M27V256-100F6TR [STMICROELECTRONICS]

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM; 256千位32Kb的×8低电压UV EPROM和OTP EPROM
M27V256-100F6TR
型号: M27V256-100F6TR
厂家: ST    ST
描述:

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
256千位32Kb的×8低电压UV EPROM和OTP EPROM

可编程只读存储器 电动程控只读存储器
文件: 总15页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27V256  
256 Kbit (32Kb x 8) Low Voltage UV EPROM and OTP EPROM  
LOW VOLTAGE READ OPERATION:  
3V to 3.6V  
FAST ACCESS TIME: 90ns  
LOW POWER CONSUMPTION:  
28  
– Active Current 10mA at 5MHz  
28  
– Standby Current 10µA  
1
1
PROGRAMMING VOLTAGE: 12.75V ± 0.25V  
FDIP28W (F)  
PDIP28 (B)  
PROGRAMMING TIME: 100µs/byte (typical)  
ELECTRONIC SIGNATURE  
– Manufacturer Code: 20h  
– Device Code: 8Dh  
DESCRIPTION  
The M27V256 is a low voltage 256 Kbit EPROM  
offered in the two ranges UV (ultra violet erase)  
and OTP (one time programmable). It is ideally  
suited for microprocessor systems and is orga-  
nized as 32,768 by 8 bits.  
PLCC32 (K)  
TSOP28 (N)  
8 x 13.4mm  
Figure 1. Logic Diagram  
The M27V256 operates in the read mode with a  
supply voltage as low as 3V. The decrease in op-  
erating power allows either a reduction of the size  
of the battery or an increase in the time between  
battery recharges.  
The FDIP28W (window ceramic frit-seal package)  
has a transparent lid which allows the user to ex-  
pose the chip to ultraviolet light to erase the bit pat-  
tern. A new pattern can then be written to the  
device by following the programming procedure.  
V
V
PP  
CC  
15  
8
A0-A14  
Q0-Q7  
Table 1. Signal Names  
E
M27V256  
A0-A14  
Q0-Q7  
E
Address Inputs  
Data Outputs  
Chip Enable  
Output Enable  
Program Supply  
Supply Voltage  
Ground  
G
G
V
SS  
V
V
V
PP  
CC  
SS  
AI01908  
May 1998  
1/15  
M27V256  
Figure 2A. DIP Pin Connections  
Figure 2B. LCC Pin Connections  
V
1
2
3
4
5
6
7
8
9
28  
V
CC  
PP  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
27 A14  
26 A13  
25 A8  
24 A9  
23 A11  
1 32  
A6  
A8  
A9  
A11  
NC  
G
A5  
A4  
A3  
22  
G
M27V256  
21 A10  
20  
A2  
A1  
A0  
NC  
Q0  
9
M27V256  
25  
E
A10  
E
A0 10  
Q0 11  
Q1 12  
Q2 13  
19 Q7  
18 Q6  
17 Q5  
16 Q4  
15 Q3  
Q7  
Q6  
17  
V
14  
SS  
AI01909  
AI01910  
Warning: NC = Not Connected, DU = Dont’t Use.  
Figure 2C. TSOP Pin Connections  
For applications where the content is programmed  
only one time and erasure is not required, the  
M27V256 is offered in PDIP28, PLCC32 and  
TSOP28 (8 x 13.4 mm) packages.  
G
A11  
A9  
22  
21  
A10  
E
DEVICE OPERATION  
The modes of operation of the M27V256 are listed  
in the Operating Modes. A single power supply is  
required in the read mode. All inputs are TTL lev-  
Q7  
Q6  
Q5  
Q4  
Q3  
A8  
A13  
A14  
els except for V and 12V on A9 for Electronic  
PP  
Signature.  
Read Mode  
V
28  
1
15  
14  
CC  
M27V256  
V
PP  
V
The M27V256 has two control functions, both of  
which must be logically active in order to obtain  
data at the outputs. Chip Enable (E) is the power  
control and should be used for device selection.  
Output Enable (G) is the output control and should  
be used to gate data to the output pins, indepen-  
dent of device selection. Assuming that the ad-  
dresses are stable, the address access time  
SS  
A12  
Q2  
Q1  
Q0  
A0  
A1  
A2  
A7  
A6  
A5  
A4  
A3  
7
8
(t  
(t  
of t  
) is equal to the delay from E to output  
). Data is available at the output after delay  
AVQV  
ELQV  
AI01911  
from the falling edge of G, assuming that  
GLQV  
E has been low and the addresses have been sta-  
ble for at least t -t  
.
AVQV GLQV  
2/15  
M27V256  
(1)  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
–40 to 125  
–50 to 125  
–65 to 150  
–2 to 7  
Unit  
°C  
°C  
°C  
V
(3)  
T
A
Ambient Operating Temperature  
T
Temperature Under Bias  
Storage Temperature  
Input or Output Voltage (except A9)  
Supply Voltage  
BIAS  
T
STG  
(2)  
V
IO  
V
–2 to 7  
V
CC  
(2)  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
V
A9  
V
Program Supply Voltage  
V
PP  
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may  
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions  
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi-  
tions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-  
ity documents.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC  
voltage on Output is V  
3. Depends on range.  
+0.5V with possible overshoot to V  
+2V for a period less than 20ns.  
CC  
CC  
Table 3. Operating Modes  
Mode  
V
E
G
A9  
X
Q0-Q7  
Data Out  
Hi-Z  
PP  
V
V
V
Read  
IL  
IL  
IL  
CC  
CC  
Output Disable  
Program  
V
V
V
X
V
IH  
IH  
V
Pulse  
V
V
V
V
X
Data In  
Data Out  
Hi-Z  
IL  
PP  
PP  
PP  
Verify  
V
V
V
X
IH  
IH  
IH  
IL  
V
V
Program Inhibit  
Standby  
X
IH  
X
X
Hi-Z  
CC  
CC  
V
V
V
V
Electronic Signature  
Codes  
IL  
IL  
ID  
Note: X = V or V , V = 12V ± 0.5V.  
IH IL ID  
Table 4. Electronic Signature  
Identifier  
Manufacturer’s Code  
Device Code  
A0  
Q7  
0
Q6  
0
Q5  
1
Q4  
0
Q3  
0
Q2  
0
Q1  
0
Q0  
0
Hex Data  
20h  
V
IL  
V
1
0
0
0
1
1
0
1
8Dh  
IH  
Standby Mode  
placed in the standby mode by applying a CMOS  
high signal to the E input. When in the standby  
mode, the outputs are in a high impedance state,  
independent of the G input.  
The M27V256 has a standby mode which reduces  
the supply current from 10mA to 10µA with low  
voltage operation V 3.6V, see Read Mode DC  
CC  
Characteristics table for details. The M27V256 is  
3/15  
M27V256  
Table 5. AC Measurement Conditions  
High Speed  
10ns  
Standard  
20ns  
Input Rise and Fall Times  
Input Pulse Voltages  
0 to 3V  
1.5V  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 3. AC Testing Input Output Waveform  
Figure 4. AC Testing Load Circuit  
1.3V  
High Speed  
1N914  
3V  
1.5V  
3.3kΩ  
0V  
DEVICE  
UNDER  
TEST  
OUT  
Standard  
C
L
2.4V  
2.0V  
0.8V  
0.4V  
C
C
C
= 30pF for High Speed  
= 100pF for Standard  
includes JIG capacitance  
L
L
L
AI01822  
AI01823B  
(1)  
Table 6. Capacitance  
Symbol  
(T = 25 °C, f = 1 MHz)  
A
Parameter  
Test Condition  
= 0V  
Min  
Max  
6
Unit  
pF  
C
V
IN  
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
V
= 0V  
OUT  
12  
pF  
Note: Sampled only, not 100% tested.  
Two Line Output Control  
system control bus. This ensures that all deselect-  
ed memory devices are in their low power standby  
mode and hat the output pins are only active when  
data is desired from a particular memory device.  
Because EPROMs are usually used in larger  
memory arrays, this product features a 2 line con-  
trol function which accommodates the use of mul-  
tiple memory connection. The two line control  
function allows:  
System Considerations  
The power switching characteristics of Advance  
CMOS EPROMs require careful decoupling of the  
a. the lowest possible memory power dissipation,  
b. complete assurance that output bus contention  
will not occur.  
devices. The supply current, I , has three seg-  
CC  
ments that are of interest to the system designer:  
the standby current level, the active current level,  
and transient current peaks that are produced by  
the falling and rising edges of E. The magnitude of  
this transient current peaks is dependent on the  
capacitive and inductive loading of the device at  
the output.  
For the most efficient use of these two control  
lines, Eshould be decoded and used as the prima-  
ry device selecting function, while G should be  
made a common connection to all devices in the  
array and connected to the READ line from the  
4/15  
M27V256  
(1)  
Table 7. Read Mode DC Characteristics  
(TA = 0 to 70°C or –40 to 85°C; V = 3.3V ± 10%; V = V )  
CC  
CC  
PP  
Symbol  
Parameter  
Input Leakage Current  
Output Leakage Current  
Test Condition  
Min  
Max  
±10  
±10  
Unit  
µA  
I
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
µA  
LO  
E = V , G = V , I  
= 0mA,  
IL  
IL OUT  
I
Supply Current  
10  
mA  
CC  
f = 5MHz, V 3.6V  
CC  
I
E = V  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
1
mA  
µA  
µA  
V
CC1  
IH  
I
10  
10  
0.8  
E > V – 0.2V, V 3.6V  
CC2  
CC  
CC  
I
V
= V  
PP CC  
PP  
V
Input Low Voltage  
–0.3  
2
IL  
(2)  
V
+ 1  
Input High Voltage  
V
V
CC  
IH  
V
I
I
= 2.1mA  
= –400µA  
= –100µA  
Output Low Voltage  
0.4  
V
V
V
OL  
OL  
Output High Voltage TTL  
Output High Voltage CMOS  
2.4  
OH  
OH  
V
OH  
I
Vcc – 0.7V  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Maximum DC voltage on Output is V +0.5V.  
CC  
(1)  
Table 8A. Read Mode AC Characteristics  
(T = 0 to 70 °C or –40 to 85°; V = 3.3V ± 10%; V = V  
)
CC  
A
CC  
PP  
M27V256  
Unit  
(3)  
Symbol  
Alt  
Parameter  
Test Condition  
-100  
Min Max  
-90  
Min  
Max  
t
t
Address Valid to Output Valid  
Chip Enable Low to Output Valid  
Output Enable Low to Output Valid  
E = V , G = V  
90  
90  
40  
100  
100  
45  
ns  
ns  
ns  
AVQV  
ACC  
IL  
IL  
t
t
t
G = V  
IL  
ELQV  
CE  
t
E = V  
IL  
GLQV  
(2)  
OE  
t
Chip Enable High to Output Hi-Z  
Output Enable High to Output Hi-Z  
G = V  
0
0
25  
25  
0
0
30  
30  
ns  
ns  
t
DF  
IL  
EHQZ  
(2)  
t
E = V  
t
DF  
IL  
GHQZ  
Address Transition to Output  
Transition  
t
t
E = V , G = V  
IL IL  
0
0
ns  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
3. Speed obtained with High Speed AC measurement conditions.  
The associated transient voltage peaks can be  
suppressed by complying with the two line output  
control and by properly selected decoupling ca-  
pacitors. It is recommended that a 0.1µF ceramic  
placed as close to the device as possible. In addi-  
tion, a 4.7µF bulk electrolytic capacitor should be  
used between V and V for every eight devic-  
CC  
SS  
es. The bulk capacitor should be located near the  
power supply connection point. The purpose of the  
bulk capacitor is to overcome the voltage drop  
caused by the inductive effects of PCB traces.  
capacitor be used on every device between V  
CC  
and V . This should be a high frequency capaci-  
SS  
tor of low inherent inductance and should be  
5/15  
M27V256  
(1)  
Table 8B. Read Mode AC Characteristics  
(T = 0 to 70°C or –40 to 85 °C; V = 3.3V ± 10%; V = Vcc)  
A
CC  
PP  
M27V256  
-150  
Unit  
Symbol Alt  
Parameter  
Test Condition  
-120  
-200  
Min Max Min Max Min Max  
t
t
E = V , G = V  
Address Valid to Output Valid  
120  
120  
150  
150  
200  
200  
ns  
ns  
AVQV  
ACC  
IL  
IL  
Chip Enable Low to Output  
Valid  
t
t
t
G = V  
IL  
ELQV  
CE  
Output Enable Low to Output  
Valid  
t
E = V  
45  
35  
35  
50  
40  
40  
60  
50  
50  
ns  
ns  
ns  
ns  
GLQV  
OE  
IL  
Chip Enable High to Output  
Hi-Z  
(2)  
t
t
t
G = V  
0
0
0
0
0
0
0
0
0
t
DF  
DF  
IL  
IL  
EHQZ  
Output Enable High to Output  
Hi-Z  
(2)  
E = V  
t
GHQZ  
Address Transition to Output  
Transition  
t
E = VIL, G = VIL  
AXQX  
OH  
Note: 1. V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
2. Sampled only, not 100% tested.  
Figure 5. Read Mode AC Waveforms  
VALID  
tGLQV  
VALID  
A0-A14  
tAVQV  
tAXQX  
E
tEHQZ  
tGHQZ  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00758B  
Programming  
Although only ’0’s will be programmed, both ’1’s  
and ’0’s can be present in the data word. The only  
way to change a ’0’ to a ’1’ is by die exposition to  
ultraviolet light (UV EPROM). The M27V256 is in  
The M27V256 has been designed to be fully com-  
patible with the M27C256B and has the same  
electronic signature. As a result the M27V256 can  
be programmed as the M27C256B on the same  
programming equipments applying 12.75V on V  
and 6.25V on V by the use of the same PRES-  
TO II algorithm. When delivered (and after each  
erasure for UV EPROM), all bits of the M27V256  
are in the ’1’ state. Data is introduced by selective-  
ly programming ’0’s into the desired bit locations.  
the programming mode when V  
input is at  
PP  
12.75V, G is at V and E is pulsed to V . The data  
PP  
IH  
IL  
to be programmed is applied to 8 bits in parallel to  
the data output pins. The levels required for the  
CC  
address and data inputs are TTL. V is specified  
CC  
to be 6.25 V ± 0.25 V.  
6/15  
M27V256  
(1)  
Table 9. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V)  
A
CC  
PP  
Symbol  
Parameter  
Test Condition  
Min  
Max  
±10  
50  
Unit  
µA  
mA  
mA  
V
I
Input Leakage Current  
Supply Current  
V
V V  
LI  
IL  
IN  
IH  
I
CC  
I
PP  
E = V  
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
50  
IL  
V
–0.3  
2
0.8  
IL  
V
V
+ 0.5  
CC  
V
IH  
V
OL  
I
= 2.1mA  
= –1mA  
0.4  
V
OL  
V
I
OH  
3.6  
V
OH  
V
11.5  
12.5  
V
ID  
Note: V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
(1)  
Table 10. Programming Mode AC Characteristics  
(T = 25 °C; V = 6.25V ± 0.25V; V = 12.75V ± 0.25V  
A
CC  
PP  
Symbol  
Alt  
Parameter  
Test Condition  
Min  
2
Max  
Unit  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
t
t
AS  
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
AVEL  
t
t
2
QVEL  
DS  
t
t
V
V
High to Chip Enable Low  
High to Chip Enable Low  
2
VPHEL  
VCHEL  
VPS  
VCS  
PP  
CC  
t
t
2
t
t
Chip Enable Program Pulse Width  
Chip Enable High to Input Transition  
Input Transition to Output Enable Low  
Output Enable Low to Output Valid  
Output Enable High to Output Hi-Z  
95  
2
105  
ELEH  
PW  
t
t
DH  
EHQX  
t
t
2
QXGL  
GLQV  
GHQZ  
OES  
t
t
100  
130  
OE  
t
t
DFP  
0
0
ns  
Output Enable High to Address  
Transition  
t
t
ns  
GHAX  
AH  
Note: V must be applied simultaneously with or before V and removed simultaneously or after V .  
PP  
CC  
PP  
7/15  
M27V256  
Figure 6. rogramming and Verify Modes AC Waveforms  
VALID  
A0-A14  
tAVEL  
Q0-Q7  
DATA IN  
tQVEL  
DATA OUT  
tEHQX  
V
PP  
tVPHEL  
tVCHEL  
tELEH  
tGLQV  
tGHQZ  
tGHAX  
V
CC  
E
tQXGL  
G
PROGRAM  
VERIFY  
AI00759  
Figure 7. Programming Flowchart  
PRESTO II Programming Algorithm  
PRESTO II Programming Algorithm allows to pro-  
gram the whole array with a guaranteed margin, in  
a typical time of 3.5 seconds. Programming with  
PRESTO II involves the application of a sequence  
of 100µs program pulses to each byte until a cor-  
rect verify occurs (see Figure 7). During program-  
ming and verify operation, a MARGIN MODE  
circuit is automatically activated in order to guar-  
antee that each cell is programmed with enough  
margin. No overprogram pulse is applied since the  
V
= 6.25V, V  
= 12.75V  
PP  
CC  
n = 0  
E = 100µs Pulse  
verify in MARGIN MODE at V much higher than  
CC  
NO  
3.6V provides necessary margin to each pro-  
grammed cell.  
Program Inhibit  
NO  
++n  
= 25  
VERIFY  
YES  
++ Addr  
Programming of multiple M27V256s in parallel  
with different data is also easily accomplished. Ex-  
cept for E, all like inputs including G of the parallel  
M27V256 may be common. A TTL low level pulse  
YES  
Last  
NO  
FAIL  
Addr  
applied to a M27V256’s E input, with V at 12.75  
PP  
YES  
V, will program that M27V256. A high level E input  
inhibits the other M27V256s from being pro-  
grammed.  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
Program Verify  
A verify (read) should be performed on the pro-  
grammed bits to determine that they were correct-  
ly programmed. The verify is accomplished with G  
AI00760B  
at V , E at V , V at 12.75V and V at 6.25V.  
IL  
IH  
PP  
CC  
8/15  
M27V256  
On-Board Programming  
ERASURE OPERATION (applies for UV EPROM)  
The M27V256 can be directly programmed in the  
application circuit. See the relevant Application  
Note AN620.  
The erasure characteristics of the M27V256 is  
such that erasure begins when the cells are ex-  
posed to light with wavelengths shorter than ap-  
proximately 4000 Å. It should be noted that  
sunlight and some type of fluorescent lamps have  
wavelengths in the 3000-4000 Å range. Research  
shows that constant exposure to room level fluo-  
rescent lighting could erase a typical M27V256 in  
about 3 years, while it would take approximately 1  
week to cause erasure when exposed to direct  
sunlight. If the M27V256 is to be exposed to these  
types of lighting conditions for extended periods of  
time, it is suggested that opaque labels be put over  
the M27V256 window to prevent unintentional era-  
sure. The recommended erasure procedure for  
the M27V256 is exposure to short wave ultraviolet  
light which has wavelength 2537Å. The integrated  
dose (i.e. UV intensity x exposure time) for erasure  
Electronic Signature  
The Electronic Signature (ES) mode allows the  
reading out of a binary code from an EPROM that  
will identify its manufacturer and type. This mode  
is intended for use by programming equipment to  
automatically match the device to be programmed  
with its corresponding programming algorithm.  
The ES mode is functional in the 25°C ± 5°C am-  
bient temperature range that is required when pro-  
gramming theM27V256. To activate the ES mode,  
the programming equipment must force 11.5V to  
12.5V on address line A9 of the M27V256, with  
V
= V = 5V. Two identifier bytes may then be  
CC  
PP  
sequenced from the device outputs by toggling ad-  
dress line A0 from V to V . All other address  
2
IL  
IH  
should be a minimum of 15 W-sec/cm . The era-  
lines must be held at V during Electronic Signa-  
IL  
sure time with this dosage is approximately 15 to  
20 minutes using an ultraviolet lamp with 12000  
ture mode. Byte 0 (A0=V ) represents the manu-  
IL  
facturer code and byte 1 (A0=V ) the device  
2
IH  
µW/cm power rating. The M27V256 should be  
identifier code. For the STMicroelectronics  
M27V256, these two identifier bytes are given in  
Table 4 and can be read-out on outputs Q0 to Q7.  
Note that the M27V256 and M27C256B have the  
same identifier bytes.  
placed within 2.5 cm (1 inch) of the lamp tubes  
during the erasure. Some lamps have a filter on  
their tubes which should be removed before era-  
sure.  
9/15  
M27V256  
Table 11. Ordering Information Scheme  
Example:  
M27V256  
-90  
K
1
TR  
Device Type  
Speed  
(1)  
-90  
= 90 ns  
-100 = 100 ns  
-120 = 120 ns  
-150 = 150 ns  
-200 = 200 ns  
Package  
F = FDIP28W  
B = PDIP28  
K = PLCC32  
N = TSOP28: 8 x 13.4mm  
Temperature Range  
1 = –0 to 70 °C  
6 = –40 to 85 °C  
Option  
TR =Tape & Reel Packing  
Note: 1. High Speed, see AC Characteristics section for further information.  
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this de-  
vice, please contact the ST Sales Office nearest to you.  
10/15  
M27V256  
Table 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
mm  
inches  
Symb  
Typ  
Min  
Max  
5.72  
1.40  
4.57  
4.50  
0.56  
Typ  
Min  
Max  
0.225  
0.055  
0.180  
0.177  
0.022  
A
A1  
A2  
A3  
B
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
36.50  
0.30  
37.34  
0.009  
1.437  
0.012  
1.470  
D
D2  
E
33.02  
15.24  
1.300  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
0.637  
0.125  
0.060  
0.710  
S
2.49  
0.098  
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
28  
28  
Figure 8. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
Drawing is not to scale.  
11/15  
M27V256  
Table 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
5.08  
Typ  
Max  
0.200  
A
A1  
A2  
B
0.38  
3.56  
0.38  
0.015  
0.140  
0.015  
4.06  
0.51  
0.160  
0.020  
B1  
C
1.52  
0.060  
0.20  
36.83  
0.30  
37.34  
0.008  
1.450  
0.012  
1.470  
D
D2  
E
33.02  
15.24  
1.300  
0.600  
E1  
e1  
eA  
eB  
L
13.59  
13.84  
0.535  
0.545  
2.54  
0.100  
0.590  
14.99  
15.24  
3.18  
1.78  
0°  
17.78  
3.43  
2.08  
10°  
0.600  
0.125  
0.070  
0°  
0.700  
0.135  
0.082  
10°  
S
α
N
28  
28  
Figure 9. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
Drawing is not to scale.  
12/15  
M27V256  
Table 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Mechanical Data  
mm  
Min  
2.54  
1.52  
inches  
Min  
0.100  
0.060  
Symb  
Typ  
Max  
3.56  
2.41  
0.38  
0.53  
0.81  
12.57  
11.56  
10.92  
15.11  
14.10  
13.46  
Typ  
Max  
0.140  
0.095  
0.015  
0.021  
0.032  
0.495  
0.455  
0.430  
0.595  
0.555  
0.530  
A
A1  
A2  
B
0.33  
0.66  
12.32  
11.35  
9.91  
14.86  
13.89  
12.45  
0.013  
0.026  
0.485  
0.447  
0.390  
0.585  
0.547  
0.490  
B1  
D
D1  
D2  
E
E1  
E2  
e
1.27  
0.89  
0.050  
0.035  
F
0.00  
0.25  
0.000  
0.010  
R
N
32  
32  
Nd  
Ne  
CP  
7
7
9
9
0.10  
0.004  
Figure 10. PLCC32 - 32 lead Plastic Leaded Chip Carrier, rectangular, Package Outline  
D
A1  
D1  
A2  
1 N  
B1  
e
Ne  
E1 E  
D2/E2  
F
B
0.51 (.020)  
1.14 (.045)  
Nd  
A
R
CP  
PLCC  
Drawing is not to scale.  
13/15  
M27V256  
Table 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4mm, Package Mechanical Data  
mm  
Min  
1.00  
inches  
Min  
Symb  
Typ  
Max  
1.25  
0.20  
1.05  
0.30  
0.21  
13.70  
11.90  
8.25  
-
Typ  
Max  
0.049  
0.008  
0.041  
0.012  
0.008  
0.539  
0.469  
0.325  
-
A
A1  
A2  
B
0.039  
0.95  
0.037  
C
0.10  
13.10  
11.70  
7.90  
-
0.004  
0.516  
0.461  
0.311  
-
D
D1  
E
e
0.55  
0.022  
L
0.30  
0°  
0.70  
5°  
0.012  
0°  
0.028  
5°  
α
N
28  
28  
CP  
0.10  
0.004  
Figure 11. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4mm, Package Outline  
A2  
22  
21  
e
28  
1
E
B
7
8
D1  
D
A
CP  
DIE  
C
TSOP-c  
A1  
α
L
Drawing is not to scale  
14/15  
M27V256  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is registered trademark of STMicroelectronics  
1998 STMicroelectronics - All Rights Reserved  
All other names are the property of their respective owners.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
15/15  

相关型号:

M27V256-100K1

32KX8 OTPROM, 100ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V256-100K1TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-100K6

32KX8 OTPROM, 100ns, PQCC32, PLASTIC, LCC-32
STMICROELECTR

M27V256-100K6TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-100N1

32KX8 OTPROM, 100ns, PDSO28, 8 X 13.40 MM, PLASTIC, TSOP-28
STMICROELECTR

M27V256-100N1TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-100N6TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-120B1

32KX8 OTPROM, 120ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
STMICROELECTR

M27V256-120B1TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-120B6

32KX8 OTPROM, 120ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
STMICROELECTR

M27V256-120B6TR

256 Kbit 32Kb x 8 Low Voltage UV EPROM and OTP EPROM
STMICROELECTR

M27V256-120BN1

32KX8 OTPROM, 120ns, PDIP28, PLASTIC, DIP-28
STMICROELECTR