M28010-15WBA6 [STMICROELECTRONICS]

128KX8 EEPROM 3V, 150ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32;
M28010-15WBA6
型号: M28010-15WBA6
厂家: ST    ST
描述:

128KX8 EEPROM 3V, 150ns, PDIP32, 0.600 INCH, PLASTIC, DIP-32

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管
文件: 总23页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M28010  
1 Mbit (128K x 8) Parallel EEPROM  
With Software Data Protection  
PRELIMINARY DATA  
Fast Access Time: 100 ns  
Single Supply Voltage:  
– 4.5 V to 5.5 V for M28010  
– 2.7 V to 3.6 V for M28010-W  
– 1.8 V to 2.4 V for M28010-R  
Low Power Consumption  
32  
Fast BYTE and PAGE WRITE (up to 128 Bytes)  
Enhanced Write Detection and Monitoring:  
– Data Polling  
1
PDIP32 (BA)  
– Toggle Bit  
– Page Load Timer Status  
JEDEC Approved Bytewide Pin-Out  
Software Data Protection  
Hardware Data Protection  
TSOP32 (NA)  
8 x 20 mm  
Software Chip Erase  
PLCC32 (KA)  
100000 Erase/Write Cycles (minimum)  
Data Retention (minimum): 10 Years  
DESCRIPTION  
The M28010 devices consist of 128Kx8 bits of low  
power, parallel EEPROM, fabricated with  
STMicroelectronics’ proprietary double polysilicon  
CMOS technology. The devices offer fast access  
time, with low power dissipation, and require a  
single voltage supply (5V, 3V or 2V, depending on  
the option chosen).  
Figure 1. Logic Diagram  
V
CC  
17  
8
A0-A16  
DQ0-DQ7  
Table 1. Signal Names  
A0-A16  
Address Input  
Data Input / Output  
Write Enable  
W
M28010  
DQ0-DQ7  
E
W
E
G
Chip Enable  
G
Output Enable  
Supply Voltage  
V
SS  
V
CC  
AI02221  
V
Ground  
SS  
February 2000  
1/23  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
M28010  
Figure 2C. TSOP Connections  
Figure 2A. DIP Connections  
A11  
A9  
1
32  
G
DU  
A16  
A15  
A12  
A7  
1
2
3
4
5
6
7
8
9
32  
31  
V
CC  
W
A10  
E
A8  
30 DU  
29 A14  
28 A13  
27 A8  
26 A9  
25 A11  
A13  
A14  
DU  
W
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A6  
A5  
V
CC  
DU  
8
9
25  
24  
A4  
M28010  
M28010  
V
A3  
24  
23 A10  
22  
G
SS  
A16  
A15  
A12  
A7  
DQ2  
DQ1  
DQ0  
A0  
A2 10  
A1 11  
E
A0 12  
21 DQ7  
20 DQ6  
19 DQ5  
18 DQ4  
17 DQ3  
DQ0 13  
DQ1 14  
DQ2 15  
A6  
A1  
A5  
A2  
A4  
16  
17  
A3  
V
16  
SS  
AI02222  
AI02224  
Note: 1. DU = Do Not Use  
Note: 1. DU = Do Not Use  
Figure 2B. PLCC Connections  
data retention. The organization of the data in a 4  
byte (32-bit) “word” format leads to significant  
savings in power consumption. Once a byte has  
been read, subsequent byte read cycles from the  
same “word” (with addresses differing only in the  
two least significant bits) are fetched from the  
previously loaded Read Buffer, not from the  
memory array. As a result, the power consumption  
for these subsequent read cycles is much lower  
than the power consumption for the first cycle. By  
careful design of the memory access patterns, a  
50% reduction in the power consumption is  
possible.  
1 32  
A7  
A14  
A13  
A8  
A6  
A5  
A4  
A9  
A3  
A2  
9
M28010  
25 A11  
G
A1  
A10  
E
SIGNAL DESCRIPTION  
A0  
The external connections to the device are  
summarized in Table 1, and their use in Table 3.  
DQ0  
DQ7  
17  
Addresses (A0-A16). The address inputs are  
used to select one byte from the memory array  
during a read or write operation.  
AI02223  
Data In/Out (DQ0-DQ7). The contents of the data  
byte are written to, or read from, the memory array  
through the Data I/O pins.  
Note: 1. DU = Do Not Use  
The device has been designed to offer a flexible  
microcontroller interface, featuring both hardware  
and software hand-shaking, with Data Polling and  
Toggle Bit. The device supports a 128 byte Page  
Write operation. Software Data Protection (SDP)  
is also supported, using the standard JEDEC  
algorithm.  
Chip Enable (E). The chip enable input must be  
held low to enable read and write operations.  
When Chip Enable is high, power consumption is  
reduced.  
Output Enable (G). The Output Enable input  
controls the data output buffers, and is used to  
initiate read operations.  
The M28010 is designed for applications requiring  
as much as 100,000 write cycles and ten years of  
2/23  
M28010  
1
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
°C  
°C  
V
TA  
TSTG  
VCC  
VIO  
Ambient Operating Temperature  
–40 to 85  
–65 to 150  
Storage Temperature  
Supply Voltage  
–0.3 to V  
+1  
CCMAX  
–0.3 to V +0.6  
Input or Output Voltage (except A9)  
Input Voltage  
V
CC  
VI  
–0.3 to 4.5  
2000  
V
2
VESD  
V
Electrostatic Discharge Voltage (Human Body model)  
Note: 1. Except for the rating “Operating Temperature Range”, stresses above those listed in the Table “Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the ST SURE Program and other relevant quality documents.  
2. MIL-STD-883C, 3015.7 (100 pF, 1500 )  
Figure 3. Block Diagram  
ADDRESS  
LATCH  
A7-A16  
(Page Address)  
1Mbit ARRAY  
ADDRESS  
LATCH  
A0-A6  
LATCH PAGE  
Y DECODE  
V
GEN  
PP  
SENSE PAGE & DATA LATCH  
V
GEN  
READ  
E
PROGRAMMING  
STATE  
CONTROL  
LOGIC  
(1)  
G
ECC  
& MULTIPLEXER  
MACHINE  
W
I/O BUFFERS  
DQ0-DQ7  
AI02225  
3/23  
M28010  
1
Table 3. Operating Modes  
Mode  
E
G
W
DQ0-DQ7  
Data Out  
V
V
V
IH  
Read  
IL  
IL  
IL  
Write  
V
V
V
V
Data In  
IH  
IL  
Stand-by / Write Inhibit  
Write Inhibit  
Write Inhibit  
Output Disable  
X
X
Hi-Z  
IH  
V
X
X
Data Out or Hi-Z  
Data Out or Hi-Z  
Hi-Z  
IH  
V
X
X
X
IL  
V
X
IH  
Note: 1. X = V or V  
IH  
.
IL  
Write Enable (W). The Write Enable input controls  
whether the addressed location is to be read, from  
or written to.  
V
threshold (V >V ), write access to the  
WI CC WI  
memory is allowed after a time-out t  
specified in Table 4A to Table 4C.  
, as  
PUW  
Further protection against data corruption is  
offered by the E and W low pass filters: any glitch,  
on the E and W inputs, with a pulse width less than  
10 ns (typical) is internally filtered out to prevent  
inadvertent write operations to the memory.  
DEVICE OPERATION  
In order to prevent data corruption and inadvertent  
write operations, an internal V  
inhibits the Write operations if the V  
comparator  
voltage is  
CC  
CC  
lower than V (see Table 4A to Table 4C). Once  
WI  
the voltage applied on the V  
pin goes over the  
CC  
1
Table 4A. Power-Up Timing for M28010 (5V range)  
(T = –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
Symbol  
Parameter  
Min.  
5
Max.  
Unit  
ms  
ms  
V
t
Time Delay to Read Operation  
Time Delay to Write Operation (once VCC VWI  
Write Inhibit Threshold  
PUR  
t
)
5
PUW  
VWI  
3.0  
4.2  
Note: 1. Sampled only, not 100% tested.  
1
Table 4B. Power-Up Timing for M28010-W (3V range)  
(T = –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Min.  
5
Max.  
Unit  
ms  
ms  
V
t
Time Delay to Read Operation  
Time Delay to Write Operation (once VCC VWI  
Write Inhibit Threshold  
PUR  
t
)
5
PUW  
VWI  
2.0  
2.6  
Note: 1. Sampled only, not 100% tested.  
1
Table 4C. Power-Up Timing for M28010-R (2V range)  
(T = –40 to 85 °C; V = 1.8 to 2.4 V)  
A
CC  
Symbol  
Parameter  
Min.  
5
Max.  
Unit  
ms  
ms  
V
t
Time Delay to Read Operation  
Time Delay to Write Operation (once VCC VWI  
Write Inhibit Threshold  
PUR  
t
)
5
PUW  
VWI  
1.2  
1.7  
Note: 1. Sampled only, not 100% tested.  
4/23  
M28010  
Read  
shown in Figure 12 and Figure 13). The address is  
latched during the falling edge of W or E (which  
ever occurs later) and the data is latched on the  
rising edge of W or E (which ever occurs first).  
The device is accessed like a static RAM. When E  
and G are low, and W is high, the contents of the  
addressed location are presented on the I/O pins.  
Otherwise, when either G or E is high, the I/O pins  
revert to their high impedance state.  
After a delay, t  
, that cannot be shorter than  
WLQ5H  
the value specified in Table 9A to Table 9C, the  
internal write cycle starts. It continues, under  
internal timing control, until the write operation is  
complete. The commencement of this period can  
be detected by reading the Page Load Timer  
Status on DQ5. The end of the internal write cycle  
Write  
Write operations are initiated when both W and E  
are low and G is high. The device supports both  
W-controlled and E-controlled write cycles (as  
Figure 4. Software Data Protection Enable Algorithms (with or without Memory Write)  
SDP is Disabled and Application  
needs to Enable it, and Write Data  
SDP is Disabled and  
Application needs to Enable it  
Write AAh in  
Write AAh in  
Address 5555h  
Address 5555h  
Page Write  
Timing  
Write 55h in  
Address 2AAAh  
Write 55h in  
Address 2AAAh  
Page Write  
Timing  
Write A0h in  
Address 5555h  
Write A0h in  
Address 5555h  
Write  
is enabled  
Time Out (t  
)
WLQ5H  
Write data  
in any addresses  
within one page  
Waitfor write completion (t  
SDP is set  
)
Q5HQ5X  
Time Out (t  
)
WLQ5H  
Write AAh in  
Address 5555h  
Waitfor write completion (t  
)
Q5HQ5X  
Write 55h in  
Address 2AAAh  
DATA has been written  
and SDP is Enabled  
Page Write  
Timing  
Write A0h in  
Address 5555h  
Write  
is enabled  
Write data  
in any addresses  
within one page  
Time Out (t  
)
WLQ5H  
Waitfor write completion (t  
)
Q5HQ5X  
DATA has been written  
and SDP is Enabled  
AI02227B  
5/23  
M28010  
Figure 5. Software Data Protection Disable Algorithms (with or without Memory Write)  
SDP is Enabled and  
SDP is Enabled and  
Application needs to Disable it  
Application needs to Write Data  
Write AAh in  
Write AAh in  
Address 5555h  
Address 5555h  
Write 55h in  
Write 55h in  
Address 2AAAh  
Address 2AAAh  
Write 80h in  
Write 80h in  
Address 5555h  
Address 5555h  
Page Write  
Timing  
Page Write  
Timing  
Write AAh in  
Write AAh in  
Address 5555h  
Address 5555h  
Write 55h in  
Write 55h in  
Address 2AAAh  
Address 2AAAh  
Write 20h in  
Write 20h in  
Address 5555h  
Address 5555h  
Write data  
in any addresses  
within one page  
Time Out (t  
)
Physical  
Write  
Instructions  
WLQ5H  
Wait for writecompletion (t  
)
Q5HQ5X  
Time Out (t  
)
WLQ5H  
SDP is Disabled  
Waitfor write completion (t  
)
Q5HQ5X  
DATA has been written  
and SDP is Disabled  
AI02226B  
can be detected by reading the status of the Data  
Polling and the Toggle Bit functions on DQ7 and  
DQ6.  
internally timed, and continues, uninterrupted,  
until completion.  
All bytes must be located on the same page  
address (A16-A7 must be the same for all bytes).  
Otherwise, the Page Write operation is not  
executed. The Page Write Abort event is indicated  
to the application via DQ1 (as described on page  
8).  
As with the single byte Write operation, described  
above, the DQ5, DQ6 and DQ7 lines can be used  
to detect the beginning and end of the internally  
controlled phase of the Page Write cycle.  
Page Write  
The Page Write mode allows up to 128 bytes to be  
written on a single page in a single go. This is  
achieved through a series of successive Write  
operations, no two of which are separated by more  
than the t  
value (as specified in Table 9A to  
WLQ5H  
Table 9C).  
The page write can be initiated during any byte  
write operation. Following the first Byte Write  
instruction, the host may send another address  
and data with a minimum data transfer rate of:  
Software Data Protection (SDP)  
The device offers a software-controlled write-  
protection mechanism that allows the user to  
inhibit all write operations to the device, including  
chip erase. This can be useful for protecting the  
1/t  
.
WLQ5H  
The internal write cycle can start at any instant  
after t  
6/23  
. Once initiated, the write operation is  
WLQ5H  
M28010  
Figure 6. Software Chip Erase Algorithm  
Figure 7. Status Bit Assignment  
DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0  
Write AAh in  
Address 5555h  
DP  
TB  
PLTS  
X
X
X
PWA SDP  
Write 55h in  
Address 2AAAh  
DP  
TB  
= Data Polling  
= Toggle Bit  
PLTS = Page Load Timer Status  
Write 80h in  
Address 5555h  
X
= undefined  
PWA  
SDP  
= Page Write Abort  
= Software Data Protection  
Page Write  
Timing  
AI02486B  
Write AAh in  
Address 5555h  
Write 55h in  
Address 2AAAh  
Figure 8. Software Data Protection Status Read  
Algorithm  
Write 10h in  
Address 5555h  
Write AAh in  
Address 5555h  
Time Out (t  
)
WLQ5H  
Page Write  
Write 55h in  
Timing  
Address 2AAAh  
Waitfor write completion (t  
)
Q5HQ5X  
Write 20h in  
Address 5555h  
Whole Array has been Set to FFh  
Read SDP  
on DQ0  
AI02236C  
Write xxh in  
Address xxxxh  
memory from inadvertent write cycles that may  
occur during periods of instability (uncontrolled  
bus conditions when excessive noise is detected,  
or when power supply levels are outside their  
specified values).  
Normal User Mode  
By default, the device is shipped in the  
“unprotected” state: the memory contents can be  
freely changed by the user. Once the Software  
Data Protection Mode is enabled, all write  
commands are ignored, and have no effect on the  
memory contents.  
The device remains in this mode until a valid  
Software Data Protection disable sequence is  
received. The device reverts to its “unprotected”  
state.  
The status of the Software Data Protection  
(enabled or disabled) is represented by a non-  
volatile latch, and is remembered across periods  
of the power being off.  
The Software Data Protection Enable command  
consists of the writing of three specific data bytes  
to three specific memory locations (each location  
being on a different page), as shown in Figure 4.  
AI02237B  
Similarly, to disable the Software Data Protection,  
the user has to write specific data bytes into six  
different locations, as shown in Figure 5. This  
complex series of operations protects against the  
chance of inadvertent enabling or disabling of the  
Software Data Protection mechanism.  
When SDP is enabled, the memory array can still  
have data written to it, but the sequence is more  
complex (and hence better protected from  
inadvertent use). The sequence is as shown in  
Figure 5. This consists of an unlock key, to enable  
the write action, at the end of which the SDP  
continues to be enabled. This allows the SDP to  
be enabled, and data to be written, within a single  
Write cycle (t ).  
WC  
7/23  
M28010  
Software Chip Erase  
addressed memory byte. This indicates that the  
device is again available for new Read and Write  
operations.  
The device can be erased (with all bytes set to  
FFh) by using a six-byte software command code.  
This operation can be initiated only if the user  
loads, with a Page Write addressing mode, six  
specific data bytes to six specific locations (as  
shown in Figure 6). The complexity of the  
sequence has been designed to guard against  
inadvertent use of the command.  
Page Load Timer Status bit (DQ5). An internal  
timer is used to measure the period between  
successive Write operations, up to t  
WLQ5H  
(defined in Table 9A to Table 9C). The DQ5 line is  
held low to show when this timer is running (hence  
showing that the device has received one write  
operation, and is waiting for the next). The DQ5  
line is held high when the counter has overflowed  
(hence showing that the device is now starting the  
internal write to the memory array).  
Page Write Abort bit (DQ1). During a page write  
operation, the A16 to A7 signals should be kept  
constant. They should not change while  
successive data bytes are being transferred to the  
internal latches of the memory device. If a change  
occurs on any of the pins, A16 to A7, during the  
page write operation (that is, before the falling  
edge of W or E, which ever occurs later), the  
internal write cycle is not started, and the internal  
circuitry is completely reset.  
Status Bits  
The devices provide five status bits (DQ7, DQ6,  
DQ5, DQ1 and DQ0) for use during write  
operations. These allow the application to use the  
write time latency of the device for getting on with  
other work. These signals are available on the I/O  
port bits DQ7, DQ6, DQ5, DQ1 and DQ0 (but only  
during the internal write cycle, t  
Data Polling bit (DQ7). The internally timed write  
cycle starts as soon as t (defined in Table  
9A to Table 9C) has elapsed since the previous  
byte was latched in to the memory. The value of  
the DQ7 bit of this last byte, is used as a signal  
throughout this write operation: it is inverted while  
the internal write operation is underway, and is  
inverted back to its original value once the  
operation is complete.  
).  
Q5HQ5X  
WLQ5H  
The abort signal can be observed on the DQ1 pin,  
using a normal read operation. This can be  
performed at any time during the byte load cycle,  
t
, or while the W input is being held high  
WLQ5H  
Toggle bit (DQ6). The device offers another way  
for determining when the internal write cycle is  
running. During the internal write cycle, DQ6  
toggles from ’0’ to ’1’ and ’1’ to ’0’ (the first read  
value being ’0’) on subsequent attempts to read  
any byte of the memory. When the internal write  
cycle is complete, the toggling is stopped, and the  
values read on DQ7-DQ0 are those of the  
between two load cycles. The default value of DQ1  
is initially set to ’0’ and changes to ’1’ if the internal  
circuitry has detected a change on any of the  
address pins A16 to A7. This PWA bit can be  
checked regardless of whether Software Data  
Protection is enabled or disabled.  
Table 5A. Read Mode DC Characteristics for M28010 (5V range)  
(T = –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
5
Unit  
µA  
µA  
mA  
mA  
mA  
µA  
V
0 V V V  
ILI  
Input Leakage Current  
Output Leakage Current  
IN  
CC  
ILO  
0 V V  
V  
5
OUT  
CC  
E = V , G = V , f = 0.1 MHz  
2
IL  
IL  
1
E = V , G = V , f = 5 MHz  
Supply Current (CMOS inputs)  
22  
40  
50  
0.8  
ICC  
IL  
IL  
E = V , G = V , f = 10 MHz  
IL  
IL  
1
Supply Current (Stand-by) CMOS  
Input Low Voltage  
E > V – 0.3 V  
CC  
ICC1  
VIL  
VIH  
VOL  
VOH  
–0.3  
2
V
+ 0.3  
Input High Voltage  
V
CC  
I
= 2.1 mA  
Output Low Voltage  
0.4  
V
OL  
I
= –400 µA  
Output High Voltage  
2.4  
V
OH  
Note: 1. All inputs and outputs open circuit.  
8/23  
M28010  
Table 5B. Read Mode DC Characteristics for M28010-W (3V range)  
(T = –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
µA  
0 V V V  
ILI  
Input Leakage Current  
Output Leakage Current  
5
5
IN  
CC  
0 V V  
V  
CC  
ILO  
µA  
OUT  
E = V , G = V , f = 0.1 MHz  
2
mA  
mA  
mA  
IL  
IL  
1
E = V , G = V , f = 5 MHz  
Supply Current (CMOS inputs)  
15  
26  
IL  
IL  
ICC  
E = V , G = V , f = 10 MHz  
IL  
IL  
1
E > V – 0.3 V  
Supply Current (Stand-by) CMOS  
Input Low Voltage  
30  
µA  
V
ICC1  
CC  
VIL  
VIH  
VOL  
VOH  
–0.3  
2
0.6  
V
+ 0.3  
Input High Voltage  
V
CC  
I
= 1.6 mA  
Output Low Voltage  
0.45  
V
OL  
I
= –100 µA  
Output High Voltage  
2.4  
V
OH  
Note: 1. All inputs and outputs open circuit.  
Table 5C. Read Mode DC Characteristics for M28010-R (2V range)  
(T = –40 to 85 °C; V = 1.8 to 2.4 V)  
A
CC  
Symbol  
Parameter  
Test Condition  
Min.  
Max.  
Unit  
µA  
0 V V V  
ILI  
Input Leakage Current  
Output Leakage Current  
5
5
IN  
CC  
ILO  
0 V V V  
OUT CC  
µA  
E = V , G = V , f = 0.1 MHz, V = 2.4 V  
2
mA  
mA  
IL  
IL  
CC  
1
Supply Current (CMOS inputs)  
ICC  
E = V , G = V , f = 5 MHz, V = 2.4 V  
12  
IL  
IL  
CC  
1
E > V – 0.3 V  
Supply Current (Stand-by) CMOS  
Input Low Voltage  
30  
µA  
V
ICC1  
CC  
VIL  
VIH  
VOL  
VOH  
–0.3  
0.2  
V
–0.3  
CC  
V
+0.3  
CC  
Input High Voltage  
V
I
= 0.4 mA  
Output Low Voltage  
0.15  
V
OL  
I
= –100 µA  
V
–0.15  
CC  
Output High Voltage  
V
OH  
Note: 1. All inputs and outputs open circuit.  
Software Data Protection bit (DQ0). Reading the  
SDP bit (DQ0) allows the user to determine  
whether the Software Data Protection mode has  
been enabled (SDP=1) or disabled (SDP=0). The  
SDP bit (DQ0) can be read by using a dedicated  
algorithm (as shown in Figure 8), or can be  
combined with the reading of the DP bit (DQ7), TB  
bit (DQ6) and PLTS bit (DQ5).  
9/23  
M28010  
1
Table 6. Input and Output Parameters (T = 25 °C, f = 1 MHz)  
A
Symbol  
CIN  
Parameter  
Input Capacitance  
Output Capacitance  
Test Condition  
VIN = 0 V  
Min.  
Max.  
6
Unit  
pF  
COUT  
VOUT = 0 V  
12  
pF  
Note: 1. Sampled only, not 100% tested.  
Table 7. AC Measurement Conditions  
Figure 10. AC Testing Equivalent Load Circuit  
Input Rise and Fall Times  
5 ns  
0 V to V  
Input Pulse Voltages  
CC  
V
/2  
CC  
Input and Output Timing Ref. Voltages  
I
OL  
DEVICE  
UNDER  
TEST  
Figure 9. AC Testing Input Output Waveforms  
OUT  
I
OH  
V
CC  
C
= 30pF  
L
V
/2  
CC  
0V  
AI02228  
C
includes JIG capacitance  
L
AI02578  
Table 8A. Read Mode AC Characteristics for M28010 (5V range)  
(T = –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28010  
Test  
Condit  
ion  
Symbol  
Alt.  
Parameter  
–10  
–12  
Unit  
Min  
Max  
Min  
Max  
E = V ,  
IL  
t
t
ACC  
Address Valid to Output Valid  
100  
120  
ns  
AVQV  
G = V  
G = V  
E = V  
IL  
t
t
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
100  
40  
120  
45  
ns  
ns  
ns  
ELQV  
CE  
IL  
t
t
GLQV  
OE  
IL  
1
t
G = V  
0
0
40  
0
0
45  
t
DF  
IL  
IL  
EHQZ  
1
t
E = V  
Output Enable High to Output Hi-Z  
40  
45  
ns  
ns  
t
DF  
GHQZ  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
0
0
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
10/23  
M28010  
Table 8B. Read Mode AC Characteristics for M28010-W (3V range)  
(T = –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28010-W  
–12  
Test  
Condit  
ion  
Symbol  
Alt.  
Parameter  
–10  
–15  
Max  
Unit  
Min  
Max  
Min  
Max  
Min  
E = V ,  
G = V  
IL  
t
t
ACC  
Address Valid to Output Valid  
100  
120  
150  
ns  
AVQV  
IL  
IL  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
100  
70  
120  
80  
150  
100  
ns  
ns  
ELQV  
CE  
t
t
Output Enable Low to Output Valid E = V  
GLQV  
OE  
1
t
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
0
0
50  
50  
0
0
60  
60  
0
0
70  
70  
ns  
ns  
t
DF  
DF  
IL  
EHQZ  
GHQZ  
1
E = V  
t
IL  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
0
0
0
ns  
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
Table 8C. Read Mode AC Characteristics for M28010-R (2V range)  
(T = –40 to 85 °C; V = 1.8 to 2.4 V)  
A
CC  
M28010-R  
Test  
Condit  
ion  
Symbol  
Alt.  
Parameter  
–20  
–25  
Unit  
Min  
Max  
Min  
Max  
E = V ,  
G = V  
IL  
t
t
ACC  
Address Valid to Output Valid  
200  
250  
ns  
AVQV  
IL  
IL  
IL  
t
t
G = V  
Chip Enable Low to Output Valid  
200  
80  
250  
90  
ns  
ns  
ELQV  
CE  
t
t
Output Enable Low to Output Valid E = V  
GLQV  
OE  
1
t
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
0
0
50  
50  
0
0
60  
60  
ns  
ns  
t
DF  
DF  
IL  
EHQZ  
GHQZ  
1
E = V  
t
IL  
E = V ,  
Address Transition to Output  
Transition  
IL  
t
t
0
0
ns  
AXQX  
OH  
G = V  
IL  
Note: 1. Output Hi-Z is defined as the point at which data is no longer driven.  
11/23  
M28010  
Figure 11. Read Mode AC Waveforms (with Write Enable, W, high)  
A0-A16  
E
VALID  
tAVQV  
tAXQX  
tGLQV  
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
DQ0-DQ7  
DATA OUT  
AI02229  
Note: 1. Write Enable (W) = V  
IH  
Table 9A. Write Mode AC Characteristics for M28010 (5V range)  
(T = –40 to 85 °C; V = 4.5 to 5.5 V)  
A
CC  
M28010  
Max  
Symbol  
Alt.  
Parameter  
Test Condition  
E = V , G = V  
IH  
Unit  
Min  
0
t
t
t
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after the last byte write  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ms  
ns  
ns  
AVWL  
AS  
AS  
IL  
t
G = V , W= V  
IH IL  
0
AVEL  
ELWL  
t
t
t
G = V  
E = V  
0
CES  
IH  
IL  
t
0
GHWL  
OES  
t
t
W = V  
IL  
0
GHEL  
OES  
WES  
t
t
G = V  
IH  
0
WLEL  
t
t
70  
70  
100  
0
WLAX  
AH  
t
t
ELAX  
ELEH  
WHEH  
AH  
t
t
WP  
t
t
CEH  
OEH  
t
t
0
WHGL  
EHWH  
WHDX  
t
t
t
0
WEH  
t
0
DH  
t
t
0
EHDX  
DH  
t
t
WPH  
50  
100  
150  
WHWL  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
Byte Write Cycle time  
5
t
t
WC  
Q5HQ5X  
Page Write Cycle time (up to 128 bytes)  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
10  
t
t
50  
50  
DVWH  
DS  
DS  
t
t
DVEH  
12/23  
M28010  
Table 9B. Write Mode AC Characteristics for M28010-W (3V range)  
(T = –40 to 85 °C; V = 2.7 to 3.6 V)  
A
CC  
M28010-W  
Min Max  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after the last byte write  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ms  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W= V  
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
IH  
t
t
E = V  
IL  
0
GHWL  
OES  
t
t
W = V  
IL  
0
GHEL  
OES  
t
t
G = V  
0
WLEL  
WLAX  
WES  
IH  
t
t
70  
70  
100  
0
AH  
t
t
ELAX  
ELEH  
WHEH  
AH  
t
t
WP  
t
t
CEH  
OEH  
t
t
t
t
0
WHGL  
0
EHWH  
WHDX  
WEH  
t
t
0
DH  
t
t
0
EHDX  
DH  
t
t
50  
100  
150  
WHWL  
WPH  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
Byte Write Cycle time  
5
t
t
WC  
Q5HQ5X  
Page Write Cycle time (up to 128 bytes)  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
10  
t
t
80  
80  
DVWH  
DS  
DS  
t
t
DVEH  
13/23  
M28010  
Table 9C. Write Mode AC Characteristics for M28010-R (2V range)  
(T = –40 to 85 °C; V = 1.8 to 2.4 V)  
A
CC  
M28010-R  
Symbol  
Alt.  
Parameter  
Test Condition  
Unit  
Min  
Max  
t
t
E = V , G = V  
IH  
Address Valid to Write Enable Low  
Address Valid to Chip Enable Low  
Chip Enable Low to Write Enable Low  
Output Enable High to Write Enable Low  
Output Enable High to Chip Enable Low  
Write Enable Low to Chip Enable Low  
Write Enable Low to Address Transition  
Chip Enable Low to Address Transition  
Chip Enable Low to Chip Enable High  
Write Enable High to Chip Enable High  
Write Enable High to Output Enable Low  
Chip Enable High to Write Enable High  
Write Enable High to Input Transition  
Chip Enable High to Input Transition  
Write Enable High to Write Enable Low  
Write Enable Low to Write Enable High  
Time-out after the last byte write  
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ms  
ns  
ns  
AVWL  
AS  
IL  
t
t
G = V , W= V  
AVEL  
AS  
IH  
IL  
t
t
G = V  
0
ELWL  
CES  
IH  
t
t
E = V  
0
GHWL  
OES  
IL  
t
t
W = V  
0
GHEL  
OES  
WES  
IL  
t
t
G = V  
0
WLEL  
IH  
t
t
120  
120  
120  
0
WLAX  
AH  
t
t
t
AH  
ELAX  
t
ELEH  
WP  
t
t
WHEH  
CEH  
OEH  
t
t
t
t
0
WHGL  
0
EHWH  
WHDX  
WEH  
t
t
0
DH  
t
t
0
EHDX  
DH  
t
t
100  
120  
150  
WHWL  
WPH  
t
t
WLWH  
WP  
t
t
BLC  
WLQ5H  
Byte Write Cycle time  
5
t
t
WC  
WHRH  
Page Write Cycle time (up to 128 bytes)  
Data Valid before Write Enable High  
Data Valid before Chip Enable High  
10  
t
t
120  
120  
DVWH  
DS  
DS  
t
t
DVEH  
14/23  
M28010  
Figure 12. Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A16  
E
VALID  
tAVWL  
tELWL  
tGHWL  
tWLAX  
tWHEH  
tWHGL  
G
tWLWH  
W
tWHWL  
DATA IN  
tDVWH  
DQ0-DQ7  
tWHDX  
AI02230  
Figure 13. Write Mode AC Waveforms (Chip Enable, E, controlled)  
A0-A16  
E
VALID  
tAVEL  
tGHEL  
tWLEL  
tELAX  
tELEH  
G
tEHGL  
W
tEHWH  
DATA IN  
tDVEH  
DQ0-DQ7  
tEHDX  
AI02231  
15/23  
M28010  
Figure 14. Page Write Mode AC Waveforms (Write Enable, W, controlled)  
A0-A16  
Addr 0  
Addr 1  
Addr 2  
Addr n  
E
G
tWHWL  
W
tWLWH  
DQ0-DQ7 (in)  
DQ5 (out)  
Byte 0  
Byte 1  
Byte 2  
Byte n  
tWLQ5H  
tQ5HQ5X  
AI02829B  
Figure 15. Software Protected Write Cycle Waveforms  
A0-A6  
Byte Add 0 Byte Add n  
5555h  
2AAAh  
5555h  
1
A7-A16  
Page Add  
E
G
tWHWL  
W
tWLWH  
tDVWH  
55h  
tWHDX  
DQ0-DQ7  
AAh  
A0h  
Byte 0  
Byte n  
AI02233B  
Note: 1. A16 to A7 must specify the same page address during each high-to-low transition of W (or E). G must be high only when W and E  
are both low.  
16/23  
M28010  
Figure 16. Data Polling Sequence Waveforms  
A0-A16  
Address of the last byte of the Page Write instruction  
E
G
tWHGL  
W
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
DQ7  
LAST BYTE  
LOADED  
INTERNAL WRITE SEQUENCE  
OR  
TIME BETWEEN TWO CONSECUTIVE  
BYTES LOADING  
READY  
AFTER INTERNAL  
WRITE SEQUENCE  
AI02234  
Figure 17. Toggle Bit Sequence Waveforms  
A0-A16  
Address of the last byte of the Page Write instruction  
E
G
W
DQ6  
(1)  
LAST BYTE  
LOADED  
TOGGLE  
INTERNAL WRITE SEQUENCE  
OR  
READY  
AFTER INTERNAL  
WRITE SEQUENCE  
TIME BETWEEN TWO CONSECUTIVE  
BYTES LOADING  
AI02235  
Note: 1. The Toggle Bit is first set to ‘0’.  
17/23  
M28010  
Table 10. Ordering Information Scheme  
Example:  
M28010  
10  
W
KA  
6
T
Option  
T
Tape & Reel Packing  
Speed  
100 ns  
120 ns  
Temperature Range  
0 to 70 °C  
-10  
-12  
1
1
6
-15  
-20  
-25  
150 ns  
200 ns  
250 ns  
–40 to 85 °C  
Operating Voltage  
Package  
PDIP32  
blank 4.5 V to 5.5 V  
BA  
KA  
W
R
2.7 V to 3.6 V  
1.8 V to 2.4 V  
PLCC32  
NA TSOP32: 8 x 20mm  
Note: 1. This temperature range on request only.  
ORDERING INFORMATION  
Devices are shipped from the factory with the  
memory content set at all ‘1’s (FFh).  
The notation used for the device number is as  
shown in Table 10. For a list of available options  
(speed, package, etc.) or for further information on  
any aspect of this device, please contact the ST  
Sales Office nearest to you.  
18/23  
M28010  
Table 11. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min.  
inches  
Min.  
Symbol  
Typ.  
Max.  
5.08  
Typ.  
Max.  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
41.78  
0.30  
42.04  
0.008  
1.645  
0.012  
1.655  
D
D2  
E
38.10  
15.24  
1.500  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.600  
15.24  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.03  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.080  
10°  
S
α
N
32  
32  
Figure 18. PDIP32 (BA)  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Note: 1. Drawing is not to scale.  
19/23  
M28010  
Table 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular  
mm  
inches  
Min.  
0.100  
0.060  
Symbol  
Typ.  
Min.  
2.54  
1.52  
Max.  
3.56  
2.41  
0.38  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ.  
Max.  
0.140  
0.095  
0.015  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
A2  
B
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 19. PLCC32 (KA)  
D
A1  
D1  
A2  
1
N
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Note: 1. Drawing is not to scale.  
20/23  
M28010  
Table 13. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20mm, Package Mechanical Data  
mm  
inches  
Symbol  
Typ.  
Min.  
Max.  
1.20  
0.17  
1.05  
0.27  
0.21  
20.20  
18.50  
8.10  
Typ.  
Min.  
Max.  
0.047  
0.006  
0.041  
0.011  
0.008  
0.795  
0.728  
0.319  
A
A1  
A2  
B
0.05  
0.95  
0.15  
0.10  
19.80  
18.30  
7.90  
0.002  
0.037  
0.006  
0.004  
0.780  
0.720  
0.311  
C
D
D1  
E
e
0.50  
0.020  
L
0.50  
0°  
0.70  
5°  
0.020  
0°  
0.028  
5°  
α
N
32  
32  
CP  
0.10  
0.004  
Figure 20. TSOP32 (NS)  
A2  
1
N
e
E
B
N/2  
D1  
A
CP  
D
DIE  
C
TSOP-a  
A1  
α
L
Note: 1. Drawing is not to scale.  
21/23  
M28010  
Table 14. Revision History  
Date  
Description of Revision  
15-Feb-2000  
28-Feb-2000  
I
t
(max), in Read Mode DC Char table for 5V, changed from 30 µA to 50 µA.  
CC1  
(min) and t  
DVWH  
(min), in Write Mode AC Char table for 3V, changed from 50 ns to 80 ns  
DVEH  
22/23  
M28010  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of useof such information nor for any infringement of patents or other rights of third parties which may result from its use. No license isgranted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics.  
2000 STMicroelectronics - All Rights Reserved  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore -  
Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
23/23  

相关型号:

M28010-15WBA6T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-15WKA1

128KX8 EEPROM 3V, 150ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28010-15WKA1T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-15WKA6T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-15WNA1T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-15WNA6T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-20BA1T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-20BA6

128KX8 EEPROM 5V, 200ns, PDIP32, PLASTIC, DIP-32
STMICROELECTR

M28010-20BA6T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-20KA1

128KX8 EEPROM 5V, 200ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M28010-20KA1T

1 Mbit 128K x 8 Parallel EEPROM With Software Data Protection
STMICROELECTR

M28010-20KA6

暂无描述
STMICROELECTR