M27C512_07 [STMICROELECTRONICS]

512 Kbit (64K x8) UV EPROM and OTP EPROM; 512千位( 64K ×8 ) UV EPROM和OTP EPROM
M27C512_07
型号: M27C512_07
厂家: ST    ST
描述:

512 Kbit (64K x8) UV EPROM and OTP EPROM
512千位( 64K ×8 ) UV EPROM和OTP EPROM

可编程只读存储器 电动程控只读存储器
文件: 总22页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M27C512  
512 Kbit (64K x8) UV EPROM and OTP EPROM  
Features  
5V ± 10% supply voltage in read operation  
Access time: 45 ns  
Low power “CMOS” consumption:  
– Active current 30 mA  
28  
– Standby current 100 µA  
1
Programming voltage: 12.75 V ± 0.25 V  
Programming time around 6 s.  
FDIP28W (F)  
Electronic Signature  
– Manufacturer code: 20h  
– Device code: 3Dh  
Packages  
®
28  
– ECOPACK versions  
1
PDIP28 (B)  
PLCC32 (C)  
Table 1.  
Package  
PDIP28  
Device summary  
45 ns  
70 ns  
90 ns  
100 ns  
120 ns  
150 ns  
M27C512-90B6  
M27C512-  
10C6  
M27C512-  
12C3  
PLCC32  
M27C512-70C6  
M27C512-90C1  
M27C512-  
12F1  
M27C512-90F1  
M27C512-90F6  
M27C512-15F1  
M27C512-15F6  
M27C512-  
10F1  
FDIP28W M27C512-45XF1 M27C512-70XF1  
M27C512-  
12F3  
May 2007  
Rev 3  
1/22  
www.st.com  
1
Contents  
M27C512  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Two line output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
System considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PRESTO IIB programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
5
6
7
8
Erasure operation (applies for UV EPROM) . . . . . . . . . . . . . . . . . . . . . . 9  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/22  
M27C512  
Description  
1
Description  
The M27C512 is a 512 Kbit EPROM offered in the two ranges UV (ultra violet erase) and  
OTP (one time programmable). It is ideally suited for applications where fast turn-around  
and pattern experimentation are important requirements and is organized as 65536 by 8  
bits.  
The FDIP28W (window ceramic frit-seal package) has transparent lid which allows the user  
to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be  
written to the device by following the programming procedure.  
For applications where the content is programmed only one time and erasure is not  
required, the M27C512 is offered in FDIP28W, PDIP28, and PLCC32 packages. In order to  
®
meet environmental requirements, ST offers the M27C512 in ECOPACK packages.  
ECOPACK packages are Lead-free. The category of second Level Interconnect is marked  
on the package and on the inner box label, in compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 1.  
Logic diagram  
V
CC  
16  
8
A0-A15  
Q0-Q7  
E
M27C512  
GV  
PP  
V
SS  
AI00761B  
Table 2.  
Signal names  
Name  
Description  
Direction  
A0-A15  
Q0-Q7  
E
Address Inputs  
Data outputs  
Chip Enable  
Inputs  
Outputs  
Input  
Input  
Supply  
Supply  
-
GVPP  
VCC  
VSS  
Output Enable / Program Supply  
Supply Voltage  
Ground  
NC  
Not Connected Internally  
Don’t Use  
DU  
-
3/22  
Description  
M27C512  
Figure 2.  
DIP connections  
A15  
A12  
A7  
1
2
3
4
5
6
7
8
9
28  
V
CC  
27 A14  
26 A13  
25 A8  
24 A9  
23 A11  
A6  
A5  
A4  
A3  
22 GV  
PP  
21 A10  
20  
M27C512  
A2  
A1  
E
A0 10  
Q0 11  
Q1 12  
Q2 13  
19 Q7  
18 Q6  
17 Q5  
16 Q4  
15 Q3  
V
14  
SS  
AI00762  
Figure 3.  
LCC connections  
1 32  
M27C512  
17  
A6  
A8  
A5  
A4  
A3  
A2  
A1  
A0  
NC  
Q0  
A9  
A11  
NC  
9
25 GV  
PP  
A10  
E
Q7  
Q6  
AI00763  
4/22  
M27C512  
Device operation  
2
Device operation  
The modes of operations of the M27C512 are listed in the Operating Modes table. A single  
power supply is required in the read mode. All inputs are TTL levels except for GV and  
PP  
12V on A9 for Electronic Signature.  
2.1  
2.2  
Read mode  
The M27C512 has two control functions, both of which must be logically active in order to  
obtain data at the outputs. Chip Enable (E) is the power control and should be used for  
device selection. Output Enable (G) is the output control and should be used to gate data to  
the output pins, independent of device selection. Assuming that the addresses are stable,  
the address access time (t  
available at the output after a delay of t  
) is equal to the delay from E to output (t  
). Data is  
AVQV  
ELQV  
from the falling edge of G, assuming that E has  
GLQV  
been low and the addresses have been stable for at least t  
-t  
.
AVQV GLQV  
Standby mode  
The M27C512 has a standby mode which reduces the active current from 30mA to 100µA  
The M27C512 is placed in the standby mode by applying a CMOS high signal to the E input.  
When in the standby mode, the outputs are in a high impedance state, independent of the  
GV input.  
PP  
(1)  
Table 3.  
Operating modes  
Mode  
E
GVPP  
A9  
Q7-Q0  
Read  
VIL  
VIL  
VIL  
VIH  
VPP  
VPP  
X
X
X
Data Out  
Hi-Z  
Output Disable  
Program  
V
IL Pulse  
X
Data In  
Hi-Z  
Program Inhibit  
Standby  
VIH  
X
VIH  
X
Hi-Z  
Electronic Signature  
VIL  
VIL  
VID  
Codes  
1. X = VIH or VIL, VID = 12V ± 0.5V.  
Table 4. Electronic Signature  
Identifier  
A0  
Q7  
Q6  
Q5  
Q4  
Q3  
Q2  
Q1  
Q0 Hex Data  
Manufacturer’s  
Code  
VIL  
VIH  
0
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
20h  
3Dh  
Device Code  
5/22  
Device operation  
M27C512  
2.3  
Two line output control  
Because EPROMs are usually used in larger memory arrays, the product features a 2 line  
control function which accommodates the use of multiple memory connection. The two line  
control function allows:  
The lowest possible memory power dissipation,  
Complete assurance that output bus contention will not occur.  
For the most efficient use of these two control lines, E should be decoded and used as the  
primary device selecting function, while G should be made a common connection to all  
devices in the array and connected to the READ line from the system control bus. This  
ensures that all deselected memory devices are in their low power standby mode and that  
the output pins are only active when data is required from a particular memory device.  
2.4  
System considerations  
The power switching characteristics of Advanced CMOS EPROMs require careful  
decoupling of the devices. The supply current, I , has three segments that are of interest to  
CC  
the system designer: the standby current level, the active current level, and transient current  
peaks that are produced by the falling and rising edges of E. The magnitude of the transient  
current peaks is dependent on the capacitive and inductive loading of the device at the  
output. The associated transient voltage peaks can be suppressed by complying with the  
two line output control and by properly selected decoupling capacitors. It is recommended  
that a 0.1µF ceramic capacitor be used on every device between V and V . This should  
CC  
SS  
be a high frequency capacitor of low inherent inductance and should be placed as close to  
the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used  
between V and V for every eight devices. The bulk capacitor should be located near the  
CC  
SS  
power supply connection point.The purpose of the bulk capacitor is to overcome the voltage  
drop caused by the inductive effects of PCB traces.  
6/22  
M27C512  
Device operation  
Figure 4.  
Programming flowchart  
V
= 6.25V, V = 12.75V  
PP  
CC  
SET MARGIN MODE  
n = 0  
E = 100µs Pulse  
NO  
NO  
++n  
= 25  
VERIFY  
++ Addr  
YES  
YES  
Last  
Addr  
NO  
FAIL  
YES  
RESET MARGIN MODE  
CHECK ALL BYTES  
1st: V  
2nd: V  
= 6V  
= 4.2V  
CC  
CC  
AI00738B  
2.5  
Programming  
When delivered (and after each erasure for UV EPROM), all bits of the M27C512 are in the  
'1' state. Data is introduced by selectively programming '0's into the desired bit locations.  
Although only '0's will be programmed, both '1's and '0's can be present in the data word.  
The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The  
M27C512 is in the programming mode when V input is at 12.75V and E is pulsed to V .  
PP  
IL  
The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels  
required for the address and data inputs are TTL. V is specified to be 6.25V ± 0.25V. The  
CC  
M27C512 can use PRESTO IIB Programming Algorithm that drastically reduces the  
programming time (typically less than 6 seconds). Nevertheless to achieve compatibility with  
all programming equipments, PRESTO Programming Algorithm can be used as well.  
2.6  
PRESTO IIB programming algorithm  
PRESTO IIB Programming Algorithm allows the whole array to be programmed with a  
guaranteed margin, in a typical time of 6.5 seconds. This can be achieved with  
STMicroelectronics M27C512 due to several design innovations described in the M27C512  
datasheet to improve programming efficiency and to provide adequate margin for reliability.  
Before starting the programming the internal MARGIN MODE circuit is set in order to  
guarantee that each cell is programmed with enough margin. Then a sequence of 100µs  
program pulses are applied to each byte until a correct verify occurs. No overprogram  
pulses are applied since the verify in MARGIN MODE provides the necessary margin.  
7/22  
Device operation  
M27C512  
2.7  
Program Inhibit  
Programming of multiple M27C512s in parallel with different data is also easily  
accomplished. Except for E, all like inputs including GV of the parallel M27C512 may be  
PP  
common. A TTL low level pulse applied to a M27C512's E input, with V at 12.75V, will  
PP  
program that M27C512. A high level E input inhibits the other M27C512s from being  
programmed.  
2.8  
2.9  
Program Verify  
A verify (read) should be performed on the programmed bits to determine that they were  
correctly programmed. The verify is accomplished with G at V . Data should be verified with  
IL  
t
after the falling edge of E.  
ELQV  
Electronic Signature  
The Electronic Signature (ES) mode allows the reading out of a binary code from an  
EPROM that will identify its manufacturer and type. This mode is intended for use by  
programming equipment to automatically match the device to be programmed with its  
corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C  
ambient temperature range that is required when programming the M27C512. To activate  
the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of  
the M27C512. Two identifier bytes may then be sequenced from the device outputs by  
toggling address line A0 from V to V . All other address lines must be held at V during  
IL  
IH  
IL  
Electronic Signature mode. Byte 0 (A0 = V ) represents the manufacturer code and byte 1  
IL  
(A0 = V ) the device identifier code. For the STMicroelectronics M27C512, these two  
IH  
identifier bytes are given in <Blue>Table 4. and can be read-out on outputs Q7 to Q0.  
8/22  
M27C512  
Erasure operation (applies for UV EPROM)  
3
Erasure operation (applies for UV EPROM)  
The erasure characteristics of the M27C512 is such that erasure begins when the cells are  
exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted  
that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å  
range.  
Research shows that constant exposure to room level fluorescent lighting could erase a  
typical M27C512 in about 3 years, while it would take approximately 1 week to cause  
erasure when exposed to direct sunlight. If the M27C512 is to be exposed to these types of  
lighting conditions for extended periods of time, it is suggested that opaque labels be put  
over the M27C512 window to prevent unintentional erasure. The recommended erasure  
procedure for the M27C512 is exposure to short wave ultraviolet light which has wavelength  
2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a  
2
minimum of 15 W-sec/cm . The erasure time with this dosage is approximately 15 to 20  
2
minutes using an ultraviolet lamp with 12000 µW/cm power rating. The M27C512 should be  
placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter  
on their tubes which should be removed before erasure.  
9/22  
Maximum rating  
M27C512  
4
Maximum rating  
Stressing the device outside the ratings listed in <Blue>Table 5. may cause permanent  
damage to the device. These are stress ratings only, and operation of the device at these, or  
any other conditions outside those indicated in the Operating sections of this specification, is  
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may  
affect device reliability. Refer also to the STMicroelectronics SURE Program and other  
relevant quality documents.  
Table 5.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
TA  
Ambient Operating Temperature(1)  
Temperature Under Bias  
Storage Temperature  
–40 to 125  
–50 to 125  
–65 to 150  
(note 1)  
°C  
°C  
°C  
°C  
V
TBIAS  
TSTG  
TLEAD  
Lead Temperature during Soldering  
Input or Output Voltage (except A9)  
Supply Voltage  
(2)  
VIO  
–2 to 7  
VCC  
–2 to 7  
V
(2)  
VA9  
A9 Voltage  
–2 to 13.5  
–2 to 14  
V
VPP  
Program Supply Voltage  
V
1. Depends on range.  
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than  
20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less  
than 20ns.  
10/22  
M27C512  
DC and AC parameters  
5
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC Characteristic tables that  
follow are derived from tests performed under the Measurement Conditions summarized in  
the relevant tables. Designers should check that the operating conditions in their circuit  
match the measurement conditions when relying on the quoted parameters.  
Table 6.  
AC measurement conditions  
High Speed  
Standard  
Input Rise and Fall Times  
10ns  
0 to 3V  
1.5V  
20ns  
Input Pulse Voltages  
0.4V to 2.4V  
0.8V and 2V  
Input and Output Timing Ref. Voltages  
Figure 5.  
Testing input/output waveform  
High Speed  
3V  
1.5V  
0V  
Standard  
2.4V  
2.0V  
0.8V  
0.4V  
AI01822  
Figure 6.  
AC Testing Load Circuit  
1.3V  
1N914  
3.3kΩ  
DEVICE  
UNDER  
TEST  
OUT  
C
L
C
C
C
= 30pF for High Speed  
L
L
L
= 100pF for Standard  
includes JIG capacitance  
AI01823B  
11/22  
DC and AC parameters  
M27C512  
Unit  
Table 7.  
Symbol  
Capacitance  
Parameter  
Test Condition(1)(2)  
Min  
Max  
CIN  
Input Capacitance  
Output Capacitance  
VIN = 0V  
6
pF  
pF  
COUT  
VOUT = 0V  
12  
1. TA = 25°C, f = 1MHz  
2. Sampled only, not 100% tested.  
Table 8.  
Symbol  
Read mode DC characteristics  
Parameter  
Test Condition(1)  
Min  
Max  
Unit  
ILI  
Input Leakage Current  
Output Leakage Current  
0V VIN VCC  
±10  
±10  
µA  
µA  
ILO  
0V VOUT VCC  
E = VIL, G = VIL,  
IOUT = 0mA, f = 5MHz  
ICC  
Supply Current  
30  
mA  
ICC1  
ICC2  
IPP  
Supply Current (Standby) TTL  
Supply Current (Standby) CMOS  
Program Current  
E = VIH  
E > VCC – 0.2V  
VPP = VCC  
1
100  
mA  
µA  
µA  
V
10  
VIL  
Input Low Voltage  
–0.3  
2
0.8  
(2)  
VIH  
Input High Voltage  
VCC + 1  
0.4  
V
VOL  
VOH  
Output Low Voltage  
IOL = 2.1mA  
IOH = –1mA  
IOH = –100µA  
V
Output High Voltage TTL  
Output High Voltage CMOS  
3.6  
V
VCC – 0.7V  
V
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
2. Maximum DC voltage on Output is VCC +0.5V.  
.
12/22  
M27C512  
Table 9.  
DC and AC parameters  
Read mode AC characteristics  
M27C512  
Symbol  
Alt  
Parameter  
Test Condition(1)  
-45(2)  
Min Max  
-70  
Unit  
Min  
Max  
Address Valid to Output  
Valid  
tAVQV  
tELQV  
tGLQV  
tACC  
tCE  
tOE  
tDF  
E = VIL, G = VIL  
G = VIL  
45  
45  
25  
25  
25  
70  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable Low to  
Output Valid  
70  
35  
30  
30  
Output Enable Low to  
Output Valid  
E = VIL  
Chip Enable High to  
Output Hi-Z  
(3)  
tEHQZ  
G = VIL  
0
0
0
0
0
0
Output Enable High to  
Output Hi-Z  
(3)  
tGHQZ  
tDF  
E = VIL  
Address Transition to  
Output Transition  
tAXQX  
tOH  
E = VIL, G = VIL  
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
2. Speed obtained with High Speed AC measurement conditions.  
3. Sampled only, not 100% tested.  
.
Table 10. Read mode AC characteristics  
M27C512  
Symbol Alt  
Parameter  
Test Condition(1)  
-90  
-10  
-12  
-15  
Unit  
Min Max Min Max Min Max Min Max  
Address Valid to  
Output Valid  
tAVQV  
tELQV  
tGLQV  
tACC  
E = VIL, G = VIL  
G = VIL  
90  
90  
40  
30  
100  
100  
40  
120  
120  
50  
150  
150  
60  
ns  
ns  
ns  
ns  
Chip Enable Low  
to Output Valid  
tCE  
tOE  
tDF  
Output Enable Low  
to Output Valid  
E = VIL  
Chip Enable High  
to Output Hi-Z  
(2)  
tEHQZ  
G = VIL  
0
0
0
0
30  
0
0
40  
0
0
50  
Output Enable  
tDF High to Output Hi-  
Z
(2)  
tGHQZ  
E = VIL  
30  
30  
40  
50  
ns  
ns  
Address Transition  
tOH to Output  
Transition  
tAXQX  
E = VIL, G = VIL  
0
0
0
0
1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
2. Sampled only, not 100% tested.  
.
13/22  
DC and AC parameters  
M27C512  
Figure 7.  
Read mode AC waveforms  
VALID  
tAVQV  
VALID  
A0-A15  
E
tAXQX  
tEHQZ  
tGHQZ  
tGLQV  
G
tELQV  
Hi-Z  
Q0-Q7  
AI00735B  
Table 11. Programming mode DC characteristics  
Symbol  
Parameter  
Test Condition(1)(2)  
Min  
Max  
Unit  
ILI  
ICC  
IPP  
Input Leakage Current  
Supply Current  
VIL VIN VIH  
±10  
50  
µA  
mA  
mA  
V
Program Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage TTL  
A9 Voltage  
E = VIL  
50  
VIL  
–0.3  
2
0.8  
VIH  
VOL  
VOH  
VID  
VCC + 0.5  
0.4  
V
IOL = 2.1mA  
IOH = –1mA  
V
3.6  
V
11.5  
12.5  
V
1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V  
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
.
Table 12. Margin Mode AC Characteristics  
Test  
Symbol  
Alt  
Parameter  
Min  
Max  
Unit  
Condition(1)(2)  
tA9HVPH  
tVPHEL  
tA10HEH  
tA10LEH  
tAS9  
tVPS  
VA9 High to VPP High  
VPP High to Chip Enable Low  
2
2
1
1
µs  
µs  
µs  
µs  
tAS10 VA10 High to Chip Enable High (Set)  
tAS10 VA10 Low to Chip Enable High (Reset)  
Chip Enable Transition to VA10  
Transition  
tEXA10X  
tAH10  
1
µs  
Chip Enable Transition to VPP  
Transition  
tEXVPX  
tVPH  
2
2
µs  
µs  
tVPXA9X  
tAH9  
VPP Transition to VA9 Transition  
1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V  
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
.
14/22  
M27C512  
Figure 8.  
DC and AC parameters  
Margin mode AC waveforms  
V
CC  
A8  
A9  
GV  
E
tA9HVPH  
tVPXA9X  
PP  
tVPHEL  
tEXVPX  
tA10HEH  
tEXA10X  
A10 Set  
A10 Reset  
tA10LEH  
AI00736B  
1. A8 High level = 5V; A9 High level = 12V.  
15/22  
DC and AC parameters  
M27C512  
Unit  
Table 13. Programming mode AC characteristics  
Test  
Symbol  
Alt  
Parameter  
Min  
Max  
Condition(1)(2)  
tAVEL  
tQVEL  
tAS  
tDS  
Address Valid to Chip Enable Low  
Input Valid to Chip Enable Low  
VCC High to Chip Enable Low  
VPP High to Chip Enable Low  
VPP Rise Time  
2
2
µs  
µs  
µs  
µs  
ns  
tVCHEL  
tVPHEL  
tVPLVPH  
tVCS  
tOES  
tPRT  
2
2
50  
Chip Enable Program Pulse Width  
(Initial)  
tELEH  
tPW  
tDH  
95  
105  
µs  
tEHQX  
tEHVPX  
tVPLEL  
tELQV  
Chip Enable High to Input Transition  
2
2
2
µs  
µs  
µs  
µs  
ns  
ns  
tOEH Chip Enable High to VPP Transition  
tVR  
tDV  
tDFP  
tAH  
VPP Low to Chip Enable Low  
Chip Enable Low to Output Valid  
Chip Enable High to Output Hi-Z  
Chip Enable High to Address Transition  
1
(3)  
tEHQZ  
0
0
130  
tEHAX  
1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V  
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP  
3. Sampled only, not 100% tested.  
.
Figure 9.  
Programming and Verify modes AC waveforms  
A0-A15  
VALID  
tAVEL  
tEHAX  
DATA IN  
Q0-Q7  
DATA OUT  
tQVEL  
tVCHEL  
tVPHEL  
tEHQX  
tEHQZ  
V
CC  
tELQV  
tEHVPX  
GV  
PP  
tVPLEL  
E
tELEH  
PROGRAM  
VERIFY  
AI00737  
16/22  
M27C512  
Package mechanical  
6
Package mechanical  
Figure 10. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline  
A2  
A3  
A1  
A
L
α
B1  
B
e
C
eA  
eB  
D2  
D
S
N
1
E1  
E
FDIPW-a  
1. Drawing is not to scale.  
Table 14. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
A3  
B
5.72  
1.40  
4.57  
4.50  
0.56  
0.225  
0.055  
0.180  
0.177  
0.022  
0.51  
3.91  
3.89  
0.41  
0.020  
0.154  
0.153  
0.016  
B1  
C
1.45  
0.057  
0.23  
36.50  
0.30  
37.34  
0.009  
1.437  
0.012  
1.470  
D
D2  
E
33.02  
15.24  
1.300  
0.600  
E1  
e
13.06  
13.36  
0.514  
0.526  
2.54  
0.100  
0.590  
eA  
eB  
L
14.99  
16.18  
3.18  
1.52  
18.03  
4.10  
2.49  
0.637  
0.125  
0.060  
0.710  
0.161  
0.098  
S
7.11  
0.280  
α
4°  
11°  
4°  
11°  
N
28  
28  
17/22  
Package mechanical  
M27C512  
Figure 11. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline  
A2  
A
L
A1  
e1  
α
C
B1  
B
eA  
eB  
D2  
D
S
N
1
E1  
E
PDIP  
1. Drawing is not to scale.  
Table 15. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
4.445  
0.630  
3.810  
0.450  
1.270  
0.1750  
0.0248  
0.1500  
0.0177  
0.0500  
3.050  
4.570  
0.1201  
0.1799  
B1  
C
0.230  
36.580  
0.310  
37.080  
0.0091  
1.4402  
0.0122  
1.4598  
D
36.830  
33.020  
15.240  
13.720  
2.540  
1.4500  
1.3000  
0.6000  
0.5402  
0.1000  
0.5906  
D2  
E
E1  
e1  
eA  
eB  
L
12.700  
14.480  
0.5000  
0.5701  
15.000  
14.800  
15.200  
15.200  
16.680  
0.5827  
0.5984  
0.5984  
0.6567  
3.300  
0.1299  
S
1.78  
0°  
2.08  
10°  
0.070  
0°  
0.082  
10°  
α
N
28  
28  
18/22  
M27C512  
Package mechanical  
Figure 12. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline  
D
A1  
D1  
A2  
1
N
B1  
e
E2  
E2  
E3  
E1 E  
F
B
0.51 (.020)  
1.14 (.045)  
D3  
A
R
CP  
D2  
D2  
PLCC-A  
1. Drawing is not to scale.  
Table 16. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
B
3.18  
1.53  
0.38  
0.33  
0.66  
3.56  
2.41  
0.125  
0.060  
0.015  
0.013  
0.026  
0.140  
0.095  
0.53  
0.81  
0.10  
12.57  
11.51  
5.66  
0.021  
0.032  
0.004  
0.495  
0.453  
0.223  
B1  
CP  
D
12.32  
11.35  
4.78  
0.485  
0.447  
0.188  
D1  
D2  
D3  
E
7.62  
0.300  
14.86  
13.89  
6.05  
15.11  
14.05  
6.93  
0.585  
0.547  
0.238  
0.595  
0.553  
0.273  
E1  
E2  
E3  
e
10.16  
1.27  
0.400  
0.050  
F
0.00  
0.13  
0.000  
0.005  
R
0.89  
0.035  
N
32  
32  
19/22  
Part numbering  
M27C512  
7
Part numbering  
Table 17. Ordering Information Scheme  
Example:  
M27C512  
-70  
X C 1  
Device Type  
M27  
Supply Voltage  
C = 5V  
Device Function  
512 = 512 Kbit (64Kb x8)  
Speed  
-45 = 45 ns(1)  
-70 = 70 ns  
-90 = 90 ns  
-10 = 100 ns  
-12 = 120 ns  
-15 = 150 ns  
VCC Tolerance  
blank = ± 10%  
X = ± 5%  
Package  
F = FDIP28W  
B = PDIP28  
C = PLCC32  
Temperature Range  
1 = 0 to 70 °C  
3 = –40 to 125 °C  
6 = –40 to 85 °C  
1. High Speed, see AC Characteristics section for further information.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST Sales Office.  
20/22  
M27C512  
Revision history  
8
Revision history  
Table 18. Document revision history  
Date  
Revision  
Changes  
November  
1998  
1.0  
First Issue  
25-Sep-2000  
02-Apr-2001  
1.1  
1.2  
AN620 Reference removed  
FDIP28W mechanical dimensions changed (<Blue>Table 14.)  
Package mechanical data clarified for PDIP28 (Table 15),  
PLCC32 (Table 16, Figure 12) and TSOP28 (Table 16., Figure 7.)  
29-Aug-2002  
08-Nov-2004  
1.3  
2.0  
Details of ECOPACK lead-free package options added.  
Additional Burn-in option removed  
ECOPACK lead-free text updated in Section 1: Description. TLEAD  
and Note 1 removed from Table 5: Absolute maximum ratings.  
TSOP28 package removed.  
18-May-2007  
3
60, 80, 200 and 250 access times removed from the whole  
document.  
Blank, TR, E, and F Options removed from Table 17: Ordering  
Information Scheme.  
21/22  
M27C512  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  

相关型号:

M27C512_077

512 Kbit (64K x8) UV EPROM and OTP EPROM
STMICROELECTR

M27C516

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10C1TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10C6

暂无描述
STMICROELECTR

M27C516-10C6TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10F1

32KX16 UVPROM, 100ns, CDIP40, FRIT SEALED, WINDOWED, CERAMIC, DIP-40
STMICROELECTR

M27C516-10N1

32KX16 OTPROM, 85ns, PDSO40, 10 X 14 MM, PLASTIC, TSOP-40
STMICROELECTR

M27C516-10N1TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10N6TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10XC1

32KX16 OTPROM, 85ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

M27C516-10XC1TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR

M27C516-10XC6TR

512 Kbit 32Kb x16 OTP EPROM
STMICROELECTR