LM2904AYST [STMICROELECTRONICS]

DUAL OP-AMP, 4000uV OFFSET-MAX, 1.1MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MINISO-8;
LM2904AYST
型号: LM2904AYST
厂家: ST    ST
描述:

DUAL OP-AMP, 4000uV OFFSET-MAX, 1.1MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MINISO-8

放大器 光电二极管
文件: 总21页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2904  
Low power dual operational amplifier  
Features  
Internally frequency-compensated  
Large DC voltage gain: 100 dB  
Wide bandwidth (unity gain): 1.1 MHz  
N
DIP8  
(temperature compensated)  
Very low supply current/op (500 µA) essentially  
(Plastic package)  
independent of supply voltage  
Low input bias current: 20 nA (temperature  
compensated)  
Low input offset current: 2 nA  
D
SO-8  
Input common-mode voltage range includes  
negative rail  
(Plastic micropackage)  
Differential input voltage range equal to the  
power supply voltage  
+
Large output voltage swing 0 V to (V  
-1.5 V)  
CC  
Description  
P
TSSOP8  
This circuit consists of two independent, high  
gain, internally frequency-compensated  
operational amplifiers designed specifically for  
automotive and industrial control systems. It  
operates from a single power supply over a wide  
range of voltages. The low power supply drain is  
independent of the magnitude of the power supply  
voltage.  
(Thin shrink small outline package)  
S
MiniSO-8  
Application areas include transducer amplifiers,  
DC gain blocks and all the conventional op-amp  
circuits which now can be more easily  
implemented in single power supply systems. For  
example, these circuits can be directly supplied  
from the standard +5 V which is used in logic  
systems and will easily provide the required  
interface electronics without requiring any  
additional power supply.  
Pin connections (top view)  
In the linear mode, the input common-mode  
voltage range includes ground and the output  
voltage can also swing to ground, even though  
operated from a single power supply.  
June 2009  
Doc ID 2471 Rev 12  
1/21  
www.st.com  
21  
Schematic diagram  
LM2904  
1
Schematic diagram  
Figure 1.  
Schematic diagram (1/2 LM2904)  
VCC  
μ
6 A  
4 A  
μ
100 A  
μ
Q5  
Q7  
Q6  
CC  
Q3  
Q2  
Inverting  
input  
Q1  
Q4  
R SC  
Q11  
Non-inverting  
input  
Output  
Q13  
Q10  
Q12  
Q8  
Q9  
m
50 A  
GND  
2/21  
Doc ID 2471 Rev 12  
LM2904  
Absolute maximum ratings and operating conditions  
2
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vid  
Supply voltage (1)  
16 or 32  
32  
V
V
V
s
Differential input voltage(2)  
Vin  
Input voltage  
-0.3 to 32  
Infinite  
Output short-circuit duration (3)  
Input current (4): Vin driven negative  
5 mA in DC or  
50 mA in AC  
(duty cycle =  
10%, T=1s)  
Iin  
mA  
Input current (5): Vin driven positive above AMR value  
Operating free-air temperature range  
Storage temperature range  
0.4  
Toper  
Tstg  
Tj  
-40 to +125  
-65 to +150  
150  
°C  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient(6)  
SO-8  
TSSOP8  
DIP8  
125  
120  
85  
Rthja  
°C/W  
°C/W  
MiniSO-8  
190  
Thermal resistance junction to case(6)  
SO-8  
TSSOP8  
DIP8  
40  
37  
41  
39  
Rthjc  
ESD  
MiniSO-8  
HBM: human body model(7)  
MM: machine model(8)  
300  
200  
1.5  
V
V
CDM: charged device model(9)  
kV  
1. All voltage values, except differential voltage are with respect to network ground terminal.  
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.  
3. Short-circuits from the output to VCC can cause excessive heating if Vcc+ > 15 V. The maximum output  
current is approximately 40 mA, independent of the magnitude of VCC  
.
Destructive dissipation can result from simultaneous short-circuits on all amplifiers.  
4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the  
collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input  
diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor  
action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large  
overdrive) for the time during which an input is driven negative.  
This is not destructive and normal output is restored for input voltages above -0.3 V.  
5. The junction base/substrate of the input PNP transistor polarized in reverse must be protected by a resistor  
in series with the inputs to limit the input current to 400 µA max (R = (Vin-36 V)/400 µA).  
6. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.  
7. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a  
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations  
while the other pins are floating.  
Doc ID 2471 Rev 12  
3/21  
Absolute maximum ratings and operating conditions  
LM2904  
8. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between  
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of  
connected pin combinations while the other pins are floating.  
9. Charged device model: all pins and the package are charged together to the specified voltage and then  
discharged directly to the ground through only one pin. This is done for all pins.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vicm  
Toper  
Supply voltage  
3 to 30  
V
V
Common mode input voltage range  
Operating free-air temperature range  
VCC+ - 1.5  
-40 to +125  
°C  
4/21  
Doc ID 2471 Rev 12  
LM2904  
Electrical characteristics  
3
Electrical characteristics  
+
-
Table 3.  
Symbol  
V
= 5 V, V  
= ground, V = 1.4 V, T  
= 25° C (unless otherwise specified)  
CC  
CC  
O
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Input offset voltage (1)  
Tamb = 25° C LM2904  
amb = 25° C LM2904A  
Tmin Tamb Tmax LM2904  
Tmin Tamb Tmax LM2904A  
2
1
7
Vio  
mV  
T
2
9
4
DVio  
Iio  
Input offset voltage drift  
7
30  
µV/°C  
nA  
Input offset current  
Tamb = 25° C  
Tmin Tamb Tmax  
2
30  
40  
DIio  
Iib  
Input offset current drift  
Input bias current (2)  
10  
300  
pA/°C  
nA  
Tamb = 25° C  
Tmin Tamb Tmax  
20  
150  
200  
Large signal voltage gain  
VCC+ = +15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V  
Tamb = 25° C  
Tmin Tamb Tmax  
Avd  
V/mV  
50  
25  
100  
100  
0.7  
Supply voltage rejection ratio (RS 10 kΩ)  
Tamb = 25° C  
Tmin Tamb Tmax  
SVR  
ICC  
dB  
mA  
V
65  
65  
Supply current, all amp, no load  
Tamb = 25°C, VCC+ = +5 V  
1.2  
2
Tmin Tamb Tmax, VCC+ = +30 V  
Input common mode voltage range (VCC+= +30 V) (3)  
Tamb = 25° C  
Tmin Tamb Tmax  
0
0
VCC+ -1.5  
VCC+ -2  
Vicm  
Common-mode rejection ratio (RS = 10 kΩ)  
CMR  
Isource  
Isink  
dB  
Tamb = 25° C  
Tmin Tamb Tmax  
70  
60  
85  
40  
Output short-circuit current  
VCC+ = +15 V, Vo = +2 V, Vid = +1 V  
20  
60  
mA  
Output sink current  
VO = 2 V, VCC+ = +5 V  
10  
12  
20  
50  
mA  
µA  
VO = +0.2 V, VCC+ = +15 V  
High level output voltage (VCC+ = + 30 V)  
Tamb = +25° C, RL = 2 kΩ  
Tmin Tamb Tmax  
Tamb = +25° C, RL = 10 kΩ  
Tmin Tamb Tmax  
26  
26  
27  
27  
VOH  
V
27  
28  
Doc ID 2471 Rev 12  
5/21  
Electrical characteristics  
LM2904  
= 25° C (unless otherwise specified)  
+
-
Table 3.  
Symbol  
V
= 5 V, V  
= ground, V = 1.4 V, T  
CC  
CC  
O
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Low level output voltage (RL = 10 kΩ)  
VOL  
SR  
mV  
Tamb = +25° C  
Tmin Tamb Tmax  
5
20  
20  
Slew rate  
VCC+ = 15 V, Vin = 0.5 to 3 V, RL = 2 kΩ, CL = 100 pF,  
V/µs  
0.3  
0.2  
0.6  
1.1  
unity gain  
Tmin Tamb Tmax  
Gain bandwidth product f = 100 kHz  
VCC+ = 30 V, Vin = 10 mV, RL = 2 kΩ, CL = 100 pF  
GBP  
THD  
en  
0.7  
MHz  
%
Total harmonic distortion  
0.02  
f = 1 kHz, AV = 20 dB, RL = 2 kΩ, Vo = 2 Vpp,  
CL = 100 pF, VCC+ = 30 V  
Equivalent input noise voltage  
f = 1 kHz, RS = 100 Ω, VCC+ = 30 V  
55  
nV/Hz  
Channel separation (4)  
VO1/VO2  
120  
dB  
1 kHz f 20 kHz  
1. VO = 1.4 V, RS = 0 Ω, 5 V < VCC+ < 30 V, 0 V < Vic < VCC+ - 1.5 V.  
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output,  
so there is no change in the loading charge on the input lines.  
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V.  
The upper end of the common-mode voltage range is VCC+ –1.5 V, but either or both inputs can go to +32 V without  
damage.  
4. Due to the proximity of external components ensure that stray capacitance does not cause coupling between these  
external parts. This typically can be detected at higher frequencies because this type of capacitance increases.  
6/21  
Doc ID 2471 Rev 12  
LM2904  
Electrical characteristics  
Figure 2.  
Open-loop frequency response  
Figure 3.  
Large signal frequency response  
20  
140  
10M  
Ω
Ω
100k  
0.1 F  
μ
Ω
1k  
120  
100  
+15V  
-
V
-
CC  
V
VO  
O
V
15  
10  
V
I
I
V
CC  
/2  
Ω
2k  
+
+
+7V  
80  
60  
40  
V
CC  
-55°C  
= 30V &  
T
amb  
+125°C  
5
0
20  
0
V
-55°C  
= +10 to + 15V &  
CC  
T
amb  
+125°C  
1.0 10  
100  
1k  
10k 100k 1M 10M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4.  
Voltage follower pulse response  
Figure 5.  
Output characteristics  
10  
4
3
2
1
0
3
2
1
VCC = +5V  
VCC = +15V  
VCC = +30V  
RL 2 k  
VCC = +15V  
Ω
1
v
cc  
v
/2  
cc  
-
0.1  
I
O
V
+
O
T
= +25°C  
10  
amb  
0.01  
0
10  
20  
30  
40  
0,001  
0,01  
0,1  
1
100  
TIME (μs)  
OUTPUT SINK CURRENT (mA)  
Figure 6.  
Voltage follower pulse response  
Figure 7.  
Output characteristics  
500  
8
V
CC  
7
+
450  
400  
350  
300  
250  
e
O
+
-
V
V
/2  
6
O
CC  
e
l
-
50pF  
5
I
O
Input  
4
Independent of V  
Output  
CC  
3
2
1
T
= +25°C  
amb  
T
V
= +25°C  
= 30 V  
amb  
CC  
0
1
2
3
4
5
6
7
8
0,01  
0,1  
1
10  
100  
0,001  
m
TIME ( s)  
OUTPUT SOURCE CURRENT (mA)  
Doc ID 2471 Rev 12  
7/21  
Electrical characteristics  
LM2904  
Figure 8.  
Input current versus temperature  
Figure 9.  
Current limiting  
90  
80  
70  
60  
90  
80  
70  
60  
-
I
V = 0 V  
I
O
V
V
= +30 V  
= +15 V  
CC  
+
50  
40  
50  
40  
CC  
30  
20  
10  
0
30  
20  
10  
0
V
= +5 V  
CC  
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Input voltage range  
Figure 11. Supply current  
4
15  
V
CC  
I
D
mA  
-
3
2
1
10  
Négative  
+
Positive  
5
T
= 0°C to +125°C  
amb  
T
= -55°C  
amb  
0
5
10  
15  
0
10  
20  
30  
POWER SUPPLY VOLTAGE (±V)  
POSITIVE SUPPLY VOLTAGE (V)  
Figure 12. Voltage gain  
Figure 13. Input current versus supply voltage  
160  
100  
R L = 20k  
Ω
120  
80  
75  
50  
R L = 2k  
Ω
40  
25  
Tamb= +25°C  
0
10  
20  
30  
40  
0
10  
20  
30  
POSITIVE SUPPLY VOLTAGE (V)  
POSITIVE SUPPLY VOLTAGE (V)  
8/21  
Doc ID 2471 Rev 12  
LM2904  
Electrical characteristics  
Figure 14. Gain bandwidth product  
Figure 15. Power supply rejection ratio  
1.5  
1.35  
1.2  
115  
110  
105  
100  
95  
SVR  
1.05  
0.9  
VCC  
=
15V  
0.75  
0.6  
90  
85  
80  
0.45  
0.3  
75  
70  
0.15  
65  
0
-55-35-15 5 25 45 65 85 105 125  
60  
-55-35-15 5 25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Common mode rejection ratio  
Figure 17. Phase margin vs capacitive load  
Phase Margin at Vcc=15V and Vicm=7.5V  
Vs. Iout and Capacitive load value  
115  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
-55-35-15 5 25 45 65 85 105 125  
60  
TEMPERATURE (°C)  
Doc ID 2471 Rev 12  
9/21  
Electrical characteristics  
LM2904  
3.1  
Typical single-supply applications  
Figure 18. AC coupled inverting amplifier  
Figure 19. AC coupled non-inverting amplifier  
Rf  
R1  
R2  
1M  
100k  
Ω
Rf  
100k  
Ω
Ω
R2  
R1  
A
= -  
V
A = 1 +  
V
R1  
R1  
10kΩ  
(as shown A = -10)  
V
(as shown A = 11)  
V
CI  
C1  
μ
0.1 F  
Co  
Co  
1/2  
LM2904  
2VPP  
1/2  
LM2904  
2VPP  
0
0
eo  
eo  
CI  
R
B
R
L
10kΩ  
R
B
Ω
R
L
6.2k  
Ω
6.2k  
10k  
Ω
eI  
R2  
100k  
R3  
~
VCC  
R3  
1M  
Ω
Ω
100k  
eI  
Ω
~
R4  
100k  
R5  
Ω
VCC  
C1  
C2  
μ
10 F  
μ
10 F  
100k  
Ω
Figure 20. Non-inverting DC gain  
Figure 21. DC summing amplifier  
e1  
100k  
Ω
R2  
R1  
AV= 1 +  
10k  
Ω
A
(As shown V = 101)  
eO  
eO  
1/2  
LM2904  
1/2  
LM2904  
+5V  
100k  
Ω
e2  
e3  
100k  
100k  
Ω
Ω
R2  
Ω
1M  
100k  
Ω
R1  
10k  
Ω
e4  
100k  
Ω
0
eo = e1 + e2 - e3 - e4  
where (e1 + e2) (e3 + e4)  
to keep eo 0V  
eI  
(mV)  
Figure 22. High input Z, DC differential  
amplifier  
Figure 23. Using symmetrical amplifiers to  
reduce input current  
1/2  
LM2904  
eo  
I I  
I
B
R4  
100k  
R2  
100k  
Ω
Ω
eI  
I
I
R1  
100k  
B
2N 929  
Ω
R3  
100k  
Ω
1/2  
LM2904  
0.001 F  
μ
1/2  
LM2904  
V
o
I
+V1  
+V2  
B
B
1/2  
LM2904  
Ω
3M  
If R1 = R5 and R3 = R4 = R6 = R7  
2R1  
R2  
eo = [ 1 +  
] (e2 - e1)  
Input current compensation  
I
B
As shown eo = 101 (e2 - e1)  
1.5M  
Ω
10/21  
Doc ID 2471 Rev 12  
LM2904  
Electrical characteristics  
Figure 24. Low drift peak detector  
Figure 25. Active bandpass filter  
R1  
100k  
Ω
I
B
C1  
330pF  
1/2  
I
1/2  
LM2904  
R2  
100k  
eo  
R5  
470k  
LM2904  
B
Ω
1/2  
LM2904  
Ω
+V1  
R4  
10MΩ  
Zo  
C
2I  
eI  
B
1/2  
μ
1 F  
LM2904  
C2  
330pF  
ZI  
R6  
470k  
2N 929  
0.001  
μ
F
R3  
100k  
Ω
Ω
Vo  
I
1/2  
LM2904  
R7  
100k  
2I  
B
B
Ω
VCC  
1/2  
LM2904  
R
1M  
3R  
3M  
C3  
10  
Ω
Ω
R8  
100k  
μ
F
Ω
Input current  
compensation  
Fo = 1kHz  
Q = 50  
Av = 100 (40dB)  
I
B
Doc ID 2471 Rev 12  
11/21  
Macromodel  
LM2904  
4
Macromodel  
4.1  
Important note concerning this macromodel  
Consider the following remarks before using this macromodel.  
All models are a trade-off between accuracy and complexity (that is, simulation time).  
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of  
a design approach and help to select surrounding component values.  
A macromodel emulates the nominal performance of a typical device within specified  
operating conditions (temperature, supply voltage, for example). Thus the  
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the  
main parameters of the product.  
Data derived from macromodels used outside of the specified conditions (V , temperature,  
CC  
for example) or even worse, outside of the device operating conditions (V , V , for  
CC icm  
example), is not reliable in any way.  
4.2  
Macromodel code  
** Standard Linear Ics Macromodels, 1993.  
** CONNECTIONS :  
* 1 INVERTING INPUT  
* 2 NON-INVERTING INPUT  
* 3 OUTPUT  
* 4 POSITIVE POWER SUPPLY  
* 5 NEGATIVE POWER SUPPLY  
.SUBCKT LM2904 1 2 3 4 5  
***************************  
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F  
* INPUT STAGE  
CIP 2 5 1.000000E-12  
CIN 1 5 1.000000E-12  
EIP 10 5 2 5 1  
EIN 16 5 1 5 1  
RIP 10 11 2.600000E+01  
RIN 15 16 2.600000E+01  
RIS 11 15 2.003862E+02  
DIP 11 12 MDTH 400E-12  
DIN 15 14 MDTH 400E-12  
VOFP 12 13 DC 0  
VOFN 13 14 DC 0  
IPOL 13 5 1.000000E-05  
CPS 11 15 3.783376E-09  
DINN 17 13 MDTH 400E-12  
VIN 17 5 0.000000e+00  
DINR 15 18 MDTH 400E-12  
VIP 4 18 2.000000E+00  
FCP 4 5 VOFP 3.400000E+01  
FCN 5 4 VOFN 3.400000E+01  
FIBP 2 5 VOFN 2.000000E-03  
12/21  
Doc ID 2471 Rev 12  
LM2904  
Macromodel  
FIBN 5 1 VOFP 2.000000E-03  
* AMPLIFYING STAGE  
FIP 5 19 VOFP 3.600000E+02  
FIN 5 19 VOFN 3.600000E+02  
RG1 19 5 3.652997E+06  
RG2 19 4 3.652997E+06  
CC 19 5 6.000000E-09  
DOPM 19 22 MDTH 400E-12  
DONM 21 19 MDTH 400E-12  
HOPM 22 28 VOUT 7.500000E+03  
VIPM 28 4 1.500000E+02  
HONM 21 27 VOUT 7.500000E+03  
VINM 5 27 1.500000E+02  
EOUT 26 23 19 5 1  
VOUT 23 5 0  
ROUT 26 3 20  
COUT 3 5 1.000000E-12  
DOP 19 25 MDTH 400E-12  
VOP 4 25 2.242230E+00  
DON 24 19 MDTH 400E-12  
VON 24 5 7.922301E-01  
.ENDS  
Doc ID 2471 Rev 12  
13/21  
Package information  
LM2904  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
14/21  
Doc ID 2471 Rev 12  
LM2904  
Package information  
5.1  
DIP8 package information  
Figure 26. DIP8 package mechanical drawing  
Table 4.  
Ref.  
DIP8 package mechanical data  
Millimeters  
Dimensions  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
2.92  
3.30  
0.115  
0.130  
Doc ID 2471 Rev 12  
15/21  
Package information  
LM2904  
5.2  
SO-8 package information  
Figure 27. SO-8 package mechanical drawing  
Table 5.  
Ref.  
SO-8 package mechanical data  
Millimeters  
Dimensions  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
4.80  
5.80  
3.80  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.150  
0.48  
0.23  
5.00  
6.20  
4.00  
0.019  
0.010  
0.197  
0.244  
0.157  
c
D
4.90  
6.00  
3.90  
1.27  
0.193  
0.236  
0.154  
0.050  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
0.010  
0.016  
0.020  
0.050  
L
L1  
k
1.04  
0.040  
1°  
8°  
1°  
8°  
ccc  
0.10  
0.004  
16/21  
Doc ID 2471 Rev 12  
LM2904  
Package information  
5.3  
TSSOP8 package information  
Figure 28. TSSOP8 package mechanical drawing  
Table 6.  
Ref.  
TSSOP8 package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
1.20  
0.15  
1.05  
0.30  
0.20  
3.10  
6.60  
4.50  
0.047  
0.006  
0.041  
0.012  
0.008  
0.122  
0.260  
0.177  
0.05  
0.80  
0.19  
0.09  
2.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.114  
0.244  
0.169  
1.00  
0.039  
c
D
3.00  
6.40  
4.40  
0.65  
0.118  
0.252  
0.173  
0.0256  
E
E1  
e
k
0°  
8°  
0°  
8°  
L
0.45  
0.60  
1
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
aaa  
0.10  
0.004  
Doc ID 2471 Rev 12  
17/21  
Package information  
LM2904  
5.4  
MiniSO-8 package information  
Figure 29. MiniSO-8 package mechanical drawing  
Table 7.  
Ref.  
MiniSO-8 package mechanical data  
Dimensions  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.1  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
18/21  
Doc ID 2471 Rev 12  
LM2904  
Ordering information  
6
Ordering information  
Table 8.  
Order codes  
Order code  
Temperature range  
Package  
Packing  
Marking  
LM2904N  
DIP8  
Tube  
LM2904N  
Tube or  
tape & reel  
LM2904D/DT  
SO-8  
2904  
TSSOP8  
(Thin shrink outline package)  
LM2904PT  
LM2904ST  
Tape & reel  
Tape & reel  
MiniSO-8  
K403  
LM2904YD(1)  
2904Y  
LM2904YDT(1)  
SO-8  
Tube or  
tape & reel  
-40° C to +125° C  
LM2904AYD(1)  
LM2904AYDT(1)  
(Automotive grade level)  
2904AY  
LM2904YPT(2)  
LM2904AYPT(2)  
2904Y  
TSSOP8  
(Automotive grade level)  
Tape & reel  
2904AY  
MiniSO-8  
(Automotive grade level)  
LM2904YST(2)  
LM2904AYST(2)  
Tape & reel  
Tape & reel  
K409  
K410  
MiniSO-8  
(Automotive grade level)  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001  
& Q 002 or equivalent.  
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC  
Q001 & Q 002 or equivalent are on-going.  
Doc ID 2471 Rev 12  
19/21  
Revision history  
LM2904  
7
Revision history  
Table 9.  
Date  
Document revision history  
Revision  
Changes  
02-Jan-2002  
20-Jun-2005  
10-Oct-2005  
12-Dec-2005  
1
2
3
4
Initial release.  
PPAP references inserted in the datasheet, see Table 8 on  
page 19.  
ESD protection inserted in Table 1 on page 3.  
PPAP part numbers added in table Table 8 on page 19.  
Pin connections identification added on cover page figure.  
Thermal resistance junction to case information added see  
Table 1 on page 3.  
Maximum junction temperature parameter added in Table 1 on  
page 3.  
01-Feb-2006  
02-May-2006  
13-Jul- 2006  
5
6
7
Minimum slew rate parameter in temperature Table 3 on  
page 5.  
Modified ESD values and added explanation on VCC, Vid in  
Table 1 on page 3. Added macromodel information.  
Modified ESD/HBM values in Table 1 on page 3.  
Updated miniSO-8 package information.  
28-Feb-2007  
8
Added note relative to automotive grade level part numbers in  
Table 8 on page 19.  
Power dissipation value corrected in Table 1: Absolute  
maximum ratings.  
Table 2: Operating conditions added.  
18-Jun-2007  
9
Equivalent input noise voltage parameter added in Table 3.  
Electrical characteristics curves updated. Figure 17: Phase  
margin vs capacitive load added.  
Section 5: Package information updated.  
Removed power dissipation parameter from Table 1: Absolute  
maximum ratings.  
18-Dec-2007  
08-Apr-2008  
10  
11  
Removed Vopp from electrical characteristics in Table 3.  
Corrected MiniSO-8 package mechanical data in Section 5.4:  
MiniSO-8 package information.  
Added table of contents.  
Corrected the scale of Figure 5 (mA not µA).  
Corrected SO-8 package information.  
Added input current information in Table 1: Absolute maximum  
ratings.  
Added L1 parameters in Table 5: SO-8 package mechanical  
data.  
02-Jun-2009  
12  
Added new order codes, LM2904AYD/DT, LM2904AYPT and  
LM2904AYST in Table 8: Order codes.  
20/21  
Doc ID 2471 Rev 12  
LM2904  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 2471 Rev 12  
21/21  

相关型号:

LM2904B

工作温度范围为 -40°C 至 125°C 的双路、36V、1.2MHz 运算放大器
TI

LM2904B-Q1

运行温度范围为 -40°C 至 125°C 的汽车级双路 36V 1.2MHz 运算放大器
TI

LM2904BA

工作温度范围为 -40°C 至 125°C 的双路、36V、1.2MHz、2mV 失调电压运算放大器
TI

LM2904BA-Q1

汽车类双路 36V、1.2MHz、2mV 失调电压运算放大器
TI

LM2904BAIDDFR

工作温度范围为 -40°C 至 125°C 的双路、36V、1.2MHz、2mV 失调电压运算放大器 | DDF | 8 | -40 to 125
TI

LM2904BAIDGKR

工作温度范围为 -40°C 至 125°C 的双路、36V、1.2MHz、2mV 失调电压运算放大器 | DGK | 8 | -40 to 125
TI

LM2904BAIDR

Industry-Standard Dual Operational Amplifiers
TI

LM2904BAIPWR

工作温度范围为 -40°C 至 125°C 的双路、36V、1.2MHz、2mV 失调电压运算放大器 | PW | 8 | -40 to 125
TI

LM2904BAQDGKRQ1

汽车类双路 36V、1.2MHz、2mV 失调电压运算放大器 | DGK | 8 | -40 to 125
TI

LM2904BAQDRQ1

汽车类双路 36V、1.2MHz、2mV 失调电压运算放大器 | D | 8 | -40 to 125
TI

LM2904BAQPWRQ1

汽车类双路 36V、1.2MHz、2mV 失调电压运算放大器 | PW | 8 | -40 to 125
TI

LM2904BIDDFR

Industry-Standard Dual Operational Amplifiers
TI