M48T37V-70MH1F [STMICROELECTRONICS]

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM; 3.3V - 5V 256 Kbit的32Kb的X8 TIMEKEEPER SRAM
M48T37V-70MH1F
型号: M48T37V-70MH1F
厂家: ST    ST
描述:

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
3.3V - 5V 256 Kbit的32Kb的X8 TIMEKEEPER SRAM

静态存储器
文件: 总29页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T37Y  
M48T37V  
®
5.0 or 3.3V, 256 Kbit (32 Kbit x8) TIMEKEEPER SRAM  
FEATURES SUMMARY  
INTEGRATED ULTRA-LOW POWER SRAM,  
REAL TIME CLOCK, POWER-FAIL  
Figure 1. Package  
CONTROL CIRCUIT, AND BATTERY  
FREQUENCY TEST OUTPUT FOR REAL  
TIME CLOCK SOFTWARE CALIBRATION  
SNAPHAT (SH)  
Battery/Crystal  
YEAR 2000 COMPLIANT  
AUTOMATIC POWER-FAIL CHIP  
DESELECT and WRITE PROTECTION  
WATCHDOG TIMER  
WRITE PROTECT VOLTAGE  
(V  
= Power-Fail Deselect Voltage):  
PFD  
M48T37Y: V = 4.5 to 5.5V  
CC  
4.2V V  
4.5V  
PFD  
44  
M48T37V: V = 3.0 to 3.6V  
CC  
1
2.7V V  
3.0V  
PFD  
SOH44 (MH)  
44-pin SOIC  
PACKAGING INCLUDES A 44-LEAD SOIC  
AND SNAPHAT TOP (to be ordered  
®
separately)  
SOIC PACKAGE PROVIDES DIRECT  
CONNECTION FOR A SNAPHAT TOP  
WHICH CONTAINS THE BATTERY AND  
CRYSTAL  
MICROPROCESSOR POWER-ON RESET  
(Valid even during battery back-up mode)  
PROGRAMMABLE ALARM OUTPUT  
ACTIVE IN THE BATTERY BACK-UP MODE  
BATTERY LOW FLAG  
RoHS COMPLIANCE  
Lead-free components are compliant with the  
RoHS directive.  
Rev 6.0  
1/29  
February 2006  
M48T37Y, M48T37V  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 6. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7. Chip Enable Controlled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Setting the Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 8. Alarm Interrupt Reset Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 6. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 9. Back-up Mode Alarm Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Programmable Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Battery Low Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 7. Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/29  
M48T37Y, M48T37V  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 9. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 10. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 13. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 15.SOH44 – 44-lead Plastic Small Outline, 4-socket SNAPHAT, Package Outline. . . . . . . 24  
Table 14. SOH44 – 44-lead Plastic Small Outline, 4-socket SNAPHAT, Package Mech. Data . . . 24  
Figure 16.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 25  
Table 15. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 25  
Figure 17.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 26  
Table 16. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 26  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 17. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 18. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 19. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/29  
M48T37Y, M48T37V  
SUMMARY DESCRIPTION  
®
The M48T37Y/V TIMEKEEPER RAM is a 32 Kb  
to the high temperatures required for device sur-  
face-mounting. The SNAPHAT housing is keyed  
to prevent reverse insertion.  
The SOIC and battery packages are shipped sep-  
arately in plastic anti-static tubes or in Tape &Reel  
form. For the 44-lead SOIC, the battery/crystal  
package (e.g., SNAPHAT) part number is “M4T28-  
BR12SH” or “M4T32-BR12SH” (see Table  
18., page 27).  
x8 non-volatile static RAM and real time clock. The  
monolithic chip is available in a special package  
which provides a highly integrated battery backed-  
up memory and real time clock solution.  
The 44-lead, 330mil SOIC package provides sock-  
ets with gold-plated contacts at both ends for di-  
rect connection to a separate SNAPHAT housing  
containing the battery and crystal. The unique de-  
sign allows the SNAPHAT battery/crystal pack-  
age to be mounted on top of the SOIC package  
after the completion of the surface mount process.  
®
Caution: Do not place the SNAPHAT battery/crys-  
tal top in conductive foam, as this will drain the lith-  
ium button-cell battery.  
Insertion of the SNAPHAT housing after reflow  
prevents potential battery and crystal damage due  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A14  
DQ0-DQ7  
RST  
Address Inputs  
V
CC  
Data Inputs / Outputs  
Reset Output (Open Drain)  
15  
8
A0-A14  
DQ0-DQ7  
Interrupt / Frequency Test Output  
(Open Drain)  
IRQ/FT  
W
E
RST  
M48T37Y  
M48T37V  
WDI  
E
Watchdog Input  
Chip Enable  
IRQ/FT  
G
G
Output Enable  
WRITE Enable  
Supply Voltage  
Ground  
WDI  
W
V
CC  
V
SS  
AI02172  
V
SS  
NC  
Not connected Internally  
4/29  
M48T37Y, M48T37V  
Figure 3. SOIC Connections  
NC  
RST  
NC  
NC  
A14  
A12  
A7  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
V
CC  
NC  
2
3
NC  
4
NC  
5
IRQ/FT  
W
6
7
A13  
A8  
A6  
8
A5  
9
A9  
A4  
10  
11  
A11  
G
A3  
M48T37Y  
NC  
NC  
WDI  
A2  
12 M48T37V 33  
NC  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
32  
31  
NC  
A10  
E
30  
A1  
29  
NC  
A0  
28  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
NC  
DQ0  
DQ1  
DQ2  
NC  
27  
26  
25  
24  
V
23  
SS  
AI02174  
5/29  
M48T37Y, M48T37V  
Figure 4. Block Diagram  
IRQ/FT  
WDI  
OSCILLATOR AND  
CLOCK CHAIN  
16 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
POWER  
A0-A14  
LITHIUM  
CELL  
32,752 x 8  
SRAM ARRAY  
DQ0-DQ7  
VOLTAGE SENSE  
AND  
V
E
PFD  
SWITCHING  
CIRCUITRY  
W
G
V
RST  
V
CC  
SS  
AI03253  
6/29  
M48T37Y, M48T37V  
OPERATION MODES  
As Figure 4., page 6 shows, the static memory ar-  
ray and the quartz controlled clock oscillator of the  
M48T37Y/V are integrated on one silicon chip.  
The memory locations that provide user accessi-  
ble BYTEWIDE™ clock information are in the  
bytes with addresses 7FF1 and 7FF9h-7FFFh (lo-  
cated in Table 5., page 13). The clock locations  
contain the century, year, month, date, day, hour,  
minute, and second in 24 hour BCD format. Cor-  
rections for 28, 29 (leap year - valid until the year  
2100), 30, and 31 day months are made automat-  
ically.  
the IRQ/FT pin when the alarm bytes match the  
date, hours, minutes, and seconds of the clock.  
The eight clock bytes are not the actual clock  
counters themselves; they are memory locations  
consisting of BiPORT™ READ/WRITE memory  
cells. The M48T37Y/V includes a clock control cir-  
cuit which updates the clock bytes with current in-  
formation once per second. The information can  
be accessed by the user in the same manner as  
any other location in the static memory array.  
The M48T37Y/V also has its own Power-fail De-  
tect circuit. The control circuitry constantly moni-  
Byte 7FF8h is the clock control register. This byte  
controls user access to the clock information and  
also stores the clock calibration setting.  
Byte 7FF7h contains the watchdog timer setting.  
The watchdog timer redirects an out-of-control mi-  
croprocessor and provides a reset or interrupt to it.  
Bytes 7FF2h-7FF5h are reserved for clock alarm  
programming. These bytes can be used to set the  
alarm. This will generate an active low signal on  
tors the single V  
condition. When V is out of tolerance, the circuit  
write protects the SRAM, providing a high degree  
of data security in the midst of unpredictable sys-  
tem operation brought on by low V . As V falls  
below the Battery Back-up Switchover Voltage  
supply for an out of tolerance  
CC  
CC  
CC  
CC  
(V ), the control circuitry connects the battery  
SO  
which maintains data and clock operation until val-  
id power returns.  
Table 2. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ0-DQ7  
Power  
Standby  
Active  
CC  
V
IH  
X
High Z  
4.5 to 5.5V  
or  
3.0 to 3.6V  
V
IL  
V
IL  
V
IL  
V
D
IL  
IH  
IH  
IN  
V
V
V
D
Active  
IL  
OUT  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
Deselect  
X
X
X
CMOS Standby  
V
to V  
(min)  
SO  
PFD  
(1)  
X
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL SO  
1. See Table 13., page 23 for details.  
7/29  
M48T37Y, M48T37V  
READ Mode  
The M48T37Y/V is in the READ Mode whenever  
WRITE Enable (W) is high and Chip Enable (E) is  
low. The unique address specified by the 15 Ad-  
dress Inputs defines which one of the 32,752 bytes  
of data is to be accessed. Valid data will be avail-  
able at the Data I/O pins within Address Access  
after the latter of the Chip Enable Access time  
(t ) or Output Enable Access time (t ).  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activat-  
ELQV  
GLQV  
ed before t  
indeterminate state until t  
, the data lines will be driven to an  
AVQV  
.
AVQV  
time (t  
) after the last address input signal is  
AVQV  
If the Address Inputs are changed while E and G  
remain active, output data will remain valid for Out-  
stable, providing that the E and Output Enable (G)  
access times are also satisfied. If the E and G ac-  
cess times are not met, valid data will be available  
put Data Hold time (t  
) but will be indetermi-  
AXQX  
nate until the next Address Access.  
Figure 5. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A14  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00925  
Note: WRITE Enable (W) = High.  
Table 3. READ Mode AC Characteristics  
M48T37Y  
–70  
M48T37V  
–100  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
100  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
35  
100  
100  
50  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable Low to Output Transition  
ELQV  
t
GLQV  
(2)  
5
5
10  
5
t
ELQX  
GLQX  
EHQZ  
(2)  
(2)  
(2)  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
ns  
ns  
ns  
ns  
t
t
25  
25  
50  
40  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
t
GHQZ  
t
10  
10  
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
8/29  
M48T37Y, M48T37V  
WRITE Mode  
The M48T37Y/V is in the WRITE Mode whenever  
W and E are low. The start of a WRITE is refer-  
enced from the latter occurring falling edge of W or  
E. A WRITE is terminated by the earlier rising  
edge of W or E. The addresses must be held valid  
throughout the cycle. E or W must return high for  
er READ or WRITE cycle. Data-in must be valid t  
D-  
prior to the end of WRITE and remain valid for  
VWH  
t
afterward. G should be kept high during  
WHDX  
WRITE cycles to avoid bus contention; however, if  
the output bus has been activated by a low on E  
and G, a low on W will disable the outputs t  
after W falls.  
WLQZ  
a minimum of t  
from Chip Enable or t  
EHAX  
WHAX  
from WRITE Enable prior to the initiation of anoth-  
Figure 6. WRITE Enable Controlled, WRITE AC Waveform  
tAVAV  
A0-A14  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI00926  
Figure 7. Chip Enable Controlled, WRITE AC Waveforms  
tAVAV  
A0-A14  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI00927  
9/29  
M48T37Y, M48T37V  
Table 4. WRITE Mode AC Characteristics  
M48T37Y  
–70  
M48T37V  
–100  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
WRITE Cycle Time  
70  
0
100  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
AVEL  
t
50  
55  
0
80  
80  
10  
10  
50  
50  
5
WLWH  
t
Chip Enable Low to Chip Enable High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
EHAX  
t
30  
30  
5
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WHDX  
t
5
5
EHDX  
(2,3)  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
25  
50  
ns  
ns  
ns  
ns  
t
WLQZ  
t
60  
60  
5
80  
80  
10  
AVWH  
t
AVEH  
(2,3)  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
10/29  
M48T37Y, M48T37V  
Data Retention Mode  
With valid V applied, the M48T37Y/V operates  
as a conventional BYTEWIDE™ static RAM.  
Should the Supply Voltage decay, the RAM will  
automatically power-fail deselect, write protecting  
during the time the device is sampling V . There-  
fore, decoupling of the power supply lines is rec-  
ommended.  
CC  
CC  
When V  
drops below V , the control circuit  
SO  
CC  
itself when V  
falls within the V  
(max), V  
PFD PFD  
CC  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48T37Y/V for  
an accumulated period of at least 7 years at room  
(min) window. All outputs become high imped-  
ance, and all inputs are treated as “Don't care.”  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
temperature when V  
tem power returns and V  
is less than V . As sys-  
CC  
SO  
rises above V , the  
SO  
CC  
tent. At voltages below V  
(min), the user can be  
battery is disconnected and the power supply is  
PFD  
assured the memory will be in a write protected  
state, provided the V fall time is not less than t .  
switched to external V . Normal RAM operation  
CC  
can resume t  
after V reaches V  
(max).  
PFD  
CC  
F
REC  
CC  
The M48T37Y/V may respond to transient noise  
spikes on V that reach into the deselect window  
For more information on Battery Storage Life refer  
to the Application Note AN1012.  
CC  
11/29  
M48T37Y, M48T37V  
CLOCK OPERATIONS  
Reading the Clock  
®
Updates to the TIMEKEEPER registers should  
be halted before clock data is read to prevent  
reading data in transition. The BiPORT™ TIME-  
KEEPER cells in the RAM array are only data reg-  
isters and not the actual clock counters, so  
updating the registers can be halted without dis-  
turbing the clock itself.  
rect day, date, and time data in 24 hour BCD  
format (see Table 5., page 13). Resetting the  
WRITE Bit to a '0' then transfers the values of all  
time registers (7FF1h, 7FF9h-7FFFh) to the actual  
TIMEKEEPER counters and allows normal opera-  
tion to resume. After the WRITE Bit is reset, the  
next clock update will occur in approximately one  
second.  
Updating is halted when a '1' is written to the  
READ Bit, D6 in the Control Register 7FF8h. As  
long as a '1' remains in that position, updating is  
halted. After a halt is issued, the registers reflect  
the count; that is, the day, date, and the time that  
were current at the moment the halt command was  
issued.  
Note: Upon power-up following a power failure,  
both the WRITE Bit and the READ Bit will be reset  
to '0.'  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is the MSB of the seconds register. Setting it to  
a '1' stops the oscillator. When reset to a '0,' the  
M48T37Y/V oscillator starts within one second.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating will resume within a second af-  
ter the bit is reset to a '0.'  
Setting the Clock  
Bit D7 of the Control Register (7FF8h) is the  
WRITE Bit. Setting the WRITE Bit to a '1,' like the  
READ Bit, halts updates to the TIMEKEEPER reg-  
isters. The user can then load them with the cor-  
Note: It is not necessary to set the WRITE Bit  
when setting or resetting the FREQUENCY TEST  
Bit (FT) or the STOP Bit (ST).  
12/29  
M48T37Y, M48T37V  
Table 5. Register Map  
Address  
Data  
Function/Range  
BCD Format  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7FFFh  
7FFEh  
7FFDh  
7FFCh  
7FFBh  
7FFAh  
7FF9h  
7FF8h  
7FF7h  
7FF6h  
7FF5h  
7FF4h  
7FF3h  
7FF2h  
7FF1h  
7FF0h  
10 Years  
Year  
Year  
Month  
00-99  
01-12  
01-31  
01-7  
0
0
0
0
0
10 M  
Month  
10 Date  
Date: Day of Month  
Day of Week  
Hours  
Date  
0
FT  
0
0
0
0
Day  
0
10 Hours  
Hours  
00-23  
00-59  
00-59  
0
10 Minutes  
10 Seconds  
S
Minutes  
Min  
ST  
Seconds  
Sec  
W
R
Calibration  
Control  
Watchdog  
Interrupts  
Alarm Date  
Alarm Hour  
Alarm Min  
Alarm Sec  
Century  
Flags  
WDS  
AFE  
RPT4  
RPT3  
RPT2  
RPT1  
BMB4  
BMB3  
BMB2  
0
BMB1  
0
BMB0  
0
RB1  
0
RB0  
0
0
0
0
ABE  
AIarm 10 Date  
AIarm 10 Hours  
Alarm Date  
01-31  
00-23  
00-59  
00-59  
00-99  
Alarm Hours  
Alarm Minutes  
Alarm Seconds  
100 Year  
Alarm 10 Minutes  
Alarm 10 Seconds  
1000 Year  
WDF  
AF  
Z
BL  
Z
Z
Z
Z
Keys: S = Sign Bit  
FT = Frequency Test Bit  
AFE = Alarm Flag Enable Flag  
RB0-RB1 = Watchdog Resolution Bits  
WDS = Watchdog Steering Bit  
R = READ Bit  
W = WRITE Bit  
ST = Stop Bit  
0 = Must be set to '0'  
BL = Battery Low Flag (Read only)  
ABE = Alarm in Battery Back-Up Mode Enable Bit  
RPT1-RPT4 = Alarm Repeat Mode Bits  
WDF = Watchdog Flag (Read only)  
AF = Alarm Flag (Read only)  
BMB0-BMB4 = Watchdog Multiplier Bits  
Z = '0' and are Read only  
13/29  
M48T37Y, M48T37V  
Setting the Alarm Clock  
Registers 7FF5h-7FF2h contain the alarm set-  
tings. The alarm can be configured to go off at a  
predetermined time on a specific day of the month  
or repeat every day, hour, minute, or second. It  
can also be programmed to go off while the  
M48T37Y/V is in the battery back-up mode of op-  
eration to serve as a system wake-up call.  
RPT1-RPT4 put the alarm in the repeat mode of  
operation. Table 6 shows the possible configura-  
tions. Codes not listed in the table default to the  
once per second mode to quickly alert the user of  
an incorrect alarm setting.  
Note: User must transition address (or toggle chip  
enable) to see Flag Bit change.  
When the clock information matches the alarm  
clock settings based on the match criteria defined  
by RPT1-RPT4, AF is set. If AFE is also set, the  
alarm condition activates the IRQ/FT pin. To dis-  
able alarm, write '0' to the Alarm Date registers  
and RPT1-4. The alarm flag and the IRQ/FT out-  
put are cleared by a READ to the Flags Register  
as shown in Figure 8. A subsequent READ of the  
Flags Register is necessary to see that the value  
of the Alarm Flag has been reset to '0.'  
The IRQ/FT pin can also be activated in the bat-  
tery back-up mode. The IRQ/FT will go low if an  
alarm occurs and both the Alarm in Battery Back-  
up Mode Enable (ABE) and the AFE are set. The  
ABE and AFE bits are reset during power-up,  
therefore an alarm generated during power-up will  
only set AF. The user can read the Flag Register  
at system boot-up to determine if an alarm was  
generated while the M48T37Y/V was in the dese-  
lect mode during power-up. Figure 9., page 15 il-  
lustrates the back-up mode alarm timing.  
Figure 8. Alarm Interrupt Reset Waveform  
A0-A14  
ADDRESS 7FF0h  
15ns Min  
ACTIVE FLAG BIT  
IRQ/FT  
AI01677B  
Table 6. Alarm Repeat Modes  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm Activated  
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
1
1
1
1
0
1
1
1
0
0
1
1
0
0
0
1
0
0
0
0
Once per Month  
14/29  
M48T37Y, M48T37V  
Figure 9. Back-up Mode Alarm Waveforms  
tREC  
V
CC  
V
V
(max)  
(min)  
PFD  
PFD  
V
SO  
ABE, AFE bit in Interrupt Register  
AF bit in Flags Register  
IRQ/FT  
HIGH-Z  
HIGH-Z  
AI03254B  
Calibrating the Clock  
The M48T37Y/V is driven by a quartz controlled  
oscillator with a nominal frequency of 32,768 Hz.  
The devices are tested not to exceed ±35 PPM  
(parts per million) oscillator frequency error at  
25 °C, which equates to about ±1.53 minutes per  
month. With the calibration bits properly set, the  
accuracy of each M48T37Y/V improves to better  
than +1/–2 PPM at 25 °C.  
per minute, have one second either shortened by  
128 or lengthened by 256 oscillator cycles. If a bi-  
nary '1' is loaded into the register, only the first 2  
minutes in the 64 minute cycle will be modified; if  
a binary 6 is loaded, the first 12 will be affected,  
and so on.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125, 829, 120 (64 minutes x 60 seconds/  
minute x 32,768 cycles/second) actual oscillator  
cycles, that is +4.068 or –2.034 PPM of adjust-  
ment per calibration step in the calibration register.  
Assuming that the oscillator is in fact running at ex-  
actly 32,768 Hz, each of the 31 increments in the  
Calibration Byte would represent +10.7 or –5.35  
seconds per month which corresponds to a total  
range of +5.5 or –2.75 minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M48T37Y/V may require.  
The first involves simply setting the clock, letting it  
run for a month and comparing it to a known accu-  
rate reference (like WWW broadcasts). While that  
may seem crude, it allows the designer to give the  
end user the ability to calibrate his clock as his en-  
vironment may require, even after the final product  
is packaged in a non-user serviceable enclosure.  
All the designer has to do is provide a simple utility  
that accesses the Calibration Byte.  
The oscillation rate of any crystal changes with  
temperature (see Figure 11., page 19). Most clock  
chips compensate for crystal frequency and tem-  
perature shift error with cumbersome trim capaci-  
tors. The M48T37Y/V design, however, employs  
periodic counter correction. The calibration circuit  
adds or subtracts counts from the oscillator divider  
circuit at the divide by 256 stage, as shown in Fig-  
ure 12., page 19. The number of times pulses are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five-bit Calibration byte found  
in the Control Register. Adding counts speeds the  
clock up, subtracting counts slows the clock down.  
The Calibration Byte occupies the five lower order  
bits (D4-D0) in the Control Register 7FF8h. These  
bits can be set to represent any value between 0  
and 31 in binary form. Bit D5 is the Sign Bit; '1' in-  
dicates positive calibration, '0' indicates negative  
calibration. Calibration occurs within a 64 minute  
cycle. The first 62 minutes in the cycle may, once  
15/29  
M48T37Y, M48T37V  
The second approach is better suited to a manu-  
facturing environment, and involves the use of the  
IRQ/FT pin. The pin will toggle at 512 Hz when the  
Stop Bit (ST, D7 of 7FF9h) is '0' the Frequency  
Test Bit (FT, D6 of 7FFCh) is '1,' the Alarm Flag  
Enable Bit (AFE, D7 of 7FF6h) is '0,' and the  
Watchdog Steering Bit (WDS, D7 of 7FF7h) is '1'  
or the Watchdog Register is reset (7FF7h=0).  
Any deviation from 512 Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example, a reading of 512.01024  
Hz would indicate a +20 PPM oscillator frequency  
error, requiring a –10(WR001010) to be loaded  
into the Calibration Byte for correction.  
rupt or a microprocessor reset. WDF is reset by  
reading the Flags Register (Address 7FF0h).  
Note: User must transition address (or toggle chip  
enable) to see Flag Bit change.  
Reset will not occur unless the addresses are sta-  
ble at the flag location for at least 15ns while the  
device is in the READ Mode as shown in Figure  
10., page 18.  
The most significant bit of the Watchdog Register  
is the Watchdog Steering Bit. When set to a '0,' the  
watchdog will activate the IRQ/FT pin when timed-  
out. When WDS is set to a '1,' the watchdog will  
output a negative pulse on the RST pin for a dura-  
tion of t  
. The Watchdog Register, the FT Bit,  
REC  
Note: Setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
AFE Bit, and ABE Bit will reset to a '0' at the end of  
a Watchdog time-out when the WDS bit is set to a  
'1.'  
The IRQ/FT pin is an open drain output which re-  
quires a pull-up resistor for proper operation. A  
500-10kresistor is recommended in order to  
control the rise time. The FT Bit is cleared on pow-  
er-down.  
The watchdog timer resets when the microproces-  
sor performs a re-write of the Watchdog Register  
or an edge transition (low to high / high to low) on  
the WDI pin occurs. The time-out period then  
starts over.  
For more information on calibration, see the Appli-  
cation Note AN934, “TIMEKEEPER Calibration.”  
The watchdog timer is disabled by writing a value  
of 00000000 to the eight bits in the Watchdog Reg-  
ister. Should the watchdog timer time-out, a value  
of 00h needs to be written to the Watchdog Regis-  
ter in order to clear the IRQ/FT pin.  
The watchdog function is automatically disabled  
upon power-down and the Watchdog Register is  
cleared. If the watchdog function is set to output to  
the IRQ/FT pin and the frequency test function is  
activated, the watchdog or alarm function prevails  
and the frequency test function is denied. The WDI  
Watchdog Timer  
The watchdog timer can be used to detect an out-  
of-control microprocessor. The user programs the  
watchdog timer by setting the desired amount of  
time-out into the eight-bit Watchdog Register, ad-  
dress 7FF7h. The five bits (BMB4-BMB0) that  
store a binary multiplier and the two lower order  
bits (RB1-RB0) select the resolution, where  
1
1
pin should be connected to V if not used.  
SS  
00 = / second, 01 = / second, 10 = 1 second,  
16  
4
and 11 = 4 seconds. The amount of time-out is  
then determined to be the multiplication of the five-  
bit multiplier value with the resolution. (For exam-  
ple: writing 00001110 in the Watchdog Register =  
3x1, or 3 seconds).  
Note: Accuracy of timer is within ± the selected  
resolution.  
Power-on Reset  
The M48T37Y/V continuously monitors V  
.
CC  
When V  
falls to the power fail detect trip point,  
CC  
the RST pulls low (open drain) and remains low on  
power-up for t  
after V  
passes V  
. RST is  
conditions. The RST pin is an  
REC  
CC  
PFD  
valid for all V  
CC  
If the processor does not reset the timer within the  
specified period, the M48T37Y/V sets the Watch-  
dog Flag (WDF) and generates a watchdog inter-  
open drain output and an appropriate resistor to  
V
should be chosen to control rise time (see  
CC  
Figure 14., page 23).  
16/29  
M48T37Y, M48T37V  
Programmable Interrupts  
The M48T37Y/V provides two programmable in-  
terrupts: an alarm and a watchdog. When an inter-  
rupt condition occurs, the M48T37Y/V sets the  
appropriate flag bit in the Flag Register 7FF0h.  
The interrupt enable bits (AFE and ABE) in 7FF6h  
and the Watchdog Steering (WDS) Bit in 7FF7h al-  
low the interrupt to activate the IRQ/FT pin.  
The Alarm flag and the IRQ/FT output are cleared  
by a READ to the Flags Register. An interrupt con-  
dition reset will not occur unless the addresses are  
stable at the flag location for at least 15ns while  
the device is in the READ Mode as shown in Fig-  
ure 8., page 14.  
tery low monitoring tests during the next power-up  
sequence.  
If a battery low is generated during a power-up se-  
quence, this indicates the battery voltage is below  
2.5V (approximately), which may be insufficient to  
maintain data integrity. Data should be considered  
suspect and verified as correct. A fresh battery  
should be installed. The SNAPHAT top may be re-  
placed while VCC is applied to the device.  
Note: This will cause the clock to lose time during  
the interval the battery/crystal is removed.  
Note: Battery monitoring is a useful technique only  
when performed periodically. The M48T37Y/V  
The IRQ/FT pin is an open drain output and re-  
quires a pull-up resistor (10krecommended) to  
only monitors the battery when a nominal V  
is  
CC  
applied to the device. Thus applications which re-  
quire extensive durations in the battery back-up  
mode should be powered-up periodically (at least  
once every few months) in order for this technique  
to be beneficial. Additionally, if a battery low is in-  
dicated, data integrity should be verified upon  
power-up via a checksum or other technique.  
V
. The pin remains in the high impedance state  
CC  
unless an interrupt occurs or the Frequency Test  
Mode is enabled.  
Battery Low Flag  
The M48T37Y/V automatically performs periodic  
battery voltage monitoring upon power-up. The  
Battery Low Flag (BL), Bit D4 of the Flags Register  
Initial Power-on Defaults  
®
7FF0h, will be asserted high if the SNAPHAT  
Upon application of power to the device, the fol-  
lowing register bits are set to a '0' state: WDS;  
BMB0-BMB4; RB0-RB1; AFE; ABE; W; R; and FT  
(see Table 7).  
battery is found to be less than approximately  
2.5V. The BL Flag will remain active until comple-  
tion of battery replacement and subsequent bat-  
Table 7. Default Values  
WATCHDOG  
Condition  
W
R
FT  
AFE  
ABE  
(1)  
Register  
Initial Power-up  
(Battery Attach for SNAPHAT)  
0
0
0
0
0
0
(2)  
(3)  
0
0
0
0
0
0
0
1
0
1
0
0
Subsequent Power-up / RESET  
(4)  
Power-down  
Note: 1. WDS, BMB0-BMB4, RBO, RB1.  
2. State of other control bits undefined.  
3. State of other control bits remains unchanged.  
4. Assuming these bits set to '1' prior to power-down.  
17/29  
M48T37Y, M48T37V  
V
Noise And Negative Going Transients  
Figure 10. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A ceramic by-  
pass capacitor value of 0.1µF (as shown in Figure  
10) is recommended in order to provide the need-  
ed filtering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
V
CC  
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, it is recommended to con-  
AI02169  
nect a schottky diode from V  
to V  
(cathode  
CC  
SS  
connected to V , anode to V ). Schottky diode  
CC  
SS  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
18/29  
M48T37Y, M48T37V  
Figure 11. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
–100  
–120  
–140  
–160  
T0 = 25 °C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 12. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
19/29  
M48T37Y, M48T37V  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 8. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
Grade 1  
Grade 6  
T
A
Ambient Operating Temperature  
–40 to 85  
°C  
®
–40 to 85  
–55 to 150  
260  
°C  
°C  
°C  
SNAPHAT  
SOIC  
Storage Temperature (V Off, Oscillator  
Off)  
CC  
T
STG  
(1,2)  
Lead Solder Temperature for 10 seconds  
T
SLD  
M48T37Y  
M48T37V  
M48T37Y  
M48T37V  
–0.3 to 7  
–0.3 to 4.6  
–0.3 to 7  
–0.3 to 4.6  
10  
V
V
V
Input or Output Voltages  
Supply Voltage  
IO  
V
V
CC  
V
I
O
Output Current  
mA  
W
P
Power Dissipation  
1
D
Note: 1. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for  
between 90 to 150 seconds).  
2. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
20/29  
M48T37Y, M48T37V  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 9. Operating and AC Measurement Conditions  
Parameter  
M48T37Y  
4.5 to 5.5  
0 to 70  
–40 to 85  
100  
M48T37V  
3.0 to 3.6  
0 to 70  
–40 to 85  
50  
Unit  
V
Supply Voltage (V  
)
CC  
Grade 1  
Grade 6  
°C  
°C  
pF  
ns  
V
Ambient Operating Temperature (T )  
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
10  
10  
Input Pulse Voltages  
0 to 3  
0 to 3  
Input and Output Timing Ref. Voltages  
1.5  
1.5  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 13. AC Testing Load Circuit  
645  
DEVICE  
UNDER  
TEST  
(1)  
1.75V  
C
= 100pF  
L
C
includes JIG capacitance  
L
AI02325  
Note: Excluding open-drain output pins  
1. ; 50pF for M48T37V.  
Table 10. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
pF  
Parameter  
C
Input Capacitance  
Input / Output Capacitance  
IN  
(3)  
10  
pF  
C
IO  
Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
21/29  
M48T37Y, M48T37V  
Table 11. DC Characteristics  
M48T37Y  
–70  
M48T37V  
–100  
(1)  
Symbol  
Parameter  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
(2)  
0V V V  
Input Leakage Current  
±1  
±1  
µA  
I
IN  
CC  
LI  
(3)  
0V V  
V  
CC  
Output Leakage Current  
Supply Current  
±1  
50  
3
±1  
33  
2
µA  
mA  
mA  
I
OUT  
LO  
I
Outputs open  
CC  
I
E = V  
Supply Current (Standby) TTL  
CC1  
IH  
Supply Current (Standby)  
CMOS  
I
E = V – 0.2V  
3
2
mA  
CC2  
CC  
V
Input Low Voltage  
Input High Voltage  
–0.3  
2.2  
0.8  
–0.3  
2.2  
0.8  
V
V
IL  
V
IH  
V
+ 0.3  
V
+ 0.3  
CC  
CC  
Output Low Voltage  
(standard)  
I
= 2.1mA  
0.4  
0.4  
0.4  
0.4  
V
OL  
V
OL  
Output Low Voltage  
(open drain)  
I
= 10mA  
= –1mA  
V
V
OL  
V
OH  
I
Output High Voltage  
2.4  
2.4  
OH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
2. WDI internally pulled down to VSS through a 100kresistor.  
3. Outputs deselected.  
CC  
22/29  
M48T37Y, M48T37V  
Figure 14. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tFB  
tRB  
tDR  
tREC  
RST  
VALID  
INPUTS  
DON'T CARE  
HIGH-Z  
VALID  
OUTPUTS  
VALID  
VALID  
AI03078  
Table 12. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
Max  
Unit  
Parameter  
(2)  
V
(max) to V  
(min) to V  
(min) V Fall Time  
300  
µs  
t
PFD  
PFD  
CC  
F
(3)  
V
V
V
V
V
Fall Time  
10  
10  
1
µs  
µs  
µs  
t
PFD  
PFD  
SS CC  
FB  
t
(min) to V  
(max) V Rise Time  
PFD CC  
R
t
to V  
(min) V Rise Time  
PFD CC  
RB  
SS  
(4)  
(max) to RST High  
40  
200  
ms  
t
PFD  
REC  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V pass-  
PFD CC  
PFD  
es V  
(min).  
PFD  
3. V  
4. t  
(min) to V fall time of less than t may cause corruption of RAM data.  
(min) = 20ms for Industrial Temperature Range - Grade 6 device.  
PFD  
REC  
SS FB  
Table 13. Power Down/Up Trip Points DC Characteristics  
(1)  
Symbol  
Min  
4.2  
2.7  
Typ  
4.4  
2.9  
Max  
4.5  
Unit  
Parameter  
M48T37Y  
M48T37V  
M48T37Y  
M48T37V  
Grade 1  
V
V
PFD  
Power-fail Deselect Voltage  
3.0  
V
V
V
BAT  
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
SO  
V
PFD  
–100mV  
V
5
7
YEARS  
YEARS  
(3)  
t
DR  
(2)  
Grade 6  
10  
Note: All voltages referenced to V  
.
SS  
1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. Using larger M4T32-BR12SH6 SNAPHAT top (recommended for Industrial Temperature Range - Grade 6 device).  
3. At 25°C, V = 0V.  
CC  
23/29  
M48T37Y, M48T37V  
PACKAGE MECHANICAL INFORMATION  
Figure 15. SOH44 – 44-lead Plastic Small Outline, 4-socket SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 14. SOH44 – 44-lead Plastic Small Outline, 4-socket SNAPHAT, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.46  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.018  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
0.81  
0.032  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
44  
44  
CP  
0.10  
0.004  
24/29  
M48T37Y, M48T37V  
Figure 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 15. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
25/29  
M48T37Y, M48T37V  
Figure 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 16. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
.0335  
0.315  
0.015  
0.022  
0.860  
.0710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
26/29  
M48T37Y, M48T37V  
PART NUMBERING  
Table 17. Ordering Information Scheme  
Example:  
M48T  
37Y  
–70  
MH  
1
E
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
37Y = V = 4.5 to 5.5V; V  
= 4.2 to 4.5V  
= 2.7 to 3.0V  
CC  
PFD  
PFD  
37V = V = 3.0 to 3.6V; V  
CC  
Speed  
–70 = 70ns (37Y)  
–10 = 100ns (37V)  
Package  
(1)  
MH = SOH44  
Temperature Range  
1 = 0 to 70°C  
6 = –40 to 85°C  
Shipping Method  
blank = Tubes (Not for New Design - Use E)  
E = ECOPACK Package, Tubes  
F = ECOPACK Package, Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
®
Note: 1. The SOIC package (SOH44) requires the SNAPHAT battery package which is ordered separately under the part number “M4TXX-  
BR12SH” in plastic tube or “M4TXX-BR12SHTR” in Tape & Reel form (see Table 18).  
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
Table 18. SNAPHAT Battery Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
Package  
SH  
SH  
27/29  
M48T37Y, M48T37V  
REVISION HISTORY  
Table 19. Document Revision History  
Date  
Version  
Revision Details  
December 1999  
1.0  
First Issue  
From Preliminary Data to Data Sheet; Battery Low Flag paragraph changed; 100ns  
speed class identifier changed (Tables 3, 4)  
07-Feb-00  
2.0  
t
changed (Table 12); watchdog timer paragraph changed  
11-Jul-00  
19-Jun-01  
06-Aug-01  
15-Jan-02  
20-May-02  
31-Mar-03  
01-Apr-04  
08-Feb-06  
2.1  
3.0  
3.1  
3.2  
3.3  
4.0  
5.0  
6.0  
FB  
Reformatted; added temp./voltage info. to tables (Table 10, 11, 3, 4, 12, 13)  
Fix text for Setting the Alarm Clock (Figure 8)  
Fix footnote numbering (Table 17)  
Modify reflow time and temperature footnote (Table 8)  
v2.2 template applied; data retention condition updated (Table 13)  
Reformatted; updated with Lead-free package information (Table 8, 17)  
New template; updated Lead-free text; fixed DC Characteristics (Table 8, 11, 17)  
28/29  
M48T37Y, M48T37V  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
29/29  

相关型号:

M48T37V-70MH1TR

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37V-70MH6

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37V-70MH6E

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37V-70MH6F

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37V-70MH6TR

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37VMH

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37VSH

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37Y

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37Y-10MH1

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37Y-10MH1E

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37Y-10MH1F

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T37Y-10MH1TR

3.3V-5V 256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR