M36DR432B100ZA6T [STMICROELECTRONICS]

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product; 32兆位的2Mb X16 ,双行,页闪存和4兆位256K x16的SRAM ,多重内存产品
M36DR432B100ZA6T
型号: M36DR432B100ZA6T
厂家: ST    ST
描述:

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
32兆位的2Mb X16 ,双行,页闪存和4兆位256K x16的SRAM ,多重内存产品

闪存 内存集成电路 静态存储器
文件: 总46页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M36DR432A  
M36DR432B  
32 Mbit (2Mb x16, Dual Bank, Page) Flash Memory  
and 4 Mbit (256K x16) SRAM, Multiple Memory Product  
FEATURES SUMMARY  
SUPPLY VOLTAGE  
Figure 1. Packages  
– V  
– V  
= V  
=1.65V to 2.2V  
DDF  
PPF  
DDS  
= 12V for Fast Program (optional)  
ACCESS TIME: 100,120ns  
LOW POWER CONSUMPTION  
ELECTRONIC SIGNATURE  
FBGA  
– Manufacturer Code: 20h  
– Top Device Code, M36DR432A: 00A0h  
– Bottom Device Code, M36DR432B: 00A1h  
Stacked LFBGA66 (ZA)  
8 x 8 ball array  
FLASH MEMORY  
32 Mbit (2Mb x16) BOOT BLOCK  
– Parameter Blocks (Top or Bottom Location)  
PROGRAMMING TIME  
– 10µs typical  
– Double Word Programming Option  
ASYNCRONOUS PAGE MODE READ  
– Page width: 4 Word  
– Page Mode Access Time: 35ns  
DUAL BANK OPERATION  
– Read within one Bank while Program or  
Erase within the other  
– No Delay between Read and Write  
Operations  
BLOCK PROTECTION ON ALL BLOCKS  
– WPF for Block Locking  
COMMON FLASH INTERFACE  
– 64 bit Security Code  
SRAM  
4 Mbit (256K x 16 bit)  
LOW V  
DATA RETENTION: 1V  
DDS  
POWER DOWN FEATURES USING TWO  
CHIP ENABLE INPUTS  
November 2001  
1/46  
M36DR432A, M36DR432B  
DESCRIPTION  
The M36DR432 is a multichip memory device con-  
taining a 32 Mbit boot block Flash memory and a  
4 Mbit of SRAM. The device is offered in a Stacked  
LFBGA66 (0.8 mm pitch) package.  
The two components are distinguished by use with  
three chip enable inputs: EF for the Flash memory  
and, E1S and E2S for the SRAM. The two compo-  
nents are also separately power supplied and  
grounded.  
Table 1. Signal Names  
A0-A17  
Address Inputs  
A18-A20  
DQ0-DQ15  
Address Inputs for Flash Chip only  
Data Input/Output  
V
Flash Power Supply  
DDF  
Flash Optional Supply Voltage for Fast  
Program & Erase  
V
PPF  
Figure 2. Logic Diagram  
V
V
V
Flash Ground  
SSF  
DDS  
SSS  
SRAM Power Supply  
SRAM Ground  
V
V
V
DDF  
DDS  
PPF  
21  
16  
NC  
Not Connected Internally  
A0-A20  
DQ0-DQ15  
Flash control functions  
EF  
GF  
EF  
Chip Enable input  
GF  
Output Enable input  
Write Enable input  
Reset input  
WF  
RPF  
WPF  
WF  
RPF  
WPF  
M36DR432A  
M36DR432B  
Write Protect input  
E1S  
E2S  
GS  
SRAM control functions  
E1S, E2S  
GS  
Chip Enable input  
WS  
Output Enable input  
Write Enable input  
UBS  
LBS  
WS  
UBS  
Upper Byte Enable input  
Lower Byte Enable input  
V
V
LBS  
SSF  
SSS  
AI90203  
2/46  
M36DR432A, M36DR432B  
Figure 3. LFBGA Connections (Top view through package)  
#1  
#2  
1
2
3
4
5
6
7
8
#3  
#4  
A15  
A10  
A14  
A9  
A
B
C
D
E
F
NC  
NC  
A20  
A16  
WF  
A11  
A8  
A13  
A12  
WS  
V
NC  
NC  
NC  
SSF  
DQ15  
DQ13  
DQ12  
DQ14  
DQ4  
DQ7  
DQ5  
NC  
DQ6  
E2S  
DQ10  
DQ8  
A2  
RPF  
V
V
V
SSS  
DDS  
DDF  
WPF  
V
A19  
GS  
A7  
DQ11  
DQ2  
DQ0  
A1  
DQ3  
PPF  
LBS  
A18  
NC  
UBS  
DQ9  
A3  
DQ1  
E1S  
NC  
G
H
A17  
A5  
A6  
A0  
NC  
NC  
A4  
EF  
V
GF  
NC  
NC  
SSF  
AI90204  
3/46  
M36DR432A, M36DR432B  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
–40 to 85  
–40 to 125  
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
BIAS  
T
–55 to 150  
STG  
(2)  
(4)  
Input or Output Voltage  
Flash Chip Supply Voltage  
SRAM Chip Supply Voltage  
Program Voltage  
V
IO  
–0.2 to V  
+ 0.3  
DD  
V
–0.5 to 2.7  
V
DDF  
DDS  
V
–0.2 to 2.6  
V
V
–0.5 to 13.0  
V
PPF  
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum voltage may undershoot to –2V during transition and for less than 20ns.  
3. Depends on range.  
4. V = V  
= V  
.
DD  
DDS  
DDF  
Figure 4. Functional Block Diagram  
V
V
PPF  
DDF  
EF  
GF  
WF  
RPF  
WPF  
Flash Memory  
32 Mbit (x16)  
A18-A20  
A0-A17  
V
SSF  
V
DQ0-DQ15  
DDS  
E1S  
E2S  
GS  
SRAM  
4 Mbit (x16)  
WS  
UBS  
LBS  
V
SSS  
AI90205  
4/46  
M36DR432A, M36DR432B  
SIGNAL DESCRIPTIONS  
See Figure 2 and Table 1.  
en, if the memory is in Read, Erase Suspend Read  
or Standby, it will output new valid data in t  
PHQ7V1  
Address Inputs (A0-A17). Addresses A0 to A17  
are common inputs for the Flash chip and the  
SRAM chip. The address inputs for the Flash  
memory are latched during a write operation on  
the falling edge of the Flash Chip Enable (EF) or  
Write Enable (WF), while address inputs for the  
SRAM array are latched during a write operation  
on the falling edge of the SRAM Chip Enable lines  
(E1S or E2S) or Write Enable (WS).  
Address Inputs (A18-A20). Address A18 to A20  
are address inputs for the Flash chip. They are  
latched during a write operation on the falling edge  
of Flash Chip Enable (EF) or Write Enable (WF).  
after the rising edge of RPF. If the memory is in  
Erase or Program modes, the operation will be  
aborted and the reset recovery will take a maxi-  
mum of t  
Power Down (when enabled) in t  
. The memory will recover from  
PLQ7V  
after the  
PHQ7V2  
rising edge of RPF. See Tables 1, 26 and Figure  
11.  
Flash Write Protect (WPF). Write Protect is an  
input to protect or unprotect the two lockable pa-  
rameter blocks of the Flash memory. When WPF  
is at V , the lockable blocks are protected. Pro-  
IL  
gram or erase operations are not achievable.  
When WPF is at V , the lockable blocks are un-  
IH  
Data Input/Outputs (DQ0-DQ15). The input is  
data to be programmed in the Flash or SRAM  
memory array or a command to be written to the  
C.I. of the Flash chip. Both are latched on the ris-  
ing edge of Flash Chip Enable (EF) or Write En-  
able (WF) and, SRAM Chip Enable lines (E1S or  
E2S) or Write Enable (WS). The output is data  
from the Flash memory or SRAM array, the Elec-  
tronic Signature Manufacturer or Device codes or  
the Status register Data Polling bit DQ7, the Tog-  
gle Bits DQ6 and DQ2, the Error bit DQ5 or the  
Erase Timer bit DQ3. Outputs are valid when  
Flash Chip Enable (EF) and Output Enable (GF) or  
SRAM Chip Enable lines (E1S or E2S) and Output  
Enable (GS) are active. The output is high imped-  
ance when the both the Flash chip and the SRAM  
chip are deselected or the outputs are disabled  
protected and they can be programmed or erased  
(refer to Table 17).  
SRAM Chip Enable (E1S, E2S). The Chip En-  
able inputs for SRAM activate the memory control  
logic, input buffers and decoders. E1S at V or  
IH  
E2S at V deselects the memory and reduces the  
IL  
power consumption to the standby level. E1S and  
E2S can also be used to control writing to the  
SRAM memory array, while WS remains at V . It  
IL  
is not allowed to set EF at V , E1S at V and E2S  
IL  
IL  
at V at the same time.  
IH  
SRAM Write Enable (WS). The Write Enable in-  
put controls writing to the SRAM memory array.  
WS is active low.  
SRAM Output Enable (GS). The Output Enable  
gates the outputs through the data buffers during  
a read operation of the SRAM chip. GS is active  
low.  
and when Reset (RPF) is at a V .  
IL  
Flash Chip Enable (EF). The Chip Enable input  
for Flash activates the memory control logic, input  
SRAM Upper Byte Enable (UBS). Enable  
upper bytes for SRAM (DQ8-DQ15). UBS is active  
low.  
SRAM Lower Byte Enable (LBS). Enable the  
lower bytes for SRAM (DQ0-DQ7). LBS is active  
low.  
the  
buffers, decoders and sense amplifiers. EF at V  
IH  
deselects the memory and reduces the power con-  
sumption to the standby level and output do Hi-Z.  
EF can also be used to control writing to the com-  
mand register and to the Flash memory array,  
while WF remains at V . It is not allowed to set EF  
IL  
V
DDF  
Supply Voltage (1.65V to 2.2V). Flash memo-  
at V , E1S at V and E2S at V at the same time.  
IL  
IL  
IH  
ry power supply for all operations (Read, Program and  
Erase).  
Flash Write Enable (WF). The Write Enable in-  
put controls writing to the Command Register of  
the Flash chip and Address/Data latches. Data are  
latched on the rising edge of WF.  
Flash Output Enable (GF). The Output Enable  
gates the outputs through the data buffers during  
a read operation of the Flash chip. When GF and  
WF are High the outputs are High impedance.  
V
PPF  
Programming Voltage (11.4V to 12.6V).  
Used to provide high voltage for fast factory pro-  
gramming. High voltage on V pin is required to  
PPF  
use the Double Word Program instruction. It is  
also possible to perform word program or erase in-  
structions with V  
pin grounded.  
PPF  
V
Supply Voltage (1.65V to 2.2V). SRAM  
DDS  
Flash Reset/Power Down Input (RPF). The RPF  
input provides hardware reset of the memory  
(without affecting the Configuration Register sta-  
tus), and/or Power Down functions, depending on  
the Configuration Register status. Reset/Power  
Down of the memory is achieved by pulling RPF to  
power supply for all operations (Read, Program).  
V
reference for all voltage measurements respec-  
tively in the Flash and SRAM chips.  
and V Ground. V and V are the  
SSF  
SSS  
SSF  
SSS  
V
for at least t  
. When the reset pulse is giv-  
IL  
PLPH  
5/46  
M36DR432A, M36DR432B  
Table 3. Main Operation Modes  
Operation  
(1)  
V
EF  
GF WF RPF WPF  
E1S E2S GS WS  
SRAM must be disabled  
DQ15-DQ0  
PPF  
UBS, LBS  
Mode  
Data  
Output  
V
V
IL  
V
V
Read  
X
Don't care  
or  
IL  
IH  
IH  
IH  
V
CCF  
V
V
IH  
V
IL  
V
V
IH  
Write  
SRAM must be disabled  
SRAM must be disabled  
Data Input  
X
IL  
V
PPFH  
Block  
Locking  
V
V
V
V
IL  
X
X
Don't care  
IL  
IH  
V
IH  
Standby  
Reset  
X
X
X
X
X
Don't care  
Don't care  
Any SRAM mode is allowable  
Any SRAM mode is allowable  
Hi-Z  
Hi-Z  
IH  
V
X
X
X
IL  
Output  
Disable  
V
V
IH  
V
IH  
V
Don't care  
Any SRAM mode is allowable  
Hi-Z  
IL  
IH  
Data out  
Word Read  
V
V
V
V
V
Read  
Write  
Flash must be disabled  
Flash must be disabled  
IL  
IH  
IH  
IL  
IH  
IL  
IL  
Data in  
Word Write  
V
V
V
V
V
IL  
V
IL  
IH  
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
IH  
Standby/  
Power  
Down  
V
Any Flash mode is allowable  
Any Flash mode is allowable  
X
X
X
X
X
X
X
X
X
X
X
X
IL  
V
X
X
IH  
V
X
X
X
IH  
Data  
Retention  
V
X
X
IL  
V
X
IH  
Output  
Disable  
V
IL  
V
IH  
V
V
IH  
Any Flash mode is allowable  
Note: X = V or V , V = 12V ± 5%.  
PPFH  
X
Hi-Z  
IH  
IL  
IH  
1. If UBS and LBS are tied together the bus is at 16 bit. For an 8 bit bus configuration use UBS and LBS separately.  
6/46  
M36DR432A, M36DR432B  
FLASH MEMORY COMPONENT  
Organization  
The Flash Chip is organized as 2Mb x16 bits. A0-  
A20 are the address lines, DQ0-DQ15 are the  
Data Input/Output. Memory control is provided by  
Chip Enable EF, Output Enable GF and Write En-  
able WF inputs.  
Reset RPF is used to reset all the memory circuitry  
and to set the chip in power down mode if this  
function is enabled by a proper setting of the Con-  
figuration Register. Erase and Program operations  
are controlled by an internal Program/Erase Con-  
troller (P/E.C.). Status Register data output on  
DQ7 provides a Data Polling signal, DQ6 and DQ2  
provide Toggle signals and DQ5 provides error bit  
to indicate the state of the P/E.C operations.  
and is addressed by A0-A1 address inputs. Read  
operations of the Electronic Signature, the Status  
Register, the CFI, the Block Protection Status, the  
Configuration Register status and the Security  
Code are performed as single asynchronous read  
cycles (Random Read). Both Chip Enable EF and  
Output Enable GF must be at V in order to read  
IL  
the output of the memory.  
Write. Write operations are used to give Instruc-  
tion Commands to the memory or to latch Input  
Data to be programmed. A write operation is initi-  
ated when Chip Enable EF and Write Enable WF  
are at V with Output Enable GF at V . Address-  
IL  
IH  
es are latched on the falling edge of WF or EF  
whichever occurs last. Commands and Input Data  
are latched on the rising edge of WF or EF which-  
ever occurs first. Noise pulses of less than 5ns typ-  
ical on EF, WF and GF signals do not start a write  
cycle.  
Dual Bank Operations. The Dual Bank allows to  
read data from one bank of memory while a pro-  
gram or erase operation is in progress in the other  
bank of the memory. Read and Write cycles can  
be initiated for simultaneous operations in different  
banks without any delay. Status Register during  
Program or Erase must be monitored using an ad-  
dress within the bank being modified.  
Memory Blocks  
The device features asymmetrically blocked archi-  
tecture. The Flash Chip has an array of 71 blocks  
and is divided into two banks A and B, providing  
Dual Bank operations. While programming or  
erasing in Bank A, read operations are possible  
into Bank B or vice versa. The memory also fea-  
tures an erase suspend allowing to read or pro-  
gram in another block within the same bank. Once  
suspended the erase can be resumed. The Bank  
Size and Sectorization are summarized in Table 4.  
Parameter Blocks are located at the top of the  
memory address space for the Top version, and at  
the bottom for the Bottom version. The memory  
maps are shown in Tables 5, 6, 7 and 8.  
The Program and Erase operations are managed  
automatically by the P/E.C. Block protection  
against Program or Erase provides additional data  
security. All blocks are protected at Power Up. In-  
structions are provided to protect or unprotect any  
block in the application. A second register locks  
the protection status while WPF is low (see Block  
Locking description). The Reset command does  
not affect the configuration of unprotected blocks  
and the Configuration Register status.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable GF is at V with  
IH  
Write Enable WF at V .  
IH  
Standby. The memory is in standby when Chip  
Enable EF is at V and the P/E.C. is idle. The  
IH  
power consumption is reduced to the standby level  
and the outputs are high impedance, independent  
of the Output Enable GF or Write Enable WF in-  
puts.  
Automatic Standby. When in Read mode, after  
150ns of bus inactivity and when CMOS levels are  
driving the addresses, the chip automatically en-  
ters a pseudo-standby mode where consumption  
is reduced to the CMOS standby value, while out-  
puts still drive the bus.  
Device Operations  
The following operations can be performed using  
the appropriate bus cycles: Read Array (Random,  
and Page Modes), Write command, Output Dis-  
able, Standby, Reset/Power Down and Block  
Locking. See Table 9.  
Read. Read operations are used to output the  
contents of the Memory Array, the Electronic Sig-  
nature, the Status Register, the CFI, the Block  
Protection Status or the Configuration Register  
status. Read operation of the memory array is per-  
formed in asynchronous page mode, that provides  
fast access time. Data is internally read and stored  
in a page buffer. The page has a size of 4 words  
Power Down. The memory is in Power Down  
when the Configuration Register is set for Power  
Down and RPF is at V . The power consumption  
IL  
is reduced to the Power Down level, and Outputs  
are in high impedance, independent of the Chip  
Enable EF, Output Enable GF or Write Enable WF  
inputs.  
Block Locking. Any combination of blocks can  
be temporarily protected against Program or  
Erase by setting the lock register and pulling WPF  
to V (see Block Lock instruction).  
IL  
7/46  
M36DR432A, M36DR432B  
Table 4. Bank Size and Sectorization  
Bank Size  
Parameter Blocks  
Main Blocks  
Bank A  
Bank B  
4 Mbit  
8 blocks of 4 KWord  
-
7 blocks of 32 KWord  
56 blocks of 32 KWord  
28 Mbit  
Table 5. Bank A, Top Boot Block Addresses  
M36DR432A  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
Size  
(KWord)  
#
Address Range  
0
1
4
4
1FF000h-1FFFFFh  
1FE000h-1FEFFFh  
1FD000h-1FDFFFh  
1FC000h-1FCFFFh  
1FB000h-1FBFFFh  
1FA000h-1FAFFFh  
1F9000h-1F9FFFh  
1F8000h-1F8FFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
2
4
3
4
4
4
5
4
6
4
7
4
8
32  
32  
32  
32  
32  
32  
32  
9
10  
11  
12  
13  
14  
Table 6. Bank B, Top Boot Block Addresses  
M36DR432A  
Size  
(KWord)  
#
Address Range  
0
1
32  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
32  
2
32  
3
32  
4
32  
5
32  
6
32  
7
32  
8
32  
9
32  
10  
11  
12  
13  
14  
15  
16  
32  
32  
32  
32  
32  
32  
32  
8/46  
M36DR432A, M36DR432B  
Table 7. Bank B, Bottom Boot Block Addresses  
M36DR432B  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
Size  
#
Address Range  
(KWord)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
8
7
6
5
4
3
2
1
0
Table 8. Bank A, Bottom Boot Block Addresses  
M36DR432B  
Size  
(KWord)  
#
Address Range  
14  
13  
12  
11  
10  
9
32  
32  
32  
32  
32  
32  
32  
4
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
007000h-007FFFh  
006000h-006FFFh  
005000h-005FFFh  
004000h-004FFFh  
003000h-003FFFh  
002000h-002FFFh  
001000h-001FFFh  
000000h-000FFFh  
8
7
6
4
5
4
4
4
3
4
2
4
1
4
0
4
9/46  
M36DR432A, M36DR432B  
Table 9. User Bus Operations  
(1)  
Operation  
EF  
GF  
WF  
RPF  
WPF  
DQ0-DQ15  
Data Input  
Hi-Z  
V
V
IH  
V
IL  
V
IH  
V
IH  
Write  
IL  
V
V
IH  
V
IH  
V
IH  
V
IH  
Output Disable  
Standby  
IL  
V
V
IH  
V
IH  
X
X
X
X
X
X
Hi-Z  
IH  
V
V
IH  
Reset / Power Down  
X
Hi-Z  
IL  
V
V
IH  
V
IL  
Block Locking  
X
IL  
Note: 1. X = Don't care.  
Table 10. Read Electronic Signature (AS and Read CFI instructions)  
Other  
Addresses  
Code  
Device  
EF  
GF  
WF  
A0  
A1 A2-A7  
DQ0-DQ7 DQ8-DQ15  
V
V
V
V
V
V
V
Manufacturer Code  
0
0
0
Don't Care  
Don't Care  
Don't Care  
20h  
A0h  
A1h  
00h  
00h  
00h  
IL  
IL  
IH  
IL  
IL  
IL  
IL  
V
V
IL  
V
V
IH  
M36DR432A  
M36DR432B  
IL  
IH  
Device Code  
V
V
IL  
V
V
IH  
IL  
IH  
Table 11. Read Block Protection (AS and Read CFI instructions)  
Other  
Block Status  
EF GF WF A0 A1 A2-A7  
A12-A20  
DQ0 DQ1 DQ2-DQ15  
Addresses  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IL  
V
IH  
V
IH  
V
IH  
V
V
V
V
IH  
V
IH  
V
IH  
Protected Block  
Unprotected Block  
Locked Block  
0
0
0
Don't Care Block Address  
Don't Care Block Address  
Don't Care Block Address  
1
0
X
0
0
1
0000h  
0000h  
0000h  
IL  
IL  
IL  
Table 12. Read Configuration Register (AS and Read CFI instructions)  
DQ0-DQ9  
DQ11-DQ15  
RPF Function  
EF  
GF  
WF  
A0  
A1 A2-A7 Other Addresses  
DQ10  
V
V
V
V
V
V
Reset  
Reset/Power Down  
0
0
Don't Care  
Don't Care  
0
1
Don't Care  
Don't Care  
IL  
IL  
IH  
IH  
IH  
V
V
V
IH  
V
IH  
IL  
IL  
IH  
10/46  
M36DR432A, M36DR432B  
INSTRUCTIONS AND COMMANDS  
Seventeen instructions are defined (see Table  
15), and the internal P/E.C. automatically handles  
all timing and verification of the Program and  
Erase operations. The Status Register Data Poll-  
ing, Toggle, Error bits can be read at any time, dur-  
ing programming or erase, to monitor the progress  
of the operation.  
Table 13. Commands  
Hex Code  
00h  
Command  
Bypass Reset  
10h  
Bank Erase Confirm  
Unlock Bypass  
20h  
Instructions, made up of one or more commands  
written in cycles, can be given to the Program/  
Erase Controller through a Command Interface  
(C.I.). The C.I. latches commands written to the  
memory. Commands are made of address and  
data sequences. Two Coded Cycles unlock the  
Command Interface. They are followed by an input  
command or a confirmation command. The Coded  
Sequence consists of writing the data AAh at the  
address 555h during the first cycle and the data  
55h at the address 2AAh during the second cycle.  
30h  
Block Erase Resume/Confirm  
Double Word Program  
40h  
Block Protect, or  
Block Unprotect, or  
Block Lock, or  
Write Configuration Register  
60h  
80h  
90h  
Set-up Erase  
Read Electronic Signature, or  
Block Protection Status, or  
Configuration Register Status  
Instructions are composed of up to six cycles. The  
first two cycles input a Coded Sequence to the  
Command Interface which is common to all in-  
structions (see Table 15). The third cycle inputs  
the instruction set-up command. Subsequent cy-  
cles output the addressed data, Electronic Signa-  
ture, Block Protection, Configuration Register  
Status or CFI Query for Read operations. In order  
to give additional data protection, the instructions  
for Block Erase and Bank Erase require further  
command inputs. For a Program instruction, the  
fourth command cycle inputs the address and data  
to be programmed. For a Double Word Program-  
ming instruction, the fourth and fifth command cy-  
cles input the address and data to be  
programmed. For a Block Erase and Bank Erase  
instructions, the fourth and fifth cycles input a fur-  
ther Coded Sequence before the Erase confirm  
command on the sixth cycle. Any combination of  
blocks of the same memory bank can be erased.  
Erasure of a memory block may be suspended, in  
order to read data from another block or to pro-  
gram data in another block, and then resumed.  
When power is first applied the command interface  
is reset to Read Array.  
98h  
A0h  
B0h  
F0h  
CFI Query  
Program  
Erase Suspend  
Read Array/Reset  
Read/Reset (RD) Instruction. The Read/Reset  
instruction consists of one write cycle giving the  
command F0h. It can be optionally preceded by  
the two Coded Cycles. Subsequent read opera-  
tions will read the memory array addressed and  
output the data read.  
CFI Query (RCFI) Instruction. Common Flash  
Interface Query mode is entered writing 98h at ad-  
dress 55h. The CFI data structure gives informa-  
tion on the device, such as the sectorization, the  
command set and some electrical specifications.  
Table 18, 19, 20 and 21 show the addresses used  
to retrieve each data. The CFI data structure con-  
tains also a security area; in this section, a 64 bit  
unique security number is written, starting at ad-  
dress 80h. This area can be accessed only in read  
mode by the final user and there are no ways of  
changing the code after it has been written by ST.  
Write a read instruction (RD) to return to Read  
mode.  
Command sequencing must be followed exactly.  
Any invalid combination of commands will reset  
the device to Read Array. The increased number  
of cycles has been chosen to ensure maximum  
data security.  
Auto Select (AS) Instruction. This instruction uses  
two Coded Cycles followed by one write cycle giv-  
ing the command 90h to address 555h for com-  
mand set-up. A subsequent read will output the  
Manufacturer or the Device Code (Electronic Sig-  
nature), the Block Protection status or the Config-  
uration Register status depending on the levels of  
A0 and A1 (see Table 10, 11 and 12). A7-A2 must  
be at V , while other address input are ignored.  
IL  
11/46  
M36DR432A, M36DR432B  
The bank address is don’t care for this instruction.  
The Electronic Signature can be read from the  
memory allowing programming equipment or ap-  
plications to automatically match their interface to  
the characteristics of Flash Chip. The Manufactur-  
er Code is output when the address lines A0 and  
es the Address on the falling edge of WF or EF and  
the Data to be written on the rising edge and starts  
the P/E.C. Read operations within the same bank  
output the Status Register bits after the program-  
ming has started. Memory programming is made  
only by writing '0' in place of '1'. Status bits DQ6  
and DQ7 determine if programming is on-going  
and DQ5 allows verification of any possible error.  
A1 are at V , the Device Code is output when A0  
IL  
is at V with A1 at V .  
IH  
IL  
The codes are output on DQ0-DQ7 with DQ8-  
DQ15 at 00h. The AS instruction also allows the  
access to the Block Protection Status. After giving  
Program (PG) Instruction. This instruction uses  
four write cycles. The Program command A0h is  
written to address 555h on the third cycle after two  
Coded Cycles. A fourth write operation latches the  
Address and the Data to be written and starts the  
P/E.C. Read operations within the same bank out-  
put the Status Register bits after the programming  
has started. Memory programming is made only  
by writing '0' in place of '1'. Status bits DQ6 and  
DQ7 determine if programming is on-going and  
DQ5 allows verification of any possible error. Pro-  
gramming at an address not in blocks being  
erased is also possible during erase suspend.  
the AS instruction, A0 is set to V with A1 at V ,  
IL  
IH  
while A12-A20 define the address of the block to  
be verified. A read in these conditions will output a  
01h if the block is protected and a 00h if the block  
is not protected.  
The AS Instruction finally allows the access to the  
Configuration Register status if both A0 and A1  
are set to V . If DQ10 is '0' only the Reset function  
IH  
is active as RPF is set to V (default at power-up).  
IL  
If DQ10 is '1' both the Reset and the Power Down  
functions will be achieved by pulling RPF to V .  
Double Word Program (DPG) Instruction. This  
feature is offered to improve the programming  
throughput, writing a page of two adjacent words  
IL  
The other bits of the Configuration Register are re-  
served and must be ignored. A reset command  
puts the device in read array mode.  
in parallel. High voltage (11.4V to 12.6V) on V  
PP  
pin is required. This instruction uses five write cy-  
cles. The double word program command 40h is  
written to address 555h on the third cycle after two  
Coded Cycles. A fourth write cycle latches the ad-  
dress and data to be written to the first location. A  
fifth write cycle latches the new data to be written  
to the second location and starts the P/E.C.. Note  
that the two locations must have the same address  
except for the address bit A0. The Double Word  
Program can be executed in Bypass mode (DPG-  
BY) to skip the two coded cycles at the beginning  
of each command.  
Block Protect (BP), Block Unprotect (BU),  
Block Lock (BL) Instructions. All blocks are  
protected at power-up. Each block of the array has  
two levels of protection against program or erase  
operation. The first level is set by the Block Protect  
instruction; a protected block cannot be pro-  
grammed or erased until a Block Unprotect in-  
struction is given for that block. A second level of  
protection is set by the Block Lock instruction, and  
requires the use of the WPF pin, according to the  
following scheme:  
Write Configuration Register (CR) Instruc-  
tion. This instruction uses two Coded Cycles fol-  
lowed by one write cycle giving the command 60h  
to address 555h. A further write cycle giving the  
command 03h writes the contents of address bits  
A0-A15 to the 16 bits configuration register. Bits  
written by inputs A0-A9 and A11-A15 are reserved  
for future use. Address input A10 defines the sta-  
tus of the Reset/Power Down functions. It must be  
set to V to enable only the Reset function and to  
IL  
V
to enable also the Power Down function. At  
IH  
Power Up all the Configuration Register bits are  
reset to '0'.  
Enter Bypass Mode (EBY) Instruction. This in-  
struction uses the two Coded cycles followed by  
one write cycle giving the command 20h to ad-  
dress 555h for mode set-up. Once in Bypass  
mode, the device will accept the Exit Bypass  
(XBY) and Program or Double Word Program in  
Bypass mode (PGBY, DPGBY) commands. The  
Bypass mode allows to reduce the overall pro-  
gramming time when large memory arrays need to  
be programmed.  
– when WPF is at V , the Lock status is overrid-  
IH  
Exit Bypass Mode (XBY) Instruction. This in-  
struction uses two write cycles. The first inputs to  
the memory the command 90h and the second in-  
puts the Exit Bypass mode confirm (00h). After the  
XBY instruction, the device resets to Read Memo-  
ry Array mode.  
Program in Bypass Mode (PGBY) Instruc-  
tion. This instruction uses two write cycles. The  
Program command A0h is written to any Address  
on the first cycle and the second write cycle latch-  
den and all blocks can be protected or unpro-  
tected;  
– when WPF is at V , Lock status is enabled; the  
IL  
locked blocks are protected, regardless of their  
previous protect state, and protection status  
cannot be changed. Blocks that are not locked  
can still change their protection status, and pro-  
gram or erase accordingly;  
12/46  
M36DR432A, M36DR432B  
– the lock status is cleared for all blocks at power  
up; once a block has been locked state can be  
cleared only with a reset command. The protec-  
tion and lock status can be monitored for each  
block using the Autoselect (AS) instruction. Pro-  
tected blocks will output a ‘1’ on DQ0 and locked  
blocks will output a ‘1’ on DQ1.  
case of erase failure, a Read/Reset RD instruction  
is necessary in order to reset the P/E.C.  
Bank Erase (BKE) Instruction. This instruction  
uses six write cycles and is used to erase all the  
blocks belonging to the selected bank. The Erase  
Set-up command 80h is written to address 555h  
on the third cycle after the two Coded cycles. The  
Bank Erase Confirm command 10h is similarly  
written on the sixth cycle after another two Coded  
cycles at an address within the selected bank. If  
the second command given is not an erase con-  
firm or if the Coded cycles are wrong, the instruc-  
tion aborts and the device is reset to Read Array.  
It is not necessary to program the array with 00h  
first as the P/E.C. will automatically do this before  
erasing it to FFh. Read operations within the same  
bank after the sixth rising edge of WF or EF output  
the Status Register bits. During the execution of  
the erase by the P/E.C., Data Polling bit DQ7 re-  
turns '0', then '1' on completion. The Toggle bit  
DQ6 toggles during erase operation and stops  
when erase is completed. After completion the  
Status Register bit DQ5 returns '1' if there has  
been an Erase Failure.  
Refer to Table 14 for a list of the protection states.  
Block Erase (BE) Instruction. This instruction  
uses a minimum of six write cycles. The Erase  
Set-up command 80h is written to address 555h  
on third cycle after the two Coded cycles. The  
Block Erase Confirm command 30h is similarly  
written on the sixth cycle after another two Coded  
cycles and an address within the block to be  
erased is given and latched into the memory.  
Additional block Erase Confirm commands and  
block addresses can be written subsequently to  
erase other blocks in parallel, without further Cod-  
ed cycles. All blocks must belong to the same  
bank of memory; if a new block belonging to the  
other bank is given, the operation is aborted. The  
erase will start after an erase timeout period of  
100µs. Thus, additional Erase Confirm commands  
for other blocks must be given within this delay.  
The input of a new Erase Confirm command will  
restart the timeout period. The status of the inter-  
nal timer can be monitored through the level of  
DQ3, if DQ3 is '0' the Block Erase Command has  
been given and the timeout is running, if DQ3 is '1',  
the timeout has expired and the P/E.C. is erasing  
the Block(s). If the second command given is not  
an erase confirm or if the Coded cycles are wrong,  
the instruction aborts, and the device is reset to  
Read Array. It is not necessary to program the  
block with 00h as the P/E.C. will do this automati-  
cally before erasing to FFh. Read operations with-  
in the same bank, after the sixth rising edge of WF  
or EF, output the status register bits.  
Erase Suspend (ES) Instruction. In a dual bank  
memory the Erase Suspend instruction is used to  
read data within the bank where erase is in  
progress. It is also possible to program data in  
blocks not being erased.  
The Erase Suspend instruction consists of writing  
the command B0h without any specific address.  
No Coded Cycles are required. Erase suspend is  
accepted only during the Block Erase instruction  
execution. The Toggle bit DQ6 stops toggling  
when the P/E.C. is suspended within 15µs after  
the Erase Suspend (ES) command has been writ-  
ten. The device will then automatically be set to  
Read Memory Array mode. When erase is sus-  
pended, a Read from blocks being erased will out-  
put DQ2 toggling and DQ6 at '1'. A Read from a  
block not being erased returns valid data. During  
suspension the memory will respond only to the  
Erase Resume ER and the Program PG instruc-  
tions. A Program operation can be initiated during  
erase suspend in one of the blocks not being  
erased. It will result in DQ6 toggling when the data  
is being programmed.  
During the execution of the erase by the P/E.C.,  
the memory accepts only the Erase Suspend ES  
instruction; the Read/Reset RD instruction is ac-  
cepted during the 100µs time-out period. Data  
Polling bit DQ7 returns '0' while the erasure is in  
progress and '1' when it has completed. The Tog-  
gle bit DQ6 toggles during the erase operation,  
and stops when erase is completed.  
Erase Resume (ER) Instruction. If an Erase  
Suspend instruction was previously executed, the  
erase operation may be resumed by giving the  
command 30h, at an address within the bank be-  
ing erased and without any Coded Cycle.  
After completion the Status Register bit DQ5 re-  
turns '1' if there has been an erase failure. In such  
a situation, the Toggle bit DQ2 can be used to de-  
termine which block is not correctly erased. In the  
13/46  
M36DR432A, M36DR432B  
(1)  
Table 14. Protection States  
(3)  
(2)  
Next State After Event  
Program/Erase  
Allowed  
Current State  
(WP, DQ1, DQ0)  
Protect  
101  
Unprotect  
100  
Lock  
111  
WP transition  
100  
101  
110  
111  
000  
001  
yes  
no  
000  
001  
011  
011  
100  
101  
101  
100  
111  
111  
111  
011  
011  
yes  
no  
111  
110  
111  
110  
yes  
no  
001  
000  
001  
000  
(4)  
011  
no  
011  
011  
011  
111 or 110  
Note: 1. All blocks are protected at power-up, so the default configuration is 001 or 101 according to WPF status.  
2. Current state and Next state gives the protection status of a block. The protection status is defined by the write protect pin and by  
DQ1 (= 1 for a locked block) and DQ0 (= 1 for a protected block) as read in the Autoselect instruction with A1 = V and A0 = V  
.
IL  
IH  
3. Next state is the protection status of a block after a Protect or Unprotect or Lock command has been issued or after WPF has  
changed its logic value.  
4. A WPF transition to V on a locked block will restore the previous DQ0 value, giving a 111 or 110.  
IH  
(1,2)  
Table 15. Instructions  
Mne.  
Instr.  
Cyc.  
1st Cyc. 2nd Cyc. 3rd Cyc. 4th Cyc. 5th Cyc. 6th Cyc.  
(3)  
X
Addr.  
Data  
1+  
Read Memory Array until a new write cycle is initiated.  
F0h  
Read/Reset  
Memory Array  
(4)  
RD  
Addr.  
Data  
555h  
AAh  
55h  
2AAh  
55h  
555h  
F0h  
Read Memory Array until a new  
write cycle is initiated.  
3+  
1+  
Addr.  
Data  
RCFI CFI Query  
Read CFI data until a new write cycle is initiated.  
98h  
Addr.  
555h  
2AAh  
55h  
555h  
90h  
Read electronic Signature or  
Block Protection or Configuration  
Register Status until a new cycle  
is initiated.  
(4)  
Auto Select  
3+  
4
AS  
Data  
AAh  
Configura-  
tion Data  
Addr.  
Data  
555h  
AAh  
2AAh  
55h  
555h  
60h  
Configuration  
Register Write  
CR  
03h  
Program  
Address  
Addr.  
555h  
2AAh  
555h  
Read Data Polling or  
Toggle Bit until  
Program completes.  
PG  
Program  
4
Program  
Data  
Data  
Addr.  
Data  
AAh  
555h  
AAh  
55h  
2AAh  
55h  
A0h  
555h  
40h  
Program Program  
Address 1 Address 2  
Double Word  
Program  
DPG  
EBY  
5
3
Note 6, 7  
Program Program  
Data 1  
Data 2  
Addr.  
Data  
555h  
AAh  
2AAh  
55h  
555h  
20h  
Enter Bypass  
Mode  
14/46  
M36DR432A, M36DR432B  
Mne.  
Instr.  
Cyc.  
1st Cyc. 2nd Cyc. 3rd Cyc. 4th Cyc. 5th Cyc. 6th Cyc.  
Addr.  
Data  
X
X
Exit Bypass  
Mode  
XBY  
2
90h  
00h  
Program  
Address  
Addr.  
Data  
Addr.  
Data  
X
A0h  
X
Program in  
Bypass Mode  
Read Data Polling or Toggle Bit until Program  
completes.  
PGBY  
2
3
Program  
Data  
Program Program  
Address 1 Address 2  
Double Word  
DPGBY Program in  
Note 6, 7  
Program Program  
Bypass Mode  
40h  
Data 1  
2AAh  
55h  
Data 2  
555h  
60h  
Block  
Address  
Addr.  
Data  
Addr.  
Data  
Addr.  
Data  
Addr.  
Data  
Addr.  
Data  
555h  
AAh  
BP  
BU  
BL  
BE  
Block Protect  
Block Unprotect  
Block Lock  
4
1
01h  
Block  
Address  
555h  
AAh  
2AAh  
55h  
555h  
60h  
D0h  
Block  
Address  
555h  
AAh  
2AAh  
55h  
555h  
60h  
4
2Fh  
555h  
AAh  
555h  
AAh  
Block  
Address  
555h  
AAh  
2AAh  
55h  
555h  
80h  
2AAh  
55h  
Block Erase  
6+  
30h  
Bank  
Address  
555h  
2AAh  
55h  
555h  
80h  
2AAh  
55h  
BKE Bank Erase  
6
1
1
AAh  
X
10h  
(3)  
Addr.  
Data  
Read until Toggle stops, then read all the data needed  
from any Blocks not being erased then Resume Erase.  
ES  
ER  
Erase Suspend  
Erase Resume  
B0h  
Bank  
Address  
Addr.  
Read Data Polling or Toggle Bits until Erase completes or  
Erase is suspended another time  
Data  
30h  
Note: 1. Commands not interpreted in this table will default to read array mode.  
2. For Coded cycles address inputs A11-A20 are don't care.  
3. X = Don't Care.  
4. The first cycles of the RD or AS instructions are followed by read operations. Any number of read cycles can occur after the com-  
mand cycles.  
5. During Erase Suspend, Read and Data Program functions are allowed in blocks not being erased.  
6. Program Address 1 and Program Address 2 must be consecutive addresses differing only for address bit A0.  
7. High voltage on V  
(11.4V to 12.6V) is required for the proper execution of the Double Word Program instruction.  
PPF  
15/46  
M36DR432A, M36DR432B  
STATUS REGISTER BITS  
P/E.C. status is indicated during execution by Data  
Polling on DQ7, detection of Toggle on DQ6 and  
DQ2, or Error on DQ5 bits. Any read attempt within  
the Bank being modified and during Program or  
Erase command execution will automatically out-  
put these five Status Register bits. The P/E.C. au-  
tomatically sets bits DQ2, DQ5, DQ6 and DQ7.  
Other bits (DQ0, DQ1 and DQ4) are reserved for  
future use and should be masked (see Tables 17  
and 16). Read attempts within the bank not being  
modified will output array data.  
Data Polling Bit (DQ7). When Programming op-  
erations are in progress, this bit outputs the com-  
plement of the bit being programmed on DQ7. In  
case of a double word program operation, the  
complement is done on DQ7 of the last word writ-  
ten to the command interface, i.e. the data written  
in the fifth cycle. During Erase operation, it outputs  
a '0'. After completion of the operation, DQ7 will  
output the bit last programmed or a '1' after eras-  
ing. Data Polling is valid and only effective during  
P/E.C. operation, that is after the fourth WF pulse  
for programming or after the sixth WF pulse for  
erase. It must be performed at the address being  
programmed or at an address within the block be-  
ing erased. See Figure 25 for the Data Polling  
flowchart and Figure 12 for the Data Polling wave-  
forms. DQ7 will also flag the Erase Suspend mode  
by switching from '0' to '1' at the start of the Erase  
Suspend. In order to monitor DQ7 in the Erase  
Suspend mode an address within a block being  
erased must be provided. For a Read Operation in  
Suspend mode, DQ7 will output '1' if the read is at-  
tempted on a block being erased and the data val-  
ue on other blocks. During Program operation in  
Erase Suspend Mode, DQ7 will have the same be-  
havior as in the normal program execution outside  
of the suspend mode.  
pend block. When erase is suspended DQ6 will  
toggle during programming operations in a block  
different from the block in Erase Suspend. Either  
EF or GF toggling will cause DQ6 to toggle. See  
Figure 25 for Toggle Bit flowchart and Figure 13  
for Toggle Bit waveforms.  
Toggle Bit (DQ2). This toggle bit, together with  
DQ6, can be used to determine the device status  
during the Erase operations. During Erase Sus-  
pend a read from a block being erased will cause  
DQ2 to toggle. A read from a block not being  
erased will output data. DQ2 will be set to '1' during  
program operation and to ‘0’ in Erase operation.  
After erase completion and if the error bit DQ5 is  
set to '1', DQ2 will toggle if the faulty block is ad-  
dressed.  
Error Bit (DQ5). This bit is set to '1' by the P/E.C.  
when there is a failure of programming or block  
erase, that results in invalid data in the memory  
block. In case of an error in block erase or pro-  
gram, the block in which the error occurred or to  
which the programmed data belongs, must be dis-  
carded. Other Blocks may still be used. The error  
bit resets after a Read/Reset (RD) instruction. In  
case of success of Program or Erase, the error bit  
will be set to '0'.  
Erase Timer Bit (DQ3). This bit is set to ‘0’ by the  
P/E.C. when the last block Erase command has  
been entered to the Command Interface and it is  
awaiting the Erase start. When the erase timeout  
period is finished, DQ3 returns to ‘1’, in the range  
of 80µs to 120µs.  
Table 16. Polling and Toggle Bits  
Mode  
DQ7  
DQ7  
0
DQ6  
DQ2  
1
Program  
Erase  
Toggle  
Toggle  
Toggle Bit (DQ6). When Programming or Eras-  
ing operations are in progress, successive at-  
tempts to read DQ6 will output complementary  
data. DQ6 will toggle following toggling of either  
N/A  
Erase Suspend Read  
(in Erase Suspend  
block)  
1
1
Toggle  
GF, or EF when GF is at V . The operation is com-  
IL  
pleted when two successive reads yield the same  
output data. The next read will output the bit last  
programmed or a '1' after erasing. The toggle bit  
DQ6 is valid only during P/E.C. operations, that is  
after the fourth WF pulse for programming or after  
the sixth WF pulse for Erase. DQ6 will be set to '1'  
if a Read operation is attempted on an Erase Sus-  
Erase Suspend Read  
(outside Erase Suspend  
block)  
DQ7  
DQ7  
DQ6  
DQ2  
1
Erase Suspend Program  
Toggle  
16/46  
M36DR432A, M36DR432B  
(1)  
Table 17. Status Register Bits  
DQ  
Name  
Logic Level  
Definition  
Note  
Erase Complete or erase block  
in Erase Suspend.  
'1'  
'0'  
Indicates the P/E.C. status, check  
during Program or Erase, and on  
completion before checking bits DQ5  
for Program or Erase Success.  
Erase On-going  
Data  
Polling  
7
Program Complete or data of  
non erase block during Erase  
Suspend.  
DQ  
(2)  
DQ  
'-1-0-1-0-1-0-1-'  
DQ  
Program On-going  
Erase or Program On-going  
Program Complete  
Successive reads output  
complementary data on DQ6 while  
Programming or Erase operations are  
on-going. DQ6 remains at constant  
level when P/E.C. operations are  
completed or Erase Suspend is  
acknowledged.  
6
Toggle Bit  
Erase Complete or Erase  
Suspend on currently addressed  
block  
'-1-1-1-1-1-1-1-'  
'1'  
'0'  
Program or Erase Error  
This bit is set to '1' in the case of  
Programming or Erase failure.  
5
4
Error Bit  
Program or Erase On-going  
Reserved  
P/E.C. Erase operation has started.  
Only possible command entry is Erase  
Suspend (ES)  
'1'  
'0'  
Erase Timeout Period Expired  
Erase Timeout Period On-going  
Erase Time  
Bit  
3
An additional block to be erased in  
parallel can be entered to the P/E.C:  
Erase Suspend read in the  
Erase Suspended Block.  
Erase Error due to the currently  
addressed block (when DQ5 =  
'1').  
'-1-0-1-0-1-0-1-'  
Indicates the erase status and allows  
to identify the erased block.  
2
Toggle Bit  
Program on-going or Erase  
Complete.  
1
Erase Suspend read on non  
Erase Suspend block.  
DQ  
1
0
Reserved  
Reserved  
Note: 1. Logic level '1' is High, '0' is Low. -0-1-0-0-0-1-1-1-0- represent bit value in successive Read operations.  
2. In case of double word program DQ7 refers to the last word input.  
17/46  
M36DR432A, M36DR432B  
POWER CONSUMPTION  
Power Down  
Power Up  
The memory provides Reset/Power Down control  
input RPF. The Power Down function can be acti-  
vated only if the relevant Configuration Register bit  
is set to '1'. In this case, when the RPF signal is  
The memory Command Interface is reset on Pow-  
er Up to Read Array. Either EF or WF must be tied  
to V during Power Up to allow maximum security  
IH  
and the possibility to write a command on the first  
rising edge of WF.  
pulled at V the supply current drops to typically  
SS  
I
(see Table 24), the memory is deselected and  
CC2  
Supply Rails  
Normal precautions must be taken for supply volt-  
age decoupling; each device in a system should  
the outputs are in high impedance.If RPF is pulled  
to V during a Program or Erase operation, this  
operation is aborted in t  
content is no longer valid (see Reset/Power Down  
input description).  
SS  
and the memory  
PLQ7V  
have the V  
rails decoupled with a 0.1µF capac-  
CCF  
itor close to the V  
and V pins. The PCB trace  
CCF  
SS  
widths should be sufficient to carry the required  
program and erase currents.  
V
CCF  
18/46  
M36DR432A, M36DR432B  
COMMON FLASH INTERFACE (CFI)  
The Common Flash Interface (CFI) specification is  
a JEDEC approved, standardised data structure  
that can be read from the Flash memory device.  
CFI allows a system software to query the flash  
device to determine various electrical and timing  
parameters, density information and functions  
supported by the device. CFI allows the system to  
easily interface to the Flash memory, to learn  
about its features and parameters, enabling the  
software to configure itself when necessary.  
The CFI data structure gives information on the  
device, such as the sectorization, the command  
set and some electrical specifications. Tables 18,  
19, 20, and 21 show the addresses used to re-  
trieve each data. The CFI data structure contains  
also a security area; in this section, a 64 bit unique  
security number is written, starting at address 81h.  
This area can be accessed only in read mode and  
there are no ways of changing the code after it has  
been written by ST. Write a read instruction to re-  
turn to Read mode. Refer to the CFI Query instruc-  
tion to understand how the M36DR432 enters the  
CFI Query mode.  
Tables 18, 19, 20, and 21 show the address used  
to retrieve each data.  
Table 18. Query Structure Overview  
Offset  
00h  
Sub-section Name  
Description  
Reserved for algorithm-specific information  
Command set ID and algorithm data offset  
Device timing & voltage information  
Flash device layout  
Reserved  
10h  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Additional information specific to the Primary  
Algorithm (optional)  
P
A
Primary Algorithm-specific Extended Query table  
Alternate Algorithm-specific Extended Query table  
Additional information specific to the Alternate  
Algorithm (optional)  
Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections  
detailed in Tables 19, 20 and 21. Query data are always presented on the lowest order data outputs.  
Table 19. CFI Query Identification String  
Offset  
Data  
Description  
00h  
0020h  
Manufacturer Code  
Device Code  
Reserved  
00A0h - top  
00A1h - bottom  
01h  
02h-0Fh  
10h  
reserved  
0051h  
Query Unique ASCII String "QRY"  
Query Unique ASCII String "QRY"  
Query Unique ASCII String "QRY"  
11h  
0052h  
12h  
0059h  
13h  
0002h  
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code  
defining a specific algorithm  
14h  
0000h  
15h  
offset = P = 0040h  
0000h  
Address for Primary Algorithm extended Query table  
16h  
17h  
0000h  
Alternate Vendor Command Set and Control Interface ID Code second vendor  
- specified algorithm supported (note: 0000h means none exists)  
18h  
0000h  
19h  
value = A = 0000h  
0000h  
Address for Alternate Algorithm extended Query table  
note: 0000h means none exists  
1Ah  
Note: 1. Query data are always presented on the lowest - order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.  
19/46  
M36DR432A, M36DR432B  
Table 20. CFI Query System Interface Information  
Offset  
Data  
Description  
V
CCF  
V
CCF  
V
PPF  
Logic Supply Minimum Program/Erase or Write voltage  
1Bh  
0017h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
Logic Supply Maximum Program/Erase or Write voltage  
1Ch  
1Dh  
0022h  
0000h  
bit 7 to 4  
bit 3 to 0  
BCD value in volts  
BCD value in 100 millivolts  
[Programming] Supply Minimum Program/Erase voltage  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
Note: This value must be 0000h if no V pin is present  
PP  
V
[Programming] Supply Maximum Program/Erase voltage  
PPF  
bit 7 to 4  
bit 3 to 0  
HEX value in volts  
BCD value in 100 millivolts  
1Eh  
00C0h  
Note: This value must be 0000h if no V pin is present  
PP  
n
Typical timeout per single byte/word program (multi-byte program count = 1), 2 µs  
(if supported; 0000h = not supported)  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0004h  
0000h  
000Ah  
0000h  
0004h  
0000h  
0004h  
0000h  
n
Typical timeout for maximum-size multi-byte program or page write, 2 µs  
(if supported; 0000h = not supported)  
n
Typical timeout per individual block erase, 2 ms  
(if supported; 0000h = not supported)  
n
Typical timeout for full chip erase, 2 ms  
(if supported; 0000h = not supported)  
n
Maximum timeout for byte/word program, 2 times typical (offset 1Fh)  
(0000h = not supported)  
n
Maximum timeout for multi-byte program or page write, 2 times typical (offset 20h)  
(0000h = not supported)  
n
Maximum timeout per individual block erase, 2 times typical (offset 21h)  
(0000h = not supported)  
n
Maximum timeout for chip erase, 2 times typical (offset 22h)  
(0000h = not supported)  
20/46  
M36DR432A, M36DR432B  
Table 21. Device Geometry Definition  
Offset Word  
Data  
Description  
Mode  
n
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
0016h  
0001h  
0000h  
0000h  
0000h  
0002h  
Device Size = 2 in number of bytes  
Flash Device Interface Code description: Asynchronous x16  
n
Maximum number of bytes in multi-byte program or page = 2  
Number of Erase Block Regions within device  
bit 7 to 0 = x = number of Erase Block Regions  
Note:1. x = 0 means no erase blocking, i.e. the device erases at once in "bulk."  
2. x specifies the number of regions within the device containing one or more con-  
tiguous Erase Blocks of the same size. For example, a 128KB device (1Mb)  
having blocking of 16KB, 8KB, four 2KB, two 16KB, and one 64KB is considered  
to have 5 Erase Block Regions. Even though two regions both contain 16KB  
blocks, the fact that they are not contiguous means they are separate Erase  
Block Regions.  
3. By definition, symmetrically block devices have only one blocking region.  
M36DR432A M36DR432A Erase Block Region Information  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
003Eh  
0000h  
0000h  
0001h  
0007h  
0000h  
0020h  
0000h  
bit 31 to 16 = z, where the Erase Block(s) within this Region are (z) times 256 bytes in  
size. The value z = 0 is used for 128 byte block size.  
e.g. for 64KB block size, z = 0100h = 256 => 256 * 256 = 64K  
bit 15 to 0 = y, where y+1 = Number of Erase Blocks of identical size within the Erase  
Block Region:  
e.g. y = D15-D0 = FFFFh => y+1 = 64K blocks [maximum number]  
y = 0 means no blocking (# blocks = y+1 = "1 block")  
Note: y = 0 value must be used with number of block regions of one as indicated  
by (x) = 0  
M36DR432B M36DR432B  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
0007h  
0000h  
0020h  
0000h  
003Eh  
0000h  
0000h  
0001h  
21/46  
M36DR432A, M36DR432B  
SRAM COMPONENT  
Device Operations  
The following operations can be performed using  
the appropriate bus cycles: Read Array, Write Ar-  
ray, Output Disable, Power Down (see Table 3).  
occurring edge. The Write cycle can be terminated  
by the rising edge of E1S, the rising edge of WS or  
the falling edge of E2S, whichever occurs first.  
If the Output is enabled (E1S=V , E2S=V and  
IL  
IH  
GS=V ), then WS will return the outputs to high  
IL  
Read. Read operations are used to output the  
contents of the SRAM Array. The SRAM is in Read  
impedance within t  
of its falling edge. Care  
WLQZ  
must be taken to avoid bus contention in this type  
of operation. Data input must be valid for t  
mode whenever Write Enable (WS) is at V with  
IH  
DVWH  
Output Enable (GS) at V , and both Chip Enables  
IL  
before the rising edge of Write Enable, or for  
(E1S and E2S) and UBS, LBS combinations are  
asserted.  
Valid data will be available at the output pins within  
t
before the rising edge of E1S or for t  
DVE1H  
DVE2L  
before the falling edge of E2S, whichever occurs  
first, and remain valid for t , t or t  
WHDX E1HAX  
E2LAX  
t
after the last stable address, providing GS is  
AVQV  
(see Table 32, Figure 19, 21, 23).  
Low, E1S is Low and E2S is High. If Chip Enable  
or Output Enable access times are not met, data  
access will be measured from the limiting parame-  
Standby/Power-Down. The SRAM chip has a  
Chip Enable power-down feature which invokes  
an automatic standby mode (see Table 31, Figure  
18) whenever either Chip Enable is de-asserted  
ter (t  
, t  
, or t  
) rather than the ad-  
E1LQV E2HQV  
GLQV  
dress. Data out may be indeterminate at t  
,
E1LQX  
(E1S=V or E2S=V ).  
IH  
IL  
t
and t  
, but data lines will always be val-  
GLQX  
E2HQX  
id at t  
(see Table 31, Figures 16 and 17).  
Data Retention  
AVQV  
Write. Write operations are used to write data in  
the SRAM. The SRAM is in Write mode whenever  
the WS and E1S pins are at V , with E2S at V .  
Either the Chip Enable inputs (E1S and E2S) or  
the Write Enable input (WS) must be de-asserted  
during address transitions for subsequent write cy-  
cles. Write begins with the concurrence of both  
The SRAM data retention performances as V  
CCS  
go down to V are described in Table 33 and Fig-  
DR  
ure 23, 24. In E1S controlled data retention mode,  
minimum standby current mode is entered when  
IL  
IH  
E1S V  
E2S V  
– 0.2V  
and  
E2S 0.2V  
or  
CCS  
CCS  
– 0.2V. In E2S controlled data reten-  
tion mode, minimum standby current mode is en-  
tered when E2S 0.2V.  
Output Disable. The data outputs are high im-  
pedance when the Output Enable (GS) is at V  
Chip Enables being active with WS at V . A Write  
IL  
begins at the latest transition among E1S going to  
V , E2S going to V and WS going to V . There-  
IL  
IH  
IL  
IH  
fore, address setup time is referenced to Write En-  
able and both Chip Enables as t , t and  
with Write Enable (WS) at V .  
IH  
AVWL AVE1L  
t
respectively, and is determined by the latter  
AVE2H  
22/46  
M36DR432A, M36DR432B  
Table 22. AC Measurement Conditions  
Figure 6. AC Measurement Load Circuit  
Input Rise and Fall Times  
4ns  
VDD  
V
DD  
0 to V  
Input Pulse Voltages  
DD  
V
/2  
Input and Output Timing Ref. Voltages  
DD  
25k  
Figure 5. AC Measurement Waveform  
DEVICE  
UNDER  
TEST  
V
DD  
25kΩ  
0.1µF  
C
L
= 50pF  
V
/2  
DD  
0V  
AI90206  
AI90207  
C
includes JIG capacitance  
L
Note: V means V  
= V  
DDS  
DD  
DDF  
(1)  
Table 23. Device Capacitance  
(T = 25 °C, f = 1 MHz)  
A
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
Min  
Max  
10  
Unit  
pF  
C
IN  
V
= 0V  
= 0V  
IN  
C
V
OUT  
12  
pF  
OUT  
Note: 1. Sampled only, not 100% tested.  
23/46  
M36DR432A, M36DR432B  
Table 24. DC Characteristics  
(T = –40 to 85°C; V  
= V  
= 1.65V to 2.2V)  
A
DDF  
DDS  
Symbol  
Parameter  
Device  
Test Condition  
Min  
Typ  
Max  
Unit  
Input Leakage  
Current  
Flash &  
SRAM  
I
0V V V  
±2  
µA  
LI  
IN  
DD  
Output Leakage  
Current  
Flash &  
SRAM  
I
0V V  
V  
DD  
±10  
50  
µA  
µA  
LO  
OUT  
EF = V  
± 0.2V  
DDF  
Flash  
SRAM  
Flash  
15  
20  
2
V
= V max  
DD  
DDF  
V
Standby  
DD  
I
I
DDS  
E1S V  
– 0.2V, E2S V  
– 0.2V,  
DDS  
DDS  
Current  
V
V  
– 0.2V  
50  
10  
10  
µA  
µA  
IN  
DDS  
or V V  
– 0.2V, f=0  
± 0.2V  
SSF  
IN  
DDS  
Supply Current  
(Reset)  
RPF = V  
DDD  
I
I
= 0 mA, E1S = V , E2S = WS = V  
,
,
IO  
IL  
IH  
IH  
V
= V or V , V  
= V max,  
mA  
IN  
IL  
IH  
DDS  
DD  
cycle time = 1µs  
I
Supply Current  
SRAM  
DD  
= 0 mA, E1S = V , E2S = WS = V  
IO  
IL  
V
IN  
= V or V , V  
= V max,  
25  
mA  
IL  
IH  
DDS  
DD  
min cycle time  
Supply Current  
(Read)  
I
EF = V , GF = V , f = 5 MHz  
Flash  
Flash  
Flash  
Flash  
Flash  
10  
10  
20  
10  
20  
20  
40  
20  
50  
mA  
mA  
mA  
mA  
µA  
DDR  
IL  
IH  
Supply Current  
(Program)  
I
Program in progress  
DDW  
Supply Current  
(Dual Bank)  
Program/Erase in progress in one bank  
Read in the other bank  
I
DDWD  
Supply Current  
(Erase)  
I
Erase in progress  
DDE  
Supply Current  
(Erase Suspend)  
(1)  
Erase Suspend in progress  
I
DDES  
Supply Current  
(Program  
(1)  
Program Suspend in progress  
Flash  
50  
µA  
I
DDWS  
Suspend)  
V
V  
DDS  
0.2  
100  
0.2  
5
µA  
µA  
µA  
µA  
PPF  
Program Current  
(Standby)  
I
Flash  
Flash  
PPS  
V
= 12V ± 0.6V  
400  
5
PPF  
V
PPF  
V  
DDS  
Program Current  
(Read)  
I
PPR  
V
V
= 12V ± 0.6V  
100  
400  
PPF  
= 12V ± 0.6V  
Program Current  
(Program)  
PPF  
I
Flash  
Flash  
5
5
10  
10  
mA  
PPW  
Program in progress  
V
= 12V ± 0.6V  
Program Current  
(Erase)  
PPF  
I
mA  
V
PPE  
Program in progress  
Flash &  
SRAM  
V
Input Low Voltage  
–0.5  
1.4  
0.4  
IL  
Input High  
Voltage  
Flash &  
SRAM  
V
V
+0.3  
V
IH  
DD  
V
V
= V  
= V min  
DDS DD  
= 100µA  
Output Low  
Voltage  
Flash &  
SRAM  
DDF  
V
0.2  
V
OL  
I
OL  
= V  
= V min  
DD  
Output High  
Voltage  
Flash &  
SRAM  
DDF  
DDS  
V
V
DD  
–0.1  
V
OH  
I
= –100µA  
OH  
24/46  
M36DR432A, M36DR432B  
Symbol  
Parameter  
Device  
Test Condition  
Min  
Typ  
Max  
Unit  
Program Voltage  
(Program or  
V
PPL  
Flash  
1.65  
3.6  
V
Erase operations)  
Program Voltage  
(Program or  
Erase operations)  
V
Flash  
Flash  
11.4  
12.6  
1
V
V
PPH  
Program Voltage  
(Program and  
V
PPLK  
Erase lock-out)  
V
Supply  
DDF  
Voltage (Program  
and Erase lock-  
out)  
V
LKO  
Flash  
2
V
Note: 1. I  
DDES  
and I  
DDWS  
are specified with device deselected. If device is read while in erase suspend, current draw is sum of I  
DDES  
and I  
If the device is read while in program suspend, current draw is the sum of I  
DDWS  
and I .  
DDR  
DDR.  
Table 25. Flash Read AC Characteristics  
(TA = –40 to 85°C; V  
= 1.65V to 2.2V)  
DDF  
Flash  
Symbol  
Alt  
Parameter  
Test Condition  
100  
Max  
120  
Unit  
Min  
Min  
Max  
Address Valid to Next Address  
Valid  
t
t
EF = V , GF = V  
100  
120  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
IL  
IL  
IL  
IL  
IL  
Address Valid to Output Valid  
(Random)  
t
t
EF = V , GF = V  
100  
35  
120  
45  
AVQV  
ACC  
IL  
Address Valid to Output Valid  
(Page)  
t
t
EF = V , GF = V  
AVQV1  
PAGE  
IL  
Address Transition to Output  
Transition  
t
t
EF = V , GF = V  
0
0
0
0
AXQX  
OH  
IL  
Chip Enable High to Output  
Transition  
t
t
GF = V  
EHQX  
OH  
IL  
(1)  
t
GF = V  
Chip Enable High to Output Hi-Z  
Chip Enable Low to Output Valid  
25  
35  
ns  
ns  
t
HZ  
IL  
EHQZ  
(2)  
t
GF = V  
100  
120  
t
CE  
IL  
ELQV  
Chip Enable Low to Output  
Transition  
(1)  
t
GF = V  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
t
LZ  
IL  
ELQX  
Output Enable High to Output  
Transition  
t
t
EF = V  
GHQX  
OH  
IL  
Output Enable High to Output  
Hi-Z  
(1)  
t
DF  
EF = V  
25  
25  
35  
35  
t
IL  
GHQZ  
Output Enable Low to Output  
Valid  
(2)  
(1)  
t
EF = V  
t
t
OE  
IL  
GLQV  
GLQX  
Output Enable Low to Output  
Transition  
t
EF = V  
0
0
OLZ  
IL  
Note: 1. Sampled only, not 100% tested.  
2. GF may be delayed by up to t  
- t  
after the falling edge of EF without increasing t  
ELQV  
ELQV GLQV  
25/46  
M36DR432A, M36DR432B  
Figure 7. Flash Read AC Waveforms  
26/46  
M36DR432A, M36DR432B  
Figure 8. Flash Page Read AC Waveforms  
27/46  
M36DR432A, M36DR432B  
Table 26. Flash Write AC Characteristics, Write Enable Controlled  
(T = –40 to 85 °C; V  
A
= 1.65V to 2.2V  
DDF  
Flash  
Symbol  
Alt  
Parameter  
100  
120  
Unit  
Min  
100  
0
Max  
Min  
Max  
t
t
WC  
Address Valid to Next Address Valid  
Address Valid to Write Enable Low  
120  
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
AVWL  
AS  
DS  
CS  
t
t
t
Input Valid to Write Enable High  
50  
0
50  
0
DVWH  
t
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
RPF Low to Reset Complete During Program/Erase  
ELWL  
t
0
0
GHWL  
t
15  
15  
PLQ7V  
t
t
V
CCF  
High to Chip Enable Low  
50  
0
50  
0
VDHEL  
VCS  
t
t
Write Enable High to Input Transition  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Write Enable High to Write Enable Low  
Write Enable Low to Address Transition  
Write Enable Low to Write Enable High  
WHDX  
DH  
CH  
t
t
0
0
WHEH  
t
t
t
30  
30  
50  
50  
30  
30  
50  
50  
WHGL  
OEH  
t
WHWL  
WPH  
t
t
AH  
WLAX  
t
t
WLWH  
WP  
Figure 9. Flash Write AC Waveforms, WF Controlled  
tAVAV  
A0-A20  
VALID  
tWLAX  
tAVWL  
tWHEH  
EF  
tELWL  
tWHGL  
GF  
tGHWL  
tWLWH  
WF  
tWHWL  
tWHDX  
tDVWH  
VALID  
DQ0-DQ15  
V
DDF  
tVDHEL  
AI90210  
Note: 1. Address are latched on the falling edge of WF, Data is latched on the rising edge of WF.  
28/46  
M36DR432A, M36DR432B  
Table 27. Flash Write AC Characteristics, Chip Enable Controlled  
(T = –40 to 85 °C; V = 1.65V to 2.2V)  
A
DDF  
Flash  
Symbol  
Alt  
Parameter  
100  
120  
Unit  
Min  
100  
0
Max  
Min  
120  
0
Max  
t
t
WC  
Address Valid to Next Address Valid  
Address Valid to Chip Enable Low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
AVAV  
t
t
AVEL  
AS  
t
t
t
Input Valid to Chip Enable High  
50  
0
50  
0
DVEH  
DS  
t
Chip Enable High to Input Transition  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Chip Enable Low to Address Transition  
Chip Enable Low to Chip Enable High  
Output Enable High Chip Enable Low  
RPF Low to Reset Complete During Program/Erase  
EHDX  
DH  
t
t
30  
30  
0
30  
30  
0
EHEL  
CPH  
t
t
EHGL  
OEH  
t
t
EHWH  
WH  
t
t
AH  
50  
50  
0
50  
50  
0
ELAX  
t
t
ELEH  
CP  
t
GHEL  
t
15  
15  
PLQ7V  
t
t
V
CCF  
High to Write Enable Low  
50  
0
50  
0
VDHWL  
VCS  
t
t
WS  
Write Enable Low to Chip Enable Low  
WLEL  
Figure 10. Flash Write AC Waveforms, EF Controlled  
tAVAV  
A0-A20  
VALID  
tELAX  
tAVEL  
tEHWH  
WF  
tWLEL  
tEHGL  
GF  
tGHEL  
tELEH  
EF  
tEHEL  
tEHDX  
tDVEH  
VALID  
DQ0-DQ15  
V
DDF  
tVDHWL  
AI90211  
Note: Address are latched on the falling edge of EF, Data is latched on the rising edge of EF.  
29/46  
M36DR432A, M36DR432B  
Table 28. Flash Read and Write AC Characteristics, RPF Related  
(T = –40 to 85°C; V  
A
= 1.65V to 2.2V)  
DDF  
Flash  
Symbol  
Alt  
Parameter  
Test Condition  
100  
120  
Unit  
Min  
Max  
Min  
Max  
RPF High to Data Valid (Read  
Mode)  
t
150  
50  
150  
ns  
PHQ7V1  
RPF High to Data Valid  
(Power Down enabled)  
t
50  
µs  
ns  
µs  
PHQ7V2  
t
t
RPF Pulse Width  
100  
100  
PLPH  
RP  
RPF Low to Reset Complete  
During Program/Erase  
t
15  
15  
PLQ7V  
Figure 11. Flash Read and Write AC Waveforms, RPF Related  
READ  
PROGRAM / ERASE  
WF  
DQ7  
DQ7  
VALID  
VALID  
RPF  
tPLPH  
tPHQ7V1,2  
tPLQ7V  
AI90212  
30/46  
M36DR432A, M36DR432B  
Table 29. Flash Program, Erase Times and Program, Erase Endurance Cycles  
(T = –40 to 85°C; V  
A
= 1.65V to 2.2V, V  
= V  
unless otherwise specified)  
DDF  
PPF  
DDF  
Typical after  
100k W/E Cycles  
(1)  
Parameter  
Min  
Typ  
Unit  
Max  
Parameter Block (4 KWord) Erase (Preprogrammed)  
Main Block (32 KWord) Erase (Preprogrammed)  
Bank Erase (Preprogrammed, Bank A)  
2.5  
10  
0.15  
1
0.4  
3
s
s
s
s
s
2
6
Bank Erase (Preprogrammed, Bank B)  
10  
20  
30  
25  
(2)  
Chip Program  
(2)  
10  
10  
s
Chip Program (DPG, V = 12V)  
PP  
Word Program  
200  
10  
µs  
Program/Erase Cycles (per Block)  
100,000  
cycles  
Note: 1. Max values refer to the maximum time allowed by the internal algorithm before error bit is set. Worst case conditions program or  
erase should perform significantly better.  
2. Excludes the time needed to execute the sequence for program instruction.  
(1)  
Table 30. Flash Data Polling and Toggle Bits AC Characteristics  
(T = –40 to 85 °C; V  
A
= 1.65V to 2.2V)  
DDF  
Flash  
Symbol  
Parameter  
Unit  
Min  
10  
1
Max  
200  
10  
Chip Enable High to DQ7 Valid (Program, EF Controlled)  
Chip Enable High to DQ7 Valid (Block Erase, EF Controlled)  
Chip Enable High to Output Valid (Program)  
µs  
s
t
EHQ7V  
10  
1
200  
10  
µs  
s
t
EHQV  
Chip Enable High to Output Valid (Block Erase)  
Q7 Valid to Output Valid (Data Polling)  
t
0
ns  
µs  
Q7VQV  
Write Enable High to DQ7 Valid (Program, WF Controlled)  
10  
1
200  
t
WHQ7V  
Write Enable High to DQ7 Valid (Block Erase, WF  
Controlled)  
10  
s
Write Enable High to Output Valid (Program)  
Write Enable High to Output Valid (Block Erase)  
10  
1
200  
10  
µs  
s
t
WHQV  
Note: 1. All other timings are defined in Read AC Characteristics table.  
31/46  
M36DR432A, M36DR432B  
Figure 12. Flash Data Polling DQ7 AC Waveforms  
32/46  
M36DR432A, M36DR432B  
Figure 13. Flash Data Toggle DQ6, DQ2 AC Waveforms  
33/46  
M36DR432A, M36DR432B  
Figure 14. Flash Data Polling Flowchart  
Figure 15. Flash Data Toggle Flowchart  
START  
START  
READ  
DQ5 & DQ6  
READ DQ5 & DQ7  
at VALID ADDRESS  
DQ6  
NO  
=
DQ7  
=
DATA  
YES  
TOGGLES  
NO  
YES  
NO  
NO  
DQ5  
= 1  
DQ5  
= 1  
YES  
YES  
READ DQ7  
READ DQ6  
DQ7  
=
DATA  
YES  
DQ6  
=
NO  
TOGGLES  
NO  
YES  
FAIL  
PASS  
FAIL  
PASS  
AI90215  
AI90216  
34/46  
M36DR432A, M36DR432B  
Table 31. SRAM Read AC Characteristics  
(T = –40 to 85°C; V = 1.65V to 2.2V)  
A
DDS  
SRAM  
Unit  
Symbol  
Alt  
Parameter  
Min  
Max  
t
t
Read Cycle Time  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
RC  
t
t
Address Valid to Output Valid  
100  
AVQV  
AA  
t
t
Address Transition to Output Transition  
UBS, LBS Disable to Hi-Z Output  
UBS, LBS Access Time  
15  
AXQX  
OH  
t
t
BHZ  
25  
BHQZ  
t
t
100  
BLQV  
BA  
t
t
UBS, LBS Enable to Low-Z Output  
Chip Enable 1 High to Output Hi-Z  
Chip Enable 1 Low to Output Valid  
Chip Enable 1 Low to Output Transition  
Chip Enable 2 High to Output Valid  
Chip Enable 2 High to Output Transition  
Chip Enable 2 Low to Output Hi-Z  
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
5
0
BLQX  
BLZ  
t
t
30  
E1HQZ  
HZ1  
t
t
100  
E1LQV  
CO1  
t
t
10  
E1LQX  
LZ1  
t
t
100  
E2HQV  
CO2  
t
t
10  
0
E2HQX  
LZ2  
HZ2  
OHZ  
t
t
25  
30  
35  
E2LQZ  
t
t
0
GHQZ  
t
t
GLQV  
OE  
t
t
OLZ  
5
0
GLQX  
Chip Enable 1 High or Chip Enable 2 Low to Power  
Down  
(1)  
100  
ns  
ns  
t
t
PD  
(1)  
Chip Enable 1 Low or Chip Enable 2 High to Power Up  
PU  
Note: 1. Sampled only. Not 100% tested.  
Figure 16. SRAM Read Mode AC Waveforms, Address Controlled with UBS = LBS = V  
IL  
tAVAV  
A0-A17  
VALID  
tAVQV  
tAXQX  
DQ0-DQ15  
DATA VALID  
DATA VALID  
AI90217  
Note: E1S = Low, E2S = High, GS = Low, WS = High.  
35/46  
M36DR432A, M36DR432B  
Figure 17. SRAM Read AC Waveforms, E1S, E2S or GS Controlled  
tAVAV  
A0-A17  
E1S  
VALID  
tAVQV  
tE1LQV  
tAXQX  
tE1HQZ  
tE1LQX  
tE2HQV  
tE2LQZ  
tBHQZ  
E2S  
tE2HQX  
tBLQV  
UBS, LBS  
tBLQX  
tGLQV  
tGHQZ  
GS  
tGLQX  
DQ0-DQ15  
DATA VALID  
AI90218  
Note: Write Enable (WS) = High.  
Figure 18. SRAM Standby AC Waveforms  
E1S  
E2S  
tPU  
tPD  
I
DD  
50%  
AI90219  
36/46  
M36DR432A, M36DR432B  
Table 32. SRAM Write AC Characteristics  
(T = –40 to 85°C; V = 1.65V to 2.2V)  
A
DDS  
SRAM  
Unit  
Symbol  
Alt  
Parameter  
Min  
Max  
t
t
WC  
Write Cycle Time  
100  
ns  
ns  
ns  
ns  
ns  
AVAV  
(1)  
t
Address Valid to Chip Enable 1 Low  
Address Valid to Chip Enable 2 High  
Address Valid to Write Enable High  
Address Valid to Write Enable Low  
0
0
t
t
AVE1L  
AS  
(1)  
t
AVE2H  
AS  
t
t
80  
0
AVWH  
AW  
(1)  
t
t
AVWL  
AS  
t
UBS, LBS Valid to End of Write  
Input Valid to Chip Enable 1 High  
Input Valid to Chip Enable 2 Low  
Input Valid to Write Enable High  
Chip Enable 1 High to Address Transition  
80  
40  
40  
40  
0
ns  
ns  
ns  
ns  
ns  
t
BLWH  
BW  
t
t
t
t
DVE1H  
DW  
t
DVE2L  
DW  
DW  
t
DVWH  
(2)  
(3)  
(2)  
t
t
E1HAX  
WR  
t
t
,
E1LWH  
Chip Select to End of Write  
80  
0
ns  
t
CW  
E2HWH  
t
Chip Enable 2 Low to Address Transition  
Output Enable Higt to Output Hi-Z  
ns  
ns  
ns  
t
E2LAX  
WR  
t
t
25  
35  
GHQZ  
WHAX  
WHDX  
GHZ  
(2)  
t
Write Enable High to Address Transition  
0
t
WR  
t
t
t
Write Enable High to Input Transition  
Write Enable High to Output Transition  
Write Enable Low to Output Hi-Z  
0
5
ns  
ns  
ns  
DH  
t
WHQX  
OW  
t
t
WLQZ  
WHZ  
(4)  
t
Write Enable Pulse Width  
70  
ns  
WLWH  
t
WP  
Note: 1. t is measured from the address valid to the beginning of write.  
AS  
2. t  
3. t  
is measured from the end or write to the address change. t  
is measured from E1S going low end of write.  
applied in case a write ends as E1S or WS going high.  
WR  
WR  
CW  
4. A Write occurs during the overlap (t ) of low E1S and low WS. A write begins when E1S goes low and WS goes low with asserting  
WP  
UBS or LBS for single byte operation or simultaneously asserting UBS and LBS for double byte operation. A write ends at the ear-  
liest transition when E1S goes high and WS goes high. The t  
is measured from the beginning of write to the end of write.  
WP  
37/46  
M36DR432A, M36DR432B  
Figure 19. SRAM Write AC Waveforms, WS Controlled with GS Low  
tAVAV  
A0-A17  
VALID  
tAVWH  
tE1LWH  
tAVE1L  
tWHAX  
E1S  
E2S  
tAVE2H  
tE2HWH  
tBLWH  
UBS, LBS  
WS  
tAVWL  
tWLWH  
tWLQZ  
tWHQX  
tWHDX  
tDVWH  
INPUT VALID  
DQ0-DQ15  
AI90220  
Note: Output Enable (GS) = Low.  
Figure 20. SRAM Write AC Waveforms, WS Controlled with GS High  
tAVAV  
A0-A17  
VALID  
tAVWH  
tE1LWH  
tAVE1L  
tWHAX  
E1S  
E2S  
tAVE2H  
tE2HWH  
tBLWH  
UBS, LBS  
tAVWL  
tWLWH  
WS  
GS  
tWHQX  
tWHDX  
tGHQZ  
tDVWH  
INPUT VALID  
DQ0-DQ15  
AI90221  
38/46  
M36DR432A, M36DR432B  
Figure 21. SRAM Write Cycle Waveform, UBS and LBS Controlled  
tAVAV  
A0-A17  
E1S  
VALID  
tE1LWH  
tE1HAX  
tAVWH  
E2S  
tE2HWH  
tBLWH  
tAVWL  
UBS, LBS  
tWLWH  
WS  
tDVWH  
DATA VALID  
tWHDX  
DQ0-DQ15  
AI90222  
Figure 22. SRAM Write AC Waveforms, E1S Controlled  
tAVAV  
A0-A17  
E1S  
VALID  
tE1LWH  
tAVE1L  
tE1HAX  
E2S  
tBLWH  
UBS, LBS  
tAVWL  
WS  
tDVE1H  
INPUT VALID  
tWHDX  
DQ0-DQ15  
AI90223  
Note: Output Enable (GS) = High.  
39/46  
M36DR432A, M36DR432B  
(1, 2)  
Table 33. SRAM Low V  
Data Retention Characteristics  
CCS  
(T = –40 to 85°C; V  
A
= 1.65V to 2.2V)  
DDS  
Symbol  
Parameter  
Test Condition  
Min  
Max  
10  
Unit  
V
= 1.2V, E1S V  
– 0.2V,  
DDS  
DDS  
I
Supply Current (Data Retention)  
µA  
DDDR  
E2S V  
– 0.2V or E2S 0.2V, f = 0  
– 0.2V, E2S 0.2V, f = 0  
DDS  
DDS  
V
E1S V  
E1S V  
Supply Voltage (Data Retention)  
Chip Disable to Power Down  
Operation Recovery Time  
1
0
2.2  
V
DR  
t
– 0.2V, E2S 0.2V, f = 0  
CCS  
ns  
ns  
CDR  
t
t
R
RC  
Note: 1. All other Inputs V V – 0.2V or V 0.2V.  
IH  
DD  
IL  
2. Sampled only. Not 100% tested.  
Figure 23. SRAM Low V  
Data Retention AC Waveforms, E1S Controlled  
DDS  
tCDR  
DATA RETENTION MODE  
tR  
V
DDS  
1.65 V  
1.2 V  
V
DR  
E1S V  
– 0.2V  
DDS  
E1S  
V
SSS  
AI90224  
Figure 24. SRAM Low V  
Data Retention AC Waveforms, E2S Controlled  
DDS  
DATA RETENTION MODE  
V
DDS  
1.65 V  
E2S  
tCDR  
tR  
V
DR  
E2S 0.2V  
0.4 V  
V
SSS  
AI90225  
40/46  
M36DR432A, M36DR432B  
Table 34. Ordering Information Scheme  
Example:  
M36DR432A  
100 ZA  
6
T
Device Type  
M36 = MMP (Flash + SRAM)  
Architecture  
D = Dual Bank, Page Mode  
Operating Voltage  
R = V  
= V  
=1.65V to 2.2V  
DDF  
DDS  
SRAM Chip Size & Organization  
4 = 4 Mbit (256K x 16 bit)  
Device Function  
32A = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Top Boot  
32B = 32 Mbit (x16), Dual Bank: 1/8-7/8 partitioning, Bottom Boot  
Speed  
100 = 100ns  
120 = 120ns  
Package  
ZA = LFBGA66: 0.8mm pitch  
Temperature Range  
6 = –40 to 85°C  
Option  
T = Tape & Reel packing  
C = Cypress’s SRAM  
Devices are shipped from the factory with the memory content bits erased to ’1’.  
Table 35. Daisy Chain Ordering Scheme  
Example:  
M36DR432  
-ZA T  
Device Type  
M36DR432  
Daisy Chain  
-ZA = LFBGA66: 0.8mm pitch  
Option  
T = Tape & Reel Packing  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the STMicroelectronics Sales Office nearest to you.  
41/46  
M36DR432A, M36DR432B  
Table 36. Revision History  
Date  
Version  
-01  
Revision Details  
24-May-2001  
19-Nov-2001  
First Issue  
LFBGA66 mechanical data updated (Table 37)  
-02  
42/46  
M36DR432A, M36DR432B  
Table 37. Stacked LFBGA66 - 8 x 8 ball array, 0.8 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.400  
0.0551  
0.250  
0.0098  
1.100  
0.0433  
0.400  
12.000  
5.600  
8.800  
0.350  
0.450  
0.0157  
0.4724  
0.2205  
0.3465  
0.0138  
0.0177  
D
D1  
D2  
ddd  
E
0.100  
0.0039  
8.000  
5.600  
0.800  
1.600  
1.200  
0.400  
0.400  
0.3150  
0.2205  
0.0315  
0.0630  
0.0472  
0.0157  
0.0157  
E1  
e
FD  
FE  
SD  
SE  
Figure 25. Stacked LFBGA66 - 8 x 8 ball array, 0.8 mm pitch, Bottom View Package Outline  
D
D2  
D1  
SE  
b
E
E1  
BALL "A1"  
e
ddd  
FE  
FD  
SD  
e
A
A2  
A1  
BGA-Z12  
Note: Drawing is not to scale.  
43/46  
M36DR432A, M36DR432B  
Figure 26. Stacked LFBGA66 Daisy Chain - Package Connections (Top view through package)  
#3  
#4  
#1  
#2  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
AI90251  
44/46  
M36DR432A, M36DR432B  
Figure 27. Stacked LFBGA66 Daisy Chain - PCB Connections proposal (Top view through  
package)  
START  
POINT  
END  
POINT  
#3  
#4  
#1  
#2  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
AI90252  
45/46  
M36DR432A, M36DR432B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
2001 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
www.st.com  
46/46  

相关型号:

M36DR432B120ZA6

Memory Circuit, 2MX16, CMOS, PBGA66, 0.80 MM PITCH, STACK, LFBGA-66
NUMONYX

M36DR432B120ZA6C

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432B120ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BD

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BD10ZA6

SPECIALTY MEMORY CIRCUIT, PBGA66, 12 X 8 MM, 0.80 MM PITCH, STACK, LFBGA-66
STMICROELECTR

M36DR432BD10ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BD12ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BD85ZA6

SPECIALTY MEMORY CIRCUIT, PBGA66, 12 X 8 MM, 0.80 MM PITCH, STACK, LFBGA-66
STMICROELECTR

M36DR432BD85ZA6T

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BDZA

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256Kb x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432BZA

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR

M36DR432C

32 Mbit 2Mb x16, Dual Bank, Page Flash Memory and 4 Mbit 256K x16 SRAM, Multiple Memory Product
STMICROELECTR