L8229 [STMICROELECTRONICS]

Dual DMOS full bridge stepper/DC motor driver; 双DMOS全桥步进/ DC电机驱动器
L8229
型号: L8229
厂家: ST    ST
描述:

Dual DMOS full bridge stepper/DC motor driver
双DMOS全桥步进/ DC电机驱动器

驱动器 电机
文件: 总42页 (文件大小:863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L8229  
Dual DMOS full bridge stepper/DC motor driver  
Preliminary Data  
Features  
Flexible Motor Driver configurations:  
Dual Full Bridge for one bipolar Stepping motor.  
– Dual or single DC motor driver.  
Programmable by two input pins to achieve  
PwSSO24  
one of the following functionalities:  
– Pin to pin compatible with ST L6219 or  
levels to perform a more accurate stepping  
functionality. This is achieved by multiplexing  
the input pins dedicated to set the level of the  
current. Additionally the user can set the  
mixed mode decay for current recirculation.  
– Stepping motor direct control with 8 current  
levels or  
– Driver parameters control by means of  
Serial Port.  
Mixed Decay.  
3,4. The third and fourth conurations are  
intended to provide a ery flexible  
Micro stepping function.  
programming fseveral parameters useful  
to drive different kind of Stepping and DC  
motors. Ths is achieved by means of a serial  
port inerface that allows the user to  
BCD5 technology (No Charge Pump required).  
Supply Range from 8V to 38V.  
IOUT up to 1.2A (1.5A peak).  
RDSon= 0.85Ω (typ) for each switch.  
configure the following parameters:  
a) Current levels (32 values for each  
bridge).  
Input logic level compatible with 3.3V or 5V  
control signals.  
b) Current direction.  
Package: PwSSO24.  
c) Type of decay for Stepping motors  
(Mix/Slow) or for DC motors (Fast/Slow).  
d) Vref input (Ext/Int).  
e) Vref divider (:5/:10).  
Description  
This IC is designed to be very flexible in driving  
Stepping or DC motors.  
f)  
Blanking time (4 values).  
By connecting to Vcc or to nd two program pins  
(pin 7 and 18) the uhas the possibility to set  
up the device in different configurations.  
g) Oscillator freq divider (4 values).  
h) Off time (32 values).  
i)  
j)  
Fast decay time (16 values).  
Syncronous rectification.  
1. The first configuration is an identical  
appliction of ST L6219 but with increased  
cuent. In this configuration L8229 provides  
a continuous current of the output stage up  
to 1.2A (1.5A peak).  
The functionalities of the two configurations are  
identical except that the internal bit address (first  
bit of SPI words) can be programmed to be 1 or 0:  
this enables two different L8229 to share a  
common serial bus.  
2. The second configuration allows a  
functionality similar to previous one but with  
the possibility of choosing 8 different current  
Order code  
Part number  
Package  
PwSSO24  
Packing  
L8229  
Tube  
September 2006  
Rev 5  
1/42  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
L8229  
Contents  
1
2
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
General electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Output Drivers (OUTA or OUTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Control Logic pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Analog Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
5
L6219_HI and L6219_8 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
L6219_HI and L6219_8 Electrical characteristics . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
AC/transient specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6
L6219_HI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Input Logic (I0 and I1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Single-pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Vs, Vcc, Vref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
L6219_8 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.1  
7.2  
8 Level Current Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mixed Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8
L8229_0 and L8229_1 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.1  
Serial interface specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/42  
L8229  
Contents  
8.2  
SPI Bit definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.2.1  
8.2.2  
Word Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
W0 (OPERATIVE: Bit 2=0, Bit 1=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.3  
8.4  
W1 (PARAMETERS: Bit 2=0, Bit 1=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
W2 (FUNCTIONAL: Bit 2=1, Bit 1=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.4.1  
Reading back SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
9
SPI programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
9.1  
9.2  
9.3  
9.4  
Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Timings Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Decay Modes and Synchronous Rectification . . . . . . . . . . . . . . . . . . . . . 33  
Mixed Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
1) ACTIVE SYNC recirculation could be divided in following cases. . . . . . . . . . . . 35  
2) - PASSIVE SYNC recirculation could be divided in following cases:. . . . . . . . . 36  
3) - SYNC OFF recirculation has only one case: . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4) LOW SIDE recirculation has only one case: . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.5  
Slow Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
1) ACTIVE SYNC recirculation is not allowed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2) PASSIVE SYNC recirculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3) SYNC OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4) LOW SIDE is identical to PASSIVE SYNC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10  
11  
12  
DC Motor Driver operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3/42  
List of tables  
L8229  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Programmable modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Operating ratings (0°C £ Tj £ 125°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output Drivers (OUTA or OUTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Control Logic pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Analog Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
AC/transient specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input Logic (I0 and I1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Current levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
AC/Transient Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
AC/Transient Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SPI Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Word Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
W1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Motor mode selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Nsleep mode selected by W1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Brake mode selected by W1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Vref mode selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Range mode selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current direction selected by W0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current levels selected by W0 for DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Oscillator frequency selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Blanking time selected by W2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Fast decay time selected by W1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Toff time selected by W1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Stepping decay mode selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC decay mode selected by W2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Sync rectification selected by W1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DC Motor Drivers - DC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC Motor Drivers - AC/Transient Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DC Motor Drivers Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
4/42  
L8229  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Connection (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ton and Toff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Half and Full Step Drive with Imax=1.2A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Normal conduction and slow recirculation current paths. . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
L6219_8 mode Stepping Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
L6219_8 mode Fast and Slow Decay current paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SPI Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Active and Passive synchronous rectification during Mixed Decay. . . . . . . . . . . . . . . . . . . 34  
Figure 10. PowerSSO24 Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5/42  
Block diagram  
L8229  
1
Block diagram  
Figure 1.  
Block Diagram  
Analog Toff  
VREFDEC  
RC1  
VS  
VS  
VH  
VL  
M
VREF1  
2 / 7.5  
U
DAC5  
-
Pre  
Driver  
OUT1A  
OUT1B  
X
S
R
Q
+
2V  
COMPIN1  
SENSE1  
Digital Control  
Digital Prog Toff  
PROG1  
PROG2  
COMPIN1  
Osc Freq Select  
Stepper/DC Select  
Decay Ctrl  
00  
01  
10  
11  
I01  
I11  
I02  
Serial Port  
Toff Select  
I01  
I11  
I02  
I12  
I01  
I11  
PWM1 PWM1  
PWM2 PWM2  
Tfastdec Select  
Synch Rect Select  
Test Mode  
STB STB SCLK  
II2 II2 SDI  
I12  
PHA1 PHA1 PHA1 OSC  
PHA2 PHA2 PHA2 nCS  
DAC Select  
VS  
Digital Prog`  
Toff  
Pre  
Driver  
ADDR  
4MHz  
OUT2A  
OUT2B  
COMPIN2  
R
2V  
+
-
M
U
X
S
Q
DAC5  
VREF2  
RC2  
2 / 7.5  
SENSE2  
VL  
Test Mux  
VH  
VREFDEC  
COMPIN2  
GND  
4MHz  
Int Osc  
Bandgap  
Temp Mon  
2V  
VREFDEC  
Analog Toff  
Tshut  
GND  
VCC  
UV  
UVLO  
Note:  
The sensing resistors used for the stepping motor configurations must be not inductive.  
6/42  
L8229  
Pin description  
2
Pin description  
Figure 2.  
Pin Connection (Top view)  
1
2
3
4
24  
23  
22  
21  
OUT1A  
OUT2A  
VS (Load Supply)  
SENSE1  
SENSE2  
COMPIN1  
OUT1B  
COMPIN2  
5
6
7
8
20  
19  
18  
17  
OUT2B  
GND  
I01/I01/PWM1  
GND  
PROG1  
PROG2  
I11/I11/PWM2  
IO2/STB/SCLK  
9
I12 /I12/SDI  
PHASE2 /PHASE2/nCS  
VREF2/VREFDEC/VREF2  
16  
15  
14  
13  
PHASE1/PHASE1 /OSC  
VREF1/VREFCOM/VREF1  
RC1/RC1/nRESET  
10  
11  
12  
VCC (Logic Supply)  
RC2/RC2/FAULT  
Note:  
The pin functionality is different according to different configurations, so the relative pin  
function and name are different: the first name is relative to first configuration (L6219_HI),  
the second name is relative to second configuration (L6219_8), and the third name is  
relative to third and fourth configuration (L8229_0 and L8229_1).  
Table 1.  
Pin N#  
Pin Description  
L8229_x  
L6219_HI  
L6219_8  
Function  
(Pin7&18=10  
or 11)  
(Pin7&18=00) (Pin7&18=01)  
1
2
3
4
5
6
OUT1A  
OUT2A  
SENSE2  
COMPIN2  
OUT2B  
GND  
Motor Driver Bridge 1 Output A.  
Motor Driver Bridge 2 Output A.  
Motor Driver Bridge 2 Sense Resistor.  
Current Comparator input for Bridge2.  
Motor Driver Bridge 2 Output B.  
Ground.  
Configuration Program pin. When used together with pin  
18, it programs device into one of the four configurations  
(see following Programmable Modes table)  
7
PROG1  
I02: Current level control bit for Bridge 2.  
STB: Strobe input pin for current setting.  
SCLK: Clock input pin for serial protocol.  
8
9
IO2  
I12  
STB  
I12  
SCLK  
SDI  
I12: Current level control bit for Bridge 2.  
SDI: Data input pin for serial protocol.  
7/42  
Pin description  
L8229  
Table 1.  
Pin N#  
Pin Description (continued)  
L8229_x  
L6219_HI  
L6219_8  
Function  
(Pin7&18=10  
or 11)  
(Pin7&18=00) (Pin7&18=01)  
PHASE2: Direction input control pin for Bridge 2.  
nCS: Chip Select input pin for serial protocol.  
10  
11  
PHASE2  
VREF2  
RC2  
PHASE2  
nCS  
VREF2: Reference voltage input for Bridge 2.  
VREFDEC  
VREF2  
FAULT  
VREFDEC: Mixed Decay Reference voltage for both  
Bridges 1 and 2.  
RC2: Toff input pin for Bridge 2.  
12  
13  
14  
RC2  
VCC  
RC1  
FAULT: This pin is high when a generic fault is present.  
Logic and Low voltage analog Supply.  
RC1: Toff input pin for Bridge 1.  
RC1  
VREF1  
PHASE1  
I11  
nRESET  
VREF1  
OSC  
nRESET: Input pin for reset of serial port.  
VREF1: Reference voltage input for Bridge 1.  
15  
16  
17  
VREFCOM  
PHASE1  
I11  
VREFCOM: Common Reference voltage input for both  
Bridges 1 and 2.  
PHASE1: Direction input control pin for Bridge 1.  
OSC: Input for external oscillator used for timings.  
I11: Current level control bit for Bridge 1.  
PWM2  
PWM2: PWM input control pin for Bridge 2 when used as  
a DC motor driver.  
Configuration Program pin. When used together with pin  
7, it programs device into one of the four configurations  
(see following Programmable Modes table).  
18  
19  
20  
PROG2  
GND  
I01  
Ground.  
I01: Current level control bit for Bridge 1.  
I01  
PWM1  
PWM1: PWM input control pin for bridge 1 when used as  
a DC motor driver  
21  
22  
23  
24  
OUT1B  
COMPIN1  
SENSE1  
VS  
Motor Driver Bridge 1 Output B.  
Current Comparator input for Bridge1.  
Motor Driver Bridge 1 Sense Resistor.  
Supply voltage for output stages.  
Note:  
ESD on pin PROG1 vs. V is guaranteed up to +2KV/-1.75KV (Human Body Model,  
S
1500Ohm, 100pF)  
8/42  
L8229  
Pin description  
Table 2.  
Programmable modes  
Pin # 18  
Pin #7  
PROG1  
Description  
Mode name Drive Configurations  
PROG2  
L6219 compatible  
(up to 1.2A Iout)  
1 x Stepping  
L6219_HI  
0
0
0
MotorDriver.  
L6219 like with 8 current levels  
1 x Stepping  
L6219_8  
1
0
1
(up to 1.2A Iout) and Mixed  
Decay.  
MotorDriver.  
1 x Stepping  
1
1
SPI operation, Chip Address = 0  
SPI operation, Chip Address = 1  
L8229_0  
L8229_1  
MotorDriver or 2 x DC  
Motor Driver.  
1 x Stepping  
MotorDriver or 2 x DC  
Motor Driver.  
9/42  
Electrical Characteristics  
L8229  
3
Electrical Characteristics  
Independently from the selected configurations, L8229 has some electrical characteristics  
that are common for all modes. These are listed below while specific characteristics are  
listed in their respective functionality descriptions.  
In all modes L8229 is powered by Vs supply voltage. The anti cross-conduction delay is  
controlled to provide sufficient time for cross-conduction suppression so that at no time both  
the upper and lower output devices (on the same side of the H bridge) are allowed to  
conduct simultaneously.  
During an over-temperature event, when the device Tj is above Tj(shutdown), the internal  
thermal protection circuit disables the drive outputs until the device temperature drops below  
the lower thermal threshold temperature.  
Note:  
The programming pins, PROG1 and PROG2, must be soldered to Vcc or to GND and must  
not be driven when supplies are on.  
3.1  
Absolute maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Vs  
Vcc  
Supply voltage (including ripple).  
40  
V
V
Logic and Low voltage analog supply voltage  
Motor Driver Output Peak Current (see Note (1)).  
Vref input voltage.  
7
1.5  
Ipeak  
Vref  
A
7.5  
V
Vsense Vsense output voltage.  
2
V
Vin  
Tj  
Logic input voltage.  
Junction Temperature.  
Storage Temperature.  
-0.3 to +7  
170  
V
°C  
°C  
Tstg  
-25 to 150  
1. This peak current is intended as start up current for max 1 second with D.C. 10%  
3.2  
Operating ratings  
Table 4.  
Operating ratings (0°C Tj 125°C)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vs  
Supply voltage (including ripple).  
8.5  
32  
38  
V
Logic and Low voltage analog  
supply voltage.  
Vcc  
3.135  
5
5.25  
V
L8229_0/1 configuration  
Sleep mode:  
I_Vs  
Vs Standby Current  
3
6
mA  
NSLEEP (W1, bit3) = 0  
10/42  
L8229  
Electrical Characteristics  
Table 4.  
Operating ratings (0°C Tj 125°C) (continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vcc total supply current  
I_VccL6219  
Vcc=5.25V  
7
7
mA  
mA  
mA  
V
(L6219_HI and L6219_8 modes)  
Vcc=5.25V  
Vcc total supply current  
I_VccL8229_0/1  
Vcc=5.25V,  
(L8229_0 or L8229_1 mode)  
3
NSLEEP (W1, bit3) = 0  
Vin  
Logic input voltage  
0
Vcc  
1.2  
Motor Driver Output Current  
(continuous)  
Iout  
A
3.3  
General electrical characteristics  
(0°C Tj 125°C, VS = 32V, unless otherwise specified)  
3.3.1  
Output Drivers (OUTA or OUTB)  
Table 5.  
Symbol  
Output Drivers (OUTA or OUTB)  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Source Driver, ILOAD =-1.2A  
Sink Driver, ILOAD =+1.2A  
Vout = Vs or Gnd  
1.3  
1.3  
Ω
Ω
Output ON Resistance  
(Tj = 70 °C)  
RDSON  
Icex  
Output leakage current  
50  
1
µA  
V
Sink Diode, IF = 1.2A  
Source Diode, IF = 1.2A  
1.5  
1.5  
VF  
Body Diode Forward Voltage  
1
V
Vs=12V, RL=12Ω connected to  
Vs or Gnd  
Vs=24V, RL=38Ω connected to  
Vs or Gnd  
tr  
tf  
Output rising time  
Output falling time  
100  
350  
300  
ns  
Vs=36V, RL=58Ω connected to  
Vs or Gnd  
Vs=12V, RL=12Ω connected to  
Vs or Gnd  
Vs=24V, RL=38Ω connected to  
Vs or Gnd  
75  
ns  
Vs=36V, RL=58Ω connected to  
Vs or Gnd  
Tdead Shoot through delay  
1
µA  
11/42  
Electrical Characteristics  
L8229  
3.3.2  
Control Logic pins  
Table 6.  
Symbol  
Control Logic pins  
Parameter  
Test Condition  
All logic input for  
Min.  
Typ.  
Max.  
Unit  
VIN (H) Input Voltage  
2
V
Vcc = 3.3V or 5V.  
All logic input for  
Vcc = 3.3V or 5V.  
VIN (L) Input Voltage  
IIN (H) Input Current  
0.8  
V
VIN = 2.0V  
VIN = 0.8V  
-20  
-20  
20  
20  
50  
µA  
µA  
µA  
IIN (L)  
Isdi  
Input Current  
SDI Input Current  
-200  
3.3.3  
Analog Input Pins  
Table 7.  
Symbol  
Analog Input Pins  
Description  
Condition  
Min.  
1.5  
Typ.  
Max.  
Unit  
Vref  
IVref  
Vref Input Voltage  
7.5  
200  
0.75  
20  
V
µA  
V
Vref Input Current  
Vref = 5.0V  
Vcompin  
Icompin  
Vsense  
Isense  
Vcompin Input Voltage  
Vcompin Input Current  
Vsense Input Voltage  
Vsense Output Current  
1
µA  
V
0.75  
100  
50  
µA  
3.3.4  
General  
Table 8.  
General  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vsc_off  
Vs_UV  
Sense comparator offset  
Vs undervoltage threshold  
Vs undervoltage hysteresis  
Vcc undervoltage threshold  
10  
7.5  
mV  
V
Vs_UVhys  
Vcc_UV  
300  
2.9  
mV  
V
Vcc_UVhys Vcc undervoltage hysteresis  
150  
mV  
Thermal shutdown junction  
Tj(shutdown)  
160  
25  
°C  
°C  
temperature  
Tj(enable_  
hysteresis)  
Thermal enable junction temperature  
hysteresis  
12/42  
L8229  
L6219_HI and L6219_8 modes  
4
L6219_HI and L6219_8 modes  
When configured in one of these modes the device has a functionality similar to ST L6219  
with some improvements. The output stage is made by LDMOS devices instead of the BJT  
present in ST L6219. This allows a reduced saturation drop and an higher current handling  
with similar power dissipation. Additionally the recirculation diodes are internally available as  
a part of the LDMOS structure.  
In case of:  
a) Undervoltage detection (UVD) or  
b) Thermal shutdown (TSD),  
the outputs will be in Hi-Z mode (all outputs off) respectively until the supplies voltage goes  
over the UV threshold plus hysteresis or the themperature decreases below TSD threshold  
minus hysteresis.  
In case of:  
c) Overcurrent detection (OCD)  
the outputs will be in Hi-Z mode (all outputs off) and will remain in this condition until the  
device is reset by turning off and on VCC supply voltage.  
Common electrical characteristics of both L6219_HI and L6219_8 modes are listed below,  
while specific characteristics are listed in their respective functionality descriptions.  
13/42  
L6219_HI and L6219_8 Electrical characteristics  
L8229  
5
L6219_HI and L6219_8 Electrical characteristics  
(0°C Tj 125°C, VS = 32 V, unless otherwise specified)  
5.1  
DC specifications  
Table 9.  
DC specifications  
Symbol  
Description  
Condition  
Min  
Typ  
Max  
Unit  
I0 0.8V, I1 0.8V  
I0 2.0V, I1 0.8V  
I0 0.8V, I1 2.0V  
9.25  
13.5  
25.5  
10  
15  
30  
10.5  
16.5  
34.5  
Current Limit Threshold (at trip  
point ) for Vref = 5V and Tj 70°C  
Vref/Vsense  
5.2  
AC/transient specifications  
Table 10. AC/transient specifications  
Symbol  
Parameter  
Cut off time  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Toff  
Rt=56Kohm, Ct =820pF  
50  
1
µA  
µA  
Tdelay Turn Off Delay for comparator  
Blanking time for Sense  
Tblank  
1
µA  
comparator  
14/42  
L8229  
L6219_HI mode  
6
L6219_HI mode  
The device will be set into the L6219_HI mode by asserting PROG1 and PROG2 pins (pin 7  
and 18) to 00.  
In the L6219_HI mode, the device is pin and function compatible with the ST L6219 device.  
Please note that while ST L6219 allows good power dissipation by simply connecting to gnd  
the center pins because of the batwing frame, the L8229 power dissipation will be good only  
by connecting the exposed pad to a proper heat sink.  
The circuit is intended to drive both windings of a bipolar stepping motor. The peak current  
control is made through switch mode regulation. There is a choice of three different current  
levels with the two logic inputs I01 and I11 for winding 1 and I02 and I12 for winding 2. The  
current can also be completely switched off.  
6.1  
Input Logic (I0 and I1)  
The current level in the motor winding is selected with these inputs (see Figure 1). If any of  
the logic inputs is left open, the circuit will treat it as a high level input.  
Table 11. Input Logic (I0 and I1)  
I0X  
I1X  
Current Level  
H
L
H
H
L
No Current  
Low Current:  
1/3 Io max  
H
L
Medium Current: 2/3 Io max  
Maximum Current: Io max  
L
6.2  
6.3  
Phase  
This input pin determines the direction of current flow in the windings, depending on the  
motor connections. The signal is fed through a Schmitt trigger for noise immunity, and  
through a time delay in order to guarantee that no cross conduction occurs in the output  
stage during phase-shift. High level on the PHASE input causes the motor current to flow  
from OutA through the motor winding to OutB.  
Current Sensing  
This part contains a low pass filter for the external current sensing resistor (Rs) and three  
comparators. Only one comparator is active at a time: it is activated by the input logic  
according to the current level chosen with signals I0 and I1.  
The motor current flows through the sensing resistor Rs and when the current has increased  
so that the voltage across Rs becomes higher than the reference voltage on the other  
comparator input, the comparator output goes high, triggering the pulse generator.  
The max peak current Imax can be defined by:  
Imax = Vref / 10 Rs  
15/42  
L6219_HI mode  
L8229  
Note that Iout max is 1.2A and the wide range allowed for Vref requires the choice of a  
suitable sense resistor to prevent current range over the maximum.  
6.4  
Single-pulse Generator  
The pulse generator is a monostable circuit triggered on the positive going edge of the  
comparator output. The circuit output is high during the pulse time Toff that is determined by  
the time components Rt and Ct.  
Toff =~ 1.1 x RtCt  
(including switching dead time)  
The single pulse turns off the power switch connected to the motor winding, causing the  
winding current to decrease during Toff. If a new trigger signal should occur during Toff it will  
be ignored.  
6.5  
6.6  
Output Stage  
Each of the two outputs stage contains four LDMOS transistors (P and N channel)  
connected in two H Bridges. The intrinsic body diode of the LDMOS serve as recirculation  
diode for flyback current.  
The LDMOS are used to switch the power supply to the motor winding, thus driving a  
constant current through the winding. It should be noted however, that is not permitted to  
short-circuit the outputs. Internal circuitry is added in order to increase the accuracy of the  
motor current particularly with low current levels.  
Vs, Vcc, Vref  
The circuit will stand any order of turn-on or turn-off of the supply voltages Vs and Vcc.  
Normal dV/dt values are then assumed.  
Preferably, Vref should be tracking Vcc during power-on and power-off if Vs is established.  
Figure 3.  
Ton and Toff  
Normalized  
output current  
1.0  
Tdelay  
Ton  
0.5  
Toff  
0
VSense  
Vref  
VRC  
16/42  
L8229  
L6219_HI mode  
Figure 4.  
Half and Full Step Drive with Imax=1.2A  
Hold  
Half Step Drive  
Full Step Drive  
1
2
3
4
5
6
7
8
I01  
I11  
PHASE 1  
I02  
I12  
PHASE 2  
Motor Current Phase 1 A to B  
Motor Current Phase 2 A to B  
1.2A  
0.8A  
0 A  
-0.8A  
-1.2A  
1.2A  
0.8A  
0 A  
-0.8A  
-1.2A  
Figure 5.  
Normal conduction and slow recirculation current paths.  
Toff  
Vcc  
RC  
Ton  
Ton  
T2  
T3  
T1  
OUTA1  
Slow Decay  
L6219_HI Mode  
OUTB1  
VS  
HA  
HB  
Ton Current  
Toff Current  
LB  
LA  
Slow Decay  
17/42  
L6219_8 mode  
L8229  
7
L6219_8 mode  
A second configuration of the device is achieved when PROG1 and PROG2 pins (pin 7 and  
18) are asserted to 01. The device is now configured into the L6219_8 configuration. This  
device mode function is similar to L6219_HI, but with the possibility of using 8 current levels  
instead of 4, to implement a more accurate microstepping function and with the possibility to  
set a mixed decay for recirculation current. The remaining functionalities are identical to  
L6219_HI mode.  
7.1  
8 Level Current Setting  
This setting is achieved by using pin 8 (STB) as a strobe for latching the current setting  
control inputs. The rising edge of STB will latch the I01, I11 and I12 inputs for decoding  
current levels settings for Bridge 1. Similarly the falling edge will latch the I01, I11 and I12  
inputs for decoding current levels settings for Bridge 2.  
In order to allow a good similitude to sine drive, the levels set by the input pins are not  
equally spaced but are choosen to approximate a sinusoidal wave.  
On power up, the device is by default into a no current drive state for both H Bridges and will  
start driving only upon the rising or falling edges of STB.  
7.2  
Mixed Decay  
VREFCOM input (pin 15) is the reference voltage for both bridges while VREFDEC input  
(pin 11) is a voltage reference for decay control. When the current setting is set from an  
higher level to a lower level, the device can be set to perform:  
1.  
Slow decay (current is recirculated throught the low side drivers) when VREFDEC > 0.94Vcc.  
2. A mix of Fast followed by Slow decay when 0.33Vcc < VREFDEC < 0.94Vcc.  
3. Fast decay (current is recirculated from Sense to Vs) when VREFDEC < 0.33Vcc.  
In case 2, VREFDEC voltage is compared with the RC discharging voltage during the Toff  
duration. Until the RC voltage is above VREFDEC there will be fast decay: the bridge  
outputs will be driven to enable recirculation from Rsense to VS. For RC voltages below  
VREFDEC, the bridges will be driven to recirculate through the low side drivers. (see  
Figure 8)  
Table 12. Current levels  
STB  
I01  
I11  
I12  
Current level  
Bridge1  
No current  
Bridge 2  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
-
-
-
-
-
-
I
OUT / Imax=0.22  
IOUT / Imax=0.42  
IOUT / Imax=0.61  
I
OUT / Imax=0.77  
IOUT / Imax=0.87  
18/42  
L8229  
L6219_8 mode  
Table 12. Current levels (continued)  
STB  
I01  
I11  
I12  
Current level  
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
IOUT / Imax=0.93  
-
IOUT / Imax=1  
-
-
-
-
-
-
-
-
-
IOUT / Imax=1  
IOUT / Imax=0.93  
I
OUT / Imax=0.87  
IOUT / Imax=0.77  
IOUT / Imax=0.61  
I
OUT / Imax=0.42  
IOUT / Imax=0.22  
No current  
Table 13. AC/Transient Specification  
Symbol  
Description  
Min  
Typ  
Max  
MD_h  
MD_l  
Mixed decay trip point high  
Mixed decay trip point low  
0.93Vcc 75mV  
0.33Vcc 50mV  
Table 14. Timing specifications  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
MIN  
TYP  
MAX  
Units  
Fstb  
Strobe frequency  
Strobe high width  
Strobe low width  
STB rise time  
6
MHz  
ns  
Thstb  
20  
20  
0
Tlstb  
ns  
Trd_stb  
Tfd_stb  
Trd_Ixx  
Tfd_Ixx  
Tsu_Ixx  
Thd_Ixx  
10  
10  
10  
10  
ns  
STB fall time  
0
ns  
I01,I11,I12 rise time  
I01,I11,I12 fall time  
I01,I11,I12 setup time  
I01,I11,I12 hold time  
0
ns  
0
ns  
15  
15  
ns  
ns  
19/42  
L6219_8 mode  
Figure 6. L6219_8 mode Stepping Driving  
L8229  
Bridge2  
Bridge1  
PHASE2  
PHASE1  
I12  
I11  
I01  
STB  
Figure 7.  
L6219_8 mode Fast and Slow Decay current paths  
Toff  
Vcc  
RC  
SLOW DECAY  
0.94Vcc  
VREFDEC  
OUTA  
Toff= 1.1RC inclusive of  
Tdeadtime T1 and T3  
MIXED DECAY  
FAST DECAY  
0.33Vcc  
T1 T2 T3  
T4  
T5  
T1, T3 and T5 are  
dead times  
to ensure no cross  
conduction  
L6219_8 Mode  
OUTB  
Slow  
Fast  
Decay  
Decay  
VS  
HA  
LA  
Ton Current  
HB  
Toff Fast Decay  
Current  
Toff Slow Decay  
Current  
LB  
20/42  
L8229  
L8229_0 and L8229_1 modes  
8
L8229_0 and L8229_1 modes  
When in these modes, the device can be programmed via a serial interface. This allows a  
very precise microstepping functionality as well as the control of several parameters related  
to the motor functionality.  
In this configuration there is also the possibilty of driving two DC motors by means of two  
pulse width modulated (PWM) control signals.  
The parameters that can be set are the following:  
1. Current levels (32 values for each bridge).  
2. Current direction.  
3. Type of decay for stepping motor (Mix/Slow).  
4. Vref input (Ext/Int)  
5. Vref divider (:5/:10).  
6. Blanking time (4 values).  
7. Oscillator freq divider (4 values).  
8. Off time (32 values).  
9. Fast decay time (16 values).  
10. Synchronous rectification (Active/Passive/LowSide/Off).  
11. Choose of driving a Stepping or DC motor.  
12. Possibility of paralleling bridges (in DC motor drive).  
13. Slow or fast decay (in DC motor drive).  
14. Possibility of setting outputs in brake mode.  
15. Possibility of asserting Sleep mode to reduce current consumption and put outputs in  
HI-Z.  
When in L8229 modes, pin 12 (FAULT) is used to provide a "Generic Fault" signal that is  
intended as a warning for the user. In case of:  
a) Undervoltage detection (UVD): no action is taken on output bridges and the device  
will be working, leaving to the user the action of stopping the output bridges  
functionality.  
During UVD event, the Generic Fault signal is pulled high.  
b) Thermal shutdown (TSD): output bridges will be in Hi-Z mode (all outputs off) until  
the temperature decreases below TSD threshold minus hysteresis.  
During TSD event, the Generic Fault signal is pulled high.  
c) Over current detection (OCD): output bridges will be in Hi-Z mode. Depending on  
the motor (Stepping or DC according to W2 bit 14), the OCD status will be latched  
as follows:  
– for stepping motor driving the OCD status will be latched until SPI is reset by  
means of nRESET pin.  
– for DC motor driving the OCD status will be latched until next positive PWM  
edge occurs.  
For both above cases, the Generic Fault signal is pulled high until the OCD  
status persists.  
21/42  
L8229_0 and L8229_1 modes  
Table 15. DC Specifications  
L8229  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Vref voltage Internal reference voltage  
1.94  
2
2.06  
V
Reverse current detection offset  
Ioff-rev  
50  
mA  
(in Active Sync recirculation)  
Table 16. AC/Transient Specifications  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Osc  
Oscillator frequency  
4
MHz  
8.1  
Serial interface specification  
This device, when in L8229_0 or L8229_1 configuration, is managed via a Serial Interface  
Port for a total of 16 bits with 4 different words. This port provides an interface between the  
chip and external digital ASIC. For the user this port is write-only: assigned read registers  
are for test mode purposes only.  
The interface consists of 3 signal lines: chip select (nCS, active low), serial clock (SCLK)  
and serial data input (SDI).  
The digital ASIC initiates a serial transfer by pulling low the chip select line, nCS. Then it  
generates 16 clock pulses on SCLK while presenting the serial data on input SDI. The data  
is shifted into the L8229 on the rising edge of SCLK. The digital ASIC presents the data on  
SDI one setup time (Tdsu) before the rising edge of SCLK. The data is held constant for the  
data hold time (Tdhd) beyond the SCLK rising edge. The less significant bit, or LSB, is the  
first to be shifted out of the digital ASIC and into the chip, followed by the remaining bits. The  
last of the 16 bits is the most significant bit or MSB. SDI will remain at the value presented  
with the last bit of data. The nCS line is then returned to a high state. The low to high  
transition of nCS loads the data into the internal L8229 input register where all the inputs are  
presented to their appropriate functions in a parallel mode.  
In the event that there are less or more than 16 SCLK rising edges during nCS=0, the device  
will interprete the packet as invalid. This enables the SPI bus to be shared with others  
devices with similar packet skipping functionality (and with programming word length  
different from 16 bits), without the use of nCS.  
The outputs of the serial input port shall not "glitch" during any operation.  
The serial interface is cleared by nRESET signal applied to pin 14. When nRESET=0,  
output stages are in Hi-Z mode (all outputs off). Please note that neither TSD nor OCD reset  
the SPI.  
22/42  
L8229  
L8229_0 and L8229_1 modes  
Figure 8.  
SPI Operations  
Data latched on rising edge of SCLK  
TCS-SCLK  
TSCLK-CS  
nCS  
SCLK  
SDI  
TDSU  
Bit1  
TDHD  
Bit3  
Bit0  
Bit4  
Bit7  
Bit14 Bit15  
MSB  
Bit2  
Bit5  
Bit6  
LSB  
Table 17. SPI Timing specifications  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
MIN  
TYP  
MAX  
Units  
Fclk  
Tclh  
Serial clock frequency  
SCLK high width  
8
12  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
30  
10  
10  
10  
10  
10  
0
Tcll  
SCLK low width  
Tcs-sclk  
Tsclk-cs  
Tdsu  
Tdhd  
Tcs-cs  
Trd  
Delay nCS falling to first SCLK rising  
Delay last SCLK rising edge to nCS rising  
Data valid to SCLK set up time  
Data hold time  
Delay required from (n-1)CS to nCS  
SDI rise time  
20  
20  
20  
Tfd  
SDI fall time  
0
Trfc  
SCLK rise/fall time  
0
23/42  
L8229_0 and L8229_1 modes  
L8229  
8.2  
SPI Bit definition  
8.2.1  
Word Description  
Each of the 3 words used to program the chip when in L8229_0 or L8229_1 mode has the 3  
LSB used to address the word as follows:  
Table 18. Word Description  
BIT #  
NAME  
Value  
DESCRIPTION  
This value addresses the word to chip #0 (if two L8229 are  
present on the same board and a single nCS line is used).  
0
Chip address is assigned by configuring the PROG bit  
according to Table 2.  
0
CHIP ADDRESS  
This value addresses the word to chip #1 (if two L8229 are  
present on the same board and a single nCS line is used).  
1
Chip address is assigned by configuring the PROG bit  
according to Table 2.  
Bit 2  
Bit 1  
0
0
1
1
0
1
0
1
W0: OPERATIVE register  
W1: PARAMETERS register  
W2 : FUNCTIONAL register  
Not allowed  
WORD ADDRESS 1,  
WORD ADDRESS 2  
1 and 2  
8.2.2  
W0 (OPERATIVE: Bit 2=0, Bit 1=0)  
This word is mainly used to fix the current level and direction in the bridge.  
Table 19. W0  
RESET  
VALUE  
BIT #  
NAME  
DESCRIPTION  
This bit is used to select if the informations provided by bits 1 to 15 are  
referred to chip 0 or chip 1. This is useful in the case that two L8229 are  
present on the same board and a single nCS line is used.  
0
CHIP ADDRESS  
0
1
2
3
4
5
6
7
WORD ADDRESS 1  
WORD ADDRESS 2  
DAC1 BIT 1 (LSB)  
DAC1 BIT 2  
0
0
0
0
0
0
0
This is the LSB of the two bits used to address the word  
This is the MSB of the two bits used to address the word  
LSB for DAC intended to regulate the current of Bridge 1  
BIT2 for DAC intended to regulate the current of Bridge 1  
BIT3 for DAC intended to regulate the current of Bridge 1  
BIT4 for DAC intended to regulate the current of Bridge 1  
MSB for DAC intended to regulate the current of Bridge 1  
DAC1 BIT 3  
DAC1 BIT 4  
DAC1 BIT 5 (MSB)  
Controls the direction of current flow for Bridge1.  
8
9
PHASE 1  
0
0
A logic 0 level causes current flow from A (source) to B (sink).  
DAC2 BIT1 (LSB)  
LSB for DAC intended to regulate the current of Bridge 2  
24/42  
L8229  
L8229_0 and L8229_1 modes  
Table 19. W0 (continued)  
RESET  
VALUE  
BIT #  
NAME  
DESCRIPTION  
10  
11  
12  
13  
DAC2 BIT 2  
0
0
0
0
BIT2 for DAC intended to regulate the current of Bridge 2  
BIT3 for DAC intended to regulate the current of Bridge 2  
BIT4 for DAC intended to regulate the current of Bridge 2  
MSB for DAC intended to regulate the current of Bridge 2  
DAC2 BIT 3  
DAC2 BIT 4  
DAC2 BIT 5 (MSB)  
Controls the direction of current flow Bridge 2.  
14  
15  
PHASE 2  
0
0
A logic HIGH level causes current flow from A (source) to B (sink).  
This bit must be set to 1 when otputs are paralled to drive a single DC  
motor  
PARALLEL OUTPUT  
8.3  
W1 (PARAMETERS: Bit 2=0, Bit 1=1)  
This word is mainly used to set motor related parameters.  
Table 20. W1  
RESET  
VALUE  
BIT #  
NAME  
DESCRIPTION  
This bit is used to select if the informations provided by bits 1 to 15 are  
referred to chip 0 or chip 1. This is useful in the case that two L8229 are  
present on the same board and a single nCS line is used.  
0
CHIP ADDRESS  
0
1
2
WORD ADDRESS 1  
WORD ADDRESS 2  
NSLEEP  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
This is the LSB of the two bits used to address the word.  
This is the MSB of the two bits used to address the word.  
This bit is used to decide if the device should exit sleep mode.  
LSB for fixing the Toff time (see following Table 32).  
BIT 2 for fixing the Toff time (see following Table 32).  
BIT 3 for fixing the Toff time (see following Table 32).  
BIT 4 for fixing the Toff time (see following Table 32).  
MSB for fixing the Toff time (see following Table 32).  
LSB for fixing the Fast Decay time (see followingTable 31).  
BIT 2 for fixing the Fast Decay time (see following Table 31).  
BIT 3 for fixing the Fast Decay time (see following Table 31).  
MSB for fixing the Fast Decay time (see following Table 31).  
LSB to decide the rectification mode (see following Table 35).  
MSB to decide the rectification mode (see following Table 35).  
This bit is used to put outputs in brake mode  
3
4
OFF1  
5
OFF2  
6
OFF3  
7
OFF4  
8
OFF5  
9
FASTDEC1  
FASTDEC2  
FASTDEC3  
FASTDEC4  
SYNCRECT1  
SYNCRECT2  
Brake  
10  
11  
12  
13  
14  
15  
25/42  
L8229_0 and L8229_1 modes  
L8229  
8.4  
W2 (FUNCTIONAL: Bit 2=1, Bit 1=0)  
This word is mainly used to set the functional mode  
Table 21. W2  
RESET  
VALUE  
BIT #  
NAME  
DESCRIPTION  
This bit is used to select if the informations provided by bits 1 to 15 are  
referred to chip 0 or chip 1. This is useful in the case that two L8229 are  
present on the same board and a single nCS line is used.  
0
CHIP ADDRESS  
0
1
2
WORD ADDRESS 1  
WORD ADDRESS 2  
0
0
This is the LSB of the two bits used to address the word.  
This is the MSB of the two bits used to address the word.  
This bit is to decide if Slow or Mixed Decay is applied to Bridge 1  
(Stepping motor).  
3
4
5
6
7
8
9
MIX/SLOW 1 (St. mot)  
MIX/SLOW 2 (St. mot)  
REFERENCE INT/EXT  
RANGE  
0
0
0
0
0
0
0
0
This bit is to decide if Slow or Mixed Decay is applied to Bridge 2  
(Stepping motor).  
This bit is used to decide if the reference voltage will be internal (0) or  
external (1)  
This bit is to decide if the reference voltage will be divided by 10 (0) or  
by 5 (1).  
This is the LSB bit used to fix the Blanking time (see following  
Table 30).  
BLANK LSB  
This is the MSB bit used to fix the Blanking time (see following  
Table 30).  
BLANK MSB  
This is the LSB bit used to fix the Oscillator values (see following  
Table 29).  
OSC LSB  
This is the MSB bit used to fix the Oscillator values (see following  
Table 29).  
10 OSC MSB  
11 TEST 1  
12 TEST 2  
13 TEST 3  
0
0
0
This bit is used for trim mode.  
This bit is used for trim mode.  
This bit is used for trim mode.  
This bit is used to set the drive of a Stepping Motor (0) or a DC Motor  
(1).  
14 STEP/DC  
0
0
This bit is used to decide if Slow (0) or Fast (1) decay is applied to DC  
Motor configuration  
15 SLOW/FAST (DC mot)  
26/42  
L8229  
L8229_0 and L8229_1 modes  
8.4.1  
Reading back SPI.  
When W2 bit 11 to 13 are to 111, read back from SPI is enabled. This function is to check  
the actual data in W0 and W1; W2 can’t be read back.  
To read back the following procedure is requested:  
1. Set PROG1=1, PROG2=0  
2. Write W0 and W1 to SDI  
3. Write W2 (with bits 11, 12, 13 set to 111) to SDI. This enables read back mode from  
SPI.  
4. Write 0001 1111 1111 1111 to SDI (the first three bits mean that W0 is requested to be  
read out, the other bits have no sense just to fill the blank bits). This allows to check if  
the SDI output is W0 bit3~15.  
5. Write W2 (with bits 11, 12, 13 set to 111) to SDI. This enables read back mode from  
SPI.  
6. Write 0101 1111 1111 1111 to SDI (the first three bits mean that W1 is requested to be  
read out, the other bits have no sense just to fill the blank bits). This allows to check if  
the SDI output is W1 bit3~15.  
If the data to be read out are the same as the data write in, it means write function of SPI is  
right.  
27/42  
SPI programming  
L8229  
9
SPI programming  
On power up, the device is by default in sleep mode. Before coming out from sleep, the  
device needs to be programmed to drive either Stepping or DC motor. This is controlled by  
W2 bit 14. Default is stepping motor drive.  
Table 22. Motor mode selected by W2  
Bit 14  
Mode  
0
1
Stepping motor  
DC motor  
The device can be awoken from the sleep mode by means of the bit 3 of W1.  
Table 23. Nsleep mode selected by W1  
Bit 3  
Mode  
0
1
Sleep  
Normal  
The device can be set in brake mode ( both outputs are LL) by means of W1 bit 15. Please  
note that Brake mode overcomes Nsleep mode.  
Table 24. Brake mode selected by W1  
Bit 15  
Mode  
0
1
Normal  
Brake  
9.1  
Current Control  
Current level in the motor is set by means of a combination of Vref (ext or int), Rsense and  
DAC control bits.  
The max current is set as follows:  
Imax = Vref / (Range x Rsense)  
Vref can be set to be internal at 2V or externally applied to VREF1 and VREF2 pins. On  
power up, the default is the internal 2V.  
Table 25. Vref mode selected by W2  
Bit 5  
Mode  
0
1
Internal ref. 2V  
External ref. (7.5V max)  
Vref voltage is divided according to Range value that is defined by W2 bit 6 to be either 10  
or 5.  
28/42  
L8229  
SPI programming  
Table 26. Range mode selected by W2  
Bit 6  
Mode  
0
1
Range = 10  
Range = 5  
The direction of current is determined by W0 bits 8 and 14. During Ton, outputs will be  
according to following table:  
Table 27. Current direction selected by W0  
Bit 8 (14)  
OUT A  
OUT B  
0
1
L
H
L
H
The 5 bit DACs for each Bridge enable an accurate resolution control defined by Current  
levels table below. The current level Iset is then defined as:  
Iset = Vdac / (Range x Rsense)  
where:  
Vdac = (DAC/31) x Vref  
where DAC is defined from 0 to 31, so the current level is fixed by W0 bits 7 (MSB) to 3  
(LSB) (13 to 9) as in following table.  
Table 28. Current levels selected by W0 for DAC  
Bit 7 (13)  
Bit 6 (12)  
Bit 5 (11)  
Bit 4 (10)  
Bit 3 (9)  
IPH_A (B)/Imax  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
16/31  
29/42  
SPI programming  
Table 28. Current levels selected by W0 for DAC (continued)  
L8229  
Bit 7 (13)  
Bit 6 (12)  
Bit 5 (11)  
Bit 4 (10)  
Bit 3 (9)  
IPH_A (B)/Imax  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
9.2  
Timings Control  
All timings are controlled by a master oscillator that can be internal or externally provided. At  
power up, OSC will default to the internal 4MHz oscillator. Setting W2 bits 9 and 10 will  
select the external oscillator frequency or it's dividing by either 2 or 4.  
Table 29. Oscillator frequency selected by W2  
Bit 10  
Bit 9  
Freq  
0
0
1
1
0
1
0
1
Internal (4MHz)  
Ext  
Ext/2  
Ext/4  
The switching blanking time for masking transient can be selected by W2 bits 7 and 8.  
Table 30. Blanking time selected by W2  
Bit 8  
Bit 7  
Time  
0
0
1
1
0
1
0
1
2/fosc  
4/fosc  
8/fosc  
12/fosc  
30/42  
L8229  
SPI programming  
Fast decay timing is set by W1 bits 9 (LSB) to 12 (MSB).  
Tfast = (N+1) x 8/Fosc  
Where N = 0 to 15 and Fosc is either the internal 4 MHz or the external oscillator frequency  
with selected division.  
Setting Toff to be smaller than Tfast will result in fast decay only.  
Table 31. Fast decay time selected by W1  
Bit 12  
Bit 11  
Bit10  
Bit9  
Fast decay  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1x8/fosc  
2x8/fosc  
3x8/fosc  
4x8/fosc  
5x8/fosc  
6x8/fosc  
7x8/fosc  
8x8/fosc  
9x8/fosc  
10x8/fosc  
11x8/fosc  
12x8/fosc  
13x8/fosc  
14x8/fosc  
15x8/fosc  
16x8/fosc  
The Toff timing is controlled by bits 4 (LSB) to 8 (MSB) of W1 and is based on the oscillator  
frequency.  
Toff = (N+1) x 8/Fosc  
Where N = 0 to 31 and Fosc is either the internal 4 MHz or the external oscillator frequency  
with selected division.  
Table 32. Toff time selected by W1  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Toff  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1x8/fosc  
2x8/fosc  
3x8/fosc  
4x8/fosc  
5x8/fosc  
6x8/fosc  
31/42  
SPI programming  
Table 32. Toff time selected by W1 (continued)  
L8229  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Toff  
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
7x8/fosc  
8x8/fosc  
9x8/fosc  
10x8/fosc  
11x8/fosc  
12x8/fosc  
13x8/fosc  
14x8/fosc  
15x8/fosc  
16x8/fosc  
17x8/fosc  
18x8/fosc  
19x8/fosc  
20x8/fosc  
21x8/fosc  
22x8/fosc  
23x8/fosc  
24x8/fosc  
25x8/fosc  
26x8/fosc  
27x8/fosc  
28x8/fosc  
29x8/fosc  
30x8/fosc  
31x8/fosc  
32x8/fosc  
32/42  
L8229  
SPI programming  
9.3  
Decay Modes and Synchronous Rectification  
For stepping motor drive, the recirculation mode during Toff could be slow, fast or mixed  
(that is fast followed by slow decay): W2, by means of bit 3 (for Out1) and bit 4 (for Out2),  
allows to select MIXED or SLOW decay for bridge 1 and bridge 2 respectively; by selecting  
(with W1, bits 9 to 12) Tfast longer than Toff, it is possible to select FAST decay for all the  
Toff duration.  
Table 33. Stepping decay mode selected by W2  
Bit 3 (4)  
Mode  
0
1
Mixed decay  
Slow decay  
For DC motor drive, W2 bit 15 allows to choose slow or fast decay.  
Table 34. DC decay mode selected by W2  
Bit 15  
Mode  
0
1
Slow  
Fast  
During the decay, it is possible for the current to flow through the intrinsic body diodes of the  
LDMOS or through switched on LDMOS channel (in this case the current conduction will be  
reversed from Source to Drain). This switching on of the active device in parallel with the  
diode is called SYNCHRONOUS rectification and means that the recirculation path is not  
obtained only through the internal diodes but also by turning on the DMOS in parallel with  
the diode needed to recirculate current; because of the low RDSon of this LDMOS the  
dissipation is reduced.  
For stepping motors only with W1, by means of bits 13 and 14, it is possible to choose  
several kinds of SYNCHRONOUS recirculation modes: ACTIVE recirculation, PASSIVE  
recirculation, SYNC OFF recirculation, and LOW SIDE recirculation.  
Table 35. Sync rectification selected by W1  
Bit 14  
Bit 13  
Mode  
0
0
1
0
1
Active(1)  
Passive  
Off  
0
1
1
Low side  
1. Only for Mixed Decay mode.  
ACTIVE means that the current is monitored to avoid reverse current in the load: this could  
happen because of FAST SYNC recirculation (that reverse the conduction of the bridge).  
When a reverse current is detected, synchronous rectification is turned off, so the outputs  
are placed in Hi-Z state until the end of Toff. Please note that Active Synchronous  
rectification can't be used when in Slow Decay mode.  
PASSIVE means that the current is not monitored to avoid a reverse current in the load. In  
this case the current, during Toff, could be inverted and no action is taken until the current  
reaches the current limit selected by the user by means of Vref and Rsense. When this  
33/42  
SPI programming  
L8229  
value is reached, synchronous rectification is turned off, so the outputs are placed in Hi-Z  
state until the end of Toff. Please note that a typical 50mA reverse current could be present  
during Active Sync rectification.  
SYNC OFF means that the current will recirculate through the body diodes in parallel with  
power DMOS. This is intended to allow the user to use external Schottky diodes to save the  
internal dissipation.  
LOW SIDE means that the synchronous recirculation is forced only through the low side  
power DMOS.  
Please note that while the current reversal is always sensed, if required, the current level is  
sensed only by means of Rsense, so no current control is performed when current flows  
away from Rsense, as in SLOW recirculation.  
Active and passive synchronous rectification modes are illustrated in the following drawing:  
Figure 9.  
Active and Passive synchronous rectification during Mixed Decay.  
VS  
HA  
I1  
HB  
-
-
ADgtS  
BDgtS  
I2  
+
+
LA  
LB  
+
-
Ilimit  
VDAC  
Active Sync during Fast decay  
Active Sync during Slow decay  
Recirculation  
Drive  
Hi-Z  
Drive  
Hi-Z  
Recirculat.  
I1  
I2  
I1  
I2  
ADgtS  
LA  
ADgtS  
LA  
ON  
ON  
ON  
ON  
HB  
LB  
Passive Sync during Fast decay  
Passive Sync during Slow decay  
Drive  
Recirculation  
Hi-Z  
Drive  
Recirculation  
Hi-Z  
I1  
I2  
I1  
I2  
ADgtS  
LA  
ADgtS  
LA  
HB  
ON  
ON  
ON  
ON  
LB  
Ilimit  
Remains ON till end of Toff  
Remains ON till end of Toff or  
Ilimit reached  
34/42  
L8229  
SPI programming  
The output states during these cases of recirculation could be summarized as below: (only  
OUTA to OUTB current flowing is described)  
9.4  
Mixed Decay  
1) ACTIVE SYNC recirculation could be divided in following cases.  
1a) No reverse current detected during Toff  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Anticross state (fast recirculation through LA and HB body  
diodes).  
All off  
FAST SYNC recirculation through DMOS till end of fast decay  
HA off HB on  
LA on  
LB off  
time.  
Anticross state (fast recirculation through LA DMOS and HB  
body diode).  
HA off HB off  
HA off HB off  
HA off HB off  
HA on HB off  
LA on  
LA on  
LA off  
LA off  
LB off  
LB on SLOW SYNC recirculation till end of Toff.  
Anticross state (slow recirculation through LA body diode and  
LB DMOS).  
LB on  
LB on Current increasing in the load.  
1b) Reverse current detected during Fast Recirculation of Toff  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Anticross state (fast recirculation through LA and HB body  
diodes).  
All off  
FAST SYNC recirculation through DMOS till reverse current is  
detected.  
HA off HB on  
HA on HB off  
LA on  
LB off  
All off  
LA off  
Hi-Z state till end of Toff.  
LB on Current increasing in the load.  
1c) Reverse current detected during Slow Recirculation of Toff  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Anticross state (fast recirculation through LA and HB body  
diodes).  
All off  
FAST SYNC recirculation through DMOS till end of fast  
decay time.  
HA off HB on  
LA on  
LB off  
Anticross state (fast recirculation through LA DMOS and HB  
body diode).  
HA off HB off  
HA off HB off  
LA on  
LA on  
LB off  
LB on SLOW SYNC recirculation till reverse current is detected.  
Hi-Z state till end of Toff.  
All off  
HA on HB off  
LA off  
LB on Current increasing in the load.  
35/42  
SPI programming  
L8229  
2) - PASSIVE SYNC recirculation could be divided in following cases:  
2a) The reverse current (if present) does not exceed the regulated value  
(Note: this case is identical to ACTIVE SYNC case 1a)  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Anticross state (fast recirculation through LA and HB body  
diodes).  
All off  
FAST SYNC recirculation through DMOS till end of fast decay  
time.  
HA off HB on  
LA on  
LB off  
LB off  
Anticross state (fast recirculation through LA DMOS and HB  
body diode).  
HA off HB off  
HA off HB off  
HA off HB off  
HA on HB off  
LA on  
LA on  
LA off  
LA off  
LB on SLOW SYNC recirculation till end of Toff.  
Anticross state (slow recirculation through LA body diode and  
LB DMOS).  
LB on  
LB on Current increasing in the load.  
2b) The reverse current exceeds the regulated value during FAST  
recirculation.  
(Note: if the current exceed the regulated value during SLOW recirculation, no  
action is taken and the behaviour will be that of case 2a)  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Anticross state (fast recirculation through LA and HB body  
diodes).  
All off  
FAST SYNC recirculation through DMOS till reverse current  
reaches the regulated value).  
HA off HB on  
HA on HB off  
LA on  
LB off  
All off  
LA off  
Hi-Z state till end of Toff.  
LB on Current increasing in the load.  
3) - SYNC OFF recirculation has only one case:  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Fast recirculation through LA and HB body diodes till end of  
fast decay time.  
All off  
Slow recirculation through LA body diode and LB DMOS till  
end of Toff.  
HA off HB off  
HA on HB off  
LA off  
LA off  
LB on  
LB on Current increasing in the load.  
36/42  
L8229  
SPI programming  
4) LOW SIDE recirculation has only one case:  
HA on HB off  
LA off  
LB on Current increasing in the load.  
Fast recirculation through LA and HB body diodes) till end of  
fast decay time.  
All off  
HA off HB off  
HA off HB off  
HA on HB off  
LA on  
LA off  
LA off  
LB on SLOW SYNC recirculation till end of Toff.  
Anticross state (slow recirculation through the LA body diode  
and LB DMOS).  
LB on  
LB on Current increasing in the load.  
9.5  
Slow Decay  
When in Slow Decay, Active Synchronous rectification can't be used since current is not  
expected to be reversed because of BEMF. Therefore only Passive, Off or Low side  
recirculation cases can be selected.  
1) ACTIVE SYNC recirculation is not allowed.  
2) PASSIVE SYNC recirculation  
HA on HB off  
HA off HB off  
HA off HB off  
HA off HB off  
HA on HB off  
LA off  
LA off  
LA on  
LA off  
LA off  
LB on Current increasing in the load.  
Anticross state (slow recirculation through LA body diode and  
LB DMOS).  
LB on  
LB on SLOW SYNC recirculation till end of Toff.  
Anticross state (slow recirculation through the LA body diode  
and LB DMOS).  
LB on  
LB on Current increasing in the load.  
3) SYNC OFF  
HA on HB off  
HA off HB off  
HA on HB off  
LA off  
LA off  
LA off  
LB on Current increasing in the load.  
Slow recirculation (through the LA body diode and LB DMOS)  
till end of Toff  
LB on  
LB on Current increasing in the load.  
4) LOW SIDE is identical to PASSIVE SYNC.  
37/42  
DC Motor Driver operation  
L8229  
10  
DC Motor Driver operation  
When in L8229_0 or L8229_1 configuration, the device could be configured to drive two  
different DC motors. Each drive provides bi-directional drive to a DC motor via the serial  
control and the PWM pins. The W0 bits 8 and 14 in the register will control the direction of  
drive while the PWM input pin controls the switching of the drivers. According to above  
description, the motor drive will be in voltage mode only.  
The device could also drive a single DC motor with increased current by paralleling the two  
bridges. If this is required, W0 bit 15 must be set to 1 and OUT1A must be shorted to  
OUT2A while OUT1B must be shorted to OUT2B. In this case of two bridges paralled to  
drive a single DC motor, the W0 bit 14 (PHASE2) will not be used as well as pin 17 (PWM2).  
This means that the device will act as a single bridge with ouputs OUTA (OUT1A in parallel  
with OUT2A), OUTB (OUT1B in parallel with OUT2B) and driven by PHASE1 (W0 bit 8) and  
PWM1 (pin 20).  
The drives are powered by VS.  
The crossover delay is controlled to provide sufficient time for cross-conduction  
suppression, so that at no time both the upper and lower output devices on the same side of  
the H bridge are allowed to conduct simultaneously.  
A blanking period following a current turn-on event is included to prevent false current  
protection turnoffs due to the initial current spike resulting from circuit capacitance.  
When OCD happens, outputs are placed in Hi_Z untill next PWM positive edge occurs.  
During an over-temperature event, when the device junction temperature Tj is above  
Tj(shutdown), the internal thermal protection circuit disables the drive outputs by driving all  
outputs to the high impedance state until the device temperatures have dropped below the  
lower thermal threshold temperature.  
Table 36. DC Motor Drivers - DC Specifications  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
Conditions  
Min  
Typ  
Max  
Units  
DC Motor Over Current Threshold  
(1)  
IDCMOTOR OCT  
1.5  
A
1. The current limitation is applied to the bottom H bridge LDMOS only, therefore over current protection applies to motor  
current, but no short circuit protection exists against shorts from the DC motor outputs to ground or to VS.  
Table 37. DC Motor Drivers - AC/Transient Specifications  
(0°C T 125°C, V = 32 V, unless otherwise specified)  
j
S
Name  
Description  
PWM frequency  
Blanking time (for OCD)  
Conditions  
Min  
Typ  
Max  
Units  
fPWM  
10  
30  
KHz  
Tblank  
1
μs  
Table 38. DC Motor Drivers Truth Table  
W2 bit 15  
(SLOW  
/FAST)  
W0 bit 8 Pin 20  
or 14 or 17  
(PHASE) (PWM)  
Therm.  
prot.  
OUT A  
OUT Al  
OUT B  
OUT B  
OCD  
Out State  
high side ow side high side low side  
0
0
0
0
0
0
0
0
0
1
Off  
Off  
On  
On  
Off  
On  
On  
Off  
L-L  
L-H  
38/42  
L8229  
DC Motor Driver operation  
Table 38. DC Motor Drivers Truth Table (continued)  
W2 bit 15  
(SLOW  
/FAST)  
W0 bit 8 Pin 20  
or 14 or 17  
(PHASE) (PWM)  
Therm.  
prot.  
OUT A  
OUT Al  
OUT B  
OUT B  
OCD  
Out State  
high side ow side high side low side  
0
0
0
0
0
0
x
1
0
0
0
0
0
0
1
x
0
0
1
1
1
1
X
X
1
1
0
0
1
1
X
X
0
1
0
1
0
1
X
X
Off  
On  
On  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
On  
On  
Off  
Off  
Off  
On  
On  
On  
Off  
Off  
On  
Off  
Off  
L-L  
H-L  
H-L  
L-H  
L-H  
H-L  
Hi. Z  
Hi. Z  
39/42  
Package Information  
L8229  
11  
Package Information  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 10. PowerSSO24 Mechanical Data & Package Dimensions  
mm  
inch  
DIM.  
OUTLINE AND  
MIN. TYP. MAX. MIN. TYP. MAX.  
MECHANICAL DATA  
A
A2  
a1  
b
2.15  
2.15  
0
2.47 0.084  
2.40 0.084  
0.097  
0.094  
0.003  
0.020  
0.012  
0.413  
0.075  
0
0.33  
0.23  
10.10  
0.51 0.013  
0.32 0.009  
10.50 0.398  
c
D (1)  
E (1)  
e
7.4  
7.6  
0.291  
0.299  
0.8  
8.8  
0.031  
0.346  
e3  
G
0.10  
0.06  
0.004  
0.002  
0.413  
0.016  
0.033  
G1  
H
10.10  
0.55  
10.50 0.398  
0.40  
h
L
0.85 0.022  
10˚ (max)  
N
X
4.10  
6.50  
4.70 0.161  
7.10 0.256  
0.185  
0.279  
Y
(1) “D and E1” do not include mold flash or protusions.  
PowerSSO-24  
(Exposed Pad)  
Mold flash or protusions shall not exceed 0.15mm (0.006”)  
(2) No intrusion allowed inwards the leads.  
(3) Flash or bleeds on exposed die pad shall not exceed 0.4 mm  
per side  
7412818 A  
40/42  
L8229  
Revision history  
12  
Revision history  
Table 39. Document revision history  
Date  
Revision  
Changes  
17-Feb-2005  
10-Aug-2005  
1
2
Initial release.  
Many modify of texts and table.  
Corrected some errors/imprecisions in the whole document.  
20-Feb- 2006  
3
Cancelled the L8229S part number, and all information about  
HSOP24 package.  
30-May-2006  
12-Sep- 2006  
4
5
Added note at the table 2.  
Applied new graphic design template.  
Modified the tables 2, 5, 6, 7, 8. 10, 13, 14, 15, 16, 17, 23 and 24.  
41/42  
L8229  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
42/42  

相关型号:

L822HW

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-1R0MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-1R5MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-2R2MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-3R3MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-4R7MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-R33MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-R47MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L822HW-R68MF

HIGH CURRENT MOLDED POWER INDUCTORS
SUPERWORLD

L8231

Receptacle type, 1.3 レm, 1.25, 2.5 Gbps
HAMAMATSU

L8231-21

Receptacle type, 1.3 レm, 1.25, 2.5 Gbps
HAMAMATSU

L8231-22

Receptacle type, 1.3 レm, 1.25, 2.5 Gbps
HAMAMATSU