L9953XP [STMICROELECTRONICS]

Door actuator driver; 门驱动器
L9953XP
型号: L9953XP
厂家: ST    ST
描述:

Door actuator driver
门驱动器

驱动器 运动控制电子器件 信号电路 光电二极管 电动机控制
文件: 总38页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L9953  
L9953XP  
Door actuator driver  
Features  
One full bridge for 6A load (R =150mΩ)  
on  
Three half bridges for 1.5A load (R =800mΩ)  
on  
One highside driver for 6A load (R =100mΩ)  
on  
Two highside drivers for 1.5A load (Ron=800mΩ)  
Programmable softstart function to drive loads  
with higher inrush currents (i.e. current >6A,  
>1.5A)  
PowerSSO-36  
PowerSO-36  
Very low current consumption in stand-by  
mode (I < 6µA typ; T 85 °C)  
Applications  
S
j
Door actuator driver with bridges for door lock ,  
mirror axis control, mirror fold and highside  
driver for mirror defroster and two 10W-light  
bulbs.  
All outputs short circuit protected  
Current monitor output for highside OUT1,  
OUT4, OUT5 and OUT8  
All outputs over temperature protected  
Open load diagnostic for all outputs  
Overload diagnostic for all outputs  
Separated half bridges for door lock motor  
PWM control of all outputs  
Description  
The L9953 and L9953XP are microcontroller  
driven multifunctional door actuator driver for  
automotive applications. Up to three DC motors  
and three grounded resistive loads can be driven  
with five half bridges and three highside drivers.  
The integrated standard serial peripheral interface  
(SPI) controls all operation modes (forward,  
reverse, brake and high impedance). All  
Charge pump output for reverse polarity  
protection  
diagnostic informations are available via SPI.  
Table 1.  
Device summary  
Package  
Order codes  
Tape and reel  
Tube  
PowerSO-36  
L9953  
L9953TR  
PowerSSO-36  
L9953XP  
L9953XPTR  
May 2010  
Doc ID 14278 Rev 3  
1/38  
www.st.com  
1
Contents  
L9953 / L9953XP  
Contents  
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SPI - electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Dual power supply: VS and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overvoltage and under voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 20  
Open load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Over load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.10 Current monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.11 PWM inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.12 Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.13 Programmable softstart function to drive loads with higher inrush current 21  
4
Functional description of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Chip Select Not (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Serial Data In (DI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Serial Data Out (DO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Serial clock (CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Input data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Contents  
4.8  
4.9  
Scan mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.10 SPI - input data and Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Packages thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5
6
6.1  
6.2  
6.3  
6.4  
6.5  
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
PowerSO-36™ package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
PowerSSO-36™ package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
PowerSO-36™ packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PowerSSO-36™ packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Doc ID 14278 Rev 3  
3/38  
List of tables  
L9953 / L9953XP  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin definitions and functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overvoltage and under voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current monitor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Charge pump output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
OUT1 - OUT8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Delay time from standby to active mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inputs: CSN, CLK, PWM1/2 and DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Test mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SPI - input data and Status registers 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SPI - input data and status registers 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
PowerSO-36™ mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PowerSSO-36™ mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SPI - transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SPI - input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SPI - DO valid data delay time and valid time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SPI - DO enable and disable time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SPI - driver turn-on/off timing, minimum CSN hi time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI - timing of status bit 0 (fault condition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Example of programmable softstart function for inductive loads . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. Packages thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 11. PowerSO-36™ package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12. PowerSSO-36™ package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 13. PowerSO-36™ tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 14. PowerSO-36™ tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 15. PowerSSO-36™ tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 16. PowerSSO-36™ tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Doc ID 14278 Rev 3  
5/38  
Block diagram and pin description  
L9953 / L9953XP  
1
Block diagram and pin description  
Figure 1.  
Block diagram  
V BAT  
R everse Polarity  
P rotection  
* N ote: Value of capacitor has to be choosen carefully to limit the VS voltage below absolute  
maximum ratings in case of an unexpected freew heeling condition (e.g. TSD , POR )  
*
VS  
100µF  
OU T1  
VC C  
C harge  
P ump  
Mirror C ommon  
Mirror V ertical  
OU T2  
OU T3  
M
M
V C C  
Mirror H orizontal  
D I  
** 1k  
** 1k  
** 1k  
** 1k  
OU T4  
OU T5  
OU T6  
D O  
M
C LK  
Lock / Folder  
C S N  
PW M 1  
**1k  
OU T7  
OU T8  
µC  
D efroster  
MU X  
GN D  
PW M 2  
/ C M  
4
**1k  
** N ote: R esistors betw een µC and L9953 are recommended to lim it currents  
for negative voltage transients at VBAT (e.g. ISO type pulse)  
1
Table 2.  
Pin  
Pin definitions and functions  
Symbol  
Function  
Ground:  
Reference potential  
GND  
1, 18, 19, 36  
Important: for the capability of driving the full current at the outputs all  
pins of GND must be externally connected.  
Highside driver output 8  
The output is built by a highside switch and is intended for resistive  
loads, hence the internal reverse diode from GND to the output is  
missing. For ESD reason a diode to GND is present but the energy  
which can be dissipated is limited. The highside driver is a power  
DMOS transistor with an internal parasitic reverse diode from the  
output to VS (bulk-drain-diode). The output is over-current and open  
load protected.  
2, 35  
OUT8  
Important: for the capability of driving the full current at the outputs both  
pins of OUT8 must be externally connected.  
Half-bridge-output 1,2,3  
The output is built by a highside and a lowside switch, which are  
internally connected. The output stage of both switches is a power  
DMOS transistor. Each driver has an internal parasitic reverse diode  
(bulk-drain-diode: highside driver from output to VS, lowside driver from  
GND to output). This output is over-current and open load protected.  
OUT1  
OUT2  
3
4
5
OUT3  
6/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Block diagram and pin description  
Table 2.  
Pin  
Pin definitions and functions (continued)  
Symbol  
Function  
Power supply voltage (external reverse protection required)  
For this input a ceramic capacitor as close as possible to GND is  
recommended.  
6, 7, 14, 15,  
23, 25, 28, 32  
VS  
Important: for the capability of driving the full current at the outputs all  
pins of VS must be externally connected.  
Serial data input  
The input requires CMOS logic levels and receives serial data from the  
microcontroller. The data is an 24bit control word and the least  
significant bit (LSB, bit 0) is transferred first.  
8
9
DI  
Current monitor output/PWM2 input  
Depending on the selected multiplexer bits of Input Data Register this  
output sources an image of the instant current through the  
corresponding highside driver with a ratio of 1/10.000. This pin is  
bidirectional. The microcontroller can overdrive the current monitor  
signal to provide a second PWM input for the output OUT7.  
CM/PWM2  
Chip select not input / test mode  
This input is low active and requires CMOS logic levels. The serial data  
transfer between L9953 and micro controller is enabled by pulling the  
input CSN to low level. If an input voltage of more than 7.5V is applied  
to CSN pin the L9953 will be switched into a test mode.  
10  
11  
CSN  
DO  
Serial data output  
The diagnosis data is available via the SPI and this tristate-output. The  
output will remain in tristate, if the chip is not selected by the input CSN  
(CSN = high)  
Logic supply voltage  
12  
VCC  
CLK  
For this input a ceramic capacitor as close as possible to GND is  
recommended.  
Serial clock input  
13  
This input controls the internal shift register of the SPI and requires  
CMOS logic levels.  
Half-bridge-output 4,5: see OUT1 (pin 3).  
Important: for the capability of driving the full current at the outputs both  
pins of OUT4 (OUT5, respectively) must be externally connected.  
OUT4  
OUT5  
16,17, 20,21,  
Charge pump output  
26  
27  
CP  
This output is provided to drive the gate of an external n-channel power  
MOS used for reverse polarity protection  
PWM1 input:  
PWM1  
This input signal can be used to control the drivers OUT1-OUT6 and  
OUT8 by an external PWM signal.  
Doc ID 14278 Rev 3  
7/38  
Block diagram and pin description  
L9953 / L9953XP  
Table 2.  
Pin  
Pin definitions and functions (continued)  
Symbol  
Function  
Highside driver output 6,7:  
Each output is built by a highside switch and is intended for resistive  
loads, hence the internal reverse diode from GND to the output is  
missing. For ESD reason a diode to GND is present but the energy  
which can be dissipated is limited. Each highside driver is a power  
DMOS transistor with an internal parasitic reverse diode from each  
output to VS (bulk-drain-diode). Each output is over-current and open  
load protected.  
31  
33  
OUT6,  
OUT7  
22, 24, 29,  
30, 34  
NC  
Not connected pins.  
Figure 2.  
Configuration diagram (top view)  
GND 1  
36 GND  
OUT8  
2
35  
34 NC  
33  
OUT8  
OUT1 3  
4
OUT7  
32 Vs  
OUT2  
OUT3 5  
Vs 6  
OUT6  
31  
30 NC  
29 NC  
Vs 7  
PowerSO-36  
8
9
DI  
CM / PWM2  
28  
Vs  
PowerSSO-36  
CSN 10  
DO 11  
27 PWM1  
26 CP  
25 Vs  
Vcc 12  
24  
NC  
CLK  
13  
Vs 14  
Vs 15  
23 Vs  
22 NC  
21 OUT5  
OUT4 16  
OUT4 17  
20  
19  
OUT5  
GND  
GND  
18  
8/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Electrical specifications  
2
Electrical specifications  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in the “Absolute maximum ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality document  
Table 3.  
Absolute maximum ratings  
Symbol Parameter  
Value  
Unit  
DC supply voltage  
-0.3 to28  
40  
V
V
V
VS  
Single pulse tmax < 400ms  
Stabilized supply voltage, logic supply  
VCC  
-0.3 to 5.5  
VDI, VDO, VCLK  
,
Digital input / output voltage  
-0.3 to VCC + 0.3  
V
VCSN, Vpwm1  
VCM  
VCP  
Current monitor output  
Charge pump output  
Output current  
-0.3 to VCC + 0.3  
V
V
A
A
-25 to VS + 11  
IOUT1,2,3,6,7  
IOUT4,5,8  
5
Output current  
10  
2.2  
ESD protection  
Table 4.  
ESD protection  
Parameter  
Value  
Unit  
All pins  
2(1)  
8(2)  
kV  
kV  
Output pins: OUT1 - OUT8  
1. HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A.  
2. HBM with all unzapped pins grounded.  
2.3  
Thermal data  
Table 5.  
Symbol  
Operating junction temperature  
Parameter  
Value  
Unit  
Tj  
Operating junction temperature  
-40 to 150  
°C  
Doc ID 14278 Rev 3  
9/38  
Electrical specifications  
L9953 / L9953XP  
Typ. Max. Unit  
Table 6.  
Symbol  
Temperature warning and thermal shutdown  
Parameter  
Min.  
Temperature warning threshold junction  
temperature  
TjTW ON  
TjSD ON  
TjSD OFF  
Tj  
130  
150  
170  
°C  
°C  
Thermal shutdown threshold junction  
temperature  
Tj  
increasing  
Thermal shutdown threshold junction  
temperature  
Tj  
150  
°C  
°K  
decreasing  
TjSD HYS Thermal shutdown hysteresis  
5
2.4  
Electrical characteristics  
V = 8 to 16V, V = 4.5 to 5.3V, T = - 40 to 150°C, unless otherwise specified.  
S
CC  
j
The voltages are referred to GND and currents are assumed positive, when the current  
flows into the pin.  
Table 7.  
Symbol  
Supply  
Parameter  
Test condition  
Min. Typ. Max. Unit  
Operating supply voltage  
range  
VS  
7
28  
20  
V
VS = 16V, VCC = 5.3V  
active mode  
VS DC supply current  
7
4
mA  
OUT1 - OUT8 floating  
VS = 16V, VCC = 0V  
standby mode  
IS  
12  
µA  
OUT1 - OUT8 floating  
Ttest = -40°C, 25°C  
VS quiescent supply current  
VCC DC supply current  
T
test = 85°C(1)  
6
1
25  
3
µA  
VS = 16V, VCC = 5.3V  
mA  
CSN = VCC , active mode  
ICC  
VS = 16V, VCC = 5.3V  
CSN = VCC standby mode  
OUT1 - OUT8 floating  
VCC quiescent supply  
current  
25  
50  
50  
µA  
µA  
VS = 16V, VCC = 5.3V  
CSN = VCC  
Sum quiescent supply  
current  
IS + ICC  
standby mode  
100  
OUT1 - OUT8 floating  
Ttest = 130°C  
1. Guaranteed by design.  
10/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Electrical specifications  
Min. Typ. Max Unit  
Table 8.  
Symbol  
Overvoltage and under voltage detection  
Parameter Test condition  
VSUV ON VS UV-threshold voltage  
VSUV OFF VS UV-threshold voltage  
VSUV hyst VS UV-hysteresis  
VS increasing  
5.7  
5.5  
7.2  
6.9  
V
V
V
V
V
V
V
V
V
VS decreasing  
VSUV ON - VSUV OFF  
VS increasing  
0.5  
1
VSOV OFF VS OV-threshold voltage  
VSOV ON VS OV-threshold voltage  
VSOV hyst VS OV-hysteresis  
18  
24.5  
23.5  
VS decreasing  
17.5  
VSOV OFF - VSOV ON  
VCC increasing  
VPOR OFF Power-On-reset threshold  
VPOR ON Power-On-reset threshold  
VPOR hyst Power-On-reset hysteresis  
4.4  
VCC decreasing  
VPOR OFF - VPOR ON  
3.1  
0.3  
Table 9.  
Symbol  
Current monitor output  
Parameter  
Test condition  
Min.  
Typ.  
Max  
Unit  
VCM  
Functional voltage range VCC = 5V  
0
4
V
Current monitor output  
ratio:  
1
-----------------  
ICM,r  
0V VCM 4V, VCC=5V  
-
-
10.000  
ICM / IOUT1,4,5,8  
0 V VCM 3.8V,  
CC = 5V, IOut,min=500mA,  
V
4% +  
1%FS 2%FS  
8% +  
ICM acc Current monitor accuracy  
IOut max = 6A  
(FS = full scale= 600μA)  
Table 10. Charge pump output  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max  
Unit  
VS = 8V, ICP = -60µA  
VS = 10V, ICP = -80µA  
VS 12V, ICP = -100µA  
VS+6  
VS+8  
VS+13  
VS+13  
VS+13  
V
V
V
Charge pump output  
voltage  
VCP  
VS+10  
Charge pump output  
current  
ICP  
VCP = VS+10V, VS =13.5V  
95  
150  
300  
µA  
Doc ID 14278 Rev 3  
11/38  
Electrical specifications  
L9953 / L9953XP  
Table 11.  
Symbol  
OUT1 - OUT8  
Parameter  
Test condition  
Min.  
Typ.  
Max  
Unit  
VS = 13.5 V, Tj = 25 °C,  
800  
1100  
mΩ  
rON OUT1,  
rON OUT2  
IOUT1,2,3  
VS = 13.5 V, Tj = 125 °C,  
IOUT1,2,3 0.8 A  
VS = 13.5 V, Tj = 25 °C,  
IOUT4,5 3 A  
VS = 13.5 V, Tj = 125 °C,  
IOUT4,5 3 A  
=
0.8A  
On-resistance to supply  
or GND  
rON OUT3  
1250  
150  
225  
500  
700  
100  
150  
1700  
200  
300  
700  
950  
150  
200  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
=
=
rON OUT4, On-resistance to supply  
rON OUT5 or GND  
=
VS = 13.5 V, Tj = 25 °C,  
IOUT6,7 = 0.8A  
rON OUT6,  
On-resistance to supply  
rON OUT7  
VS = 13.5 V, Tj = 125 °C,  
IOUT6,7 = −0.8 A  
VS = 13.5 V, Tj = 25 °C,  
IOUT8 = -3 A  
rON OUT8 On-resistance to supply  
VS = 13.5 V, Tj = 125 °C,  
IOUT8 = -3 A  
IOUT1  
Output current limitation  
to GND  
IOUT2  
Source, VS=13.5 V  
Sink, VS=13.5 V  
-3.0  
1.5  
-1.5  
3.0  
A
A
IOUT3  
IOUT1  
Output current limitation  
to supply  
IOUT2  
IOUT3  
IOUT4  
IOUT5  
IOUT4  
IOUT5  
IOUT6  
IOUT7  
Output current limitation  
to GND  
Source, VS=13.5 V  
Sink, VS=13.5 V  
-10.5  
6
-6  
10.5  
-1.5  
-6  
A
A
A
A
Output current limitation  
to supply  
Output current limitation  
to GND  
Source, VS=13.5 V  
-3.0  
-10.5  
Output current limitation  
to GND  
IOUT8  
td ON H  
td OFF H  
td ON L  
td OFF L  
Source, VS=13.5 V  
VS=13.5 V,  
Output delay time,  
highside driver on  
20  
50  
15  
60  
40  
150  
30  
80  
300  
70  
µs  
µs  
µs  
µs  
corresponding lowside  
driver is not active  
Output delay time,  
highside driver off  
VS=13.5 V  
VS=13.5 V,  
Output delay time,  
lowside driver on  
corresponding highside  
driver is not active  
Output delay time,  
lowside driver off  
VS=13.5 V  
100  
200  
12/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Electrical specifications  
Table 11.  
OUT1 - OUT8 (continued)  
Parameter  
Symbol  
Test condition  
Min.  
Typ.  
Max  
Unit  
Cross current protection  
time, source to sink  
(1)  
CC ONLS_OFFHS d OFF H  
td HL  
t
t
- t  
200  
400  
µs  
Cross current protection  
time, sink to source  
(1)  
CC ONHS_OFFLS d OFF L  
td LH  
- t  
200  
400  
µs  
VOUT1-8=0V, standby  
mode  
Switched-off output  
current highside drivers of  
OUT1-8  
0
-2  
-5  
0
µA  
µA  
µA  
µA  
IQLH  
VOUT1-8=0V, active mode  
-40  
0
-15  
80  
VOUT1-5= VS, standby  
mode  
Switched-off output  
current lowside drivers of  
OUT1-5  
120  
0
IQLL  
VOUT1-5= VS, active mode  
-40  
-15  
Open load detection  
IOLD123 current of OUT1, OUT2  
and OUT3  
Source and sink  
15  
60  
40  
60  
mA  
mA  
Open load detection  
IOLD45 current of OUT4 and  
OUT5  
Source and sink  
150  
300  
Open load detection  
IOLD67 current of OUT6 and  
OUT7  
Source  
Source  
15  
30  
40  
60  
mA  
mA  
µs  
Open load detection  
IOLD8  
150  
300  
current of OUT8  
Minimum duration of  
td OL  
open load condition to set  
the status bit  
500  
3000  
Minimum duration of  
over-current condition to  
switch off the driver  
tISC  
10  
2
100  
8
µs  
Recovery frequency for  
OC recovery duty cycle  
bit=0  
frec0  
kHz  
kHz  
Recovery frequency for  
OC recovery duty cycle  
bit=1  
frec1  
3
16  
dV  
/dt  
/dt  
VS =13.5 V  
Slew rate of OUT123 and  
OUT 67  
OUT123  
0.08  
0.08  
0.08  
0.2  
0.2  
0.2  
0.4  
0.4  
0.4  
V/µs  
V/µs  
V/µs  
dV  
Rload = 16.8 Ω  
OUT67  
VS =13.5 V  
Slew rate of OUT4 and  
OUT5  
dV  
/dt  
OUT45  
Rload = 4.5 Ω  
VS =13.5 V  
dV  
/dt Slew rate of OUT8  
OUT8  
Rload = 4.5 Ω  
1. tCC ON is the switch on delay time td ON if complement in half bridge has to switch Off.  
Doc ID 14278 Rev 3  
13/38  
Electrical specifications  
L9953 / L9953XP  
2.5  
SPI - electrical characteristics  
(V = 8 to 16V, V = 4.5 to 5.3V, T = - 40 to 150°C, unless otherwise specified. The  
S
CC  
j
voltages are referred to GND and currents are assumed positive, when the current flows into  
the pin).  
Table 12. Delay time from standby to active mode  
Symbol  
Parameter  
Test condition  
Min. Typ.  
Max.  
Unit  
Switching from standby to active mode.  
Time until output drivers are enabled  
tset  
Delay time  
160  
300  
µs  
Table 13. Inputs: CSN, CLK, PWM1/2 and DI  
Symbol  
Parameter  
Input low level  
Input high level  
Test condition  
Min. Typ.  
Max.  
Unit  
VinL  
VinH  
VCC = 5V  
VCC = 5V  
1.5  
2.0  
3.0  
V
V
3.5  
VinHyst Input hysteresis  
VCC = 5V  
0.5  
-40  
10  
V
ICSN in Pull up current at input CSN  
ICLK in Pull down current at input CLK  
VCSN = 3.5V VCC = 5V  
VCLK = 1.5V  
VDI = 1.5V  
-20  
25  
25  
-5  
50  
50  
µA  
µA  
µA  
IDI in  
Pull down current at input DI  
10  
Pull down current at input  
PWM1  
IPWM1 in  
V
PWM = 1.5V  
10  
25  
10  
50  
15  
µA  
pF  
Input capacitance at input  
CSN, CLK, DI and PWM1/2  
(1)  
Cin  
0 V < VCC < 5.3V  
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.  
(1)  
Table 14. DI timing  
Symbol  
Parameter  
Clock period  
Test condition  
Min. Typ.  
Max.  
Unit  
tCLK  
tCLKH  
tCLKL  
VCC = 5V  
VCC = 5V  
VCC = 5V  
1000  
400  
ns  
ns  
ns  
Clock high time  
Clock low time  
400  
CSN setup time, CSN low  
before rising edge of CLK  
tset CSN  
VCC = 5V  
VCC = 5V  
400  
400  
ns  
ns  
CLK setup time, CLK high  
before rising edge of CSN  
tset CLK  
tset DI  
DI setup time  
VCC = 5V  
VCC = 5V  
200  
200  
ns  
ns  
thold time DI hold time  
Rise time of input signal DI,  
tr in  
VCC = 5V  
VCC = 5V  
100  
100  
ns  
ns  
CLK, CSN  
Fall time of input signal DI,  
CLK, CSN  
tf in  
1. DI timing parameters tested in production by a passed / failed test:  
Tj= -40°C / +25°C: SPI communication @ 2MHz.  
Tj= +125°C  
SPI communication @ 1.25 MHz.  
14/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Electrical specifications  
Table 15. DO  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max. Unit  
VDOL  
VDOH  
Output low level  
Output high level  
VCC = 5 V, ID = -2mA  
VCC = 5 V, ID = 2 mA  
0.2  
0.4  
V
V
VCC -0.4 VCC-0.2  
-10  
V
CSN = VCC  
0V < VDO < VCC  
VCSN = VCC  
0V < VCC < 5.3V  
,
IDOLK  
Tristate leakage current  
10  
15  
µA  
pF  
,
Tristate input  
capacitance  
(1)  
CDO  
10  
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.  
Table 16. DO timing  
Symbol  
Parameter  
DO rise time  
Test condition  
Min. Typ. Max. Unit  
tr DO  
tf DO  
CL = 100 pF, Iload = -1mA  
CL = 100 pF, Iload = 1mA  
CL = 100 pF, Iload = 1mA  
80  
50  
140  
100  
ns  
ns  
DO fall time  
DO enable time  
ten DO tri L  
tdis DO L tri  
ten DO tri H  
tdis DO H tri  
td DO  
100  
380  
100  
380  
50  
250  
450  
250  
450  
250  
ns  
ns  
ns  
ns  
ns  
from tristate to low level pull-up load to VCC  
DO disable time CL = 100 pF, Iload = 4 mA  
from low level to tristate pull-up load to VCC  
DO enable time CL =100 pF, Iload = -1mA  
from tristate to high level pull-down load to GND  
DO disable time CL = 100 pF, Iload = -4mA  
from high level to tristate pull-down load to GND  
DO < 0.3 VCC, VDO > 0.7VCC  
CL = 100pF  
V
,
DO delay time  
Table 17. CSN timing  
Symbol  
Parameter  
Test condition  
Min. Typ. Max. Unit  
CSN HI time, switching from Transfer of SPI-command  
tCSN_HI,stb  
20  
4
µs  
µs  
standby mode  
to Input Register  
Transfer of SPI-command  
to input register  
tCSN_HI,min CSN HI time, active mode  
Doc ID 14278 Rev 3  
15/38  
Electrical specifications  
Figure 3.  
L9953 / L9953XP  
SPI - transfer timing diagram  
CSN high to low: DO enabled  
CSN  
CLK  
DI  
time  
0
0
1
X
18 19 20 21 22 23  
0
1
2
3
4
5
6
7
X
time  
DI: data will be accepted on the rising edge of CLK signal  
1
0
1
1
2
3
4
5
6
7
X
X
18 19 20 21 22 23  
DO: data will change on the falling edge of CLK signal  
time  
0
2
3
4
5
6
7
0
1
DO  
X
X
18 19 20 21 22 23  
time  
CSN low to high: actual data is  
transfered to output power switches  
fault bit  
Input  
Data  
Register  
old data  
new data  
time  
Figure 4.  
SPI - input timing  
0.8 VCC  
0.2 VCC  
CSN  
t
t
t
set CLK  
set CSN  
CLKH  
0.8 VCC  
0.2 VCC  
CLK  
t
t
t
CLKL  
set DI  
hold DI  
0.8 VCC  
0.2 VCC  
DI  
Valid  
Valid  
16/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Electrical specifications  
Figure 5.  
SPI - DO valid data delay time and valid time  
tf in  
tr in  
0.8 VCC  
0.5 VCC  
0.2 VCC  
CLK  
tr DO  
DO  
(low to high)  
0.8 VCC  
0.2 VCC  
td DO  
tf DO  
0.8 VCC  
0.2 VCC  
DO  
(high to low)  
Figure 6.  
SPI - DO enable and disable time  
tf in  
tr in  
0.8 VCC  
50%  
CSN  
0.2 VCC  
DO  
50%  
pull-up load to VCC  
C
L
= 100 pF  
ten DO tri L  
tdis DO L tri  
DO  
50%  
pull-down load to GND  
= 100 pF  
C
L
ten DO tri H  
tdis DO H tri  
Doc ID 14278 Rev 3  
17/38  
Electrical specifications  
Figure 7.  
L9953 / L9953XP  
SPI - driver turn-on/off timing, minimum CSN hi time  
CSN low to high: data from shift register  
is transferred to output power switches  
tr in  
tf in  
tCSN_HI,min  
80%  
50%  
20%  
CSN  
tdOFF  
80%  
50%  
20%  
output current  
of a driver  
ON state  
OFF state  
tOFF  
tON  
tdON  
80%  
50%  
20%  
output current  
of a driver  
OFF state  
ON state  
Figure 8.  
SPI - timing of status bit 0 (fault condition)  
CSN high to low and CLK stays low: status information of data bit 0 (fault condition) is transfered to DO  
CSN  
CLK  
time  
time  
DI  
time  
DI: data is not accepted  
0
-
DO  
time  
DO: status information of data bit 0 (fault condition) will stay as long as CSN is low  
18/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Application information  
3
Application information  
3.1  
Dual power supply: VS and VCC  
The power supply voltage V supplies the half bridges and the highside drivers. An internal  
S
charge-pump is used to drive the highside switches. The logic supply voltage V (stabilized  
CC  
5 V) is used for the logic part and the SPI of the device.  
Due to the independent logic supply voltage the control and status information will not be  
lost, if there are temporary spikes or glitches on the power supply voltage. In case of power-  
on (V increases from under voltage to V  
= 4.2 V) the circuit is initialized by an  
CC  
POR OFF  
internally generated power-on-reset (POR). If the voltage V decreases under the  
CC  
minimum threshold (V  
= 3.4 V), the outputs are switched to tristate (high impedance)  
POR ON  
and the status registers are cleared.  
3.2  
3.3  
Standby mode  
The standby mode of the L9953 is activated by clearing the bit 23 of the Input Data Register  
0. All latched data will be cleared and the inputs and outputs are switched to high  
impedance. In the standby mode the current at V (V ) is less than 6 µA (50µA) for  
CSN = high (DO in tristate). By switching the V voltage a very low quiescent current can  
be achieved. If bit 23 is set, the device will be switched to active mode.  
S
CC  
CC  
Inductive loads  
Each half bridge is built by an internally connected highside and a lowside power DMOS  
transistor. Due to the built-in reverse diodes of the output transistors, inductive loads can be  
driven at the outputs OUT1 to OUT5 without external free-wheeling diodes. The highside  
drivers OUT6 to OUT8 are intended to drive resistive loads. Hence only a limited energy  
(E<1mJ) can be dissipated by the internal ESD-diodes in freewheeling condition. For  
inductive loads (L>100μH) an external free-wheeling diode connected to GND and the  
corresponding output is needed.  
3.4  
Diagnostic functions  
All diagnostic functions (over/open load, power supply over-/under voltage, temperature  
warning and thermal shutdown) are internally filtered and the condition has to be valid for at  
least 32 µs (open load: 1ms, respectively) before the corresponding status bit in the status  
registers will be set. The filters are used to improve the noise immunity of the device. Open  
load and temperature warning function are intended for information purpose and will not  
change the state of the output drivers. On contrary, the overload condition will disable the  
corresponding driver (over-current) and over temperature will switch off all drivers (thermal  
shutdown). Without setting the over-current recovery bits in the Input Data register, the  
microcontroller has to clear the over-current status bits to reactivate the corresponding  
drivers.  
Doc ID 14278 Rev 3  
19/38  
Application information  
L9953 / L9953XP  
3.5  
Overvoltage and under voltage detection  
If the power supply voltage V rises above the overvoltage threshold V  
(typical 21  
S
SOV OFF  
V), the outputs OUT1 to OUT8 are switched to high impedance state to protect the load.  
When the voltage V drops below the under voltage threshold V (UV-switch-OFF  
S
SUV OFF  
voltage), the output stages are switched to the high impedance to avoid the operation of the  
power devices without sufficient gate driving voltage (increased power dissipation). If the  
supply voltage V recovers to normal operating voltage the outputs stages return to the  
S
programmed state (input register 0: bit 20=0).  
If the under voltage/overvoltage recovery disable bit is set, the automatic turn-on of the  
drivers is deactivated. The microcontroller needs to clear the status bits to reactivate the  
drivers. It is recommended to set bit 20 to avoid a possible high current oscillation in case of  
a shorted output to GND and low battery voltage.  
3.6  
3.7  
Charge pump  
The charge pump runs under all conditions in normal mode. In standby the charge pump is  
disabled.  
Temperature warning and thermal shutdown  
If junction temperature rises above T  
a temperature warning flag is set and is detectable  
j TW  
via the SPI. If junction temperature increases above the second threshold T , the thermal  
j SD  
shutdown bit will be set and power DMOS transistors of all output stages are switched off to  
protect the device. Temperature warning flag and thermal shutdown bit are latched and must  
be cleared by the microcontroller. The related bit is only cleared if the temperature  
decreases below the trigger temperature. If the thermal shutdown bit has been cleared the  
output stages are reactivated.  
3.8  
3.9  
Open load detection  
The open load detection monitors the load current in each activated output stage. If the load  
current is below the open load detection threshold for at least 1 ms (t  
open load bit is set in the status register. Due to mechanical/electrical inertia of typical loads  
a short activation of the outputs (e.g. 3ms) can be used to test the open load status without  
changing the mechanical/electrical state of the loads.  
) the corresponding  
dOL  
Over load detection  
In case of an over-current condition a flag is set in the status register in the same way as  
open load detection. If the over-current signal is valid for at least t  
= 32 µs, the over-  
ISC  
current flag is set and the corresponding driver is switched off to reduce the power  
dissipation and to protect the integrated circuit. If the over-current recovery bit of the output  
is zero the microcontroller has to clear the status bits to reactivate the corresponding driver.  
20/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Application information  
3.10  
Current monitor  
The current monitor output sources a current image at the current monitor output which has  
a fixed ratio (1/10000) of the instantaneous current of the selected highside driver. The bits  
18 and 19 of the Input Data Register 0 control which of the outputs OUT1, OUT4, OUT5,  
and OUT8 will be multiplexed to the current monitor output. The current monitor output  
allows a more precise analysis of the actual state of the load rather than the detection of an  
open- or overload condition. For example this can be used to detect the motor state  
(starting, free-running, stalled). Moreover, it is possible to regulate the power of the defroster  
more precise by measuring the load current. The current monitor output is bidirectional (c.f.  
PWM inputs).  
3.11  
3.12  
PWM inputs  
Each driver has a corresponding PWM enable bit which can be programmed by the SPI  
interface. If the PWM enable bit in Input Data Register 1 is set, the output is controlled by the  
logically AND-combination of the PWM signal and the output control bit in Input Data  
Register 0. The outputs OUT1-OUT6 and OUT8 are controlled by the PWM1 input and the  
output OUT7 is controlled by the bidirectional input CM/PMW2. For example, the two PWM  
inputs can be used to dim two lamps independently by external PWM signals.  
Cross-current protection  
The six half-bridges of the device are cross-current protected by an internal delay time. If  
one driver (LS or HS) is turned-off the activation of the other driver of the same half bridge  
will be automatically delayed by the cross-current protection time. After the cross-current  
protection time is expired the slew-rate limited switch-off phase of the driver will be changed  
to a fast turn-off phase and the opposite driver is turned-on with slew-rate limitation. Due to  
this behavior it is always guaranteed that the previously activated driver is totally turned-off  
before the opposite driver will start to conduct.  
3.13  
Programmable softstart function to drive loads with higher  
inrush current  
Loads with start-up currents higher than the over-current limits (e.g. inrush current of lamps,  
start current of motors and cold resistance of heaters) can be driven by using the  
programmable softstart function (i.e. overcurrent recovery mode). Each driver has a  
corresponding over-current recovery bit. If this bit is set, the device will automatically switch-  
on the outputs again after a programmable recovery time. The duty cycle in over-current  
condition can be programmed by the SPI interface to be about 12% or 25%. The PWM  
modulated current will provide sufficient average current to power up the load (e.g. heat up  
the bulb) until the load reaches operating condition. The PWM frequency settles at 3kHz or  
6kHz. The device itself cannot distinguish between a real overload and a non linear load like  
a light bulb. A real overload condition can only be qualified by time. As an example the  
microcontroller can switch on light bulbs by setting the over-current Recovery bit for the first  
50ms. After clearing the recovery bit the output will be automatically disabled if the overload  
condition still exits.  
Doc ID 14278 Rev 3  
21/38  
Application information  
Figure 9.  
L9953 / L9953XP  
Example of programmable softstart function for inductive loads  
22/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Functional description of the SPI  
4
Functional description of the SPI  
4.1  
Serial Peripheral Interface (SPI)  
This device uses a standard SPI to communicate with a microcontroller. The SPI can be  
driven by a microcontroller with its SPI peripheral running in following mode: CPOL = 0 and  
CPHA = 0.  
For this mode, input data is sampled by the low to high transition of the clock CLK, and  
output data is changed from the high to low transition of CLK.  
This device is not limited to microcontroller with a build-in SPI. Only three CMOS-compatible  
output pins and one input pin will be needed to communicate with the device. A fault  
condition can be detected by setting CSN to low. If CSN = 0, the DO-pin will reflect the  
status bit 0 (fault condition) of the device which is a logical-or of all bits in the status registers  
0 and 1. The microcontroller can poll the status of the device without the need of a full SPI-  
communication cycle.  
Note:  
In contrast to the SPI-standard the least significant bit (LSB) will be transferred first  
(see Figure 3).  
4.2  
Chip Select Not (CSN)  
The input pin is used to select the serial interface of this device. When CSN is high, the  
output pin (DO) will be in high impedance state. A low signal will activate the output driver  
and a serial communication can be started. The state when CSN is going low until the rising  
edge of CSN will be called a communication frame. If the CSN-input pin is driven above  
7.5V, the L9953 will go into a test mode. In the test mode the DO will go from tri-state to  
active mode.  
4.3  
Serial Data In (DI)  
The input pin is used to transfer data serial into the device. The data applied to the DI will be  
sampled at the rising edge of the CLK signal and shifted into an internal 24 bit shift register.  
At the rising edge of the CSN signal the contents of the shift register will be transferred to  
Data Input Register. The writing to the selected Data Input Register is only enabled if exactly  
24 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock  
pulses are counted within one frame the complete frame will be ignored. This safety function  
is implemented to avoid an activation of the output stages by a wrong communication frame.  
Note:  
Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel  
operation of the SPI bus by controlling the CSN signal of the connected ICs is  
recommended.  
Doc ID 14278 Rev 3  
23/38  
Functional description of the SPI  
L9953 / L9953XP  
4.4  
Serial Data Out (DO)  
The data output driver is activated by a logical low level at the CSN input and will go from  
high impedance to a low or high level depending on the status bit 0 (fault condition). The first  
rising edge of the CLK input after a high to low transition of the CSN pin will transfer the  
content of the selected status register into the data out shift register. Each subsequent  
falling edge of the CLK will shift the next bit out.  
4.5  
4.6  
Serial clock (CLK)  
The CLK input is used to synchronize the input and output serial bit streams. The data input  
(DI) is sampled at the rising edge of the CLK and the data output (DO) will change with the  
falling edge of the CLK signal.  
Input data register  
The device has two input registers. The first bit (bit 0) at the DI-input is used to select one of  
the two Input Registers. All bits are first shifted into an input shift register. After the rising  
edge of CSN the contents of the input shift register will be written to the selected Input Data  
Register only if a frame of exact 24 data bits are detected. Depending on bit 0 the contents  
of the selected status register will be transferred to DO during the current communication  
frame. Bit 1-17 controls the behavior of the corresponding driver.  
If bit 23 is zero, the device will go into the standby-mode. The bits 18 and 19 are used to  
control the current monitor multiplexer. Bit 22 is used to reset all status bits in both status  
registers. The bits in the status registers will be cleared after the current communication  
frame (rising edge of CSN).  
4.7  
4.8  
24/38  
Status register  
This devices uses two status registers to store and to monitor the state of the device. Bit 0 is  
used as a fault bit and is a logical-NOR combination of bits 1-22 in both status registers. The  
state of this bit can be polled by the microcontroller without the need of a full SPI-  
communication cycle. If one of the over-current bits is set, the corresponding driver will be  
disabled. If the over-current recovery bit of the output is not set the microcontroller has to  
clear the over-current bit to enable the driver. If the thermal shutdown bit is set, all drivers  
will go into a high impedance state. Again the microcontroller has to clear the bit to enable  
the drivers.  
Scan mode  
The Scan Mode can be entered by rising the PWM1 input to a voltage higher than 9.5V.  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Functional description of the SPI  
4.9  
Test mode  
The Test Mode can be entered by rising the CSN input to a voltage higher than 9.5V. In the  
test mode the inputs CLK, DI, PWM1/2, the internal 2MHz CLK, OL and OC can be  
multiplexed to output DO and Iref, Tsens1-4 and Vbgp can be multiplexed to input  
CM/PWM2.  
Furthermore the over-current thresholds are reduced by a factor of 4 to allow EWS testing at  
lower current.  
The internal logic prevents that the High-Side and Low-Side driver of the same half-bridge  
can be switched-on at the same time. In the test mode this combination is used to multiplex  
the desired signals according to following table:  
Table 18. Test mode  
OUT1 OUT2 OUT3 OUT4 OUT5 OUT6  
PWM PWM PWM PWM PWM PWM  
1 EN 1 EN 1 EN 1 EN 1 EN 1 EN  
DO  
LS3  
HS3  
LS4  
HS4  
LS5  
HS5  
Test Pad  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
! (both HI)  
! (both HI)  
both HI  
NoError  
DI  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
! (both HI)  
! (both HI)  
both HI  
5µA Iref  
Tsens1  
Tsens2  
Tsens3  
Tsens4  
x
! (both HI)  
both HI  
CLK  
! (both HI)  
both HI  
both HI  
INT_CLK  
PWM1  
PWM2  
OL  
both HI  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
both HI  
! (both HI)  
both HI  
! (both HI)  
! (both HI)  
both HI  
both HI  
both HI  
! (both HI)  
both HI  
both HI  
! (both HI)  
both HI  
both HI  
x
both HI  
both HI  
OC  
both HI  
both HI  
Vbandgap  
Doc ID 14278 Rev 3  
25/38  
Functional description of the SPI  
L9953 / L9953XP  
4.10  
SPI - input data and Status registers  
Table 19. SPI - input data and Status registers 0  
Input register 0 (write)  
Bit  
Status register 0 (read)  
Name  
Comment  
Name  
Comment  
If Enable Bit is set the  
device will be switched in  
active mode. If Enable Bit  
is cleared the device go  
into standby mode and all  
bits are cleared. After  
power-on reset device  
starts in standby mode.  
A broken VCC-or SPI-  
connection of the L9953 can  
be detected by the  
microcontroller, because all 24  
bits low or high is not a valid  
frame.  
23  
Enable bit  
Always 1  
If Reset Bit is set both  
status registers will be  
cleared after rising edge of  
CSN input.  
In case of an overvoltage or  
undervoltage event the  
22  
21  
Reset bit  
VS overvoltage  
VS undervoltage  
corresponding bit is set and  
the outputs are deactivated. If  
VS voltage recovers to normal  
operating conditions outputs  
are reactivated automatically  
(if Bit 20 of status register 0 is  
not set).  
OC recovery This bit defines in  
duty cycle  
combination with the over-  
current recovery bit (Input  
Register 1) the duty cycle  
in over-current condition of  
an activated driver.  
0: 12% 1: 25%  
If this bit is set the  
microcontroller has to  
clear the status register  
after  
undervoltage/overvoltage  
event to enable the  
outputs.  
In case of a thermal shutdown  
all outputs are switched off.  
Overvoltage/Un  
dervoltage  
recovery  
Thermal  
shutdown  
The microcontroller has to  
clear the TSD bit by setting the  
Reset Bit to reactivate the  
outputs.  
20  
19  
disable  
Depending on  
This TW bit is for information  
purpose only. It can be used  
for a thermal management by  
the microcontroller to avoid a  
thermal shutdown.  
combination of bit 18 and  
19 the current image  
(1/10.000) of the selected  
HS-output will be multi-  
plexed to the CM output:  
Temperature  
warning  
Bit  
19  
Bit  
18  
After switching the device from  
standby mode to active mode  
an internal timer is started to  
allow charge pump to settle  
before the outputs can be  
activated. This bit is cleared  
automatically after start up  
time has finished. Since this bit  
is controlled by internal clock it  
can be used for synchronizing  
testing events (e.g. measuring  
filter times).  
Output  
Currentmonitor  
select bits  
0
1
0
1
0
0
1
1
OUT8  
OUT1  
OUT5  
OUT4  
18  
Not ready bit  
26/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Functional description of the SPI  
Table 19. SPI - input data and Status registers 0 (continued)  
Input register 0 (write)  
Status register 0 (read)  
Name Comment  
Bit  
Name  
Comment  
OUT8 – HS  
on/off  
OUT8 – HS  
over-current  
17  
16  
15  
x (don’t care)  
0
OUT7 – HS  
on/off  
OUT7 – HS  
over-current  
If a bit is set the selected  
output driver is switched  
on. If the corresponding  
PWM enable bit is set  
OUT6 – HS  
on/off  
OUT6 – HS  
over-current  
14  
(Input Register 1) the  
driver is only activated if  
PWM1 (PWM2) input  
13  
12  
11  
x (don’t care)  
x (don’t care)  
x (don’t care)  
0
0
In case of an over-current  
event the corresponding status  
bit is set and the output driver  
is disabled. If the over-current  
Recovery Enable bit is set  
(Input Register 1) the output  
will be automatically  
reactivated after a delay time  
resulting in a PWM modulated  
current with a programmable  
duty cycle (Bit 21).  
signal is high. The outputs  
of OUT1-OUT5 are half  
bridges. If the bits of HS-  
and LS-driver of the same  
half bridge are set, the  
internal logic prevents that  
both drivers of this output  
stage can be switched on  
simultaneously in order to  
avoid a high internal  
current from VS to GND.  
In test mode (CSN>9.5V)  
this bit combinations are  
used to multiplex internal  
signals to the DO-output.  
OUT5 – HS  
on/off  
OUT5 – HS  
over-current  
10  
9
8
7
6
5
4
3
2
1
OUT5 – LS  
on/off  
OUT5 – LS  
over-current  
OUT4 – HS  
on/off  
OUT4 – HS  
over-current  
OUT4 – LS  
on/off  
OUT4 – LS  
over-current  
If the over-current recovery bit  
is not set the microcontroller  
has to clear the over-current  
bit (Reset Bit) to reactivate the  
output driver.  
OUT3 – HS  
on/off  
OUT3 – HS  
over-current  
OUT3 – LS  
on/off  
OUT3 – LS  
over-current  
LS3 HS3 LS4 HS4 LS5 HS5 CM/PWM2  
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
0
0
1
1
0
0
0
0
1
1
5µA Iref  
Tsens1  
Tsens2  
Tsens3  
Tsens4  
Vbgp  
OUT2 – HS  
on/off  
OUT2 – HS  
over-current  
OUT2 – LS  
on/off  
OUT2 – LS  
over-current  
OUT1 – HS  
on/off  
OUT1 – HS  
over-current  
OUT1 – LS  
on/off  
OUT1 – LS  
over-current  
A logical NOR-combination of  
all bits 1 to 22 in both status  
registers.  
0
0
No error bit  
Doc ID 14278 Rev 3  
27/38  
Functional description of the SPI  
L9953 / L9953XP  
Table 20. SPI - input data and status registers 1  
Input register 1 (write)  
Status register 1 (read)  
Bit  
Name  
Comment  
Name  
Comment  
If Enable bit is set the device  
will be switched in active mode.  
If Enable Bit is cleared device  
goes into standby mode and all  
bits are cleared. After power-  
on reset device starts in  
standby mode.  
A broken VCC-or SPI-  
connection of the L9953  
can be detected by the  
microcontroller, because  
all 24 bits low or high is  
not a valid frame.  
23  
Enable bit  
Always 1  
OUT8 OC  
Recovery  
Enable  
In case of an overvoltage  
or under voltage event  
the corresponding bit is  
set and the outputs are  
deactivated. If Vs voltage  
recovers to normal  
operating conditions  
outputs are reactivated  
automatically.  
22  
21  
VS overvoltage  
VS undervoltage  
0 / 1  
In case of a thermal  
shutdown all outputs are  
switched off. The  
OUT7 OC  
Recovery  
Enable  
In case of an over-current  
20  
19  
Thermal shutdown microcontroller has to  
clear the TSD bit by  
event the over-current status  
bit (Status Register 0) is set  
and the output is switched off.  
If the over-current Recovery  
Enable bit is set the output will  
be automatically reactivated  
after a delay time resulting in a  
PWM modulated current with a  
programmable duty cycle (Bit  
21 of Input Data Register 0).  
Depending on occurrence of  
Overturned Event and internal  
clock phase it is possible that  
one recovery cycle is executed  
even if this bit is set to zero.  
setting the Reset Bit to  
reactivate the outputs.  
The TW bit can be used  
for thermal management  
by the microcontroller to  
avoid a thermal  
shutdown. The  
OUT6 OC  
Recovery  
Enable  
Temperature  
warning  
microcontroller has to  
clear the TW bit.  
After switching the  
device from standby  
mode to active mode an  
internal timer is started  
to allow charge pump to  
settle before the outputs  
can be activated. This bit  
is only present during  
start up time  
18  
0 / 1  
Not ready bit  
Since this bit is  
controlled by internal  
clock it can be used for  
synchronizing testing  
events(e.g. measuring  
filter times).  
28/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Functional description of the SPI  
Table 20. SPI - input data and status registers 1 (continued)  
Input register 1 (write)  
Status register 1 (read)  
Bit  
17  
16  
Name  
Comment  
Name  
Comment  
OUT8 – HS  
open load  
OUT5 OC  
Recovery  
Enable  
0
OUT4 OC  
Recovery  
Enable  
OUT7 – HS  
open load  
15  
14  
13  
12  
After 50ms the bit can be  
cleared. If over-current  
condition still exists, a wrong  
load can be assumed.  
OUT3 OC  
Recovery  
Enable  
OUT6 – HS  
open load  
OUT2 OC  
Recovery  
Enable  
0
The open load detection  
monitors the load current  
in each activated output  
stage. If the load current  
is below the open load  
detection threshold for at  
least 1 ms (tdOL) the  
corresponding open load  
bit is set. Due to  
mechanical/electrical  
inertia of typical loads a  
short activation of the  
outputs (e.g. 3ms) can  
be used to test the open  
load status without  
OUT1 OC  
Recovery  
Enable  
0
0
OUT8 PWM1  
Enable  
11  
10  
9
OUT5 – HS  
open load  
0 / 1  
If the PWM1/2 Enable Bit is set  
and the output is enabled  
(Input Register 0) the output is  
switched on if PWM1/2 input is  
high and switched off if  
PWM1/2 input is low. OUT7 is  
controlled by PWM2 input. All  
other outputs are controlled by  
PWM1 input. For test mode  
rise CSN>9.5 V.  
OUT5 – LS  
open load  
OUT7 PWM2  
Enable  
OUT4 – HS  
open load  
OUT6 PWM1  
Enable  
8
OUT4 – LS  
open load  
changing the  
mechanical/electrical  
state of the loads.  
7
0 / 1  
0 / 1  
OUT3 – HS  
open load  
6
OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 DO  
OUT3 – LS  
open load  
OUT5 PWM1  
Enable  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
0
0
0
0
0
0
No error  
5
Di  
CLK  
1
0
0
OUT2 –HS  
open load  
OUT4 PWM1  
Enable  
4
CLK 2MHz  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
PWM1  
PWM2  
OL  
OUT2– LS  
open load  
OUT3 PWM1  
Enable  
3
1
OC  
OUT1 – HS  
open load  
OUT2 PWM1  
Enable  
2
OUT1 – LS  
open load  
OUT1 PWM1  
Enable  
1
A logical NOR-  
combination of all bits 1  
to 22 in both status  
registers.  
0
1
No Error bit  
Doc ID 14278 Rev 3  
29/38  
Packages thermal data  
L9953 / L9953XP  
5
Packages thermal data  
Figure 10. Packages thermal data  
30/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Package and packing information  
6
Package and packing information  
6.1  
ECOPACK® packages  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
6.2  
PowerSO-36™ package information  
Figure 11. PowerSO-36™ package dimensions  
Doc ID 14278 Rev 3  
31/38  
Package and packing information  
L9953 / L9953XP  
Table 21. PowerSO-36™ mechanical data  
Millimeters  
Typ.  
Symbol  
Min.  
Max.  
3.60  
0.30  
3.30  
0.10  
0.38  
0.32  
16.00  
9.80  
14.5  
11.10  
2.90  
6.20  
A
a1  
a2  
a3  
b
0.10  
0
0.22  
0.23  
15.80  
9.40  
13.90  
10.90  
c
D *  
D1  
E
E1 *  
E2  
E3  
e
5.80  
0.65  
e3  
G
11.05  
0
0.10  
15.90  
1.10  
H
15.50  
h
L
0.8  
1.10  
M
N
10 deg  
8 deg  
R
s
32/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Package and packing information  
6.3  
PowerSSO-36™ package information  
Figure 12. PowerSSO-36™ package dimensions  
Table 22. PowerSSO-36™ mechanical data  
Millimeters  
Symbol  
Min.  
Typ.  
Max.  
2.45  
2.35  
0.1  
A
A2  
a1  
b
-
-
2.15  
-
0
-
0.18  
-
0.36  
0.32  
10.50  
7.6  
c
0.23  
-
D *  
E *  
e
10.10  
-
7.4  
-
-
0.5  
-
e3  
F
-
8.5  
-
-
2.3  
-
G
-
-
-
-
-
-
-
-
0.1  
G1  
H
-
10.1  
-
0.06  
10.5  
0.4  
h
k
0°  
8°  
L
0.55  
-
0.85  
10 deg  
N
Doc ID 14278 Rev 3  
33/38  
Package and packing information  
L9953 / L9953XP  
Table 22. PowerSSO-36™ mechanical data (continued)  
Millimeters  
Symbol  
Min.  
4.3  
Typ.  
Max.  
5.2  
X
Y
-
-
6.9  
7.5  
6.4  
PowerSO-36™ packing information  
Figure 13. PowerSO-36™ tube shipment (no suffix)  
34/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Package and packing information  
Figure 14. PowerSO-36™ tape and reel shipment (suffix “TR”)  
TAPE DIMENSIONS  
REEL DIMENSIONS  
A0  
B0  
K0  
K1  
F
15.20 0.1  
Base Qty  
Bulk Qty  
A (max)  
B (min)  
600  
600  
330  
1.5  
16.60 0.1  
3.90 0.1  
3.50 0.1  
11.50 0.1  
24.00 0.1  
24.00 0.3  
C (±0.2)  
D (min)  
13  
P1  
W
20.2  
24.4  
60  
G (+2 / -0)  
N (min)  
All dimensions are in mm.  
T (max)  
30.4  
Doc ID 14278 Rev 3  
35/38  
Package and packing information  
L9953 / L9953XP  
6.5  
PowerSSO-36™ packing information  
Figure 15. PowerSSO-36™ tube shipment (no suffix)  
Base Qty  
Bulk Qty  
49  
1225  
532  
3.5  
C
Tube length (±0.5)  
B
A
B
13.8  
0.6  
C (±0.1)  
All dimensions are in mm.  
A
Figure 16. PowerSSO-36™ tape and reel shipment (suffix “TR”)  
Reel dimensions  
Base Qty  
Bulk Qty  
A (max)  
B (min)  
C (±0.2)  
F
1000  
1000  
330  
1.5  
13  
20.2  
24.4  
100  
30.4  
G (+2 / -0)  
N (min)  
T (max)  
Tape dimensions  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb. 1986  
Tape width  
W
24  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
P0 (±0.1)  
P
12  
D (±0.05)  
D1 (min)  
F (±0.1)  
K (max)  
P1 (±0.1)  
1.55  
1.5  
11.5  
2.85  
2
Hole Diameter  
Hole Position  
Compartment Depth  
Hole Spacing  
End  
All dimensions are in mm.  
Start  
No components  
500mm min  
Top  
cover  
tape  
No components Components  
500mm min  
Empty components pockets  
sealed with cover tape.  
User direction of feed  
36/38  
Doc ID 14278 Rev 3  
L9953 / L9953XP  
Revision history  
7
Revision history  
Table 23. Document revision history  
Date  
Revision  
Description of changes  
23-Jan-2008  
1
Initial release.  
Table 22: PowerSSO-36™ mechanical data:  
– Deleted A (min) value  
– Changed A (max) value from 2.47 to 2.45  
– Changed A2 (max) value from 2.40 to 2.35  
– Changed a1 (max) value from 0.075 to 0.1  
– Added F and k rows  
24-Jun-2009  
14-May-2010  
2
3
Table 22: PowerSSO-36™ mechanical data:  
– Changed X: minimum value from 4.1 to 4.3 and  
maximum value from 4.7 to 5.2  
– Changed Y: minimum value from 6.5 to 6.9 and  
maximum value from 7.1 to 7.5  
Doc ID 14278 Rev 3  
37/38  
L9953 / L9953XP  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
38/38  
Doc ID 14278 Rev 3  

相关型号:

L9953XPTR

Door actuator driver
STMICROELECTR

L9954

Door actuator driver
STMICROELECTR

L9954LXP

暂无描述
STMICROELECTR

L9954TR

Door actuator driver
STMICROELECTR

L9954XP

Door actuator driver
STMICROELECTR

L9954XPTR

Door actuator driver
STMICROELECTR

L9958

Low RDSON SPI controlled H-Bridge
STMICROELECTR

L9958SB

Low RDSON SPI controlled H-Bridge
STMICROELECTR

L9958TR

SPI Controlled H-Bridge
STMICROELECTR

L9958XP

Low RDSON SPI controlled H-Bridge
STMICROELECTR

L9959

Single and dual PMOS high-side H-bridge
STMICROELECTR

L9959S

Single and dual PMOS high-side H-bridge
STMICROELECTR