M48T35AV-10PH1TR [STMICROELECTRONICS]

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM; 5.0或3.3V , 256千位( 32 KB ×8 ) TIMEKEEPER㈢ SRAM
M48T35AV-10PH1TR
型号: M48T35AV-10PH1TR
厂家: ST    ST
描述:

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
5.0或3.3V , 256千位( 32 KB ×8 ) TIMEKEEPER㈢ SRAM

静态存储器
文件: 总25页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M48T35AY  
M48T35AV  
®
5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER SRAM  
FEATURES SUMMARY  
INTEGRATED, ULTRA LOW POWER SRAM,  
REAL TIME CLOCK, POWER-FAIL  
Figure 1. 28-pin, PCDIP CAPHAT™ Package  
CONTROL CIRCUIT AND BATTERY  
BYTEWIDE™ RAM-LIKE CLOCK ACCESS  
BCD CODED YEAR, MONTH, DAY, DATE,  
HOURS, MINUTES, AND SECONDS  
BATTERY LOW FLAG (BOK)  
FREQUENCY TEST OUTPUT FOR REAL  
TIME CLOCK  
28  
AUTOMATIC POWER-FAIL CHIP  
DESELECT AND WRITE PROTECTION  
WRITE PROTECT VOLTAGES  
1
PCDIP28 (PC)  
Battery/Crystal  
CAPHAT  
(V  
= Power-fail Deselect Voltage):  
PFD  
M48T35AY: V = 4.5 to 5.5V  
CC  
4.2V V  
4.5V  
PFD  
M48T35AV: V = 3.0 to 3.6V  
CC  
2.7V V  
3.0V  
PFD  
Figure 2. 28-pin SOIC Package  
SELF-CONTAINED BATTERY AND  
CRYSTAL IN THE CAPHAT™ DIP  
PACKAGE  
SNAPHAT (SH)  
Battery/Crystal  
SOIC PACKAGE PROVIDES DIRECT  
®
CONNECTION FOR A SNAPHAT  
HOUSING CONTAINING THE BATTERY  
AND CRYSTAL  
®
SNAPHAT HOUSING (BATTERY AND  
CRYSTAL) IS REPLACEABLE  
PIN AND FUNCTION COMPATIBLE WITH  
JEDEC STANDARD 32Kb x8 SRAMs  
28  
1
SOH28 (MH)  
April 2004  
1/25  
M48T35AY, M48T35AV  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. 28-pin, PCDIP CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 5. SOIC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 8. WRITE Enable Controlled, WRITE Mode AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 9. Chip Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 10.Checking the BOK Flag Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Century Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 12.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
V
CC  
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 13.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 7. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 14.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/25  
M48T35AY, M48T35AV  
Figure 15.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 16.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Outline . . . . . . . . . . . . . . 19  
Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Mechanical Data . . . . . . . 19  
Figure 17.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 20  
Table 13. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Pack. Mech. Data20  
Figure 18.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 21  
Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 21  
Figure 19.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 22  
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 22  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 17. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 18. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3/25  
M48T35AY, M48T35AV  
SUMMARY DESCRIPTION  
The M48T35AY/V TIMEKEEPER RAM is a 32Kb  
®
®
nection to a separate SNAPHAT housing con-  
x 8 non-volatile static RAM and real time clock.  
The monolithic chip is available in two special  
packages to provide a highly integrated battery  
backed-up memory and real time clock solution.  
The M48T35AY/V is a non-volatile pin and func-  
tion equivalent to any JEDEC standard 32Kb x 8  
SRAM. It also easily fits into many ROM, EPROM,  
and EEPROM sockets, providing the non-volatility  
of PROMs without any requirement for special  
WRITE timing or limitations on the number of  
WRITEs that can be performed.  
The 28-pin, 600mil DIP CAPHAT™ houses the  
M48T35AY/V silicon with a quartz crystal and a  
long-life lithium button cell in a single package.  
The 28-pin, 330mil SOIC provides sockets with  
gold plated contacts at both ends for direct con-  
taining the battery and crystal. The unique design  
allows the SNAPHAT battery package to be  
mounted on top of the SOIC package after the  
completion of the surface mount process. Inser-  
tion of the SNAPHAT housing after reflow pre-  
vents potential battery and crystal damage due to  
the high temperatures required for device surface-  
mounting. The SNAPHAT housing is keyed to pre-  
vent reverse insertion.  
The SOIC and battery/crystal packages are  
shipped separately in plastic anti-static tubes or in  
Tape & Reel form.  
For the 28-lead SOIC, the battery/crystal package  
(e.g. SNAPHAT) part number is “M4T28-BR12SH”  
(see Table 17., page 23).  
Figure 3. Logic Diagram  
Table 1. Signal Names  
V
CC  
A0-A14  
Address Inputs  
Data Inputs / Outputs  
Chip Enable  
DQ0-DQ7  
15  
8
E
A0-A14  
DQ0-DQ7  
G
W
Output Enable  
WRITE Enable  
Supply Voltage  
Ground  
W
E
M48T35AY  
M48T35AV  
V
CC  
V
SS  
G
V
SS  
AI02797B  
4/25  
M48T35AY, M48T35AV  
Figure 4. DIP Connections  
Figure 5. SOIC Connections  
A14  
A12  
A7  
1
2
3
4
5
6
28  
27  
V
CC  
W
A14  
A12  
A7  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
2
26 A13  
25 A8  
24 A9  
23 A11  
3
A13  
A8  
A6  
A6  
4
A5  
A5  
5
A9  
A4  
A4  
6
A11  
G
A3 7 M48T35AY 22  
G
A3  
7
M48T35AY  
M48T35AV  
M48T35AV  
A2  
A1  
8
9
21 A10  
A2  
8
A10  
E
20  
E
A1  
9
A0 10  
DQ0 11  
DQ1 12  
DQ2 13  
19 DQ7  
18 DQ6  
17 DQ5  
16 DQ4  
15 DQ3  
A0  
10  
11  
12  
13  
14  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ0  
DQ1  
DQ2  
V
14  
SS  
V
SS  
AI02798B  
AI02799  
Figure 6. Block Diagram  
OSCILLATOR AND  
CLOCK CHAIN  
8 x 8 BiPORT  
SRAM ARRAY  
32,768 Hz  
CRYSTAL  
A0-A14  
POWER  
DQ0-DQ7  
32,760 x 8  
SRAM ARRAY  
LITHIUM  
CELL  
E
VOLTAGE SENSE  
AND  
W
G
V
PFD  
SWITCHING  
CIRCUITRY  
V
V
CC  
SS  
AI01623  
5/25  
M48T35AY, M48T35AV  
OPERATION MODES  
As Figure 6., page 5 shows, the static memory ar-  
ray and the quartz controlled clock oscillator of the  
M48T35AY/V are integrated on one silicon chip.  
The two circuits are interconnected at the upper  
eight memory locations to provide user accessible  
BYTEWIDE™ clock information in the bytes with  
addresses 7FF8h-7FFFh.  
The clock locations contain the year, month, date,  
day, hour, minute, and second in 24 hour BCD for-  
mat. Corrections for 28, 29 (leap year - valid until  
2100), 30, and 31 day months are made automat-  
ically. Byte 7FF8h is the clock control register. This  
byte controls user access to the clock information  
and also stores the clock calibration setting.  
cells. The M48T35AY/V includes a clock control  
circuit which updates the clock bytes with current  
information once per second. The information can  
be accessed by the user in the same manner as  
any other location in the static memory array.  
The M48T35AY/V also has its own Power-fail De-  
tect circuit. The control circuitry constantly moni-  
tors the single 3V supply for an out of tolerance  
condition. When V is out of tolerance, the circuit  
CC  
write protects the SRAM, providing a high degree  
of data security in the midst of unpredictable sys-  
tem operation brought on by low V . As V falls  
CC  
CC  
below the Battery Back-up Switchover Voltage  
(V ), the control circuitry connects the battery  
SO  
which maintains data and clock operation until val-  
id power returns.  
The eight clock bytes are not the actual clock  
counters themselves; they are memory locations  
consisting of BiPORT™ READ/WRITE memory  
Table 2. Operating Modes  
V
Mode  
Deselect  
WRITE  
READ  
E
G
X
X
W
DQ0-DQ7  
Power  
Standby  
Active  
CC  
V
IH  
X
High Z  
4.5 to 5.5V  
or  
3.0 to 3.6V  
V
V
V
V
D
IL  
IL  
IL  
IL  
IH  
IH  
IN  
V
IL  
V
V
D
Active  
OUT  
V
IH  
READ  
High Z  
High Z  
High Z  
Active  
(1)  
Deselect  
X
X
X
CMOS Standby  
V
SO  
to V  
(min)  
PFD  
(1)  
Deselect  
X
X
X
Battery Back-up Mode  
V  
SO  
Note: X = V or V ; V = Battery Back-up Switchover Voltage.  
IH  
IL  
SO  
1. See Table 11., page 18 for details.  
6/25  
M48T35AY, M48T35AV  
READ Mode  
The M48T35AY/V is in the READ Mode whenever  
W (WRITE Enable) is high and E (Chip Enable) is  
low. The unique address specified by the 15 ad-  
dress inputs defines which one of the 32,768 bytes  
of data is to be accessed. Valid data will be avail-  
able at the Data I/O pins within Address Access  
Access time (t  
) or Output Enable Access time  
ELQV  
(t  
GLQV  
).  
The state of the eight three-state Data I/O signals  
is controlled by E and G. If the outputs are activat-  
ed before t  
, the data lines will be driven to an  
AVQV  
indeterminate state until t  
puts are changed while E and G remain active,  
output data will remain valid for Output Data Hold  
. If the Address In-  
AVQV  
time (t  
) after the last address input signal is  
AVQV  
stable, providing that the E and G access times  
are also satisfied.  
time (t  
) but will go indeterminate until the next  
AXQX  
If the E and G access times are not met, valid data  
will be available after the latter of the Chip Enable  
Address Access.  
Figure 7. READ Mode AC Waveforms  
tAVAV  
VALID  
A0-A14  
tAVQV  
tELQV  
tAXQX  
tEHQZ  
E
tELQX  
tGLQV  
tGHQZ  
G
tGLQX  
DQ0-DQ7  
VALID  
AI00925  
Note: WRITE Enable (W) = High.  
Table 3. READ Mode AC Characteristics  
M48T35AY  
–70  
M48T35AV  
–100  
(1)  
Symbol  
Unit  
Parameter  
Min  
Max  
Min  
Max  
t
READ Cycle Time  
70  
100  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to Output Valid  
70  
70  
35  
100  
100  
50  
AVQV  
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
ELQV  
t
GLQV  
(2)  
Chip Enable Low to Output Transition  
Output Enable Low to Output Transition  
Chip Enable High to Output Hi-Z  
5
5
10  
5
ns  
ns  
ns  
ns  
ns  
t
ELQX  
GLQX  
EHQZ  
(2)  
(2)  
(2)  
t
t
25  
25  
50  
40  
Output Enable High to Output Hi-Z  
Address Transition to Output Transition  
t
GHQZ  
t
10  
10  
AXQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
7/25  
M48T35AY, M48T35AV  
WRITE Mode  
The M48T35AY/V is in the WRITE Mode whenev-  
er W and E are low. The start of a WRITE is refer-  
enced from the latter occurring falling edge of W or  
E. A WRITE is terminated by the earlier rising  
edge of W or E. The addresses must be held valid  
throughout the cycle. E or W must return high for  
er READ or WRITE cycle. Data-in must be valid t  
D-  
prior to the end of WRITE and remain valid for  
VWH  
t
afterward. G should be kept high during  
WHDX  
WRITE cycles to avoid bus contention; however, if  
the output bus has been activated by a low on E  
and G, a low on W will disable the outputs t  
after W falls.  
WLQZ  
a minimum of t  
from Chip Enable or t  
EHAX  
WHAX  
from WRITE Enable prior to the initiation of anoth-  
Figure 8. WRITE Enable Controlled, WRITE Mode AC Waveform  
tAVAV  
A0-A14  
VALID  
tAVWH  
tAVEL  
tAVWL  
tWHAX  
E
tWLWH  
W
tWLQZ  
tWHQX  
tWHDX  
DQ0-DQ7  
DATA INPUT  
tDVWH  
AI00926  
Figure 9. Chip Enable Controlled, WRITE Mode AC Waveforms  
tAVAV  
A0-A14  
VALID  
tAVEH  
tELEH  
tAVEL  
tEHAX  
E
tAVWL  
W
tEHDX  
DQ0-DQ7  
DATA INPUT  
tDVEH  
AI00927  
8/25  
M48T35AY, M48T35AV  
Table 4. WRITE Mode AC Characteristics  
M48T35AY  
–70  
M48T35AV  
(1)  
Symbol  
–100  
Unit  
Parameter  
Min  
Max  
Min  
100  
0
Max  
t
WRITE Cycle Time  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
Address Valid to WRITE Enable Low  
Address Valid to Chip Enable Low  
WRITE Enable Pulse Width  
AVWL  
t
0
0
AVEL  
t
50  
55  
0
80  
80  
10  
10  
50  
50  
5
WLWH  
t
Chip Enable Low to Chip Enable High  
WRITE Enable High to Address Transition  
Chip Enable High to Address Transition  
Input Valid to WRITE Enable High  
Input Valid to Chip Enable High  
ELEH  
t
WHAX  
t
0
EHAX  
t
30  
30  
5
DVWH  
t
DVEH  
t
WRITE Enable High to Input Transition  
Chip Enable High to Input Transition  
WHDX  
t
5
5
EHDX  
(2,3)  
WRITE Enable Low to Output Hi-Z  
Address Valid to WRITE Enable High  
Address Valid to Chip Enable High  
WRITE Enable High to Output Transition  
25  
50  
ns  
ns  
ns  
ns  
t
WLQZ  
t
60  
60  
5
80  
80  
10  
AVWH  
t
AVEH  
(2,3)  
t
WHQX  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. C = 5pF.  
L
3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.  
9/25  
M48T35AY, M48T35AV  
Data Retention Mode  
Figure 10. Checking the BOK Flag Status  
With valid V applied, the M48T35AY/V operates  
CC  
as a conventional BYTEWIDE™ static RAM.  
Should the supply voltage decay, the RAM will au-  
tomatically power-fail deselect, write protecting it-  
self when V  
falls within the V  
(max), VPFD  
CC  
PFD  
(min) window (see Figure 15, Table 10, and Table  
11., page 18). All outputs become high imped-  
ance, and all inputs are treated as “don't care.”  
POWER-UP  
Note: A power failure during a WRITE cycle may  
corrupt data at the currently addressed location,  
but does not jeopardize the rest of the RAM's con-  
READ DATA  
AT ANY ADDRESS  
tent. At voltages below V  
(min), the user can be  
PFD  
WRITE DATA  
COMPLEMENT BACK  
TO SAME ADDRESS  
assured the memory will be in a write protected  
state, provided the V fall time is not less than t .  
CC  
F
The M48T35AY/V may respond to transient noise  
spikes on V that reach into the deselect window  
CC  
during the time the device is sampling V . There-  
fore, decoupling of the power supply lines is rec-  
ommended.  
CC  
READ DATA  
AT SAME  
ADDRESS AGAIN  
When V  
drops below V , the control circuit  
SO  
CC  
switches power to the internal battery which pre-  
serves data and powers the clock. The internal  
button cell will maintain data in the M48T35AY/V  
for an accumulated period of at least 7 years when  
IS DATA  
COMPLEMENT  
OF FIRST  
NO (BATTERY LOW)  
V
is less than V . As system power returns  
CC  
SO  
READ?  
and V  
rises above V , the battery is discon-  
SO  
CC  
NOTIFY SYSTEM  
OF LOW BATTERY  
(DATA MAY BE  
CORRUPTED)  
nected and the power supply is switched to exter-  
(BATTERY OK) YES  
nal V . Write protection continues until V  
CC  
CC  
reaches V  
(min) plus t  
(min). E should be  
PFD  
rec  
kept high as V rises past V  
inadvertent WRITE cycles prior to processor stabi-  
lization. Normal RAM operation can resume t af-  
(min) to prevent  
CC  
PFD  
WRITE ORIGINAL  
DATA BACK TO  
SAME ADDRESS  
rec  
ter V exceeds V  
(max).  
PFD  
CC  
Also, as V rises, the battery voltage is checked.  
CC  
CONTINUE  
If the voltage is less than approximately 2.5V, an  
internal Battery Not OK (BOK) flag will be set. The  
BOK flag can be checked after power up. If the  
BOK flag is set, the first WRITE attempted will be  
blocked. The flag is automatically cleared after the  
first WRITE, and normal RAM operation resumes.  
Figure 10 illustrates how a BOK check routine  
could be structured.  
AI00607  
For more information on Battery Storage Life refer  
to the Application Note AN1012.  
10/25  
M48T35AY, M48T35AV  
CLOCK OPERATIONS  
Reading the Clock  
®
Updates to the TIMEKEEPER registers (see Ta-  
ble 5) should be halted before clock data is read to  
prevent reading data in transition. The BiPORT™  
TIMEKEEPER cells in the RAM array are only  
data registers and not the actual clock counters,  
so updating the registers can be halted without  
disturbing the clock itself.  
Updating is halted when a '1' is written to the  
READ Bit, D6 in the Control Register 7FF8h. As  
long as a '1' remains in that position, updating is  
halted.  
After a halt is issued, the registers reflect the  
count; that is, the day, date, and the time that were  
current at the moment the halt command was is-  
sued.  
All of the TIMEKEEPER registers are updated si-  
multaneously. A halt will not interrupt an update in  
progress. Updating is within a second after the bit  
is reset to a '0.'  
The user can then load them with the correct day,  
date, and time data in 24 hour BCD format (see  
Table 5). Resetting the WRITE Bit to a '0' then  
transfers the values of all time registers 7FF9h-  
7FFFh to the actual TIMEKEEPER counters and  
allows normal operation to resume. The FT Bit and  
the bits marked as '0' in Table 5 must be written to  
'0' to allow for normal TIMEKEEPER and RAM op-  
eration. After the WRITE Bit is reset, the next clock  
update will occur within one second.  
®
See the Application Note AN923, “TIMEKEEPER  
st  
Rolling Into the 21 Century” for information on  
Century Rollover.  
Stopping and Starting the Oscillator  
The oscillator may be stopped at any time. If the  
device is going to spend a significant amount of  
time on the shelf, the oscillator can be turned off to  
minimize current drain on the battery. The STOP  
Bit is the MSB of the seconds register. Setting it to  
a '1' stops the oscillator. The M48T35AY/V is  
shipped from STMicroelectronics with the STOP  
Bit set to a '1.' When reset to a '0,' the M48T35AY/  
V oscillator starts within 1 second.  
Setting the Clock  
Bit D7 of the Control Register 7FF8h is the WRITE  
Bit. Setting the WRITE Bit to a '1,' like the READ  
®
Bit, halts updates to the TIMEKEEPER registers.  
Table 5. Register Map  
Data  
Function/Range  
BCD Format  
Address  
D7  
D6  
D5  
D4  
10 M.  
CB  
D3  
D2  
D1  
D0  
7FFFh  
7FFEh  
7FFDh  
7FFCh  
7FFBh  
7FFAh  
7FF9h  
7FF8h  
10 Years  
Year  
Month  
Date  
Year  
Month  
Date  
00-99  
01-12  
01-31  
0
0
0
0
0
10 Date  
0
FT  
0
CEB  
0
Day  
Hours  
Century/Day 00-01/01-07  
0
10 Hours  
Hours  
Minutes  
Seconds  
Control  
00-23  
00-59  
00-59  
0
10 Minutes  
10 Seconds  
S
Minutes  
ST  
W
Seconds  
R
Calibration  
Keys: S = SIGN Bit  
FT = FREQUENCY TEST Bit (Must be set to '0' upon power  
for normal operation)  
R = READ Bit  
ST = STOP Bit  
0 = Must be set to '0'  
CEB = Century Enable Bit  
CB = Century Bit  
W = WRITE Bit  
Note: When CEB is set to '1,' CB will toggle from '0' to '1' or from '1' to '0' at the turn of the century (dependent upon the initial value set).  
When CEB is set to '0,' CB will not toggle. The WRITE Bit does not need to be set to write to CEB.  
11/25  
M48T35AY, M48T35AV  
Calibrating the Clock  
The M48T35AY/V is driven by a quartz-controlled  
oscillator with a nominal frequency of 32,768 Hz.  
The devices are tested not to exceed 35 ppm  
(parts per million) oscillator frequency error at  
25°C, which equates to about ±1.53 minutes per  
month. With the calibration bits properly set, the  
accuracy of each M48T35AY/V improves to better  
than +1/–2 ppm at 25°C.  
The oscillation rate of any crystal changes with  
temperature (see Figure 11., page 13). Most clock  
chips compensate for crystal frequency and tem-  
perature shift error with cumbersome “trim” capac-  
itors. The M48T35AY/V design, however, employs  
periodic counter correction. The calibration circuit  
adds or subtracts counts from the oscillator divider  
circuit at the divide by 256 stage, as shown in Fig-  
ure 12., page 13. The number of times pulses are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five calibration bits found in  
the Control Register. Adding counts speeds the  
clock up, subtracting counts slows the clock down.  
The Calibration Byte occupies the five lower order  
bits (D4-D0) in the Control Register 7FF8h. These  
bits can be set to represent any value between 0  
and 31 in binary form. Bit D5 is the Sign Bit; '1' in-  
dicates positive calibration, '0' indicates negative  
calibration. Calibration occurs within a 64 minute  
cycle. The first 62 minutes in the cycle may, once  
per minute, have one second either shortened by  
128 or lengthened by 256 oscillator cycles. If a bi-  
nary '1' is loaded into the register, only the first 2  
minutes in the 64 minute cycle will be modified; if  
a binary 6 is loaded, the first 12 will be affected,  
and so on.  
month which corresponds to a total range of +5.5  
or –2.75 minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M48T35AY/V may re-  
quire. The first involves simply setting the clock,  
letting it run for a month and comparing it to a  
known accurate reference (like WWV broadcasts).  
While that may seem crude, it allows the designer  
to give the end user the ability to calibrate his clock  
as his environment may require, even after the fi-  
nal product is packaged in a non-user serviceable  
enclosure.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of  
some test equipment. When the Frequency Test  
(FT) Bit, the seventh-most significant bit in the Day  
Register is set to a '1,' and D7 of the Seconds Reg-  
ister is a '0' (Oscillator Running), DQ0 will toggle at  
512 Hz during a READ of the Seconds Register.  
Any deviation from 512 Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example, a reading of 512.01024  
Hz would indicate a +20 ppm oscillator frequency  
error, requiring a –10 (WR001010) to be loaded  
into the Calibration Byte for correction.  
Note: Setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
The FT Bit MUST be reset to '0' for normal clock  
operations to resume. The FT Bit is automatically  
Reset on power-down.  
For more information on calibration, see Applica-  
®
tion Note AN934, “TIMEKEEPER Calibration.”  
Century Bit  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or –2.034 ppm of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is in fact running at exactly 32,768  
Hz, each of the 31 increments in the Calibration  
Byte would represent +10.7 or –5.35 seconds per  
Bit D5 and D4 of Clock Register 7FFCh contain  
the CENTURY ENABLE Bit (CEB) and the CEN-  
TURY Bit (CB). Setting CEB to a '1' will cause CB  
to toggle, either from a '0' to '1' or from '1' to '0' at  
the turn of the century (depending upon its initial  
state). If CEB is set to a '0,' CB will not toggle.  
Note: The WRITE Bit must be set in order to write  
to the CENTURY Bit.  
12/25  
M48T35AY, M48T35AV  
Figure 11. Crystal Accuracy Across Temperature  
ppm  
20  
0
-20  
-40  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
-60  
-80  
T0 = 25 °C  
-100  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
°C  
AI02124  
Figure 12. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
13/25  
M48T35AY, M48T35AV  
V
Noise And Negative Going Transients  
Figure 13. Supply Voltage Protection  
CC  
I
transients, including those produced by output  
CC  
switching, can produce voltage fluctuations, re-  
sulting in spikes on the V bus. These transients  
CC  
can be reduced if capacitors are used to store en-  
ergy which stabilizes the V  
bus. The energy  
CC  
stored in the bypass capacitors will be released as  
low going spikes are generated or energy will be  
absorbed when overshoots occur. A bypass ca-  
pacitor value of 0.1µF (as shown in Figure 13) is  
recommended in order to provide the needed fil-  
tering.  
V
CC  
V
CC  
0.1µF  
DEVICE  
In addition to transients that are caused by normal  
SRAM operation, power cycling can generate neg-  
ative voltage spikes on V  
that drive it to values  
CC  
V
SS  
below V by as much as one volt. These negative  
SS  
spikes can cause data corruption in the SRAM  
while in battery backup mode. To protect from  
these voltage spikes, it is recommended to con-  
AI02169  
nect a schottky diode from V  
to V  
(cathode  
CC  
SS  
connected to V , anode to V ). Schottky diode  
CC  
SS  
1N5817 is recommended for through hole and  
MBRS120T3 is recommended for surface mount.  
14/25  
M48T35AY, M48T35AV  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
0 to 70  
Unit  
°C  
Grade 1  
Grade 6  
T
A
Ambient Operating Temperature  
–40 to 85  
–40 to 85  
°C  
T
Storage Temperature (V Off, Oscillator Off)  
°C  
STG  
CC  
(1,2,3)  
Lead Solder Temperature for 10 seconds  
Input or Output Voltages  
260  
°C  
T
SLD  
M48T35AY  
M48T35AV  
M48T35AY  
M48T35AV  
–0.3 to 7  
–0.3 to 4.6  
–0.3 to 7  
–0.3 to 4.6  
20  
V
V
V
IO  
V
V
Supply Voltage  
CC  
V
I
Output Current  
mA  
W
O
P
Power Dissipation  
1
D
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer  
than 30 seconds).  
2. For SO package, standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for  
between 90 to 150 seconds).  
3. For SO package, Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C  
for greater than 30 seconds).  
CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.  
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets.  
15/25  
M48T35AY, M48T35AV  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 7. Operating and AC Measurement Conditions  
Parameter  
M48T35AY  
4.5 to 5.5  
0 to 70  
–40 to 85  
100  
M48T35AV  
3.0 to 3.6  
0 to 70  
–40 to 85  
50  
Unit  
V
Supply Voltage (V  
)
CC  
Grade 1  
Grade 6  
°C  
Ambient Operating Temperature (T )  
A
Load Capacitance (C )  
pF  
ns  
V
L
Input Rise and Fall Times  
5  
5  
Input Pulse Voltages  
0 to 3  
0 to 3  
Input and Output Timing Ref. Voltages  
1.5  
1.5  
V
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 14. AC Measurement Load Circuit  
645Ω  
DEVICE  
UNDER  
TEST  
C
= 100pF  
(or 5pF)  
1.75V  
L
C
includes JIG capacitance  
L
AI02586  
Note: 50pF for M48T35AV.  
Table 8. Capacitance  
Symbol  
(1,2)  
Min  
Max  
10  
Unit  
Parameter  
C
Input Capacitance  
Output Capacitance  
pF  
pF  
IN  
(3)  
10  
C
OUT  
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
16/25  
M48T35AY, M48T35AV  
Table 9. DC Characteristics  
M48T35AY  
–70  
M48T35AV  
(1)  
Symbol  
Parameter  
–100  
Unit  
Test Condition  
Min  
Max  
Min  
Max  
I
0V V V  
Input Leakage Current  
Output Leakage Current  
Supply Current  
±1  
±1  
50  
±1  
µA  
µA  
LI  
IN  
CC  
(2)  
0V V  
V  
CC  
±1  
30  
I
OUT  
LO  
I
Outputs open  
mA  
CC  
Supply Current (Standby)  
TTL  
I
E = V  
3
2
mA  
mA  
CC1  
IH  
Supply Current (Standby)  
CMOS  
I
E = V – 0.2V  
3
2
CC2  
CC  
(3)  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.3  
2.2  
0.8  
–0.3  
2.2  
0.8  
V
V
V
V
V
IL  
V
V
+ 0.3  
V
+ 0.3  
IH  
CC  
CC  
V
V
I
= 2.1mA  
= –1mA  
OH  
0.4  
0.4  
OL  
OL  
I
2.4  
2.4  
OH  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. Outputs deselected.  
3. Negative spikes of –1V allowed for up to 10ns once per Cycle.  
17/25  
M48T35AY, M48T35AV  
Figure 15. Power Down/Up Mode AC Waveforms  
V
CC  
V
V
V
(max)  
(min)  
PFD  
PFD  
SO  
tF  
tR  
tFB  
tRB  
tPD  
tDR  
trec  
RECOGNIZED  
RECOGNIZED  
INPUTS  
DON'T CARE  
HIGH-Z  
OUTPUTS  
VALID  
VALID  
(PER CONTROL INPUT)  
(PER CONTROL INPUT)  
AI01168C  
Table 10. Power Down/Up AC Characteristics  
(1)  
Symbol  
Min  
0
Max  
Unit  
Parameter  
t
E or W at V before Power Down  
µs  
µs  
PD  
IH  
(2)  
V
V
(max) to V  
(min) V Fall Time  
PFD CC  
300  
t
F
PFD  
M48T35AY  
M48T35AV  
10  
150  
10  
1
µs  
µs  
µs  
µs  
(3)  
(min) to V  
(min) to V  
V
Fall Time  
t
FB  
PFD  
PFD  
SS CC  
t
R
V
V
V
(max) V Rise Time  
PFD CC  
t
to V  
(min) V Rise Time  
PFD CC  
RB  
(4)  
SS  
(max) to Inputs Recognized  
40  
200  
ms  
t
PFD  
rec  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. V  
(max) to V  
(min) fall time of less than t may result in deselection/write protection not occurring until 200µs after V pass-  
PFD F CC  
PFD  
es V  
(min).  
PFD  
3. V  
(min) to V fall time of less than t may cause corruption of RAM data.  
PFD  
SS FB  
4. t (min) = 20ms for industrial temperature Grade 6 device.  
rec  
Table 11. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
M48T35AY  
M48T35AV  
M48T35AY  
M48T35AV  
4.2  
2.7  
4.35  
2.9  
4.5  
3.0  
V
V
V
V
V
Power-fail Deselect Voltage  
PFD  
3.0  
V
Battery Back-up Switchover Voltage  
Expected Data Retention Time  
SO  
V
–100mV  
PFD  
(3)  
Grade 1  
Grade 6  
YEARS  
YEARS  
10  
(5)  
t
DR  
(4)  
10  
Note: 1. Valid for Ambient Operating Temperature: T = 0 to 70°C or –40 to 85°C; V = 4.5 to 5.5V or 3.0 to 3.6V (except where noted).  
A
CC  
2. All voltages referenced to V  
.
SS  
3. CAPHAT and M4T32-BR12SH1 SNAPHAT only, M4T28-BR12SH1 SNAPHAT top t = 7 years (typ).  
DR  
4. Using larger M4T32-BR12SH6 SNAPHAT top (recommended for Industrial Temperature Range - Grade 6 device).  
5. At 25°C, V = 0V.  
CC  
18/25  
M48T35AY, M48T35AV  
PACKAGE MECHANICAL INFORMATION  
Figure 16. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Outline  
A2  
A
L
A1  
e1  
C
B1  
B
eA  
e3  
D
N
1
E
PCDIP  
Note: Drawing is not to scale.  
Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT™, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.65  
0.76  
8.89  
0.53  
1.78  
0.31  
39.88  
18.34  
2.79  
36.32  
16.00  
3.81  
Typ  
Max  
A
A1  
A2  
B
8.89  
0.38  
8.38  
0.38  
1.14  
0.20  
39.37  
17.83  
2.29  
29.72  
15.24  
3.05  
28  
0.350  
0.015  
0.330  
0.015  
0.045  
0.008  
1.550  
0.702  
0.090  
1.170  
0.600  
0.120  
28  
0.380  
0.030  
0.350  
0.021  
0.070  
0.012  
1.570  
0.722  
0.110  
1.430  
0.630  
0.150  
B1  
C
D
E
e1  
e3  
eA  
L
N
19/25  
M48T35AY, M48T35AV  
Figure 17. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline  
A2  
A
C
eB  
B
e
CP  
D
N
E
H
A1  
α
L
1
SOH-A  
Note: Drawing is not to scale.  
Table 13. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Pack. Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
3.05  
0.36  
2.69  
0.51  
0.32  
18.49  
8.89  
Typ  
Max  
0.120  
0.014  
0.106  
0.020  
0.012  
0.728  
0.350  
A
A1  
A2  
B
0.05  
2.34  
0.36  
0.15  
17.71  
8.23  
0.002  
0.092  
0.014  
0.006  
0.697  
0.324  
C
D
E
e
1.27  
0.050  
eB  
H
3.20  
11.51  
0.41  
0°  
3.61  
12.70  
1.27  
8°  
0.126  
0.453  
0.016  
0°  
0.142  
0.500  
0.050  
8°  
L
α
N
28  
28  
CP  
0.10  
0.004  
20/25  
M48T35AY, M48T35AV  
Figure 18. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
9.78  
7.24  
6.99  
0.38  
0.56  
21.84  
14.99  
15.95  
3.61  
2.29  
Typ  
Max  
A
A1  
A2  
A3  
B
0.385  
0.285  
0.275  
0.015  
0.022  
0.860  
0.590  
0.628  
0.142  
0.090  
6.73  
6.48  
0.265  
0.255  
0.46  
21.21  
14.22  
15.55  
3.20  
0.018  
0.835  
0.560  
0.612  
0.126  
0.080  
D
E
eA  
eB  
L
2.03  
21/25  
M48T35AY, M48T35AV  
Figure 19. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline  
A2  
A1  
A
A3  
L
eA  
D
B
eB  
E
SHTK-A  
Note: Drawing is not to scale.  
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
10.54  
8.51  
Typ  
Max  
A
A1  
A2  
A3  
B
0.415  
0.335  
0.315  
0.015  
0.022  
0.860  
0.710  
0.628  
0.142  
0.090  
8.00  
7.24  
0.315  
0.285  
8.00  
0.38  
0.46  
21.21  
17.27  
15.55  
3.20  
0.56  
0.018  
0.835  
0.680  
0.612  
0.126  
0.080  
D
21.84  
18.03  
15.95  
3.61  
E
eA  
eB  
L
2.03  
2.29  
22/25  
M48T35AY, M48T35AV  
PART NUMBERING  
Table 16. Ordering Information Scheme  
Example:  
M48T  
35AY  
–70  
MH  
1
E
Device Type  
M48T  
Supply Voltage and Write Protect Voltage  
35AY = V = 4.5 to 5.5V; V  
= 4.2 to 4.5V  
= 2.7 to 3.0V  
CC  
PFD  
PFD  
35AV = V = 3.0 to 3.6V; V  
CC  
Speed  
–70 = 70ns (35AY)  
–10 = 100ns (35AV)  
Package  
PC = PCDIP28  
(1)  
MH = SOH28  
Temperature Range  
1 = 0 to 70°C  
(2)  
6 = –40 to 85°C  
Shipping Method  
For SOH28:  
blank = Tubes (Not for New Design - Use E)  
®
E = Lead-free Package (ECO PACK ), Tubes  
®
F = Lead-free Package (ECO PACK ), Tape & Reel  
TR = Tape & Reel (Not for New Design - Use F)  
For PCDIP28:  
blank = Tubes  
®
Note: 1. The SOIC package (SOH28) requires the SNAPHAT battery package which is ordered separately under the part number “M4TXX-  
BR12SH” in plastic tube or “M4TXX-BR12SHTR” in Tape & Reel form (see Table 17).  
2. Available in SOIC package only.  
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat-  
tery.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
Table 17. SNAPHAT Battery Table  
Part Number  
M4T28-BR12SH  
M4T32-BR12SH  
Description  
Lithium Battery (48mAh) SNAPHAT  
Lithium Battery (120mAh) SNAPHAT  
Package  
SH  
SH  
23/25  
M48T35AY, M48T35AV  
REVISION HISTORY  
Table 18. Document Revision History  
Date  
Rev. #  
1.0  
Revision Details  
November 1999  
21-Apr-00  
First Issue  
From Preliminary Data to Data Sheet  
change (Table 10)  
2.0  
t
29-May-00  
2.1  
FB  
Reformatted; temp./voltage info. added to tables (Table 8, 9, 3, 4, 10, 11); add Century  
Bit text  
20-Jul-01  
3.0  
20-May-02  
31-Mar-03  
01-Apr-04  
3.1  
4.0  
5.0  
Modify reflow time and temperature footnotes (Table 6)  
v2.2 template applied; data retention condition updated (Table 11)  
Reformatted; updated with Lead-free package information (Table 6, 16)  
24/25  
M48T35AY, M48T35AV  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
25/25  

相关型号:

M48T35AV-10PH6

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-10PH6E

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-10PH6F

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-10PH6TR

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-70MH1

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T35AV-70MH1TR

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T35AV-70MH6

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T35AV-70MH6TR

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T35AV-70PC1

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR

M48T35AV-70PC1E

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-70PC1F

5.0 or 3.3V, 256 Kbit (32 Kb x8) TIMEKEEPER㈢ SRAM
STMICROELECTR

M48T35AV-70PC1TR

256 Kbit 32Kb x8 TIMEKEEPER SRAM
STMICROELECTR