valid to Chip Enable 2 Low  
Write Enable High to Input Transition  
Chip Enable 1 High to Input Transition  
Chip Enable 2 Low to Input Transition  
Write Enable Low to Output Hi-Z  
5
5
(1, 2)  
tWLQZ  
50  
tAVWH  
tAVE1H  
tAVE2L  
Address Valid to Write Enable High  
Address Valid to Chip Enable 1 High  
Address Valid to Chip Enable 2 Low  
Write Enable High to Output Transition  
80  
80  
80  
10  
(1, 2)  
tWHQX  
Notes: 1. CL= 30pF (see Figure 4).  
2. If E1 goes low or E2 high simultaneously with W going low, the outputs remain in the high impedance state.  
7/13  
M48Z09, M48Z19  
Figure 7. Write Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVWH  
tAVE1L  
tAVE2H  
tWHAX  
E1  
E2  
tWLWH  
tAVWL  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI00963  
Figure 8. Chip Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVE1H  
tE1LE1H  
tAVE1L  
tAVE2H  
tE1HAX  
tE2LAX  
E1  
tAVE2L  
tE2HE2L  
E2  
tAVWL  
W
tE1HDX  
tE2LDX  
DQ0-DQ7  
DATA INPUT  
tDVE1H  
tDVE2L  
AI00964B  
8/13  
M48Z09, M48Z19  
write cycles prior to processor stabilization. Normal  
RAM operation can resume tREC after VCC exceeds  
VPFD(max).  
WRITE MODE  
The M48Z09,19 is in the Write Mode whenever W,  
E1, and E2 are active. The start of a write is refer-  
enced from the latter occurring falling edge of W or  
E1, or the rising edge of E2. A write is terminated  
by the earlier rising edge of W or E1, or the falling  
edge of E2. The addresses must be held valid  
throughout the cycle. E1 or W must return high or  
E2 low for minimum of tE1HAX or tE2LAX from Chip  
Enable or tWHAX from Write Enable prior to the  
initiation of another read or write cycle. Data-in  
must be valid tDVWH prior to the end of write and  
remain valid for tWHDX afterward. G should be kept  
high during write cycles to avoid bus contention;  
although, if the output bus has been activated by a  
low on E1 and G and a high on E2, a low on W will  
disable the outputs tWLQZ after W falls.  
POWER FAIL INTERRUPT PIN  
The M48Z09,19 continuously monitors VCC. When  
VCC falls to the power-fail detect trip point, an  
interrupt is immediately generated. An internal  
clock provides a delay of between 10µs and 40µs  
before automatically deselecting the M48Z09,19.  
The INT pin is an open drain output and requires  
an external pull up resistor, even if the interrupt  
output function is not being used.  
SYSTEM BATTERY LIFE  
The useful life of the battery in the M48Z09,19 is  
expected to ultimately come to an end for one of  
tworeasons:eitherbecauseithasbeendischarged  
while providing current to the RAM in the battery  
back-up mode, or because the effects of aging  
render the cell useless before it can actually be  
completelydischarged. The twoeffects are virtually  
unrelated allowing discharge, or Capacity Con-  
sumption, and the effects of aging, or Storage Life,  
to be treated as two independent but simultaneous  
mechanisms. The earlier occurring failure mecha-  
nism defines the battery system life of the  
M48Z09,19.  
DATA RETENTION MODE  
With valid VCC applied, the M48Z09,19 operates as  
a conventional BYTEWIDE static RAM. Should  
the supply voltage decay, the RAM will automat-  
ically power-fail deselect, write protecting itself  
when VCC falls within the VPFD(max), VPFD(min)  
window. All outputs become high impedance, and  
all inputs are treated as "don’t care."  
Note: A power failure during a write cycle may  
corruptdataatthecurrentlyaddressed location,but  
does not jeopardize the rest of the RAM’s content.  
At voltages below VPFD(min), the user can be as-  
sured the memory will be in a write protected state,  
provided the VCC fall time is not less than tF. The  
M48Z09,19 may respond to transient noise spikes  
on VCC that reach into the deselect window during  
the time the device is sampling VCC. Therefore,  
decoupling of the power supply lines is recom-  
mended.  
Cell Storage Life  
Storage life is primarily a function of temperature.  
Figure 9 illustrates the approximate storage life of  
the M48Z09,19 battery over temperature. The re-  
sults in Figure 9 are derived from temperature  
accelerated life test studies performed at SGS-  
THOMSON. For the purpose of the testing, a cell  
failure is defined as the inability of a cell stabilized  
at 25°C to produce a 2.4V closed circuit voltage  
across a 250 kload resistor. The two lines, t1%  
and t50%, represent different failure rate distribu-  
tions for the cell’s storage life. At 70°C, for example,  
the t1% line indicates that an M48Z09,19 has a 1%  
chance of having a battery failure 28 years into its  
life while the t50% shows the part has a 50% chance  
of failure at the 50 year mark. The t1% line repre-  
sents the practical onset of wear out and can be  
considered the worst case Storage Life for the cell.  
The t50% can be considered the normal or average  
life.  
When VCC drops below VSO, the control circuit  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48Z09,19 for  
an accumulated period of at least 10 years when  
VCC is less than VSO. As system power returns and  
VCC rises above VSO, the battery is disconnected,  
and the power supply is switched to external VCC  
.
Write protection continues until VCC reaches  
VPFD(min). E1 should be kept high or E2 low as  
VCC rises past VPFD(min) to prevent inadvertent  
9/13  
M48Z09, M48Z19  
Calculating Storage Life  
Predicted storage life ≥  
1
The following formula can be used to predict stor-  
age life:  
{[(8322/8760)/200]+[(431/8760)/28]}  
1
or 154 years.  
{[(TA1/TT)/SL1]+[(TA2/TT)/SL2]+...+[(TAN/TT)/SLN]}  
As can be seen from these calculations and the  
results, the expected life time of the M48Z09, 19  
should exceed most system requirements.  
where,  
– TA1, TA2, TAN = time at ambient temperature  
1, 2, etc.  
Estimated System Life  
Since either storage life or capacity consumption  
can end the battery’s life, the system life is marked  
by which ever occurs first.  
– TT = total time = TA1+TA2+...+TAN  
– SL1, SL2, SLN = storage life at temperature 1,  
2, etc.  
Reference for System Life  
Forexamplean M48Z09,19isexposedto tempera-  
tures of 55°C or less for 8322 hrs/yr, and tempera-  
tures greater than 60°C but less than 70°C for the  
remaining 438 hrs/yr. Reading predicted t1% values  
from Figure 9,  
Each M48Z09,19 is marked with a nine digit manu-  
facturing date code in the form of H99XXYYZZ. For  
example, H995B9431 is:  
H = fabricated in Carrollton, TX  
9 = assembled in Muar, Malaysia,  
9 = tested in Muar, Malaysia,  
– SL1 200 yrs, SL2 = 28 yrs  
– TT = 8760 hrs/yr  
5B = lot designator,  
– TA1 = 8322 hrs/yr, TA2 = 438 hrs/yr  
9431 = assembled in the year 1994, work week 31.  
Figure 9. Predicted Battery Storage Life versus Temperature  
AI01399  
50  
40  
30  
t50% (AVERAGE)  
t1%  
20  
10  
8
6
5
4
3
2
1
20  
30  
40  
50  
60  
70  
80  
90  
TEMPERATURE (Degrees Celsius)  
10/13  
M48Z09, M48Z19  
ORDERING INFORMATION SCHEME  
Example:  
M48Z09  
-100 PC  
1
Supply Voltage and Write  
Protect Voltage  
Speed  
100ns  
Package  
PCDIP28  
Temp. Range  
09  
VCC = 4.75V to 5.5V  
-100  
PC  
1
0 to 70 °C  
VPFD = 4.5V to 4.75V  
19  
V
CC = 4.5V to 5.5V  
VPFD = 4.2V to 4.5V  
For a list of available options (Supply Voltage, Speed, Package, etc...) refer to the current Memory  
Shortform catalogue.  
For further information on any aspect of this device, please contact the SGS-THOMSON Sales Office  
nearest to you.  
11/13  
M48Z09, M48Z19  
PCDIP28 - 28 pin Plastic DIP, battery CAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
9.65  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
0.76  
8.89  
0.53  
B1  
C
1.78  
0.31  
D
39.88  
18.34  
2.79  
E
e1  
e3  
eA  
L
36.32  
16.00  
3.81  
N
PCDIP28  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Drawing is not to scale  
12/13  
M48Z09, M48Z19  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved  
® ZEROPOWER is a registered trademark of SGS-THOMSON Microelectronics  
CAPHAT and BYTEWIDE are trademarks of SGS-THOMSON Microelectronics  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
13/13  

相关型号:

M48Z256-120PL1

256KX8 NON-VOLATILE SRAM MODULE, 120ns, DMA32
STMICROELECTR

M48Z256-85PL1

256KX8 NON-VOLATILE SRAM MODULE, 85ns, DMA32
STMICROELECTR

M48Z256Y-120PL1

256KX8 NON-VOLATILE SRAM MODULE, 120ns, DMA32
STMICROELECTR

M48Z256Y-85PL1

256KX8 NON-VOLATILE SRAM MODULE, 85ns, DMA32
STMICROELECTR

M48Z2M1

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z2M1-70PL1

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z2M1-70PL9

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z2M1PL

16 Mb 2Mb x 8 ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-701

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-70G

5V or 3.3V, 16 Mbit (2Mb x 8) ZEROPOWER SRAM
STMICROELECTR

M48Z2M1V-70PL1

5 V or 3.3 V, 16 Mbit (2 Mb x 8) ZEROPOWER? SRAM
STMICROELECTR