M48T59Y-70MH1TR [STMICROELECTRONICS]

64 Kbit 8Kb x8 TIMEKEEPER SRAM; 64 Kbit的是8K ×8 TIMEKEEPER SRAM
M48T59Y-70MH1TR
型号: M48T59Y-70MH1TR
厂家: ST    ST
描述:

64 Kbit 8Kb x8 TIMEKEEPER SRAM
64 Kbit的是8K ×8 TIMEKEEPER SRAM

计时器或实时时钟 微控制器和处理器 外围集成电路 静态存储器 光电二极管 双倍数据速率
文件: 总17页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T58  
M48T58Y  
®
64 Kbit (8Kb x8) TIMEKEEPER SRAM  
INTEGRATED ULTRA LOW POWER SRAM,  
REAL TIME CLOCK, POWER-FAIL CONTROL  
CIRCUIT and BATTERY  
BYTEWIDE RAM-LIKE CLOCK ACCESS  
SNAPHAT (SH)  
Battery/Crystal  
BCD CODED YEAR, MONTH, DAY, DATE,  
HOURS, MINUTES and SECONDS  
FREQUENCY TEST OUTPUT for REAL TIME  
CLOCK  
AUTOMATIC POWER-FAIL CHIP DESELECT and  
WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
28  
28  
1
(VPFD = Power-fail Deselect Voltage):  
1
– M48T58: 4.5V VPFD 4.75V  
– M48T58Y: 4.2V VPFD 4.5V  
SELF-CONTAINED BATTERY and CRYSTAL  
in the CAPHAT DIP PACKAGE  
PCDIP28 (PC)  
Battery/Crystal  
CAPHAT  
SOH28 (MH)  
PACKAGING INCLUDES a 28-LEAD SOIC  
and SNAPHAT® TOP  
(to be Ordered Separately)  
Figure 1. Logic Diagram  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION for a SNAPHAT TOP which  
CONTAINS the BATTERY and CRYSTAL  
PIN and FUNCTION COMPATIBLE with  
JEDEC STANDARD 8K x 8 SRAMs  
V
CC  
DESCRIPTION  
The M48T58/58Y TIMEKEEPER® RAM is an 8K x  
8 non-volatile static RAM and real time clock. The  
monolithic chip is available in two special packages  
to provide a highly integrated battery backed-up  
memory and real time clock solution.  
13  
8
A0-A12  
DQ0-DQ7  
W
E1  
E2  
G
M48T58  
M48T58Y  
Table 1. Signal Names  
FT  
A0-A12  
DQ0-DQ7  
FT  
Address Inputs  
Data Inputs / Outputs  
Frequency Test Output (Open Drain)  
Chip Enable 1  
E1  
E2  
Chip Enable 2  
G
Output Enable  
V
SS  
AI01374B  
W
Write Enable  
VCC  
VSS  
Supply Voltage  
Ground  
July 1999  
1/17  
M48T58, M48T58Y  
Figure 2A. DIP Pin Connections  
Figure 2B. SOIC Pin Connections  
FT  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
27  
V
CC  
W
FT  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
26 E2  
25 A8  
24 A9  
23 A11  
3
E2  
A6  
A6  
4
A8  
A5  
A5  
5
A9  
A4  
A4  
6
A11  
G
A3  
22  
G
A3  
7
M48T58  
M48T58Y  
M48T58Y  
A2  
21 A10  
20 E1  
A2  
8
A10  
E1  
A1  
A1  
9
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
14  
V
SS  
SS  
AI01375B  
AI01376B  
Table 2. Absolute Maximum Ratings (1)  
Symbol  
TA  
Parameter  
Value  
Unit  
Ambient Operating Temperature  
Storage Temperature (VCC Off, Oscillator Off)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
0 to 70  
°C  
°C  
°C  
V
TSTG  
–40 to 85  
260  
(2)  
TSLD  
VIO  
VCC  
IO  
–0.3 to 7  
–0.3 to 7  
20  
Supply Voltage  
V
Output Current  
mA  
W
PD  
Power Dissipation  
1
Notes:  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may  
affect reliability.  
2. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
Table 3. Operating Modes (1)  
Mode  
Deselect  
Deselect  
Write  
VCC  
E1  
VIH  
X
E2  
X
G
X
W
X
DQ0-DQ7  
High Z  
High Z  
DIN  
Power  
Standby  
VIL  
VIH  
VIH  
VIH  
X
X
X
Standby  
4.75V to 5.5V  
or  
4.5V to 5.5V  
VIL  
VIL  
VIL  
X
X
VIL  
VIH  
VIH  
X
Active  
Read  
VIL  
VIH  
X
DOUT  
Active  
Read  
High Z  
High Z  
High Z  
Active  
Deselect  
Deselect  
VSO to VPFD (min) (2)  
CMOS Standby  
Battery Back-up Mode  
VSO  
X
X
X
X
Notes  
: 1. X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.  
2. See Table 7 for details.  
2/17  
M48T58, M48T58Y  
Figure 3. Block Diagram  
FT  
OSCILLATOR AND  
CLOCK CHAIN  
8 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A12  
POWER  
DQ0-DQ7  
8184 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E1  
E2  
W
VOLTAGE SENSE  
AND  
SWITCHING  
CIRCUITRY  
V
PFD  
G
V
V
CC  
SS  
AI01377C  
DESCRIPTION  
Table 4. AC Measurement Conditions  
(cont’d)  
The M48T58/58Y is a non-volatile pin and function  
equivalent to any JEDEC standard 8K x 8 SRAM.  
It also easily fits into many ROM, EPROM, and  
EEPROM sockets, providing the non-volatility of  
PROMs without any requirement for special write  
timing or limitations on the number of writes that  
can be performed.  
Input Rise and Fall Times  
5ns  
Input Pulse Voltages  
0 to 3V  
1.5V  
Input and Output Timing Ref. Voltages  
Note that Output Hi-Z is defined as the point where data is no  
longer driven.  
The 28 pin 600mil DIP CAPHAT houses the  
M48T58/58Y silicon with a quartz crystal and a long  
life lithium button cell in a single package.  
Figure 4. AC Testing Load Circuit  
5V  
The 28 pin 330mil SOIC provides sockets with gold  
plated contacts at both ends for direct connection  
to a separate SNAPHAT housing containing the  
battery and crystal. The unique design allows the  
SNAPHAT battery package to be mounted on top  
of the SOIC package after the completion of the  
surface mount process. Insertion of the SNAPHAT  
housing after reflow prevents potential battery and  
crystal damage due to the high temperatures re-  
quired for device surface-mounting. The SNAPHAT  
housing is keyed to prevent reverse insertion.  
1.9kΩ  
DEVICE  
UNDER  
OUT  
TEST  
1kΩ  
C
= 100pF or 5pF  
L
The SOIC and battery/crystal packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form.  
C
includes JIG capacitance  
L
AI01030  
3/17  
M48T58, M48T58Y  
Table 5. Capacitance (1, 2)  
°
(TA = 25 C, f = 1 MHz )  
Symbol  
Parameter  
Test Condition  
VIN = 0V  
Min  
Max  
10  
Unit  
pF  
CIN  
Input Capacitance  
(3)  
CIO  
Input / Output Capacitance  
VOUT = 0V  
10  
pF  
Notes:  
1. Effective capacitance measured with power supply at 5V.  
2. Sampled only, not 100% tested.  
3. Outputs deselected  
Table 6. DC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Test Condition  
0V VIN VCC  
0V VOUT VCC  
Outputs open  
Min  
Max  
Unit  
µA  
(1)  
ILI  
±1  
±5  
50  
3
(1)  
ILO  
µA  
ICC  
mA  
mA  
ICC1  
Supply Current (Standby) TTL  
E1 = VIH, E2 = VIL  
E1 = VCC – 0.2V,  
E2 = VSS + 0.2V  
ICC2  
Supply Current (Standby) CMOS  
3
mA  
(2)  
VIL  
Input Low Voltage  
–0.3  
2.2  
0.8  
VCC + 0.3  
0.4  
V
V
V
V
V
VIH  
Input High Voltage  
Output Low Voltage  
Output Low Voltage (FT) (3)  
Output High Voltage  
IOL = 2.1mA  
IOL = 10mA  
IOH = –1mA  
VOL  
0.4  
VOH  
2.4  
Notes:  
1. Outputs Deselected.  
2. Negative spikes of –1V allowed for up to 10ns once per Cycle.  
3. The FT pin is Open Drain.  
Table 7. Power Down/Up Trip Points DC Characteristics (1)  
°
(TA = 0 to 70 C)  
Symbol  
Parameter  
Min  
4.5  
4.2  
Typ  
4.6  
Max  
4.75  
4.5  
Unit  
VPFD  
VPFD  
VSO  
Power-fail Deselect Voltage (M48T58)  
Power-fail Deselect Voltage (M48T58Y)  
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
V
4.35  
3.0  
V
V
(2)  
tDR  
7
YEARS  
Notes:  
1. All voltages referenced to VSS  
2. At 25°C  
.
DESCRIPTION  
(cont’d)  
BYTEWIDE clock information in the bytes with  
addresses 1FF8h-1FFFh. The clock locations con-  
tain the year, month, date, day, hour, minute, and  
second in 24 hour BCD format. Corrections for 28,  
29 (leap year), 30, and 31 day months are made  
automatically. Byte 1FF8h is the clock control reg-  
ister. This byte controls user access to the clock  
information and also stores the clock calibration  
setting.  
For the 28 lead SOIC, the battery/crystal package  
(i.e. SNAPHAT) part number is "M4T28-  
BR12SH1".  
As Figure 3 shows, the static memory array and the  
quartz controlled clock oscillator of the  
M48T58/58Y are integrated on one silicon chip.  
The two circuits are interconnected at the upper  
eight memory locations to provide user accessible  
4/17  
M48T58, M48T58Y  
Table 8. Power Down/Up Mode AC Characteristics  
°
(TA = 0 to 70 C)  
Symbol  
Parameter  
Min  
0
Max  
Unit  
µs  
tPD  
E1 or W at VIH or E2 at VIL before Power Down  
VPFD (max) to VPFD (min) VCC Fall Time  
VPFD (min) to VSO VCC Fall Time  
(1)  
tF  
300  
10  
10  
1
µs  
(2)  
tFB  
tR  
µs  
VPFD(min) to VPFD (max) VCC Rise Time  
VSO to VPFD (min) VCC Rise Time  
µs  
tRB  
µs  
tREC  
VPFD(max) to Inputs Recognized  
40  
200  
ms  
Notes  
µ
: 1. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200 s after  
VCC passes VPFD (min).  
2. VPFD (min) to VSO fall time of less than tFB may cause corruption of RAM data.  
Figure 5. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tFB  
tRB  
tPD  
tDR  
tREC  
RECOGNIZED  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI01168C  
5/17  
M48T58, M48T58Y  
Table 9. Read Mode AC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48T58 / M48T58Y  
-70  
Symbol  
Parameter  
Unit  
Min  
Max  
tAVAV  
Read Cycle Time  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tAVQV  
Address Valid to Output Valid  
70  
70  
70  
35  
(1)  
tE1LQV  
Chip Enable 1 Low to Output Valid  
Chip Enable 2 High to Output Valid  
Output Enable Low to Output Valid  
Chip Enable 1 Low to Output Transition  
Chip Enable 2 High to Output Transition  
Output Enable Low to Output Transition  
Chip Enable 1 High to Output Hi-Z  
Chip Enable 2 Low to Output Hi-Z  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
(1)  
tE2HQV  
(1)  
tGLQV  
(2)  
tE1LQX  
5
5
5
(2)  
tE2HQX  
(2)  
tGLQX  
(2)  
tE1HQZ  
25  
25  
25  
(2)  
tE2LQZ  
(2)  
tGHQZ  
(1)  
tAXQX  
10  
Notes:  
1. CL = 100pF (see Figure 4).  
2. CL = 5pF (see Figure 4).  
Figure 6. Read Mode AC Waveforms  
tAVAV  
VALID  
A0-A12  
tAVQV  
tE1LQV  
tAXQX  
tE1HQZ  
E1  
E2  
tE1LQX  
tE2HQV  
tE2LQZ  
tE2HQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00962  
Note:  
Write Enable (W) = High.  
6/17  
M48T58, M48T58Y  
Table 10. Write Mode AC Characteristics  
°
(TA = 0 to 70 C; VCC = 4.75V to 5.5V or 4.5V to 5.5V)  
M48T58 / M48T58Y  
-70  
Symbol  
Parameter  
Unit  
Min  
70  
0
Max  
tAVAV  
tAVWL  
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to Write Enable Low  
Address Valid to Chip Enable 1 Low  
Address Valid to Chip Enable 2 High  
Write Enable Pulse Width  
tAVE1L  
tAVE2H  
tWLWH  
tE1LE1H  
tE2HE2L  
tWHAX  
tE1HAX  
tE2LAX  
tDVWH  
tDVE1H  
tDVE2L  
tWHDX  
tE1HDX  
tE2LDX  
0
0
50  
55  
55  
0
Chip Enable 1 Low to Chip Enable 1 High  
Chip Enable 2 High to Chip Enable 2 Low  
Write Enable High to Address Transition  
Chip Enable 1 High to Address Transition  
Chip Enable 2 Low to Address Transition  
Input Valid to Write Enable High  
0
0
30  
30  
30  
5
Input Valid to Chip Enable 1 High  
Input Valid to Chip Enable 2 Low  
Write Enable High to Input Transition  
Chip Enable 1 High to Input Transition  
Chip Enable 2 Low to Input Transition  
Write Enable Low to Output Hi-Z  
5
5
(1, 2)  
tWLQZ  
25  
tAVWH  
tAVE1H  
tAVE2L  
Address Valid to Write Enable High  
Address Valid to Chip Enable 1 High  
Address Valid to Chip Enable 2 Low  
Write Enable High to Output Transition  
60  
60  
60  
5
(1, 2)  
tWHQX  
Notes:  
1. CL = 5pF (see Figure 4).  
2. If E1 goes low or E2 high simultaneously with W going low, the outputs remain in the high impedance state.  
7/17  
M48T58, M48T58Y  
Figure 7. Write Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVWH  
tAVE1L  
tAVE2H  
tWHAX  
E1  
E2  
tWLWH  
tAVWL  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI00963  
Figure 8. Chip Enable Controlled, Write AC Waveforms  
tAVAV  
A0-A12  
VALID  
tAVE1H  
tE1LE1H  
tAVE1L  
tAVE2H  
tE1HAX  
tE2LAX  
E1  
tAVE2L  
tE2HE2L  
E2  
tAVWL  
W
tE1HDX  
tE2LDX  
DQ0-DQ7  
DATA INPUT  
tDVE1H  
tDVE2L  
AI00964B  
8/17  
M48T58, M48T58Y  
DESCRIPTION  
E2 and G access times are not met, valid data will  
be available after the latter of the Chip Enable  
Access times (tE1LQV or tE2HQV) or Output Enable  
Access time (tGLQV).  
(cont’d)  
The eight clock bytes are not the actual clock  
counters themselves; they are memory locations  
consisting of BiPORT read/write memory cells.  
The M48T58/58Y includes a clock control circuit  
which updates the clock bytes with current informa-  
tion once per second. The information can be  
accessed by the user in the same manner as any  
other location in the static memory array.  
The state of the eight three-state Data I/O signals  
is controlled by E1, E2 and G. If the outputs are  
activated before tAVQV, the data lines will be driven  
to an indeterminate state until tAVQV. If the Address  
Inputs are changed while E1, E2 and G remain  
active, output data will remain valid for Output Data  
Hold time (tAXQX) but will go indeterminate until the  
next Address Access.  
The M48T58/58Y also has its own Power-fail De-  
tect circuit. The control circuitry constantly monitors  
the single 5V supply for an out of tolerance condi-  
tion. When VCC is out of tolerance, the circuit write  
protects the SRAM, providing a high degree of data  
security in the midst of unpredictable system op-  
eration brought on by low VCC. As VCC falls below  
approximately 3V, the control circuitry connects the  
battery which maintains data and clock operation  
until valid power returns.  
WRITE MODE  
The M48T58/58Y is in the Write Mode whenever W  
and E1 are low and E2 is high. The start of a write  
is referenced from the latter occurring falling edge  
of W or E1, or the rising edge of E2. A write is  
terminated by the earlier rising edge of W or E1, or  
the falling edge of E2. The addresses must be held  
valid throughoutthe cycle. E1 orWmust return high  
or E2 low for a minimum of tE1HAX or tE2LAX from  
Chip Enable or tWHAX from Write Enable prior to the  
initiation of another read or write cycle. Data-in  
must be valid tDVWH prior to the end of write and  
remain valid for tWHDX afterward. G should be kept  
high during write cycles to avoid bus contention;  
although, if the output bus has been activated by a  
low on E1 and G and a high on E2, a low on W will  
disable the outputs tWLQZ after W falls.  
READ MODE  
The M48T58/58Y is in the Read Mode whenever  
W (Write Enable) is high, E1 (Chip Enable 1) is low,  
and E2 (Chip Enable 2) is high. The unique address  
specified by the 13 Address Inputs defines which  
one of the 8,192 bytes of data is to be accessed.  
Valid data will be available at the Data I/O pins  
within Address Access time (tAVQV) after the last  
address input signal is stable, providing that the E1,  
E2, and G access times are also satisfied. If the E1,  
Table 11. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10 M.  
0
D3  
D2  
D1  
D0  
1FFFh  
1FFEh  
1FFDh  
1FFCh  
1FFBh  
1FFAh  
1FF9h  
1FF8h  
10 Years  
Year  
Month  
Date  
Year  
Month  
Date  
00-99  
01-12  
01-31  
01-07  
00-23  
00-59  
00-59  
0
0
0
0
0
10 Date  
0
FT  
0
0
0
Day  
Hours  
Day  
0
10 Hours  
Hour  
0
10 Minutes  
10 Seconds  
S
Minutes  
Minutes  
Seconds  
Control  
ST  
W
Seconds  
R
Calibration  
Keys:  
S
= SIGN Bit  
FT = FREQUENCY TEST Bit (Must be set to ’0’ upon power, for normal clock operation)  
= READ Bit  
R
W = WRITE Bit  
ST = STOP Bit  
0
= Must be set to ’0’  
9/17  
M48T58, M48T58Y  
DATA RETENTION MODE  
CLOCK OPERATIONS  
Reading the Clock  
With valid VCC applied, the M48T58/58Y operates  
as a conventional BYTEWIDE static RAM. Should  
the supply voltage decay, the RAM will automat-  
ically power-fail deselect, write protecting itself  
when VCC falls within the VPFD(max), VPFD(min)  
window. All outputs become high impedance, and  
all inputs are treated as "don’t care."  
Updates to the TIMEKEEPER registers should be  
halted before clock data is read to prevent reading  
data in transition. Because the BiPORT TIME-  
KEEPER cells in the RAM array are only data  
registers, and not the actual clock counters, updat-  
ing the registers can be halted without disturbing  
the clock itself.  
Note:  
A power failure during a write cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM’s  
content. At voltages below VPFD(min), the user can  
be assured the memory will be in a write protected  
state, provided the VCC fall time is not less than tF.  
The M48T58/58Y may respond to transient noise  
spikes on VCC that reach into the deselect window  
during the time the device is sampling VCC. There-  
fore, decoupling of the power supply lines is rec-  
ommended.  
Updating is halted when a ’1’ is written to the READ  
bit, D6 in the Control register (1FF8h). As long as  
a ’1’ remains in that position, updating is halted.  
After a halt is issued, the registers reflect the count;  
that is, the day, date, and the time that were current  
at the moment the halt command was issued.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating is within a second after the bit  
is reset to a ’0’.  
When VCC drops below VSO, the control circuit  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48T58/58Yfor  
an accumulated period ofat least7 yearswhen VCC  
is less than VSO. As system power returns and VCC  
rises above VSO, the battery is disconnected, and  
the power supply is switched to external VCC. Write  
protection continues until VCC reaches VPFD (min)  
plus tREC (min). E1 should be kept high or E2 low  
as VCC rises past VPFD(min) to prevent inadvertent  
write cycles prior to system stabilization. Normal  
RAM operation can resume tREC after VCC exceeds  
Setting the Clock  
Bit D7 of the Control register (1FF8h) is the WRITE  
bit. Setting the WRITE bit to a ’1’, like the READ bit,  
halts updates to the TIMEKEEPER registers. The  
user can then load them with the correct day, date,  
and time data in 24 hour BCD format (see Table  
10). Resetting the WRITE bit to a ’0’ then transfers  
the values of all time registers (1FF9h-1FFFh) to  
the actual TIMEKEEPER counters and allows nor-  
mal operation to resume. The FT bit and the bits  
marked as ’0’ in Table 10 must be written to ’0’ to  
allow for normal TIMEKEEPER and RAM opera-  
tion. After the WRITE bit is reset, the next clock  
update will occur within one second.  
VPFD (max).  
For more information on Battery Storage Life refer  
to the Application Note AN1012.  
See the Application Note AN923 "TIMEKEEPER  
rolling into the 21st century" for information on  
Century Rollover.  
Figure 9. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
10/17  
M48T58, M48T58Y  
Stopping and Starting the Oscillator  
tracted, negative calibration) or split (added, posi-  
tive calibration) depends upon the value loaded  
into the five Calibration bits found in the Control  
Register. Adding counts speeds the clock up, sub-  
tracting counts slows the clock down.  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
bit is the MSB of the seconds register. Setting it to  
a ’1’ stops the oscillator. The M48T58/58Y is  
shipped from STMicroelectronics with the STOP bit  
set to a ’1’. When reset to a ’0’, the M48T58  
oscillator starts within one second.  
The Calibration byte occupies the five lower order  
bits (D4-D0) in the Control register (1FF8h). These  
bits can be set to represent any value between 0  
and 31 in binary form. Bit D5 is a Sign bit; ’1’  
indicates positive calibration, ’0’ indicates negative  
calibration. Calibration occurs within a 64 minute  
cycle. The first 62 minutes in the cycle may, once  
per minute, have one second either shortened by  
128 or lengthened by 256 oscillator cycles. If a  
binary ’1’ is loaded into the register, only the first 2  
minutes in the 64 minute cycle will be modified; if a  
binary 6 is loaded, the first 12 will be affected, and  
so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles; that is  
+4.068 or -2.034 ppm of adjustment per calibration  
step in the calibration register. Assuming that the  
oscillator is in fact running at exactly 32,768 Hz,  
each of the 31 increments in the Calibration byte  
would represent +10.7 or - 5.35 seconds per month  
which corresponds to a total range of +5.5 or - 2.75  
minutes per month.  
Calibrating the Clock  
The M48T58/58Y is driven by a quartz controlled  
oscillator with a nominal frequency of 32,768 Hz.  
The devices are tested not to exceed 35 ppm (parts  
°
per million) oscillator frequency error at 25 C,  
±
which equates to about 1.53 minutes per month.  
With the calibration bits properly set, the accuracy  
±
of each M48T58 improves to better than 4 ppm at  
°
25 C.  
The oscillation rate of any crystal changes with  
temperature (see Figure 10). Mostclock chips com-  
pensate for crystal frequency and temperature shift  
error with cumbersome trim capacitors. The  
M48T58/58Y design, however, employs periodic  
counter correction. The calibration circuit adds or  
subtracts counts from the oscillator divider circuit  
at the divide by 256 stage, as shown in Figure 9.  
The number of times pulses are blanked (sub-  
Figure 10. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
AI02124  
°C  
11/17  
M48T58, M48T58Y  
CLOCK OPERATIONS  
POWER SUPPLY DECOUPLING and UNDER-  
SHOOT PROTECTION  
(cont’d)  
Two methods are available for ascertaining how  
much calibration a given M48T58/58Ymay require.  
The first involves simply setting the clock, letting it  
run for a month and comparing it to a known  
accurate reference (like WWV broadcasts). While  
that may seem crude, it allows the designer to give  
the end user the ability to calibrate his clock as his  
environment may require, even after the final prod-  
uct is packaged in a non-user serviceable enclo-  
sure. All the designer has to do is provide a simple  
utility that accesses the Calibration byte.  
ICC transients, including those produced by output  
switching, can produce voltage fluctuations, result-  
ing in spikes on the VCC bus. These transients can  
be reduced if capacitors are used to store energy,  
which stabilizes the VCC bus. The energy stored in  
the bypass capacitors will be released as low going  
spikes are generated or energy will be absorbed  
when overshoots occur. A ceramic bypass capaci-  
µ
tor value of 0.1 F (as shown in Figure 11) is rec-  
ommended in order to provide the needed filtering.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of  
some test equipment. When the Frequency Test  
(FT) bit, the seventh-most significant bit in the Day  
Register, is set to a ’1’, and the oscillator is running  
at 32,768 Hz, the Frequency Test (Pin 1) will toggle  
at 512 Hz. Any deviation from 512 Hz indicates the  
degree and direction of oscillator frequency shift at  
the test temperature. For example, a reading of  
512.01024 Hz would indicate a +20 ppm oscillator  
frequency error, requiring a -10 (WR001010) to be  
loaded into the Calibration Byte for correction. Note  
that setting or changing the Calibration Byte does  
not affect the Frequency test output frequency.  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate  
negative voltage spikes on VCC that drive it to  
values below VSS by as much as one Volt. These  
negative spikes can cause data corruption in the  
SRAM while in battery backup mode. To protect  
from these voltage spikes, it is recommeded to  
connect a schottky diode from VCC to VSS (cathode  
connected to VCC, anode to VSS). Schottky diode  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
Figure 11. Supply Voltage Protection  
The FTbit must be set using the same method used  
to set the clock, using the Write bit.  
V
CC  
The Frequency Test pin is an open drain output  
which requires a pull-up resistor for proper opera-  
V
CC  
tion. A500-10k resistor is recommended in order  
to control the rise time.  
0.1µF  
DEVICE  
For more information on calibration, see the Appli-  
cation Note AN934 "TIMEKEEPER Calibration".  
V
SS  
AI02169  
12/17  
M48T58, M48T58Y  
ORDERING INFORMATION SCHEME  
Example:  
M48T58Y  
-70 MH  
1
TR  
Supply Voltage and Write  
Protect Voltage  
58 (1) VCC = 4.75V to 5.5V  
Speed  
Package  
Temp. Range  
0 to 70 °C  
Shipping Method  
for SOIC  
-70 70ns  
PC  
PCDIP28  
1
blank Tubes  
VPFD = 4.5V to 4.75V  
MH (2) SOH28  
TR  
Tape & Reel  
58Y VCC = 4.5V to 5.5V  
VPFD = 4.2V to 4.5V  
Notes:  
1. The M48T58 part is offered with the PCDIP28 (i.e. CAPHAT) package only.  
2. The SOIC package (SOH28) requires the battery/crystal package (SNAPHAT) which is ordered separately under the part number  
"M4T28-BR12SH1" in plastic tube or "M4T28-BR12SH1TR" in Tape & Reel form.  
Caution:  
Do not place the SNAPHAT battery/crystal package "M4T28-BR12SH1" in conductive foam since this will drain the lithium  
button-cell battery.  
For a list of available options (Speed, Package, etc...) or for further informationon any aspect of this device,  
please contact the STMicroelectronics Sales Office nearest to you.  
13/17  
M48T58, M48T58Y  
PCDIP28 - 28 pin Plastic DIP, battery CAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
39.88  
18.34  
2.79  
36.32  
16.00  
3.81  
Typ  
Min  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Drawing is not to scale.  
14/17  
M48T58, M48T58Y  
SOH28 - 28 lead Plastic Small Outline, battery SNAPHAT  
mm  
Min  
inches  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Min  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Drawing is not to scale.  
15/17  
M48T58, M48T58Y  
SH - 4-pin SNAPHAT Housing for 49mAh Battery  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Drawing is not to scale.  
16/17  
M48T58, M48T58Y  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
© 1999 STMicroelectronics - All Rights Reserved  
® TIMEKEEPER and SNAPHAT are registered trademarks of STMicroelectronics  
CAPHAT, BYTEWIDE and BiPORT are trademarks of STMicroelectronics  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta  
Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
17/17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY